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Abstract

Hypervisors offer a way to achieve software functionality isolation, by partitioning system elements. While
providing isolation, it is unavoidable that each partitioned element will have slower execution times compared
to a standalone element. Depending on the application, such delays might not be acceptable, so it is vital to
have prior knowledge of those limitations and design accordingly.

Embedded systems can make use of a hypervisor to partition their functionality, but they can be particularly
restricted in their timing deadlines. Delays introduced by the hypervisors have to be observed and taken into
account in the system’s task schedule.

The mission of this study is to evaluate the performance of such partitions, when managed by the XtratuM, a
freely distributed hypervisor. We chose this approach in order to study the use and performance of a hypervisor
in real-time embedded systems.

To evaluate the performance of the XtratuM, we will measure the execution time of a test routine in various
scenarios. To present a meaningful comparison, we will juxtapose the results with the execution time of the
test routine when run without the intervention of the hypervisor.

Οι υπερ-επόπτες είναι ένας τρόπος ώστε να επιτευχθεί απομόνωση των λειτουργιών ενός συστήματος και το ε-

πιτυγχάνουν αυτό διαχωρίζοντας το σύστημα σε διακριτά κομμάτια. Αν και παρέχεται αυτή η απομόνωση, είναι

αναπόφευκτο κάθε διαχωρισμένο κομμάτι να παρουσιάζει πιο αργούς χρόνους εκτέλεσης σε σύγκριση με ένα ενιαίο

σύστημα. Αναλόγως με την εφαρμογή, αυτές οι καθυστερήσεις μπορεί να μην είναι αποδεκτές, γι άυτό και είναι

πολύ σημαντικό να υπάρχει πρότερη γνώση των περιορισμών και αναλόγως να πραγματοποιηθεί η σχεδίαση.

Στα ενσωματωμένα συστήματα μπορεί να χρησιμοποιηθεί ένας υπερ-επόπτης ώστε να απομονωθούν στοιχεία

της λειτουργικότητάς τους, αλλά είναι πιθανό αυτά τα συστήματα να πρέπει να τηρούν ιδιαίτερα αυστηρές χρονικές

προθεσμίες. Οι καθυστερήσεις που εισήγαγε ο υπερ-επόπτης πρέπει να είναι γνωστές, ώστε να λαμβάνονται υπόψη

στο χρονοδιάγραμμα εργασιών του συστήματος.

Ο στόχος της παρούσας μελέτης είναι η αξιολόγηση των επιδόσεων διαχωρισμένων κομματιών, διαχειριζόμενα

από τον δωρεάν διανομής υπερ-επόπτη XtratuM. Επιλέξαμε αυτή την κατεύθυνση με σκοπό την μελέτη της χρήσης
και επιδόσεων ενός υπερ-επόπτη σε ενσωματωμένο σύστημα πραγματικού χρόνου.

Για να αξιολογηθούν οι επιδόσεις του XtratuM, θα μετρήσουμε το χρόνο εκτέλεσης διάφορων σεναρίων. Για
να μπορέσουμε να παρουσιάσουμε μια ουσιαστική σύγκριση, θα αντιπαραβάλουμε τα αποτελέσματα με το χρόνο

εκτέλεσης των σεναρίων όταν εκτελούνται χωρίς την παρέμβαση του υπερ-επόπτη.
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1 Introduction
From the advent of information technology we have relied on computers to perform various tasks with speed
and repeatability that no human could hope to achieve. However computers are not unerring. Due to various
circumstances, be it software that was not designed to overcome every possible situation or electrical faults in
memory caused by ionizing radiation, a computer can indeed arrive at a state of error. Depending on the task
given to complete, this could be from being just irritating to even fatal. Let’s take for example the automobile
ECU1 ecosystem. Audio artifacts through the media system can annoy the driver and passengers, but it would
be an enormous overstatement to claim that this could cause an accident. On the other hand, a malfunctioning
driving assistance system like the ABS2 or ESP3, could very well lead to multiple injuries or deaths. As such,
it would make sense to segregate the computer systems, so that critical and non-critical parts do not interfere
with each other. Indeed, this is standard practice in industrial sectors where computers execute critical tasks,
like automotive, medical, aerospace, military, nuclear and such [Sto96].

An approach to achieve system segregation, is to isolate mission critical functions in autonomous hardware.
While this solution achieves physical isolation, since each hardware device has its own processor and memories,
it increases the system cost and complexity, and still needs to be interconnected with other computers on site.
As such, it makes sense to limit the functionality of such systems to the bare minimum, in order to avoid needless
complexity, which could introduce entropy and errors. Those purpose build, hardware constrained, relatively
simple systems are called embedded systems and have dominated all areas where mission critical computers are
needed.

Figure 1: Hypervisors enable usage of diferent OSes on the same hardware device [NDB10].

As computer performance kept on increasing over the years, embedded systems were uplifted too. Whereas
in earlier years microcontrollers4 were mostly utilized as deeply embedded processors running OS-less assembler
and C code, they caught up with RTOSes and in recent years with fully stacked OSes like Linux. Moreover
additional features were added, like virtualization extensions, memory protection and supervisor modes, fea-
tures that simplify virtualization. The above advancements made possible for embedded systems to make use
of hypervisors. Acting as a layer between the hardware and the user application, a hypervisor can achieve
functionality isolation, while allowing critical and non-critical functions to run on the same processor [For10],
in different segments called partitions.

Virtualization in embedded systems introduces an array of desirable features in mission critical environments
[Hei08][NDB10].

• Reduced system complexity by reduction of devices in lieu of fewer, more powerful devices. Interconnection
between those devices has also fewer physical interfaces and signals, but greater bandwidth.

• Re-use of legacy systems made easier by abstracting the older or even discontinued hardware in the
hypervisor layer and keeping the application code mostly the same.

• Running different OSes on the same physical machine, allows systems designers to more easily choose the
best devices for each use case. Critical code can still run in bare metal partitions, if needed.

• Partition isolation allows use of non-critical, non-secure software in devices which share resources with
critical systems. In case of failure or malicious intrusion, the critical systems are not vulnerable to attacks
via the affected systems.

1Electronic Control Unit is a generic term for any embedded system that controls one or more of the electrical system or
subsystems in a transport vehicle.

2Anti-lock braking system.
3Electronic stability control.
4A microcontroller is a processor with all the memories and peripherals required, in order to act as a standalone computer.
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• Monitoring multiple partitions on the same system, allows for higher level detection of fault and error
patterns.

• Power management in clusters, by moving virtual machine partitions off lightly loaded hypervisors, which
can then be shut down.

We can recognize that the computer industry has not remained idle on the matter. More than ten commercial
hypervisors are actively used in embedded systems, as we explore on the next chapter, showing that this
technology is not any more just a matter of academic research. Even so, performance evaluation for hypervisors
in embedded systems has not yet been thoroughly explored. While bibliography of research on hypervisors
for personal computers and servers is quite rich, with Barham et al., 2003 [Bar+03] publishing an excellent
evaluation of the Xen hypervisor’s performance, embedded systems hypervisors are lacking such publications.
Thus on the scope if this dissertation, we are motivated to evaluate and analyze the performance of an hypervisor
designed for embedded systems.

Figure 2: Standard security use case: A user or networkfacing OS is compromised, but encapsu-
lated in a VM, which protects the rest of the system from the exploit [Hei08].

One such hypervisor is the XtratuM5, brought by the Instituto de Automática e Informática Industrial6 of
the Universitat Politècnica de València in Spain7. We chose to evaluate the XtratuM on basis of its mission
critical orientation, applying the philosophy of the ARINC-653 [inc03] software specification and support of
RTOSes designed for embedded systems. XtratuM has been deployed, among others, in projects of Thales
Alenia Space8 and Astrium9 for the aerospace industry. Moreover, XtratuM offers a free academic version for
the x86 architecture, along with the necessary SDK10 for ease.

On this thesis we utilize a set of tests, in order to evaluate the performance of the aforementioned hypervisor
in various scenarios. We will measure the execution time of a test program written in the C language, while
running on a partition managed by the hypervisor. We will then compare the results and describe what
knowledge we can extract from the measurements.

5http://www.xtratum.org/
6http://www.ai2.upv.es/en/index.php
7http://www.upv.es/
8http://www.thalesgroup.com/Markets/Space/Home/
9http://www.astrium.eads.net/

10Software Development Kit.
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2 Hypervisors

2.1 Virtualization and hypervisors
The term virtualization dates back to 1967, where the IBM Thomas J. Watson Research Center11 developed an
experimental computer system, theM44/44X to explore among others, the virtual machine concept. The system
was based on an IBM 7044 (the ’M44’) and simulated multiple 7044 virtual machines (the ’44X’) [ONe67].

To better explain what a hypervisor or VMM is, the concept of the virtual machine must be described.
A virtual machine is taken to be an efficient, isolated duplicate of the real machine [PG74]. The process
of duplicating the isolated machine is called virtualization. We can only achieve virtualization by means of
a software called virtual machine monitor (VMM). The VMM shall provide an environment for programs

Figure 3: The virtual machine monitor

essentially identical to the real machine, programs shall exhibit the lowest possible decrease of execution speed
and the VMM shall be in total control of all system resources available to the programs. The VMM shall be
able to handle multiple virtual machines.

By an essentially identical environment we mean that any program run within the VMM, shall exhibit an
effect identical to the one when run in the original machine. It is most possible and acceptable that there will be
differences caused by the availability of system resources. This could be because it is desirable to allocate part
of the total machine memory and processing cores to the virtual machine. Moreover, there can exist differences
caused by timing dependencies, because of the intervening levels of software between machine and program or
because of other virtual machines running concurrently.

In order to exhibit the lowest possible speed decrease and achieve high efficiency, the virtual machine’s
processor instructions shall be mostly run on the real processor. This means that the virtual machines cannot
be expected to run cross platform; the programs have to be written for the architecture of the real machine. As
such, emulators and simulators cannot be called VMMs.

Finally, system resource control is the feature that enables the VMM to disallow the programs access to
cores, memories, peripherals and the like, without explicitly being allocated to. It is also possible that, if needed,
the VMM will be able to disallow access to resources previously allocated.

2.1.1 Classification

Virtual machine monitors or hypervisors can be classified in to distinct types, as described by Robin in Analysis
of the Intel Pentium’s ability to support a secure virtual machine monitor [RI00]:

• Type-1, native or bare-metal hypervisors. These hypervisors run directly on the host’s hardware to control
the hardware and to manage guest operating systems. For this reason, they are sometimes called bare
metal hypervisors. A guest operating system runs as a process on the host.

11The Thomas J. Watson Research Center is the headquarters for IBM Research. The center comprises two sites, with its main
laboratory in Yorktown Heights, New York, U.S., 38 miles north of New York City and offices in Cambridge, Massachusetts.
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• Type-2, hosted hypervisors. These hypervisors run on a conventional operating system just as other
computer programs do. Type-2 hypervisors abstract guest operating systems from the host operating
system.

Figure 4: Type-1 and type-2 hypervisors [Wik11]

Robin describes in more detail the requirements of each hypervisor type, based on Goldberg’s dissertation
[Gol73].

A Type-1 hypervisor runs directly on the machine hardware, so it must act as an operating system or kernel
that has mechanisms to support virtual machines. A Type-1 hypervisor must perform scheduling and resource
allocation for all virtual machines in the system. This means that a Type-1 hypervisor may be much larger
than Type-2 hypervisor because of the extra code needed to implement these features. Furthermore, a Type-1
hypervisor requires drivers for hardware peripherals. Goldberg develops a set of rules to determine if processor
hardware is capable of supporting virtual machines and thus could be a host for a Type-1 hypervisor. His three
requirements for virtualization are:

• The method of executing non-privileged instructions must be roughly equivalent in both privileged and
user mode. For example, a processor can not use an additional bit in an instruction word or in the address
portion of an instruction when in privileged mode.

• There must be a method such as a protection system or an address translation system to protect the real
system and any other VMs from the active VM.

