Department of Digital Systems
UNIVERSITY OF PIRAEUS

Master of Science in

DIGITAL SYSTEMS & SERVICES

Area of study: Network-Oriented Information Systems

Efficient processing of Top-k joins in
MapReduce/Hadoop

Master Thesis

By

Mei Saouk

Supervisor: Christos Doulkeridis

Piraeus, 26/02/2016

Abstract

Top-k joins are widely used in the area of data analytics. One of the most popular frameworks for data
analytics is MapReduce, especially its open source implementation in Apache Hadoop. However, due to
certain limitations of the model, the processing of top-k joins on Hadoop MapReduce becomes inefficient
for very large datasets. In particular, MapReduce processes the whole input even if the best k tuples can
be produced by processing only a part of the input datasets. In addition to this, MapReduce does not
provide a load balancing technique for the fair load distribution to the reducers. These two weaknesses
make top-k join processing on MapReduce inefficient. In this thesis, we propose three algorithms to tackle
the problem of early termination and load balancing. Our techniques are based on algorithms that use
data synopses such as histograms. Our experimental evaluation proves the efficiency of our proposed
algorithms in terms of execution time and resources used, for a number of factors such as the k value, the

dataset size, the join selectivity and the data distribution.

NepiAnyn

OL emepwTAOELS OUTELENG LE KOTATOEN XPNOLLLOTIOLOUVTAL EUPEWG OTNV avaAuon dedopévwy. Eva amno ta
TIO YVWOTA HovtéAa avaAluong dedouévwy gival to MapReduce kal el61KOTEPA N avolytol AOYLOULKOU
vlormoinon tou, to Apache Hadoop. EvtoUtolg, e€altiag OUYKEKPLUEVWY TIEPLOPLOUWY TOU HOVTIEAOU, N
enefepyacio twv enepwtioewv oculeuénc He kataén oto Hadoop MapReduce, kpilvetal un anodoTikn yla
MEYAAOUG OYKOUC OeBOPEVWY. ZUYKEKPLUEVA, TO Povtého MapReduce enefepydletal to cUvolo Twv
Sebopévwy ou AapPavel we elcob0o, akOpa Kot av eival epLkto va yivel o urmtoAoylopoc Twy k kahUtepwv
OMOTEAEOUATWY UE HEPOG HOVO TwV Sebopévwv e10060u. EmumpooBétwe, to poviého MapReduce bev
TIAPEXEL TEXVIKN KOTAVOUNG PpopTou yla tn Sikatn katavopr tou ¢poptou otoug reducers. AutEg ot SUo
aduvapieg kablotolv TNV emefepyacia Twv eNEPWINUATWY cVEeVENG pe katatatn oto MapReduce
MPOoPBANUATIKA. ITNV Mapouoa epyacia, TPOTEIVOVTAL TPELG QAYOPLOUOL ylo TNV OVTIUETWIILON TWV
TPOPANUATWY TOU £YKALPOU TEPUATIOMOU KOL TNG KATAVOUNC ¢optou. OL TEXVIKEC TTOU TPOTElvovTal,
Baoilovtal os aAyoplBUoug Tou XpnolUomolouv cuvoelg SeSopévwy OMwG To Lotoypaupata. H
TELPOLLOTIKI OIMOTIKUNON AMOSELKVUEL TNV OMOSOTIKOTNTA TWV TIPOTEWOUEVWY OAyopiBUwY amod amon
XPOVOU KOl EKUETOUAAEUOUEVWY TIOPWY, yla Eva TTARB0C¢ mapayovtwy Onwe N Tiun tou k, to péyebog twv

apxeiwv dedopévwy, TNV eAEELUOTNTA TWV SESOUEVWY KAl TO £(60¢ KATAVOUNG TwV SESOUEVWV.

Contents

R [0 1 oo [¥ ot i o] KO PP P SRR PSTOUSTOTOPS 10
11 IMIOTIVATION. ...ttt e e 10
1.2 K ol0] o1 BT PPPPPPPPPPRE 11
13 THESIS STTUCTUIE.c..nteiiiee ettt ettt sttt e sat e st e bt e e s bt e e bt e e sateesabeeesabeeeneeeanseesaneeennnes 11

2 REIALEA WOKK ettt ettt e s et e s bt e st e s bt e e s be e s be e e ab e e s bt e e sabeesabeeeaneeesreeeane 12
2.1 T4 AV =T o 1T o F= o SRS 12
2.2 (oY Yo [=T] = o Tl 1 V-SSR 13

I - =Tl €4 o TV o« IR PP PURPPPPRNt 15
3.1 TechNiCal BACKZIOUNGciiiiiiiieeee ettt e e e bee e e st e e e s sbee e e enbeeeeeareeas 15

3.1.1 [= To [0 o o FO USSP 15
3.1.2 HDFS ettt ettt e b e bt st ettt e b e s b e eh et e a bt et e e heeshe e satesabe e bt e beens 16
3.1.3 Y Y1 Y=Y U ol ISR 17
3.14 Secondary SOrt in MAPREAUCEciivcuiiiieciiee et e e e e e e e seaeeeeas 19
3.1.5 Input Split, InputFormat and ReCOrdREAErccuveviieiiiieciee e 20
3.1.6 Side Data DistribULIONcoueieeeeeee ettt s 20
3.1.7 JOINS IN MAPREAUCE ...ttt e et tte e e e e bte e e e e bte e e e e beee e e eabaee e e nraeas 21
3.1.8 JOD COUNTETS ..ttt sttt sttt b e s bt e sae e st e eaeeeneean 22
3.1.9 o] oI o 11y o] Y2 PRSP 24
3.2 Algorithmic BaCKGrOUNG.........viiiiiiie ettt e e e s e e e s abae e e eabeee e enreeas 26
3.2.1 TOPK JOINS ettt e e et e e e e et e e e s e bt e e e e aree e e e e bteeeeenbaee e e nreeas 26

N b 1T = a I Yo o] o - o] o F P 29
4.1 ArchiteCtural OVEIVIEWc..cooiiiiiiiieieesiieete ettt ettt et st sne e sme e saeeenee s 29
4.2 Data SYNOPSES — HiSTOZIaMIS ...uuviiiiiiiiiiiiiiiiiee e e eerciiitet e e e e s sttt et e e s s s ssbtateeeeeessssssntneaeeeesssssnsenns 32
4.3 Score Bounds ESEIMationc.c.cocuiiiiiiiiiieieeeeeeeee e e 34
4.4 T4 AV =T o 1T o F= o SRS 34
4.5 (oY Yo -7 = o Yo 1 oY= USRS 35
4.6 [a o UL Y o] Nt a1 0 = o o [SRS 36

LT 10Y o] (=T o T=T 0 =1 4 (o] ISP PSRRIt 37
5.1 PN Fedo T g o 0 Y R RN Y12 Y] L= PR 38

5.1.1 RSJISIMPIE - PSEUAOCOUE. ... ettt e e e e e e e e e e e e e e snnbaaeeeeeeeeenas 38
5.1.2 g o 10 £ N 40

5.1.3 (60e] g] oToTaT=] oL £-J TP PP PP PPPTPPPPPTPPPPRE 40

5.1.4 RSJSIMPIE DAtafloOW ..ciiieiieii i 41
5.2 FAN F=do Tt o o T Y 1 PP 42
521 RSJET — PSEUAOCOTEiuiieiieeieesite ettt ettt ettt sb e sttt ettt e saee st sane e b e e b ens 43
5.2.2 g o 10 N 45
5.2.3 (60e] 1 g oToT g T=T o | K-SRt 45
524 RN | S I D - [1Y SRR 47
5.3 Algorithm 3: RSETLBDISTCACNE........viiiiiiieeeiiee ettt e e e e e e e bee e e e nrree e e nreeas 48
53.1 RSJETLBDIiStCache — PSEUAOCOTEcouiiiiiiieiienie ettt et st 48
5.3.2 g o 10 N 50
5.3.3 Preparation for EXECULIONuii ittt e s e e s 50
534 (60e] a T oToTT=] oL KPP PPTPPPTPPPTPTPPPPRt 50
5.3.5 RSJETLBDIiStCache Dataflowccc.eeiueeiiiiiiiiieciie et 51
5.4 Algorithm 4: RSIETLBINGEX.....ceiieiiiieeeiiiee e et ectte e e tee e e tte e e e e tte e e e eabe e e e eabeee e e nbaeeeennreeeeennrenas 52
54.1 RSJIETINAEX - PSEUAOCOTE.....c.eeiieiiieiiieiie ettt ettt sttt et et e b e snee e saree s 53
5.4.2 L UES et nnnan 54
5.4.3 Preparation for EXECULIONcii et e e e e e e e e e e e e areeas 54
544 (60e] 1] oToTT=] o | £t 55
5.4.5 RSJIETLBINAEX DAtaflOW ..ottt st e st 55
5.5 o] < S9=1F=Jo T 11 o o PRSP 56
5.5.1 Top-K algorithm — PSeUdOCOEcoiiiiieiceee e e 57
5.5.2 (00e] 3] oToT a1=] o | £t 57
5.6 Supplementary IMplemMENTatioN.......c..ceii it e et e e e abe e e areeeean 59
5.6.1 DataTOREAUCEISET ...ttt sttt e s s s n e e n e s 59
5.6.2 JOINSPEIREAUCET ...t sttt s s e ene s 61

6 EXPerimental EVAIUGLIONcoociiiii ettt et e et e et e e e et e e e ertaeeesnes 62
6.1 LNV T o 0 01T oY= o] N 62
6.2 EXPEIMENTAl SCENAMIOS . vviieitieee et ettt e e e tte e e e et e e e e eba e e e e e abeeeeeeabaeeeeeabaeaeesnseeaeennsenas 62
6.3 DAtaSLS ..eiiiiiiiiii it 63
6.4 SCENANIO L FOr KTL0 couiiiiieiieiieeie ettt ettt sttt sttt sb e s st e n e be e saeesane e 66
6.4.1 TOTAl DUIATION .ttt e sa e st e s be e e s eebr e e snreesneeesaneean 66
6.4.2 AVETAZE IMAP TIMIE creiiiiiiiiiieieiieiieieeeeetererererererererererarere———————————.—a—a—erarnrararnrannrnrnrarnrnrnnnnnnnnnnes 67
6.4.3 AVErage ShUFFIE TIME c..uveee e e e e bre e s e abe e e e e araeas 67
6.4.4 AVETAZE IMEIEE TIMIE .iiiiiiiiiiriiirtiiitieueuurereuarareaeaaaar e ————————e—aaaaeaaaeaeaaeasasasssssasssssssssnsnnnnes 68
6.4.5 AVErage REAUCE TIME ..uviiiiiiiiieeeiiiie e ettee e ettt e e esre e e e stae e e s s abe e e s s abaeeeeabaeeeesbeeesensaeeeennsenas 68
6.4.6 Yo I Y TV =T ol o 3SR 69

6.4.7 Y Yo @014 o 10 i 2 (=T oo e [PPSR 70

6.4.8 ReAUCE QULPUL RECOTAS ..vviiiiiiiei ittt e s e e e sbee e e s sbee e e enareeas 70
6.4.9 Y o101 1T AV, =T o 13PN 72
6.4.10 Map SPIlled RECOIUS....cccuiiiee ettt e e et e e e e rte e e e e eata e e e snteeeesneaeeesanes 72
3 R [T U} Y o [= 17 RPN 73
6.4.12 CPU Map TimM B ittt ettt e ettt e e e e ettt e e e e e s e s s aabbteeeeeessasnsreteeeeeeesannnneaeaeens 73
6.4.13 CPU REAUCE TiME c.iiiiiiieeiiieite ettt sttt ettt ettt ettt et e bt e s b e sbeesmeeeabeenbeesaeesanenas 74

6.5 SCENAMO 1 fOr KZL00 ..ottt ettt et ettt e b e s b e sae e st e eane et e e sbeesaeesanenas 75
6.6 SCENAIIO 1 fOr K=500 ..couiiiiiiiiiieiieeeeee ettt ettt st st et b e bt st st e et e sbe e saeesane e 76
6.7 Scenario 2 for all first Set datasets.......cuviiuiiiiiiiiiiee e e 76
6.8 SCENATIO 3 fOr DS = LOGBueiiiiiieiiie ettt ettt ettt et e st e st e e s bt e s bt e e sate e sbeeesabeesabeesneeesabeens 79
6.8.1 Total Duration for DS=10GB.........ceiueeiieieeriee ettt st sbee s st eeeeneees 79

6.9 SCENAMIO 3 DS = 20GB ...t 80
6.9.1 Total DUration fOr DS = 20GB........ceiiiiiiiiiieiieerree ettt ettt sttt e st e e sabe e sbeessneeesaree s 80

Lo O Yol T o 1= 1 [I PP P PRSPPI 82
6.10.1 TOtAl DUFALION c..eeieeiiieeeee ettt ettt st sttt e b e be e s b e saeesaeeebeesbeesaeesanenas 82
B.11 SCENAIIO Siereeiieee e s s 83
6.11.1 TOtAl DUFALION c.ueeeeietieeeee ettt ettt st sttt e bt e s b e sbeesateebeesbeesaeesanenas 83

T CONCIUSIONS ettt ettt ettt ettt ettt et e st e s bt e e s bt e e sabee s bt e e bt e e sabee e bbeesabaesnteesabeeensbeesabeesasaeesareean 88
8 REFEIENCES ...ttt ettt st st b e e ettt n e r e s saee e 89

AN o 01T o [USRS 91

Figures

FIgure 1 : HAadoOop SUDPIOJECES 27viueieeeeeeeeeeeetecte ettt ettt et et et eete et ese e e eteeteebesaessessensensenseresseesestens 15
FIGUre 2 : HDFS ArChItECTUIE 12 ..ottt ettt ettt ettt ettt eteeteebesteese s ensensenseneeneetestens 16
Figure 3 : MapReduce data flow with multiple reduce tasks 27.........cocevveeeeeeerieeereeeceeeseeee e ereas 17
FIGUE 4 : SNUFFIE @NA SOt 27 ...ttt ettt ettt ettt ettt eseeteeteebesteese s ensensenseseeseetestens 18
Figure 5: Weather MapReduCe JOD OULPUL Z7.......cuiiviveieeieeieteeteeteete ettt eveete et eaesaese s esseseeseesesrens 19
Figure 6 : MapReduce Framework built-in COUNLEIS 27..........oviiiriereieieeeceeeeeeeete ettt ere e erens 23
Figure 7 : Screenshot of the JODTracker PABE 27ui v eeeeeeeeeeceeeteete ettt ettt eereereereerens 24
Figure 8 : JODHISTOrY SCrE@NSNOT.....cciciiiiieciee et e e e e e e e abe e e s e aree e e e nbaee e eeareeas 25
Figure 9 : JobHistory - Overview of SPeCifiC JODciiviiiiiiiiec e 25
Figure 10 : Counters for SPECITIC JOD couuiiiiiiiie e sbee e e bee e s e areeas 26
Figure 11 : EXample Of TOP-K QUEIY oottt et e s sabee e e s e e e eareeas 26
Figure 12 : ATOP-K JOIN @XamMPle 3. ..ottt ettt et et ettt e e eaeeaeereeaens 27
Figure 13 : Example of distributed Top-K jOIN QUEFIES “.........cocuiiuiereciieieieeeeeeeteete ettt eneas 28
Figure 14 : DRIN AIZOIERM % ..ottt ettt ettt ettt et eteeteeteebeeaesse s este s enseneeseeteerens 29
Figure 15 : Archit@CtUIE OVEIVIEW %c.oieieiicteeeeeteeteetetetee ettt ettt e et eaeeteeaeste et et e e enseseeseeseerens 31
Figure 16 : Histogram of relation SUPPHEIS %cuicuiuiicieeeeeteeteete ettt ettt ettt e e eaeeveerens 32
Figure 17 : Example of joining hiStOGrams #..........c.ocuiiuiiieieieeeteeeee ettt ettt ettt e e eaeeveerens 33
Figure 18 : Bound Estimation algorithmc.ooviiiieee ettt ettt st sre s 34
Figure 19 : EXample Of SCOrE BOUNGS @ooeviiviceieeeictecee ettt ettt st e st s sre et steereesbesreenes 35
Figure 20: RSJSIMPIE DAtafloW.......ceiieiiiieeeee ettt e et e e e e abe e e e e are e e e enneeeeenreeas 42
FIgUre 21: RSJET DatafloWuuii ittt et e st e et e e e et e e e e e abe e e e eabeeeeenbeeeeennrenas 47
Figure 22: RSJETLBDIStCache DatafloWc..uuiiiiiiieeeeee ettt ettt e e e e et e e e e areeas 52
Figure 23: RSJETLINAEX DAtaflOWcciceiiieeciiie ettt ettt ettt e e et e e e e abe e e e eabe e e e enbaeeeenneeas 56
Figure 24: Scenario 1 for k=10 - Total DUIatioNcccccuiiiieciiie ettt e e e e e et e e e e e 66
Figure 25: Scenario 1 for k=10 - Average Map TiME.......cocccciiie ittt et e e rre e e e be e e e e eareeas 67
Figure 26: Scenario 1 for k=10 - Average Shuffle TiMe.......ccueii i 68
Figure 27: Scenario 1 for k=10 - Average MEerge TiMe......ccccuiieeeiiiee et e et e ee e e e ere e e e e sare e e e e beee e eeareeas 68
Figure 28: Scenario 1 for k=10 - Average REAUCE TIME ...ccccuviiiiiiiiie ettt e e e bae e e 69
Figure 29: Scenario 1 for k=10 - Map INPUL RECOISccieiiiiiiiiiiiie ettt e e e e e 70
Figure 30: Scenario 1 for k=10 - Map OULPUL RECOIAS ...ceiiiviiieeiiiiie ettt 70
Figure 31: Scenario 1 for k=10 - Recuce OUtput RECOIASuviiiiiiiiiiiiiie et 71
Figure 32: Scenario 1 for k=10 - SHUFfled IMapscooucuiiiiiiiieecce et e s 72
Figure 33: Scenario 1 for k=10 - Map Spilled RECOIASccccuviiiiiiiiieiiiiee et 73
Figure 34: Scenario 1 for k=10 - INPUL SPIit BYLES ...cciviuiiiiiiiiiee ettt e e 73
Figure 35: Scenario 1 for k=10 - CPU Map TiMeciieiiiiieiiiiieeeciiee e sree e e te e e esitee e s atee s s esabaee s enbaee s enareeas 74
Figure 36: Scenario 1 for k=10 - CPU RECUCE TIMEccuuririeiiiieeeiiieeeesreeeesite e e esitee e e sitee s s s avaee s saseeesenanenas 74
FIBUre 37:SCENAN0 2 - 5 GB ..ttt e et e e e e e e te e e e e e e e e ee e e s e e e e e e e eeseeeeeeeeeeeeeeeeaaeaees 77
(O T E Yo=Y o = g (o 3t K C] = S 77
(O e Yo=Y o =Y g (o B At K0 [C] = S 78
(O O Yo=Y o T (o B A A 0 C] = S 78
(O I Yo=Y o = (o B A A [0 C] = S 78
Figure 42: Scenario 3 10GB - Total DUratioN........cceeiiiiiccciiiiieee ettt e e e e e e e e e e e e neraeeeee s 80

