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Abstract 

 

 

Top-k joins are widely used in the area of data analytics. One of the most popular frameworks for data 

analytics is MapReduce, especially its open source implementation in Apache Hadoop. However, due to 

certain limitations of the model, the processing of top-k joins on Hadoop MapReduce becomes inefficient 

for very large datasets. In particular, MapReduce processes the whole input even if the best k tuples can 

be produced by processing only a part of the input datasets. In addition to this, MapReduce does not 

provide a load balancing technique for the fair load distribution to the reducers. These two weaknesses 

make top-k join processing on MapReduce inefficient. In this thesis, we propose three algorithms to tackle 

the problem of early termination and load balancing. Our techniques are based on algorithms that use 

data synopses such as histograms. Our experimental evaluation proves the efficiency of our proposed 

algorithms in terms of execution time and resources used, for a number of factors such as the k value, the 

dataset size, the join selectivity and the data distribution.  

  



Περίληψη 

 

Οι επερωτήσεις σύζευξης με κατάταξη χρησιμοποιούνται ευρέως στην ανάλυση δεδομένων. Ένα από τα 

πιο γνωστά μοντέλα ανάλυσης δεδομένων είναι το MapReduce και ειδικότερα η ανοιχτού λογισμικού 

υλοποίησή του, το Apache Hadoop. Εντούτοις, εξαιτίας συγκεκριμένων περιορισμών του μοντέλου, η 

επεξεργασία των επερωτήσεων σύζευξης με κατάξη στο Hadoop MapReduce, κρίνεται μη αποδοτική για 

μεγάλους όγκους δεδομένων. Συγκεκριμένα, το μοντέλο MapReduce επεξεργάζεται το σύνολο των 

δεδομένων που λαμβάνει ως είσοδο, ακόμα και αν είναι εφικτό να γίνει ο υπολογισμός των k καλύτερων 

αποτελεσμάτων με μέρος μόνο των δεδομένων εισόδου. Επιπροσθέτως, το μοντέλο MapReduce δεν 

παρέχει τεχνική κατανομής φόρτου για τη δίκαιη κατανομή του φόρτου στους reducers. Αυτές οι δύο 

αδυναμίες καθιστούν την επεξεργασία των επερωτημάτων σύξευξης με κατάταξη στο MapReduce 

προβληματική. Στην παρούσα εργασία, προτείνονται τρεις αλγόριθμοι για την αντιμετώπιση των 

προβλημάτων του έγκαιρου τερματισμού και της κατανομής φόρτου. Οι τεχνικές που προτείνονται, 

βασίζονται σε αλγόριθμους που χρησιμοποιούν συνόψεις δεδομένων όπως τα ιστογράμματα. Η 

πειραματική αποτίμηση αποδεικνύει την αποδοτικότητα των προτεινόμενων αλγορίθμων από άποψη 

χρόνου και εκμεταλλευόμενων πόρων, για ένα πλήθος παραγόντων όπως η τιμή του k, το μέγεθος των 

αρχείων δεδομένων, την επιλεξιμότητα των δεδομένων και το είδος κατανομής των δεδομένων.  
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1 Introduction 
 

1.1 Motivation 
 

Efficient processing of rank aware queries has attracted the interest of the scientific community over the 

last few years. In particular, top-k join, which is a category of rank aware queries, is an essential tool for 

data analysis. Top-k joins enable selective retrieval of the k best combined results that come from multiple 

different input datasets. These queries return the k most important join tuples from the potentially huge 

results of a join among relations, according to a given ranking function.  

Efficiency in terms of time and resources is a crucial requirement in many large-scale environments that 

handle vast amounts of data in a frequent basis. The most common solutions to address large-scale data 

analytics, evolve architectures of commodity machines to powerful parallel architectures. Some examples 

of such architectures from the industry are Google’s MapReduce 7, Yahoo’s PNUTS 3, Microsoft’s SCOPE28, 

LinkedIn’s Kafka 9 and Apache Hadoop which is an open source implementation of MapReduce 12. Several 

companies, such as Facebook 1 use and contribute to Apache Hadoop implementation. 

Arguably, nowadays, the most popular framework for parallel processing is MapReduce due to its 

significant features that include scalability, fault tolerance, ease of programming and flexibility. The model 

was proposed by Dean et al.7 as a programming model for processing and generating large datasets. Users 

specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs 

and a reduce function that merges all intermediate values associated with the same intermediate key. 

MapReduce automatically parallelizes and executes the program on a large cluster of commodity 

machines. Thus, MapReduce has been proposed as a flexible tool for big data analytics 8. 

However, the model has also been criticized in terms of performance against parallel databases by Pavlo 

et al. 21 and by Stonebraker et al. 25. To improve the performance of the traditional MapReduce model, 

many solutions have been proposed which address different factors that affect the job execution. A 

complete list of the factors affecting MapReduce jobs' performance and the corresponding scientific 

surveys that aim to mitigate these factors are presented by Doulkeridis et al. 5 and by Lee et al. 19.  

In the context of top-k joins, there are two factors recognized as weaknesses of the MapReduce model 

that make the processing of such queries inefficient on a framework which implements the MapReduce 

model such as Hadoop. The first factor is the lack of early termination of map tasks. A MapReduce job is 

detached from the input datasets context, therefore it processes the whole datasets even if the top-k 

results asked by the user can be produced by a small part of the input datasets. This adds delay to the 

completion of the job and thus the user waits for the redundant processing to complete. Another 

weakness of the model is the lack of an efficient load balancing technique in the reduce phase. This 

weakness is stressed out particularly in skewed datasets where some keys aggregate a very large number 

of values, so consequently the reduce tasks responsible for this key take longer time to complete 



processing. The result of this behavior is that the most loaded reduce task delays the completion of the 

job while the other reduce tasks have completed their processing.  

1.2 Scope 
 

The scope of this thesis is to propose, implement and test a set of algorithms that tackle the weaknesses 

of MapReduce model in the context of processing top-k join queries. All proposed techniques are 

implemented on top of Hadoop MapReduce model without requiring any modifications on its internal 

mechanism.  

The algorithms proposed, aim to address the problems of early termination and load balancing in 

MapReduce. The efficiency of these algorithms is proved by a number of experiments performed on a 

Hadoop cluster. Both early termination and load balancing techniques require a preprocessing on the 

input data. More specifically, data synopses like histograms are used to determine a) the number of the 

tuples that need to be processed and b) the load produced by these tuples in the reduce phase.  

 

1.3 Thesis structure 
 

This thesis is divided in 8 chapters. Chapter 1 is the introductory section where the motivations and the 

scope of the thesis are presented. Chapter 2 summarizes the related research and proposals that have 

been made to address the same problem. Chapter 3 analyzes the technical and algorithmic background 

of the proposed solution. Chapter 4 desribes the architectural design of the proposed solution. Chapter 5 

is more technical and describes the algorithms implemented by providing pseudocode and 

documentation for each algorithm. Chapter 6 presents  the experimental evaluation of the algorithms. 

The conclusions of this work and some proposals for further research are presented in Chapter 7.  Chapter 

8 lists references and bibliography. Last but not least, an Appendix is provided with the complete 

experimental results. 

  



2 Related Work 
 

2.1 Early Termination 
 

Many attempts have been made to address the lack of early termination in MapReduce. Some of those 

are presented in this section. 

In Grover’s et al. work 10 , the issue of lack of early termination of map tasks is addressed by using sampling 

based on predicates. The concept of this solution is based on the fact that Hadoop maintains an 

abstraction between itself and the job’s semantics. Therefore, a new type of job called dynamic job is 

presented. It runs as a smaller job with the intention of processing only a small subset of the input 

partitions. Another new concept, called Input Provider, is introduced and its role is to receive periodic 

statistics of the job and decide dynamically whether more input data should be accessed by the job or 

not. The decisions that Input Provider may result to are three: a) “end of input” which indicates that the 

job need not consume additional input partitions, b) “input available” which means that more input is 

needed and thus Input Provider provides to Hadoop the list of additional partitions to be processed next, 

c) “no input available” which means that Input Provider has to wait until its next invocation to reassess 

the job’s progress.  

Another approach to the early termination matter, is EARL 17 which stands for Early Accurate Results 

Library. The concept of this approach is the calculation of k results by producing uniform random samples 

in an iterative way. In each iteration, the accuracy of the result is assessed. The assessment relies on the 

accuracy error which is estimated via the bootstrapping technique. The iteration termination condition is 

the user defined threshold for the error. The implementation of EARL in Hadoop MapReduce framework 

requires the implementation of a pipelining technique so that reduce tasks can process input before the 

completion of processing in the map tasks. Moreover, a communication channel between map tasks and 

reduce tasks is implemented for checking the satisfaction of the termination condition.  

The lack of early termination in the context of rank aware processing has been recognized by Doulkeridis 

et al. 6 as well, were various individual techniques are introduced to address this problem. Some of the 

techniques proposed are the intelligent data placement using advanced partitioning schemes tailored to 

top-k queries and the use of synopses for the data in HDFS that allow efficient identification of blocks 

which most probably contain the top-k results. 

The following approaches, address the problem of early termination specifically, in rank aware query 

processing in cloud environments. RanKloud 2 is a framework which uses a data partitioning strategy called 

uSplit, which partitions data in a utility-sensitive manner. A tuple is considered utility sensitive when it is 

likely to produce a top-k result. RanKloud aims at enhancing rank aware queries processing in non-uniform 

data by estimating a threshold which represents the lowest score of the top-k results so as to prevent 

wasted work. Ntarmos et al. 20, present a set of three algorithms which promise efficient processing of 

rank aware queries. The first algorithm, involves Pig and Hive approaches to calculate top-k joins. The 

second algorithm involves MapReduce jobs which use specialized indices stored in a NoSQL database and 



its goal is to reduce the number of MapReduce jobs needed to estimate the top-k results. The last 

algorithm uses histograms and Bloom filters which are again stored in a NoSQL database and accessed 

from MapReduce jobs. Wang et al. 26  introduce a MapReduce-like framework for online analytics to 

address algorithms such as top-k and k-means. Online analytics refer to the concept that the input is being 

processed progressively and every time a portion of data is analyzed, an estimated result can be returned. 

This implies that some level of accuracy needs to be sacrificed for better performance and responsiveness. 

This solution consists of three key features: 1) an online sampling module to obtain data samples for 

incremental processing 2) an estimation module that can be defined by the user and is responsible for 

computing approximate results based on the running statistics and 3) an early termination module that 

can also be defined by the user and it can enable the execution to be stopped before all data is processed 
26. 

 

2.2 Load Balancing 
 

There exist several approaches that use pre-processing and sampling techniques to address the problem 

of fair work allocation in the MapReduce model.  

Kold et al 14 propose two algorithms. The first one, BlockSplit, considers the block sizes and assigns entire 

blocks to reduce tasks, while respecting load balancing and memory constraints. The larger blocks are 

divided in smaller chunks to enable their parallel processing. The second algorithm is PairRange and it 

distributes the entities in a manner that each reduce task computes the same number of entity 

comparisons. Both algorithms, rely on a preprocessing MapReduce job which produces a matrix 

containing the number of entities per block. 

In Ramakrishnan’s et al. 22 work, the proposed algorithm splits the large load that corresponds to certain 

reduce keys by producing a number of medium load reduce keys with the means of whole tuple hashing 

or with the use of secondary keys (bin-packing algorithm). The identification of large load keys takes place 

before the MapReduce job execution and is performed by sampling. The preprocessing result is stored in 

a file called partition in HDFS. 

Another category of approaches to the problem of handling data skew in MapReduce contains solutions 

that focus on data repartitioning. Guer et al. 11 use a cost estimation method to calculate the load assigned 

to reduce tasks. In each map task, local statistics are maintained and then combined in a global histogram 

by the TopCluster algorithm. The information stored in global histogram is used to achieve a fair load 

distribution in reduce phase. SkewReduce15 consists of an API for spatial feature extraction algorithms and 

a static optimizer. The functions of the API are translated into a dataflow that can run in a MapReduce 

platform. The optimizer uses user defined cost functions that estimate processing time and its role is to 

partition the data so as to ensure skew-resistant processing. However, the fact that the cost functions are 

defined by user can be a disadvantage. This is avoided in SkewTune16.  SkewTune detects straggling tasks 

without using user defined functions and repartitions the unprocessed input of the most loaded task to 

the next available.  



Sailfish23 introduces a solution which batches the disk accesses that each reduce task has to make to fetch 

the data from map tasks. In this solution, the map tasks do not produce intermediate files but instead, 

they shuffle their outputs to the reduce tasks. Each reduce task aggregates the map outputs and writes 

them in a file. So, a file is produced per reduce task and the reduce task has to access only this file. Themis24 

performs batching as well in a similar way that Sailfish does, but it also considers moderate clusters, with 

a number of nodes less than one hundred, where hardware failures are rare to happen. As supported by 

Rasmussen et al. 24 in moderate clusters, fault tolerance techniques can be eliminated and thus enhance 

overall execution time, so, the proposed technique in a hardware failure is the re-execution of the job.  



