Εμφάνιση απλής εγγραφής

Enhancing biomedical question answering systems for COVID-19

dc.contributor.advisorDoulkeridis, Christos
dc.contributor.advisorΔουλκερίδης, Χρήστος
dc.contributor.authorPhilippas, Ioannis - Andreas
dc.contributor.authorΦίλιππας, Ιωάννης - Ανδρέας
dc.date.accessioned2024-07-22T05:41:30Z
dc.date.available2024-07-22T05:41:30Z
dc.date.issued2024-02
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/16624
dc.identifier.urihttp://dx.doi.org/10.26267/unipi_dione/4046
dc.format.extent70el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/gr/*
dc.titleEnhancing biomedical question answering systems for COVID-19el
dc.title.alternativeΒελτίωση συστημάτων απάντησης σε βιοϊατρικές ερωτήσεις για τον COVID-19el
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENIn the domain of biomedical research and service, the retrieval of relevant information from diverse data sources remains a critical challenge. Traditional Information Retrieval (IR) systems often struggle with the complexity and the specificity of the biomedical domain. The COVID-19 pandemic has underscored the critical need for robust biomedical Question Answering (QA) systems capable of rapidly retrieving accurate and relevant information from validated biomedical literature sources. This thesis proposes an innovative approach that integrates dense neural networks with traditional IR methods, to enhance the performance of biomedical QA systems, with primary focus on addressing COVID-19-related inquiries. At its core, the system utilizes dense models, such as transformer-based architectures like BERT (Bidirectional Encoder Representations from Transformers), known for their ability to capture semantic relationships and context in textual data. These models are trained on large-scale biomedical corpora to develop a deep understanding of domain-specific language and terminology. Additionally, the integration of traditional IR methods like BM25 complements the dense model IR infrastructure by providing an efficient and effective mechanism for initial document retrieval based on keyword matching and statistical relevance scoring. Combining these two approaches, the proposed system aims to enhance the accuracy, relevance and efficiency of biomedical QA tasks, particularly in the context of COVID-19. The system proposed in this thesis, incorporates a reader module trained on both biomedical and general QA datasets. This module, leverages techniques from machine reading comprehension, further refines retrieved documents to extract precise answers to user queries. The proposed QA system is supported by a web application, offering users a friendly interface for querying biomedical-related inquiries. The back-end system orchestrates various components to efficiently retrieve documents stored in a specific vector database, rank their relevance, and extract or generate potential answers. These answers are then presented to users through a user-friendly interface. Additionally, users have the flexibility to customize system parameters via the user interface, enhancing the system’s usability. By adapting advances neural networks such as BERT and Transformer-based models in biomedical domain, the system exhibited an increase in metrics over traditional and zero-shot methods. This thesis underscore the potential of dense models and QA systems to revolutionize biomedical IR, offering promising directions for future research and practical applications in enhancing the accessibility of critical biomedical knowledge.el
dc.contributor.masterΠληροφοριακά Συστήματα και Υπηρεσίεςel
dc.subject.keywordNatural language processel
dc.subject.keywordNLPel
dc.subject.keywordQuestion answeringel
dc.subject.keywordInformation retrievalel
dc.subject.keywordCOVID-19el
dc.subject.keywordTrans-formersel
dc.subject.keywordBERTel
dc.subject.keywordSBERTel
dc.subject.keywordGenerative Pseudo Labeling (GPL)el
dc.date.defense2024-02-29


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα
Εκτός από όπου διευκρινίζεται διαφορετικά, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Επικοινωνήστε μαζί μας
Στείλτε μας τα σχόλιά σας
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»