
 

 

Μεθοδολογίες Μηχανικής Μάθησης Βασισμένες σε 
Τεχνητά Ανοσοποιητικά Συστήματα 

 

 

 

 

 

Διονύσιος Νικολάου Σωτηρόπουλος 

 

 

 

 

 

Υποβάλλεται στο Τμήμα Πληροφορικής 

για την απόκτηση του 

Διδακτορικού Διπλώματος 

 

του 

 

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ 

Νοέμβριος 2010 





Artificial Immune System Based Machine
Learning Methodologies

A dissertation presented

by

Dionysios N. Sotiropoulos

to

The Department of Computer Science University of Piraeus

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

University of Piraeus

Piraeus, Greece

October 2010



c⃝2010 - Dionysios N. Sotiropoulos

All rights reserved.



ΠΕΡΙΛΗΨΗ 

Η παρούσα διδακτορική διατριβή έγκειται στον ευρύτερο ερευνητικό τομέα της Αναγνώρισης 
Προτύπων και στοχεύει στην θεωρητική και πειραματική απόδειξη της εγκυρότητας των Τεχνητών 
Ανοσοποιητικών Συστημάτων ως ένα εναλλακτικό υπόδειγμα  μηχανικής μάθησης.  Η κύρια πηγή 
έμπνευσης για τη δημιουργία των Τεχνητών Ανοσοποιητικών Συστημάτων είναι το Προσαρμοστικό 
Ανοσοποιητικό Σύστημα των σπονδυλωτών οργανισμών το οποίο συνιστά ένα από τα πιο 
εξελιγμένα βιολογικά συστήματα.  Συγκεκριμένα, το Προσαρμοστικό Ανοσοποιητικό Σύστημα έχει 
προσαρμοστεί μέσω της βιολογικής εξέλιξης κατά τέτοιο τρόπο έτσι ώστε να είναι σε θέση να 
επιτελεί συνεχώς τη διαδικασία της διάκρισης του εαυτού από τον μη-εαυτό η οποία συνιστά ένα 
ταξινομητικό πρόβλημα εξαιρετικής ταξικής ανισορροπίας.  Η τρέχουσα διδακτορική διατριβή 
εστιάζει στην αντιμετώπιση των θεμελιωδών προβλημάτων  με τα οποία ασχολείται η αναγνώριση 
προτύπων  μέσω της ανάπτυξης αλγορίθμων μηχανικής μάθησης οι οποίοι βασίζονται στα 
βιολογικά ανοσοποιητικά συστήματα. Ως εκ τούτου, η σχετική έρευνα ενδιαφέρεται ιδιαίτερα για 
την διατύπωση εναλλακτικών μεθοδολογιών μηχανικής μάθησης για τα προβλήματα της 
Ομαδοποίησης, της Ταξινόμησης και της Μονοταξικής Ταξινόμησης και την μέτρηση της 
αποτελεσματικότητάς τους σε σύγκριση με τις πλέον σύγχρονες μεθοδολογίες όπως αυτής των 
Μηχανών Διανυσματικής Υποστήριξης. Η Ταξινόμηση προτύπων μελετάται ειδικότερα μέσα στο 
πλαίσιο της Ταξικής  Ανισορροπίας η οποία αφορά προβλήματα για τα οποία τα σύνολα των 
δεδομένων εκπαίδευσης είναι εξαιρετικά ασύμμετρα. Τα πειραματικά δεδομένα που 
παρουσιάζονται στην παρούσα διατριβή περιλαμβάνουν εκφυλισμένα δυαδικά προβλήματα 
ταξινόμησης όπου η κλάση ενδιαφέροντος προς αναγνώριση είναι γνωστή μέσω ενός 
περιορισμένου αριθμού θετικών δειγμάτων. Με άλλα λόγια, η κλάση στόχος καταλαμβάνει μόνο 
ένα μέρος αμελητέου όγκου από τον  συνολικό χώρο των προτύπων  ενώ ο συμπληρωματικός 
χώρος των αρνητικών προτύπων παραμένει εντελώς άγνωστος κατά την διαδικασία της 
εκπαίδευσης. Η επίδραση του φαινομένου της Ταξικής Ανισορροπίας στην επίδοση του 
προτεινόμενου ανοσοποιητικού αλγορίθμου ταξινόμησης αποτελεί έναν επιπλέον στόχο της 
τρέχουσας διατριβής. Το γενικό πλαίσιο πειραματισμού που υιοθετήθηκε σε αυτή την διδακτορική 
διατριβή, προκειμένου να αποτιμηθεί η αποτελεσματικότητα των προτεινόμενων αλγορίθμων, 
Ομαδοποίησης, Ταξινόμησης και Μονοταξικής Ταξινόμησης περιλαμβάνει μια ελεύθερη συλλογή 
χιλίων (1000) μουσικών κομματιών από δέκα (10) μουσικολογικές κλάσεις δυτικής μουσικής. Η 
συλλογή αυτή, ειδικότερα, έχει χρησιμοποιηθεί εκτενώς σε εφαρμογές που αφορούν στην 
ανάκτηση μουσικής πληροφορίας και στην ταξινόμηση  ως προς το μουσικολογικό είδος [221,135].  
Η λίστα που ακολουθεί συνοψίζει τα προβλήματα αναγνώρισης προτύπων που απευθύνθηκαν στην 
παρούσα διδακτορική διατριβή μέσω της εφαρμογής εξειδικευμένων αλγορίθμων μηχανικής 
μάθησης οι οποίοι σχεδιάστηκαν ως βασισμένοι στις αρχές των βιολογικών ανοσοποιητικών 
συστημάτων. 