3 Background 
 

3.1 Technical Background 
 

3.1.1 Hadoop 
 

The Apache Hadoop framework is an open source implementation of the MapReduce algorithm. This  

framework  allows the distributed processing of large data sets across computer clusters. It is designed to 

scale up from single servers to thousands of machines and to take advantage of the each node’s storage 

and local computation. A significant goal that it fulfills is the detection and handling of failures, at the 

application layer, that may have been caused by hardware failures.   

Although the best known components of Hadoop are MapReduce and HDFS (its distributed filesystem), 

the framework also offers a number of other subprojects concerning distributed computing which provide 

supplementary services to the users while adding higher abstraction levels. Some of the subprojects are 

mentioned below and their place in the technology stack is shown in figure 1. 

 Core 

 Avro 

 MapReduce 

 HDFS 

 Pig 

 HBase 

 ZooKeeper 

 Hive 

 Chukwa 

 

Figure 1 : Hadoop subprojects 27 

  



3.1.2 HDFS 
 

HDFS stands for Hadoop Distributed File System and it is designed to provide high throughput access to 

application data. It can store very large files using simple commodity hardware. The idea, upon which, 

HDFS was designed, is a write-once but read-many times pattern. This implies that HDFS is a very good 

choice for the storage and processing of very large dataset (gigabytes, terabytes and even petabytes in 

size) that are not to be altered often.   

The implementation of this distributed file system takes into consideration the hardware node failures 

which are likely to happen when using commonly available hardware. Therefore, it implements certain 

techniques to ensure data integrity such as checksums, each time a file enters the filesystem or is 

transferred through the network, and replicas. HDFS cluster consists of two types of nodes. One node is 

the namenode which maintains and manages the filesystem namespace and there are a number of 

datanodes (workers) which contain the actual data. There is also a replica node of the namenode which 

is called secondary namenode.   

The HDFS architecture is briefly presented in figure 2. Whenever a client uploads or creates a file in HDFS, 

the file is internally split into HDFS blocks. HDFS uses the concept of the block similarly to the hard disk 

drives. The difference is that an HDFS block is a much larger unit than the ones created in a filesystem for 

a single disk. The default block size in HDFS is 64MB. The namenode decides the replication strategy and 

keeps information like which node will store each block or replica. Accordingly, each time a client requests 

to read a file from HDFS, a request is sent to namenode to extract the necessary information for the file 

location on the datanodes. 

 

Figure 2 : HDFS Architecture 12 



3.1.3 MapReduce 
 

MapReduce is a programming model and an associated implementation for processing and generating 

large data sets. Users specify a map function that processes a key/value pair to generate a set of 

intermediate key/value pairs and a reduce function that merges all intermediate values associated with 

the same intermediate key7. 

Hadoop framework implements the MapReduce model, offering users the opportunity to implement and 

run their MapReduce jobs without worrying about issues like the parallelization of the computation, the 

data distribution and the handling of failures. 

When a MapReduce job is submitted for execution, one node, the jobtracker, coordinates and assigns the 

map and reduce tasks to other nodes, the tasktrackers. The job input is divided into logical fixed sized 

units which are called input splits. Each input split is the input of a map task. The code of the map task is 

repeated for every record contained in the input split. The output of each map task is saved locally (not 

on HDFS) on each tasktracker as intermediate result.  The intermediate map results are then sorted and 

partitioned by key on each node. The code that performs the partitioning can be either the default Hadoop 

Partitioner (which buckets keys using a hash function) or a user defined method. There can be many keys 

handled by one reducer but all the records for a specific key must be transferred to a single reducer. This 

is achieved during the shuffle phase. Once the intermediate data, reach the reducer that will process them 

they are merged and the reducer starts its execution. The output of the reducers is stored on the HDFS. 

The MapReduce data flow with multiple reduce tasks, is presented in figure 3. 

 

Figure 3 : MapReduce data flow with multiple reduce tasks 27 



The most interesting part of the MapReduce data flow is the one where shuffle and sort take place. Proper 

handling of these phases can enable the implementation of complex queries like Top-K joins result on 

significant differences in job’s total execution time. The shuffle and sort phase is partly implemented on 

the Map side and partly on the Reduce side. From the Map side, when the intermediate results are 

produced they are stored in the memory buffer of the map task. Once the contents of the memory buffer 

reach a threshold size the contents are spilled to the disk. Before the intermediate data are actually 

written on the disk, they are divided into partitions corresponding to the reducers that they will ultimately 

be sent to. Within each local partition an in-memory sort by key is performed.  

From the Reduce side, the reduce tasks fetch the map outputs that correspond to their partition and store 

them initially in the memory buffer, this is also known as the copy phase of the reduce task. As soon as 

the memory buffer reaches a certain threshold, the fetched map outputs are merged and spilled to the 

disk. Once spilled on the disk, they are merged again on larger files. As soon as all the map outputs have 

been copied the reduce task performs the sort phase which merges the map outputs while maintaining 

their sort ordering. The whole Shuffle and Sort phase is summarized in figure 4. 

 

 

Figure 4 : Shuffle and Sort 27 

 

It is worth mentioning that values such as the map memory buffer threshold or the memory buffer default 

size or reduce memory buffer can also be configured by the user. Some indicative properties are 

mentioned below: 

 io.sort.mb  map task default memory buffer 

 io.sort.spill.percent  threshold that indicates when map memory buffer contents should be 

spilled on the disk 

 mapred.local.dir  the local directories that contain the map spilled records 



 mapred.reduce.parallel.copies  the number of threads that a reduce task uses to copy map 

output results locally 

 mapred.job.shuffle.merge.percent  threshold that indicates when reduce memory buffer 

contents should be spilled on the disk 

 

3.1.4 Secondary Sort in MapReduce 
 

Another way with which the user can intervene in the shuffle – sort phase is the use of secondary sort 

technique in the implementation of the MapReduce jobs. Even though Hadoop makes sure that all records 

are sorted by key when they reach the reducers, it makes no sorting on the values of a particular key. In 

certain cases there is the need for a sorting amongst values as well.  

A very simple example mentioned in Tom White’s book: Hadoop : The Definitive Guide is the weather 

dataset and the need is to sort the year and the temperatures taken for each year in an ascending order. 

Each record of the input weather dataset has two fields, the first is the year and the second is a 

temperature.  

So, the output would look like figure 5.  

 

Figure 5: Weather MapReduce Job Output 27 

 

To achieve that, the user has to define a composite key. A composite key would be the combination of 

the two fields: year-temperature. Once the composite key is defined, the following classes have to be 

implemented by the user: 

 A Partitioner which partitions the map output records by the first part of the key, which is the 

natural key. In that way we make sure that all records for the same year reach the same reducer. 

 A KeyComparator which sorts the composite key (by year and by temperature). 

 A GroupingComparator which sorts only by the natural key (the year). 

So, the secondary sort technique assures that with the use of the custom Partitioner all records for one 

year, from all map tasks will be delivered to the same reducer. The KeyComparator makes sure that the 

map output records are sorted by year and temperature and finally the GroupingComparator makes sure 

that all groups of key-value pairs that reached the reducer are sorted by year. In this final step, each group 

will be already sorted by value from the KeyComparator.  



3.1.5 Input Split, InputFormat and RecordReader  
 

As mentioned earlier, an input split is the result of a logical split of a file in HDFS. An input split is also the 

input of a map task. Hadoop creates input splits with the Java Interface 

org.apache.hadoop.mapred.InputSplit. Input Splits are created by an instance of Interface 

org.apache.hadoop.mapred.InputFormat. InputFormat describes the input-specification for a 

MapReduce job. 

One of the commonly used implementing classes of InputFormat interface is 

org.apache.hadoop.mapred.FileInputFormat. FileInputFormat is the base class for all file-

based InputFormats. This provides a generic implementation of getSplits(JobConf, int) 12. 

The method getSplits calculates the number of splits and sends their storage locations to the jobtracker. 

Once a map tasks start its execution it passes the split to method getRecordReader() of InputFormat. A 

RecordReader is an iterator over the records of the map input split and is used to generate key-values 

which will be passed to the map function.  

A user can create custom InputFormat classes that extend one of the implementing classes of the Interface 

InputFormat in order to extend the capabilities of a MapReduce program. 

To adjust the number of input splits returned by the method getSplits(JobConf,int) the following steps 

could be performed: 

1. Create a custom InputFormat class which extends FileInputFormat 

2. Override the method getSplits() 

3. Implement getSplits() method so as to return the desired number of input splits 

The user can also intervene in the implementation of RecordReader and define the type and content of 

the key-value pairs that will be passed to the map function. The steps to do that are the following: 

1. Create a custom RecordReader class which implements the Interface  

org.apache.hadoop.mapred.RecordReader 

2. Implement the method next() according to the program’s specifications. This method is 

invoked each time a record is fetched from the InputSplit. 

3. Create a custom InputFormat class which extends the FileInputFormat and override the 

method getRecordReader() so as to invoke the new custom RecordReader 

 

3.1.6 Side Data Distribution 
 

There are some cases where a MapReduce job may need access to certain read only data in order to 

process a large input dataset. This extra piece of data should be available to all map tasks or to all reduce 

tasks depending on the implementation and is commonly referred to as side data. There are two basic 

distribution mechanisms offered by Hadoop which can be used by the user to handle side data, the Job 

Configuration and the Distribute Cache. 



3.1.6.1 Job Configuration 
 

Each MapReduce job has a specific configuration defined by the Java class: 

org.apache.hadoop.mapred.JobConf which extends the class org.apache.hadoop.conf.Configuration.  All 

the built-in MapReduce job properties can be read or altered with methods offered by the class JobConf. 

For example, the property that defines the number of reduce tasks can be read by the method: 

getNumReduceTasks() and can be set by the method setNumReduceTasks(int n). 

Apart from the default MapReduce properties, there are the user defined properties. A user can add 

his/her own property and pass a primitive type as its value, via JobConf class by using the methods 

setInt(String propertyName, int value), setString(String propertyName, String value) etc. inherited by the 

class Configuration.   The JobConf instance, with all its properties, is visible from all Map and Reduce tasks.  

So, the user can override the method configure(JobConf job)  of  the class 

org.apache.hadoop.mapred.MapReduceBase, within the implementation of the Map and Reduce classes, 

in order to access the properties that he/she defined on the JobConf instance. For this purpose, JobConf 

offers getter methods inherited from Configuration such as getInt(String propertyName), getString(String 

propertyName) etc. 

 

3.1.6.2 Distributed Cache 

 

JobConfiguration is a good choice when the side data size is a few kilobytes maximum because it can put 

pressure on the memory usage in the Hadoop daemons. Instead, Hadoop exposes distributed cache 

mechanism as a service that copies and archives files to the tasks nodes. The files are copied once per job 

and the user can specify which files need to be handled in the distributed cache with the class 

org.apache.hadoop.filecache.DistributedCache and the method addCacheFile(URI uri, Configuration 

conf).  

Once the side data is added in DistributedCache, it is visible from all Map and Reduce tasks. So, the user 

can get the paths of the localized cached files, within the Map or Reduce class implementation, by invoking 

the method getLocalCacheFiles(Configuration conf) from class DistributedCache.   

 

3.1.7 Joins In MapReduce 

 

Joins in MapReduce can be performed programmatically. This means that the user has to implement a 

MapReduce job that will perform the join between two datasets. There are three options for the 

implementation approach and the proper choice depends on the size and structure of the datasets to be 

joined. 

If the one dataset is very large while the other is very small, then the simplest way to perform a join using 

MapReduce, is to use the distributed cache machine. Therefore, the MapReduce job will have as input 



only the large dataset. For each record fetched from the dataset, the join value will be looked up in the 

cached file and the corresponding records of the second dataset will be fetched and joined with the 

current record of the first (the input dataset). 

However, if both datasets are very large then the distribute cache mechanism is not an efficient solution. 

In this case, the join can be performed either on the map side or the reduce side.  

Map side joins are an appropriate solution when the input datasets have the structure of the output of a 

MapReduce job. This means that both datasets should be divided on the same number of partitions and 

each should be sorted by the same key. Also, all records for a certain key should reside on the same 

partition. These restrictions are necessary because on a map side join, the join is performed before the 

data reaches a map function and this is achieved with the use of the class: 

org.apache.hadoop.mapred.join.CompositeInputFormat<K> that represents an InputFormat capable of 

performing joins over a set of data sources sorted and partitioned the same way. Due to the above 

mentioned restrictions, Map side joins can only be used for the join of several outputs of map reduce jobs. 

A more general category of MapReduce joins are the Reduce side joins. They are not constrained by the 

size, partitioning and sorting of the input datasets. A commonly used technique used for the 

implementation of Reduce side joins is the secondary sort technique described earlier in 3.1.4 in 

combination with the tagging technique. Tags are used to mark the source dataset from which each record 

derives. So, the composite key is consisted by a tag, which is usually a number indicating the first or second 

dataset, and the actual join value.  

With the use of the secondary sort and tagging techniques, it is certain that each reducer will receive first 

all the records for a specific join value from the first dataset and then from the second. Afterwards, the 

reducer can perform the join.  

 

3.1.8 Job Counters 

 

When a MapReduce job in Hadoop completes its execution, there are five basic metrics provided by the 

framework: Total Duration, Average Map Time, Average Reduce Time, Average Shuffle Time and Average 

Merge Time. Here is the definition for each of them: 

Total Duration = Time elapsed from the beginning of job execution until the last reduce task completes. 

