Σύνθετες γεωμετρικές συνελίξεις με εφαρμογή στο κλασικό μοντέλο με διάχυση στη θεωρία χρεοκοπίας
Compound geometric convolutions with application to the classical risk model with diffusion
View/ Open
Keywords
Στοχαστικές ανελίξεις ; Ανανεωτικές ανελίξεις ; Οικονομετρικά υποδείγματα ; Θεωρία χρεοκοπίας ; Διαχείριση κινδύνου ; Στατιστική ανάλυση ; ΣυναρτήσειςAbstract
In a renewal process the quantity with the major interest is the renewal function, U(t),
which expresses the expected number of the renewals on the interval [0; t] when the intermediate
times between successive events are independent random variables. This
function has applications in various brances of applied research such as reliability theory,
risk theory and queuing theory. The main purpose of this thesis is the presentation on
applications of residual lifetimew of compound geometric convolutions, especially in the
case where the distribution of the intermediate times F belongs to an aging class of distributions
(e.g (IFR)-(DFR), (NBU)-(NWU)) and their transition to the risk theory classic
model that is perturbed by di usion.