Show simple item record

Ανάλυση βιοπληροφορικών δεδομένων με τεχνικές μηχανικής μάθησης

dc.contributor.advisorΜαγκλογιάννης, Ηλίας
dc.contributor.authorBajram, Ajdini
dc.date.accessioned2020-03-03T16:30:42Z
dc.date.available2020-03-03T16:30:42Z
dc.date.issued2020-02
dc.identifier.urihttps://dione.lib.unipi.gr/xmlui/handle/unipi/12641
dc.identifier.urihttp://dx.doi.org/10.26267/unipi_dione/64
dc.description.abstractΟι τεχνολογίες που έχουν εφευρεθεί για την ανάλυση ενός κυττάρου καθιέρωσαν ένα νέο πλαίσιο για τη διερεύνηση των προφίλ γονιδιακής έκφρασης στο επίπεδο των μεμονωμένων κυττάρων (single cell). Οι επιστήμονες είναι σε θέση να διερευνήσουν τη βιολογική μεταβλητότητα του ίδιου του ιστού, παράγοντας απομονωμένα μεταγραφικά δεδομένα (transcriptomic) για κάθε μεμονωμένο κύτταρο. Ως αποτέλεσμα, κάθε μεταγραφικό πείραμα (transcriptomic experiment) θα μπορούσε να εξάγει ένα μοναδικό προφίλ έκφρασης για κάθε κύτταρο, θέτοντας νέες προκλήσεις στην ανάλυση μετάφρασης όλων αυτών των προφίλ. Στην συγκεκριμένη εργασία η ανάλυση μονοπατιού (Pathway analysis) προσαρμόζεται, όχι μόνο για να αναλύσουν ταυτόχρονα πολλά από τα προφίλ γονιδιακής έκφρασης, αλλά και για την σύγκριση, ανιχνεύοντας λειτουργικές διαφορές και κοινά στοιχεία μεταξύ των παρομοίων κυττάρων, χωρίζοντάς τα σε λειτουργικές υπο-συστάδες. Σε αυτή τη μελέτη χρησιμοποιήσαμε τα αποτελέσματα ενός πειράματος κυττάρων στο αιμοποιητικό σύστημα, προκειμένου να προσδιορίσουμε ένα νέο πλαίσιο για τη λειτουργική σύγκριση των μεμονωμένων κυττάρων, βασιζόμενοι στην ανάλυση μονοπατιού με σχολιασμό της από την gene ontology όπου περιγράφεται παρακάτω. Χιλιάδες προφίλ έκφρασης μεμονωμένων κυττάρων συγκεντρωμένα στις 6 από τις 15 συνολικά διαφορετικές αιματοποιητικές κυτταρικές κατηγορίες, μεταφράστηκαν σε δίκτυα βιολογικών μηχανισμών πάνω στην γονιδιακή οντολογία (GO), μέσω της πλατφόρμας BioInfoMiner. Τέλος, προτείνεται ένα νέο πλαίσιο για την εκμετάλλευση αυτών των αποτελεσμάτων και την κατασκευή κατάλληλων χαρακτηριστικών (features) με σκοπό την εκμάθηση αλγόριθμων μηχανικής μάθησης σε διαφορετικούς καρκινικούς και μη καρκινικούς αιμοποιητικούς κυτταρικούς τύπους και τον διαχωρισμό των αντίστοιχων μεμονωμένων κυττάρων ανάλογα με το λειτουργικό τους προφίλ. Σκοπός είναι να δημιουργηθεί ένα μοντέλο εκμάθησης βασιζόμενο στην προβλεπτική του ικανότατα να διαχωρίσει εάν ένα κύτταρο είναι καρκινικό η όχι.el
dc.format.extent101el
dc.language.isoelel
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleΑνάλυση βιοπληροφορικών δεδομένων με τεχνικές μηχανικής μάθησηςel
dc.title.alternativeBioinformatic data analysis with machine learning techniquesel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENThe revolution of single-cell technologies established a novel framework to investigate gene expression profiles in the level of individual cells. Scientists are able to investigate the biological variability of the same tissue, producing isolated transcriptomic data for each single cell. As a result, each transcriptomic experiment could extract a unique expression profile for each cell, posing new challenges in the translation analysis of all these profiles. Pathway analysis tools need to be adapted, not only to analyze simultaneously numerous gene expression profiles, but also to compare them, detecting functional differences and commonalities among the cells of the same issue, separating them to functional subclusters. In this study, we used the output of a single-cell experiment in the hematopoietic system, in order to determine a novel framework for the functional comparison of single cells, based on their pathway analysis with Gene Ontology annotation. Thousands of expression profiles of single cells, congregated in 6 of 15 different hematopoietic classes, were translated into networks of significant biological mechanisms, through the use of BioInfoMiner platform. We propose a novel framework to exploit these results and construct appropriate feature spaces of functional components, with a view to perform supervised learning to different hematopoietic cancer and healthy cells types and separate their respective single cells, according to their functional profile. The constructed classification model performed interestingly high precision and sensitivity scores for some cell types, while the overall performance needs to be improved with further conceptual and technical refinements.el
dc.corporate.nameΕθνικό Ίδρυμα Ερευνώνel
dc.contributor.masterΨηφιακά Συστήματα και Υπηρεσίεςel
dc.subject.keywordOntologyel
dc.subject.keywordClusteringel
dc.subject.keywordClassificationel
dc.subject.keywordGenesel
dc.subject.keywordBoostingel
dc.subject.keywordBaggingel
dc.subject.keywordAlgorithmsel
dc.subject.keywordSingle cellel
dc.subject.keywordAcute myeloid leukemiael
dc.subject.keywordMachine learningel
dc.subject.keywordGene ontologyel
dc.subject.keywordBiomedical ontologiesel
dc.subject.keywordSemantic similarityel
dc.subject.keywordGraph analysisel
dc.subject.keywordData miningel
dc.subject.keywordPathway analysisel
dc.date.defense2020-02-11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές
Except where otherwise noted, this item's license is described as
Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»