Figure 43: Scenario 4 20GB - TOtal DUIatioN........ceeeiiiiiccciiiiieee et e e e e e e e e e e e neraeeee s 82

file:///C:/Users/may/Documents/MSc/thesisV2/Saouk_Mei_Thesis.docx%23_Toc444040234
file:///C:/Users/may/Documents/MSc/thesisV2/Saouk_Mei_Thesis.docx%23_Toc444040235
file:///C:/Users/may/Documents/MSc/thesisV2/Saouk_Mei_Thesis.docx%23_Toc444040236
file:///C:/Users/may/Documents/MSc/thesisV2/Saouk_Mei_Thesis.docx%23_Toc444040237
file:///C:/Users/may/Documents/MSc/thesisV2/Saouk_Mei_Thesis.docx%23_Toc444040238

Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:

el aF g To N T o] =1l D 1T - | 4 To] o IR USRS 83
Scenario 5 — RSJETLBDistCache joins per reducer on zipf 0.5......coiviiiiiiiiiieiniiieeccceee e 84
Scenario 5 - RSJET joins per reducer on zipf 0.5uuiiiiiieii et 85
RSJETLBDistCache joins per reducer on Zipf 0.2cooociiiiiiiiieie e 86
RSJET joins per reducer 0N Zipf 0.2uviiiiiiiiieeciieee ettt e e s sree e s e s s abee e s s e 86
Scenario 1 for k=100 - Total DUFation..........ceeeciiiiicciiie e e e e e e s aaeee e 91

Scenario 1 for k=100 — AVErage Map TiMEccccuveieeiiieeecciiee e et e e estre e e estae e e e saae e e e saareeesesseeeeas 91
Scenario 1 for k=100 - Average Shuffle TImMe.......cooociiiiicieeeccee e 91
Scenario 1 for k=100 - AVerage MErge TiMB.......uuieecuieeeeiiieeeecireeeectreeeesraeeeesaaeeeesasaeeesssseeeeas 91
Scenario 1 for k=100 - Average RedUCE TIMEueiiiiiiieeeiiiiee et et e e e esate e e e sare e e s eaaeeeeas 92
Scenario 1 for k =100 - Map INPUt RECOIAS........uuviiiiiiieecciiie ettt e e saae e e s eaaneeeas 92
Scenario 1 for k=100 - Map OUtPUL RECOIScciiciiieiiiiieeeciiieee et esere e e e e s eaaee e 92
Scenario 1 for k=100 - Reduce OUtpUt RECOIAS.....cccuviiiiiiiiiiecciieee e e 92
Scenario 1 for k=100 - ShUFfled Mapsueieeciiieicee e e aaee e 92
Scenario 1 for k=100 - Map Spilled RECOIASoiieiiiiiieciiiieeceee e 92
Scenario 1 for k=100 - INPUL SPIlit BYtES.....uviiiiciiiiicciiie ettt e s s seree e 93
Scenario 1 for k=100 - CPU Map TiME .ececcuiiieieiiiieeeciiee e ecitee e sttt e e ssitvee e ssesaee s ssnase e e ssasreeessnsneeeens 93
Scenario 1 for k=100 - CPU REAUCE TIME....uiiiiciiiiieiiiiee ettt e ecireeessiivee e ssitaee s essae e e ssareeessnnseeeens 93
Scenario 1 for k=500 - Total DUration..........ceeeciiieiiciiie it e e s seree e 94
Scenario 1 for k=500 - AVErage Map TiME....ccccuuieeeiiiieeriiieeeeiireeeesireeeesraeeeessseeeessreeesssseeeens 94
Scenario 1 for k=500 - Average Shuffle TIme ..o 94
Scenario 1 for k=500 - AVErage Merge TiMB....cc.uuiiicuieeeeiiieeeecireeeesireeeesraeeeesreeeeesnsreeesssseeeens 94
Scenario 1 for k=500 - Average RedUCE TiMEuiiiiciiieiiiiiieeeiree e esiree e e e esare e e e sereeessereeeeas 94
Scenario 1 for k=500 - Map INPUt RECOIAS ...cccuiiiiiiiiieiciiie et e e e e seaee e 94
Scenario 1 for k=500 - Map OUtpUt RECOIASccivcuiiiiiiciiieeeiieec ettt e e s seree e 95
Scenario 1 for k=500 - Reduce OUtPUL RECOIAS......ccuiiiiiiiiiiecciiee et e 95
Scenario 1 for k=500 - ShUfled Maps.......uiiiieiiiie et e e e e aaee e 95
Scenario 1 for k=500 - Map Spilled RECOIdSooiccuiiiiiiiiiie et 95
Scenario 1 for k=500 - INPUL SPIIt BYTES......eeieiciiieeciiee ettt et e e e e e aaee e 95
Scenario 1 for k=500 - CPU Map TiME ..cccuuiiieeciiie e cieee e ettt e et eeeitae e e estae e e eeaaae e e esaareeesennneeeeas 95
Scenario 1 for k=500 - CPU REAUCE TiME....ccccieircieeeiiieeiieeeiteeesieeestesessaeesveeessseesseeesseeesveeesanes 96
Scenario 4 - Average ShUffle TIMEoee it aree e 96
Scenario 4 - Average Merge TiMe ..., 96
Scenario 4 - Average REAUCE TiME ..oviiii ettt e e e e e e ecreere e e e s e e s s nvea e e e e e e s e esnnseaaeeeeeeennns 96

Tables

Table 1: Algorithms and tECANIGUESeiiiiiiiiecie e e e e e e et e e e e rabae e s e enbeee e enreeas 37
Table 2: Cluster CONFIGUIAtIONii i e e e e e e e et e e e e e nbeee s ennbeeeeenneeas 62
Table 3: SCENATIOS AN FACTOTSccocciiiiiiiie et e e e e et r e e e e e eseaabeaeeeeeessensabaereeeas 63
BIE] o) L S S Y=L W o] o - =] R RRRRRR 64
Table 5: SecoNd SET OFf AATASELScccuiiriiiiiieeeceeee e e e e e e eeetrbrr e e e e e e e sensaraeeeeeas 64
Table 6: Third St Of dataSelS......cciiiiiiiiiiiii et e e e et r e e e e e eeearbeeereeeessensarerreeeas 65
Table 7: FOUIth St Of dataselsccocuvveiiiiiiiiiceeeee e e eee e e e e e eeeabber e e e e e e s sensabaereeeas 65
Table 8: SCENATIO 1 fOr K=L0.uuuiiii ittt e e eee et e e e e e e e e abbe e e e e e e s seeeasbaaeeeeeeesennsareseeeeas 66
Table 9: Scenario 1 for k=10 - Bounds per datasetl.........cccecuiiieiiiiiieiiieee e e e e e e 69
Table 10: SCENATIO 1 fOr K=100.......uuuuuuuuerrerererererererrrerererererererer.rer.....—————.———.—.................—.............—.—.—.——————— 75
Table 11: SCENAriO 1 fOr K=500.....uuuuuuueiuerrrrerirerereierurererererererererer.r.....—.—.—————.—.—.—.............—.—.................——————— 76
Table 12: Scenario 2 - CoONfigUIatioN.........occiiii i e rbee e s bee e s sab e e e e sareeas 77
TabIE 13: SCENATIO 3 1OGBuvuvuviriiiiiriiieererererererererererer.r——————————————————.—.r.rer.r.r.r.r.....................—.—...........—.——— 79
Table 14: Scenario 3 10GB — DOUNGSuuvuuiiiiiiiiiiiiiiiiiiireiiierererere e e er.———————————————————————————.—.———————.———————————.. 79
TabIE 15: SCENAIIO 3 20GB ...uuviviiiviiiiiriiieerereterererererererer..——.—————————————...r.r.........................—.......—...............——— 80
Table 16: Scenario 3 20GB — DOUNGSuuuuueriiiiiiiiiieiiiiriieiiierererarerere e . .———————————————————————.—.—.—.—.—————.———————————.. 80
Table 17: Scenario 3 20GB - TOTAl DUFATIONuuuueiiieiiiiiiriiiiiieriieierererererarererrerera—.————————————————————————————————————. 81
TabIE 18: SCENAIIO 4 20GBuvveveviieiireiierrtrererererererererer.—————————————————.r.rer.re....—.................—.......—..............———— 82

Table 19:

Yol -1 ¢ (o = TR 83

1 Introduction

1.1 Motivation

Efficient processing of rank aware queries has attracted the interest of the scientific community over the
last few years. In particular, top-k join, which is a category of rank aware queries, is an essential tool for
data analysis. Top-k joins enable selective retrieval of the k best combined results that come from multiple
different input datasets. These queries return the k most important join tuples from the potentially huge
results of a join among relations, according to a given ranking function.

Efficiency in terms of time and resources is a crucial requirement in many large-scale environments that
handle vast amounts of data in a frequent basis. The most common solutions to address large-scale data
analytics, evolve architectures of commodity machines to powerful parallel architectures. Some examples
of such architectures from the industry are Google’s MapReduce 7, Yahoo’s PNUTS 3, Microsoft’s SCOPE?,
LinkedIn’s Kafka ® and Apache Hadoop which is an open source implementation of MapReduce 2. Several
companies, such as Facebook ! use and contribute to Apache Hadoop implementation.

Arguably, nowadays, the most popular framework for parallel processing is MapReduce due to its
significant features that include scalability, fault tolerance, ease of programming and flexibility. The model
was proposed by Dean et al.” as a programming model for processing and generating large datasets. Users
specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs
and a reduce function that merges all intermediate values associated with the same intermediate key.
MapReduce automatically parallelizes and executes the program on a large cluster of commodity
machines. Thus, MapReduce has been proposed as a flexible tool for big data analytics 2.

However, the model has also been criticized in terms of performance against parallel databases by Pavlo
et al. 2! and by Stonebraker et al. ?°. To improve the performance of the traditional MapReduce model,
many solutions have been proposed which address different factors that affect the job execution. A
complete list of the factors affecting MapReduce jobs' performance and the corresponding scientific
surveys that aim to mitigate these factors are presented by Doulkeridis et al. > and by Lee et al. *°.

In the context of top-k joins, there are two factors recognized as weaknesses of the MapReduce model
that make the processing of such queries inefficient on a framework which implements the MapReduce
model such as Hadoop. The first factor is the lack of early termination of map tasks. A MapReduce job is
detached from the input datasets context, therefore it processes the whole datasets even if the top-k
results asked by the user can be produced by a small part of the input datasets. This adds delay to the
completion of the job and thus the user waits for the redundant processing to complete. Another
weakness of the model is the lack of an efficient load balancing technique in the reduce phase. This
weakness is stressed out particularly in skewed datasets where some keys aggregate a very large number
of values, so consequently the reduce tasks responsible for this key take longer time to complete

processing. The result of this behavior is that the most loaded reduce task delays the completion of the
job while the other reduce tasks have completed their processing.

1.2 Scope

The scope of this thesis is to propose, implement and test a set of algorithms that tackle the weaknesses
of MapReduce model in the context of processing top-k join queries. All proposed techniques are
implemented on top of Hadoop MapReduce model without requiring any modifications on its internal
mechanism.

The algorithms proposed, aim to address the problems of early termination and load balancing in
MapReduce. The efficiency of these algorithms is proved by a number of experiments performed on a
Hadoop cluster. Both early termination and load balancing techniques require a preprocessing on the
input data. More specifically, data synopses like histograms are used to determine a) the number of the
tuples that need to be processed and b) the load produced by these tuples in the reduce phase.

1.3 Thesis structure

This thesis is divided in 8 chapters. Chapter 1 is the introductory section where the motivations and the
scope of the thesis are presented. Chapter 2 summarizes the related research and proposals that have
been made to address the same problem. Chapter 3 analyzes the technical and algorithmic background
of the proposed solution. Chapter 4 desribes the architectural design of the proposed solution. Chapter 5
is more technical and describes the algorithms implemented by providing pseudocode and
documentation for each algorithm. Chapter 6 presents the experimental evaluation of the algorithms.
The conclusions of this work and some proposals for further research are presented in Chapter 7. Chapter
8 lists references and bibliography. Last but not least, an Appendix is provided with the complete
experimental results.

2 Related Work

2.1 Early Termination

Many attempts have been made to address the lack of early termination in MapReduce. Some of those
are presented in this section.

In Grover’s et al. work 1%, the issue of lack of early termination of map tasks is addressed by using sampling
based on predicates. The concept of this solution is based on the fact that Hadoop maintains an
abstraction between itself and the job’s semantics. Therefore, a new type of job called dynamic job is
presented. It runs as a smaller job with the intention of processing only a small subset of the input
partitions. Another new concept, called Input Provider, is introduced and its role is to receive periodic
statistics of the job and decide dynamically whether more input data should be accessed by the job or
not. The decisions that Input Provider may result to are three: a) “end of input” which indicates that the
job need not consume additional input partitions, b) “input available” which means that more input is
needed and thus Input Provider provides to Hadoop the list of additional partitions to be processed next,
¢) “no input available” which means that Input Provider has to wait until its next invocation to reassess
the job’s progress.

Another approach to the early termination matter, is EARL ¥’ which stands for Early Accurate Results
Library. The concept of this approach is the calculation of k results by producing uniform random samples
in an iterative way. In each iteration, the accuracy of the result is assessed. The assessment relies on the
accuracy error which is estimated via the bootstrapping technique. The iteration termination condition is
the user defined threshold for the error. The implementation of EARL in Hadoop MapReduce framework
requires the implementation of a pipelining technique so that reduce tasks can process input before the
completion of processing in the map tasks. Moreover, a communication channel between map tasks and
reduce tasks is implemented for checking the satisfaction of the termination condition.

The lack of early termination in the context of rank aware processing has been recognized by Doulkeridis
et al. ¢ as well, were various individual techniques are introduced to address this problem. Some of the
techniques proposed are the intelligent data placement using advanced partitioning schemes tailored to
top-k queries and the use of synopses for the data in HDFS that allow efficient identification of blocks
which most probably contain the top-k results.

The following approaches, address the problem of early termination specifically, in rank aware query
processing in cloud environments. RanKloud 2 is a framework which uses a data partitioning strategy called
uSplit, which partitions data in a utility-sensitive manner. A tuple is considered utility sensitive when it is
likely to produce a top-k result. RanKloud aims at enhancing rank aware queries processing in non-uniform
data by estimating a threshold which represents the lowest score of the top-k results so as to prevent
wasted work. Ntarmos et al. 2, present a set of three algorithms which promise efficient processing of
rank aware queries. The first algorithm, involves Pig and Hive approaches to calculate top-k joins. The
second algorithm involves MapReduce jobs which use specialized indices stored in a NoSQL database and

its goal is to reduce the number of MapReduce jobs needed to estimate the top-k results. The last
algorithm uses histograms and Bloom filters which are again stored in a NoSQL database and accessed

l. 26 introduce a MapReduce-like framework for online analytics to

from MapReduce jobs. Wang et a
address algorithms such as top-k and k-means. Online analytics refer to the concept that the input is being
processed progressively and every time a portion of data is analyzed, an estimated result can be returned.
This implies that some level of accuracy needs to be sacrificed for better performance and responsiveness.
This solution consists of three key features: 1) an online sampling module to obtain data samples for
incremental processing 2) an estimation module that can be defined by the user and is responsible for
computing approximate results based on the running statistics and 3) an early termination module that

can also be defined by the user and it can enable the execution to be stopped before all data is processed
26

2.2 Load Balancing

There exist several approaches that use pre-processing and sampling techniques to address the problem
of fair work allocation in the MapReduce model.

Kold et al ** propose two algorithms. The first one, BlockSplit, considers the block sizes and assigns entire
blocks to reduce tasks, while respecting load balancing and memory constraints. The larger blocks are
divided in smaller chunks to enable their parallel processing. The second algorithm is PairRange and it
distributes the entities in a manner that each reduce task computes the same number of entity
comparisons. Both algorithms, rely on a preprocessing MapReduce job which produces a matrix
containing the number of entities per block.

In Ramakrishnan’s et al. 22 work, the proposed algorithm splits the large load that corresponds to certain
reduce keys by producing a number of medium load reduce keys with the means of whole tuple hashing
or with the use of secondary keys (bin-packing algorithm). The identification of large load keys takes place
before the MapReduce job execution and is performed by sampling. The preprocessing result is stored in
a file called partition in HDFS.

Another category of approaches to the problem of handling data skew in MapReduce contains solutions
that focus on data repartitioning. Guer et al. ! use a cost estimation method to calculate the load assigned
to reduce tasks. In each map task, local statistics are maintained and then combined in a global histogram
by the TopCluster algorithm. The information stored in global histogram is used to achieve a fair load
distribution in reduce phase. SkewReduce®® consists of an API for spatial feature extraction algorithms and
a static optimizer. The functions of the API are translated into a dataflow that can run in a MapReduce
platform. The optimizer uses user defined cost functions that estimate processing time and its role is to
partition the data so as to ensure skew-resistant processing. However, the fact that the cost functions are
defined by user can be a disadvantage. This is avoided in SkewTune?®. SkewTune detects straggling tasks
without using user defined functions and repartitions the unprocessed input of the most loaded task to
the next available.

Sailfish? introduces a solution which batches the disk accesses that each reduce task has to make to fetch
the data from map tasks. In this solution, the map tasks do not produce intermediate files but instead,
they shuffle their outputs to the reduce tasks. Each reduce task aggregates the map outputs and writes
themin afile. So, a file is produced per reduce task and the reduce task has to access only this file. Themis?*
performs batching as well in a similar way that Sailfish does, but it also considers moderate clusters, with
a number of nodes less than one hundred, where hardware failures are rare to happen. As supported by
Rasmussen et al. 2* in moderate clusters, fault tolerance techniques can be eliminated and thus enhance
overall execution time, so, the proposed technique in a hardware failure is the re-execution of the job.

3 Background

3.1 Technical Background

3.1.1 Hadoop

The Apache Hadoop framework is an open source implementation of the MapReduce algorithm. This
framework allows the distributed processing of large data sets across computer clusters. It is designed to
scale up from single servers to thousands of machines and to take advantage of the each node’s storage
and local computation. A significant goal that it fulfills is the detection and handling of failures, at the
application layer, that may have been caused by hardware failures.

Although the best known components of Hadoop are MapReduce and HDFS (its distributed filesystem),
the framework also offers a number of other subprojects concerning distributed computing which provide
supplementary services to the users while adding higher abstraction levels. Some of the subprojects are
mentioned below and their place in the technology stack is shown in figure 1.

e C(Core
e Avro
e MapReduce

e HDFS
e Pig
e HBase

e ZooKeeper
e Hive
e Chukwa

Pig Chukwa Hive HBase

MapReduce HOFS | lever

Core Avro

Figure 1 : Hadoop subprojects %7

3.1.2 HDFS

HDFS stands for Hadoop Distributed File System and it is designed to provide high throughput access to
application data. It can store very large files using simple commodity hardware. The idea, upon which,
HDFS was designed, is a write-once but read-many times pattern. This implies that HDFS is a very good
choice for the storage and processing of very large dataset (gigabytes, terabytes and even petabytes in
size) that are not to be altered often.

