Show simple item record

Διατύπωση μετρικών αξιοπιστίας και βέλτιστου τρόπου εκτέλεσης κατανεμημένων αλγορίθμων μηχανικής μάθησης

dc.contributor.advisorΚυριαζής, Δημοσθένης
dc.contributor.authorΠαπαευθυμίου, Γεώργιος
dc.publisherΠανεπιστήμιο Πειραιώςel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση 4.0 Διεθνές*
dc.titleΔιατύπωση μετρικών αξιοπιστίας και βέλτιστου τρόπου εκτέλεσης κατανεμημένων αλγορίθμων μηχανικής μάθησηςel
dc.title.alternativeSpecification of dependability metrics and optimized execution patterns of distributed machine learning algorithmsel
dc.typeMaster Thesisel
dc.contributor.departmentΣχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτωνel
dc.description.abstractENBig Data is usually defined by three characteristics called the three Vs (Volume, Velocity and Variety). It refers to Data that is very large, dynamic and complex. In this context, the data is difficult to be recorded, saved, processed and analyzed using traditional data processing applications. Consequently, the new conditions imposed upon us by Big Data present serious challenges on a different level, including data clustering. In general, Big Data assembling techniques can be classified into two categories; single machine clustering techniques and multiple machine clustering techniques.This particular thesis aims to examine the behavior of classification algorithms, which are applied on the analysis of large volumes of data in different technologies –cloud architectures. Cloud computing is a powerful technology for the execution of multiple and complex calculations. It eliminates the need to sustain expensive IT material, exclusive space and software. The massive increase of the data scale or the big data that is produced through cloud computing is a time consuming task that demands a large computational infrastructure for successful data processing and analysis. The purpose of classification algorithms is the understanding and extraction of values from large arrays of structured or unstructured data. In large volumes of unstructured data, it only makes sense to try and separate the data into logical clusters, before analyzing.In that way, classification allow us to have a mass perspective and to form some logical structures before continuing to analyze. Next, we will be presenting the most popular algorithms, which are broadly used to solve classification problems. In order to ensure that final conclusions are safe and objective, we will use a common dataset to run each algorithm separately. The Cloud needs to be distributed and programmed in such a way that providers achieve their goals and users meet the requirements of their applications minimum costs. The name we call this as a cloud resource allocation problem. Resource allocation isis traditionally viewed as an optimization problem, so resource allocation is NP-Hard. limited resources are available and allocated own resources in competitive circumstances / activities so that both parties will achievetheir goals. This extensive review aims to process and analyze the numerous resolve / spam issues in cloud resource allocation.el
dc.contributor.masterΨηφιακά Συστήματα και Υπηρεσίεςel
dc.subject.keywordMachine learningel
dc.subject.keywordFault toleranceel
dc.subject.keywordBig datael

Files in this item


This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού-Μη Εμπορική Χρήση 4.0 Διεθνές
Except where otherwise noted, this item's license is described as
Αναφορά Δημιουργού-Μη Εμπορική Χρήση 4.0 Διεθνές

Βιβλιοθήκη Πανεπιστημίου Πειραιώς
Contact Us
Send Feedback
Created by ELiDOC
Η δημιουργία κι ο εμπλουτισμός του Ιδρυματικού Αποθετηρίου "Διώνη", έγιναν στο πλαίσιο του Έργου «Υπηρεσία Ιδρυματικού Αποθετηρίου και Ψηφιακής Βιβλιοθήκης» της πράξης «Ψηφιακές υπηρεσίες ανοιχτής πρόσβασης της βιβλιοθήκης του Πανεπιστημίου Πειραιώς»