1. Artificial Immune System-Based music piece clustering and Database Organization [202,201].  
2. Artificial Immune System-Based Customer Data Clustering in an e-Shopping application 

[203]. 
3. Artificial Immune System-Based Music Genre Classification [200].  
4. A Music Recommender Based on Artificial Immune Systems [125]. 



Τα πειραματικά αποτελέσματα που παρουσιάζονται σε αυτή τη διδακτορική διατριβή 
αποδεικνύουν την εγκυρότητα των Τεχνητών Ανοσοποιητικών Συστημάτων ως ένα εναλλακτικό 
υπόδειγμα Μηχανικής Μάθησης. 
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Abstract

The current Ph.D thesis lies within the field of Pattern Recognition, providing

theoretical and experimental justifications concerning the validity of Artificial Im-

mune Systems as an alternative machine learning paradigm. The main source of

inspiration stems from the fact that the Adaptive Immune System constitutes one

of the most sophisticated biological systems that is particularly evolved in order to

continuously address an extremely unbalanced pattern classification problem, by per-

forming the self / non-self discrimination process. The primary effort undertaken

in this dissertation is focused on addressing the fundamental problems of Pattern

Recognition by developing Artificial Immune System-based machine learning algo-

rithms. Therefore, the relevant research is particularly interested in providing alter-

native machine learning approaches for the problems of Clustering, Classification and

One-Class Classification, measuring their efficiency against state of the art pattern

recognition paradigms such as the Support Vector Machines. Pattern classification is

specifically studied within the context of the Class Imbalance Problem dealing with

extremely skewed training data sets. Specifically, the experimental results presented

in this thesis involve degenerated binary classification problems where the class of

interest to be recognized is known through a limited number of positive training in-

stances. In other words, the target class occupies only a negligible volume of the entire

pattern space while the complementary space of negative patterns remains completely

unknown during the training process. Therefore, the effect of the Class Imbalance

Problem on the performance of the proposed Artificial Immune System-based clas-

sification algorithm constitutes one of the secondary objectives of this thesis. The

general experimentation framework adopted throughout the current dissertation in

order to assess the efficiency of the proposed clustering, classification and one class

classification algorithms was an open collection of one thousand (1000) pieces from

iii
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10 classes of western music. This collection, in particular, has been extensively used

in applications concerning music information retrieval and music genre classification

[221, 135]. The following list summarizes the pattern recognition problems addressed

in the current Ph.D thesis through the application of specifically designed Artificial

Immune System-based machine learning algorithms:

1. Artificial Immune System-Based music piece clustering and Database Organi-

zation [202, 201].