The implementation of this distributed file system takes into consideration the hardware node failures
which are likely to happen when using commonly available hardware. Therefore, it implements certain
techniques to ensure data integrity such as checksums, each time a file enters the filesystem or is
transferred through the network, and replicas. HDFS cluster consists of two types of nodes. One node is
the namenode which maintains and manages the filesystem namespace and there are a number of
datanodes (workers) which contain the actual data. There is also a replica node of the namenode which
is called secondary namenode.

The HDFS architecture is briefly presented in figure 2. Whenever a client uploads or creates a file in HDFS,
the file is internally split into HDFS blocks. HDFS uses the concept of the block similarly to the hard disk
drives. The difference is that an HDFS block is a much larger unit than the ones created in a filesystem for
a single disk. The default block size in HDFS is 64MB. The namenode decides the replication strategy and
keeps information like which node will store each block or replica. Accordingly, each time a client requests
to read a file from HDFS, a request is sent to namenode to extract the necessary information for the file
location on the datanodes.

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Namenode

Metadata ops

Read Datanodes Datanodes
T ‘ |
£ O - = Replication a a8 B
I = u Blocks
\ / \ J
e | N
Rack 1 Vvrite Rack 2

Figure 2 : HDFS Architecture 2

3.1.3 MapReduce

MapReduce is a programming model and an associated implementation for processing and generating
large data sets. Users specify a map function that processes a key/value pair to generate a set of
intermediate key/value pairs and a reduce function that merges all intermediate values associated with
the same intermediate key’.

Hadoop framework implements the MapReduce model, offering users the opportunity to implement and
run their MapReduce jobs without worrying about issues like the parallelization of the computation, the
data distribution and the handling of failures.

When a MapReduce job is submitted for execution, one node, the jobtracker, coordinates and assigns the
map and reduce tasks to other nodes, the tasktrackers. The job input is divided into logical fixed sized
units which are called input splits. Each input split is the input of a map task. The code of the map task is
repeated for every record contained in the input split. The output of each map task is saved locally (not
on HDFS) on each tasktracker as intermediate result. The intermediate map results are then sorted and
partitioned by key on each node. The code that performs the partitioning can be either the default Hadoop
Partitioner (which buckets keys using a hash function) or a user defined method. There can be many keys
handled by one reducer but all the records for a specific key must be transferred to a single reducer. This
is achieved during the shuffle phase. Once the intermediate data, reach the reducer that will process them
they are merged and the reducer starts its execution. The output of the reducers is stored on the HDFS.
The MapReduce data flow with multiple reduce tasks, is presented in figure 3.

input
e OIS
: output
. Copy e HDES
i N\ Merge
L |- -pi part) F——p HOFs
: replication
merge
> F -p part] ——p HDFS
replication

Figure 3 : MapReduce data flow with multiple reduce tasks 7

The most interesting part of the MapReduce data flow is the one where shuffle and sort take place. Proper
handling of these phases can enable the implementation of complex queries like Top-K joins result on
significant differences in job’s total execution time. The shuffle and sort phase is partly implemented on
the Map side and partly on the Reduce side. From the Map side, when the intermediate results are
produced they are stored in the memory buffer of the map task. Once the contents of the memory buffer
reach a threshold size the contents are spilled to the disk. Before the intermediate data are actually
written on the disk, they are divided into partitions corresponding to the reducers that they will ultimately
be sent to. Within each local partition an in-memory sort by key is performed.

From the Reduce side, the reduce tasks fetch the map outputs that correspond to their partition and store
them initially in the memory buffer, this is also known as the copy phase of the reduce task. As soon as
the memory buffer reaches a certain threshold, the fetched map outputs are merged and spilled to the
disk. Once spilled on the disk, they are merged again on larger files. As soon as all the map outputs have
been copied the reduce task performs the sort phase which merges the map outputs while maintaining
their sort ordering. The whole Shuffle and Sort phase is summarized in figure 4.

Copy “Sort” Reduce
phase phase phase
map task PRE) reduce task
spill to disk fetd."_.___....'........>-~...
bufferin =% g ;
memory g . -
8 »-»_ | i
lnpul v ey : merge output
lit : "
x partitions 1- _ _
mixture of in-memory ond on-d/sk data
R B
Other maps e~ S » Other reduces

Figure 4 : Shuffle and Sort %7

Itis worth mentioning that values such as the map memory buffer threshold or the memory buffer default
size or reduce memory buffer can also be configured by the user. Some indicative properties are
mentioned below:

e jo.sort.mb = map task default memory buffer

e jo.sort.spill.percent - threshold that indicates when map memory buffer contents should be
spilled on the disk

e mapred.local.dir = the local directories that contain the map spilled records

e mapred.reduce.parallel.copies > the number of threads that a reduce task uses to copy map
output results locally

e mapred.job.shuffle.merge.percent - threshold that indicates when reduce memory buffer
contents should be spilled on the disk

3.1.4 Secondary Sort in MapReduce

Another way with which the user can intervene in the shuffle — sort phase is the use of secondary sort
technique in the implementation of the MapReduce jobs. Even though Hadoop makes sure that all records
are sorted by key when they reach the reducers, it makes no sorting on the values of a particular key. In
certain cases there is the need for a sorting amongst values as well.

A very simple example mentioned in Tom White’s book: Hadoop : The Definitive Guide is the weather
dataset and the need is to sort the year and the temperatures taken for each year in an ascending order.
Each record of the input weather dataset has two fields, the first is the year and the second is a
temperature.

So, the output would look like figure 5.

1900 35°C
1900 34°C
1900 34°C

o om

1901 36°C
1901 35°C

Figure 5: Weather MapReduce Job Output %7

To achieve that, the user has to define a composite key. A composite key would be the combination of
the two fields: year-temperature. Once the composite key is defined, the following classes have to be
implemented by the user:

e A Partitioner which partitions the map output records by the first part of the key, which is the
natural key. In that way we make sure that all records for the same year reach the same reducer.

e A KeyComparator which sorts the composite key (by year and by temperature).

e A GroupingComparator which sorts only by the natural key (the year).

So, the secondary sort technique assures that with the use of the custom Partitioner all records for one
year, from all map tasks will be delivered to the same reducer. The KeyComparator makes sure that the
map output records are sorted by year and temperature and finally the GroupingComparator makes sure
that all groups of key-value pairs that reached the reducer are sorted by year. In this final step, each group
will be already sorted by value from the KeyComparator.

3.1.5 Input Split, InputFormat and RecordReader

As mentioned earlier, an input split is the result of a logical split of a file in HDFS. An input split is also the
input of a map task. Hadoop creates input splits with the Java Interface
org.apache.hadoop.mapred.InputSplit. Input Splits are created by an instance of Interface
org.apache.hadoop.mapred.InputFormat. InputFormat describes the input-specification for a
MapReduce job.

One of the commonly wused implementing classes of InputFormat interface s
org.apache.hadoop.mapred.FilelnputFormat. FilelnputFormatis the base «class for all file-
based InputFormats. This provides a generic implementation of getSplits(JobConf, int) 2,

The method getSplits calculates the number of splits and sends their storage locations to the jobtracker.
Once a map tasks start its execution it passes the split to method getRecordReader() of InputFormat. A
RecordReader is an iterator over the records of the map input split and is used to generate key-values
which will be passed to the map function.

A user can create custom InputFormat classes that extend one of the implementing classes of the Interface
InputFormat in order to extend the capabilities of a MapReduce program.

To adjust the number of input splits returned by the method getSplits(JobConf,int) the following steps
could be performed:

1. Create a custom InputFormat class which extends FileInputFormat
2. Override the method getSplits()
3. Implement getSplits() method so as to return the desired number of input splits

The user can also intervene in the implementation of RecordReader and define the type and content of
the key-value pairs that will be passed to the map function. The steps to do that are the following:

1. Create a custom RecordReader <class which implements the Interface
org.apache.hadoop.mapred.RecordReader

2. Implement the method next() according to the program’s specifications. This method is
invoked each time a record is fetched from the InputSplit.

3. Create a custom InputFormat class which extends the FilelnputFormat and override the
method getRecordReader() so as to invoke the new custom RecordReader

3.1.6 Side Data Distribution

There are some cases where a MapReduce job may need access to certain read only data in order to
process a large input dataset. This extra piece of data should be available to all map tasks or to all reduce
tasks depending on the implementation and is commonly referred to as side data. There are two basic
distribution mechanisms offered by Hadoop which can be used by the user to handle side data, the Job
Configuration and the Distribute Cache.

3.1.6.1 Job Configuration

Each MapReduce job has a specific configuration defined by the Java class:
org.apache.hadoop.mapred.JobConf which extends the class org.apache.hadoop.conf.Configuration. All
the built-in MapReduce job properties can be read or altered with methods offered by the class JobConf.
For example, the property that defines the number of reduce tasks can be read by the method:
getNumReduceTasks() and can be set by the method setNumReduceTasks(int n).

Apart from the default MapReduce properties, there are the user defined properties. A user can add
his/her own property and pass a primitive type as its value, via JobConf class by using the methods
setint(String propertyName, int value), setString(String propertyName, String value) etc. inherited by the
class Configuration. The JobConf instance, with all its properties, is visible from all Map and Reduce tasks.
So, the user ~can override the method configure(JobConfjob) of the class
org.apache.hadoop.mapred.MapReduceBase, within the implementation of the Map and Reduce classes,
in order to access the properties that he/she defined on the JobConf instance. For this purpose, JobConf
offers getter methods inherited from Configuration such as getint(String propertyName), getString(String
propertyName) etc.

3.1.6.2 Distributed Cache

JobConfiguration is a good choice when the side data size is a few kilobytes maximum because it can put
pressure on the memory usage in the Hadoop daemons. Instead, Hadoop exposes distributed cache
mechanism as a service that copies and archives files to the tasks nodes. The files are copied once per job
and the user can specify which files need to be handled in the distributed cache with the class
org.apache.hadoop.filecache.DistributedCache and the method addCacheFile(URI uri, Configuration
conf).

Once the side data is added in DistributedCache, it is visible from all Map and Reduce tasks. So, the user
can get the paths of the localized cached files, within the Map or Reduce class implementation, by invoking
the method getlLocalCacheFiles(Configuration conf) from class DistributedCache.

3.1.7 Joins In MapReduce

Joins in MapReduce can be performed programmatically. This means that the user has to implement a
MapReduce job that will perform the join between two datasets. There are three options for the
implementation approach and the proper choice depends on the size and structure of the datasets to be
joined.

If the one dataset is very large while the other is very small, then the simplest way to perform a join using
MapReduce, is to use the distributed cache machine. Therefore, the MapReduce job will have as input

only the large dataset. For each record fetched from the dataset, the join value will be looked up in the
cached file and the corresponding records of the second dataset will be fetched and joined with the
current record of the first (the input dataset).

However, if both datasets are very large then the distribute cache mechanism is not an efficient solution.
In this case, the join can be performed either on the map side or the reduce side.

Map side joins are an appropriate solution when the input datasets have the structure of the output of a
MapReduce job. This means that both datasets should be divided on the same number of partitions and
each should be sorted by the same key. Also, all records for a certain key should reside on the same
partition. These restrictions are necessary because on a map side join, the join is performed before the
data reaches a map function and this is achieved with the wuse of the class:
org.apache.hadoop.mapred.join.CompositelnputFormat<K> that represents an InputFormat capable of
performing joins over a set of data sources sorted and partitioned the same way. Due to the above
mentioned restrictions, Map side joins can only be used for the join of several outputs of map reduce jobs.

A more general category of MapReduce joins are the Reduce side joins. They are not constrained by the
size, partitioning and sorting of the input datasets. A commonly used technique used for the
implementation of Reduce side joins is the secondary sort technique described earlier in 3.1.4 in
combination with the tagging technique. Tags are used to mark the source dataset from which each record
derives. So, the composite key is consisted by a tag, which is usually a number indicating the first or second
dataset, and the actual join value.

With the use of the secondary sort and tagging techniques, it is certain that each reducer will receive first
all the records for a specific join value from the first dataset and then from the second. Afterwards, the
reducer can perform the join.

3.1.8 Job Counters

When a MapReduce job in Hadoop completes its execution, there are five basic metrics provided by the
framework: Total Duration, Average Map Time, Average Reduce Time, Average Shuffle Time and Average
Merge Time. Here is the definition for each of them:

Total Duration = Time elapsed from the beginning of job execution until the last reduce task completes.
Average Map Time = Total time taken by all Map tasks/ Count of Map Tasks

Average Reduce Time = Total time taken by all Reduce tasks/Count of Reduce tasks

Average Shuffle Time = Total time taken by all Map outputs to be copied / Count of Map outputs
Average Merge time = Average of (sort_FinishTime — shuffle_FinishTime)

The above metrics break down the execution of a MapReduce job in its phases and provide a first image
of the job’s efficiency.

Moreover, the framework provides details concerning the job execution through the counters. Counters
are metrics of the MapReduce jobs and provide helpful information for the detection of possible bugs in
the MapReduce program, for the validity of the input data, for the efficiency of the MapReduce program
etc. It is a very helpful tool to evaluate the performance and efficiency of the MapReduce job. Hadoop
contains some built in counters but a user can define his/her own user defined counters. Some of the
most commonly used built in counters and their purposes are described in Figure 6 : MapReduce
Framework built-in counters .

In addition to the counters presented in figure 6, there are two more significant counters: CPU time spent
(ms) on Map and CPU time spent (ms) on Reduce. CPU time spent on Map counter represents the total
CPU time across all of the nodes in the cluster during map phase. More map tasks result to more cpu time
spent. Accordingly, CPU time spent on Reduce counter represents the total CPU time across all of the
nodes in the cluster during reduce phase. Two more interesting counters of the MapReduce Framework
are Map Spilled Records and Reduce Spilled Records. Map Spilled records counter represents the number
of records spilled to disk in all map tasks in the job. Respectively, Reduce Spilled records counter
represents the number of records spilled to disk by all reduce tasks in the job. The Shuffled Maps counter
represents the number of map output files transferred to reducers by the shuffle phase.

Group Counter Description
Map-Reduce Map input records The number of input records consumed by all the maps in the job. Incremented
Framework every time a record is read from 2 RecordReader and passed to the map's

mzp() method by the framework.

Map skipped records The number of input records skipped by all the maps in the job. See “Skipping
Bad Records” on page 171.

Map input bytes The number of bytes of uncompressed input consumed by all the maps in the
job.Incremented everytimea recordisread from aRecor dReader and passed
to the map'smap) methed by the framework.

Map output records The number of map output records produced by all the mzps in the job. Incre-
mentad every time the collect() methodis called ona map’s OutputCol
lector.

Map output bytes The number of bytes of uncompressed output produced by all the maps in the
job. Incremented every time the collect() method is called on a map's
OutputCollector.

Combineinputrecords The number of input records consumed by all the combiners (if any) in the job.
Incremented every time a value is read from the combiner s iterator over values.
Note that this count is the number of values consumed by the combiner, not the
number of distinct key groups (which would not be a useful metric, since there
is not necessarily one group per key for a combiner; see “Combiner Func-
tions” on page 29, and also “Shuffle and Sort”™ on page 163).

Combine output records The number of output records produced by all the combiners (if any) in the job.
Incremented every time the collect () method is called on a combiner's

OutputCollector.

Reduce input groups The number of distinct key groups consumed by all the reducers in the job.
Incremented every time the reducer’s reduce () method is called by the
framework.

Reduce input records The numbercfinput recordsconsumed by all thereducersinthejob. Incremented

every time a value is read from the reducer’s iterator over values. If reducers
consume &l of their inputs this count should be the same as the count for Map
output records.

Figure 6 : MapReduce Framework built-in counters ?”

3.1.9 Job History

Hadoop provides its users with a web Ul for viewing job related information in a graphic environment.
The jobtracker page contains information about the currently running jobs on the cluster.

Dukh Lisks

ip-10-250-110-47 Hadoop Map/Reduce Administration

Etmin: RHUKNRING

Staried: Sal Apr 11 08:11:53 EOT 2008

Warslon: 4,200, rAaanid

Complisd: Thu Apr 8 05-18:40 LTS 5008 by ndalay
Idendlflar; 200804110811

Cluster Summary (Heap Size is 53.75 MB/388.94 MB)

[Waps | Recuces [Toial Gubmissions | Modes | Map Task Capacity | Reduce Tosk Capacity [Avg. Taska/Node | Blacklisied Hodes
53 a0 |2 1 |88 |aa | v6.00 |2

Scheduling Information

Duinaie Mamse | Sehaduling Information
defant N

Filtar {Jobld, Priarity, Usar, Nama)
Enampia: ustramih S300° wil Bier by S ey n e uner feks sne 200" in sl Selda

Running Jobs

Mapg | Maps Ruaducs % PFoduce | Roduces

| Job
. | Mag %
Jobid Priodty | User| Mame |Bomplete Tolal |Eompleted |Complete |Total |Eompleted | SchEduling
job 200604110511 0002 | NORMAL | oo | M2X | 4TS24 i |48 18.285% |3:| a NA

TP eralung ! —_—

Complated Jobs

Mop % [miap | waps Reduce % |Feduce | Feduces Job Scheduling
o Priaity |User Mame |poroive |Totsl |Comploied | Complele |Tolal | Completed | information
lob_200902110811 0001 | NORMAL | gonzo ‘;‘:I::I |""”’-’"* ‘14 |14 100 s ‘.y.. |3.1 Ty
Failed Jobs
Jlu»,'-i
Local Logs

Luazg dimeclary, Jub Tracke:r History

Hadoop, 2009,

Figure 7 : Screenshot of the jobtracker page %’

An instance of the jobtracker page is captured in figure 7. Information about the completed jobs is
provided through the Job History page. The link to the Job History page is available on the bottom of the
jobtracker page.

Job history contains detailed information and links to logs either for successful or failed jobs. An instance
of Job History page is captured in figure 8. By clicking on one Job Id, the user is directed to a page where
an overview of the job is available as well as links to the counters and logs pages (figure 9). By clicking on
the Counters link on the Job overview page, the user is directed to a page where all values for all counters
are available, categorized by purpose (figure 10).

