dc.contributor.advisor | Sotiropoulos, Dionysios | |
dc.contributor.advisor | Σωτηρόπουλος, Διονύσιος | |
dc.contributor.author | Rapesis, Roberto | |
dc.contributor.author | Ράπεσης, Ρομπέρτο | |
dc.date.accessioned | 2025-07-11T09:29:33Z | |
dc.date.available | 2025-07-11T09:29:33Z | |
dc.date.issued | 2025-06 | |
dc.identifier.uri | https://dione.lib.unipi.gr/xmlui/handle/unipi/17937 | |
dc.format.extent | 74 | el |
dc.language.iso | en | el |
dc.publisher | Πανεπιστήμιο Πειραιώς | el |
dc.title | Deep sequence model for genre classification | el |
dc.title.alternative | Βαθιά ακολουθιακά μοντέλα για την ταξινόμηση στίχων | el |
dc.type | Bachelor Dissertation | el |
dc.contributor.department | Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Πληροφορικής | el |
dc.description.abstractEN | This thesis advances the field of Music Information Retrieval (MIR) through a systematic investigation of deep learning approaches for lyrics-based music genre classification. Our principal contributions include a comprehensive lyrical corpus with genre annotations, deliberately stripped of non-lyrical metadata to isolate and evaluate the predictive power of lyrical content alone. We present a novel hybrid architecture integrating BERT's semantic extraction capabilities with a Multi-Layer BiLSTM with an attention mechanism, rigorously evaluated through both frozen and fine-tuned feature approaches. Additionally, we provide an open-source modular framework enabling reproducible experimentation via deterministic and configurable training pipelines, along with problem identification that explicitly discriminates between inherent task ambiguities and model-specific limitations. Through two rigorously documented experiments on lyrical genre classification, we comparatively evaluate standalone and hybrid modeling approaches. Our results not only validate previous claims in MIR literature through controlled experimentation but also empirically demonstrate our architectural innovations. This work delivers both practical tools for music classification and fundamental insights into the ontological nature and computational modeling of musical genres. | el |
dc.subject.keyword | Genre | el |
dc.subject.keyword | Genre classification | el |
dc.subject.keyword | Classification | el |
dc.subject.keyword | Deep neural network | el |
dc.subject.keyword | Deep sequence model | el |
dc.subject.keyword | Hybrid model | el |
dc.subject.keyword | MIR | el |
dc.subject.keyword | Lyrics | el |
dc.subject.keyword | Song | el |
dc.subject.keyword | Songs | el |
dc.subject.keyword | LSTM | el |
dc.subject.keyword | BiLSTM | el |
dc.subject.keyword | Genres | el |
dc.subject.keyword | Music | el |
dc.subject.keyword | BERT | el |
dc.subject.keyword | Song classification | el |
dc.subject.keyword | Lyrics classification | el |
dc.subject.keyword | Identification | el |
dc.subject.keyword | Attention | el |
dc.subject.keyword | Experiment | el |
dc.subject.keyword | Experiments | el |
dc.subject.keyword | Music information retrieval | el |
dc.subject.keyword | Text classification | el |
dc.subject.keyword | Natural language processing | el |
dc.subject.keyword | Text embedding | el |
dc.subject.keyword | Sentiment analysis | el |
dc.subject.keyword | Semantic analysis | el |
dc.subject.keyword | Transfer learning | el |
dc.subject.keyword | NLP | el |
dc.subject.keyword | Transformer models | el |
dc.subject.keyword | Transformers | el |
dc.subject.keyword | Framework | el |
dc.date.defense | 2025-06-16 | |