• There must be a way to automatically signal the hypervisor when a VM attempts to execute a sensitive
instruction. It must also be possible for the hypervisor to simulate the effect of the instruction. Sensitive
instructions include:

– Instructions that attempt to change or reference the mode of the VM or the state of the machine.

– Instructions that read or change sensitive registers and/or memory locations such as a clock register
and interrupt registers.

– Instructions that reference the storage protection system, memory system, or address relocation
system. This class includes instructions that would allow the VM to access any location that is not
in its virtual memory.

– All I/O instructions.

A Type-2 hypervisor runs as an application under a host operating system. A Type-2 hypervisor should be
simpler than a Type-1 hypervisor because the memory management, processor scheduling, resource allocation,
and hardware drivers of the host operating system are used in its implementation. A Type-2 hypervisor provides
only virtualization support services. The Type-2 hypervisor virtualizes the real machine even though the
hypervisor is running as an application in the host OS. To support a Type-2 virtual machine a processor must
meet all of the hardware requirements for the Type-1 hypervisor listed above. However, in addition to these
requirements, there are software requirements for the host operating system that a Type-2 hypervisor runs on.
The host OS requirements are:

• The host OS can not do anything to invalidate the requirement that the method of executing non-privileged
instructions must be roughly equivalent in both privileged and user mode.
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• There must be primitives available in the host OS to protect the hypervisor and other VMs from the
active virtual machine. Examples of this primitive include a protection primitive, address translation
primitive, or a sub-process primitive. When the virtual machine traps12 because it attempted to execute
a sensitive instruction, the host OS must direct the signal to the hypervisor. Therefore, the host OS needs
a primitive to perform this action. The host OS also needs a mechanism to allow a hypervisor to run the
virtual machine as a sub-process. The hypervisor must still be able to simulate sensitive instructions.

The most efficient type of hypervisor to use depends on the use case, as both excel in some areas, while lacking
in others. Type-1 hypervisors provide higher performance, availability, and security than Type-2 hypervisors,
due to bypassing the OS layer, becoming a type of OS or kernel themselves. One disadvantage, which is a
Type-2 advantage, is that Type-1 hypervisors’ hardware support is limited to exactly what the hypervisor was
designed for, while Type-2 hypervisors use the OS drivers to abstract the hardware. Ease of use is also an issue,
as Type-2 hypervisors run on a familiar user interface, that of the underlying OS.

2.1.2 Types of virtualization

Virtual machines can communicate with the underlying hardware with the hypervisor mediating the access.
Depending on the way this intervention occurs, different virtualization methods can be described:

• Full Virtualization

• Hardware-assisted virtualization

• Paravirtualization

In Full Virtualization the virtual machine can access all the hardware that are required by the guest op-
erating system, in such a way that the OS is unmodified and unaware that it is being virtualized. Hardware
request including the full instruction set, input/output operations, interrupts and memory access are routed to
hypervisor drivers that take the place of the original hardware drivers. With this approach, critical instructions
are discovered, statically or dynamically at run-time, and replaced with traps into the VMM to be emulated in
software. Full virtualization offers the best isolation and security for virtual machines, and simplifies migration
and portability as the same guest OS instance can run on a VMM or on native hardware. On the other hand a
key challenge for full virtualization is the interception and simulation of operations, that either access or affect
state information that is outside the virtual machine, like hardware I/O operations. Virtualizing each and every
such instruction in not a trivial task during VMM development. Full virtualization translation can incur a large
performance overhead in comparison to a virtual machine running on natively virtualized architectures, since
the VMM has to mediate every hardware request.

Figure 5: Full Virtualization [Hua12].

Hardware-assisted virtualization is similar to full virtualization, but the host processor on the real machine
provides special instructions to aid the virtualization. In the traditional CPU architecture, OS kernels expect
direct CPU access, directly on the most privileged level. With virtualization the guest OS cannot run on this
level, as the VMM operates there, meaning that the guest OS will run in a less privileged environment. Several
CPU instructions are only accessible at the highest privilege level, which means the OS has to be provisioned
somehow in order to execute those. One such provision is the introduction of an even more privileged level,
available only for virtualization. This way The VMM can still run at a the most privileged level, while the
hosted OS can execute most CPU instructions directly on the hardware, while being monitored by the VMM.

12In computing and operating systems, a trap, also known as an exception or a fault, is typically a type of synchronous interrupt
typically caused by an exceptional condition (e.g. division by zero, invalid memory access).
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Thus, direct CPU instructions can be called by the virtual machine, without the VMM intervention and trap
overhead. Moreover, no changes on the virtual machine OSes are needed, as long as they support the CPU’s
hardware extensions via their drivers. The disadvantage of this method is that it can be applied only to certain
CPUs that support it, meaning migration from one architecture to the other, or even different version of the
same architecture can be problematic.

Figure 6: Hardware-assisted Virtualization [Hua12].

Another way to provision a virtual machine’s access to CPU instructions is Paravirtualization. This method
allows the virtual machine OS to be aware of the virtualization process and use special drivers and API to
access the VMM instead of the real machine. To achieve this, the virtual machine OS has to be modified by
replacing processor requests with VMM requests. With paravirtualization the CPU is not required to support
virtualization and neither CPU calls are required to be fully virtualized, but are still needed to be trapped so
that hardware is still isolated from the virtual machine. The downside of this method is that there still exists the
overhead of trapping processor instructions, albeit smaller than full virtualization, and that migration to another
OS is impossible, unless the new OS is patched for paravirtualization. However, it is worth to mention that
components may be available that enable many of the significant performance advantages of paravirtualization.
For example, the Xen Windows GPLPV13 project provides a kit of paravirtualization-aware device drivers,
licensed under the terms of the GPL, that are intended to be installed into a Microsoft Windows virtual-guest
running on the Xen hypervisor.

Figure 7: Paravirtualization [Hua12].

2.2 Virtualization in embedded systems
One of the most common applications for hypervisors in embedded systems today is in mobile phones, where
trusted and secure applications (baseband management) share the platform with third-party and untrusted
applications. The isolation that the hypervisor provides is a key attribute to their success in this domain. But
this is not the only advantage of using a VMM in a mobile phone [Maz16].

• Processor consolidation where applications are run on a higher level OS and baseband management is run
on an RTOS.

13http://wiki.xen.org/wiki/XenWindowsGplPv
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• Software and hardware architecture abstraction allows range of related products with varying capabilities,
that use of same parts of software on high and low end devices.

• Users can be allowed to configure the OS at their needs, without compromising the device’s main use of
telephony.

(a) Processor consolidation. (b) Software and hardware architecture ab-
straction.

(c) User configurable OS.

Figure 8: Virtualization advantages for mobile devices [Maz16].

Applications for hypervisors are growing outside of handsets and tablets. Deeply embedded avionics and
automotive applications are also benefiting by taking advantage of the isolation and reliability aspects of hy-
pervisors. Systems with a focus on security, survivability, or high configurability are finding applications for the
technology.

In the automotive market 90% of new functions use software and electronics evaluate 40% of total vehicle
costs [NDB10]. The huge complexity of 80 ECUs, 2500 signals, 6 networks, multi-layered run-time environment,
multi-source software, multi-core CPUs, etc is a reality for car electronics engineers. Strong costs, safety
concerns, reliability issues, time-to-market pressure, and reusability of resources are a driving force for the use
of virtualization.

Figure 9: Proliferation of ECUs in the automotive sector increases system complexity [NDB10].
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Using a lower number of high end processors instead of a multitude of low end ECUs, complexity can be
greatly reduced, along with the interconnections. Software for security-critical sub-systems can run on the
AUTOSAR14 environment while non critical systems can run on OSes. Updates can be applied over the air,
without the need of specialized hardware, as the critical parts will be isolated and the VMM will intercept any
faults caused from updates. Software developed for older processor architectures, like parking sensors, can be
reused by abstracting the hardware at the hypervisor level.

Figure 10: Faster ECUs with hypervisors, faster interconnects and lower complexity is what
BMW foresees for the automotive market [Sch07].

Although the benefits derived from virtualization are similar for general and aerospace/defense use, some
of the requirements differ dramatically. Compared to a consumer device, a chassis for an aerospace/defense
application needs to power on/off gracefully and rather quickly without issues or corruption of data, meeting hard
requirements for startup and shutdown times. This may require careful scripting of the platform management
software to ensure the different hardware and software components are shut down and brought up in the correct
order. Another difference is A/D requirements for ease of serviceability are often more rigorous than consumer
systems, given that soldiers in the field may have less experience and fewer available resources than specialized
engineers. While soldiers operating virtualized systems are highly trained, they typically have the same skill
level as a network planner with 10 years of experience [Cor11]. Therefore, A/D systems should have relatively
simple user interfaces for start up and shut down. Meeting the above example requirements, hypervisors can
offer substantial benefits in aerospace and defence applications.

Figure 11: Running an ISR Application Unmodified on a New Platform. [Cor11].

When it comes to legacy code in many military applications, a common perspective is, “If it ain’t broke, don’t
fix it.” Unfortunately, it’s not always that simple. When adopting new hardware, many times it is necessary
to migrate to a new operating system. This will require the legacy applications to be ported, which often
necessitates rewriting and retesting the code. This rework may even be required when using the same OS

14AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development partnership of automotive interested parties
founded in 2003. It pursues the objective of creating and establishing an open and standardized software architecture for automotive
electronic control units excluding infotainment. www.autosar.org/
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vendor whose new OS isn’t 100% backward compatible with earlier versions. Further complicating migration,
legacy code written in assembly language is likely to be single threaded and therefore unable to take advantage
of the performance improvements of multi-core processors. Overcoming these challenges, virtualization allows
systems to execute legacy software with little or no modification. Legacy code runs on its native OS in an
isolated VM, which also protects it from unintended interactions with other applications. Furthermore, multi-
core processors can be fully utilized since the VMM uses all the available processor cores to support the VMs.
Take for example a legacy intelligence, surveillance and reconnaissance (ISR) application, running on a near
real-time operating system (RTOS), which acquires and processes radar images. The software is part of a new
platform that is Linux-based. Use of virtualization enables the legacy ISR application to run unmodified on its
own in a VM.

Figure 12: Primary and Backup VMs Provide Robust Failover. [Cor11].

When the operating system or application crashes, the standard remedy is a hardware reboot, which takes
the system offline for a period of time. With virtualization, a failing operating system or application doesn’t have
to be catastrophic since it is isolated in a VM. One option is to restart the software in the failing VM without
impacting the other VMs; however, this approach does not address a corrupted software image. Therefore, a
more robust solution is to maintain a backup VM (e.g., identical software) in standby mode that is ready take
over in a matter of seconds. Working behind the scenes, the VMM provides high availability and management
functions that are critical when building highly reliable systems. One of its key functions is to detect faults
and manage failover to ensure continuity of service. The VMM monitors the application, and if it detects
deteriorating performance, it can take action such as provisioning a new virtual machine for the application to
run, even on separate hardware if required. Hypervisors can support a fault tolerant model where a secondary
VM runs in lockstep with the primary VM. If the performance of the primary VM degrades, the virtualization
software can failover to the secondary VM.

2.3 Available Type-1 hypervisors
Below we introduce some of the type-1 hypervisors available on July 2016. The list is non-exhaustive.

Xen Project15 originated as a research project at the University of Cambridge, led by Ian Pratt, senior
lecturer at Cambridge who co-founded XenSource, Inc. with Simon Crosby also of Cambridge University. The
first public release of Xen was made in 2003. Xen Project has been supported originally by XenSource Inc., and
since the acquisition of XenSource by Citrix in October 2007.

Xen supports five different approaches to running the guest operating system: HVM (hardware virtual
machine), HVM with PV drivers, PVHVM (HVM with PVHVM drivers), PVH (PV in an HVM container) and
PV (paravirtualization). The Xen hypervisor has been ported to a number of processor families.

• Intel: IA-32, IA-64 (before version 4.2), x86-64.

• PowerPC: previously supported under the XenPPC project, no longer active after Xen 3.2

• ARM: previously supported under the XenARM project for older versions of ARM without virtualization
extensions, such as the Cortex-A9. Currently supported since Xen 4.3 for newer versions of the ARM with
virtualization extensions, such as the Cortex-A15.