Logged in s: dravho

JobHistory

~ Application Retired Jobs
ot Show 20 v enfries Search:
i) Maps Reduces
» Tools Sloal o ELiThe P JobID s Name e mem o State o MaPsTOll ooleteg REIUSES oieteq
Time < - e P Total e
20160117 20160117 20160117 job 1452622433032 0036 oozie:launcher T=java: W=AllAlgorithm_RTopK:A=AlAI SUCCEEDED 1 1 0 o
10:55:50 10:55:59 110318
CET ET CET
2016.01.16 2016.01.16 2016.01.16 job 1452622433032 0029 oozie:auncher T=java:W=AlAlgorithm_RTopK:A=AIAl SUCCEEDED 1 1 0 0
10:08:13 10:08:21 20:55:15
CET CET CET
20160116 20160116 20160116 job 1452622433032 0030 10K_5uniS_10gridS_SuniV_10gridW_4D_CompineMNotRealB FAILED 159 159 850 850
10:08:23 10:08:32 18:23:40
CET CET CET
2016.01.14 2016.01.14 201601.15 job 1452622433032 0022 cozie:launcher T=java: W=AllAlgorithm_RTopk:A=ALAI SUCCEEDED 1 1 0 o
223730 223741 071435
CET CET CET
2016.01.12 2016.01.12 2016.01.12 job 1452622433032 0020 oozie:launcher.T=java:W=RSJETLEDistCache:A-RSJETLE SUCCEEDED 1 1 0 0
204721 211731 21:24:45
CET CET CET
2016.01.12 2016.01.12 201601.12 job 1452622433032 0021 RSJETLBDistCache SUCCEEDED 3937 3937 10 10
204736 204745 212441
CET CET CET
2016.01.12 2016.01.12 2016.01.12 job 1452622433032 0018 oozie:launcher.T=java:W=RSJETLEDistCache:A=RSJETLE SUCCEEDED 1 1 0 0
21:0231 210240 21:09:58
CET CET CET
2016.01.12 2016.01.12 2016.01.12 job 1452622433032 0019 RSJETLBDistCache SUCCEEDED 3937 3937 10 10
21:0245 210254 21:09:54
CET CET CET
20160112 2016.01.12 2016.01.12 job 1452622433032 0016 oozie:launcher T=java:W=RSJETLBDistCache:A=RSJETLE SUCCEEDED 1 1 0 [
20:54:01 20:54:09 21:01:29
CET CET CET
2016.01.12 2016.01.12 2016.01.12 job 1452622433032 0017 RSJETLBDistCache SUCCEEDED 3937 3937 10 10
205415 205424 21:01:26
CET CET CET
2016.01.12 2016.01.12 2016.01.12 job 1452622433032 0015 cozie:launcher. T=java:W=RSJETLEDistCache:A=RSJETLB SUCCEEDED 1 1 0 0
20:5306 205314 20:53:19
CET CET CET
20160112 20160112 20160112 job 1452622433032 0013 oozie:launcher T=java' W=RSJETLBIndex A=RSJETLBinde SUCCEEDED 1 1 0 o
20:50:23 20:50:31 20
CET CET CET
Figure 8 : JobHistory screenshot
Logged in as: druvho
MapReduce Job job_1452622433032_0019
» Application Job Overview
< Job Job Name: RSJETLBDitCache
User Name: chawkmay
Overview
A Queue: root chawkmay
Confiauration State: SUCCEEDED
Map tasks Uberized: false
Reduce tasks Submitted: Tue Jan 12 21:02:45 CET 2016
Started: Tue Jan 12 21:02:54 CET 2016
» Tools Finished: Tue Jan 12 21.09:54 CET 2016
Elapsed: Gmins, 59sec
Diagnostics:
Average Map Time dsec
Average Shuffle Time 1mins, 30sec
Average Merge Time Zsec
Average Reduce Time 1sec
ApplicationMaster
Attempt Number Start Time Mode Logs
1 Tue Jan 12 21:02:49 CET 2016 dascosall.idintnu.no:8042 logs
Task Type Total Complete
Map 3037 3037
Reduce 10 10
Attempt Type Failed Killed Successful
Maps 0 0 3937
Reduces o 0 10

Figure 9 : JobHistory - Overview of specific job

Counters for job_1452622433032_0019

Figure 10 : Counters for specific job

3.2 Algorithmic Background

3.2.1 Top-kJoins

Rank aware queries help users to identify a limited set of the most interesting results of a query answer.
Top-k queries belong in the category of rank aware queries and they return the k answers matching better
to the user's preferences. An example of a top-k query is the one presented in figure 11. With this query
the user wishes to select the two cheapest laptops from a list that contains many products with their
respective price. In a Top-k query the classification (ranking) of tuples is based on an aggregated score
that occurs when a function f (scoring function) is applied to certain attributes of the table (scoring
attributes)

[0 | Cetegoy | Model | Price |
* — Laptop Acer Aspire E51 -111M 255,00
SELECT * FROM PRODUCTS N - . 25,00
— i " _ Tzblet Dell Wenue 11 Pro 4G 874,70
WH E RE Catego ry - La pto p — Laptop Asus F553MA-SX418H 208,50
ORDER BY Prlce A'SC — Smartphone HTC One M3 511,98
_ Tablet Crystal Audio TAB-722 39,50

LIMIT 2;

_ L=ptop HF - S5tream - 13-c010mv 235,90

Figure 11 : Example of Top-k query

Another category of rank aware queries are Top-k joins. A very good example of a Top-k join is described
by llyas et al. 3. Consider a user interested in finding a location (e.g., city) where the combined cost of
buying a house and paying school tuition for 10 years at that location is minimum. The user is interested
in the five least expensive places. Assume that there are two external sources (databases), Houses and
Schools, that can provide information on houses and schools, respectively. The Houses database provides
a ranked list of the cheapest houses and their locations. Similarly, the Schools database provides a ranked
list of the least expensive schools and their locations. Figure 12 gives an example of the Houses and
Schools databases 2.

HID | Location Price SID | Location Tuition HID | SID Price + 10 x Tuition
HE Lafayette 90,000 1 Indianapolis 3000 ! 3 150000
[z [Wiames 10,000 b< 2 | Wiafayette | 3500 1| 4 152000

- = A

(I3[ndianapoiis 111,000 Y\ atayets 6000 2 | 2 145000

4 | Kokomo 118,000 AfH ilafayati 21K
- - 3 1 141000

5 Lafayette 125,000 5 Indianapolis 7000

6 Kokomo 154.000 6 Indianapolis 7900

’ 7 | Kokomo 8200 Join Result
""" 8 | Kokomo 8200
/ L—
| m—
Houses / Schools

Figure 12 : A Top-k Join example 3
A simple way to calculate the above mentioned Top-k join would be summarized in the following steps:

e Retrieve the list of the cheapest houses and the list of cheapest schools
e Perform a join on location for all schools and houses

e (Calculate the cost of house and tuitions for each joined tuple

e Sortin ascending order by the cost

Such queries when performed on a traditional relational database, have two main disadvantages. First of
all, the Top-k results will be returned to the user only after the join of all tuples is complete, so the larger
the tables the longer the processing time. The second disadvantage is that this algorithm does not take
into consideration the processing load that corresponds to each join value. For example, if one location
has many more schools and houses than other locations, then the processing time for this specific location
will be greater than the processing time needed to perform joins for other locations.

On the other hand, when referring to distributed databases, a Top-k join query, joins m relations Ri that
may be fragmented into several parts stored at different servers. The resulting tuples are ordered using a
scoring function f (order by clause) and the top-k answers based on their scores are returned to the user
(limit clause). Rank join queries adhere to the following template, where relations Ri are widely distributed
to different servers *:

SELECT some attributes

FROMR1, R2,...,Rm

WHERE join condition AND selection predicates
ORDER BY f(R1.s1,R2.s2, ...,Rm.sm)

LIMIT k

Two examples of Top-k join queries in distributed databases are presented by Doulkeridis et al. * and
depicted in figure 13. In the example, two relations are used. A Suppliers relation (from inventory
department) and a Customers relation (from sales department) which are both fragmented in a horizontal
manner over the servers which are located in different geographic places. A product is sold to a customer
at a certain price, as shown at the Customers table. The company buys these products from suppliers, as
depicted in the Suppliers table. A sale maximizes the associated profit, if the amount paid by a customer
plus the discount offered by a supplier is maximized .In this scenario, the sales manager is interested in
finding the 2 least profitable sales for any product (Query Q1). Similarly, in Query Q2 the manager is only
interested in sales of a specific product (CPU in this example) *.

Supplier | Product |Discount 1:
PO STT L Q—QEL'EPT i
3 = CEU 170 FROM t:uﬁst:::umers C;Suppliers S
o 4 HardDisk 190 WHERE C.product=5_product
2 —, ORDER BY (C_price + S discount
: { N——EEA e y | i]
] S6 DVD-RW| 200 '

2:

Customer | Product | Price %EFEE“T .
e | E MEEBDF % IT FROM Customers C, Suppliers S
£ ok HardDisk | 500 WHERE C.product=5 product
b = e AND S product="CPU'
wt) . . R
5 rTmT1 ORDER BY l{:.p“CE + S.discount)
c S LIMIT 2
3 CE Monitor 600

Figure 13 : Example of distributed Top-k join queries *

This distributed rank join processing, results in many round trips over the network since the tuples cannot
be read iteratively from the table. Another disadvantage is that the tuples that we will be fetched and
eventually joined might be significantly more that the k requested by the user.

As mentioned earlier, the scope of this thesis is to improve the phases of MapReduce computational
model to increase the efficiency of the model for Top-k join queries on large and distributed data sets,
while maintaining scalability. This is achieved with the use of certain techniques discussed in detail in
chapter 4.

4 Design Approach

4.1 Architectural Overview

The proposed solution to the problem of efficient processing of Top-k join queries that apply to the
following template:

Select RO.id, R1.id, (RO.score+R1.score) as score from RO, R1

Where RO.joining_attribute = R1.joining_attribute

Order by (RO.score+R1.score) asc

Limit k

involves a number of techniques and is based on the DRIN algorithm proposed by Doulkeridis et al 4.
The DRIN algorithm calculates queries similar to the above in distributed databases. Figure 14 presents
the DRIJN algorithm in pseudocode for distributed rank join query processing on one server Sq. Sqinvokes
the BoundEstimation function which returns a bound ei for each relation Riand a list of servers Li that
store the tuples specified by the bound and the estimated score vy k of the k-th join result. Then for all
servers in Li, the method getTuples(ei) is invoked which fetches the records from the other servers with
the restriction set from ei. When all necessary tuples are fetched, Sq performs a local centralized rank join

algorithm and calculates the Top-k join result. The critical part of the DRIN algorithm is the procedure
used for estimating the appropriate bounds of the scoring values.

Algorithm 1 The DRJN algorithm.

: Input: k, Function f, m relations R;
Output: Ranked join result res
tuplesp, — 0,0 <i<m
{(ei, Li),vr} — BoundEsmmnon({Ri|? e0,m}h k, f)
for (R; € [Ro...Rm)) do
for (S; € Lf) do
tuplesgr, «— tuplesn, + S;.getTuples(e;)
end for
end for
res < RankJoin({tuplesr, },. .., {tuplesr,, . })
return res

TReHmE DR

[EE—

Figure 14 : DRIN Algorithm *

The solution proposed in this thesis is the use of MapReduce jobs for the calculation of Top-k joins such
as the one presented earlier. The aim is to enhance the MapReduce steps of a simple reduce side join
algorithm in order to eliminate the useless records which do not produce top k results.

A simple MapReduce would calculate the above mentioned query in a naive way. The two relations RO
and R1 would be stored in HDFS. The simple reduce side join would read all contents from both files and
perform a sort by joining attribute as the key. Secondary sort technique described earlier in 3.1.4 would
be used as well. Then the reducers would perform a join for all records of both datasets, they would
calculate the sum of the scoring attributes and finally perform a sort by this sum in all joined tuples.

The above described algorithm can be very expensive in terms of memory and processing time. In addition
to this, most of the processing done by map and reduce tasks is useless since, only k joined tuples will be
eventually written in the job output.

The idea proposed is to eliminate as much as possible the input to the reduce tasks so that the joins
performed are as many needed to produce the Top-k results. This is achieved by estimating a bound for
each input dataset that defines how many records will be fetched from each relation, thus making use of
the BoundEstimation function of the DRIN algorithm. The BoundEstimation algorithm is described in detail
in4.3.

Once the bounds are estimated, some extra logic must be added so that the job uses these bounds in
order to stop reading records from the input relations, when the bounds are reached. This algorithm is
described in 4.4.

Both Score Bounds Estimation and Early Termination techniques are injected in the Map phase of the job
and make sure that less records reach the Reduce phase, so less joins will be performed.

However, a problem still remains. If one value of the joining attribute appears in a very large number of
records in both files, then the joins that correspond to this value will be many more comparing to the joins
that will result from other values. Since, the key of the MapReduce job is the joining attribute value, the
reducer that will be responsible for that specific key will be unequally overloaded comparing to others.
So, in this case the whole job might be delayed by a single reducer. In fact, this is situation is common and
can be observed in many kinds of real datasets. An example would be a dataset which follows a Zipfian
distribution with high skewness in the joining attribute.

A solution to the problem described above would be a load balancing algorithm that would predict the
load of the reduce tasks and make a proper distribution even before the Reduce phase, so as to avoid the
overloading of a single reduce task. The load balancing algorithm proposed is described in detail in 4.5. In
contrast to the Early Termination technique, Load Balancing is an enhancement in the Shuffle phase of
the MapReduce job.

The combination of Early Termination and Load Balancing techniques should already increase the
efficiency of the MapReduce job. However, there is a need for one more enhancement. The relations are
stored in HDFS where they are divided in HDFS blocks. Once the job starts its execution, the Input Splits
are calculated as mentioned in the earlier section 3.1.5, and passed as inputs to the map tasks. Even
though the early termination technique sets boundaries to the map tasks, the whole datasets will still be
fed to the map tasks. The last technique proposes a way to eliminate the input splits to as many needed
to extract the valuable records that will finally lead to the Top-k joins. The estimation of the necessary
input splits is described in further detail in 4.6.

All techniques proposed require a pre-process of the datasets to be joined. The results of this
preprocessing are stored in data synopses like histograms and uploaded in HDFS so that they can be
accessible from the MapReduce job. Further details for the data synopses are provided in 4.3 .

The overall architecture of the framework proposed is presented in figure 15, where each technique is
visually associated with the corresponding step of the MapReduce job that it aims to enhance.

__f_JDF_S MapReduce/Hadoop
L] m\iM/ %n .
\Dg/D D I (BaIL::;ng]

Data

Synopses (Termlnatlon]

Figure 15 : Architecture overview *

4.2 Data Synopses — Histograms

The estimation of the bounds which restrict the number of records fetched from each relation, is based
on data synopses and more accurately on histograms. For each relation Ri, a histogram is maintained. This
is a two dimensional histogram that records the number of tuples in Ri that correspond to each distinct
value of an attribute, that fall in a range of values (defined by the bin’s low and high value). As far as the
join attributes are concerned, each histogram bin represents only one join value. For each distinct value
of the join attribute, the set of bins of the corresponding histogram can be viewed as a one-dimensional
histogram that approximates the distribution of scoring values for this join value. In the example
presented earlier in figure 13, a histogram of relation Suppliers and join attribute product equal to ‘CPU’
captures the number of products of type CPU for different ranges of price (scoring attribute), as depicted
in figure 16.

6079 [1]0]2]a

L AHuples o 4050 [2(4(3]2
3 2039 [3[2(2]3
% - - 0-19 [(1|ofo]|o
20 40 60 80 price 2SR

. - r-\-__'h,_ I:Ij

M = =

I o

2-dim histogram

Figure 16 : Histogram of relation Suppliers *

The DRIN algorithm performs a rank-join on histogram bins rather than on the actual tuples. Histogram
bins are accessed sorted in ascending order of their score range. Moreover, histograms bins of different
relations (also mentioned as individual bins) are joined and produce join combinations of bins. A valid join
combination of bins is produced by a set of bins with the same value of the join attribute. This new bin is
referred to as joined bin. For each joined bin, the number of tuples is computed by multiplying the number
of tuples in the individual bins. Furthermore, the score of a joined bin is estimated by applying the scoring
function f on the higher value of score range of each individual bin. Thus, the score of the joined bin is an
upper bound of the score of any join tuple produced by the individual bins *.

An example of joining histograms is presented in figure 17. The histograms appearing, depict the data
distribution of the relations presented in figure 13. Each bin of the histogram for the RO relation (Suppliers)
represents the number of suppliers that handle a particular product for the range of prices specified by
the boundaries of the bin. Accordingly, each bin of the histogram of the relation R1 (Customers)
represents the number of customers that request for a particular product, e.g. CPU. On the right, some
joined bins are depicted for product ‘"CPU’ when the scoring function f is the sum of discount and price.

For instance, the combination of the first two bins of each histogram for ‘"CPU’, which contain 6 and 10
tuples respectively, produce a joined bin of 60 (=6 x 10) tuples with score in the range 0-28. The score of
the tuples in this joined bin is set to 28, i.e., the high value of the range. Recall that the aim is to retrieve
the top-k results with minimum scores *.

@
o
a
3- [10]0|2]5 60- |10|3|7|5]| + 3068 |6
=
E2029 | 5201010 405 (5|5|2]|8| 82048 |12
3 L °
g-m-w 30|10 5| & 2039 |2]4]|9|a| 81038 |30
09 |6|1]2]|0 019 (101 |2]1] & 028 |60
R 5 & :
SUPPLIERS 3 § 5 & customers 2 S = o 2
L] .IEE = 5 &) IE = EZ W]
Product Product —JG'INED BINS

Figure 17 : Example of joining histograms #

4.3 Score Bounds Estimation

The objectives of the BoundEstimation algorithm are to identify the histogram bins that produce at least
k join tuples with the smallest scores and to ensure that no other combination of histogram bins can
produce join tuples with smaller score values . For this purpose, the algorithm joins the histogram bins
until the joined tuples exceed the k tuple requested and the score of any join tuple produced by any
unseen histogram bin is not smaller than the score (v k) of the current k-th join tuple. The above described
logic is depicted in pseudocode as presented by Doulkeridis et al. % in figure 18.

Algorithm 2 Bound Estimation.

1: Input: Relations { R;}, k, Function f

2: Output: Bounds €;, 0 <1< m

3: halt — false, j «— 0, t +— 0, queue — 0

4 binsR; — 0, e; —0,0<i<m

5: while (halt) do

6: for (R; € [Ro...Rn)) do

7: bin, — get(Hii[j]), 0< z < n

8: binsR;.add(bin.), 0 <z <n

9; queve.add(binsRo = ... pa binsRi—1 4 bin, =<

binsRit1pa...xabinsRym—1)

10: Yk «— getScore(queue, k)
11: res — getResultsNo(queue)
12: e; — Hii[j].high
13: L;.update(bin.)
14: t — min{f(0,..,0,e;,0,..,00L, 0 <z <m
15: if (res = k and ~; < t) then
16: halt — true
17: end if

18: end for

19: j—j4+1

20: end while

21: return {(e;, L)y}

Figure 18 : Bound Estimation algorithm *

4.4 Early Termination

The term early termination in the context of this thesis refers to a map reduce job that performs a rank
aware query, e.g. a top-k join, without accessing the whole dataset but only parts of the input datasets
which contain the tuples that will certainly produce the top-k joined tuples. The bound estimation
algorithm presented earlier in 4.3 provides a way to restrict the accessed tuples of each relation by
calculating the bounds of the scoring attributes. This means that if each relation RO, R1 was sorted by the
scoring attribute, then in order to perform the join, the MapReduce job would fetch all records with a
scoring attribute lower or equal to the bound estimated for each relation. An example of the use of bounds
to achieve early termination is presented in figure 19. The score bound for relation Suppliers (RO) is
estimated via the BoundEstimation algorithm to 120 and to 500 for the relation Customers (R1).

Therefore, in a MapReduce job that uses early termination, the input datasets must be sorted by the
scoring attribute in an ascending order so that it can make use of the bounds calculated by the
BoundEstimation algorithm.

Top-k join resulfts

+
.,--"M‘\

Score 55 HardDisk EN [5] CPU 240 Score
bound: 51 Monitor 100] HardDisk a00 bound:
120 53 CPL 120 4 (MRl 550 S00
o ory MMe T C6 Monitor | 600
54 HardDisk 190 C5H HardDisk | 700
56 CWVD-RW 200 C1 Monitor 200

Figure 19 : Example of Score Bounds *

4.5 Load Balancing

As described earlier in the previous sections, the early termination technique which uses the
BoundEstimation algorithm, provides a way to eliminate the input of the MapReduce job and therefore
to speed up the execution time of the top-k join.