Average Map Time = Total time taken by all Map tasks/ Count of Map Tasks 

Average Reduce Time = Total time taken by all Reduce tasks/Count of Reduce tasks 

Average Shuffle Time = Total time taken by all Map outputs to be copied / Count of Map outputs 

Average Merge time = Average of (sort_FinishTime – shuffle_FinishTime) 

The above metrics break down the execution of a MapReduce job in its phases and provide a first image 

of the job’s efficiency. 



Moreover, the framework provides details concerning the job execution through the counters. Counters 

are metrics of the MapReduce jobs and provide helpful information for the detection of possible bugs in 

the MapReduce program, for the validity of the input data, for the efficiency of the MapReduce program 

etc. It is a very helpful tool to evaluate the performance and efficiency of the MapReduce job. Hadoop 

contains some built in counters but a user can define his/her own user defined counters. Some of the 

most commonly used built in counters and their purposes are described in Figure 6 : MapReduce 

Framework built-in counters .  

In addition to the counters presented in figure 6, there are two more significant counters: CPU time spent 

(ms) on Map and CPU time spent (ms) on Reduce.  CPU time spent on Map counter represents the total 

CPU time across all of the nodes in the cluster during map phase. More map tasks result to more cpu time 

spent. Accordingly, CPU time spent on Reduce counter represents the total CPU time across all of the 

nodes in the cluster during reduce phase. Two more interesting counters of the MapReduce Framework 

are Map Spilled Records and Reduce Spilled Records. Map Spilled records counter represents the number 

of records spilled to disk in all map tasks in the job.  Respectively, Reduce Spilled records counter 

represents the number of records spilled to disk by all reduce tasks in the job. The Shuffled Maps counter 

represents the number of map output files transferred to reducers by the shuffle phase.  

 

 

Figure 6 : MapReduce Framework built-in counters 27 



3.1.9 Job History 
 

Hadoop provides its users with a web UI for viewing job related information in a graphic environment. 

The jobtracker page contains information about the currently running jobs on the cluster. 

 

Figure 7 : Screenshot of the jobtracker page 27 

An instance of the jobtracker page is captured in figure 7. Information about the completed jobs is 

provided through the Job History page. The link to the Job History page is available on the bottom of the 

jobtracker page. 

Job history contains detailed information and links to logs either for successful or failed jobs. An instance 

of Job History page is captured in figure 8. By clicking on one Job Id, the user is directed to a page where 

an overview of the job is available as well as links to the counters and logs pages (figure 9). By clicking on 

the Counters link on the Job overview page, the user is directed to a page where all values for all counters 

are available, categorized by purpose (figure 10).  



 

Figure 8 : JobHistory screenshot 

 

 

Figure 9 : JobHistory - Overview of specific job 



 

Figure 10 : Counters for specific job 

 

3.2 Algorithmic Background 
 

3.2.1 Top-k Joins 
 

Rank aware queries help users to identify a limited set of the most interesting results of a query answer. 

Top-k queries belong in the category of rank aware queries and they return the k answers matching better 

to the user's preferences. An example of a top-k query is the one presented in figure 11. With this query 

the user wishes to select the two cheapest laptops from a list that contains many products with their 

respective price. In a Top-k query the classification (ranking) of tuples is based on an aggregated score 

that occurs when a function f (scoring function) is applied to certain attributes of the table (scoring 

attributes) 

 

Figure 11 : Example of Top-k query 

  



Another category of rank aware queries are Top-k joins. A very good example of a Top-k join is described 

by Ilyas et al. 13. Consider a user interested in finding a location (e.g., city) where the combined cost of 

buying a house and paying school tuition for 10 years at that location is minimum. The user is interested 

in the five least expensive places. Assume that there are two external sources (databases), Houses and 

Schools, that can provide information on houses and schools, respectively. The Houses database provides 

a ranked list of the cheapest houses and their locations. Similarly, the Schools database provides a ranked 

list of the least expensive schools and their locations. Figure 12 gives an example of the Houses and 

Schools databases 13. 

 

Figure 12 : A Top-k Join example 13 

A simple way to calculate the above mentioned Top-k join would be summarized in the following steps: 

 Retrieve the list of the cheapest houses and the list of cheapest schools 

 Perform a join on location for all schools and houses 

 Calculate the cost of house and tuitions for each joined tuple 

 Sort in ascending order by the cost 

Such queries when performed on a traditional relational database, have two main disadvantages. First of 

all, the Top-k results will be returned to the user only after the join of all tuples is complete, so the larger 

the tables the longer the processing time. The second disadvantage is that this algorithm does not take 

into consideration the processing load that corresponds to each join value. For example, if one location 

has many more schools and houses than other locations, then the processing time for this specific location 

will be greater than the processing time needed to perform joins for other locations. 

On the other hand, when referring to distributed databases, a Top-k join query, joins m relations Ri that 

may be fragmented into several parts stored at different servers. The resulting tuples are ordered using a 

scoring function f (order by clause) and the top-k answers based on their scores are returned to the user 

(limit clause). Rank join queries adhere to the following template, where relations Ri are widely distributed 

to different servers 4: 

  



SELECT some attributes 

FROM R1, R2,. . . ,Rm 

WHERE join condition AND selection predicates 

ORDER BY f(R1.s1,R2.s2, ...,Rm.sm) 

LIMIT k 

Two examples of Top-k join queries in distributed databases are presented by Doulkeridis et al. 4 and 

depicted in figure 13. In the example, two relations are used. A Suppliers relation (from inventory 

department) and a Customers relation (from sales department) which are both fragmented in a horizontal 

manner over the servers which are located in different geographic places. A product is sold to a customer 

at a certain price, as shown at the Customers table. The company buys these products from suppliers, as 

depicted in the Suppliers table. A sale maximizes the associated profit, if the amount paid by a customer 

plus the discount offered by a supplier is maximized .In this scenario, the sales manager is interested in 

finding the 2 least profitable sales for any product (Query Q1). Similarly, in Query Q2 the manager is only 

interested in sales of a specific product (CPU in this example) 4.  

 

 
Figure 13 : Example of distributed Top-k join queries 4 

 

This distributed rank join processing, results in many round trips over the network since the tuples cannot 

be read iteratively from the table. Another disadvantage is that the tuples that we will be fetched and 

eventually joined might be significantly more that the k requested by the user. 

As mentioned earlier, the scope of this thesis is to improve the phases of MapReduce computational 

model to increase the efficiency of the model for Top-k join queries on large and distributed data sets, 

while maintaining scalability.  This is achieved with the use of certain techniques discussed in detail in 

chapter 4. 

  



4 Design Approach 
 

4.1 Architectural Overview 
 

The proposed solution to the problem of efficient processing of Top-k join queries that apply to the 

following template: 

Select R0.id, R1.id, (R0.score+R1.score) as score from R0, R1 

Where R0.joining_attribute = R1.joining_attribute 

Order by (R0.score+R1.score) asc 

Limit k 

involves a number of techniques and is based on the DRJN algorithm  proposed by Doulkeridis et al 4.  

The DRJN algorithm calculates queries similar to the above in distributed databases. Figure 14 presents 

the DRJN algorithm in pseudocode for distributed rank join query processing on one server SQ . SQ invokes 

the BoundEstimation function which returns a bound ei for each relation Ri and a list of servers Li that 

store the tuples specified by the bound and the estimated score γk  of the k-th join result. Then for all 

servers in Li, the method getTuples(ei) is invoked which fetches the records from the other servers with 

the restriction set from ei. When all necessary tuples are fetched, SQ performs a local centralized rank join 

algorithm and calculates the Top-k join result. The critical part of the DRJN algorithm is the procedure 

used for estimating the appropriate bounds of the scoring values. 

 

Figure 14 : DRJN Algorithm 4 

 

The solution proposed in this thesis is the use of MapReduce jobs for the calculation of Top-k joins such 

as the one presented earlier. The aim is to enhance the MapReduce steps of a simple reduce side join 

algorithm in order to eliminate the useless records which do not produce top k results.  



A simple MapReduce would calculate the above mentioned query in a naïve way. The two relations R0 

and R1 would be stored in HDFS. The simple reduce side join would read all contents from both files and 

perform a sort by joining attribute as the key. Secondary sort technique described earlier in 3.1.4 would 

be used as well. Then the reducers would perform a join for all records of both datasets, they would 

calculate the sum of the scoring attributes and finally perform a sort by this sum in all joined tuples. 

The above described algorithm can be very expensive in terms of memory and processing time. In addition 

to this, most of the processing done by map and reduce tasks is useless since, only k joined tuples will be 

eventually written in the job output. 

The idea proposed is to eliminate as much as possible the input to the reduce tasks so that the joins 

performed are as many needed to produce the Top-k results. This is achieved by estimating a bound for 

each input dataset that defines how many records will be fetched from each relation, thus making use of 

the BoundEstimation function of the DRJN algorithm. The BoundEstimation algorithm is described in detail 

in 4.3. 

Once the bounds are estimated, some extra logic must be added so that the job uses these bounds in 

order to stop reading records from the input relations, when the bounds are reached. This algorithm is 

described in 4.4. 

Both Score Bounds Estimation and Early Termination techniques are injected in the Map phase of the job 

and make sure that less records reach the Reduce phase, so less joins will be performed.  

However, a problem still remains. If one value of the joining attribute appears in a very large number of 

records in both files, then the joins that correspond to this value will be many more comparing to the joins 

that will result from other values. Since, the key of the MapReduce job is the joining attribute value, the 

reducer that will be responsible for that specific key will be unequally overloaded comparing to others. 

So, in this case the whole job might be delayed by a single reducer. In fact, this is situation is common and 

can be observed in many kinds of real datasets. An example would be a dataset which follows a Zipfian 

distribution with high skewness in the joining attribute.  

A solution to the problem described above would be a load balancing algorithm that would predict the 

load of the reduce tasks and make a proper distribution even before the Reduce phase, so as to avoid the 

overloading of a single reduce task. The load balancing algorithm proposed is described in detail in 4.5. In 

contrast to the Early Termination technique, Load Balancing is an enhancement in the Shuffle phase of 

the MapReduce job.  

The combination of Early Termination and Load Balancing techniques should already increase the 

efficiency of the MapReduce job. However, there is a need for one more enhancement. The relations are 

stored in HDFS where they are divided in HDFS blocks. Once the job starts its execution, the Input Splits 

are calculated as mentioned in the earlier section 3.1.5, and passed as inputs to the map tasks. Even 

though the early termination technique sets boundaries to the map tasks, the whole datasets will still be 

fed to the map tasks. The last technique proposes a way to eliminate the input splits to as many needed 

to extract the valuable records that will finally lead to the Top-k joins.  The estimation of the necessary 

input splits is described in further detail in 4.6. 



All techniques proposed require a pre-process of the datasets to be joined. The results of this 

preprocessing are stored in data synopses like histograms and uploaded in HDFS so that they can be 

accessible from the MapReduce job. Further details for the data synopses are provided in 4.3 . 

The overall architecture of the framework proposed is presented in figure 15, where each technique is 

visually associated with the corresponding step of the MapReduce job that it aims to enhance. 

 

Figure 15 : Architecture overview 4 

  



4.2 Data Synopses – Histograms 
 

The estimation of the bounds which restrict the number of records fetched from each relation, is based 

on data synopses and more accurately on histograms. For each relation Ri, a histogram is maintained. This 

is a two dimensional histogram that records the number of tuples in Ri that correspond to each distinct 

value of an attribute, that fall in a range of values (defined by the bin’s low and high value). As far as the 

join attributes are concerned, each histogram bin represents only one join value. For each distinct value 

of the join attribute, the set of bins of the corresponding histogram can be viewed as a one-dimensional 

histogram that approximates the distribution of scoring values for this join value. In the example 

presented earlier in figure 13, a histogram of relation Suppliers and join attribute product equal to ’CPU’ 

captures the number of products of type CPU for different ranges of price (scoring attribute), as depicted 

in figure 16. 

 

Figure 16 : Histogram of relation Suppliers 4 

 

The DRJN algorithm performs a rank-join on histogram bins rather than on the actual tuples. Histogram 

bins are accessed sorted in ascending order of their score range. Moreover, histograms bins of different 

relations (also mentioned as individual bins) are joined and produce join combinations of bins. A valid join 

combination of bins is produced by a set of bins with the same value of the join attribute. This new bin is 

referred to as joined bin. For each joined bin, the number of tuples is computed by multiplying the number 

of tuples in the individual bins. Furthermore, the score of a joined bin is estimated by applying the scoring 

function f on the higher value of score range of each individual bin. Thus, the score of the joined bin is an 

upper bound of the score of any join tuple produced by the individual bins 4. 

An example of joining histograms is presented in figure 17. The histograms appearing, depict the data 

distribution of the relations presented in figure 13. Each bin of the histogram for the R0 relation (Suppliers) 

represents the number of suppliers that handle a particular product for the range of prices specified by 

the boundaries of the bin. Accordingly, each bin of the histogram of the relation R1 (Customers) 

represents the number of customers that request for a particular product, e.g. CPU. On the right, some 

joined bins are depicted for product ’CPU’ when the scoring function f is the sum of discount and price. 