2. Artificial Immune System-Based Customer Data Clustering in an e-Shopping

application [203].

3. Artificial Immune System-Based Music Genre Classification [200].

4. A Music Recommender Based on Artificial Immune Systems [125].

Specifically, the experimental results presented in this thesis demonstrate that the

general framework of Artificial Immune Systems constitutes a valid machine learning

paradigm.
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Chapter 1

Introduction

One of the primary characteristics of the human beings is their persistence in

observing the natural world in order to devise theories about how the many parts of

nature behave. The Newton’s laws of physics and Kepler’s model of planetary orbits

constitute two major examples of the unsettled human nature which for many years

now tries to unravel the basic underpinning behind the observed phenomena. The

world, however, need not just be observed and explained but utilized as inspiration

for the design and construction of artifacts, based on the simple principle stating that

nature has been doing a remarkable job for millions of years. Moreover, recent de-

velopments in computer science, engineering and technology has been determinately

influential in obtaining a deeper understanding of the world and particularly the bi-

ological systems. Specifically, biological processes and functions have been explained

on the basis of constructing models and performing simulations of such natural sys-

tems. The reciprocal statement is also true, meaning that the introduction of ideas

stemmed from the study of biology have also been beneficial for a wide range of ap-

plications in computing and engineering. This can be exemplified by artificial neural

networks, evolutionary algorithms, artificial life and cellular automata. This inspi-

ration from nature is a major motivation for the development of artificial immune

systems.

In this context, a new field of research emerged under the name of bioinformatics

referring to the information technology (i.e. computational methods) applied to the

1



Chapter 1: Introduction 2

management and analysis of biological data. Its implications cover a diverse range

of areas from computational intelligence and robotics to genome analysis [9]. The

field of biomedical engineering, on the other hand, was introduced in an attempt to

encompass the application of engineering principles to biological and medical prob-

lems [192]. Therefore, the subject of biomedical engineering is intimately related to

bioinformatics.

The bilateral interaction between computing and biology can be mainly identified

within the following approaches:

1. biologically motivated computing where biology provides sources of models and

inspiration in order to develop computational systems (Artificial Immune Sys-

tems),

2. computationally motivated biology where computing is utilized in order to derive

models and inspiration for biology (Cellular Automata) and

3. computing with biological mechanisms which involves the use of the information

processing capabilities of biological systems to replace, or at least supplement,

the current silicon based computers (Quantum and DNA computing).

This thesis, however, is explicitly focused on biologically motivated computing

within the field of Artificial Immune Systems. In other words, the research presented

here does not involve the computational assistance of biology through the construction

of models that represent or reproduce biological functionalities of primary interest.

On the contrary, the main purpose of this thesis is to utilize biology, and immunology

in particular, as a valid metaphor in order to create abstract and high level represen-

tations of biological components or functions. A metaphor uses inspiration in order

to render a particular set of ideas and beliefs in such a way that they can be applied

to an area different than the one in which they were initially conceived. Paton in

[164] identified four properties of biological systems important for the development

of metaphors:

1. architecture which refers to form or the structure of the system,
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2. functionality corresponding to its behavior,

3. mechanisms which characterize the cooperation and interactions of the various

parts and

4. organization referring to the ways the activities of the system are expressed in

the dynamics of the whole.

The primary contribution of the current Ph.D thesis within the field of Pattern

Recognition, providing experimental justifications concerning the validity of Artificial

Immune Systems as an alternative machine learning paradigm. The main source of

inspiration stems from the fact that the Adaptive Immune System constitutes one

of the most sophisticated biological systems that is particularly evolved in order to

continuously address an extremely unbalanced pattern classification problem by per-

forming the self / non-self discrimination process. The main effort undertaken in

this dissertation is focused on addressing the primary problems of Pattern Recog-

nition by developing Artificial Immune System-based machine learning algorithms.