However, the problem of fair distribution to the reducers that will actually perform the joins, still remains.
A solution to this problem is an algorithm that can estimate the load that corresponds to each reducer
and thus distribute the keys as fair as possible so that all reducers have approximately the same execution
time.

In 4.3, the main component of the BoundEstimation algorithm was the join performed among the
histogram bins. These joins are performed on the joining attributes while at the same time the scoring
function is applied. The result of each join between two bins, represents the number of joined tuples that
can be produced with scoring values of a certain range. Therefore, the information: how many joins
correspond to each joining attribute value, is given by the BoundEstimation algorithm along with the
bounds.

Since, the correspondence joining attribute value = number of joins is known, the only thing missing to
complete the load balancing solution, is an algorithm that distributes the keys properly to the reducers.

The algorithm used for the load distribution is an existing heuristic algorithm, the Longest Processing Time
(LPT) algorithm, which has been widely used in systems that perform parallel processing 8. The input to
LPT is a number of n jobs with processing time {p1,p2,...,pn} and the output is the assignment of jobs to
the machines. The assignment is performed as follows:

1. Order the jobs in descending order according to their processing times
2. Inthis order, assign each job to the machine that currently has the least work assigned to it

In the solution presented, there is a slight variation of LPT, as the inputs to the LPT are not the processing
times of the reduce tasks but the number of joins that correspond to each joining attribute, thus the load
that each reduce task is expected to have. Therefore, the output would be the assignment of each key
(joining attribute value) to a certain reducer.

4.6 Input Splits Estimation

Even if the records processed by the map tasks are eliminated with the use of the early termination
technique, the number of input splits remain the same. The whole datasets are loaded as inputs to the
map tasks even if not all of them contain useful records.

A solution to this problem is an algorithm for the calculation of the number of input splits that need to be
passed to the map tasks. Input splits are logical divisions of the datasets that exist in the HDFS. However,
their actual contents derive from the HDFS blocks. So, the idea is to implement an algorithm that fetches
from the HDFS the number of bytes needed to calculate the top-k joins. To achieve that, we need a
correlation among score values and byte position. This means that for each relation we have to produce
a file that contains the information of how many bytes we have to read from a certain relation in order to
reach a certain score value. For example let’s consider that the following lines are extracted from the file
which contains the correlation bytes — score value. The first column represents the number of bytes and
the second column represents the score value that can be found when the bytes in the first column are
read. If the estimated bound for relation RO is 500 then according to the file we have to access 268560884
bytes from relation RO to be sure that we will fetch the records that will produce top-k joins.

134301780 454
268560884 892
402724529 1304
5638355373 9917
5773621539 9952
5911655836 9978

Accordingly, there will be a file for relation R1 as well which will contain similar information. It is important
to notice that these files are based on the sorted by score value form of RO, R1 relations (referred to as
ROsorted, R1sorted respectively).

5 Implementation

All four algorithms are implemented in MapReduce jobs (in Java) and perform reduce side Top-k joins
between two datasets. The joins performed by these algorithms could be described by the following SQL

query:
Select RO.id, R1.id, (RO.score+R1.score) as score from RO, R1
Where RO.joining_attribute = R1.joining_attribute

Order by (R0O.score+R1.score) asc

Limit k

As the versions augment from 1 to 4, the techniques used, serve the goal of adding efficiency in terms of
execution time and resources used. The first algorithm is a simple implementation of reduce side join in
MapReduce and was implemented only to be used for experimental purposes, so as to measure the
efficiency of the other three algorithms against the simple algorithm. The other three algorithms involve
the following techniques: Early Termination, Load Balancing and Custom Input Split creation. Each
algorithm contains the techniques of the previous one, so the fourth algorithm consists of all three.
Therefore, the fourth algorithm is expected to be the most efficient.

The table below is a short presentation of the algorithms and the techniques used in each of them:

Name Name used in code Techniques
Algorithm 1 RSJSimple -
Algorithm 2 RSJET Early Termination
Algorithm3 | RSJETLBDistCache Early Termination

Load Balancing

Algorithm 4

RSJETLBIndex

Early Termination
Load Balancing
Custom Input Splits

Table 1: Algorithms and techniques

5.1 Algorithm 1: RSJSimple

The first algorithm or RSJSimple, as referred to in the implementation, is the simple implementation of
the top-K join described in the introduction section. No special technique is used in this algorithm and the
purpose of this implementation is only for experimental reasons.

5.1.1 RSJSimple - Pseudocode

In this section the components of RSJSimple algorithm described in 5.1.3, are presented in pseudocode.

map method (class: Map.java):

Get input file name from current split info
if input file name starts with RO
set variable tag = 0
else
set variable tag = 1
Split input line to words
Set variable joining_attribute = first word of line without the first letter
Set variable scoring_attribute = second word of line
Set composite_key.joiningAttribute = joining_attribute
Set composite_key.tag = tag
Set composite_key.score = scoring_attribute
Set variable taggedLine = tag+line

Return composite_key, taggedLine

getPartition method (class: RSJPartitioner.java)

Set variable joiningAttribute = composite_key.joiningAttribute
Calculate partition as (joiningAttribute.hashCode & max integer value) MOD numberOfReduceTasks

Return partition

compare method (class: SortingComparator.java)

Read fields composite_key1.joiningAttribute, composite_key2.joiningAttribute
[if composite_key1.joiningAttribute > composite_key2.joiningAttribute
Return true
[else if composite_key1.joiningAttribute = composite_key2.joiningAttribute
lif composite_keyl.score > composite_key2.score
Return true
[else
Return false

[else Return false

compare method (class: GroupingComparator.java)

Read fields composite_key1.joiningAttribute, composite_key2.joiningAttribute
[if composite_key1.joiningAttribute > compositeKey2.joiningAttribute
Return true

[else Return false

reduce method (class: RSJReducer.java)

Do until k values have been read from RO
Read and store value for joining attribute from RO
Do until k values have been read from R1
Read and store value for joining attribute from R1
Do until k joined tuples have been produced
Join value from first input file with value from second input file

Return k joined tuples

51.2

Inputs

The inputs of this map-reduce job are four:

1.

513

The input folder path: The input folder path should contain two files: RO.txt, R1.txt which
represent the datasets to be joined. Each dataset contains 3 columns: id, joining attribute, score.

The output folder path: This argument indicates to the job the folder in which the join results will
be produced.

The number of k

The number of reducers: The number of reducers is passed as an argument so that we can run
experiments using different number of reducers.

Components

DriverRSJ.java
The class which contains the job configuration and starts the Map-Reduce job.

CompositeKey.java

This class contains three variables representing: joining attribute, score and tag. In each instance
of this class, the first two variables, joiningAttribute and score carry the actual values of one
record of one of the datasets. The field tag indicates the dataset from which the record came from
e.g. the value 0 represents the dataset RO.txt.

Map.java
This class implements the map method. The map inputs are the outcome of the FilelnputFormat.
They are pairs of LongWritable keys and Text values. So, each map task receives a pair which
consists of a key (a number) and a value which is one record from one of the datasets. The map
task creates a CompositeKey instance in which it sets the joiningAttribute and score values as
derived from the record that it received. Afterwards, the code of the map task checks the filename
from which the record came. This information is carried on the InputSplit that feeds each map
task with the input pairs. So, if the filename is RO.txt then the map task sets the CompositeKey.tag
to 0. If the filename is R1.txt then the map task sets the CompositeKey.tag to 1. Finally, the output
key - value pair of every map task contains:

o the CompositeKey instance as the key

o a Text instance which consists of tag+record

° SortingComparator.java
Compares by the CompositeKey instances, which means that it sorts the Map output keys by
comparing joiningAttribute and score variables.

° GroupingComparator.java
Compares by the natural key which is the joiningAttribute.

° RSJPartitioner.java

The role of RSJPartitioner is to make sure that all joiningAttributes with the same value are
delivered to the same reducer. For this purpose, it uses a hash method based on the joining
attribute. SortingComparator along with GroupingComparator and RSJPartitioner follow the
SecondarySort implementation as explained in Hadoop The Definitive Guider by Tom White?
(chapter 8). The implementation of these classes makes sure that the following happen:

o all records for same joining attribute reach the same reducer

o all score values reach the reducer in sorted ascending order

° ScoredTuple.java
An instance of ScoredTuple contains a variable named score and a variable named value. The
method compareTo(ScoredTuple obj) implemented in this class is invoked whenever an instance
of ScoredTuple is inserted in a PriorityQueue (see RSJReducer.java) to compare the score inserted
against the first element of the PriorityQueue.

° RSJReducer.java

This class implements the reduce method and performs the join between the two datasets. The
input of each reducer is a CompositeKey and a list of tagged records (map's output). It collects the
k first records of the first dataset and the k first records of the second dataset. Once k records
have been collected from each relation, it is guaranteed (from the secondary sort step) that the
reducer has the k smallest scores for each joining attribute from both datasets. Therefore, it
performs a join among those records while performing the function R0O.score+R1.score and the
outcome of each join is stored in a ScoredTuple. The ScoredTuple is then stored in a
PriorityQueue. Finally, the k top elements of the PriorityQueue are sent to collector as the output
of the job.

5.1.4 RSJSimple Dataflow

Figure 20 is a visual representation of the data flow in RSJSimple. In the beginning, the two relations RO,
R1 are stored in HDFS, divided into HDFS blocks. The default RecordReader processes the input splits and
produces key-value pairs. Each pair consists of a random number as the key and a whole line from one
relation tagged with its source, as the value. The map tasks receive these pairs and perform a
transformation on them. Thus, the outcome of the map tasks is a number of key-value pairs, each in the
form of a composite key as the key and the whole tagged line as the value. In the shuffle phase, a sorting

is performed on map nodes and all key-value pairs are sorted by joiningAttribute and score and grouped
by joining attribute. After sorted and grouped, the key-value pairs are sent to the corresponding reduce
nodes. All partitions (groups) that come from map nodes are merged on the reduce nodes. Once the
merge phase finishes, the reduce tasks start their processing. The reduce phase output is a number of
key-value pairs where a key is a joiningAttribute and the corresponding value is a joined tuple in the form:
RO.id R1.id RO.score+R1.score.

Figure 20: RSJSimple Dataflow

5.2 Algorithm 2: RSJET

The second algorithm or RSJET, as referred to in the implementation, has the same logic with Algorithm 1
concerning the reduce side join implementation. However, the technique of Early Termination is applied
so as to achieve faster execution time. Therefore, many components are exactly the same with the ones
of Algorithm 1 in terms of implementation but some new are also added.

So the following components remain the same:

e CompositeKey.java

e SortingComparator.java

e GroupingComparator.java
e RSJPartitioner.java

e ScoredTuple.java

e RSJReducer.java
Whereas the following are added/altered:

e DriverRSJ.java

e SelectivelnputFormat.java
e SelectiveRecordReader.java
e Map.java

5.2.1 RSJET — Pseudocode

In this section, the new and the altered components introduced in 5.2.3 are presented in pseudocode.
The parts of the algorithm that have been changed or added (comparing to RSJSimple) are highlighted.

computeBounds method (class: DriverRSJ.java)

Call BoundEstimation algorithm

Return bounds for ROsorted and R1sorted

next method (class: SelectiveRecordReader)

Read input file split path name
[if input file split path name contains RO
Set variable tag=0
[Else
Set variable tag = 1
Read bounds for ROsorted, R1sorted from job Configuration
Read the next line from input split
Split the line in words
Set variable score = the second word
lif tag=0
lif score>bound for ROsorted
//Do not create key
Return

lelse create key for Map

[else
[if score> bound for R1sorted
//Do not create key-value pair
Return

[else create key-value pair for Map

map method (class: Map.java):

Get input file name from current split info
if input file name starts with RO
Set variable tag = 0
else
Set variable tag = 1
Split input line to words
Set variable joining_attribute = first word of line without the first letter
Set variable scoring_attribute = second word of line
Read bounds for ROsorted, R1sorted from Configuration
if (tag=0 and scoring_attribute < bound for ROsorted) or (tag = 1 and scoring_attribute< R1sorted)
Set composite_key.joiningAttribute = joining_attribute
Set composite_key.tag = tag
Set composite_key.score = scoring_attribute
Set variable taggedLine = tag+line
Return composite_key, taggedLine
else

Do not create key-value pair

522

Inputs

The inputs of this map-reduce job are seven:

523

NS LA WDNR

The input path for ROsorted.txt

The input path for R1sorted.txt

The output folder path

The input path to the folder that contains hist0.txt and hist1.txt

The number of k.

The number of reduce tasks

The number of different values that a joining attribute can have (number of histogram bins)

Components

DriverRSJ.java

The class contains the job configuration and starts the Map-Reduce job. Before the Map-Reduce
job starts, the method computeBounds is invoked. This method returns the bounds for both
datasets respectively which are then stored as properties on the job configuration so that they
can be visible from the rest of the components.

Method computeBounds:

This method is implemented in the DriverRS) class and it creates an instance of
BoundEstimatorHist (package: boundEstimation) so as to invoke the method
BoundEstimatorHist.estimate, which calculates the bounds of each dataset for the given k, based
on the histograms. The package boundEstimation contains the full implementation of the
BoundEstimation algorithm described in 4.3. One of the steps of this algorithm is the join
between the two histograms to estimate the join results that correspond to each joining
attribute value.

SelectivelnputFormat.java
This class represents a custom InputFormat and extends FilelnputFormat. Its role is to invoke the
custom record reader: SelectiveRecordReader.java.

SelectiveRecordReader.java

This class implements RecordReader<LongWritable, Text> and is the class that feeds the map
tasks with the key-value pairs it expects. The purpose of this custom RecordReader is to read
records from each sorted by score dataset until it reaches a record which contains score values
smaller or equal to the dataset bound. This technique eliminates the execution time of the
RecordReader (because it does not have to process the whole dataset), however it does not have

any effect on the size of input split that is finally loaded as the input of a map task (which means
that map tasks will finally receive all the records from both datasets).

Map.java
This class implements the map method. The map input key-value pairs are the outcome of the
SelectivelnputFormat which are pairs of LongWritable keys and Text values. So each map task
receives a pair which consists of a key (a number) and a value which is one record from one of
the datasets.
Each map task reads the bounds from the configuration properties and performs a check on the
score of the map record that it receives. So, the record is sent to the reduce phase only if the
score contained in the record was smaller or equal than the bound.
If the above condition is met, then the map task creates an instance of CompositeKey in which it
sets the joiningAttribute and score values as derived from the record that it received. Afterwards,
the code of the map task checks the filename from which the record came. This information is
carried on the InputSplit that feeds each map tak with the input pair. So, if the filename is
ROsorted.txt the map task sets the CompositeKey.tag to 0. If the filename is R1sorted.txt then
the map task sets the CompositeKey.tag to 1.
Finally, the output pair key - value pair of every map task contains:

o the CompositeKey instance as the key

o aText instance which consists of tag+record

5.2.4 RSJET Dataflow

The dataflow in RSJET is very similar to the dataflow of RSISimple. The most significant difference is that
only a certain number of map tasks produce output and this is because of the early termination algorithm.
Therefore, in RSJET, less key-value pairs reach the reduce phase but it is guaranteed that these key-value
pairs can produce the top-k joins. The dataflow of RSJET is depicted in figure 21

Figure 21: RSJET Dataflow

5.3 Algorithm 3: RSETLBDistCache

The third algorithm or RSJETLBDistCache, as referred to in the implementation, has the same logic with
Algorithm 2 concerning the reduce side join and the Early Termination technique. In this version, the
technique of Load Balancing is also applied so as to achieve a better distribution of load to the reducers.
Therefore many components are exactly the same with the ones of Algorithm 2 in terms of
implementation but some new are also added.

So the following components remain the same:

e SelectivelnputFormat.java
e SelectiveRecordReader.java
e SortingComparator.java

e GroupingComparator.java
e ScoredTuple.java

e RSJReducer.java

Whereas the following are altered:

e DriverRSJ.java

e Map.java

e CompositeKey.java
e RSJPartitioner.java

5.3.1 RSJETLBDistCache — Pseudocode

In this section, the new and the altered components introduced in 5.3.4 are presented in pseudocode.
The parts of the algorithm that have been changed or added (comparing to RSJET) are highlighted.

computeBounds method (class: DriverRSJ.java)

Call BoundEstimation algorithm
if bounds are calculated successfully
Call assignDataToReducerHasMap to fill dataToRecucers

Return bounds for ROsorted and R1sorted

assignDataToReducerHasMap method (class: LPT.java)

Sort joinResultsPerJoinValue from most busy to least busy
Set counter =0
Do for all joining attributes
[if counter<= number of reducers
assign current joining attribute values to reducer: Scounter
counter = counter+1
[else
Find reducer with minimum number of joinResults

Assign current joining attribute to reducer with minimum number of joinResults

Return dataToReducersMap

map method (class: Map.java):

Get input file name from current split info
if input file name starts with RO
set variable tag = 0
else
set variable tag = 1
Split input line to words
Set variable joining_attribute = first word of line without the first letter
Set variable scoring_attribute = second word of line
Read bounds for first/second input file from Configuration
if (tag=0 and scoring_attribute < bound for first input file) or (tag = 1 and scoring_attribute< bound for
second input file)
Set composite_key.joiningAttribute = joining_attribute
Set composite_key.tag = tag
Set composite_key.score = scoring_attribute
Set variable taggedLine = tag+line
Read assigned reducer for joining attribute from Distributed Cache
Set variable composite_key.partition = assigned reducer
Return composite_key, taggedLine
else

// Do not create key-value pair

getPartition method (class: RSJPartitioner.java)

Set variable partition = composite_key.partition

Return partition

5.3.2 Inputs

The inputs of this map-reduce job are seven:

The input path for ROsorted.txt

The input path for R1sorted.txt

The output folder path

The input path to the folder that contains hist0.txt and hist1.txt

The number of k.

The number of reduce tasks

The number of different values that a joining attribute can have (number of histogram bins)

NouhswnNpR

5.3.3 Preparation for Execution

In this algorithm, an expanded version of the method computeBounds is invoked before the job starts.
This expanded version, apart from the BoundEstimatorHist.estimate, also invokes the method
assignDataToReducerHasMap which is implemented in the class LPT (package: Ipt). This method returns
a HashMap which assigns each joining attribute to the appropriate reducer according to the load balancing
algorithm. The information carried on this HashMap is stored in the dataToReducers.txt file. This file is
then uploaded to the hdfs folder: hist and then added to the distributed cache so that it can be visible
from the Map-Reduce job.

5.3.4 Components

o DriverRSJ.java
The class which contains the job configuration and starts the Map-Reduce job. The Early
Termination technique is implemented in this class in the same way as it was implemented in
Algorithm 2. Moreover, the file dataToReducers.txt is placed in the DistributedCache so that it
can be visible from all map tasks.

e CompositeKey.java
A new field: partition is added in this class. So now, the class contains the fields: tag,
joiningAttribute, score and partition.

e Map.java
The code of Algorithm 2 is reused for the Map.java with an addition. Apart from the configuration
properties which contain the bounds, each map task looks up the file: dataToReducers.txt to
retrieve the corresponding reducer of the current received joining attributed. The reducer
number is then stored in the variable partition of the CompositeKey instance.

e RSJPartitioner.java
The code of this class is altered in this version. The method getPartition does not use a hash
method anymore, but instead it returns the CompositeKey.partition value.