For instance, the combination of the first two bins of each histogram for ’CPU’, which contain 6 and 10 

tuples respectively, produce a joined bin of 60 (=6 × 10) tuples with score in the range 0-28. The score of 

the tuples in this joined bin is set to 28, i.e., the high value of the range. Recall that the aim is to retrieve 

the top-k results with minimum scores 4. 

 

Figure 17 : Example of joining histograms 4 

  



4.3 Score Bounds Estimation 
 

The objectives of the BoundEstimation algorithm are to identify the histogram bins that produce at least 

k join tuples with the smallest scores and to ensure that no other combination of histogram bins can 

produce join tuples with smaller score values 4. For this purpose, the algorithm joins the histogram bins 

until the joined tuples exceed the k tuple requested and the score of any join tuple produced by any 

unseen histogram bin is not smaller than the score (γk) of the current k-th join tuple. The above described 

logic is depicted in pseudocode as presented by Doulkeridis et al. 4 in figure 18. 

 

Figure 18 : Bound Estimation algorithm 4 

 

4.4 Early Termination 
 

The term early termination in the context of this thesis refers to a map reduce job that performs a rank 

aware query, e.g. a top-k join, without accessing the whole dataset but only parts of the input datasets 

which contain the tuples that will certainly produce the top-k joined tuples.  The bound estimation 

algorithm presented earlier in 4.3 provides a way to restrict the accessed tuples of each relation by 

calculating the bounds of the scoring attributes. This means that if each relation R0, R1 was sorted by the 

scoring attribute, then in order to perform the join, the MapReduce job would fetch all records with a 

scoring attribute lower or equal to the bound estimated for each relation. An example of the use of bounds 

to achieve early termination is presented in figure 19. The score bound for relation Suppliers (R0) is 

estimated via the BoundEstimation algorithm to 120 and to 500 for the relation Customers (R1). 



Therefore, in a MapReduce job that uses early termination, the input datasets must be sorted by the 

scoring attribute in an ascending order so that it can make use of the bounds calculated by the 

BoundEstimation algorithm. 

 

Figure 19 : Example of Score Bounds 4 

  

4.5 Load Balancing 
 

As described earlier in the previous sections, the early termination technique which uses the 

BoundEstimation algorithm, provides a way to eliminate the input of the MapReduce job and therefore 

to speed up the execution time of the top-k join.  

However, the problem of fair distribution to the reducers that will actually perform the joins, still remains. 

A solution to this problem is an algorithm that can estimate the load that corresponds to each reducer 

and thus distribute the keys as fair as possible so that all reducers have approximately the same execution 

time.  

In 4.3, the main component of the BoundEstimation algorithm was the join performed among the 

histogram bins. These joins are performed on the joining attributes while at the same time the scoring 

function is applied. The result of each join between two bins, represents the number of joined tuples that 

can be produced with scoring values of a certain range. Therefore, the information: how many joins 

correspond to each joining attribute value, is given by the BoundEstimation algorithm along with the 

bounds. 

Since, the correspondence joining attribute value  number of joins is known, the only thing missing to 

complete the load balancing solution, is an algorithm that distributes the keys properly to the reducers. 

The algorithm used for the load distribution is an existing heuristic algorithm, the Longest Processing Time 

(LPT) algorithm, which has been widely used in systems that perform parallel processing 18. The input to 

LPT is a number of n jobs with processing time {p1,p2,…,pn} and the output is the assignment of jobs to 

the machines. The assignment is performed as follows: 



1. Order the jobs in descending order according to their processing times 

2. In this order, assign each job to the machine that currently has the least work assigned to it 

In the solution presented, there is a slight variation of LPT, as the inputs to the LPT are not the processing 

times of the reduce tasks but the number of joins that correspond to each joining attribute, thus the load 

that each reduce task is expected to have. Therefore, the output would be the assignment of each key 

(joining attribute value) to a certain reducer. 

 

4.6 Input Splits Estimation 
 

Even if the records processed by the map tasks are eliminated with the use of the early termination 

technique, the number of input splits remain the same. The whole datasets are loaded as inputs to the 

map tasks even if not all of them contain useful records. 

A solution to this problem is an algorithm for the calculation of the number of input splits that need to be 

passed to the map tasks. Input splits are logical divisions of the datasets that exist in the HDFS. However, 

their actual contents derive from the HDFS blocks. So, the idea is to implement an algorithm that fetches 

from the HDFS the number of bytes needed to calculate the top-k joins. To achieve that, we need a 

correlation among score values and byte position. This means that for each relation we have to produce 

a file that contains the information of how many bytes we have to read from a certain relation in order to 

reach a certain score value.  For example let’s consider that the following lines are extracted from the file 

which contains the correlation bytes – score value. The first column represents the number of bytes and 

the second column represents the score value that can be found when the bytes in the first column are 

read. If the estimated bound for relation R0 is 500 then according to the file we have to access 268560884 

bytes from relation R0 to be sure that we will fetch the records that will produce top-k joins. 

134301780 454 

268560884 892 

402724529 1304 

……………………… 

5638355373 9917 

5773621539 9952 

5911655836 9978 

Accordingly, there will be a file for relation R1 as well which will contain similar information. It is important 

to notice that these files are based on the sorted by score value form of R0, R1 relations (referred to as 

R0sorted, R1sorted respectively).  

  



5 Implementation 
 

All four algorithms are implemented in MapReduce jobs (in Java) and perform reduce side Top-k joins 

between two datasets. The joins performed by these algorithms could be described by the following SQL 

query: 

Select R0.id, R1.id, (R0.score+R1.score) as score from R0, R1 

Where R0.joining_attribute = R1.joining_attribute 

Order by (R0.score+R1.score) asc 

Limit k 

As the versions augment from 1 to 4, the techniques used, serve the goal of adding efficiency in terms of 

execution time and resources used. The first algorithm is a simple implementation of reduce side join in 

MapReduce and was implemented only to be used for experimental purposes, so as to measure the 

efficiency of the other three algorithms against the simple algorithm. The other three algorithms involve 

the following techniques: Early Termination, Load Balancing and Custom Input Split creation. Each 

algorithm contains the techniques of the previous one, so the fourth algorithm consists of all three. 

Therefore, the fourth algorithm is expected to be the most efficient.   

The table below is a short presentation of the algorithms and the techniques used in each of them: 

 

Name Name used in code Techniques 

Algorithm 1 RSJSimple - 

Algorithm 2 RSJET Early Termination 

Algorithm 3 RSJETLBDistCache 
Early Termination 

Load Balancing 

Algorithm 4 RSJETLBIndex 
Early Termination 

Load Balancing  
Custom Input Splits 

Table 1: Algorithms and techniques 

  



5.1 Algorithm 1: RSJSimple 

 

The first algorithm or RSJSimple, as referred to in the implementation, is the simple implementation of 

the top-K join described in the introduction section. No special technique is used in this algorithm and the 

purpose of this implementation is only for experimental reasons. 

 

5.1.1 RSJSimple - Pseudocode 
 

In this section the components of RSJSimple algorithm described in 5.1.3, are presented in pseudocode. 

map method (class: Map.java): 

 
Get input file name from current split info 

if input file name starts with R0 

    set variable tag = 0 

else 

    set variable tag = 1 

Split input line to words 

Set variable joining_attribute = first word of line without the first letter 

Set variable scoring_attribute = second word of line 

Set composite_key.joiningAttribute = joining_attribute 

Set composite_key.tag = tag 

Set composite_key.score = scoring_attribute 

Set variable taggedLine = tag+line 

Return composite_key, taggedLine 

 

 

getPartition method (class: RSJPartitioner.java) 

 
Set variable joiningAttribute = composite_key.joiningAttribute 

Calculate partition as (joiningAttribute.hashCode & max integer value) MOD numberOfReduceTasks 

Return partition 

 

 

  



compare method (class:  SortingComparator.java) 

 

Read fields composite_key1.joiningAttribute, composite_key2.joiningAttribute 

[if composite_key1.joiningAttribute > composite_key2.joiningAttribute 

        Return true 

[else  if composite_key1.joiningAttribute = composite_key2.joiningAttribute 

                [if composite_key1.score > composite_key2.score 

                         Return true 

              [else  

                      Return false 

  [else Return false 

 

 

compare method (class:  GroupingComparator.java) 

 
Read fields composite_key1.joiningAttribute, composite_key2.joiningAttribute 

[if composite_key1.joiningAttribute > compositeKey2.joiningAttribute 

        Return true 

[else Return false 

 

 

reduce method (class: RSJReducer.java) 

 

Do until k values have been read from R0 

          Read and store value for joining attribute from R0 

Do until k values have been read from R1 

        Read and store value for joining attribute from R1 

Do until k joined tuples have been produced 

     Join value from first input file with value from second input file 

Return k joined tuples 

 

  



5.1.2 Inputs 

 

The inputs of this map-reduce job are four: 

1. The input folder path: The input folder path should contain two files: R0.txt, R1.txt which 

represent the datasets to be joined. Each dataset contains 3 columns: id, joining attribute, score. 

 

2. The output folder path: This argument indicates to the job the folder in which the join results will 

be produced. 

 

3. The number of k 

 

4. The number of reducers: The number of reducers is passed as an argument so that we can run 

experiments using different number of reducers. 

 

5.1.3 Components 
 

 DriverRSJ.java 

The class which contains the job configuration and starts the Map-Reduce job. 

 

 CompositeKey.java 

This class contains three variables representing: joining attribute, score and tag. In each instance 

of this class, the first two variables, joiningAttribute and score carry the actual values of one 

record of one of the datasets. The field tag indicates the dataset from which the record came from 

e.g. the value 0 represents the dataset R0.txt. 

 

 Map.java 

This class implements the map method. The map inputs are the outcome of the FileInputFormat. 

They are pairs of LongWritable keys and Text values. So, each map task receives a pair which 

consists of a key (a number) and a value which is one record from one of the datasets. The map 

task creates a CompositeKey instance in which it sets the joiningAttribute and score values as 

derived from the record that it received. Afterwards, the code of the map task checks the filename 

from which the record came. This information is carried on the InputSplit that feeds each map 

task with the input pairs. So, if the filename is R0.txt then the map task sets the CompositeKey.tag 

to 0. If the filename is R1.txt then the map task sets the CompositeKey.tag to 1. Finally, the output 

key - value pair of every map task contains: 

o the CompositeKey instance as the key 

o a Text instance which consists of tag+record 

 

 



 SortingComparator.java 

Compares by the CompositeKey instances, which means that it sorts the Map output keys by 

comparing joiningAttribute and score variables. 

 

 GroupingComparator.java 

Compares by the natural key which is the joiningAttribute. 

 

 RSJPartitioner.java 

The role of RSJPartitioner is to make sure that all joiningAttributes with the same value are 

delivered to the same reducer. For this purpose, it uses a hash method based on the joining 

attribute. SortingComparator along with GroupingComparator and RSJPartitioner follow the 

SecondarySort implementation as explained in Hadoop The Definitive Guider by Tom White27 

(chapter 8).  The implementation of these classes makes sure that the following happen: 

o all records for same joining attribute reach the same reducer 

o all score values reach the reducer in sorted ascending order 

 

 ScoredTuple.java 

An instance of ScoredTuple contains a variable named score and a variable named value. The 

method compareTo(ScoredTuple obj) implemented in this class is invoked whenever an instance 

of ScoredTuple is inserted in a PriorityQueue (see RSJReducer.java) to compare the score inserted 

against the first element of the PriorityQueue. 

 

 RSJReducer.java 

This class implements the reduce method and performs the join between the two datasets. The 

input of each reducer is a CompositeKey and a list of tagged records (map's output). It collects the 

k first records of the first dataset and the k first records of the second dataset. Once k records 

have been collected from each relation, it is guaranteed (from the secondary sort step) that the 

reducer has the k smallest scores for each joining attribute from both datasets. Therefore, it 

performs a join among those records while performing the function R0.score+R1.score and the 

outcome of each join is stored in a ScoredTuple. The ScoredTuple is then stored in a 

PriorityQueue. Finally, the k top elements of the PriorityQueue are sent to collector as the output 

of the job. 

 

5.1.4 RSJSimple Dataflow 
 

Figure 20 is a visual representation of the data flow in RSJSimple. In the beginning, the two relations R0, 

R1 are stored in HDFS, divided into HDFS blocks. The default RecordReader processes the input splits and 

produces key-value pairs. Each pair consists of a random number as the key and a whole line from one 

relation tagged with its source, as the value. The map tasks receive these pairs and perform a 

transformation on them. Thus, the outcome of the map tasks is a number of key-value pairs, each in the 

form of a composite key as the key and the whole tagged line as the value. In the shuffle phase, a sorting 



is performed on map nodes and all key-value pairs are sorted by joiningAttribute and score and grouped 

by joining attribute. After sorted and grouped, the key-value pairs are sent to the corresponding reduce 

nodes. All partitions (groups) that come from map nodes are merged on the reduce nodes. Once the 

merge phase finishes, the reduce tasks start their processing. The reduce phase output is a number of 

key-value pairs where a key is a joiningAttribute and the corresponding value is a joined tuple in the form: 

R0.id R1.id R0.score+R1.score. 