• MIPS: XLP832 experimental port.
15www.xenproject.org/
16wiki.xen.org/wiki/Xen_Project_Software_Overview/
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Figure 13: Xen project architecture16.

Using the Xen project, various implementation built upon the GNU General Public Licence free core, to produce
a commercial version, adding proprietary additions:

• Citrix XenServer

• Huawei FusionSphere

• Oracle VM Server for x86

• Thinsy Corporation

Proxmox Virtual Environment17, or Proxmox VE, is an open-source server virtualization environment. It is
a Debian-based Linux distribution with a modified Red Hat Enterprise Linux kernel and allows to deploy and
manage virtual machines and containers.

Figure 14: Proxmox startpage with 3 Cluster nodes.

Proxmox VE includes a Web console and command-line tools, and provides a REST18 API for third-party
tools. Two types of virtualization are supported: container-based with LXC and full virtualization with KVM.
It comes with a bare-metal installer and includes a Web-based management interface.

Nuxis19 is an hypervisor with resources and tools to streamline the management of IT services, such email,
file server, backup, printers, databases, Firewall, VoIP, ERP.

Nuxis supports multiple operating systems on 32bit and 64bit architectures, Linux and Windows. As for
virtualization paravirtualized and fully virtualized (with HVM support) host are supported. Management is
available via a web interface.

L4, was created by German computer scientist Jochen Liedtke [Lie96] as a response to the poor performance
of earlier microkernel-based operating systems. Liedtke felt that a system designed from the start for high
performance, rather than other goals, could produce a microkernel of practical use. His original implementation
in hand-coded Intel i386-specific assembly language code in 1993 sparked off intense interest in the computer

17pve.proxmox.com/wiki/Main_Page/
18Representational state transfer
19http://www.nuxis.com/
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Figure 15: Live migration of a VM on Nuxis.

industry. Since its introduction, L4 has been developed for platform independence and also in improving
security, isolation, and robustness. There have been various re-implementations of the original binary L4 kernel
interface (ABI) and its successors, including L4Ka::Pistachio (Uni Karlsruhe), L4/MIPS (UNSW) and Fiasco
(TU Dresden).

Figure 16: L4 branching to to various implementations.

For this reason, the name L4 has been generalized and no longer only refers to Liedtke’s original imple-
mentation. It now applies to the whole microkernel family including the L4 kernel interface and its different
versions. L4 is widely deployed. Depending on the implementation L4 implementation can support all types of
virtualization, numerous processor architectures and even be formally verified for high assurance (seL4) or used
in deeply embedded ARM Cortex M3/M4 devices (F9 microkernel). Examples of industry applications based
on L4 include the following:

• Apple’s iOS secure coprocessor based on L4 shipped and estimated 310 million devices for year 2015.

• OKL4 on more than 1.5 billion handsets from 2007 and unreleased amount of Bosch car infotainment
systems.

• Under the DARPA High-Assurance Cyber Military Systems (HACMS) program, NICTA together with
project partners Rockwell Collins, Galois Inc, the University of Minnesota and Boeing are developing
a high-assurance drone based on seL4, with planned technology transfer onto the optionally piloted au-
tonomous Unmanned Little Bird helicopter under development by Boeing.

XtratuM is a bare-metal hypervisor specially designed for embedded real-time systems available for the
instruction sets of x86, LEON2 and LEON3 (SPARC v8), ARM Cortex-R4F processors and supports apart
from XAL for bare-C applications, Partikle RTOS, LITHOS RTOS, uLITHOS runtime, Ada Ravenscar profile
ORK+, RTEMS and Linux (x86 architectures) in paravirtualized mode.

We cover XtratuM in detail on the next chapter.
VMware ESX runs on bare metal. It includes its own kernel: A Linux kernel is started first, and is then

used to load a variety of specialized virtualization components, including ESX, which is otherwise known as the
vmkernel component. The Linux kernel is the primary virtual machine; it is invoked by the service console.
At normal run-time, the vmkernel is running on the bare computer, and the Linux-based service console runs
as the first virtual machine. The vmkernel is a microkernel with three interfaces: hardware, guest systems,
and the service console (Console OS). The vmkernel handles CPU and memory directly, using scan-before-
execution to intercept and fully virtualize special or privileged CPU instructions and a system resource allocation
table to track allocated memory, but also support paravirtualization for select operating systems. Access to
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Figure 17: XtratuM running various execution environments.

other hardware (such as network or storage devices) takes place using modules. At least some of the modules
derive from modules used in the Linux kernel. To access these modules, an additional module called vmklinux
implements the Linux module interface. VMware ESXi, a smaller-footprint version of ESX, does not include
the service console. It is available - without the need to purchase a vCenter license - as a free download from
VMware, with some features disabled. VMware ESXi originated as a compact version of VMware ESX that
allowed for a smaller 32 MB disk footprint on the host. With a simple configuration console for mostly network
configuration and remote based VMware Infrastructure Client Interface, this allows for more resources to be
dedicated to the guest environments.

Figure 18: ESXi service console running two instances of Windows OS20.

Two variations depending on the type and size of the target installation media of ESXi exist:

• VMware ESXi Installable, on a hard disk (or iSCSI/SAN/FCoE partition) that has a size of at least 5 GB

• VMware ESXi Embedded Edition, on a USB key drive, or SD card, or target media (no matter what
type) smaller than 5 GB

Microsoft Hyper-V, codenamed Viridian and formerly known as Windows Server Virtualization, can create
virtual machines on x86-64 systems running Windows. A server computer running Hyper-V can be configured
to expose individual virtual machines to one or more networks. Hyper-V was first released alongside Windows
Server 2008, and has been available without charge for all the Windows Server and some client operating systems
since. A hypervisor instance has to have at least one parent partition, running a supported version of Windows
Server (2008 and later).

The virtualization stack runs in the parent partition and has direct access to the hardware devices. The
parent partition then creates the child partitions which host the guest OSs. A parent partition creates child
partitions using the hypercall API, which is the application programming interface exposed by Hyper-V. A
child partition does not have access to the physical processor, nor does it handle its real interrupts. Instead, it

20matthill.eu/
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Figure 19: HyperV architecture supported by Intel’s VT-x ring -1 hardware extension.

has a virtual view of the processor and runs in Guest Virtual Address, which, depending on the configuration
of the hypervisor, might not necessarily be the entire virtual address space. Depending on VM configuration,
Hyper-V may expose only a subset of the processors to each partition. The hypervisor handles the interrupts
to the processor, and redirects them to the respective partition using a logical Synthetic Interrupt Controller
(SynIC). Hyper-V can hardware accelerate the address translation of Guest Virtual Address-spaces by using
second level address translation provided by the CPU, referred to as EPT on Intel and RVI on AMD. Child
partitions do not have direct access to hardware resources, but instead have a virtual view of the resources, in
terms of virtual devices. Any request to the virtual devices is redirected via the VMBus to the devices in the
parent partition, which will manage the requests. The VMBus is a logical channel which enables inter-partition
communication. The response is also redirected via the VMBus. If the devices in the parent partition are
also virtual devices, it will be redirected further until it reaches the parent partition, where it will gain access
to the physical devices. Parent partitions run a Virtualization Service Provider (VSP), which connects to the
VMBus and handles device access requests from child partitions. Child partition virtual devices internally run a
Virtualization Service Client (VSC), which redirect the request to VSPs in the parent partition via the VMBus.
This entire process is transparent to the guest OS.

Bellow follows an aggregated table listing the hypervisors described, along with some non-mentioned. Types
of virtualization supported and known use in embedded applications are noted.

Hypervisor Virtualization EmbeddedFull Hardware Para
Xen Hypervisor X X X X
Proxmox VE X
nuxis X X X
L421 X X X X
XtratuM X X
VMware ESXi X X X
MS Hyper-V X X
Parallels Bare Metal X X
Windriver Linux X X X X
LynxSecure X X X X
IBM PowerVM X
Vembu VMBackup X X

Table 1: Type-1 Hypervisors with virtulization and embedded categorization.

21L4Ka, L4/MIPS, Fiasco, OKL4, seL4, F9
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3 The XtratuM Hypervisor
The term XtratuM derives from the word stratum. In geology and related fields it means:

Layer of rock or soil with internally consistent characteristics that distinguishes it from contiguous
layers.

In order to stress the tight relation with Linux and the open source the "S" was replaced by "X". XtratuM
would be the first layer of software (the one closer to the hardware), which provides a rock solid basis for the
rest of the system. [Sol13]

XtratuM is a type-1, or native hypervisor, targeted for highly critical systems. The philosophy of the
ARINC-65322 software specification has been employed when applicable, even though it defines time partitioning
systems, but not hypervisors explicitly. This influence is present in XtratuM’s API and partition management.

XtratuM’s partitions are treated as virtual computers that can run various operating systems, as long as
their kernels are modified to support para-virtualization. At May 2016 the following execution environments
and operating systems where supported, depending on the underlying hardware:

• XAL (XtratuM Abstraction Layer): a mininal layer to execute bare-C partitions

• PartiKle: a real-time operating system with an POSIX PSE52 API

• Lithos: a real-time operating system ARINC-653 compliant

• RTEMS: Real-Time Executive for Military Systems, an RTOS designed for embedded systems

• Linux: a Unix-like and mostly POSIX-compliant OS

XtratuM’s licence is covered by the GPLv223.

3.1 Architecture
The main components of XtratuM’s architecture are:

Figure 20: XtratuM architecture. [Sol13]

• Hypervisor: XtratuM provides virtualisation services to partitions. It is executed in supervisor processor
mode and virtualises the CPU, memory, interrupts, and some specific peripherals. The internal XtratuM
architecture includes the following components:

– Memory management: XtratuM provides a memory model for the partitions enforcing the spatial
isolation. It uses the hardware mechanisms to guarantee the isolation.

– Scheduling: Partitions are scheduled using a cyclic scheduling policy.

– Interrupt management: Interrupts are handled by XtratuM and, depending on the interrupt nature,
propagated to the partitions. XtratuM provides a interrupt model to the partitions that extends the
concept of processor interrupts by adding a 32 additional interrupt numbers.

– Clock and timer management.
22ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in

safety-critical avionics real-time operating systems (RTOS). It allows the hosting of multiple applications of different software levels
on the same hardware in the context of an Integrated Modular Avionics architecture. It is part of ARINC 600-Series Standards for
Digital Aircraft & Flight Simulators. [inc03]

23 http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
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– IP communication: Inter-partition communication is related with the communications between two
partitions or between a partition and the hypervisor. XtratuM implements a message passing model
which highly resembles the one defined in the ARINC-653. A communication channel is the logical
path between one source and one or more destinations. Two basic transfer modes are provided:
sampling and queuing. Partitions can access to channels through access points named ports. The
hypervisor is responsible for encapsulating and transporting messages.

– Health monitor: The health monitor is the part of XtratuM that detects and reacts to anomalous
events or states. The purpose of the HM is to discover the errors at an early stage and try to solve
or confine the faulting subsystem in order to avoid or reduce the possible consequences.

– Tracing facilities: XtratuM provides a mechanism to store and retrieve the traces generated by
partitions and XtratuM itself. Traces can be used for debugging, during the development phase of
the application, but also to log relevant events or states during the production phase.

• API: Defines the para-virtualised services provided by XtratuM. The access to these services is provided
through hypercalls.

• Partitions: A partition is an execution environment managed by the hypervisor which uses the virtualised
services. Each partition consists of one or more concurrent processes (implemented by the operating
system of each partition), that share access to processor resources based upon the requirements of the
application. The partition code can be: an application compiled to be executed on a bare-machine; a real-
time operating system (or runtime support) and its applications; or a general purpose operating system
and its applications. Partitions need to be virtualised to be executed on top of a hypervisor. Depending
on the type of execution environment, the virtualisation implications in each case can be summarised as:

– Bare application : The application has to be virtualised using the services provided by XtratuM. The
application is designed to run directly on the hardware and the hardware must be aware of this fact.

