Εμφάνιση απλής εγγραφής

Domain adaptation in data scarce scenarios using time series foundational models

dc.contributor.advisorAlevizos, Elias
dc.contributor.advisorΑλεβίζος, Ηλίας
dc.contributor.authorLiapatis, Alexandros
dc.contributor.authorΛιαπάτης, Αλέξανδρος
dc.date.accessioned2025-10-21T14:04:54Z
dc.date.available2025-10-21T14:04:54Z
dc.date.issued2025-10-11
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/18242
dc.format.extent58el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsΑναφορά Δημιουργού 3.0 Ελλάδα*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/gr/*
dc.titleDomain adaptation in data scarce scenarios using time series foundational modelsel
dc.title.alternativeΠροσαρμογή θεμελιωδών μοντέλων χρονοσειρών σε τομείς με περιορισμένα δεδομέναel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENTime Series Foundation Models (TSFMs) have shown promising generalization capabilities across diverse domains, but their adaptation in data-scarce environments remains a critical challenge. This thesis explores whether fine-tuning on a related, data-rich subdomain improves performance in a low-resource target subdomain. A two-stage fine-tuning framework is introduced: first, adapting a pre-trained TSFM to a data-rich source domain; then, progressively fine-tuning it on the target domain as new data becomes incrementally available. Three strategies for incremental fine-tuning are evaluated: Progressive Incremental Fine-Tuning, Independent Incremental Fine-Tuning, and Independent Full Fine-Tuning. Experiments were conducted across three domain pairs, Greek and Italian electricity load, Bitcoin and Ethereum prices, and Athens and Izmir temperature records, using MAPE and MWQL as evaluation metrics. The results show that the effectiveness of progressive finetuning is highly domain-dependent. In the cryptocurrency and weather temperature domains, the proposed method yielded significant performance improvements, with an average uplift of approximately 7.6% in MWQL for cryptocurrency and 11.5% for weather data. This suggests that knowledge transfer is highly effective when the source and target domains (e.g., Bitcoin/Ethereum prices or Athens/Izmir temperatures) share strong statistical similarities. Conversely, in the electricity load domain, this approach resulted in a notable performance degradation of about 30% in MWQL compared to the baseline. This highlights the challenges of knowledge transfer between domains with disparate data distributions, such as the distinct energy consumption patterns of Greece and Italy. The findings underscore both the potential and the limitations of progressive fine-tuning, demonstrating that while it can accelerate adaptation in similar domains, its success is not guaranteed and depends critically on the degree of domain similarityel
dc.corporate.nameNational Center of Scientific Research "Demokritos"el
dc.contributor.masterΤεχνητή Νοημοσύνη - Artificial Intelligenceel
dc.subject.keywordAIel
dc.subject.keywordMachine learningel
dc.subject.keywordTime seriesel
dc.subject.keywordFoundational modelsel
dc.date.defense2025-10-14


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού 3.0 Ελλάδα

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»