| dc.contributor.advisor | Sotiropoulos, Dionisios | |
| dc.contributor.advisor | Σωτηρόπουλος, Διονύσιος | |
| dc.contributor.author | Sopilidis, Stefanos | |
| dc.contributor.author | Σοπιλίδης, Στέφανος | |
| dc.date.accessioned | 2025-10-03T13:00:42Z | |
| dc.date.available | 2025-10-03T13:00:42Z | |
| dc.date.issued | 2025-09 | |
| dc.identifier.uri | https://dione.lib.unipi.gr/xmlui/handle/unipi/18170 | |
| dc.format.extent | 45 | el |
| dc.language.iso | en | el |
| dc.publisher | Πανεπιστήμιο Πειραιώς | el |
| dc.rights | Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/gr/ | * |
| dc.title | Upward and downword spread crosssing event prediction in cryptocurrencies using deep learning | el |
| dc.title.alternative | Πρόβλεψη γεγονότων ανόδου και καθόδου διασταύρωσης στις κρυπτονομισματικές αγορές με χρήση βαθιάς μάθησης | el |
| dc.type | Bachelor Dissertation | el |
| dc.contributor.department | Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Πληροφορικής | el |
| dc.description.abstractEN | The thesis focuses on the Upward and Downward Spread Crossing
Event Prediction in Cryptocurrencies using Deep Learning. The basic
idea is using deep learning techniques to predict certain conditions that
might happen in the limit order book, a market structure used to store
user orders, which when happen can lead to arbitrage opportunities. The
primary techniques used in the thesis were Transformer models and
specifically the TransLOB model and also linear regression and each
time we experimented with different dataset preprocessing in order to
achieve better accuracy. | el |
| dc.subject.keyword | Deep learning | el |
| dc.subject.keyword | Transformers | el |
| dc.subject.keyword | Event-prediction | el |
| dc.subject.keyword | TransLOB | el |
| dc.subject.keyword | Limit-order-book | el |
| dc.date.defense | 2025-09-08 | |