Εμφάνιση απλής εγγραφής

Μελέτη στοχαστικών διαδικασιών με υπό συνθήκη στάσιμες και ανεξάρτητες προσαυξήσεις και εφαρμογές στα χρηματοοικονομικά

dc.contributor.advisorΜαχαιράς, Νικόλαος
dc.contributor.authorΜπότση, Αουρόρα Λ.
dc.date.accessioned2015-03-04T10:36:48Z
dc.date.available2015-03-04T10:36:48Z
dc.date.issued2015-03-04T10:36:48Z
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/6357
dc.description.abstractΣτην παρούσα εργασία μελετώνται βασικές ιδιότητες και χαρακτηρισμοί των στοχαστικών διαδικασιών (σ.δ.) με υπό συνθήκη στάσιμες και ανεξάρτητες προσαυξήσεις που αποτελούν γενίκευση των σ.δ., με στάσιμες και ανεξάρτητες προσαυξήσεις, και έχουν ενδιαφέρουσες εφαρμογές στη θεωρία Κινδύνου, τη Στατιστική και τα Χρηματοοικονομικά. Αρχικά μελετάται το γνωστό αποτέλεσμα ότι, κάθε μεμειγμένη σ.δ. Poisson είναι Markov και έχει τη πολυωνυμική ιδιότητα, και τίθεται το ερώτημα πότε μία διαδικασία Markov είναι μεμειγμένη διαδικασία Poisson. Στη συνέχεια διερευνάται το πρόβλημα: «Για δοσμένη σύνθετη μεμειγμένη σ.δ. Poisson S κάτω από ένα μέτρο πιθανότητας P, να χαρακτηριστούν όλα τα προοδευτικά ισοδύναμα με το P μέτρα πιθανότητας που αφήνουν αναλλοίωτη την κατανομή της S». Το εν λόγω έχει λυθεί από τον Δ. Λυμπερόπουλο και εδώ διερευνάται μία ειδικότερη μορφή του. Τέλος, εξετάζονται ειδικές περιπτώσεις του παραπάνω αποτελέσματος, η σχέση του με τις αρχές υπολογισμού ασφαλίστρου και ο ρόλος του στη χρηματοοικονομική αποτίμηση των ασφαλίσεων.
dc.language.isoel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.el
dc.subjectΔιαχείριση κινδύνου -- Στατιστικές μέθοδοι
dc.subjectPoisson processes
dc.subjectΘεωρία πιθανοτήτων
dc.subjectΣτοχαστικές ανελίξεις -- Μαθηματικά υποδείγματα
dc.titleΜελέτη στοχαστικών διαδικασιών με υπό συνθήκη στάσιμες και ανεξάρτητες προσαυξήσεις και εφαρμογές στα χρηματοοικονομικά
dc.title.alternativeProcesses with conditionally stationary independent increments and applications in financeen
dc.typeMaster Thesis
europeana.isShownAthttps://dione.lib.unipi.gr/xmlui/handle/unipi/6357
dc.identifier.call519.23 ΜΠΟ
dc.description.abstractENSome basic properties and some characterizations of stochastic processes with conditionally stationary and conditionally independent increments are studied. Such processes are generalization of stochastic processes with stationary and independent increments, and have interesting applications in Risk Theory, Statistics and Finance. First, the known result that, each mixed Poisson process is a Markov process and has the polynomial property, is presented. This raises the question whether a Markov process is mixed Poisson one. Then the following problem is investigated: ”For given compound mixed Poisson process S under a probability measure P, characterize all those probability measures which are progressively equivalent to the probability measure P, and under which the distribution of S remains unchanged.” This is solved by D. Lymberopoulos and here we investigate a particular case of this problem. Finally some special cases of the above result, his relationship with the premium calculation principles and its role in the pricing of insurance derivatives are examined.


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»