5.3.5 RSJETLBDistCache Dataflow

The main difference of the RSJETLBDistCache dataflow from the RSJET dataflow, is that all key-value pairs
that derive from the map phase, carry with them the information of the responsible reducer. In this way,
a load balancing is achieved, since the joining attribute with the greater number of joins will be assigned
to the first reducer and this reducer will receive no more load. For example, in figure 22, joining attribute
J3 produces a greater number of joins comparing to J1 and J2. Therefore, it will be sent to Reducer 1 and
Reducer 1 will handle only this joining attribute.

\ dataToReducers '
. numOfReducers =2 '

Figure 22: RSJIETLBDistCache Dataflow

5.4 Algorithm 4: RSJETLBIndex

The fourth algorithm or RSJETIndex, as referred to in the implementation, embodies both Early
Termination and Load Balancing techniques. In this version, the goal is to load on the map tasks only the
necessary number of input splits for the production of the k joined records from each dataset and not the
whole dataset.

So the following components remain the same:

o SelectiveRecordReader.java
e SortingComparator.java

e GroupingComparator.java
e ScoredTuple.java

e RSJReducer.java

e CompositeKey.java

e RSJPartitioner.java

e Map.java

Whereas the following are altered:

e DriverRSJ.java
e SelectivelnputFormat.java

5.4.1 RSJETIndex - Pseudocode

In this section, the new components introduced in 5.4.4 are presented in pseudocode.

Rindex algorithm

Read HDFS default block size from Configuration
Read file length from HDFS
Calculate number of output records = input file length/block size
Set variable number of lines already read = 1
[Do until number of lines already read = number of output records
Calculate current position in input file = blockSize * number of lines already read
Read file from current position
[Do while lines exist in block
Read line
Set current position = current position + line length
Split line in words
Set record = current position, second word (score)
Add record to output file
number of lines read = number of lines read + 1

Return output file

findBytesToRead method (class: DriverRSJ.java)

Read Index file for input file
Do while Index files has lines
Read line
Split line in words
If second word (score) > bound for input file

Set variable bytesToRead = first word (bytes)

Break loop
Store bytesToRead in Configuration

Return bytesToRead

getSplits method (class: SelectivelnputFormatV2.java) 2 override

Read bytesToRead for input file from Configuration
Set file length = bytesToRead

Call FileInputFormat.getSplits with new file length

5.4.2 Inputs

The inputs of this map-reduce job are seven:

The number of reduce tasks
The number of different values that a joining attribute can have (number of histogram bins)

1. The input path for ROsorted.txt

2. The input path for R1sorted.txt

3. The output folder path

4. The input path to the folder that contains histO.txt and hist1.txt
5. The number of k.

6.

7.

5.4.3 Preparation for Execution

There is a need for a correlation among the actual score values and the number of bytes that need to be
processed by the map reduce job so as to reach a certain score value. This information is necessary for
the creation of the custom input splits.

So, as a pre-execution step, the algorithm implemented in RIndex.java needs to be executed for each
dataset.

The goal of the RIndex algorithm is to produce a file with the name e.g. ROIndex.txt that will contain a
number of records that results from the following function: number of records = (file length (bytes) /
block size (bytes)) - 1

The function presented above calculates the number of HDFS blocks in which the file is divided on the
HDFS minus 1 (that is because there is no need to store any information about the last HDFS block).

For each HDFS block, the algorithm calculates the last score value that appears in the block and the
number of bytes that a job must read to reach this value. So, for each block it creates a record in the
output file containing the last score value of the HDFS block and the number of bytes accessed. This loop
terminates when the number of records printed in the output file reaches the number calculated by the
above mentioned function.

The two index files are then uploaded in the HDFS folder hist, so that they can be visible from the Map-
Reduce job.

5.4.4 Components

e DriverRSJ.java
After the calculation of bounds, from the method computeBounds, method findBytesToRead is
invoked for each dataset. This new method looks up the appropriate index file with the bound
value and retrieves the number of bytes that need to be accessed from the sorted input dataset
so that this score bound is reached. This information is then stored in a configuration property
for each dataset.

e SelectivelnputFormat.java
This class is altered so that it overrides the method getSplits. This method looks up the
configuration property for each dataset and sets the fileLength variable to be equal to the
number of bytes that need to be accessed and the actual length of the file. There is no difference
between the rest of the method's implementation concerning the creation of input splits and the
default implementation of FilelnputFormat. So, since the file length is considered to be smaller
the number of the input splits loaded on map tasks will also be smaller.

5.4.5 RSJETLBIndex Dataflow

As shown in figure 23, the map tasks launched are less that the ones launched in previous algorithms. This
is because the input splits calculated derive only from the useful HDFS blocks (highlighted in yellow).

dataToReducers
. numOfReducers =2

100 J2 0 ’
66 J1 99
m

Figure 23: RSJETLIndex Dataflow

5.5 Top-k algorithm

All four algorithms presented earlier produce an output which contains the k top joins per joining
attribute. This result could be the output of the following query:

Select RO.id, R1.id, (RO.score+R1.score) as score from RO, R1

Where RO.joining_attribute = R1.joining_attribute

Group by joining_attribute

Order by (R0O.score+R1.score) asc

Limit k

This is because each reducer processes records from both files for a specific joining attribute. So, the
reducer performs the join for one specific value of the joining attribute and then returns the top k joined
records for this joining attribute based on the scoring sum of the joined records. Consequently, the
combination of outputs of all reducers give us the top k joined tuples for each joining attribute value.

However, this means that the user will receive number of reducers * k joined tuples as a result instead of
k that he/she asked.

To perform the last step of the query, which is about the filtering and sorting of all the reducers output to
select only the top k joined tuples independently of their joining attribute value (without the group by
statement), an extra method must be implemented. This method is called topKCalculator and is placed in
the DriverRSJ.java and is invoked right after the completion of the MapReduce job. Its role is to fetch the
output of each reducer and perform a loop, in order to find the k results with the lowest score sum. This
results are then printed in a file and stored in HDFS.

When the input datasets are too large and the number of k is very big, the topKCalculator can be replaced
by a second map reduce job. This MapReduce job implements the same Top-k algorithm that
topKCalculator implements.

The second MapReduce job must be executed right after the execution of the Reduce Side Join and its
goal is to receive as input the output of the first job and feed it to a single reducer which will pick and
return only the top k joined tuples to the user.

5.5.1 Top-Kalgorithm — Pseudocode

map method (class: Map.java)

Read key value pair (from all Reduce Side Join output partitions)

Return key value pair of input

reduce method (class: Reduce.java)

Do while all input key value pairs are processed
Read value — joined tuple
Split tuple in words
Set variable scoring sum = third word
Store it in a Priority Queue

Return the k elements of the Priority Queue

5.5.2 Components

o DriverRSJ.java
This is the main class of the MapReduce job. It contains no complex logic but only the
configuration of the classes used for map and reduce phase. This is the class where we set the
number of reduce tasks to be executed to 1.

Map.java

This is the class that implements the map method. Its input is the output of the earlier Reduce
Side Join MapReduce job, whether the algorithm used for the join was RSJSimple, RSJET,
RSJETLBDistCache or RSJETIndex. So, since all four algorithms that perform the join produce the
same outputs, the map implementation of the Top-k algorithm applies to the outputs of all four
algorithms without alterations. Its implementation is pass through. It receives a key-value pair
where the key is just a number produced by the default RecordReader and the value is the whole
joined tuple. The output key-value pair is the same as the input.

Reduce.java

This is the class where the reduce method is implemented. Since, the number of reduce tasks is
setto 1, all joining attribute values will be sent to this single reduce task. The reduce method will
loop all the joined tuples received and return only the k with the smallest scoring sum.

5.6 Supplementary Implementation

5.6.1 DataToReducersET

The algorithms explained in the previous sections represent the implementation of the proposed
architecture. However, there is a need for an extra implementation to support the experimental part. In
order to prove that the load balancing technique implemented in RSJETLBDistCache, actually distributes
the load in an efficient manner and not randomly as happens in RSJET, we need two more algorithms that
will evaluate the outputs of the RSJET algorithm.

RSJETLBDistCache produces the dataToReducers.txt as mentioned earlier. This file contains the
information: which reducer receives which joining attribute. This information is not produced in a straight
forward way from the RSJET algorithm. It can only be implied from the analysis of the algorithm’s output.
Therefore, the first supplementary algorithm performs this analysis and is called DataToReducersET. The
inputs to this algorithm are all the partitions were the RSJET reducer’s output is stored. The algorithm
goes through the output records of each partition and stores all the joining attributes that have been
processed by a certain partition. The output of this algorithm is a file similar to dataToReducers.txt
produced by the RSJETLBDistCache. So, in this way we are able to compare the load distribution logic of
the two algorithms.

DataToReducerskT — Pseudocode

[Do while there are output partitions of RSJIET job
Read partition number from name of current partition
Set variable reducer = partition number
[Do while there are lines in partition
Read line
Split it in words
Set variable current_joining_attribute = first word
[If current_joining_attribute is not already written in dataToReducers.txt
Write in dataToReducers.txt : current_joining_attribute, reducer

Return dataToReducersET.txt

5.6.2 JoinsPerReducer

The BoundEstimation algorithm which is used in RSJETLBDistCache encapsulates the calculation of the
joined values that can be produced from the join of two relations for each joining attribute value. If we
combine this information with the dataToReducers information we can calculate the exact number of
joins that each are performed by each reducer. This is implemented in the JoinsPerReducer algorithm.

The input to this algorithm is the joinValues HashMap, that is produced by the BoundEstimation algorithm,
and the dataToReducers.txt. The algorithm loops the lines of dataToReducers.txt and for each joining
attribute it looks up the number of joins that correspond to it. Then, it adds this number to total number
of joins performed by reducer responsible for this joining attribute. The output of this algorithm is the file
joinsPerReducer.txt which contains the information: how many joins does each reducer perform.

Pseudocode

Do while dataToReducers.txt has lines
Read line
Split line in words
Set variable reducer_for_joining_attribute = second word
Set variable current_joining_attribute = first word
Set variable number_of join_values = joinValues.get(current_joining_attributes)
If joinsPerReducer.txt does not contain reducer_for_joining_attribute
Set variable totalloinsForReducer = number_of join_values
Write in joinPerReducer.txt: reducer_for_joining_attribute, totalloinsForReducer
Else
Set variable totalloinsForReducerSoFar = joinsPerReducer.get(reducer_for_joining_attribute)
Set variable totalloinsForReducer = totalloinsForReducerSoFar + number_of join_values
Update joinsPerReducer.txt: reducer_for_joining_attribute, totalloinsForReducer

Return joinsPerReducer.txt

6 Experimental Evaluation

6.1 Environment setup

All the experiments for the needs of this thesis were performed on a Hadoop cluster. The characteristics
of this cluster are presented in this section.

The cluster consists of 12 nodes. There is one node with the role of namenode and one node with the role
of secondary namenode. All nodes are used as tasktrackers and datanodes. The specifications of the
physical machines are presented in the following table:

Number of Machines Disk space per machine Memory per machine
8 6.3TB 31.4GB
3 14.4TB 125.9GB
1 14.4T8B 110.2GB

Table 2: Cluster configuration

So, the total disk space used by the cluster is 108 TB and the total memory from all machines is 739.1GB.

6.2 Experimental scenarios

In order to prove that the proposed algorithms for top-k joins add efficiency and decrease the execution
time, a number of experimental scenarios were conducted to test a number of factors that affect the
efficiency of top-k join query calculation.

The first factor tested is the dataset size. In order to prove that the algorithms proposed are proper for
the processing of top-k joins for large datasets, we have to prove that they scale well. For this reason, the
first set of datasets used includes datasets with sizes that range from 5GB to 200GB. Another factor is the
number of k desired joined results. We prove that the proposed techniques are equally efficient for a wide
range of k results requested by the user. More specifically, the four algorithms are executed with the
datasets presented in table 4 for k=10, k=100 and k=500. Algorithms RSJET, RSJETLB and RSJETIndex were
executed 10 times each, for every dataset and every k value, whereas RSJSimple was executed 5 times for
each dataset and for every k value. The results for k=10 are presented in 6.4. Accordingly, the results for
k=100 and for k=500 are presented in Appendix. For all scenarios tested, several counters of the map
reduce jobs are presented, which prove the efficiency and correctness of the three latter algorithms
comparing to the RSISimple algorithm.

Another factor tested with the datasets of table 5 is join selectivity. In database systems, join selectivity
of a table’s column is defined as: the number of distinct values that the column can have / number of

table’s tuples. We will simplify the meaning of join selectivity by replacing the number of table’s tuples
with the dataset size. Therefore, the analogy that calculates the join selectivity of the datasets will be:
number of joining attribute values/dataset size (GB). For example, a dataset of 10GB which has 100 distinct
values of joining attributes has join selectivity 100/10 = 10 whereas a dataset of same size with 1000
distinct values has join selectivity 1000/10 = 100. The lower the join selectivity the higher the number of
joins that can be produced and vice versa. By testing our proposed algorithms against this factor, we prove
that they perform well with low and high join selectivity comparing to RSJSimple.

The fourth factor tested is data distribution on score attribute. All algorithms are tested against datasets
of the same size but with different distribution on the scoring attribute. In this way we prove that the
proposed algorithms are equally efficient even in different data distributions. As a matter of fact the
datasets used for this purpose are the ones presented in table 6.

Last but not least, in order to compare the behavior of RSJET against RSJETLB we alter the data distribution
on the joining attribute. If the data distribution on the joining attribute is uniform, then the number of
joined tuples is approximately the same for all joining attributes, therefore the load distribution in the
reducers will be fair, regardless the data distribution on scoring attribute. However, if the joining attribute
has a zipfian distribution then the number of joins that correspond to each joining attribute differs. To
test this (Scenario 5) we use the datasets presented in table 7.

The following table summarizes the experimental scenarios and the factors that each of them alters to
examine the behavior of the tested algorithms:

. . Join Data distribution on Data distribution on
Scenario | Dataset size k
selectivity score attribute joining attribute
1 different same same same same
2 same different same same same
3 same same different same same
4 same same same different same
5 same same same same different

Table 3: Scenarios and factors

6.3 Datasets

All datasets used in the experimental scenarios were produced by a Data Generator program which
receives as input the number of tuples to be produced (which define the size of the dataset), the desired
number of joining attribute values, the type of distribution and the skewness of either the scoring
attribute or the joining attribute. The outputs of Data Generator are the following six text files:

e RO.txt = First relation to be joined. Used as input in RSJSimple.
e Rl1.txt = Second relation to be joined. Used as input in RSISimple.

e ROsorted.txt = The contents of this file are exactly the same with RO.txt. The only difference is

that column score is sorted in ascending order. It is used as input of RSJET, RSJETLBDistCache,
RSJETIndex.
e Rl.sorted.txt = The contents of this file are exactly the same with R1.txt. The only difference is
that column score is sorted in ascending order. It is used as input of RSJET, RSJETLBDistCache,
RSJETIndex.
e hist0.txt = Histogram for first relation (RO).
e histl.txt = Histogram for second relation (R1).

Both relations RO, R1 have the same columns: id, joining attribute, score attribute.

The datasets used as input to Scenario 1 and Scenario 3 are presented in the following table:

Risorted Number of
Dataset | ROsorted size size joining attribute Distribution Skewness
values
DS1 5.7GB 5.8GB 500 Zipfian on scoring attribute 0.5
DS2 11GB 11.3GB 1000 Zipfian on scoring attribute 0.5
DS3 23GB 24GB 2000 Zipfian on scoring attribute 0.5
DS4 115.8GB 118.8GB 1000 Zipfian on scoring attribute 0.5
DS5 240.9GB 251.2GB 2000 Zipfian on scoring attribute 0.5

Table 4: First set of datasets

The datasets used as input to Scenario 2 are presented in the following table. DS1 dataset with 1000

joining attributes has higher join selectivity than DS2 with 100 joining attribute values. Accordingly, DS1
with 2000 joining attribute values has the same joining selectivity with the DS1 dataset of 1000 different
joining attributes and a higher join selectivity than DS2 with 200 joining attributes.

Risorted Number of
Dataset | ROsorted size size joining attribute Distribution Skewness
values
DS1 11GB 11.3GB 1000 Zipfian on scoring attribute 0.5
DS1 23GB 24GB 2000 Zipfian on scoring attribute 0.5
DS2 10.5GB 10.8GB 100 Zipfian on scoring attribute 0.5
DS2 21.8GB 22.9GB 200 Zipfian on scoring attribute 0.5

Table 5: Second set of datasets

The datasets used as input to Scenario 4 of experimental scenarios are presented in the following table:

Uniform on
DS1 22.9GB 23.9GB 2000 scoring 0
attribute
Zipfian on
DS2 23GB 24GB 2000 scoring 0.5
attribute
Zipfian on
DS3 23GB 24GB 2000 scoring 1
attribute

Table 6: Third set of datasets

The datasets used as input to the third set of experimental scenarios are presented in the following table:

DS1 1.0GB 1.1GB 100 Zipfian on joining attribute 0.5

DS2 1.0GB 1.1GB 100 Zipfian on joining attribute 0.2
Table 7: Fourth set of datasets

6.4 Scenario 1 for k=10

Scenario 1 is executed with the datasets of table 4. So, the complete configuration for this scenario is the

following:
Data e .
Scenario | Datasetsize | k Join selectivity distribution on Da.t? q|str|buflon on
. joining attribute
score attribute
N 100 for DS1, DS2, DS3 Zipfian with .
1 5GB to 10 uniform
200GB 10 for DS4, DS5 skewness 0.5

Table 8: Scenario 1 for k=10

6.4.1 Total Duration

The diagram below depicts the total duration of all four algorithms for each dataset of the first set. It is
clear that the Early Termination technique decreases significantly the execution time for the calculation
of queries such as the one discussed in 5. RSJET and RSJETLBDistCache are equivalent in terms of execution
time since the load uniform amongst the reducers due to the uniform data distribution of the joining
attribute. It is worth mentioning that RISETIndex scales better that RSJET and RSJETLBDistCache when the
dataset size increases. For example for 100GB and 200GB datasets, RSJIETIndex has the smallest total
duration.

However, in small datasets, RSJETIndex is slightly slower than RSJET and RSJETLBDistCache. RISETIndex
calculates the Map input splits so that they derive only from the useful HDFS blocks and not from the
whole input files. This leads to diminished map tasks in comparison with RSJET and RSJETLBDistCache.
However, in datasets such as 5GB this technique does not add significant value since the map tasks loaded
from RSJET and RSJETLBDistCache are few and finish very quickly because the input datasets size is small.

100000

[RsJSimple ——1
RSJET =1
RSJETLE mmmm]
10000 |- RSJETIndex M i

1000 | b

Time (sec)

DS1 Ds2 DS3 Ds4
DataSet

Figure 24: Scenario 1 for k=10 - Total Duration

6.4.2 Average Map Time

Average Map Time is another metric that proves the efficiency of Early Termination technique. RSJET and
RISETLBDistCache have the lowest average map time even for large datasets. Even though the number of
map tasks launched by RSJET and RSJETLBDistCache is the same with RSJSimple, not all map tasks produce
key value pairs for the reducers. Therefore, the majority of map tasks in RSJET and RSJETLBDistCache
complete their execution very fast and most of them without processing any record of the input split.