– Operating system application : When the application runs on top of a (real-time) operating system, it
uses the services provided by the operating system and does not need to be virtualised. However, the
operating system has to deal with the virtualisation and be virtualised (ported on top of XtratuM).

3.2 Developing process
XtratuM is a layer of software that extends the capabilities of the native hardware. There are important
differences between a classical system and an hypervisor based one. The simplest scenario is composed of two
actors: the integrator and a partition developer or partition supplier. There shall be only one integrator team
and one or more partition developer teams.

The tasks to be done by the integrator are:

• Configure the XtratuM source code (jointly with the resident software). Customise it for the target board
(processor model, etc.) and a miscellaneous set of code options and limits (debugging, identifiers length,
etc).

• Build XtratuM: hypervisor binary, user libraries and tools.

• Distribute the resulting binaries to the partition developers. All partition developers shall use the same
binary version of XtratuM.

• By creating the XM_CF configuration file, allocate the available system resources to the partitions, according
to the resources required to execute each partition:

– memory areas where each partition will be executed or can use,

– design the scheduling plan,

– communication ports between partitions,

– the virtual devices and physical peripherals allocated to each partition,

– configure the health monitoring,

• Gather the partition images and customisation files from partition developers.

• Pack all the files (resident software, XtratuM binary, partitions, and configuration files) into the final
system image.

The partition developer activity:
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Figure 21: System integrator and partition developer cooperation. [Sol13]

• Define the resources required by its application, and send it to the integrator.

• Prepare the development environment. Install the binary distribution created by the integrator.

• Develop the partition application, according to the system resources agreed by the integrator.

• Deliver to the integrator the resulting partition image and the required customisation files (if any).

Figure 22: Buidling XtratuM. [Sol13]

There should be an agreement between the integrator and the partition developers on the resources allocated
to each partition. The binaries, jointly with the XM_CF configuration file defines the partitioned system. All
partition developers shall use exactly the same XtratuM binaries and configuration files during the development.
Any change on the configuration shall be agreed with the integrator.
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Since the development of the partitions may be carried out in parallel (or due to intellectual property
restrictions), the binary image of some partitions may not be available to a partition developer team. In
this case, it is advisable to use dummy partitions to replace those non-available, rather than changing the
configuration file.

3.3 Configuration
The integrator, jointly with the partition developers, has to define the resources allocated to each partition, by
creating the XM_CF file. The main information contained in the XM_CF file is:

• Memory: The amount of physical memory available in the board and the memory allocated to each
partition.

• Processor: How the processor is allocated to each partition: the scheduling plan.

• Peripherals: Those peripherals not managed by XtratuM can be used by one partition. The I/O port
ranges and the interrupt line if any.

• Health monitoring: How the detected errors are managed by the partition and XtratuM: direct action,
delivered to the offending partition, create a log entry, reset, etc.

• Inter-partition communication: The ports that each partition can use and the channels that link the source
and destination ports.

• Tracing: Where to store trace messages and what messages shall be traced.

Since XM_CF defines the resources allocated to each partition, this file represents a contract between the
integrator and the partition developers. A partner (the integrator or any of the partition developers) should
not change the contents of the configuration file on its own. All the partners should be aware of the changes
and should agree in the new configuration in order to avoid problems later during the integration phase.

In order to reduce the complexity of the XtratuM hypervisor, the XM_CF is parsed and translated into a
binary format which can be directly used by XtratuM. The XML data is translated into a set of initialised data
structures ready to be used by XtratuM. Otherwise, XtratuM will need to contain an XML parser to read the
XM_CF information. The resulting configuration binary will be passed to XtratuM as a customisation file.
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4 Performance Evaluation
In this chapter we evaluate the performance of the hypervisor by executing memory transfers and recording
the delays. Due to technical constraints we were not able to generate comparable results on a non-hypervisor
system. Instead, we used the single partition transfer delays as reference.

4.1 Obstacles and failures
This thesis was not absent of failures. While we put effort in producing results on specific topics, this was not
always possible due to technical limitations, time constraints and unforeseeable events.

4.1.1 FPGA and LEON processor

The initial goal of this thesis was to evaluate the Xtratum hypervisor directly on an embedded platform. We
chose the LEON24 processor as it was available for VHDL synthesis. We were not aware that the publisher of
the Xtratum hypervisor created a company, in order to monetize their work. While the x86 version was still
freely available, the LEON version was no longer so. Unfortunately we had to discard the part of our work
relevant to LEON’s synthesis on a Xilinx FPGA25.

4.1.2 Zybo Platform and Xen

After our previous failure an opportunity to compete in Xilinx Open Hardware 2015 competition arose. The
ZYBO board26 with the Zynq processor was the topic of the competition and the winners would have to present
a system prototype, outlining the capabilities of the board. Our entry would be a ZYBO board with XEN
hypervisor, demonstrating an automotive system. Unfortunately while there existed available material27 for
XEN on a Zynq Ultrascale28, there weren’t for the smaller Zynq-7000. Porting XEN for the Zynq-7000 proved
to be a tedious procedure, which we abandoned to pursue research on Xtratum’s free version.

4.1.3 Xtratum on bare metal

Our plans for evaluating Xtratum on x86, were to run the MiBench benchmarks29 but this proved to be
impossible due to XAL supporting only stdio and string C libraries. The benchmarks made use of other
libraries and could not be compiled with the XAL resources.

While the SDK provides example systems with various combinations of partitions, there are no definitive
instructions on makefile and xml schema creation. Many times partition generation failed or the final system
was unresponsive. Some times there were clear indications as to what the fault was, but on other occasions we
had to rely on trial and error. As it is, we believe that the free edition SDK is poorly documented for creating
something that varies from the examples.

Moreover we were not able to compare the results directly on a x86 system, because Xtratum’s stdio output
did not provide any other options apart from "PcUart" in the xml file. No documentation on the output could
be found, nor Xtratum’s team could be reached via email. The only option in which we finally settled, was to
virtualize the x86 system and use a Linux terminal as a redirected output.

4.2 Testing Environment
The structure of the testing environment was built like so:

• Intel i7 3770

• Windows 10 Pro v1607 (courtesy of University of Piraeus MSDNAA/Dreamspark Programme)

• Oracle VirtualBox v5.0.20

• Kubuntu/Ubuntu 12.04 LTS

• QEMU emulator v1.0

• XtratuM 2.6.0 GPL Edition

• PaRTiKle v2.0r0
24http://www.gaisler.com/index.php/products/processors/leon3
25https://www.xilinx.com/products/silicon-devices/fpga.html
26https://www.xilinx.com/products/boards-and-kits/1-4azfte.html
27http://dornerworks.com/services/xilinxxen
28https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
29http://vhosts.eecs.umich.edu/mibench//source.html

The XtratuM Hypervisor Page 26



Postgraduate Thesis Georgios V. Pikoulis

Figure 23: The testing environment system

4.2.1 Hardware specifications

The hardware of the system is based on an Intel i7 CPU, which supports the following features:

• Intel Virtualization Technology (VT-x) which is necessary to run virtualization with KVM/QEMU

• Intel Virtualization Technology for Directed I/O (VT-d) which makes direct access to a PCI device possible
for guest systems with the help of the Input/Output Memory Management Unit (IOMMU) provided. This
feature is not relevant with our evaluation but to virtualization in general.

• Intel VT-x with Extended Page Tables (EPT) provides a hardware assist to memory virtualization, which
includes the partitioning and allocation of physical memory among VMs. This feature is not relevant with
our evaluation but to virtualization in general.

4.2.2 Host OS and Virtual Machine

Windows 10 was the author’s OS of choice due to the simplicity of use in multiple environments in academia,
professional use and recreation. Oracle’s VirtualBox type-2 hypervisor was chosen because of its availability in
freeware, trust on the publisher’s expertise and exploitation of the CPU’s virtualization features.

4.2.3 QEMU

The QEMU type-2 hypervisor was chosen to host the Xtratum hypervisor, because in our experiments we did
not manage to generate console or serial output of the performance tests in native environment. As such, we
opted for QEMU redirection of Xtratum’s system serial output, on Kubuntu’s terminal window. The required
linux command lines for this task are included in the appendix.

Figure 24: Flow of debugging messages during testing.

4.2.4 Bare Metal C

A Bare Metal C partition was selected as good reference of a partition that runs the minimum required code
for our benchmarks.
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4.2.5 Partikle OS

The Partikle OS was chosen for it’s compatability on the Xtratum hypervisor and for the fact that it’s a real
time OS.

4.3 Setting up the Hypervisor and Partitions
The hypervisor files were generated following the instructions in the user manual’s chapter 4 [Sol13]. The
partitions required tweaking upon the existing examples provided in the SDK and in some cases significant
effort, due to lack of more specific instructions. The relevant makefiles and Xtratum xml schemas can be found
at the appendix of this document.

4.4 Data Transfers
Three methods of data transfers were tested:

• Shared memory using C library’s memcpy function. This is the simplest type of memory transfer, akin
to a for loop copying the data. This method was available for all test cases. The location of the shared
memory space is pre-allocated when packing the systems in the xml file.

• Sampling messages, provided be Xtratum’s XAL API. The sender partition uses the API to transmit
data via a pre-allocated port. The data are available sampling by another partition, until overwritten by
the sender. The sender and sampler ports are created when packing the system, by setting the relevant
switches in the xml file.

• Queuing messages, provided be Xtratum’s XAL API. The sender partition uses the API to transmit data
via a pre-allocated port. The data are placed in a queue with predefined depth and can be accessed in
a FIFO manner. The sender and receiver ports are created when packing the system, by setting the
relevant switches in the xml file.

The measurements were performed using the XAL API’s XM_get_time. This function returns the hyper-
visor’s internal incremental clock in microsecond accuracy as a 64bit unsigned integer. The function was called
before and after the transfer and the difference was used as a measure of the transfer’s delay. The API’s delay
was not taken into account, due to our approach on result comparison being relative rather than absolute.

Each case was tested 16 times to measure the average delay and deviation among passes. All tests were
written in the C language and the relevant files for each case are available in the appendix of this document.

1 Partition Delay (us) 2 Partitions Delay (us)
Pass # Bare C Partikle Bare C Partikle Bare C / Partikle

1 42 33 36 33 19
2 44 35 21 26 21
3 42 31 38 22 19
4 45 35 21 23 20
5 41 34 21 26 20
6 42 29 21 24 21
7 42 32 19 23 20
8 47 34 17 23 20
9 43 33 19 22 19
10 40 34 21 42 20
11 43 33 45 23 29
12 45 32 21 24 20
13 40 34 20 23 21
14 43 36 27 39 20
15 41 34 21 22 21
16 43 32 20 22 20
Min 40 29 17 22 19

Average 42.6875 33.1875 24.25 26.0625 20.625
Max 47 36 45 42 29

Av. Deviation 1.4375 1.3125 6.125 4.4765625 1.234375

Table 2: Delays on shared memory memcpy.
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2 Partition - Bare C
Sampling

Pass # Send Delay (us) Read Delay (us) Total Delay (us)
1 164 184 348
2 160 169 329
3 100 186 286
4 161 171 332
5 135 58 193
6 171 305 476
7 182 177 359
8 143 147 290
9 224 248 472
10 159 145 304
11 148 153 301
12 150 320 470
13 277 199 476
14 176 220 396
15 177 170 347
16 201 190 391
Min 100 58 193

Average 170.5 190.125 360.625
Max 277 320 476

Av. Deviation 26.8125 42.671875 64.65625

Table 3: Delays on XAL port sampling.

2 Partition - Bare C
Queuing

Pass # Send Delay (us) Read Delay (us) Total Delay (us)
1 335 491 826
2 275 381 656
3 297 264 561
4 301 322 623
5 235 375 610
6 271 594 865
7 277 274 551
8 237 211 448
9 276 774 1050
10 231 261 492
11 267 239 506
12 270 382 652
13 295 286 581
14 433 431 864
15 268 459 727
16 294 429 723
Min 231 211 448

Average 285.125 385.8125 670.9375
Max 433 774 1050

Av. Deviation 30.53125 107.890625 128.671875

Table 4: Delays on XAL port queuing.
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4.4.1 Intra-partition shared memory

A single partition system was created and a 128 byte array was copied to another array using memcpy.