Therefore, the relevant research is particularly interested in providing alternative ma-

chine learning approaches for the problems of Clustering, Classification and One-Class

Classification, measuring their efficiency against state of the art pattern recognition

paradigms such as the Support Vector Machines. Pattern classification is specifically

studied within the context of the Class Imbalance Problem dealing with extremely

skewed training data sets. Specifically, the experimental results presented in this the-

sis involve degenerated binary classification problems where the class of interest to

be recognized is known through a limited number of positive training instances. In

other words, the target class occupies only a negligible volume of the entire pattern

space while the complementary space of negative patterns remains completely un-

known during the training process. The effect of the Class Imbalance Problem on the

performance of the utilized Artificial Immune System-based classification algorithm

constitutes one of the secondary objectives of this thesis.

The general experimentation framework adopted throughout the current disserta-

tion in order to assess the efficiency of the proposed clustering, classification and one
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class classification algorithms was an open collection of one thousand (1000) pieces

from 10 classes of western music. This collection, in particular, has been extensively

used in applications concerning music information retrieval and music genre classi-

fication [221, 135]. The following list summarizes the pattern recognition problems

addressed in the current Ph.D thesis through the application of specifically designed

Artificial Immune System-based machine learning algorithms:

1. Artificial Immune System-Based music piece clustering and Database Organi-

zation [202, 201].

2. Artificial Immune System-Based Customer Data Clustering in an e-Shopping

application [203].

3. Artificial Immune System-Based Music Genre Classification [200].

4. A Music Recommender Based on Artificial Immune Systems [125].

This thesis is structured in the following way:

• Chapter 2 presents an extensive review on the subject of machine learning by

studying the existing literature. The relevant research is primarily focused on

the main approaches that have been proposed in order to address the problem

of machine learning and how they may be categorized according to the type

and amount of inference. Specifically, the categorization of the various machine

learning paradigms according to the type of inference, involves the following

approaches:

1. Model Identification or Parametric Inference; and

2. Model Prediction or General Inference.

The general framework of the parametric model, in particular, introduces the

principles of Empirical Risk Minimization (ERM) and Structural Risk Mini-

mization. On the other hand, the Transductive Inference Model is defined as

an extension to the original paradigm of General Inference. The categorization
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of machine learning models according to the amount of inference includes the

following approaches:

1. Rote Learning;

2. Learning from Instruction; and

3. Learning from Examples.

Specifically, Learning from Examples provides the ideal framework in order to

analyze the problem of minimizing a risk functional on a given set of empirical

data which is the fundamental problem within the field of pattern recognition.

In essence, the particular form of the risk functional defines the primary prob-

lems of machine learning, namely:

1. The Classification Problem;

2. The Regression Problem; and

3. The Density Estimation Problem which is closely related to the Clustering

Problem.

Finally, this chapter presents a conspectus of the theoretical foundations behind

Statistical Learning Theory.

• Chapters 3, 4 deal with a special category of pattern recognition problems

arising in cases when the set of training patterns is significantly biased towards a

particular class of patterns. This is the so-called Class Imbalance Problem which

hinders the performance of many standard classifiers. Specifically, the very

essence of the class imbalance problem is unraveled by referring to the relevant

literature review. Indeed, there exists a wide range of real-world applications

involving extremely skewed data sets. The class imbalance problem stems from

the fact that the class of interest occupies only a negligible volume within the

complete pattern space. These chapters investigate the particular effects of

the class imbalance problem on standard classifiers methodologies and present

the various methodologies that have been proposed as a remedy. The most
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interesting approach within the context of Artificial Immune Systems is the one

related to the machine learning paradigm of one-class classification. One-Class

Classification problems may be thought of as degenerated binary classification

problems where the the available training instances originate exclusively from

the under-represented class of patterns.

