Εμφάνιση απλής εγγραφής

dc.contributor.advisorΛαμπρινουδάκης, Κωνσταντίνος
dc.contributor.advisorAlcaraz, Christina
dc.contributor.authorΚαπογιάννη, Ειρήνη
dc.date.accessioned2018-11-27T11:34:25Z
dc.date.available2018-11-27T11:34:25Z
dc.date.issued2018
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/11673
dc.format.extent80el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAnomaly detection for industrial control systemsel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENAs Industrial Control Systems (ICSs) become more and more connected it follows that they need to become more secure. Traditional Intrusion Detection Systems (IDSs) do not work well due to the fact that they mostly work on a signature basis and there are not many known signatures to detect attacks on ICSs. Since the network traffic from an ICS is claimed to be static and signatures are scarce, searching for anomalies in the network to detect threats is more effective. This can be achieved using machine learning and other statistical models, teaching the system to tell regular traffic from irregularities. In this thesis we survey different anomaly detection techniques, which based on different parameters, we evaluate and point the one that can fit better. Based on the survey and the risk analysis we analyze the algorithm on which we conclude, and with real-time data-sets (normal and anomalous) we do an implementation. From this work we propose and evaluate methods to be used when creating a more data driven IDS, capable of detecting process semantic tampering within an ICS. Our results from conducted experiments exhibit a static nature of the data originating from the ICS and the result from evaluating many different proposed anomaly detections using proof of concept systems, we deem that the anomaly detection and algorithm that we conclude works well for both semantic tampering as well as on a network basis. Having an IDS using a fusion this proposed method, would benefit the security of an ICS.el
dc.corporate.nameCentro de Investigación Ada Byronel
dc.contributor.masterΑσφάλεια Ψηφιακών Συστημάτωνel
dc.subject.keywordAnomaly detectionel
dc.subject.keywordMachine learningel
dc.subject.keywordIndustrial control systemsel
dc.subject.keywordMachine learning algorithmsel
dc.date.defense2018-08-31


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»