>> HwTimer [ i8253 t imer (1193Khz ) ]
[ sched ] us ing c y c l i c s chedu l e r
1 Pa r t i t i on ( s ) c r ea ted
P0 ( " Pa r t i t i on1 " : 0 ) cpu : 0 f l a g s : [SV BOOT (0 x2000000 ) ] : [ 0 x2000000 − 0x2100000 ]
[ P0 ] Duration : 42us
[HYPERCALL] (0 x0 ) Halted

Figure 25: Single partition Bare C intra-partition shared memory bash listing.

>> HwTimer [ i8253 t imer (1193Khz ) ]
[ sched ] us ing c y c l i c s chedu l e r
1 Pa r t i t i on ( s ) c r ea ted
P0 ( " Pa r t i t i on1 " : 0 ) cpu : 0 f l a g s : [SV BOOT (0 x800000 ) ] : [ 0 x800000 − 0x900000 ]
[ P0 ] >> PaRTiKle Core ( 2 . 0 r0 ) <<
[P0 ] Detected 3401.306 MHz proc e s s o r .
[ P0 ] Se t t i ng up the dynamic memory manager (512 kbytes at 0x814d60 )
[ P0 ] Free system memory 768 Kb
[P0 ] PaRTiKle (853 Kb [ . t ex t=28 . data=2 . rodata=1 . bss =793] Kb)
[ P0 ] App . (42 Kb [ . t ex t=26 . data=0 . rodata=6 . bss=9] Kb)
[ P0 ] − i n i t con so l e : ok
[ P0 ] − i n i t root : ok
[ P0 ]
[ P0 ] Jumping to the user ’ s code
[ P0 ]
[ P0 ] [ P0 ] I ’m t1 : 0x859bdc
[ P0 ] [ P0 ] Duration : 33us
[ P0 ]
[ P0 ] System exit s t a tu s : 0 .
[ P0 ]
[HYPERCALL] (0 x0 ) Halted

Figure 26: Single partition Partikle intra-partition shared memory bash listing.
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Figure 27: Single partition 128 byte memcpy transfers.

We can see that the Partikle partition was somewhat faster than the Bare C. While a definite conclusion as
to the reason of this result cannot be drawn, due to Partikle’s core and libraries being available as pre-compiled
objects, it’s safe to assume that the memcpy function has been optimized internally in Partikle’s distribution.

This case was tested to serve as a reference for other cases.

4.4.2 Inter-partition shared memory

For the inter-partition transfers, we used memcpy again, with some added features. Each partition generates
an 128 byte array, calculates the 8bit checksum of the array elements which is stored in shared space and sets
a flag to report that the transfer is ready. Then continuously checks the other partition’s completion flag, and
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if it’s been set, reads the array, calculates the 8bit checksum and compares it with the previously calculated
checksum. Finally each partition generates a success or failure message, if the checksums are equal.

Figure 28: Finite state machine of inter-partition testing.

>> HwTimer [ i8253 t imer (1193Khz ) ]
[ sched ] us ing c y c l i c s chedu l e r
2 Pa r t i t i on ( s ) c r ea ted
P0 ( " Pa r t i t i on1 " : 0 ) cpu : 0 f l a g s : [ BOOT (0 x2000000 ) ] :

[ 0 x2000000 − 0x2100000 ]
[ 0 x2200000 − 0x2300000 ]

P1 ( " Pa r t i t i on2 " : 1 ) cpu : 0 f l a g s : [ BOOT (0 x2100000 ) ] :
[ 0 x2100000 − 0x2200000 ]
[ 0 x2200000 − 0x2300000 ]

[ P0 ] I n i t i a l i z e d shared memory
[ P1 ] I n i t i a l i z e d shared memory
[ P0 ] Vector f i l l durat ion : 805 us
[ P0 ] Vector Checksum : 86
[ P0 ] memcpy vec to r durat ion : 36us
[ P1 ] Vector f i l l durat ion : 802 us
[ P1 ] Vector Checksum : 243
[ P1 ] memcpy vec to r durat ion : 19us
[ P1 ] Checksum updated
[ P1 ] checksum ca l c u l a t i o n durat ion : 23us
[ P1 ] c a l c u l a t ed checksum : 86
[ P1 ] shared checksum : 86
[ P1 ] Checksum match
[HYPERCALL] (0 x1 ) Halted
[ P0 ] Checksum updated
[ P0 ] checksum ca l c u l a t i o n durat ion : 24us
[ P0 ] c a l c u l a t ed checksum : 243
[ P0 ] shared checksum : 243
[ P0 ] Checksum match
[HYPERCALL] (0 x0 ) Halted

Figure 29: Two partition Bare C shared memory bash listing.

All partitions performed almost equally, within a margin of 2.01us from their combined average or 8,52% on
relative average deviation. It is worth to mention that while the mixed OS system performed best on average,
this happens within a narrow statistical error margin. Even so, we can note that the use of mixed OSes does
not incur any latency burden on memory transfers between partitions within shared memory.

4.4.3 Inter-partition messages

For the messaging test, only the Bare C environment was available, as the XAL API did not support messaging
for Partikle. The queue depth was 16 messages deep. Message reading is occurring during an interrupt call,
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Figure 30: Two partition 128 byte memcpy transfers.

caused by the reception of the message. The relevant API hypercalls are the following:

• XM_write_sampling_message

• XM_read_sampling_message

• XM_send_queuing_message

• XM_receive_queuing_message

Internally the API calls the hypercalls XM_write_object and XM_read_object, which are not available to read
in source code, so we can only assume the inner workings.

>> HwTimer [ i8253 t imer (1193Khz ) ]
[ sched ] us ing c y c l i c s chedu l e r
2 Pa r t i t i on ( s ) c r ea ted
P0 ( " Pa r t i t i on1 " : 0 ) cpu : 0 f l a g s : [BOOT (0 x2000000 ) ] : [ 0 x2000000 − 0x2100000 ]
P1 ( " Pa r t i t i on2 " : 1 ) cpu : 0 f l a g s : [BOOT (0 x2100000 ) ] : [ 0 x2100000 − 0x2200000 ]
[ P0 ] Opening por t s . . .
[ P0 ] done
[ P0 ] Generating messages . . .
[ P0 ] SEND <<sampling message 0>>
[P0 ] Duration to send sampling message : 164 us
[ P1 ] Opening por t s . . .
[ P1 ] done
[ P1 ] Waiting for messages
[ P0 ] SEND <<queuing message 0>>
[P0 ] Duration to send queuing message : 335 us
[ P1 ] Duration to r e c e i v e queuing message : 491 us
[ P1 ] RECEIVE <<queuing message 0>>
[P1 ] Duration to r e c e i v e sampling message : 184 us
[ P1 ] RECEIVE <<sampling message 0>>
[P0 ] Done
[HYPERCALL] (0 x0 ) Halted

Figure 31: Two partition Bare C sampling and queuing messaging bash listing.

We only measure the duration of writing (send) and reading (receive) in order to compare with the simple
memory transfers of the previous tests. We then add the send and receive duration to compare it with the
simple memory transfer, as with memcpy the data are readily available to the receiving partition on memcopy ’s
exit point.

As we do not have code access on the port messaging system, we can assume that the sampling procedure
includes the following steps:
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Figure 32: Two partition Bare C sampling and queuing 128 byte messaging.

• The sender is writing a message on common or hypervisor managed memory

• The hypervisor generates an interrupt to notify the recipient of the write

• The recipient enters the interrupt and can read the message from memory

Queuing should follow the steps:

• The sender is writing a message on common or hypervisor managed memory

• the hypervisor pushes the message at the bottom of the FIFO memory

• The hypervisor generates an interrupt to notify the recipient of the write

• The recipient enters the interrupt and can requests the message

• The hypervisor returns with the message at the top of the FIFO memory

• The hypervisor rearranges the FIFO or updates an internal indexing scheme or chain list

It is clear from the above that the queuing port shall be a slower method, since it accesses a FIFO than a
memory location directly. This is confirmed from our results where the sampling mechanism is 53.75% faster
on average.

While queuing is almost twice as slow, it can offer certain advantages over sampling when used correctly.
One example can be reading from a partition that manages a sensor system. The sensor can transmit a number
of measurements and the receiving partition can read them after the FIFO is full and use them for averaging
or filtering purposes.

4.4.4 Aggregated Results

Here we present the total transaction delays for each type of transfer for comparison
As it is evident, a logarithmic scale was required to be used on the y axis, due to the magnitude of latency

difference between shared memory and queue transfers. The API transfers dwarf the simple memcpy transfer
in latency and this shows that the API has room for improvement.

The XtratuM Hypervisor Page 33



Postgraduate Thesis Georgios V. Pikoulis

1p Bare
C

1p Part
ikle

2p Bare
C

2p Part
ikle

2p Bare
C & Part

ikle

2p Bare
C Sam

pling

2p Bare
C Queu

ing

100

101

102

103

4
0

29

17

22 1
9

1
93

4
48

42
.6
9

33
.1
9

2
4
.2
5

2
6.
0
6

2
0.
6
3

3
60
.6
3

67
0
.9
4

4
7

36

4
5

42

2
9

47
6

1,
05
0

1.
44

1.
3
1

6.
13

4.
48

1.
23

64
.6
6 12
8
.6
7

D
el
ay

(u
s)

Min Average Max Avg. Deviation

Figure 33: All test case delays for 128 byte transfers.

5 Summary and future work

5.1 Summary of this thesis
This thesis has described the use of virtualization in the form of hypervisors and detailed various methods of
their usage in Chapters 1 and 2. In Chapter 3 the XtratuM hypervisor was introduced, along with its structure
and building process. Finally, the results of the performance evaluation are presented in Chapter 4. New
makefiles were written in order to build systems with two Partikle partitions and mixed Partikle - Bare C.
Though many failures were encountered, we provided results that we aspire to be useful to future research on
the subject of embedded systems virtualization and the Xtratum hypervisor.

5.2 Summary of evaluation
The XtratuM hypervisor’s XAL API includes methods to perform inter-partitional memory transfers. While
using the API is arguably more straightforward, caution must be used as it entails great latency, by at least an
order of magnitude when compared to shared memory transfers.

We have shown that shared memory transfers can take 6.72% of the time that is needed for an equivalent
sampling transfer on average, or 3.61% when using the API’s queuing mechanism. Those parameters should
be taken into account when designing a mission critical system, lest scheduling deadlines are missed with
unpredictable consequences.

5.3 Suggestions for future work
As we were not able to perform the evaluation on a native x86 machine, the tests were run in a virtualized
environment. While the results were compared in a relative manner, more accurate results could be acquired
when run on the original hardware. This approach would also allow comparison of results from the hypervisor
environment versus results from a native environment.

Moreover other types of partitions could be explored, such as Linux.

5.4 Conclusion
Hypervisors and virtualization can offer numerous advantages in mission critical and embedded in particular
systems. While embedded hypervisors tend to be highly optimized for meeting critical schedules, their per-
formance should not be overestimated. Memory transfers between hypervisor partitions are expected to be a
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Figure 34: Percentage of average delay when using sampling and queuing transfers versus shared
memory between Bare C partitions.

very common occurrence and as such, can create a bottleneck if not properly evaluated. It is the hypervisor
designer’s decision to choose between using mechanisms already provided or building new ones, to design a
robust system.
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Appendices

A Useful Linux Bash Commands
In the following section we list some useful bash command to ease XtratuM’s installation and building.

A.1 Prerequisites installation in one command

Restart system after installing prerequisites.

> apt−get i n s t a l l gcc−4.4 l i bncu r s e s 5−dev gcc−4.8−mu l t i l i b l ibxml2−dev grub2
xo r r i s o p e r l makese l f qemu bui ld−e s s e n t i a l c h e c k i n s t a l l cdbs d ev s c r i p t s

A.2 XtratuM hypervisor files setup

Navigate to xm-src_v2.6 directory and prepare the hypervisor files:

> make d i s t c l e a n
> cp xmconfig . i a32 xmconfig

Find where gcc is and add its path to xmconfig file, TARGET CCPREFIX entry.