• Chapter 5 discusses the machine learning paradigm of Support Vector Machines

which incorporates the principles of Empirical Risk Minimization and Structural

Risk Minimization. Support Vector Machines constitute a state of art classifier

which is utilized in this thesis as a benchmark algorithm in order to evaluate

the classification accuracy of Artificial Immune System-based machine learning

algorithms. Finally, this chapter presents a special class of Support Vector Ma-

chines that are especially designed for the problem of One-Class Classification,

namely the One-Class Support Vector Machines.

• Chapter 6 analyzes the biological background of this thesis, namely the immune

system of vertebrate organisms. The relevant literature review presents the

major components and the fundamental principles governing the operation of

the adaptive immune system, with emphasis on those characteristics of the

adaptive immune system that are of particular interest from a computation

point of view. The fundamental principles of the adaptive immune system are

given by the following theories:

1. Immune Network Theory;

2. Clonal Selection Theory; and

3. Negative Selection Theory.

• Chapter 7 introduces the subject of Artificial Immune Systems by emphasizing

on their ability to provide an alternative machine learning paradigm. The rele-

vant bibliographical survey was utilized in order to extract the formal definition

of Artificial Immune Systems and identify their primary application domains

involving:
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1. Clustering and Classification;

2. Anomaly Detection / Intrusion Detection;

3. Optimization;

4. Automatic Control;

5. Bioinformatics;

6. Information Retrieval and Data Mining;

7. User Modeling / Recommendation; and

8. Image Processing.

Special attention was paid on analyzing the Shape-Space Model which provides

the necessary mathematical formalism for the transition from the field of biology

to the field of Information Technology. This chapter focuses on the development

of alternative machine learning algorithms based on Immune Network Theory,

the Clonal Selection Principle the Negative Selection Theory. The proposed

machine learning algorithms relate specifically to the problems of:

1. Data Clustering;

2. Pattern Classification;

3. One-Class Classification.

• Chapter 8 presents the major findings of this thesis and suggests avenues of

future research.





Chapter 2

Machine Learning

The ability to learn is one of the most distinctive attributes of intelligent behav-

ior. An informal definition of the learning process in general could be articulated as:

“Learning process includes the acquisition of new declarative knowledge, the develop-

ment of new skills through interaction or practise, the organization of new knowledge

into general, effective representations, and the discovery of new facts and theories

through observation and experimentation”. The term machine learning, on the other

hand, covers a brad range of computer programs. In general, any computer program

that improve its performance through experience or training can be called a learn-

ing program. Machine learning constitutes an integral part of artificial intelligence

since the primary feature of any intelligent system is the ability to learn. Specifically,

systems that have the ability to learn need not be implicitly programmed for any

possible problematic situation. In other words, the development of machine learning

alleviates the system designer from the burden of foreseing and providing solutions

for all possible situations.

The study and modelling of learning processes in their multiple manifestations

constitute the topic of machine learning. In particular, machine learning has been

developed around the following primary research lines:

• Task-oriented studies which are focused on developing learning systems in order

to improve their performance in a predetermined set of tasks.

8
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• Cognitive simulation, namely, the investigation and computer simulation of hu-

man learning processes.

• Theoretical analysis which stands for the investigation of possible learning meth-

ods and algorithms independently of the particular application domain.

• Derivation of machine learning paradigms and algorithms by developing metaphors

for biological processes that may be interesting within the context of machine

learning. A typical example is the field of biologically inspired computing which

led to the emergence of Artificial Neural Networks and Artificial Immune Sys-

tems.

The following sections provide an overview of the various machine learning ap-

proaches that have been proposed over the years according to different viewpoints

concerning the underlying learning strategies. Specifically, section 2.1 provides a more

general categorization of the machine learning methodologies based on the particular

type of inference utilized while section 2.2 provides a more specialized analysis ac-

cording to the amount of inference. Finally, section 2.4 gives a theoretical justification

of Statistical Learning Theory.

