Εμφάνιση απλής εγγραφής

dc.contributor.advisorΜαχαιράς, Νικόλαος
dc.contributor.authorΤζανίνης, Σπυρίδων Μ.
dc.date.accessioned2012-10-24T08:49:53Z
dc.date.available2012-10-24T08:49:53Z
dc.date.issued2012-10-24T08:49:53Z
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/5066
dc.description.abstractΣτην παρούσα εργασία διερευνούνται οι μεμειγμένες ανανεωτικές στοχαστικές διαδικα¬σίες και κάποιες εφαρμογές τους σε αναλογιστικά υποδείγματα. Επειδή οι μεμειγμένες διαδικασίες Poisson είναι η απλούστερη ειδική περίπτωση των μεμειγμένων ανανεωτικών διαδικασιών αρχικά γίνεται μία συγκριτική βοηθητική μελέτη των διάφορων ορισμών των μεμειγμένων διαδικασιών Poisson. Εν συνεχεία, μελετάται ο ορισμός του Huang για μεμειγμένες ανανεωτικές διαδικασίες, εξετάζονται διάφορες ιδιότητες τους και μεταξύ άλλων παρουσιάζεται αναλυτικά ένα αποτέλεσμα του Huang, ότι μία μεμειγμένη ανανεωτική στοχαστική διαδικασία είναι Μαρκοβιανή ακριβώς τότε, όταν είναι μεμειγμένη διαδικασία Poisson. Επιπλέον δίνεται ένας δεύτερος ορισμός για τις μεμειγμένες ανανεωτικές διαδικασίες και κάποιοι χαρακτηρισμοί τους μέσω disintegrations και ανταλλαξιμότητας. Ως συνέπεια αυτών των χαρακτηρισμών, αποδεικνύεται ότι στις περισσότερες περιπτώσεις που μας ενδιαφέρουν στην θεωρία Πιθανοτήτων οι δύο ορισμοί συμπίπτουν. Μία δεύτερη συνέπεια είναι ένα αποτέλεσμα ύπαρξης της εργασίας [26] για μεμειγμένες ανανεωτικές δια¬δικασίες, που ταυτόχρονα προσφέρει μία κατασκευαστική μέθοδο για αυτές. Ως εφαρμογή της κατασκευαστικής μεθόδου, δίνονται κάποια παραδείγματα κατασκευής μεμειγμένων ανανεωτικών διαδικασιών με ακριβή υπολογισμό των αντίστοιχων disintegrations. Τέλος παρουσιάζονται και κάποιες εφαρμογές σε αναλογιστικά υποδείγματα.
dc.language.isoel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.el
dc.subjectPoisson processes
dc.subjectΔιαχείριση κινδύνου -- Οικονομετρικά μοντέλα
dc.subjectΣτοχαστικές διαδικασίες
dc.titleΜεμειγμένες ανανεωτικές στοχαστικές διαδικασίες με εφαρμογές στα αναλογιστικά υποδείγματα
dc.typeMaster Thesis
europeana.isShownAthttps://dione.lib.unipi.gr/xmlui/handle/unipi/5066
dc.identifier.call519.23 ΤΖΑ
dc.description.abstractENThe mixed renewal processes are investigated and some applications of the above in actuarial models are given. Since, mixed Poisson processes are the simplest case of the mixed renewal ones we first conduct a comparative study of the various definitions of mixed Poisson processes. Next, Huang's definition for mixed renewal processes is studied, several properties of them are investigated and Hung's result that a mixed renewal process is a Markovian one if and only it is a mixed Poisson one. Furthermore, a second definition for mixed renewal processes is given and some characterizations of mixed renewal processes in terms of disintegrations and of exchangeability are provi¬ded. As consequence of these characterizations, it is shown that the two definitions are coinciding in the most cases of applications in Probability Theory. As a second conse¬quence, an existence result of [26] for mixed renewal processes, providing at the same time a constructive method for them is presented. As an application some concrete examples of mixed renewal processes are given and the corresponding disintegrated measures are explicitly computed. Finally, some applications to actuarial models are given.


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»