> which gcc

Add XtratuM’s path to xmconfig file, XTRATUM PATH entry. Prepare the installation script by using the
menu configuration tool. Leave defaults and save changes on all three occasions.

> make menuconfig

Make the hypervisor.

> make

Create a compressed tarball or an executable.

> make d i s t r o−ta r
> make d i s t r o−run

A.3 Partition Building

Navigate to the makefile directory. Run each command separate when debugging build errors.

> make c l ean
> make
> make resident_sw . i s o
> qemu−system−i 386 −m 512 − s e r i a l s t d i o −hda resident_sw . i s o

Or build and run the system with one line

> make c l ean ;make ;make resident_sw . i s o ;
qemu−system−i 386 −m 512 − s e r i a l s t d i o −hda resident_sw . i s o

B XtratuM XML Schema files
In the following section we list each test case’s schema file. Some of the following files are the original files
provided by the SDK.

B.1 1 Partition - Bare C

<?xml version=" 1 .0 "?>
<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="

hel lo_world ">
<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>
<HwDescription>
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<Proces sor id="0">
<Sched>

<Cycl icPlanTable>
<Plan id="0" majorFrame="200ms">

<Slo t id="0" s t a r t="0ms" durat ion="200ms"
pa r t i t i o n I d="0" />

</Plan>
</Cycl icPlanTable>

</Sched>
</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="128MB" />
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0" f l a g s="boot␣ sv"

loadPhysAddr="0x2000000" headerOf f s e t="0x0" imageId="0x0"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2000000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
</PhysicalMemoryAreas>

</ Par t i t i on>
</Part i t i onTab l e>

<Devices>
<PcUart name="PcUart" />

</Devices>
</SystemDescr ipt ion>

B.2 1 Partition - Partikle

<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="
hel lo_world ">

<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>

<HwDescription>
<Proces sor id="0">

<Sched>
<Cycl icPlanTable>

<Plan id="0" majorFrame="1 s ">
<Slo t id="0" s t a r t="0ms" durat ion="500ms"

pa r t i t i o n I d="0"/>
</Plan>

</Cycl icPlanTable>
</Sched>

</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="32MB"/>
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0"

loadPhysAddr="0x800000" headerOf f s e t="0x0" imageId="0x0" conso l e
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="PcUart" f l a g s=" sv␣boot">
<PhysicalMemoryAreas>

<Area s t a r t="0x800000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
</PhysicalMemoryAreas>

</ Par t i t i on>
</Part i t i onTab l e>
<Devices>

<PcUart name="PcUart" />
</Devices>

</SystemDescr ipt ion>

B.3 2 Partitions - Bare C - Shared Memory

<?xml version=" 1 .0 "?>
<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="

channe l s ">
<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>
<HwDescription>

<Proces sor id="0">
<Sched>

<Cycl icPlanTable>
<Plan id="0" majorFrame="1000ms">
<Slo t id="0" s t a r t="0ms" durat ion="500ms" pa r t i t i o n I d="0

" />
<Slo t id="1" s t a r t="500ms" durat ion="500ms" pa r t i t i o n I d=

"1" />
</Plan>
</Cycl icPlanTable>

</Sched>
</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="128MB" />
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2000000" headerOf f s e t="0x0" imageId="0x0"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2000000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x2200000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/

>
</PhysicalMemoryAreas>

</ Par t i t i on>
<Par t i t i on id="1" name=" Par t i t i on2 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2100000" headerOf f s e t="0x0" imageId="0x1"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2100000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x2200000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/>

</PhysicalMemoryAreas>
</ Par t i t i on>

</Part i t i onTab l e>

<Devices>
<PcUart name="PcUart" />
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</Devices>

</SystemDescr ipt ion>

B.4 2 Partitions - Partikle - Shared Memory

<?xml version=" 1 .0 "?>
<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="

channe l s ">
<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>
<HwDescription>

<Proces sor id="0">
<Sched>

<Cycl icPlanTable>
<Plan id="0" majorFrame="1000ms">
<Slo t id="0" s t a r t="0ms" durat ion="500ms" pa r t i t i o n I d="0

" />
<Slo t id="1" s t a r t="500ms" durat ion="500ms" pa r t i t i o n I d=

"1" />
</Plan>
</Cycl icPlanTable>

</Sched>
</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="128MB" />
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x800000" headerOf f s e t="0x0" imageId="0x0"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x800000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x1000000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/

>
</PhysicalMemoryAreas>

</ Par t i t i on>
<Par t i t i on id="1" name=" Par t i t i on2 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x900000" headerOf f s e t="0x0" imageId="0x1"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x900000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x1000000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/

>
</PhysicalMemoryAreas>

</ Par t i t i on>
</Part i t i onTab l e>

<Devices>
<PcUart name="PcUart" />

</Devices>

</SystemDescr ipt ion>

B.5 2 Partitions - Mixed Bare C and Partikle - Shared Memory

<?xml version=" 1 .0 "?>
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<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="
channe l s ">
<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>
<HwDescription>

<Proces sor id="0">
<Sched>

<Cycl icPlanTable>
<Plan id="0" majorFrame="1000ms">
<Slo t id="0" s t a r t="0ms" durat ion="500ms" pa r t i t i o n I d="0

" />
<Slo t id="1" s t a r t="500ms" durat ion="500ms" pa r t i t i o n I d=

"1" />
</Plan>
</Cycl icPlanTable>

</Sched>
</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="128MB" />
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2000000" headerOf f s e t="0x0" imageId="0x0"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2000000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x2200000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/

>
</PhysicalMemoryAreas>

</ Par t i t i on>
<Par t i t i on id="1" name=" Par t i t i on2 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2100000" headerOf f s e t="0x0" imageId="0x1"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2100000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
<Area s t a r t="0x2200000" s i z e="1MB" f l a g s="mapped␣wr i t e ␣ shared "/>

</PhysicalMemoryAreas>
</ Par t i t i on>

</Part i t i onTab l e>

<Devices>
<PcUart name="PcUart" />

</Devices>

</SystemDescr ipt ion>

B.6 2 Partitions - Bare C - Sampling and Queuing Messaging

<?xml version=" 1 .0 "?>
<SystemDescr ipt ion xmlns=" ht tp : //www. xtratum . org /xm−2.3" version=" 1 . 0 . 0 " name="

channe l s ">
<XMHypervisor conso l e="PcUart" loadPhysAddr="0x100000">

<PhysicalMemoryAreas>
<Area s t a r t="0x100000" s i z e="3MB" />

</PhysicalMemoryAreas>
<HwDescription>
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<Proces sor id="0">
<Sched>

<Cycl icPlanTable>
<Plan id="0" majorFrame="1000ms">
<Slo t id="0" s t a r t="0ms" durat ion="500ms" pa r t i t i o n I d="0

" />
<Slo t id="1" s t a r t="500ms" durat ion="500ms" pa r t i t i o n I d=

"1" />
</Plan>
</Cycl icPlanTable>

</Sched>
</Proces sor>
<MemoryLayout>

<Region type="ram" s t a r t="0x0" s i z e="128MB" />
</MemoryLayout>

</HwDescription>
</XMHypervisor>

<Part i t i onTab l e>
<Par t i t i on id="0" name=" Par t i t i on1 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2000000" headerOf f s e t="0x0" imageId="0x0"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2000000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
</PhysicalMemoryAreas>
<PortTable>

<Port type="queuing" d i r e c t i o n=" source " name="portQ"/>
<Port type=" sampling " d i r e c t i o n=" source " name="portS "/>

</PortTable>
</ Par t i t i on>
<Par t i t i on id="1" name=" Par t i t i on2 " p roc e s s o r="0" f l a g s="boot"

loadPhysAddr="0x2100000" headerOf f s e t="0x0" imageId="0x1"
conso l e="PcUart">
<PhysicalMemoryAreas>

<Area s t a r t="0x2100000" s i z e="1MB" f l a g s="mapped␣wr i t e " />
</PhysicalMemoryAreas>
<PortTable>

<Port type=" sampling " d i r e c t i o n=" de s t i n a t i on " name="portS "/>
<Port type="queuing" d i r e c t i o n=" de s t i n a t i on " name="portQ"/>

</PortTable>
</ Par t i t i on>

</Part i t i onTab l e>

<Devices>
<PcUart name="PcUart" />

</Devices>

<Channels>
<QueuingChannel maxNoMessages="16" maxMessageLength="128B">

<Source p a r t i t i o n I d="0" portName="portQ"/>
<Dest inat i on p a r t i t i o n I d="1" portName="portQ"/>

</QueuingChannel>
<SamplingChannel maxMessageLength="128B">

<Source p a r t i t i o n I d="0" portName="portS "/>
<Dest inat i on p a r t i t i o n I d="1" portName="portS "/>

</SamplingChannel>
</Channels>

</SystemDescr ipt ion>
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C Makefiles
In the following section we list each test case’smakefile. Some of the followingmakefiles are the originalmakefiles
provided by the SDK.

C.1 1 Partition - Bare C

# XAL_PATH: path to the XTRATUM d i r e c t o r y
XAL_PATH=/opt/xm−sdk−x86// xa l

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . i a32 . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
PARTITIONS=pa r t i t i o n . xe f

a l l : c on ta ine r . bin res ident_sw
inc lude $ (XAL_PATH)/common/ r u l e s .mk

pa r t i t i o n . xe f : p a r t i t i o n . o
$ (TARGET_LD) −o p a r t i t i o n $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 1 , $ (XMLCF) )
@$(XEF) p a r t i t i o n −o $@ − i 0

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b pa r t i t i o n . xe f \

conta ine r . bin : $ (PARTITIONS) xm_cf . bin . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

C.2 1 Partition - Partikle

i f n d e f COMMON_DIR
COMMON_DIR=$ (CURDIR) / . . / common
end i f

# PRTK: path to the Pa r t i k l e d i s t r i b u t i o n
PRTK_PATH=/opt/prtk−sdk

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . $ (ARCH) . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
SOURCES=$ ( wi ldcard ∗ . c )
OBJECTS=$ (SOURCES : . c=.o )
PARTITIONS=$ (SOURCES : . c=. xe f )

POC_COMMON_FLAGS = −I$ (COMMON_DIR) / l i b −I$ (COMMON_DIR) / c on f i g u r a t i o n s
CFLAGS += $ (CFLAGS_ARCH) −O2 $ (POC_COMMON_FLAGS)

a l l : res ident_sw
inc lude $ (PRTK_PATH)/ p r tk con f i g
i n c lude $ (PRTK_PATH)/ l i b / r u l e s .mk

${PARTITIONS : . xe f =}: $ (OBJECTS)
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 0 $ (XMLCF) )

$ (PARTITIONS) : ${PARTITIONS : . xe f=}
@$(XEF) $^ −o $@ − i 0

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b $ (PARTITIONS)
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con ta ine r . bin : $ (PARTITIONS) xm_cf . xe f . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

C.3 2 Partitions - Bare C - Shared Memory

# XAL_PATH: path to the XTRATUM d i r e c t o r y
XAL_PATH=/opt/xm−sdk−x86// xa l

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . i a32 . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
PARTITIONS=pa r t i t i o n 0 . xe f p a r t i t i o n 1 . xe f

a l l : c on ta ine r . bin res ident_sw
inc lude $ (XAL_PATH)/common/ r u l e s .mk

pa r t i t i o n 0 . xe f : p a r t i t i o n 0 . o
$ (TARGET_LD) −o pa r t i t i o n 0 $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 1 , $ (XMLCF) )
@$(XEF) pa r t i t i o n 0 −o $@ − i 0

p a r t i t i o n 1 . xe f : p a r t i t i o n 1 . o
$ (TARGET_LD) −o pa r t i t i o n 1 $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 2 , $ (XMLCF) )
@$(XEF) pa r t i t i o n 1 −o $@ − i 1

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b pa r t i t i o n 0 . xe f \
−b pa r t i t i o n 1 . xe f \

conta ine r . bin : $ (PARTITIONS) xm_cf . bin . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

C.4 2 Partitions - Partikle - Shared Memory

Note that in order to build this system we need to have each partition in its own directory, with its own makefile.
The we call an external makefile to combine the partition files.

