dc.contributor.advisor | Τσιχριντζής, Γεώργιος | |
dc.contributor.author | Βιδάλη, Ροδάνθη Γ. | |
dc.date.accessioned | 2012-06-12T08:40:39Z | |
dc.date.available | 2012-06-12T08:40:39Z | |
dc.date.issued | 2012-06-12T08:40:39Z | |
dc.identifier.uri | https://dione.lib.unipi.gr/xmlui/handle/unipi/4822 | |
dc.description.abstract | Στα πλαίσια της εργασίας αυτής μελετάται η αυτόματη ταξινόμηση μελωδίας σε μουσικά είδη με τη χρήση τεχνητών νευρωνικών δικτύων. Τα νευρωνικά δίκτυα αποτελούνται από απλά στοιχεία που λειτουργούν παράλληλα. Τα στοιχεία ονομάζονται νευρώνες και προσομοιώνουν σε ένα βαθμό τα βιολογικά νευρωνικά συστήματα. Μπορεί κανείς να εκπαιδεύσει ένα νευρωνικό δίκτυο ώστε αυτό να προσομοιώνει μια ιδιαίτερη συνάρτηση με τη ρύθμιση των τιμών των συνδέσεων (βάρη) μεταξύ των στοιχείων. Χαρακτηριστικά, τα νευρωνικά δίκτυα ρυθμίζονται, ή εκπαιδεύονται, έτσι ώστε μια συγκεκριμένη είσοδος να οδηγεί σε μια συγκεκριμένη επιθυμητή έξοδο. Στα πλαίσια αυτής της εργασίας, θα γίνει χρήση διάφορων περιγραφέων που μπορούν να χαρακτηρίσουν μια μουσική ακολουθία, προκειμένου να εκπαιδευτεί ένα νευρωνικό δίκτυο ώστε να μπορεί να ξεχωρίζει το είδος της μουσικής που δέχεται ως είσοδο. Παράλληλα, θα δοκιμαστούν διαφορετικές αρχιτεκτονικές τεχνητών νευρωνικών δικτύων (στρώματα, πλήθος νευρώνων ανά στρώμα, συναρτήσεις μεταφοράς, διαδικασία ενημέρωσης των βαρών). Κάθε ξεχωριστό είδος δικτύου θα τροφοδοτηθεί με μερικές ώρες μουσικής από διαφορετικά μουσικά είδη, έτσι ώστε να εκπαιδευτεί και να είναι ικανό να αναγνωρίζει τα διαφορετικά αυτά είδη. Για την υλοποίηση της εργασίας θα χρησιμοποιηθεί το Neural Network Toolbox του Matlab. Μέσα από τα αριθμητικά αποτελέσματα των πειραμάτων θα επαληθευθεί η καταλληλότητα των τεχνητών νευρωνικών δικτύων για την η αυτόματη ταξινόμηση μελωδίας σε μουσικά είδη και θα εξαχθούν επιμέρους συμπεράσματα για κάθε αρχιτεκτονική. | |
dc.language.iso | el | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.el | |
dc.subject | Μουσική -- Επεξεργασία δεδομένων | |
dc.subject | Επεξεργασία σημάτων | |
dc.subject | Neural networks (Computer science) | |
dc.title | Αυτόματη ταξινόμηση μελωδίας σε μουσικά είδη με τη χρήση τεχνητών νευρωνικών δικτύων | |
dc.type | Master Thesis | |
europeana.isShownAt | https://dione.lib.unipi.gr/xmlui/handle/unipi/4822 | |
dc.identifier.call | 621.382 ΒΙΔ | |
dc.description.abstractEN | In this thesis we study the automatic classification of music into genres using artificial neural networks (ANN). Artificial neural networks consist of simple elements operating in parallel. These elements are called neurons and to some extent simulate the biological neural systems. One can train a neural network so that it simulates a particular function by adjusting the connections (weights) between elements. Typically, neural networks are configured, or trained, so that a particular input leads to a specific desired output. In this work we use various descriptors that characterize a musical sequence in order to train a neural network to be able to distinguish the type of music given input we will test different architectures of artificial neural networks (layers, number of neurons per layer, transfer functions, weight updating process). Each separate type of ANN is provisioned with a few hours of music from different genres in order to be trained to recognize these different genres. For the implementation of the work we use the Matlab Neural Network Toolbox. Through experimental numerical results we verify the applicability of artificial neural networks for automatic classification of melody in musical genres and draw different conclusions for each tested architecture. | |