On the contrary RSJETIndex appears to have a high Average Map Time but this is not a sign of inefficiency.
As explained in 3.1.8 Average Map Time = Total time taken by all Map tasks/ Count of Map Tasks. In
RSJETIndex the number of Map tasks can be very small. For example the number of map tasks launched
for 200GB datasets by RSJETIndex is only 4 whereas the number of map tasks launched by all other three
algorithms for the same dataset is 3937. The majority of map tasks in RISET and RSJETLBDistCache
complete extremely fast. In fact the number of map tasks that actually produce key value pairs for
reducers in RSJET and RSJETLBDistCache is the same with RSJETIndex and these are the only map tasks
who need more time to terminate.

1000

E Rs)Simple —1
; RSJET =1

RSJETLE
L RSJETIndex m—

100 | .

Time (sec)

10 | E

1 - - - -

Ds1 Ds2 DS3 Ds4 DS5
DataSet

Figure 25: Scenario 1 for k=10 - Average Map Time

6.4.3 Average Shuffle Time

The following diagram proves that all proposed techniques enhance significantly the Shuffle phase. The
results depicted in this diagram can be combined with the Average Map Time and Map Output Records
diagrams. As explained earlier, in this phase the map outputs are copied in the task trackers that will
execute the reduce tasks. In RSET and RSJETLBDistCache the map output records are significantly less
comparing to RSJSimple. Therefore, the average time needed for the map outputs to be copied is less than
RSJSimple for these two algorithms. RSJETIndex also produces less map output records than RSJSimple,
however as explain earlier the number of map tasks raised by this algorithm is very small and this metric
depicts average times, so, this is why for small datasets like 5GB RSJETIndex has higher average shuffle
time.

10000 g . .
E RS|Simple C—
1 RSJET ==1
RSJETLE
I RSJETIndex N]

1000 | A E

Time (sec)
=
o
o
T
V]

i

Ds1 Ds2 DS3 Ds4 Ds5
DataSet

Figure 26: Scenario 1 for k=10 - Average Shuffle Time

6.4.4 Average Merge Time

This diagram proves that Merge phase is also significantly enhanced by all three proposed algorithms. It
is worth pointing out that for smaller datasets the Average Merge Time needed for this phase is close to
zero seconds. This is because the number of tuples that reached the task trackers were the reducer will
be executed is much smaller comparing to RSJSimple.

10000

E RSjSimple ——1
i RSJET =1

RSJETLE
- RSJETIndex M

1000 | — E

Time (sec)

100 | e

10 E

LD Halle

Ds1 Ds2 Ds3 Ds4 Ds5
DataSet

Figure 27: Scenario 1 for k=10 - Average Merge Time

6.4.5 Average Reduce Time

The Reduce phase is the most significant phase of a Reduce Side Join because it is the phase were the two
input datasets will be joined. As depicted in the diagram below, this phase is the most enhanced by the
Early Termination technique since the average time needed for RSJET, RSJETLBDistCache and RSJETIndex

is close to zero, whereas the time needed for RSJSimple is much higher. This is because the load of the
reduce tasks is significantly diminished with the use of Early Termination technique.

10000 ¢ T T
E RS|Simple C—
3 RSJET ==
RSJETLE
[RSJETIndex NN

1000 | E

Time (sec)
=
o
o

10 F E

1 1 1 1 1
DS1 DS2 DS3 DS4 DS5
DataSet

=

Figure 28: Scenario 1 for k=10 - Average Reduce Time

6.4.6 Map Input Records

This counter shows the number of records read by the RecordReader. In RSJET, RSJETLBDistCache and
RSJETIndex, the number of records read by the record reader depends on the result of the
BoundEstimation algorithm. In the following table we present the bounds returned for each relation and
each dataset:

Dataset Bound for RO Bound for R1
DS1 60 60
DS2 30 30
DS3 15 15
DS4 30 30
DS5 15 15

Table 9: Scenario 1 for k=10 - Bounds per dataset

In RSJET, RSJETLBDistCache and RSJETIndex, RecordReader processes all records that have as score
attribute values that are lower than the bounds estimated. Since the input datasets to these algorithms
are sorted by score column, to reach bound 60, RecordReader must read more records than it would if
bound was 30. So, that explains why map input records are more for DS1 than for DS2. DS4 and DS5 have
same bounds with DS2 and DS3 accordingly, therefore one would expect that the map input records
should be the same. However, DS4 and DS5 have lower join selectivity, which means that more records
have to be accessed in order to reach the score bound.

On the other hand, RSJSimple processes all records from both input datasets, so the number of map input
records for this algorithm, is proportional to the dataset size regardless the join selectivity.

RSJSimple ——1 ' ' '
le+l2 RSJET = 1
RS|ETLR [
RSJETIndex NN —
le+10 | = -
le+08 | g
w
=]
—
S
@ le+06 | g
o
10000 g
100 | .
1

Ds1 Ds2 Ds3 Ds4 Ds5
DataSet

Figure 29: Scenario 1 for k=10 - Map Input Records

6.4.7 Map Output Records

The number of Map Output Records is equal to the number of Map Input Records for all four algorithms.
However, due to Early Termination technique, this number is smaller for RSJET, RSJETLBDistCache and
RSJETIndex comparing to RSJSimple.

RS]SimIpIe :l
RSJET =—=1 1
| RSJETLB mmmm
RSJETIndex N —
le+10 | u -1

le+12

le+08 1

le+06 1

Records

10000 |- 1

100 | 1

1 - - L L

DS1 DS2 DS3 DS4 DS5
DataSet

Figure 30: Scenario 1 for k=10 - Map Output Records

6.4.8 Reduce Output Records

This metric represents the total number of records that were produced by the reducers. As we saw earlier,
the reduce method in all four algorithms, returns k joined records for each joining attribute. Since, the
output of all jobs is a list with the top-k records per joining attribute, then this metric is proportional to

the number of joining attributes. For example, for DS1 the number of joining attributes is 500 so for k=10
the number of output records is 5000. Accordingly for DS5 the number of joining attributes is 2000 so for
k=10 the number of output records is 20000.

RS]SimIpIe :l
le+l2 RSJET =21 T
| RSJETLE mmmm

RSJETIndex N
le+10 |- -1

le+08 |- 1

Records

le+06 1

10000

100

Ds1 Ds2 DS3 Ds4 Ds5
DataSet

Figure 31: Scenario 1 for k=10 - Recuce Output Records

6.4.9 Shuffled Maps

The following diagram depicts the efficiency added by RSJETIndex in the Shuffle phase. RSJETIndex
launches the lowest number of map tasks therefore during the maps copied during the shuffling phase
are significantly less comparing to all other three algorithms. As explained earlier, the map tasks launched
by RSJSimple, RSJET and RSJETLBDistCache are equal because the whole datasets are divided in input splits
and passed to the mappers.

100000

[RsJSimple ——
RSJET =1

+ RSJETLE —
10000 | RSIETIndex M-

1000 F

Shuffled maps

100

10 |

1 - L Ll

Ds1 Ds2 Ds3 Ds4 Ds5
DataSet

Figure 32: Scenario 1 for k=10 - Shuffled Maps

6.4.10 Map Spilled Records

This metric represents the number of records written in the disk during the map phase. This diagram can
be examined in parallel with the Map output records diagram,

RSJSimple ——] RSJSimple ——1

le+12 | RSJET =1 7 le+12 |- RSJET =3 T
RSJETLE | | RSJETLE mmmm
RSJETIndex N - RSJETIndex N
le+10 1 1 le+10 1
le+08 | 1 le+08 1

Records
Records

le+06 le+06 1

10000 | 1 10000

1 L L L]

DS1 Ds2 DS3 DS4 DS1 DSs2 DS3 Ds4 DS5
DataSet DataSet
Figure 55: Scenario 1 for k=100 - Map Output Records Figure 56: Scenario 1 for k=100 - Reduce Output
Records

since the number of map output records is the number of records that are finally spilled on the disk.
Again, it is worth mentioning that all three proposed algorithms produce less map output records due to

the Early Termination technique therefore they spill less records comparing to RSJSimple which spills all
input records to the disk.

le+l4

RS]SimIpIe :l
I RSJET ==
le+12 | RSJETLE E
RSJETIndex N

le+10 1

le+08 1

Records

le+06 |- .

10000 | 1

100 |- 1

1 - - L L

Ds1 Ds2 DS3 Ds4 Ds5
DataSet

Figure 33: Scenario 1 for k=10 - Map Spilled Records

6.4.11 Input Split Bytes

This metric depicts the total number of bytes passed as input splits to the map tasks. The following
diagram proves that RSJETIndex eliminates the number of bytes read from each dataset whereas all other
three algorithms load the whole datasets to the map tasks.

le+07 p r T
- RS|Simple C—1
L RSJET ==
1e+06 f RSJETLB E
+ RSJETIndex N

100000 |

10000 |

Bytes

1000 |
100 |

10 |

1 L L] L]

DS1 DS2 DS3 DS4 DS5
DataSet

Figure 34: Scenario 1 for k=10 - Input Split Bytes

6.4.12 CPU Map Time

Since, Early Termination technique eliminates the number of records processed by the Map phase, the
total processing time is also diminished comparing to RSJSimple. Especially in RSJETIndex, the total
processing time in Map phase is even lower since the launched map tasks are fewer.

RS]SimIpIe :l
le+10 | RSJET == -
RSJETLE
I RSJETIndex NN

le+08 — 1

le+06 - 1

Time (msec)

10000 1

1 - - L L

Ds1 Ds2 DS3 Ds4 Ds5
DataSet

Figure 35: Scenario 1 for k=10 - CPU Map Time

6.4.13 CPU Reduce Time

Accordingly, the CPU Reduce Time for RSJET, RSJETLBDistCache and RSJETIndex is lower since the records
passed to the reduce phase are less than the number of records passed in the reduce phase from
RSJSimple.

le+10

RS]SimIpIe :l
RSJET ==1
RSJETLE
le+08 | RSIETIndex mummm]

le+06] 1

Time (msec)

10000 | 1

100 | 1

1 - - L L

Ds1 Ds2 DS3 Ds4 Ds5
DataSet

Figure 36: Scenario 1 for k=10 - CPU Recuce Time

6.5 Scenario 1 for k=100

Scenario 1 was re-executed with the datasets of table 4 but this time for k=100. So, the complete
configuration for this scenario is the following:

ranges from
1 5GB to 100

100/1 for DS1, DS2, DS3 Zipfian with

10/1 for DS4, DS5 skewness 0.5 uniform

200GB

Table 10: Scenario 1 for k=100

The behavior of all four algorithms is similar to the behavior they had for k=10. Therefore, the explanation
given for all the metrics in 6.4 applies here as well. The diagrams for all metrics are presented in Appendix
and can be compared to the relevant diagrams for k=10.

6.6 Scenario 1 for k=500

Scenario 1 was re-executed with the datasets of table 4 but this time for k=100. So, the complete
configuration for this scenario is the following:

T Data distribution
. Data distribution on . .
Scenario | Dataset size k Join selectivity . on joining
score attribute .
attribute
. ranfg; ::Jom coo | 100/1forDS1,DS2, DS3 Zipfian with o
>00GB 10/1 for DS4, DS5 skewness 0.5

Table 11: Scenario 1 for k=500

The behavior of all four algorithms is similar to the behavior they had for k=10 and k=100. Therefore, the
explanation given for all the metrics in 6.4 applies here as well. The diagrams for all metrics are presented
in this chapter and can be compared to the relevant diagrams for k=10 and k=100.

The fact that all three proposed algorithms depict the same behavior for different values of k proves the
scalability of the algorithms in terms of, not only dataset size, but k value as well. All diagrams for this
scenario are available on Appendix.

6.7 Scenario 2 for all first set datasets

The results for Scenario 2 are already provided from the experiments executed for Scenario 1 and for the
different values of k. In this section the results retrieved from Scenario 1 are combined in such a way so
that it is easier to compare the performance of each algorithm for different k values in the same dataset.

The conclusion drawn from the comparison that is presented in the following diagrams, is that the total
execution time of all algorithms remains the same regardless the k value.

The following table presents the configuration of the scenarios examined in this section.

Data
. Dataset Join Data distribution on distribution
Scenario . k
size selectivity score attribute on joining
attribute
k=10,
2 5GB k=100, 100 /1 Zipfian with skewness 0.5 uniform
k=500
k=10, - . .
2 10GB P 100 /1 Zipfian with skewness 0.5 uniform

k=500

k=10,

2 20GB k=100, 100/1

k=500

Zipfian with skewness 0.5 uniform

k=10,

2 100GB k=100, 10/1

k=500

Zipfian with skewness 0.5 uniform

k=10,

2 200GB k=100, 10/1

k=500

Zipfian with skewness 0.5 uniform

Table 12: Scenario 2 - Configuration

The total execution times for all above datasets and for all k values, are reflected visually in the following

diagrams.

Time (sec)

100000

10000

1000

100

10

[RSJSimple —
RSJET =21
RSJETLE D

. RSJETIndex NN

nn

k=10

k=100 k=500
DataSet 5GB

Figure 37: Scenario 2 - 5 GB

Time (sec)

100000

[RSJSimple ——1

RSJET ==
L RSJETLB mmmm 1
10000 | RSJETIndex N __

1000 | R

10 | -

k=10 k=100 k=500
DataSet 10GB

Figure 38: Scenario 2 - 10 GB

Time (sec)

100000

10000

1000

100

10

RSJSimple II:I
RSJET ==
RSJETLE s
RSJETIndex N

k=100

DataSet 20GB

Figure 40: Scenario 2 - 20 GB

Time (sec)

100000

10000

1000

100

10

RSJET —1
RSJETLE

k=10

k=100

DataSet 100GB

k=500

Figure 39: Scenario 2 - 100 GB

Figure 41: Scenario 2 - 200 GB

r . 100000 f -
] RSJSimple —
n 10000 | RSJETIndex N
E S 1000 |
1 Q
1 2 3
@
1 £ I
J = 100 |
4 10 |
1
k=500
L T T r
RS)Simple ——1 J
RSJET =
RSJETLB
| RSJETindex mummm _ J
k=10 k=100 k=500
DataSet 200GB

6.8 Scenario 3 for DS = 10GB

The datasets used for this scenario are the ones presented in table 5. So, the configuration for this scenario

is the following:

Scenario | Dataset size k Join selectivity Data d|str|btft|on on
score attribute
_ _ _ 100/1 for DS1 . .
3 10GB k=10, k=100, k=500 10/1 for DS2 Zipfian with skewness 0.5

6.8.1 Total Duration for DS=10GB

Table 13: Scenario 3 10GB

The following diagram proves that the total duration of the proposed algorithms RSJET, RSJETLBDistCache
and RSJETIndex increases slightly for lower join selectivity in the same dataset size. This is because the
records that need to be processed in order to reach the estimated bounds for the score attribute, are
more in datasets with low join selectivity, since the number of joins that are produced by low selectivity
datasets is higher. This is proved by the results of BoundEstimation for the two datasets:

Dataset | Bound for RO | Bound for R1
DS1 30 30
DS2 300 300

Table 14: Scenario 3 10GB - bounds

Since the number of joins that can be achieved in DS2 are more than those in DS1 the total duration time
of all three algorithms increases for DS2. However, the total duration remains lower than the total
duration of RSJSimple regardless the k value.

100000

[RSJSi'mple — ' ' ' '
RSJET =23
RSJETLE
10000 | RSJETIndex M

1000 | F

Time (sec)

DS1-10k DS2-10k DS1-100k DS2-100k DS1-500k DS2-500k
DataSet 10GB

Figure 42: Scenario 3 10GB - Total Duration

6.9 Scenario 3 DS = 20GB

The datasets used for this scenario are the ones presented in table 5. So, the configuration for this scenario
is the following:

Scenario | Dataset size K Join selectivity Data distribution on score attribute
_ _ _ 100/1 for DS1 o .
3 20GB k=10, k=100, k=500 10/1 for DS2 Zipfian with skewness 0.5

Table 15: Scenario 3 20GB

6.9.1 Total Duration for DS = 20GB

The BoundEstimation algorithm returned the following bounds for the two datasets:

Dataset | Bound for RO | Bound for R1
DS1 30 30

DS2 300 300
Table 16: Scenario 3 20GB - bounds

Therefore, the explanation given for Total Duration for DS=10GB applies in this scenario too.

Time (sec)

100000

RSSimple =]
RSJET ==

| RSJETLE mmmm]

10000 |- RSJETindex M i

1000 | .

100 b

10

1 L - - - L

DS1-10k DS2-10k DS1-100k DS2-100k DS1-500k DS2-500k
DataSet 20GB

Table 17: Scenario 3 20GB - Total Duration

6.10 Scenario 4

The datasets used for this scenario are the ones presented in table 6. The configuration for these
experiments is the following:

Scenario Dataset size k Join selectivity | Data distribution on score attribute
Uniform for DS1
4 20GB k=10 100/1 Zipfian with skewness 0.5 for DS2
Zipfian with skewness 1.0 for DS3

Table 18: Scenario 4 20GB

As the diagrams show, the behavior of all algorithms, even of RSISimple is exactly the same for all three
datasets regardless the distribution of the scoring attribute. For this reason, only the total duration
diagram is presented in the next section and the rest of the diagrams for this scenario are available in
Appendix.

Still, the algorithms RSJET, RSJETLBDistCache and RSJETIndex remain faster in execution time than
RSJSimple.

6.10.1 Total Duration

100000 T r T
| RS|Simple C—1
RSJET ==1
RSJETLE
10000 | RSJETIndex M N

1000 | F

Time (sec)

100 -

10} i

DS1 DS2 DS3
DataSet

Figure 43: Scenario 4 20GB - Total Duration

6.11 Scenario 5

In all Scenarios examined so far, the behavior of RSJET and RSJETLBIndex was very similar. The total
duration was approximately the same for the two algorithms and that was expected since the distribution
of the joining attribute of the datasets tested was uniform. Consequently, the value of Load Balancing
technique was not revealed, since the load would either way be distributed in a uniform manner to the
reducers. In this Scenario we use the datasets presented in table 7 which have the same dataset size but
differ in the distribution of the joining attribute. So, the configuration for this scenario is the following:

Scenario | Dataset size k Join selectivity Data distribution on joining attribute
_ Zipfian with skewness 0.5 For DS1
> 168 k=10 100/1 Zipfian with skewness 0.2 For DS2

Table 19: Scenario 5

6.11.1 Total Duration

The expected result would be that RSJETLBDistCache would have a lower total duration due to the Load
Balancing technique. In fact, this is not happening as shown in the diagram below. Both RSJET and
RSJETLBDistCache take the same time to complete.

100000 1 T
| RS|Simple C—1
RSJET =1
RSJETLE [
10000 | RSJETindex M

1000 | F

Time (sec)

100

1 |_|_I |_|_'
1
Ds1 Ds2

DataSet

Figure 44: Scenario 5 - Total Duration

To examine in further detail this behavior, we use the implementation explained in Supplementary
Implementation. With DataToReducersET and JoinsPerReducer algorithms we retrieve the information:
how many join values does each reducer process in the RSJET algorithm. We do this for the dataset with
0.5 skewness in joining attribute.