2.1 Machine Learning Categorization According to

the Type of Inference

The fundamental elements of statistical inference have existed for more than 200

years, due to the seminal works of Gauss and Laplace, before their systematic analy-

sis began in the late 1920’s. By that time, descriptive statistics was mostly complete

since it was shown that many events of the real world are sufficiently described by

different statistical laws. Specifically, statisticians have developed powerful mathe-

matical tools, namely distribution functions, having the ability to capture interesting

aspects of reality. However, a crucial question that was yet to be answered concerned

the determination of a reliable method for performing statistical inference. A more

formal definition of the related problem could be the following: Given a collection of
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empirical data originating from some functional dependency, infer this dependency.

Therefore, the analysis of methods of statistical inference signaled the beginning of a

new era for statistics which was significantly influenced by two bright events:

1. Fisher introduced the main models of statistical inference in the unified frame-

work of parametric statistics. His work indicated that the various problems

related to the estimation of functions from given data (the problems of dis-

criminant analysis, regression analysis, and density estimation) are particular

instances of the more general problem dealing with the parameter estimation

of a specific parametric model. In particular, he suggested the Maximum Like-

lihood method as a for the estimation of the unknown parameters in all these

models.

2. Glivenko, Cantelli and Kolmogorov, on the other hand, started a general anal-

ysis of statistical inference. One of the major findings of this quest was the

Glivenko-Cantelli theorem stating that the empirical distribution function al-

ways converges to the actual distribution function. Another not less important

finding came from Kolmogorov who found the asymptotically exact rate of this

convergence. Specifically, he proved that the rate turns out to be exponentially

fast and independent of the unknown distribution function.

Notwithstanding, these two events determined the two main approaches that were

adopted within the general context of machine learning:

1. Model Identification or particular (parametric) inference which aims to create

simple statistical methods of inference that can be used for solving real-life

problems, and

2. Model Prediction or general inference, which aims to find one induction method

for any problem of statistical inference.

The philosophy that led to the conception of the model identification approach is

based upon the belief that the investigator knows the problem to be analyzed rather
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well. Specifically, he is aware of the physical law that generates the stochastic prop-

erties of the data and the function to be found up to finite number of parameters.

According to the model identification approach the very essence of the statistical

inference problem is the estimation of these parameters by utilizing the available

data. Therefore, the natural solution in finding these parameters by utilizing infor-

mation concerning the statistical law and the target function is the adaptation of the

maximum likelihood method. The primary purpose of this theory is to justify the

corresponding approach by discovering and describing its favorable properties.

In contrary, the philosophy that led to the conception of the model prediction

approach is focused on the fact that there is no reliable a priori information con-

cerning the statistical law underlying the problem or the desirable function to be

approximated. Therefore, it is necessary to find a method in order to infer the ap-

proximation function from the given examples in each situation. The corresponding

theory of model prediction must be able to describe the conditions under which it

is possible find the best approximation to an unknown function in a given set of

functions with an increasing number of examples.

2.1.1 Model Identification

The model identification approach corresponding to the principle of parametric

inference was developed very quickly since its original conception by Fisher. In fact,

the main ideas underlying the parametric model were clarified in the 1930’s and the

main elements of theory of parametric inference were formulated within the next 10

years. Therefore, the time period between the 1930 and 1960 was the “golden age” of

parametric inference which dominated statistical inference. At that time, there was

only one legitimate approach to statistical inference, namely the theory that served

the model identification approach. The classical parametric paradigm falls within

the general framework introduced by Fisher according to which any signal Y can be

modelled as of a deterministic component and a random counterpart:

Y = f(X) + ϵ (2.1)
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The deterministic part f(X) is defined by the values of a known family of functions

which are determined by a limited number of parameters. The random part ϵ corre-

sponds to the noise added to the signal, defined by a known density function. Fisher

considered the estimation of the parameters of the function f(X) as the goal of sta-

tistical analysis. Specifically, in order to find these parameters he introduced the

maximum likelihood method. Since the main goal of Fisher’s statistical framework

was to estimate the model that generated the observed signal, his paradigm is identi-

fied by the term “Model Identification”. In particular, Fisher’s approach reflects the

traditional idea of Science concerning the process of inductive inference, which can

be roughly summarized by the following steps:

1. Observe a phenomenon.

2. Construct a model of that phenomenon (inductive step).

3. Make predictions using this model (deductive step).

The philosophy of this classical paradigm is based upon on the following beliefs:

1. In order to find a dependency from the data, the statistician is able to define a

set of functions, linear in their parameters, that contain a good approximation

to the desired function. The number of parameters describing this set is small.

