Show simple item record

dc.contributor.authorΜπαντούνα, Αιμιλία
dc.date.accessioned2011-01-18T17:46:51Z
dc.date.available2011-01-18T17:46:51Z
dc.date.issued2011-01-18T17:46:51Z
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/3762
dc.language.isoel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.el
dc.subjectCognitive learning
dc.subjectCognitive radio networks
dc.subjectSelf-organizing systems
dc.subjectWireless communication systems
dc.subjectSoftware radio
dc.subjectWide area networks (Computer networks)
dc.titleΣχεδίαση συστημάτων για cognitive ασύρματα δίκτυα
dc.typeMaster Thesis
europeana.isShownAthttps://dione.lib.unipi.gr/xmlui/handle/unipi/3762
europeana.typeIMAGE
dc.identifier.call621.384 ΜΠΑ
dc.description.abstractENCognitive radio systems (CRSs) have been proposed as a promising technology for intelligently handling the rapid evolution of wireless communications, especially in terms of managing and allocating the scarce, radio spectrum in the highly varying and disparate modern environments. A typical CRS implements a so called “cognition cycle”, during which it senses its environment, evaluates a set of candidate radio configurations to operate with and finally decides and adjusts its operating parameters expecting to move the radio toward an optimized operational state. Such a process is often proved to be rather arduous and time consuming. Accordingly, learning mechanisms that are capable of exploiting measurements sensed from the environment, gathered experience and stored knowledge can be judged as rather beneficial in terms of speeding up the whole cognition process. Framed within this statement, this paper introduces and evaluates a mechanism which is based on a well-known unsupervised learning technique, called Self-Organizing maps (SOM), and is used for assisting a CRS to predict the bit-rate that can be obtained, when it senses specific input data from its environment, such as Received Signal Strength Identification (RSSI), number of input/output packets etc. Results show that the proposed method can provide predictions which are correct up to a percent of 78.9%


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές
Except where otherwise noted, this item's license is described as
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»