 

Figure 20: RSJSimple Dataflow 

 

5.2 Algorithm 2: RSJET 
 

The second algorithm or RSJET, as referred to in the implementation, has the same logic with Algorithm 1 

concerning the reduce side join implementation. However, the technique of Early Termination is applied 

so as to achieve faster execution time. Therefore, many components are exactly the same with the ones 

of Algorithm 1 in terms of implementation but some new are also added.  

So the following components remain the same: 

 CompositeKey.java 

 SortingComparator.java 

 GroupingComparator.java 

 RSJPartitioner.java 

 ScoredTuple.java 



 RSJReducer.java 

Whereas the following are added/altered: 

 DriverRSJ.java 

 SelectiveInputFormat.java 

 SelectiveRecordReader.java 

 Map.java 

 

5.2.1 RSJET – Pseudocode 
 

In this section, the new and the altered components introduced in 5.2.3 are presented in pseudocode. 

The parts of the algorithm that have been changed or added (comparing to RSJSimple) are highlighted. 

 

computeBounds method (class: DriverRSJ.java) 

 

Call BoundEstimation algorithm  

Return bounds for R0sorted and R1sorted 

 

 

 

next method (class: SelectiveRecordReader) 

 
Read input file split path name 

[if input file split path name contains R0 

      Set variable tag=0 

[Else  

      Set variable tag = 1 

Read bounds for R0sorted, R1sorted from job Configuration 

Read the next line from input split 

Split the line in words 

Set variable score = the second word 

[if tag=0 

        [if score>bound for R0sorted 

             //Do not create key 

             Return 

      [else  create key for Map  



[else 

                 [if score> bound for R1sorted 

                     //Do not create key-value pair 

                     Return 

              [else create key-value pair for Map  

 

 

 

map method (class: Map.java): 

 
Get input file name from current split info 

if input file name starts with R0  

       Set variable tag = 0 

else 

      Set variable tag = 1 

Split input line to words 

Set variable joining_attribute = first word of line without the first letter 

Set variable scoring_attribute = second word of line  

Read bounds for R0sorted, R1sorted from Configuration 

if (tag=0 and scoring_attribute < bound for R0sorted) or (tag = 1 and scoring_attribute< R1sorted)  

            Set composite_key.joiningAttribute = joining_attribute 

            Set composite_key.tag = tag 

            Set composite_key.score = scoring_attribute 

            Set variable taggedLine = tag+line 

            Return composite_key, taggedLine 

else 

         Do not create key-value pair 

 

 

  



5.2.2 Inputs 
 

The inputs of this map-reduce job are seven: 

1. The input path for R0sorted.txt 

2. The input path for R1sorted.txt 

3. The output folder path 

4. The input path to the folder that contains hist0.txt and hist1.txt 

5. The number of k. 

6. The number of reduce tasks 

7. The number of different values that a joining attribute can have (number of histogram bins)  

 

5.2.3 Components 
 

 DriverRSJ.java 

The class contains the job configuration and starts the Map-Reduce job. Before the Map-Reduce 

job starts, the method computeBounds is invoked. This method returns the bounds for both 

datasets respectively which are then stored as properties on the job configuration so that they 

can be visible from the rest of the components. 

 

Method computeBounds: 

This method is implemented in the DriverRSJ class and it creates an instance of 

BoundEstimatorHist (package: boundEstimation) so as to invoke the method 

BoundEstimatorHist.estimate, which calculates the bounds of each dataset for the given k, based 

on the histograms. The package boundEstimation contains the full implementation of the 

BoundEstimation algorithm described in 4.3. One of the steps of this algorithm is the join 

between the two histograms to estimate the join results that correspond to each joining 

attribute value. 

 

 SelectiveInputFormat.java 

This class represents a custom InputFormat and extends FileInputFormat. Its role is to invoke the 

custom record reader: SelectiveRecordReader.java. 

 

 SelectiveRecordReader.java 

This class implements RecordReader<LongWritable, Text> and is the class that feeds the map 

tasks with the key-value pairs it expects. The purpose of this custom RecordReader is to read 

records from each sorted by score dataset until it reaches a record which contains score values 

smaller or equal to the dataset bound. This technique eliminates the execution time of the 

RecordReader (because it does not have to process the whole dataset), however it does not have 



any effect on the size of input split that is finally loaded as the input of a map task (which means 

that map tasks will finally receive all the records from both datasets). 

 

 Map.java 

This class implements the map method. The map input key-value pairs are the outcome of the 

SelectiveInputFormat which are pairs of LongWritable keys and Text values. So each map task 

receives a pair which consists of a key (a number) and a value which is one record from one of 

the datasets. 

Each map task reads the bounds from the configuration properties and performs a check on the 

score of the map record that it receives. So, the record is sent to the reduce phase only if the 

score contained in the record was smaller or equal than the bound.  

If the above condition is met, then the map task creates an instance of CompositeKey in which it 

sets the joiningAttribute and score values as derived from the record that it received. Afterwards, 

the code of the map task checks the filename from which the record came. This information is 

carried on the InputSplit that feeds each map tak with the input pair. So, if the filename is 

R0sorted.txt the map task sets the CompositeKey.tag to 0. If the filename is R1sorted.txt then 

the map task sets the CompositeKey.tag to 1. 

Finally, the output pair key - value pair of every map task contains: 

o the CompositeKey instance as the key 

o a Text instance which consists of tag+record 

  



5.2.4 RSJET Dataflow 
 

The dataflow in RSJET is very similar to the dataflow of RSJSimple. The most significant difference is that 

only a certain number of map tasks produce output and this is because of the early termination algorithm. 

Therefore, in RSJET, less key-value pairs reach the reduce phase but it is guaranteed that these key-value 

pairs can produce the top-k joins. The dataflow of RSJET is depicted in figure 21 

 

 

Figure 21: RSJET Dataflow 

  



5.3 Algorithm 3: RSETLBDistCache 
 

The third algorithm or RSJETLBDistCache, as referred to in the implementation, has the same logic with 

Algorithm 2 concerning the reduce side join and the Early Termination technique. In this version, the 

technique of Load Balancing is also applied so as to achieve a better distribution of load to the reducers. 

Therefore many components are exactly the same with the ones of Algorithm 2 in terms of 

implementation but some new are also added.  

So the following components remain the same: 

 SelectiveInputFormat.java 

 SelectiveRecordReader.java 

 SortingComparator.java 

 GroupingComparator.java 

 ScoredTuple.java 

 RSJReducer.java 

Whereas the following are altered: 

 DriverRSJ.java 

 Map.java 

 CompositeKey.java 

 RSJPartitioner.java 

 

5.3.1 RSJETLBDistCache – Pseudocode 
 

In this section, the new and the altered components introduced in 5.3.4 are presented in pseudocode. 

The parts of the algorithm that have been changed or added (comparing to RSJET) are highlighted. 

computeBounds method (class: DriverRSJ.java) 

 
Call BoundEstimation algorithm  

if bounds are calculated successfully 

              Call assignDataToReducerHasMap to fill dataToRecucers 

Return bounds for R0sorted and R1sorted 

 

 

 

 

 



assignDataToReducerHasMap method (class: LPT.java) 

 
Sort joinResultsPerJoinValue from most busy to least busy 

Set counter = 0 

Do for all joining attributes  

         [if counter<= number of reducers 

                  assign  current joining attribute values to reducer:  $counter 

                counter = counter+1 

        [else 

               Find reducer with minimum number of joinResults  

              Assign current joining attribute to reducer with minimum number of joinResults  

Return dataToReducersMap 

 

 

map method (class: Map.java): 

 
Get input file name from current split info 

if input file name starts with R0  

       set variable tag = 0 

else 

      set variable tag = 1 

Split input line to words 

Set variable joining_attribute = first word of line without the first letter 

Set variable scoring_attribute = second word of line  

Read bounds for first/second input file from Configuration 

if (tag=0 and scoring_attribute < bound for first input file) or (tag = 1 and scoring_attribute< bound for 

second input file)  

            Set composite_key.joiningAttribute = joining_attribute 

            Set composite_key.tag = tag 

            Set composite_key.score = scoring_attribute 

            Set variable taggedLine = tag+line 

           Read assigned reducer for joining attribute from Distributed Cache 

           Set variable composite_key.partition = assigned reducer 

            Return composite_key, taggedLine 

else 

        // Do not create key-value pair 

 

 

 



getPartition method (class: RSJPartitioner.java) 

 

Set variable partition = composite_key.partition 

Return partition 

 

 

5.3.2 Inputs 
 

The inputs of this map-reduce job are seven: 

1. The input path for R0sorted.txt 

2. The input path for R1sorted.txt 

3. The output folder path 

4. The input path to the folder that contains hist0.txt and hist1.txt 

5. The number of k. 

6. The number of reduce tasks 

7. The number of different values that a joining attribute can have (number of histogram bins)  

 

5.3.3 Preparation for Execution 
 

In this algorithm, an expanded version of the method computeBounds is invoked before the job starts. 

This expanded version, apart from the BoundEstimatorHist.estimate, also invokes the method 

assignDataToReducerHasMap which is implemented in the class LPT (package: lpt). This method returns 

a HashMap which assigns each joining attribute to the appropriate reducer according to the load balancing 

algorithm. The information carried on this HashMap is stored in the dataToReducers.txt file. This file is 

then uploaded to the hdfs folder: hist and then added to the distributed cache so that it can be visible 

from the Map-Reduce job. 

 

5.3.4 Components 
 

 DriverRSJ.java 

The class which contains the job configuration and starts the Map-Reduce job. The Early 

Termination technique is implemented in this class in the same way as it was implemented in 

Algorithm 2. Moreover, the file dataToReducers.txt is placed in the DistributedCache so that it 

can be visible from all map tasks. 

 

 

 



 CompositeKey.java 

A new field: partition is added in this class. So now, the class contains the fields: tag, 

joiningAttribute, score and partition. 

 

 Map.java 

The code of Algorithm 2 is reused for the Map.java with an addition. Apart from the configuration 

properties which contain the bounds, each map task looks up the file: dataToReducers.txt to 

retrieve the corresponding reducer of the current received joining attributed. The reducer 

number is then stored in the variable partition of the CompositeKey instance. 

 

 RSJPartitioner.java 

The code of this class is altered in this version. The method getPartition does not use a hash 

method anymore, but instead it returns the CompositeKey.partition value. 

 

5.3.5 RSJETLBDistCache Dataflow 
 

The main difference of the RSJETLBDistCache dataflow from the RSJET dataflow, is that all key-value pairs 

that derive from the map phase, carry with them the information of the responsible reducer. In this way, 

a load balancing is achieved, since the joining attribute with the greater number of joins will be assigned 

to the first reducer and this reducer will receive no more load. For example, in figure 22, joining attribute 

J3 produces a greater number of joins comparing to J1 and J2. Therefore, it will be sent to Reducer 1 and 

Reducer 1 will handle only this joining attribute. 



 

Figure 22: RSJETLBDistCache Dataflow 

 

5.4 Algorithm 4: RSJETLBIndex 
 

The fourth algorithm or RSJETIndex, as referred to in the implementation, embodies both Early 

Termination and Load Balancing techniques. In this version, the goal is to load on the map tasks only the 

necessary number of input splits for the production of the k joined records from each dataset and not the 

whole dataset.   

So the following components remain the same: 

 SelectiveRecordReader.java 

 SortingComparator.java 

 GroupingComparator.java 

 ScoredTuple.java 

 RSJReducer.java 

 CompositeKey.java 

 RSJPartitioner.java 

 Map.java 

 

 



Whereas the following are altered: 

 DriverRSJ.java 

 SelectiveInputFormat.java 

 

5.4.1 RSJETIndex - Pseudocode 
 

In this section, the new components introduced in 5.4.4 are presented in pseudocode.  

RIndex algorithm 

 

Read HDFS default block size from Configuration 

Read file length from HDFS 

Calculate number of output records = input file length/block size 

Set variable number of lines already read = 1 

[Do until number of lines already read = number of output records  

                       Calculate current position in input file = blockSize * number of lines already read 

                       Read file from current position 

                     [Do while lines exist in block 

                                  Read line 

                                  Set current position = current position + line length 

                                  Split line in words 

                                 Set record = current position, second word (score) 

                       Add record to output file 

                       number of lines read = number of lines read + 1 

Return output file 

 

 

 

findBytesToRead method (class: DriverRSJ.java) 

 

Read Index file for input file 

Do while Index files has lines 

          Read line 

         Split line in words 

         If second word (score) > bound for input file  

                   Set variable bytesToRead = first word (bytes) 



                   Break loop 

Store bytesToRead in Configuration 

Return bytesToRead 

 

 

getSplits method (class: SelectiveInputFormatV2.java)  override 

 

Read bytesToRead for input file from Configuration 

Set file length = bytesToRead 

Call FileInputFormat.getSplits with new file length 

 

 

5.4.2 Inputs 
 

The inputs of this map-reduce job are seven: 

1. The input path for R0sorted.txt 

2. The input path for R1sorted.txt 

3. The output folder path 

4. The input path to the folder that contains hist0.txt and hist1.txt 

5. The number of k. 

6. The number of reduce tasks 

7. The number of different values that a joining attribute can have (number of histogram bins)  

 

5.4.3 Preparation for Execution 
 

There is a need for a correlation among the actual score values and the number of bytes that need to be 

processed by the map reduce job so as to reach a certain score value. This information is necessary for 

the creation of the custom input splits. 

