Show simple item record

Προβλέψεις χρονολογικών σειρών μέσω τεχνητών νευρωνικών δικτύων

dc.contributor.advisorΜπούτσικας, Μιχαήλ
dc.contributor.authorΧαϊδεμένος, Κωνσταντίνος
dc.date.accessioned2023-11-03T06:52:08Z
dc.date.available2023-11-03T06:52:08Z
dc.date.issued2023-09
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/15874
dc.identifier.urihttp://dx.doi.org/10.26267/unipi_dione/3296
dc.description.abstractΗ δυνατότητα προβλέψεων με βάση ιστορικά δεδομένα χρονοσειρών είναι πολύ σημαντική και έχει εφαρμογές σε πολλούς τομείς, όπως η οικονομετρία, τα χρηματοοικονομικά, το περιβάλλον, η βιολογία, οι τηλεπικοινωνίες και πολλοί άλλοι. Σκοπός αυτής της εργασίας είναι η λεπτομερής παρουσίαση ενός μεγάλου εύρους μεθόδων πρόβλεψης χρονοσειρών που βασίζονται σε τεχνητά νευρωνικά δίκτυα πρόσθιας τροφοδότησης (feed-forward neural networks). Πιο συγκεκριμένα, θα περιγραφούν και θα υλοποιηθούν αλγόριθμοι ανάπτυξης νευρωνικών δικτύων Συνέλιξης (Convolutional Neural Networks) και Πολυεπίπεδων Αντίληπτρων (Multilayer Perceptron). Tα δίκτυα αυτά θα εκπαιδευτούν χρησιμοποιώντας ιστορικά δεδομένα από τη χρονοσειρά του QQQ ETF της Invesco, η οποίο στοχεύει στο να αντιγράψει την πορεία του δείκτη Nasdaq-100. Επίσης, θα αξιοποιήσουμε και κάποιες από τις σημαντικότερες μετοχές που συμβάλουν στη διαμόρφωση αυτού του δείκτη. Η απόδοση των προβλέψεων των μοντέλων θα εξεταστεί εμπειρικά, και θα συγκριθεί με παραδοσιακές μεθόδους πρόβλεψης, όπως το υπόδειγμα ARIMA.el
dc.format.extent159el
dc.language.isoelel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/gr/*
dc.titleΠροβλέψεις χρονολογικών σειρών μέσω τεχνητών νευρωνικών δικτύωνel
dc.title.alternativeNeural networks for time-series forecastingel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Χρηματοοικονομικής και Στατιστικής. Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμηςel
dc.description.abstractENThe ability to make predictions based on historical time series data is highly significant and has applications in various fields such as econometrics, finance, environmental science, biology, telecommunications, and many others. The purpose of this MSc Thesis is to provide a detailed presentation of a wide range of time series prediction methods based on feed-forward artificial neural networks. More specifically, algorithms for developing Convolutional Neural Networks and Multilayer Perceptrons will be described and implemented. These networks will be trained using historical data from the QQQ ETF time series by Invesco, which aims to replicate the performance of the Nasdaq-100 index. Additionally, we will leverage some of the most significant stocks that contribute to the formation of this index. The performance of the model predictions will be empirically examined and compared to traditional forecasting methods such as the ARIMA model.el
dc.contributor.masterΕφαρμοσμένη Στατιστικήel
dc.subject.keywordΝευρωνικά δίκτυαel
dc.subject.keywordMLPel
dc.subject.keywordCNNel
dc.subject.keywordΧρονοσειρέςel
dc.date.defense2023-09-28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα
Except where otherwise noted, this item's license is described as
Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»