Εμφάνιση απλής εγγραφής

dc.contributor.advisorΧατζηκωνσταντινίδης, Ευστάθιος
dc.contributor.authorΑναγνωσταράς, Γεώργιος
dc.date.accessioned2022-09-30T09:30:33Z
dc.date.available2022-09-30T09:30:33Z
dc.date.issued2022-09
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/14635
dc.identifier.urihttp://dx.doi.org/10.26267/unipi_dione/2058
dc.description.abstractΣτη θεωρία χρεοκοπίας, για πόλλα χρόνια, ήταν σύνηθες για την μοντελοποίηση της στοχαστικής διαδικασίας του πλεονάσματος να χρησιμοποίειται το μοντέλο Cramer-Lundberg (κλασσικό μοντέλο) ή το ανανεωτικό μοντέλο (μοντέλο Sparre-Andersen).Απαραίτητη προϋπόθεση για την χρήση των παραπάνω μοντέλων είναι η ύπαρξη ανεξαρτησίας μεταξύ του ύψους των ζημιών (ατομικών απαιτήσεων) και των ενδιάμεσων χρόνων εμφάνισης ζημιογόνων ενδεχομένων.Στην πραγματικότητα όμως κάτι τέτειο δεν υφίσταται πάντα, έτσι τα τελευταία χρόνια η έρευνα έχει επικεντρωθεί στη μελέτη και ανάπτυξη μοντέλων με εξάρτηση.Στην παρούσα διπλωματική θα αναπτυχθεί ένα μοντέλο στο οποίο η κατανομή του χρόνου μέχρι την επόμενη απαίτηση εξαρτάται από το ύψος της προηγούμενης απαίτησης, δηλαδή η κατανομή του ενδιάμεσου χρόνου μεταξύ δύο διαδοχικών απαιτήσεων εξαρτάται από το ύψος της απαίτησης που προηγείται χρονικά.Στα πρώτα δύο κεφάλαια παρουσιάζοντε βασικά αποτελέσματα της θεωρίας των στοχαστικών διαδικασιών, της θεωρίας χρεοκοπίας κάθως και χρήσιμες έννοιες για τα επόμενα κεφάλαια.Στο τρίτο κεφάλαιο εισάγεται ένα μοντέλο με την παραπάνω δομή εξάρτησης ενώ αναπτύσεται για τo μοντέλο αυτό η γενικευμένη εξίσωση Lundberg καθώς και η συνάρτηση των Gerber-Shiu αλλά και χρήσιμες ποσότητες όπως ο μετασχηματισμός Laplace του χρόνου χρεοκοπίας,ενώ παρατίθενται και αριθμητικά παραδείγματα. Στο τέταρτο κεφάλαιο στο μοντέλο με εξάρτηση εισάγεται ένας όρος διάχυσης και η εργασία επικεντρώνεται στην εξίσωση Lundberg, στη συνάρτηση Gerber-Shiu (με σκοπό την εξαγωγή μέτρων χρεοκοπίας) στο μετασχηματισμό Laplace για το χρόνο χρεοκοπίας (όπως και στο τρίτο κεφάλαιο) αλλά και στην μελέτη ολοκληροδιαφορικών εξισώσεων για το συγκεκριμένο μοντέλο. Στο πέμπτο κεφάλαιο εισάγεται και αναλύεται ένα δυϊκό μοντέλο με εξάρτηση αλλά και παράγοντα διάχυσης και παρουσιάζεται ο μετασχηματισμός Laplace για τη στιγμή της χρεοκοπίας.el
dc.format.extent68el
dc.language.isoelel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/gr/*
dc.titleΣτοχαστικά μοντέλα στη θεωρία κινδύνου με εξάρτηση και διάχυσηel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Χρηματοοικονομικής και Στατιστικής. Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμηςel
dc.description.abstractENIn ruin theory, for many years, it was a common practice for modeling the stochastic process of surplus to use the Cramer-Lundberg model (classic model) or the renewal model (Sparre-Andersen model). For the aforementioned, it was necessary the independence hypothesis between the amount of the claims and the intermediate times of two successively claims. The reality is different, so in recent years the research has focused in finding and developing models with dependence structure. In this thesis, we will focus in a model, whose distribution of time until the next claim depends on the amount of the previous claim, more specifically the distribution of the intermediate time between two successively claims depends on the amount of the claim that precedes in time. In the first two chapters, basic results of the stochastic process theory, ruin theory and necessary information for the following chapters are presented. In the third chapter, a model with a dependence structure is presented. We analyze the generalized Lundbergs’ equation, the Gerber-Shiu function, and the important results such as the Laplace transform of the time at ruin, examples are given in order to illustrate this structure. In the fourth chapter in the model with the dependence structure with add a diffusion factor and we focus on the Lundbergs’ equation, the Gerber-Shiu function (in order to extract ruin measures such as the probability of ruin or the surplus at the exact time before the ruin) and some integrodifferential equations for this specific model. In the fifth chapter , a dual model with a dependence structure is introduced and analyzed. Further discussion for the Laplace transform of the time at ruin is given.el
dc.contributor.masterΑναλογιστική Επιστήμη και Διοικητική Κινδύνουel
dc.subject.keywordΘεωρία χρεοκοπίαςel
dc.subject.keywordΔομή εξάρτησηςel
dc.subject.keywordΣτοχαστικά μοντέλαel
dc.date.defense2022-09-16


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»