From symptom to solution : leveraging machine learning for improving healthcare prognosis
Από το σύμπτωμα στη λύση : αξιοποιώντας τη μηχανική μάθηση για τη βελτίωση της πρόγνωσης της υγείας

Master Thesis
Author
Karles, Panagiotis - Nektarios
Κάρλες, Παναγιώτης - Νεκτάριος
Date
2024-09View/ Open
Keywords
Machine learning ; Deep learning ; Medical science ; Disease diagnosis ; Healthcare ; Classification models ; Random Forest Classifier ; Decision Tree Classifier ; Logistic regression ; Gradient Boosting Classifier ; Data preprocessing ; Hyper parameterAbstract
This study evaluates and compares the performance of five machine learning algorithms for
medical diagnosis using a Kaggle dataset. The algorithms include Gradient Boosting, Decision
Tree, Random Forest, Logistic Regression, and Multinomial Naive Bayes classifiers. The dataset
was preprocessed and partitioned using cross-validation for robust model evaluation. The
evaluation metrics used were accuracy, precision, recall, and F1-score. All algorithms, except
the Multinomial Naive Bayes Classifier, exhibited commendable performance across all metrics.
The findings underline the efficacy of machine learning algorithms in medical diagnosis and
present a foundation for future explorations in this domain.