Show simple item record

dc.contributor.advisorMenychtas, Andreas
dc.contributor.advisorΜενύχτας, Ανδρέας
dc.contributor.authorRichter, Philippos Jacques
dc.contributor.authorΡίχτερ, Φίλιππος Ιάκωβος
dc.date.accessioned2025-10-07T06:55:40Z
dc.date.available2025-10-07T06:55:40Z
dc.date.issued2025-09
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/18179
dc.format.extent168el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.titleGenMVP : a GenAI-Native framework for rapid SaaS MVP developmentel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENThe rapid rise of Generative AI (GenAI) has reshaped the expectations for modern web applications, particularly within Software-as-a-Service (SaaS) products where conversational agents, retrieval-augmented search, and workflow automation are increasingly seen as baseline features rather than experimental add-ons. However, integrating these capabilities into minimum viable products (MVPs) remains a complex challenge. Existing solutions either rely on fragmented microservice ecosystems with high integration overhead, or on traditional web frameworks that lack native support for AI-first functionality. This thesis introduces GenMVP, a Django-based framework designed to streamline the development of AI-native SaaS MVPs. By combining Django’s proven traditional stability with pre-built SaaS subsystems—such as authentication, subscription management, payments, analytics, and content delivery—GenMVP provides developers with a production-ready foundation. Crucially, it embeds generative AI capabilities directly into the framework, offering retrieval-augmented generation (RAG), semantic search, conversational assistance and agentic workflows as configurable modules. The research defines the functional and non-functional requirements of an AI-native SaaS MVP framework and demonstrates how GenMVP satisfies them through modular design, integrated security guardrails, observability, and containerized deployment. Evaluation results confirm that the system achieves both SaaS operational readiness and AI-specific robustness, while case study scenarios illustrate its flexibility across domain-specific applications. By bridging the gap between conventional SaaS development and modern GenAI integration, GenMVP accelerates time-to-market for AI-powered MVPs and provides evidence that traditional architectures remain competitive for next-generation SaaS platforms.el
dc.contributor.masterΠροηγμένα Συστήματα Πληροφορικήςel
dc.subject.keywordLLMSel
dc.subject.keywordDjangoel
dc.subject.keywordGenAI in web developmentel
dc.subject.keywordAgenticel
dc.subject.keywordAI Agentsel
dc.subject.keywordRAGel
dc.subject.keywordAgentic workflowsel
dc.subject.keywordLLM monitoringel
dc.subject.keywordSaaSel
dc.subject.keywordMVPsel
dc.subject.keywordWeb development
dc.date.defense2025-09-24


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»