This belief was specifically supported by referring to the Weierstrass theorem,

according to which any continuous function with a finite number of discontinu-

ities can be approximated on a finite interval by polynomials (functions linear

in their parameters) with any degree of accuracy. The main idea was that this

set of functions could be replaced by an alternative set of functions, not nec-

essarily polynomials, but linear with respect to a small number of parameters.

Therefore, one could obtain a good approximation to the desired function.

2. The statistical law underlying the stochastic component of most real-life problems

is the normal law.

This belief was supported by referring to the Central Limit Theorem, which

states that under wide conditions the sum of a large number of random variables
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is approximated by the normal law. The main idea was that if randomness in a

particular problem is the result of interaction among a large number of random

components, then the stochastic element of the problem will be described by

the normal law.

3. The maximum likelihood estimate may serve as a good induction engine in this

paradigm.

This belief was supported by many theorems concerning the conditional opti-

mality the maximum likelihood method in restricted set of methods or in the

asymptotic case. Moreover, this methodology was hoped to be a good tool even

for small sample sizes.

Finally, these three beliefs are supported the following more general philosophy:

If there exists a mathematical proof that some method provides an asymptotically op-

timal solution, then in real life this method will provide a reasonable solution for a

small number of data samples.

The classical paradigm deals with the identification of stochastic objects which par-

ticulary relate to the problems concerning the estimation of densities and conditional

densities.

Density Estimation Problem

The first problem to be considered is the density estimation problem. Letting ξ

be a random vector then the probability of the random event F (x) = P (ξ < x) is

called a probability distribution function of the random vector ξ where the inequality

is interpreted coordinatewise. Specifically, the random vector ξ has a density function

if there exists a nonnegative function p(u) such that for all x the equality

F (x) =

∫ x

−∞
p(u)du (2.2)

is valid. The function p(x) is called a probability density of the random vector.

Therefore, by definition, the problem of estimating a probability density from the

data requires a solution of the integral equation:
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∫ x

−∞
p(u, α)du = F (x) (2.3)

on a given set of densities p(x, α) where α ∈ Λ. It is important to note that while

the true distribution function F (x) is unknown, one is given a random independent

sample

x1, · · · ,xl (2.4)

which is obtained in accordance with F (x). Then it is possible to construct a series

of approximations to the distribution function F (x) by utilizing the given data set

(2.4) in order to form the so-called empirical distribution function which is defined

by the following equation:

Fl(x) =
1

l

l∑
i=1

θ(x− xi) (2.5)

where θ(u) corresponds to the step function defined as:

θ(u) =

{
1, when all the coordinates of vector u are positive;

0, otherwise.
(2.6)

Thus, the problem of density estimation consists in finding an approximation to the

solution of the integral equation (2.3) if the probability density function is unknown

but an approximation to this function can be obtained.

Conditional Probability Estimation Problem

Consider pairs (ω,x) where x is a vector and ω is scalar which takes on only k

values from the set {0, 1, · · · , k − 1}. According to the definition, the conditional

probability P (ω,x) is a solution of the integral equation:∫ x

−∞
P (ω|t)dF (t) = F (ω,x) (2.7)

where F (x) is the distribution function of the random vector x and F (ω,x) is the

joint distribution function of pairs (ω,x). Therefore, the problem of estimating the

conditional probability in the set of functions Pα(ω|x) where α ∈ Λ, is to obtain an
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approximation to the integral equation (2.7) when both distribution functions F (x)

and F (ω,x) are unknown but a one is given the following set of samples:

(ω1,x1), · · · , (ωl,xl) (2.8)