This information is already known for the RSJETLBDistCache, since the calculation of dataToReducers is
part of the algorithm’s steps.

So, having calculated the joins that each reducer handles for both RSJET and RSJETLBDistCache we can
depict them in the following diagrams.

Load Per Reducer in RSJETLBDistCache — 1GB dataset with 0.5 skewness on joining attribute

30000000

25000000

Hundreds

20000000

15000000

10000000

5000000

e=@==reducer ==@==joins

Figure 45: Scenario 5 — RSJIETLBDistCache joins per reducer on zipf 0.5

As we can see, RSJETLBDistCache, which uses the LPT algorithm for the load distribution, does the
following:

Sorts the joining attributes by the total joins that correspond to each one in a descending order.
Assigns the first 10 joining attributes from the sorted list, each one in one reducer (considering
that the number of reduce tasks is set to 10).
3. For the rest of joining attributes
- finds the reducer with the least joins to process
- assigns the current joining attribute to the least busy reducer

The dataset has zipfian distribution on the scoring attribute with 0.5 skewness. According to the above
logic, the first joining attribute will be assigned to reducer 1 and no other joining attribute will be sent to
this reducer because the first joining attribute carries the greatest number of joins. The second joining
attribute will be assigned to reducer 2 and so on until the tenth joining attribute will be assigned to
reducer 10. Since we have a zipfian distribution, reducer 10 so far has the least joins to handle therefore,
the eleventh joining attribute will be assigned to reducer 10, the next to reducer 9 and so on. In the end,
reducer 1 will be still the busiest reducer as depicted in the diagram for RSJETLBDistCache even though it

all handles the first joining attribute. So, RSJETLBDistCache distributes the load to the least busy reducer
however this does not assure that the load will be equal across the reducers for a much skewed dataset.

On the other hand it is clear that the RSJET algorithm performs a random load assignment which results
to the overload of reducer 9 (figure 46). In another run of RISET, another reducer might be overloaded.

Load Per Reducer in RSJET - 1GB dataset with 0.5 skewness on joining attribute

35000000

30000000

Hundreds

25000000

20000000

15000000

10000000

5000000

e=@==reducer ==@==joins
Figure 46: Scenario 5 - RSJET joins per reducer on zipf 0.5
As shown in figure 47, RSJETLBDistCache performs a more uniform load distribution for datasets with low

skewness on joining attribute. RSJET still distributes randomly the load, thus resulting again to one very

busy reducer (figure 48).

Load Per Reducer in RSJETLBDistCache — 1GB dataset with 0.2 skewness on joining attribute

10000000

5000000 — =g o —~
C o O

8000000

Hundreds

7000000
6000000
5000000
4000000
3000000
2000000
1000000

=@==reducer ==@==joins

Figure 47: RSIETLBDistCache joins per reducer on zipf 0.2

Load Per Reducer in RSJET - 1GB dataset with 0.2 skewness on joining attribute

12000000

10000000

Hundreds

8000000

6000000

4000000

2000000

e=@==reducer ==@==joins

Figure 48: RSIET joins per reducer on zipf 0.2

All four algorithms implement the same mechanism in their reducers. They read only k values from each
input relation to perform the join. It is guaranteed that the first k values that will reach a reducer from
one relation are sorted by score (due to secondary sort). Therefore, the reducers terminate after k*2 loops
when they certainly have calculated the top-k joined tuples for a specific joining attribute. Consequently,

even if there is a reducer that should take the longest time to complete due to the number of joins
assigned to it, in fact it completes its processing in similar time with the others due to this logic.

This explains the reason why, although we observe a gain in RISETLBDistCache in terms of load
distribution, the execution time of RSJETLBDistCache is still the same with RSJET regardless the skewness
of the datasets.

7 Conclusions

In this thesis two techniques were presented for early termination and one technique for load balancing
to address the problem of efficient processing of top-k joins in MapReduce. All techniques were
implemented on top of Hadoop MapReduce without affecting its internal mechanism.

The experiments presented in Chapter 6 prove that all three algorithms are more efficient than the simple
implementation of top-k joins in the traditional MapReduce model, in terms of performance and
resources used. This conclusion has proven to be valid for a number of factors tested such as dataset size,
different k values, join selectivity and data distribution on score and joining attributes.

The third algorithm RSJETIndex proves to be faster for very large datasets such as 200GB in all
experimental scenarios, whereas RSJET and RSETLBDistCache work equally well for smaller datasets.

Even though RIET and RSJETLBDistCache depicted the same overall execution time in all scenarios, the
experiments in section 6.11 proved that RSJETLBDistCache makes more uniform load distribution than
RSJET, in datasets with skewness on joining attribute.

A further enhancement of the proposed architecture and implementation would be its extension so as to
support more complex rank aware queries for multiple relations. This is easily achieved by altering slightly
the implementation of the map and reduce methods to handle multiple input datasets. The core logic,
though, remains the same. Another set of experiments could be performed to prove the scalability and
speed of the implementation for a series of complex rank aware queries.

Last but not least, it would be very interesting to test the proposed algorithms against algorithms
proposed in related work, such as RanKloud 2 and compare the efficiency of the solutions in terms of total
execution time and resources used.

8 References

1. A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania, P. Khemani, K. Muthukkaruppan, K. Ranganathan, N.
Spiegelberg, L. Tang, and M. Vaidya. Storage infrastructure behind Facebook Messages: using HBase at
scale. IEEE Data Engineering Bulletin, 35(2):4-13, 2012.

2. K.S. Candan, K. Selcuk, et al. "RanKloud: scalable multimedia data processing in server
clusters." MultiMedia, IEEE 18.1 (2011): 64-77.

3. B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D.
Weaver, and R. Yerneni. PNUTS: Yahoo!'s hosted data serving platform. Proceedings of the VLDB
Endowment (PVLDB), 1(2):1277{1288, 2008.

4. C. Doulkeridis, A. Vlachou, K. Ngrvdg, Y. Kotidis and N. Polyzotis, "Processing of rank joins in highly
distributed systems." Data Engineering (ICDE), 2012 IEEE 28th International Conference on. IEEE, 2012.

5. C. Doulkeridis and K. Ngrvdg. A survey of large-scale analytical query processing in MapReduce. The
VLDB Journal. DOI 10.1007/s00778-013-0319-9, 2013.

6. C. Doulkeridis and K. Ngrvdg. On saying "enough already!" in MapReduce. In Proceedings of
International Workshop on Cloud Intelligence (Cloud-1), pages 7:1-7:4, 2012.

7. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proceedings of
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2004.

8. J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Communications of the ACM,
53(1):72-77, 2010.

9. K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and V. Y. Ye. Building LinkedIn's real-time
activity data pipeline. IEEE Data Engineering Bulletin, 35(2):33-45, 2012.

10. R. Grover and M. J. Carey. Extending map-reduce for efficient predicate-based sampling. In Proceedings
of International Conference on Data Engineering (ICDE), pages 486{497, 2012.

11. B. Guer, N. Augsten, A. Reiser, and A. Kemper. Load balancing in MapReduce based on scalable
cardinality estimates. In Proceedings of International Conference on Data Engineering (ICDE), pages 522-
533, 2012.

12. https://hadoop.apache.org/

13. 1. F. llyas, G. Beskales, and M. A. Soliman, “A survey of top-k query processing techniques in relational
database systems,” ACM Computing Surveys, vol. 40, no. 4, 2008.3.T. White. Hadoop - The Definitive
Guide. O’Reilly, 2012.

14. L. Kolb, A. Thor, and E. Rahm. Load balancing for MapReduce-based entity resolution. In Proceedings
of International Conference on Data Engineering (ICDE), pages 618-629, 2012.

15. Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. Skew-resistant parallel processing of feature-
extracting scientific user-defined functions. In ACM Symposium on Cloud Computing (SoCC), pages 75-86,
2010.

https://hadoop.apache.org/

16. Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. SkewTune: mitigating skew in MapReduce
applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 25-36, 2012.

17. N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics on MapReduce.
Proceedings of the VLDB Endowment (PVLDB), 5(10):1028-1039, 2012.

18. C.-Y. Lee. Parallel machines scheduling with non-simultaneous machine available time. Discrete Appl.
Math., 30 (1991), pp. 53—-61

19. K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data processing with MapReduce: A
survey. SIGMOD Record, 40(4):11-20, 2011.

20. N. Ntarmos, I. Patlakas, and P. Triantafillou. "Rank join queries in NoSQL databases." Proceedings of
the VLDB Endowment 7.7 (2014): 493-504.87.

21. A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. De-Witt, S. Madden, and M. Stonebraker. A comparison
of approaches to large-scale data analysis. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 165-178, 2009.

22.S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing reducer skew in MapReduce workloads using
progressive sampling. In ACM Symposium on Cloud Computing (SoCC), pages 16:1-16:13, 2012.

23. S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves. Sailfish: a framework for large
scale data processing. In ACM Symposium on Cloud Computing (SoCC), pages 4:1-4:13, 2012.

24. A. Rasmussen, V. T. Lam, M. Conley, G. Porter,R. Kapoor, and A. Vahdat. Themis: an 1/0 e_cient
MapReduce. In ACM Symposium on Cloud Computing (SoCC), pages 13:1-13:14, 2012.

25. M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin. MapReduce
and parallel DBMSs: friends or foes? Communications of the ACM, 53(1):64-71, 2010.

26. Y. Wang, L. Chen and G. Agrawal. Supporting Online Analytics with User-Defined Estimation and Early
Termination in a MapReduce-Like Framework. Proceedings of the 2015 International Workshop on Data-
Intensive Scalable Computing Systems.

27. T. White. Hadoop - The Definitive Guide. O’Reilly, 2012.

28. J. Zhou, N. Bruno, M.-C.Wu, P.-A. Larson, R. Chaiken, and D. Shakib. SCOPE: parallel databases meet
Map-Reduce. VLDB Journal, 21(5):611-636, 2012.

Appendix

Scenario 1 for k = 100

Time (sec)

Time (sec)

100000

10000

1000

100 |

10

Figure 49: Scenario 1 for k=100 - Total Duration

10000 g

RSJSimple ——]
RSJET ==
RSJETLE mmmm

| RSJETIndex N

Ds1 DS2

DSs3
DataSet

Ds4

DS5

Time (sec)

1000 ¢

100

10 |

RSJSimIpIe :I
RSJET =—=1
RSJETLE

" RSJETIndex NN

Ds1 Ds2

DS3
DataSet

Ds4

RS]SimIpIe :l
RSJET =—=1
RSJETLE

[RSJETIndex NN
1000

DS1 DS2

DS3
DataSet

Ds4

DS5

Figure 50: Scenario 1 for k=100 — Average Map Time

Time (sec)

10000 g

1000

100

10

RS]SimIpIe :I
RSJET ==
RSJETLE

[RSJETIndex NN

N |

|

DS1 DS2

DS3
DataSet

Ds4

DS5

Figure 51: Scenario 1 for k=100 - Average Shuffle Time

Figure 52: Scenario 1 for k=100 - Average Merge Time

Time (sec)

10000

1000

=
o
o

10

RS]SimIpIe :l
RSJET =—=1
RSJETLE
RSJETIndex N

DS1 Ds2

DS3
DataSet

Ds4

DS5

le+12 |

le+10

le+08 |

le+06

Records

10000

100

RSJSimple ——1
RSJET =1
RSJETLE
RSJETIndex N

DS1 Ds2

DS3
DataSet

Ds4

DS5

Figure 53: Scenario 1 for k=100 - Average Reduce Time

RSJSimple ——]

Figure 54: Scenario 1 for k =100 - Map Input Records

RS]SimIpIe I:II

le+12 | RSJET =1 le+12 |- RSJET =3 T
RSJETLE RSJETLE
RSJETIndex N RSJETIndex N
le+10 le+10 | -1
le+08 |- le+08 |- -1
%1} w
b= =]
o 2
2 le+06 9 le+06 |- -1
10000 |- 10000
100 100
1 — — 1
DS1 Ds2 DS3 DS4 DS1 DSs2 DS3 Ds4 DS5
DataSet DataSet
Figure 55: Scenario 1 for k=100 - Map Output Records Figure 56: Scenario 1 for k=100 - Reduce Output
Records
100000 T T T T T le+14 T T T T T
RS)Simple —1 RS)Simple —1
RSJET == RSJET =—=1 1
RSJETLE — le+12 RSJETLE -
10000 | RSIETIndex RSJETIndex M— |
— le+10 | _ E
@ m -] 4
g 1000 F M g levos | 4
o o -
g 3
-4 - .
El 100 L le+06
v E
10000 | .
10 T
100 -
1 . L] L] 1 . L

DS1 DS2

DS3
DataSet

DS4

DS1 Ds2

DS3
DataSet

DS4

DS5

Figure 57: Scenario 1 for k = 100 - Shuffled Maps

Figure 58: Scenario 1 for k=100 - Map Spilled Records

le+07

[RsjSimple —— ' ' ' RSJSimple ——1 ' ' '
L RSJET == le+10 | RSJET =1 E
le+06 | RSJETLB mmmm i RSJETLE
L RSJETIndex M L RSJETIndex mum—
100000 - le+08 | B] 1
10000 [I F .]]
o i £ let0s [- :
S I =
o @ 3
1000 | £
i = 10000 | -
100 | !
[100 .
10
1L — = - 1 — L — —
DS1 DS2 DS3 DS4 DS5 DS1 DS2 DS3 Ds4 DS5
DataSet DataSet
Figure 59: Scenario 1 for k=100 - Input Split Bytes Figure 60: Scenario 1 for k=100 - CPU Map Time
le+10 T T T T T
RS|Simple
L RSJET ==
RSJETLE
1e+08 | RSJETIndex _ h
g le+06 - B E
£ L
]
E 10000 | -
100 | -
1 L - L L]
DS1 DS2 DS3 Ds4 DS5
DataSet

Figure 61: Scenario 1 for k=100 - CPU Reduce Time

Scenario 1 for k = 500

Time (sec)

Time (sec)

100000

RSJSimple C——1
RSJET =1
RSJETLE mmm]
10000 |- RSIETIndex i

1000 | F

100

Ds1 Ds2 Ds3 Ds4 Ds5
DataSet

Figure 62: Scenario 1 for k=500 - Total Duration

10000 T T T T T
RSJSimple C——
RSJET ==
RSJETLE _
RSJETIndex nu—m
1000 g u
100
10
1 — - -

DSl Ds2 Ds3 Ds4 DS5
DataSet

Figure 64: Scenario 1 for k=500 - Average Shuffle Time

Time (sec)

10000 T T T T T
RSJSimple C——
RSJET ==
RSJETLE —
RSJETIndex nu—m
1000 g]
100
10
1 I L =
DSl Ds2 Ds3 Ds4 DS5
DataSet

Figure 66: Scenario 1 for k=500 - Average Reduce Time

Time (sec)

1000 — T T T T
t RSJSimple C—
RSJET ==
i RSJETLE
" RSJETIndex
100 | E
10 |
1 - - -

Ds1 Ds2 Ds3 Ds4 Ds5
DataSet

Figure 63: Scenario 1 for k=500 - Average Map Time

10000 T T T T T
RSJSimple C——
RSJET ==
RSJETLE
RSJETIndex -
1000 g 1
- 100 |
E
£
10
DS1 Ds2 Ds3 Ds4 DS5
DataSet
Figure 65: Scenario 1 for k=500 - Average Merge Time
T ! L L T
RSJSimple C——
le+12 | RSJET =—=1 T
RSJETLE
RSJETIndex Mm— _
le+10 — .
le+08 -
1’1}
o
S
K le+06 | .
10000 |- b
100 B
1 - — - -

DS1 Ds2 Ds3 Ds4 DS5
DataSet

Figure 67: Scenario 1 for k=500 - Map Input Records

RsJSimple ——)) j RsJSimple —— ' ' '
le+12 |- RSJET =1 T le+12 |- RSJET == T
RSJETLE | RSJETLE |
RSJETIndex M _ RSJETIndex M
le+l0 | = - le+l0 | -
le+08 - le+08 -
%1} %1}
o 4 = E
o o
g le+06 | - g le+06
10000 | E 10000
100 | - 100
1 L — - L 1
DS1 DSs2 DS3 DSs4 DS5 DS1 DSs2 DS3 DSs4 DS5
DataSet DataSet
Figure 68: Scenario 1 for k=500 - Map Output Records Figure 69: Scenario 1 for k=500 - Reduce Output
Records
100000 . r . T . . le+14 r T . . T
RSJSimple ——1 RSJSimple ——1
RSJET == RSJET == 1
RSJETLE — le+12 | RSJETLE -
10000 L RSIETIndex M RSJETIndex M- |
— le+10 | .] E
@ m —] 4
g MOF 7 g letos [E
b= o 4
e e
o - -
5 100 L 1e+06
(2] 4
10000 |- -
10} 1
100 | -
1 L - - 1 L — - L
DS1 DS2 DS3 DS4 DS5 DS1 DS2 DS3 DS4 DS5
DataSet DataSet
Figure 70: Scenario 1 for k=500 - Shuffled Maps Figure 71: Scenario 1 for k=500 - Map Spilled Records
le+07 —T T T T T —T T T T T
- RSJSimple C—1 RSJSimple C—
L RSJET == le+10 RSJET == -
le+06 | RSJETLE mmmmm r RSJETLE
[RSJETIndex mm— RSJETIndex M- 1
100000 | le+08 |- u] b
10000] I] B] |
w i 2 1e+06 [
£ | E
[+s] [
1000 | E
I = 10000 }
100 |
1 100 |
10 |
1 - L L 1 | L ||
DS1 DS2 DS3 DS4 DS5 DS1 DS2 DS3 DS4 DS5
DataSet DataSet

Figure 72: Scenario 1 for k=500 - Input Split Bytes Figure 73: Scenario 1 for k=500 - CPU Map Time

le+10

RSJSimple ———1 ' ' '
I RSJET =1
RSJETLE
Le+0s | RSIETIndex .]
T let0s [] .
wn
E |
£
£ 10000 | .
100 | .
1 - Ll L | -
Ds1 DS2 DS3 DS4 DS5
DataSet

Figure 74: Scenario 1 for k=500 - CPU Reduce Time

Scenario 4

10000 : - - 3 10000 g . - .
RSJSimple — E E RS|Simple C—
RSJET ==] i RSET ==
RSJETLE 1 I RSJETLE
RSJETIndex N) [RSJETIndex NN
1000 f E 1000
v _ _ _] S [
B 5
> o0k E % o0k
E E £ 3
= 4 = o
10 b 4 10 |
1 1 H 1 |_| 1 1
DS1 Ds2 DS3 DS1 DS2 DS3
DataSet DataSet
Figure 75: Scenario 4 - Average Shuffle Time Figure 76: Scenario 4 - Average Merge Time
10000 g T T T
E RS|Simple C—1
[RSJET ==
I RSJETLE
[RSJETIndex NN
1000 F
< [_ _ _
3
S o0k E
£ 3
= L
10 | 4
1 1 1 1
DS1 DSs2 DS3
DataSet

Figure 77: Scenario 4 - Average Reduce Time