So, as a pre-execution step, the algorithm implemented in RIndex.java needs to be executed for each 

dataset.  

The goal of the RIndex algorithm is to produce a file with the name e.g. R0Index.txt that will contain a 

number of records that results from the following function: number of records = (file length (bytes) / 

block size (bytes)) - 1 

The function presented above calculates the number of HDFS blocks in which the file is divided on the 

HDFS minus 1 (that is because there is no need to store any information about the last HDFS block). 



For each HDFS block, the algorithm calculates the last score value that appears in the block and the 

number of bytes that a job must read to reach this value. So, for each block it creates a record in the 

output file containing the last score value of the HDFS block and the number of bytes accessed. This loop 

terminates when the number of records printed in the output file reaches the number calculated by the 

above mentioned function. 

The two index files are then uploaded in the HDFS folder hist, so that they can be visible from the Map-

Reduce job. 

 

5.4.4 Components 
 

 DriverRSJ.java 

After the calculation of bounds, from the method computeBounds, method findBytesToRead is 

invoked for each dataset. This new method looks up the appropriate index file with the bound 

value and retrieves the number of bytes that need to be accessed from the sorted input dataset 

so that this score bound is reached. This information is then stored in a configuration property 

for each dataset. 

 

 SelectiveInputFormat.java 

This class is altered so that it overrides the method getSplits. This method looks up the 

configuration property for each dataset and sets the fileLength variable to be equal to the 

number of bytes that need to be accessed and the actual length of the file. There is no difference 

between the rest of the method's implementation concerning the creation of input splits and the 

default implementation of FileInputFormat. So, since the file length is considered to be smaller 

the number of the input splits loaded on map tasks will also be smaller. 

 

5.4.5 RSJETLBIndex Dataflow 
 

As shown in figure 23, the map tasks launched are less that the ones launched in previous algorithms. This 

is because the input splits calculated derive only from the useful HDFS blocks (highlighted in yellow). 



 

Figure 23: RSJETLIndex Dataflow 

 

5.5 Top-k algorithm 
 

All four algorithms presented earlier produce an output which contains the k top joins per joining 

attribute. This result could be the output of the following query:  

Select R0.id, R1.id, (R0.score+R1.score) as score from R0, R1 

Where R0.joining_attribute = R1.joining_attribute 

Group by joining_attribute 

Order by (R0.score+R1.score) asc 

Limit k 

This is because each reducer processes records from both files for a specific joining attribute. So, the 

reducer performs the join for one specific value of the joining attribute and then returns the top k joined 

records for this joining attribute based on the scoring sum of the joined records. Consequently, the 

combination of outputs of all reducers give us the top k joined tuples for each joining attribute value. 

However, this means that the user will receive number of reducers * k joined tuples as a result instead of 

k that he/she asked. 



To perform the last step of the query, which is about the filtering and sorting of all the reducers output to 

select only the top k joined tuples independently of their joining attribute value (without the group by 

statement), an extra method must be implemented. This method is called topKCalculator and is placed in 

the DriverRSJ.java and is invoked right after the completion of the MapReduce job. Its role is to fetch the 

output of each reducer and perform a loop, in order to find the k results with the lowest score sum. This 

results are then printed in a file and stored in HDFS. 

When the input datasets are too large and the number of k is very big, the topKCalculator can be replaced 

by a second map reduce job.  This MapReduce job implements the same Top-k algorithm that 

topKCalculator implements.  

The second MapReduce job must be executed right after the execution of the Reduce Side Join and its 

goal is to receive as input the output of the first job and feed it to a single reducer which will pick and 

return only the top k joined tuples to the user. 

 

5.5.1 Top-K algorithm – Pseudocode 
 

map method (class: Map.java) 

 

Read key value pair (from all Reduce Side Join output partitions) 

Return key value pair of input 

 

 

reduce method (class: Reduce.java) 

 

Do while all input key value pairs are processed 

            Read value – joined tuple 

            Split tuple in words 

            Set variable scoring sum = third word 

            Store it in a Priority Queue 

Return the k elements of the Priority Queue 

 

 

5.5.2 Components 
 

 DriverRSJ.java 
This is the main class of the MapReduce job. It contains no complex logic but only the 
configuration of the classes used for map and reduce phase. This is the class where we set the 
number of reduce tasks to be executed to 1. 



 

 Map.java 
This is the class that implements the map method. Its input is the output of the earlier Reduce 
Side Join MapReduce job, whether the algorithm used for the join was RSJSimple, RSJET, 
RSJETLBDistCache or RSJETIndex. So, since all four algorithms that perform the join produce the 
same outputs, the map implementation of the Top-k algorithm applies to the outputs of all four 
algorithms without alterations.  Its implementation is pass through. It receives a key-value pair 
where the key is just a number produced by the default RecordReader and the value is the whole 
joined tuple. The output key-value pair is the same as the input. 
 

 Reduce.java 
This is the class where the reduce method is implemented. Since, the number of reduce tasks is 
set to 1, all joining attribute values will be sent to this single reduce task. The reduce method will 
loop all the joined tuples received and return only the k with the smallest scoring sum. 
 

  



5.6 Supplementary Implementation 
 

5.6.1 DataToReducersET 
 

The algorithms explained in the previous sections represent the implementation of the proposed 

architecture. However, there is a need for an extra implementation to support the experimental part. In 

order to prove that the load balancing technique implemented in RSJETLBDistCache, actually distributes 

the load in an efficient manner and not randomly as happens in RSJET, we need two more algorithms that 

will evaluate the outputs of the RSJET algorithm.  

RSJETLBDistCache produces the dataToReducers.txt as mentioned earlier. This file contains the 

information: which reducer receives which joining attribute. This information is not produced in a straight 

forward way from the RSJET algorithm. It can only be implied from the analysis of the algorithm’s output. 

Therefore, the first supplementary algorithm performs this analysis and is called DataToReducersET. The 

inputs to this algorithm are all the partitions were the RSJET reducer’s output is stored. The algorithm 

goes through the output records of each partition and stores all the joining attributes that have been 

processed by a certain partition. The output of this algorithm is a file similar to dataToReducers.txt 

produced by the RSJETLBDistCache. So, in this way we are able to compare the load distribution logic of 

the two algorithms.  

  



DataToReducersET – Pseudocode 

 

[Do while there are output partitions of RSJET job 

           Read partition number from name of current partition  

          Set variable reducer = partition number 

                        [Do while there are lines in partition 

                                        Read line 

                                       Split it in words 

                                       Set variable current_joining_attribute  = first word 

                                      [If current_joining_attribute is not already written in dataToReducers.txt 

                                                        Write in dataToReducers.txt : current_joining_attribute, reducer 

Return dataToReducersET.txt 

 

  

  

  



5.6.2 JoinsPerReducer 
 

The BoundEstimation algorithm which is used in RSJETLBDistCache encapsulates the calculation of the 

joined values that can be produced from the join of two relations for each joining attribute value. If we 

combine this information with the dataToReducers information we can calculate the exact number of 

joins that each are performed by each reducer. This is implemented in the JoinsPerReducer algorithm. 

The input to this algorithm is the joinValues HashMap, that is produced by the BoundEstimation algorithm, 

and the dataToReducers.txt. The algorithm loops the lines of dataToReducers.txt and for each joining 

attribute it looks up the number of joins that correspond to it. Then, it adds this number to total number 

of joins performed by reducer responsible for this joining attribute. The output of this algorithm is the file 

joinsPerReducer.txt which contains the information: how many joins does each reducer perform. 

 

Pseudocode 

 
Do while dataToReducers.txt has lines 

      Read line 

     Split line in words 

     Set variable reducer_for_joining_attribute = second word 

     Set variable current_joining_attribute = first word 

    Set variable number_of_join_values = joinValues.get(current_joining_attributes) 

             If joinsPerReducer.txt does not contain reducer_for_joining_attribute                      

                              Set variable totalJoinsForReducer = number_of_join_values 

                             Write in joinPerReducer.txt: reducer_for_joining_attribute, totalJoinsForReducer 

             Else 

                      Set variable totalJoinsForReducerSoFar = joinsPerReducer.get(reducer_for_joining_attribute) 

                      Set variable totalJoinsForReducer =   totalJoinsForReducerSoFar + number_of_join_values 

                     Update joinsPerReducer.txt: reducer_for_joining_attribute, totalJoinsForReducer 

Return joinsPerReducer.txt                        

 

 

  



6 Experimental Evaluation 
 

6.1 Environment setup 
 

All the experiments for the needs of this thesis were performed on a Hadoop cluster. The characteristics 

of this cluster are presented in this section.  

The cluster consists of 12 nodes. There is one node with the role of namenode and one node with the role 

of secondary namenode. All nodes are used as tasktrackers and datanodes. The specifications of the 

physical machines are presented in the following table: 

 

Number of Machines Disk space per machine Memory per machine 

8 6.3TB 31.4GB 

3 14.4TB 125.9GB 

1 14.4TB 110.2GB 

Table 2: Cluster configuration 

 

So, the total disk space used by the cluster is 108TB and the total memory from all machines is 739.1GB. 

 

6.2 Experimental scenarios 
 

In order to prove that the proposed algorithms for top-k joins add efficiency and decrease the execution 

time, a number of experimental scenarios were conducted to test a number of factors that affect the 

efficiency of top-k join query calculation. 

The first factor tested is the dataset size. In order to prove that the algorithms proposed are proper for 

the processing of top-k joins for large datasets, we have to prove that they scale well. For this reason, the 

first set of datasets used includes datasets with sizes that range from 5GB to 200GB. Another factor is the 

number of k desired joined results. We prove that the proposed techniques are equally efficient for a wide 

range of k results requested by the user. More specifically, the four algorithms are executed with the 

datasets presented in table 4  for k=10, k=100 and k=500. Algorithms RSJET, RSJETLB and RSJETIndex were 

executed 10 times each, for every dataset and every k value, whereas RSJSimple was executed 5 times for 

each dataset and for every k value. The results for k=10 are presented in 6.4. Accordingly, the results for 

k=100 and for k=500 are presented in Appendix. For all scenarios tested, several counters of the map 

reduce jobs are presented, which prove the efficiency and correctness of the three latter algorithms 

comparing to the RSJSimple algorithm. 

Another factor tested with the datasets of table 5 is join selectivity. In database systems, join selectivity 

of a table’s column is defined as: the number of distinct values that the column can have / number of 



table’s tuples. We will simplify the meaning of join selectivity by replacing the number of table’s tuples 

with the dataset size. Therefore, the analogy that calculates the join selectivity of the datasets will be: 

number of joining attribute values/dataset size (GB). For example, a dataset of 10GB which has 100 distinct 

values of joining attributes has join selectivity 100/10 = 10 whereas a dataset of same size with 1000 

distinct values has join selectivity 1000/10 = 100. The lower the join selectivity the higher the number of 

joins that can be produced and vice versa. By testing our proposed algorithms against this factor, we prove 

that they perform well with low and high join selectivity comparing to RSJSimple. 

The fourth factor tested is data distribution on score attribute. All algorithms are tested against datasets 

of the same size but with different distribution on the scoring attribute. In this way we prove that the 

proposed algorithms are equally efficient even in different data distributions. As a matter of fact the 

datasets used for this purpose are the ones presented in table 6.  

Last but not least, in order to compare the behavior of RSJET against RSJETLB we alter the data distribution 

on the joining attribute. If the data distribution on the joining attribute is uniform, then the number of 

joined tuples is approximately the same for all joining attributes, therefore the load distribution in the 

reducers will be fair, regardless the data distribution on scoring attribute. However, if the joining attribute 

has a zipfian distribution then the number of joins that correspond to each joining attribute differs. To 

test this (Scenario 5) we use the datasets presented in table 7. 

The following table summarizes the experimental scenarios and the factors that each of them alters to 

examine the behavior of the tested algorithms: 

 

Scenario Dataset size k 
Join 

selectivity 
Data distribution on 

score attribute 
Data distribution on 

joining attribute 

1 different same same same same 

2 same different same same same 

3 same same different same same 

4 same same same different same 

5 same same same same different 

Table 3: Scenarios and factors 

 

6.3 Datasets 
 

All datasets used in the experimental scenarios were produced by a Data Generator program which 

receives as input the number of tuples to be produced (which define the size of the dataset), the desired 

number of joining attribute values, the type of distribution and the skewness of either the scoring 

attribute or the joining attribute. The outputs of Data Generator are the following six text files: 

 R0.txt  First relation to be joined. Used as input in RSJSimple. 

 R1.txt  Second relation to be joined. Used as input in RSJSimple. 



 R0sorted.txt  The contents of this file are exactly the same with R0.txt. The only difference is 

that column score is sorted in ascending order. It is used as input of RSJET, RSJETLBDistCache, 

RSJETIndex. 

 R1.sorted.txt  The contents of this file are exactly the same with R1.txt. The only difference is 

that column score is sorted in ascending order. It is used as input of RSJET, RSJETLBDistCache, 

RSJETIndex. 

 hist0.txt  Histogram for first relation (R0). 

 hist1.txt  Histogram for second relation (R1). 