Partition 0 :

i f n d e f COMMON_DIR
COMMON_DIR=$ (CURDIR) / . . / common
end i f

# PRTK: path to the Pa r t i k l e d i s t r i b u t i o n
PRTK_PATH=/opt/prtk−sdk

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . $ (ARCH) . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
SOURCES=$ ( wi ldcard ∗ . c )
OBJECTS=$ (SOURCES : . c=.o )
PARTITIONS=$ (SOURCES : . c=. xe f )

POC_COMMON_FLAGS = −I$ (COMMON_DIR) / l i b −I$ (COMMON_DIR) / c on f i g u r a t i o n s
CFLAGS += $ (CFLAGS_ARCH) −O2 $ (POC_COMMON_FLAGS)

a l l : res ident_sw
inc lude $ (PRTK_PATH)/ p r tk con f i g
i n c lude $ (PRTK_PATH)/ l i b / r u l e s .mk
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${PARTITIONS : . xe f =}: $ (OBJECTS)
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 0 $ (XMLCF) )

$ (PARTITIONS) : ${PARTITIONS : . xe f=}
@$(XEF) $^ −o $@ − i 0

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b $ (PARTITIONS)

conta ine r . bin : $ (PARTITIONS) xm_cf . xe f . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

Partition 1 :

i f n d e f COMMON_DIR
COMMON_DIR=$ (CURDIR) / . . / common
end i f

# PRTK: path to the Pa r t i k l e d i s t r i b u t i o n
PRTK_PATH=/opt/prtk−sdk

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . $ (ARCH) . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
SOURCES=$ ( wi ldcard ∗ . c )
OBJECTS=$ (SOURCES : . c=.o )
PARTITIONS=$ (SOURCES : . c=. xe f )

POC_COMMON_FLAGS = −I$ (COMMON_DIR) / l i b −I$ (COMMON_DIR) / c on f i g u r a t i o n s
CFLAGS += $ (CFLAGS_ARCH) −O2 $ (POC_COMMON_FLAGS)

a l l : res ident_sw
inc lude $ (PRTK_PATH)/ p r tk con f i g
i n c lude $ (PRTK_PATH)/ l i b / r u l e s .mk

${PARTITIONS : . xe f =}: $ (OBJECTS)
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 0 $ (XMLCF) )

$ (PARTITIONS) : ${PARTITIONS : . xe f=}
@$(XEF) $^ −o $@ − i 0

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b $ (PARTITIONS)

conta ine r . bin : $ (PARTITIONS) xm_cf . xe f . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

Final System :

i f n d e f COMMON_DIR
COMMON_DIR=$ (CURDIR) / . . / common
end i f

# PRTK: path to the Pa r t i k l e d i s t r i b u t i o n
PRTK_PATH=/opt/prtk−sdk

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . $ (ARCH) . xml

The XtratuM Hypervisor Page 45



Postgraduate Thesis Georgios V. Pikoulis

POC_COMMON_FLAGS = −I$ (COMMON_DIR) / l i b −I$ (COMMON_DIR) / c on f i g u r a t i o n s −I$ (
PRTK_PATH)/ inc lude

CFLAGS += $ (CFLAGS_ARCH) −O2 $ (POC_COMMON_FLAGS)

a l l : res ident_sw
inc lude $ (PRTK_PATH)/ p r tk con f i g
i n c lude $ (PRTK_PATH)/ l i b / r u l e s .mk

p0/pthread_0 : p0/pthread_0 . o
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 0 $ (XMLCF) )

p1/pthread_1 : p1/pthread_1 . o
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 1 $ (XMLCF) )

p0/pthread_0 . xe f : p0/pthread_0
@$(XEF) $^ −o $@ − i 0

p1/pthread_1 . xe f : p1/pthread_1
@$(XEF) $^ −o $@ − i 1

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b p0/pthread_0 . xe f \
−b p1/pthread_1 . xe f \

conta ine r . bin : p0/pthread_0 . xe f p1/pthread_1 . xe f xm_cf . xe f . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

C.5 2 Partitions - Mixed Bare C and Partikle - Shared Memory

Again, two extra makefiles for each partition are needed.

Partition 0 :

# XAL_PATH: path to the XTRATUM d i r e c t o r y
XAL_PATH=/opt/xm−sdk−x86// xa l

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . i a32 . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
PARTITIONS=pa r t i t i o n . xe f

a l l : p a r t i t i o n . xe f
i n c lude $ (XAL_PATH)/common/ r u l e s .mk

pa r t i t i o n . xe f : p a r t i t i o n . o
$ (TARGET_LD) −o p a r t i t i o n $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 1 , $ (XMLCF) )
@$(XEF) p a r t i t i o n −o $@ − i 0

Partition 1 :

i f n d e f COMMON_DIR
COMMON_DIR=$ (CURDIR) / . . / common
end i f

# PRTK: path to the Pa r t i k l e d i s t r i b u t i o n
PRTK_PATH=/opt/prtk−sdk

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . $ (ARCH) . xml
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POC_COMMON_FLAGS = −I$ (COMMON_DIR) / l i b −I$ (COMMON_DIR) / c on f i g u r a t i o n s −I$ (
PRTK_PATH)/ inc lude

CFLAGS += $ (CFLAGS_ARCH) −O2 $ (POC_COMMON_FLAGS)

a l l : pthread_1 . xe f
i n c lude $ (PRTK_PATH)/ p r tk con f i g
i n c lude $ (PRTK_PATH)/ l i b / r u l e s .mk

pthread_1 : pthread_1 . o
$ (LD) −o $@ $^ −Dstart=$ ( s h e l l $ (XPATHSTART) 1 $ (XMLCF) )

pthread_1 . xe f : pthread_1
@$(XEF) $^ −o $@ − i 1

Final System :

export COMMON_PATH=$ (CURDIR) /common
export POC_BUILD=RUN_OVER_XTRATUM

COMMON_DIR=$ (COMMON_PATH)

#a l l : par_xefs resident_sw
a l l : c on ta ine r . bin res ident_sw
inc lude $ (COMMON_PATH)/ xe f_ru l e s .mk

DIRS=\
p0\
p1

CLEANDIRS=\
p0\
p1\
common/ l i b

# pa r t i t i o n s in x e f format t ha t w i l l be packed to form the f i n a l e x e cu t a b l e
PARTITIONS=pa r t i t i o n . xe f pthread_1 . xe f

p a r t i t i o n . xe f :
cd p0 ; make $ (MAKECMDGOALS)

pthread_1 . xe f :
cd p1 ; make $ (MAKECMDGOALS)

PACK_ARGS=−h $ (XMCORE) : xm_cf . bin . xmc \
−b p0/ p a r t i t i o n . xe f \
−b p1/pthread_1 . xe f

#par_xefs :
# @for d i r in $ (DIRS) ; do \
# ( cd $$d ir ; make $ (MAKECMDGOALS) ) ; \
# done

conta ine r . bin : $ (PARTITIONS) xm_cf . bin . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

res ident_sw : conta ine r . bin
$ (RSWBUILD) $^ $@

#∗∗WARNING∗∗ manually run , make needs b u g f i x
res ident_sw . i s o : res ident_sw
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/opt/xm−sdk−x86/ xa l / bin /grub_iso $@ $^

c l ean :
@find −name " ∗ . o" −exec rm ’{} ’ \ ;
@find −name " ∗ . x e f " −exec rm ’{} ’ \ ;
@find −name "∗~" −exec rm ’{} ’ \ ;
@find −name " ∗ . xmc" −exec rm ’{} ’ \ ;
@find −name " ∗ . bin " −exec rm ’{} ’ \ ;
@find −name " resident_sw" −exec rm ’{} ’ \ ;

d i s t c l e a n : c l ean
@for d i r in $ (CLEANDIRS) ; do \

( cd $$d i r ; make $ (MAKECMDGOALS) ) ; \
done

C.6 2 Partitions - Bare C - Sampling and Queuing Messaging

# XAL_PATH: path to the XTRATUM d i r e c t o r y
XAL_PATH=/opt/xm−sdk−x86// xa l

# XMLCF: path to the XML con f i g u ra t i on f i l e
XMLCF=xm_cf . i a32 . xml

# PARTITIONS: p a r t i t i o n f i l e s ( x e f format ) composing the example
PARTITIONS=pa r t i t i o n 0 . xe f p a r t i t i o n 1 . xe f

a l l : c on ta ine r . bin res ident_sw
inc lude $ (XAL_PATH)/common/ r u l e s .mk

pa r t i t i o n 0 . xe f : p a r t i t i o n 0 . o
$ (TARGET_LD) −o pa r t i t i o n 0 $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 1 , $ (XMLCF) )
@$(XEF) pa r t i t i o n 0 −o $@ − i 0

p a r t i t i o n 1 . xe f : p a r t i t i o n 1 . o
$ (TARGET_LD) −o pa r t i t i o n 1 $^ $ (TARGET_LDFLAGS) −Ttext=$ ( c a l l xpathstart

, 2 , $ (XMLCF) )
@$(XEF) pa r t i t i o n 1 −o $@ − i 1

PACK_ARGS=−h $ (XMCORE_BIN) : xm_cf . bin . xmc \
−b pa r t i t i o n 0 . xe f \
−b pa r t i t i o n 1 . xe f \

conta ine r . bin : $ (PARTITIONS) xm_cf . bin . xmc
$ (XMPACK) bu i ld $ (PACK_ARGS) $@

D Source files
The performance tests were written in the C language. All code for each test case can be found below.

D.1 1 Partition - Bare C

#include <s t r i n g . h>
#include <s td i o . h>
#include <s t d l i b . h>

#include <xm. h>

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \
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} while (0 )

char charArrayTx [ 1 2 8 ] ;
char charArrayRx [ 1 2 8 ] ;

void Part i t ionMain (void ) {

xmTime_t s ta r t , end , durat ion ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
memcpy ( charArrayRx , charArrayTx , s izeof ( charArrayRx ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Duration : ␣␣%l l u u s \n" , durat ion ) ;

XM_halt_partition (XM_PARTITION_SELF) ;
}

D.2 1 Partition - Partikle

#include <s td i o . h>
#include <time . h>
#include <pthread . h>
#include <s t r i n g . h>
#include <s t d l i b . h>

#include <xm. h>

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

pthread_t t1 ;
char charArrayTx [ 1 2 8 ] ;
char charArrayRx [ 1 2 8 ] ;

void ∗ f (void ∗ args ) {
struct t imespec t = {2 , 0} ;
xmTime_t s ta r t , end , durat ion ;
xm_u32_t index ;

PRINT ( " I ’m␣ t1 : ␣%p\n" , pthread_se l f ( ) ) ;
// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
memcpy ( charArrayRx , charArrayTx , s izeof ( charArrayRx ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Duration : ␣␣%l l u u s \n" , durat ion ) ;
nanos leep (&t , 0) ;
return (void ∗) 32 ;

}

int main ( int argc , char ∗∗ argv ) {
void ∗ex = 0 ;
pthread_create (&t1 , 0 , f , 0) ;
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pthread_join ( t1 , &ex ) ;
return 0 ;

}

D.3 2 Partitions - Bare C - Shared Memory

Shared memory header file :

#define VECTOR_LEN 128U

typedef struct vecWithChecksumStruct
{

unsigned char vec to r [VECTOR_LEN] ;
unsigned char checksum ;
unsigned char updated ;

} vecWChck_t ;

typedef struct memShareStruct
{

vecWChck_t shareA ;
vecWChck_t shareB ;

} memShare_t ;

D.4 2 Partitions - Bare C - Shared Memory

Partition 0 :

#include <s t r i n g . h>
#include <s td i o . h>
#include <s t d l i b . h>
#include <xm. h>
#include <i r q s . h>

#include " shared . h"

#define SHARED_ADDRESS 0x2200000

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorA ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;

vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
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unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void Part i t ionMain (void )
{

xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;

