Upward and downword spread crosssing event prediction in cryptocurrencies using deep learning
Πρόβλεψη γεγονότων ανόδου και καθόδου διασταύρωσης στις κρυπτονομισματικές αγορές με χρήση βαθιάς μάθησης

Bachelor Dissertation
Author
Sopilidis, Stefanos
Σοπιλίδης, Στέφανος
Date
2025-09View/ Open
Keywords
Deep learning ; Transformers ; Event-prediction ; TransLOB ; Limit-order-bookAbstract
The thesis focuses on the Upward and Downward Spread Crossing
Event Prediction in Cryptocurrencies using Deep Learning. The basic
idea is using deep learning techniques to predict certain conditions that
might happen in the limit order book, a market structure used to store
user orders, which when happen can lead to arbitrage opportunities. The
primary techniques used in the thesis were Transformer models and
specifically the TransLOB model and also linear regression and each
time we experimented with different dataset preprocessing in order to
achieve better accuracy.