 

Both relations R0, R1 have the same columns: id, joining attribute, score attribute. 

The datasets used as input to Scenario 1 and Scenario 3 are presented in the following table: 

 

Dataset R0sorted size 
R1sorted 

size 

Number of 
joining attribute 

values 
Distribution Skewness 

DS1 5.7GB 5.8GB 500 Zipfian on scoring attribute 0.5 

DS2 11GB 11.3GB 1000 Zipfian on scoring attribute 0.5 

DS3 23GB 24GB 2000 Zipfian on scoring attribute 0.5 

DS4 115.8GB 118.8GB 1000 Zipfian on scoring attribute 0.5 

DS5 240.9GB 251.2GB 2000 Zipfian on scoring attribute 0.5 

Table 4: First set of datasets 

 

The datasets used as input to Scenario 2 are presented in the following table. DS1 dataset with 1000 

joining attributes has higher join selectivity than DS2 with 100 joining attribute values. Accordingly, DS1 

with 2000 joining attribute values has the same joining selectivity with the DS1 dataset of 1000 different 

joining attributes and a higher join selectivity than DS2 with 200 joining attributes. 

 

Dataset R0sorted size 
R1sorted 

size 

Number of 
joining attribute 

values 
Distribution Skewness 

DS1 11GB 11.3GB 1000 Zipfian on scoring attribute 0.5 

DS1 23GB 24GB 2000 Zipfian on scoring attribute 0.5 

DS2 10.5GB 10.8GB 100 Zipfian on scoring attribute 0.5 

DS2 21.8GB 22.9GB 200 Zipfian on scoring attribute 0.5 

Table 5: Second set of datasets 

  



The datasets used as input to Scenario 4 of experimental scenarios are presented in the following table: 

 

Dataset R0sorted size R1sorted size Number of joining attribute values Distribution Skewness 

DS1 22.9GB 23.9GB 2000 
Uniform on 

scoring 
attribute 

0 

DS2 23GB 24GB 2000 
Zipfian on 

scoring 
attribute 

0.5 

DS3 23GB 24GB 2000 
Zipfian on 

scoring 
attribute 

1 

Table 6: Third set of datasets 

 

The datasets used as input to the third set of experimental scenarios are presented in the following table: 

 

Dataset 
R0sorted 

size 
R1sorted 

size 
Number of joining 

attribute values 
Distribution Skewness 

DS1 1.0GB 1.1GB 100 Zipfian on joining attribute 0.5 

DS2 1.0GB 1.1GB 100 Zipfian on joining attribute 0.2 
Table 7: Fourth set of datasets 

  



 

6.4 Scenario 1 for k=10  
 

Scenario 1 is executed with the datasets of table 4. So, the complete configuration for this scenario is the 

following: 

Scenario Dataset size k Join selectivity 
Data 

distribution on 
score attribute 

Data distribution on 
joining attribute 

1 
ranges from 

5GB to 
200GB 

10 
100 for DS1, DS2, DS3 

10 for DS4, DS5 
Zipfian with 

skewness 0.5 
uniform 

Table 8: Scenario 1 for k=10 

 

6.4.1 Total Duration 
 

The diagram below depicts the total duration of all four algorithms for each dataset of the first set. It is 

clear that the Early Termination technique decreases significantly the execution time for the calculation 

of queries such as the one discussed in 5. RSJET and RSJETLBDistCache are equivalent in terms of execution 

time since the load uniform amongst the reducers due to the uniform data distribution of the joining 

attribute. It is worth mentioning that RJSETIndex scales better that RSJET and RSJETLBDistCache when the 

dataset size increases. For example for 100GB and 200GB datasets, RSJETIndex has the smallest total 

duration.  

However, in small datasets, RSJETIndex is slightly slower than RSJET and RSJETLBDistCache. RJSETIndex 

calculates the Map input splits so that they derive only from the useful HDFS blocks and not from the 

whole input files. This leads to diminished map tasks in comparison with RSJET and RSJETLBDistCache. 

However, in datasets such as 5GB this technique does not add significant value since the map tasks loaded 

from RSJET and RSJETLBDistCache are few and finish very quickly because the input datasets size is small.  

 

Figure 24: Scenario 1 for k=10 - Total Duration 



6.4.2 Average Map Time 
 

Average Map Time is another metric that proves the efficiency of Early Termination technique. RSJET and 

RJSETLBDistCache have the lowest average map time even for large datasets. Even though the number of 

map tasks launched by RSJET and RSJETLBDistCache is the same with RSJSimple, not all map tasks produce 

key value pairs for the reducers. Therefore, the majority of map tasks in RSJET and RSJETLBDistCache 

complete their execution very fast and most of them without processing any record of the input split. 

On the contrary RSJETIndex appears to have a high Average Map Time but this is not a sign of inefficiency. 

As explained in 3.1.8 Average Map Time = Total time taken by all Map tasks/ Count of Map Tasks. In 

RSJETIndex the number of Map tasks can be very small. For example the number of map tasks launched 

for 200GB datasets by RSJETIndex is only 4 whereas the number of map tasks launched by all other three 

algorithms for the same dataset is 3937.  The majority of map tasks in RJSET and RSJETLBDistCache 

complete extremely fast. In fact the number of map tasks that actually produce key value pairs for 

reducers in RSJET and RSJETLBDistCache is the same with RSJETIndex and these are the only map tasks 

who need more time to terminate.  

 

Figure 25: Scenario 1 for k=10 - Average Map Time 

 

6.4.3 Average Shuffle Time  
 

The following diagram proves that all proposed techniques enhance significantly the Shuffle phase. The 

results depicted in this diagram can be combined with the Average Map Time and Map Output Records 

diagrams. As explained earlier, in this phase the map outputs are copied in the task trackers that will 

execute the reduce tasks. In RSET and RSJETLBDistCache the map output records are significantly less 

comparing to RSJSimple. Therefore, the average time needed for the map outputs to be copied is less than 

RSJSimple for these two algorithms. RSJETIndex also produces less map output records than RSJSimple, 

however as explain earlier the number of map tasks raised by this algorithm is very small and this metric 

depicts average times, so, this is why for small datasets like 5GB RSJETIndex has higher average shuffle 

time. 



 

Figure 26: Scenario 1 for k=10 - Average Shuffle Time 

 

6.4.4 Average Merge Time 
 

This diagram proves that Merge phase is also significantly enhanced by all three proposed algorithms. It 

is worth pointing out that for smaller datasets the Average Merge Time needed for this phase is close to 

zero seconds. This is because the number of tuples that reached the task trackers were the reducer will 

be executed is much smaller comparing to RSJSimple. 

 

Figure 27: Scenario 1 for k=10 - Average Merge Time 

 

6.4.5 Average Reduce Time 
 

The Reduce phase is the most significant phase of a Reduce Side Join because it is the phase were the two 

input datasets will be joined. As depicted in the diagram below, this phase is the most enhanced by the 

Early Termination technique since the average time needed for RSJET, RSJETLBDistCache and RSJETIndex 



is close to zero, whereas the time needed for RSJSimple is much higher. This is because the load of the 

reduce tasks is significantly diminished with the use of Early Termination technique.  

 

Figure 28: Scenario 1 for k=10 - Average Reduce Time 

 

6.4.6 Map Input Records 
 

This counter shows the number of records read by the RecordReader. In RSJET, RSJETLBDistCache and 

RSJETIndex, the number of records read by the record reader depends on the result of the 

BoundEstimation algorithm. In the following table we present the bounds returned for each relation and 

each dataset: 

Dataset Bound for R0 Bound for R1 

DS1 60 60 

DS2 30 30 

DS3 15 15 

DS4 30 30 

DS5 15 15 

Table 9: Scenario 1 for k=10 - Bounds per dataset 

In RSJET, RSJETLBDistCache and RSJETIndex, RecordReader processes all records that have as score 

attribute values that are lower than the bounds estimated. Since the input datasets to these algorithms 

are sorted by score column, to reach bound 60, RecordReader must read more records than it would if 

bound was 30. So, that explains why map input records are more for DS1 than for DS2. DS4 and DS5 have 

same bounds with DS2 and DS3 accordingly, therefore one would expect that the map input records 

should be the same. However, DS4 and DS5 have lower join selectivity, which means that more records 

have to be accessed in order to reach the score bound.  

On the other hand, RSJSimple processes all records from both input datasets, so the number of map input 

records for this algorithm, is proportional to the dataset size regardless the join selectivity. 



 

Figure 29: Scenario 1 for k=10 - Map Input Records 

 

6.4.7 Map Output Records 
 

The number of Map Output Records is equal to the number of Map Input Records for all four algorithms. 

However, due to Early Termination technique, this number is smaller for RSJET, RSJETLBDistCache and 

RSJETIndex comparing to RSJSimple.  

 

Figure 30: Scenario 1 for k=10 - Map Output Records 

 

6.4.8 Reduce Output Records  
 

This metric represents the total number of records that were produced by the reducers. As we saw earlier, 

the reduce method in all four algorithms, returns k joined records for each joining attribute. Since, the 

output of all jobs is a list with the top-k records per joining attribute, then this metric is proportional to 



the number of joining attributes. For example, for DS1 the number of joining attributes is 500 so for k=10 

the number of output records is 5000. Accordingly for DS5 the number of joining attributes is 2000 so for 

k=10 the number of output records is 20000. 

 

 

Figure 31: Scenario 1 for k=10 - Recuce Output Records 

  



6.4.9 Shuffled Maps 
 

The following diagram depicts the efficiency added by RSJETIndex in the Shuffle phase. RSJETIndex 

launches the lowest number of map tasks therefore during the maps copied during the shuffling phase 

are significantly less comparing to all other three algorithms.  As explained earlier, the map tasks launched 

by RSJSimple, RSJET and RSJETLBDistCache are equal because the whole datasets are divided in input splits 

and passed to the mappers. 

 

Figure 32: Scenario 1 for k=10 - Shuffled Maps 

 

6.4.10 Map Spilled Records 
 

This metric represents the number of records written in the disk during the map phase. This diagram can 

be examined in parallel with the Map output records diagram, 

 
Figure 55: Scenario 1 for k=100 - Map Output Records 

 
Figure 56: Scenario 1 for k=100 - Reduce Output 

Records 

 since the number of map output records is the number of records that are finally spilled on the disk. 

Again, it is worth mentioning that all three proposed algorithms produce less map output records due to 



the Early Termination technique therefore they spill less records comparing to RSJSimple which spills all 

input records to the disk.  

 

Figure 33: Scenario 1 for k=10 - Map Spilled Records 

 

6.4.11 Input Split Bytes 
 

This metric depicts the total number of bytes passed as input splits to the map tasks. The following 

diagram proves that RSJETIndex eliminates the number of bytes read from each dataset whereas all other 

three algorithms load the whole datasets to the map tasks. 

 

Figure 34: Scenario 1 for k=10 - Input Split Bytes 

 

6.4.12 CPU Map Time 
 

Since, Early Termination technique eliminates the number of records processed by the Map phase, the 

total processing time is also diminished comparing to RSJSimple. Especially in RSJETIndex, the total 

processing time in Map phase is even lower since the launched map tasks are fewer. 



 

Figure 35: Scenario 1 for k=10 - CPU Map Time 

 

6.4.13 CPU Reduce Time 
 

Accordingly, the CPU Reduce Time for RSJET, RSJETLBDistCache and RSJETIndex is lower since the records 

passed to the reduce phase are less than the number of records passed in the reduce phase from 

RSJSimple.  

 

Figure 36: Scenario 1 for k=10 - CPU Recuce Time 

  



 

6.5 Scenario 1 for k=100 
 

Scenario 1 was re-executed with the datasets of table 4 but this time for k=100. So, the complete 

configuration for this scenario is the following: 

Scenario Dataset size k Join selectivity 
Data distribution 
on score attribute 

Data distribution 
on joining 
attribute 

1 
ranges from 

5GB to 
200GB 

100 
100/1 for DS1, DS2, DS3 

10/1 for DS4, DS5 
Zipfian with 

skewness 0.5 
uniform 

Table 10: Scenario 1 for k=100 

 

The behavior of all four algorithms is similar to the behavior they had for k=10. Therefore, the explanation 

given for all the metrics in 6.4 applies here as well.  The diagrams for all metrics are presented in Appendix 

and can be compared to the relevant diagrams for k=10. 

 

  



6.6 Scenario 1 for k=500  
 

Scenario 1 was re-executed with the datasets of table 4 but this time for k=100. So, the complete 

configuration for this scenario is the following: 

Scenario Dataset size k Join selectivity 
Data distribution on 

score attribute 

Data distribution 
on joining 
attribute 

1 
ranges from 

5GB to 
200GB 

500 
100/1 for DS1, DS2, DS3 

10/1 for DS4, DS5 
Zipfian with 

skewness 0.5 
uniform 

Table 11: Scenario 1 for k=500 

The behavior of all four algorithms is similar to the behavior they had for k=10 and k=100. Therefore, the 

explanation given for all the metrics in 6.4 applies here as well.  The diagrams for all metrics are presented 

in this chapter and can be compared to the relevant diagrams for k=10 and k=100. 

The fact that all three proposed algorithms depict the same behavior for different values of k proves the 

scalability of the algorithms in terms of, not only dataset size, but k value as well. All diagrams for this 

scenario are available on Appendix. 