// I n i t i a l i z e shared mem
memset ( sharedMem , 0x00 , s izeof (memShare_t) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorA , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorA . checksum ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareA ) , &vectorA , s izeof ( vectorA ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareB . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareB ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareB . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareB . checksum )
{

PRINT( "Checksum␣match\n" ) ;
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}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
}

Partition 1 :

#include <s t r i n g . h>
#include <s td i o . h>
#include <s t d l i b . h>
#include <xm. h>
#include <i r q s . h>

#include " shared . h"

#define SHARED_ADDRESS 0x2200000

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorB ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;

vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void Part i t ionMain (void )
{

xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;
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// I n i t i a l i z e shared mem
memset (&vectorB , 0x00 , s izeof ( vectorB ) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorB , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorB . checksum ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareB ) , &vectorB , s izeof ( vectorB ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareA . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareA ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareA . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareA . checksum )
{

PRINT( "Checksum␣match\n" ) ;
}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
}

D.5 2 Partitions - Partikle - Shared Memory

Partition 0 :

#include <s td i o . h>
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#include <time . h>
#include <pthread . h>
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <xm. h>

#include " shared . h"

#define SHARED_ADDRESS 0x1000000

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

pthread_t t1 ;
memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorA ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;

vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void ∗ f (void ∗ args ) {
xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;

// I n i t i a l i z e shared mem
memset ( sharedMem , 0x00 , s izeof (memShare_t) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorA , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
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// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorA . checksum ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareA ) , &vectorA , s izeof ( vectorA ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareB . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareB ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareB . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareB . checksum )
{

PRINT( "Checksum␣match\n" ) ;
}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
return (void ∗) 32 ;

}

int main ( int argc , char ∗∗ argv ) {
void ∗ex = 0 ;
pthread_create (&t1 , 0 , f , 0) ;
pthread_join ( t1 , &ex ) ;
return 0 ;

}

Partition 1 :

#include <s td i o . h>
#include <time . h>
#include <pthread . h>
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <xm. h>
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#include " shared . h"

#define SHARED_ADDRESS 0x1000000

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

pthread_t t1 ;
memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorB ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;

vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void ∗ f (void ∗ args ) {
xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;

// I n i t i a l i z e shared mem
memset (&vectorB , 0x00 , s izeof ( vectorB ) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorB , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorB . checksum ) ;

// Get s t a r t time
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XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareB ) , &vectorB , s izeof ( vectorB ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareA . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareA ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareA . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareA . checksum )
{

PRINT( "Checksum␣match\n" ) ;
}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
return (void ∗) 32 ;

}

int main ( int argc , char ∗∗ argv ) {
void ∗ex = 0 ;
pthread_create (&t1 , 0 , f , 0) ;
pthread_join ( t1 , &ex ) ;
return 0 ;

}

D.6 2 Partitions - Mixed Bare C and Partikle - Shared Memory

Partition 0 :

#include <s t r i n g . h>
#include <s td i o . h>
#include <s t d l i b . h>
#include <xm. h>
#include <i r q s . h>

#include " shared . h"

#define SHARED_ADDRESS 0x2200000
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#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorA ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;

vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void Part i t ionMain (void )
{

xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;

// I n i t i a l i z e shared mem
memset ( sharedMem , 0x00 , s izeof (memShare_t) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorA , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorA . checksum ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareA ) , &vectorA , s izeof ( vectorA ) ) ;
// Get s top time
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XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareB . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareB ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareB . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareB . checksum )
{

PRINT( "Checksum␣match\n" ) ;
}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
}

Partition 1 :

#include <s td i o . h>
#include <time . h>
#include <pthread . h>
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <xm. h>
#include " shared . h"

#define SHARED_ADDRESS 0x2200000

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

pthread_t t1 ;
memShare_t∗ const sharedMem = (memShare_t∗ const )SHARED_ADDRESS;
vecWChck_t vectorB ;

stat ic void Vec t o rF i l l (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
xmTime_t va l ;
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vec−>checksum = 0 ;
while ( index < len )
{

XM_get_time(XM_HW_CLOCK, &va l ) ;
memcpy (&(vec−>vector [ index ] ) , &val , 1U) ;
vec−>checksum += vec−>vector [ index++];

}
vec−>updated = 1 ;

}

stat ic unsigned char VectorCalcChecksum (vecWChck_t∗ vec , unsigned int l en )
{

unsigned int index = 0 ;
unsigned char checksum = 0 ;

while ( index < len )
{

checksum += vec−>vector [ index++];
}
return ( checksum ) ;

}

void ∗ f (void ∗ args ) {
xmTime_t s ta r t , end , durat ion ;
unsigned char sharedChecksum ;

// I n i t i a l i z e shared mem
memset (&vectorB , 0x00 , s izeof ( vectorB ) ) ;
PRINT( " I n i t i a l i z e d ␣ shared ␣memory\n" ) ;
XM_idle_self ( ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
Vec t o rF i l l (&vectorB , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "Vector ␣ f i l l ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "Vector ␣Checksum : ␣␣%u\n" , vectorB . checksum ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
// Run ta s k
memcpy (&(sharedMem−>shareB ) , &vectorB , s izeof ( vectorB ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "memcpy␣ vec to r ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;

// Wait f o r the o ther p a r t i t i o n to update i t s v e c t o r
while ( ! sharedMem−>shareA . updated )
{

XM_idle_self ( ) ;
}
PRINT( "Checksum␣updated\n" ) ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
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// Run ta s k
sharedChecksum = VectorCalcChecksum (&(sharedMem−>shareA ) , VECTOR_LEN) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &end ) ;
// Ca l cu l a t e dura t ion
durat ion = end − s t a r t ;
PRINT( "checksum␣ c a l c u l a t i o n ␣ durat ion : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( " c a l c u l a t ed ␣checksum : ␣␣%u\n" , sharedChecksum ) ;
PRINT( " shared ␣checksum : ␣␣%u\n" , sharedMem−>shareA . checksum ) ;
i f ( sharedChecksum == sharedMem−>shareA . checksum )
{

PRINT( "Checksum␣match\n" ) ;
}
else
{

PRINT( "Checksum␣mismatch\n" ) ;
}

XM_halt_partition (XM_PARTITION_SELF) ;
return (void ∗) 32 ;

}

int main ( int argc , char ∗∗ argv ) {
void ∗ex = 0 ;
pthread_create (&t1 , 0 , f , 0) ;
pthread_join ( t1 , &ex ) ;
return 0 ;

}

D.7 2 Partitions - Bare C - Sampling and Queuing Messaging

Partition 0 :

#include <s t r i n g . h>
#include <s td i o . h>
#include <xm. h>
#include <i r q s . h>

#define QPORT_NAME "portQ"
#define SPORT_NAME "portS "

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

char qMessage [ 1 2 8 ] ;
char sMessage [ 1 2 8 ] ;

void Part i t ionMain (void )
{

xm_s32_t qDesc , sDesc , e ;
xm_u32_t f l a g s , sSeq , qSeq ;
xmTime_t s ta r t , stop , durat ion ;

PRINT( "Opening␣ por t s . . . \ n" ) ; /∗
Create por t s ∗/

qDesc = XM_create_queuing_port (QPORT_NAME, 16 , 128 , XM_SOURCE_PORT) ; /∗
Parameters o f c r ea t i on ∗/

i f ( qDesc < 0) { /∗
c a l l s must match XML con f i g u r a t i on ∗/
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PRINT( " e r r o r ␣%d\n" , qDesc ) ;
goto end ;

}
sDesc = XM_create_sampling_port (SPORT_NAME, 128 , XM_SOURCE_PORT) ;
i f ( sDesc < 0) {

PRINT( " e r r o r ␣%d\n" , sDesc ) ;
goto end ;

}
PRINT( "done\n" ) ;

PRINT( "Generating ␣messages . . . \ n" ) ;
sSeq = qSeq = 0 ;
for ( e=0; e<1; ++e ) {

s p r i n t f ( sMessage , "<<sampling ␣message␣%d>>" , sSeq++) ;
PRINT( "SEND␣%s\n" , sMessage ) ;
// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
XM_write_sampling_message ( sDesc , sMessage , s izeof ( sMessage ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &stop ) ;
// Ca l cu l a t e dura t ion
durat ion = stop − s t a r t ;
PRINT( "Duration␣ to ␣ send␣ sampling ␣message : ␣␣%l l u u s \n" , durat ion ) ;
XM_idle_self ( ) ;

s p r i n t f ( qMessage , "<<queuing␣message␣%d>>" , qSeq++) ;
PRINT( "SEND␣%s\n" , qMessage ) ;
// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
XM_send_queuing_message ( qDesc , qMessage , s izeof ( qMessage ) ) ;
// Get s top time
XM_get_time(XM_HW_CLOCK, &stop ) ;
// Ca l cu l a t e dura t ion
durat ion = stop − s t a r t ;
PRINT( "Duration␣ to ␣ send␣queuing␣message : ␣␣%l l u u s \n" , durat ion ) ;
XM_idle_self ( ) ;

}
PRINT( "Done\n" ) ;

end :
XM_halt_partition (XM_PARTITION_SELF) ;

}

Partition 1 :

#include <s t r i n g . h>
#include <s td i o . h>
#include <xm. h>
#include <i r q s . h>

#define QPORT_NAME "portQ"
#define SPORT_NAME "portS "

#define PRINT ( . . . ) do { \
p r i n t f ( " [P%d ] ␣" , XM_PARTITION_SELF) ; \
p r i n t f (__VA_ARGS__) ; \

} while (0 )

char sMessage [ 1 2 8 ] ;
char qMessage [ 1 2 8 ] ;
xm_s32_t qDesc , sDesc , seq ;
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void ChannelExtHandler ( trapCtxt_t ∗ c tx t )
{

xm_u32_t f l a g s ;
xmTime_t s ta r t , stop , durat ion ;

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
i f (XM_receive_queuing_message ( qDesc , qMessage , s izeof ( qMessage ) , &f l a g s ) >

0) {
// Get s top time
XM_get_time(XM_HW_CLOCK, &stop ) ;
// Ca l cu l a t e dura t ion
durat ion = stop − s t a r t ;
PRINT( "Duration␣ to ␣ r e c e i v e ␣queuing␣message : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "RECEIVE␣%s\n" , qMessage ) ;

}

// Get s t a r t time
XM_get_time(XM_HW_CLOCK, &s t a r t ) ;
i f (XM_read_sampling_message ( sDesc , sMessage , s izeof ( sMessage ) , &f l a g s ) > 0)

{
// Get s top time
XM_get_time(XM_HW_CLOCK, &stop ) ;
// Ca l cu l a t e dura t ion
durat ion = stop − s t a r t ;
PRINT( "Duration␣ to ␣ r e c e i v e ␣ sampling ␣message : ␣␣%l l u u s \n" , durat ion ) ;
PRINT( "RECEIVE␣%s\n" , sMessage ) ;

}
XM_unmask_irq(XM_VT_EXT_OBJDESC) ;

}

void Part i t ionMain (void )
{

PRINT( "Opening␣ por t s . . . \ n" ) ;
qDesc = XM_create_queuing_port (QPORT_NAME, 16 , 128 , XM_DESTINATION_PORT) ;
i f ( qDesc < 0) {

PRINT( " e r r o r ␣%d\n" , qDesc ) ;
goto end ;

}
sDesc = XM_create_sampling_port (SPORT_NAME, 128 , XM_DESTINATION_PORT) ;
i f ( sDesc < 0) {

PRINT( " e r r o r ␣%d\n" , sDesc ) ;
goto end ;

}
PRINT( "done\n" ) ;

Ins ta l lTrapHand le r (XAL_XMEXT_TRAP(XM_VT_EXT_OBJDESC) , ChannelExtHandler ) ;
HwSti ( ) ;
XM_unmask_irq(XM_VT_EXT_OBJDESC) ;

PRINT( "Waiting␣ f o r ␣messages \n" ) ;
while (1 ) ;

end :
XM_halt_partition (XM_PARTITION_SELF) ;

}
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