Show simple item record

Deep sequence model for genre classification

dc.contributor.advisorSotiropoulos, Dionysios
dc.contributor.advisorΣωτηρόπουλος, Διονύσιος
dc.contributor.authorRapesis, Roberto
dc.contributor.authorΡάπεσης, Ρομπέρτο
dc.date.accessioned2025-07-11T09:29:33Z
dc.date.available2025-07-11T09:29:33Z
dc.date.issued2025-06
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/17937
dc.format.extent74el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.titleDeep sequence model for genre classificationel
dc.title.alternativeΒαθιά ακολουθιακά μοντέλα για την ταξινόμηση στίχωνel
dc.typeBachelor Dissertationel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Πληροφορικήςel
dc.description.abstractENThis thesis advances the field of Music Information Retrieval (MIR) through a systematic investigation of deep learning approaches for lyrics-based music genre classification. Our principal contributions include a comprehensive lyrical corpus with genre annotations, deliberately stripped of non-lyrical metadata to isolate and evaluate the predictive power of lyrical content alone. We present a novel hybrid architecture integrating BERT's semantic extraction capabilities with a Multi-Layer BiLSTM with an attention mechanism, rigorously evaluated through both frozen and fine-tuned feature approaches. Additionally, we provide an open-source modular framework enabling reproducible experimentation via deterministic and configurable training pipelines, along with problem identification that explicitly discriminates between inherent task ambiguities and model-specific limitations. Through two rigorously documented experiments on lyrical genre classification, we comparatively evaluate standalone and hybrid modeling approaches. Our results not only validate previous claims in MIR literature through controlled experimentation but also empirically demonstrate our architectural innovations. This work delivers both practical tools for music classification and fundamental insights into the ontological nature and computational modeling of musical genres.el
dc.subject.keywordGenreel
dc.subject.keywordGenre classificationel
dc.subject.keywordClassificationel
dc.subject.keywordDeep neural networkel
dc.subject.keywordDeep sequence modelel
dc.subject.keywordHybrid modelel
dc.subject.keywordMIRel
dc.subject.keywordLyricsel
dc.subject.keywordSongel
dc.subject.keywordSongsel
dc.subject.keywordLSTMel
dc.subject.keywordBiLSTMel
dc.subject.keywordGenresel
dc.subject.keywordMusicel
dc.subject.keywordBERTel
dc.subject.keywordSong classificationel
dc.subject.keywordLyrics classificationel
dc.subject.keywordIdentificationel
dc.subject.keywordAttentionel
dc.subject.keywordExperimentel
dc.subject.keywordExperimentsel
dc.subject.keywordMusic information retrievalel
dc.subject.keywordText classificationel
dc.subject.keywordNatural language processingel
dc.subject.keywordText embeddingel
dc.subject.keywordSentiment analysisel
dc.subject.keywordSemantic analysisel
dc.subject.keywordTransfer learningel
dc.subject.keywordNLPel
dc.subject.keywordTransformer modelsel
dc.subject.keywordTransformersel
dc.subject.keywordFrameworkel
dc.date.defense2025-06-16


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record


Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»