 

6.7 Scenario 2 for all first set datasets 
 

The results for Scenario 2 are already provided from the experiments executed for Scenario 1 and for the 

different values of k. In this section the results retrieved from Scenario 1 are combined in such a way so 

that it is easier to compare the performance of each algorithm for different k values in the same dataset. 

The conclusion drawn from the comparison that is presented in the following diagrams, is that the total 

execution time of all algorithms remains the same regardless the k value.  

The following table presents the configuration of the scenarios examined in this section. 

 

Scenario 
Dataset 

size 
k 

Join 
selectivity 

Data distribution on 
score attribute 

Data 
distribution 
on joining 
attribute 

2 5GB 

k=10, 

100 /1 Zipfian with skewness 0.5 uniform k=100, 

k=500 

2 10GB 
k=10, 

100 /1 Zipfian with skewness 0.5 uniform 
k=100, 



k=500 

2 20GB 

k=10, 

100/1 Zipfian with skewness 0.5 uniform k=100, 

k=500 

2 100GB 

k=10, 

10/1  Zipfian with skewness 0.5 uniform k=100, 

k=500 

2 200GB 

k=10, 

10/1 Zipfian with skewness 0.5 uniform k=100, 

k=500 

Table 12: Scenario 2 - Configuration 

The total execution times for all above datasets and for all k values, are reflected visually in the following 

diagrams. 

 

  

Figure 37: Scenario 2 - 5 GB Figure 38: Scenario 2 - 10 GB 



 

 

 

 

 

 

 

  

Figure 40: Scenario 2 - 20 GB Figure 39: Scenario 2 - 100 GB 

Figure 41: Scenario 2 - 200 GB 



6.8 Scenario 3 for DS = 10GB 
 

The datasets used for this scenario are the ones presented in table 5. So, the configuration for this scenario 

is the following: 

 

Scenario Dataset size k Join selectivity 
Data distribution on 

score attribute 

3 10GB k=10, k=100, k=500 
100/1 for DS1 
10/1 for DS2 

Zipfian with skewness 0.5 

Table 13: Scenario 3 10GB 

 

6.8.1 Total Duration for DS=10GB 
 

The following diagram proves that the total duration of the proposed algorithms RSJET, RSJETLBDistCache 

and RSJETIndex increases slightly for lower join selectivity in the same dataset size. This is because the 

records that need to be processed in order to reach the estimated bounds for the score attribute, are 

more in datasets with low join selectivity, since the number of joins that are produced by low selectivity 

datasets is higher. This is proved by the results of BoundEstimation for the two datasets: 

 

Dataset Bound for R0 Bound for R1 

DS1 30 30 

DS2 300 300 
Table 14: Scenario 3 10GB - bounds 

 

 Since the number of joins that can be achieved in DS2 are more than those in DS1 the total duration time 

of all three algorithms increases for DS2. However, the total duration remains lower than the total 

duration of RSJSimple regardless the k value.  



 

Figure 42: Scenario 3 10GB - Total Duration 

 

6.9 Scenario 3 DS = 20GB 
 

The datasets used for this scenario are the ones presented in table 5. So, the configuration for this scenario 

is the following: 

Scenario Dataset size K Join selectivity Data distribution on score attribute 

3 20GB k=10, k=100, k=500 
100/1 for DS1 
10/1 for DS2 

Zipfian with skewness 0.5 

Table 15: Scenario 3 20GB 

 

6.9.1 Total Duration for DS = 20GB 
 

The BoundEstimation algorithm returned the following bounds for the two datasets: 

 

Dataset Bound for R0 Bound for R1 

DS1 30 30 

DS2 300 300 
Table 16: Scenario 3 20GB - bounds 

 

Therefore, the explanation given for Total Duration for DS=10GB applies in this scenario too.  

 



 

Table 17: Scenario 3 20GB - Total Duration 

 

  



6.10 Scenario 4 
 

The datasets used for this scenario are the ones presented in table 6. The configuration for these 

experiments is the following: 

 

Scenario Dataset size k Join selectivity Data distribution on score attribute 

4 20GB k=10 100/1 
Uniform for DS1 

Zipfian with skewness 0.5 for DS2 
Zipfian with skewness 1.0 for DS3 

Table 18: Scenario 4 20GB 

 

As the diagrams show, the behavior of all algorithms, even of RSJSimple is exactly the same for all three 

datasets regardless the distribution of the scoring attribute. For this reason, only the total duration 

diagram is presented in the next section and the rest of the diagrams for this scenario are available in 

Appendix. 

Still, the algorithms RSJET, RSJETLBDistCache and RSJETIndex remain faster in execution time than 

RSJSimple.  

 

6.10.1 Total Duration 

 

 

Figure 43: Scenario 4 20GB - Total Duration 

  



6.11 Scenario 5 
 

In all Scenarios examined so far, the behavior of RSJET and RSJETLBIndex was very similar. The total 

duration was approximately the same for the two algorithms and that was expected since the distribution 

of the joining attribute of the datasets tested was uniform. Consequently, the value of Load Balancing 

technique was not revealed, since the load would either way be distributed in a uniform manner to the 

reducers. In this Scenario we use the datasets presented in table 7 which have the same dataset size but 

differ in the distribution of the joining attribute. So, the configuration for this scenario is the following: 

 

Scenario Dataset size k Join selectivity Data distribution on joining attribute 

5 1GB k=10 100/1 
Zipfian with skewness 0.5 For DS1 
Zipfian with skewness 0.2 For DS2 

Table 19: Scenario 5 

 

6.11.1 Total Duration 
 

The expected result would be that RSJETLBDistCache would have a lower total duration due to the Load 

Balancing technique. In fact, this is not happening as shown in the diagram below. Both RSJET and 

RSJETLBDistCache take the same time to complete.  

 

Figure 44: Scenario 5 - Total Duration 

 

To examine in further detail this behavior, we use the implementation explained in Supplementary 

Implementation. With DataToReducersET and JoinsPerReducer algorithms we retrieve the information: 

how many join values does each reducer process in the RSJET algorithm. We do this for the dataset with 

0.5 skewness in joining attribute. 



This information is already known for the RSJETLBDistCache, since the calculation of dataToReducers is 

part of the algorithm’s steps. 

So, having calculated the joins that each reducer handles for both RSJET and RSJETLBDistCache we can 

depict them in the following diagrams. 

 

Load Per Reducer in RSJETLBDistCache – 1GB dataset with 0.5 skewness on joining attribute 

 

Figure 45: Scenario 5 – RSJETLBDistCache joins per reducer on zipf 0.5 

 

As we can see, RSJETLBDistCache, which uses the LPT algorithm for the load distribution, does the 

following: 

1. Sorts the joining attributes by the total joins that correspond to each one in a descending order. 

2. Assigns the first 10 joining attributes from the sorted list, each one in one reducer (considering 

that the number of reduce tasks is set to 10). 

3. For the rest of joining attributes  

     - finds the reducer with the least joins to process 

     - assigns the current joining attribute to the least busy reducer 

The dataset has zipfian distribution on the scoring attribute with 0.5 skewness. According to the above 

logic, the first joining attribute will be assigned to reducer 1 and no other joining attribute will be sent to 

this reducer because the first joining attribute carries the greatest number of joins. The second joining 

attribute will be assigned to reducer 2 and so on until the tenth joining attribute will be assigned to 

reducer 10. Since we have a zipfian distribution, reducer 10 so far has the least joins to handle therefore, 

the eleventh joining attribute will be assigned to reducer 10, the next to reducer 9 and so on. In the end, 

reducer 1 will be still the busiest reducer as depicted in the diagram for RSJETLBDistCache even though it 
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all handles the first joining attribute. So, RSJETLBDistCache distributes the load to the least busy reducer 

however this does not assure that the load will be equal across the reducers for a much skewed dataset. 

On the other hand it is clear that the RSJET algorithm performs a random load assignment which results 
to the overload of reducer 9 (figure 46). In another run of RJSET, another reducer might be overloaded. 

 

Load Per Reducer in RSJET - 1GB dataset with 0.5 skewness on joining attribute 

 

Figure 46: Scenario 5 - RSJET joins per reducer on zipf 0.5 

 

As shown in figure 47, RSJETLBDistCache performs a more uniform load distribution for datasets with low 

skewness on joining attribute. RSJET still distributes randomly the load, thus resulting again to one very 

busy reducer (figure 48). 
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Load Per Reducer in RSJETLBDistCache – 1GB dataset with 0.2 skewness on joining attribute 

 

Figure 47: RSJETLBDistCache joins per reducer on zipf 0.2 

 

Load Per Reducer in RSJET - 1GB dataset with 0.2 skewness on joining attribute 

 

Figure 48: RSJET joins per reducer on zipf 0.2 

 

All four algorithms implement the same mechanism in their reducers. They read only k values from each 

input relation to perform the join. It is guaranteed that the first k values that will reach a reducer from 

one relation are sorted by score (due to secondary sort). Therefore, the reducers terminate after k*2 loops 

when they certainly have calculated the top-k joined tuples for a specific joining attribute. Consequently, 
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even if there is a reducer that should take the longest time to complete due to the number of joins 

assigned to it, in fact it completes its processing in similar time with the others due to this logic. 

This explains the reason why, although we observe a gain in RJSETLBDistCache in terms of load 

distribution, the execution time of RSJETLBDistCache is still the same with RSJET regardless the skewness 

of the datasets. 

  



7 Conclusions 
 

In this thesis two techniques were presented for early termination and one technique for load balancing 

to address the problem of efficient processing of top-k joins in MapReduce. All techniques were 

implemented on top of Hadoop MapReduce without affecting its internal mechanism.  

The experiments presented in Chapter 6 prove that all three algorithms are more efficient than the simple 

implementation of top-k joins in the traditional MapReduce model, in terms of performance and 

resources used. This conclusion has proven to be valid for a number of factors tested such as dataset size, 

different k values, join selectivity and data distribution on score and joining attributes.  

The third algorithm RSJETIndex proves to be faster for very large datasets such as 200GB in all 

experimental scenarios, whereas RSJET and RSETLBDistCache work equally well for smaller datasets. 

Even though RJET and RSJETLBDistCache depicted the same overall execution time in all scenarios, the 

experiments in section 6.11 proved that RSJETLBDistCache makes more uniform load distribution than 

RSJET, in datasets with skewness on joining attribute. 

A further enhancement of the proposed architecture and implementation would be its extension so as to 

support more complex rank aware queries for multiple relations. This is easily achieved by altering slightly 

the implementation of the map and reduce methods to handle multiple input datasets. The core logic, 

though, remains the same. Another set of experiments could be performed to prove the scalability and 

speed of the implementation for a series of complex rank aware queries. 

Last but not least, it would be very interesting to test the proposed algorithms against algorithms 

proposed in related work, such as RanKloud 2 and compare the efficiency of the solutions in terms of total 

execution time and resources used. 
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Appendix 
 

Scenario 1 for k = 100 

 
Figure 49: Scenario 1 for k=100 - Total Duration 

 

 
Figure 50: Scenario 1 for k=100 – Average Map Time 

 

 
Figure 51: Scenario 1 for k=100 - Average Shuffle Time 

 
Figure 52: Scenario 1 for k=100 - Average Merge Time 

 



 
Figure 53: Scenario 1 for k=100 - Average Reduce Time 

 
Figure 54: Scenario 1 for k =100 - Map Input Records 

 

 
Figure 55: Scenario 1 for k=100 - Map Output Records 

 
Figure 56: Scenario 1 for k=100 - Reduce Output 

Records 

 

 
Figure 57: Scenario 1 for k = 100 - Shuffled Maps 

 
Figure 58: Scenario 1 for k=100 - Map Spilled Records 

 



 
Figure 59: Scenario 1 for k=100 - Input Split Bytes 

 
Figure 60: Scenario 1 for k=100 - CPU Map Time 

 

Figure 61: Scenario 1 for k=100 - CPU Reduce Time 

  



Scenario 1 for k = 500 

 
Figure 62: Scenario 1 for k=500 - Total Duration 

 
Figure 63: Scenario 1 for k=500 - Average Map Time 

 

 
Figure 64: Scenario 1 for k=500 - Average Shuffle Time 

 
Figure 65: Scenario 1 for k=500 - Average Merge Time 

 

 
Figure 66: Scenario 1 for k=500 - Average Reduce Time 

 
Figure 67: Scenario 1 for k=500 - Map Input Records 

 



 
Figure 68: Scenario 1 for k=500 - Map Output Records 

 
Figure 69: Scenario 1 for k=500 - Reduce Output 

Records 

 

 
Figure 70: Scenario 1 for k=500 - Shuffled Maps 

 
Figure 71: Scenario 1 for k=500 - Map Spilled Records 

 

 
Figure 72: Scenario 1 for k=500 - Input Split Bytes 

 
Figure 73: Scenario 1 for k=500 - CPU Map Time 

 

 



 

 

Figure 74: Scenario 1 for k=500 - CPU Reduce Time 

 

Scenario 4 

 
Figure 75: Scenario 4 - Average Shuffle Time 

 
Figure 76: Scenario 4 - Average Merge Time 

 

 

Figure 77: Scenario 4 - Average Reduce Time 



 

 


