dc.contributor.advisor | Filippakis, Michael | |
dc.contributor.advisor | Φιλιππάκης, Μιχαήλ | |
dc.contributor.author | Kaltsas, Georgios | |
dc.contributor.author | Καλτσάς, Γεώργιος | |
dc.date.accessioned | 2024-11-25T13:54:23Z | |
dc.date.available | 2024-11-25T13:54:23Z | |
dc.date.issued | 2024-09 | |
dc.identifier.uri | https://dione.lib.unipi.gr/xmlui/handle/unipi/17106 | |
dc.identifier.uri | http://dx.doi.org/10.26267/unipi_dione/4529 | |
dc.format.extent | 86 | el |
dc.language.iso | en | el |
dc.publisher | Πανεπιστήμιο Πειραιώς | el |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.title | Optimizing short-term electricity load predictions : a study of feed-forward and recurrent neural network models | el |
dc.type | Master Thesis | el |
dc.contributor.department | Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτων | el |
dc.description.abstractEN | This thesis aims to focus on the usage of recurrent neural networks (RNNs) for the exact short-term electrical load forecasting in Greece | el |
dc.contributor.master | Πληροφοριακά Συστήματα και Υπηρεσίες | el |
dc.subject.keyword | Electric load demand | el |
dc.subject.keyword | Recurrent neural networks | el |
dc.subject.keyword | Short-term forecast | el |
dc.subject.keyword | Historical electricity usage data | el |
dc.date.defense | 2024-10-24 | |