Αλληλεπιδραστική εφαρμογή εύρεσης ειδησεογραφικών και ενημερωτικών άρθρων με επίκεντρο τις προτιμήσεις του χρήστη
Interactive application for discovering news and informative articles centered on user preferences

View/ Open
Keywords
Συστήματα συστάσεων ; Εξατομίκευση περιεχομένου ; Υβριδικό φιλτράρισμα ; Εξόρυξη δεδομένων χρηστών ; Spring boot ; Java ; Εμπειρία χρήστη ; Ανάκτηση πληροφορίας ; Recommender systems ; Content personalization ; Hybrid filtering ; User data mining ; User experience ; Information retrievalAbstract
In the contemporary digital era, identifying relevant content amidst the vast volume of avail-able online articles presents a significant challenge. This thesis addresses this issue by pre-senting the design and development of an intelligent web application. The core of the ap-plication is an advanced recommendation engine that provides the user with personalized article suggestions. This mechanism is not solely based on the categories the user initially selects, but also analyzes their ongoing interaction with the content—such as the articles they read, save, or like—dynamically adapting future recommendations. For the system's technical implementation, the Java programming language and the Spring Boot develop-ment framework were utilized, forming a robust client-server architecture. The result is a functional prototype demonstrating how the combined analysis of preferences and behavior can significantly enhance the user experience, making the pursuit of knowledge and infor-mation more direct and meaningful.