As in the case of the density estimation problem, the unknown distribution functions

F (x) and F (ω,x) can be approximated by the empirical distribution functions (2.5)

and function:

Fl(ω,x) =
1

l

l∑
i=1

θ(x− xi)δ(ω,xi) (2.9)

where the function δ(ω,x) is defined as:

δ(ω,x) =

{
1, if the vector x belongs to class ω;

0, otherwise.
(2.10)

Thus, the problem of conditional probability estimation may be resolved by obtaining

an approximation to the solution of the integral equation (2.7) in the set of functions

Pα(ω|x) where α ∈ Λ. This solution, however, is difficult to get since the probability

density functions F (x) and F (ω,x) are unknown and they can only be approximated

by the empirical functions Fl(x) and Fl(ω,x).

Conditional Density Estimation Problem

The last problem to be considered is the one related to the conditional density

estimation. By definition, this problem consists in solving the following integral

equation: ∫ y

−∞

∫ x

−∞
p(t|u)dF (u)dt = F (y,x) (2.11)

where the variables y are scalars and the variables x are vectors. Moreover, F (x)

is a probability distribution function which has a density, p(y,x) is the conditional

density of y given x, and F (y,x) is the joint probability distribution function defined

on the pairs (y,x). The desirable conditional density function p(y|x) can be obtained

by considering a series of approximation functions which satisfy the integral equation

(2.11) on the given set of functions and the i.i.d pairs of the given data:

(y1,x1), · · · , (yl,xl) (2.12)
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when both distributions F (x) and F (y,x) are unknown. Once again, it is possi-

ble to approximate the empirical distribution function Fl(x) and the empirical joint

distribution function:

Fl(y,x) =
1

l

l∑
i=1

θ(y − yi)θ(x− xi) (2.13)

Therefore, the problem is to get an approximation to the solution of the integral

equation 2.11 in the set of functions pa(y,x) where α ∈ Λ, when the probability

distribution functions are unknown but can be approximated by Fl(x) and Fl(y,x)

using the data 2.12.

2.1.2 Shortcoming of the Model Identification Approach

All three problems of stochastic dependency estimation that where thoroughly

discussed previously can be described in the following general way. Specifically, they

are reduced to solving the following linear continuous operator equation

Af = F, f ∈ F (2.14)

given the constraint that some functions that form the equation are unknown. The

unknown functions, however, can be approximated by utilizing a given set of sample

data. In this way it possible to obtain approximations to the distribution functions

Fl(x) and Fl(y,x). This formulation can reveal a main difference between the prob-

lem of density estimation and the problems of conditional probability and conditional

density estimation. Particularly, in the problem of density estimation, instead of an

accurate right-hand side of the equation only an approximation is available. There-

fore, the problem involves getting an approximation to the solution of Eq. 2.14 from

the relationship

Af ≈ Fl, f ∈ F (2.15)

On the other hand, in the problems dealing with the conditional probability and

conditional density estimation not only the right-hand side of Eq. 2.14 is known

approximately, but the operator A is known approximately as well. This is true, the
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true distribution functions appearing in equations (2.7) and (2.11) are replaced by

their approximations. Therefore, the problem consists in getting an approximation

to the solution of Eq. 2.14 from the relationship

Alf ≈ Fl, f ∈ F (2.16)

The Glivenko-Cantelli theorem ensures that the utilized approximation functions con-

verge to the true distribution functions as the number of observations goes to infinity.

Specifically, the Glivenko-Cantelli theorem states that the convergence

sup
x
|F (x)− Fl(x)|

P−−−→
l→∞

0 (2.17)

takes place. A fundamental disadvantage of this approach is that solving the gen-

eral operator equation (2.14) results in an ill-posed problem. Ill-posed problems are

extremely difficult to solve since they violate the well-posed conditions introduced

by Hadamard involving the existence of a solution, the uniqueness of that solution

and the continuous dependence of the solution on the empirical data. That is, the

solutions of the corresponding integral equations are unstable.

Moreover, the wide application of computers, in the 1960’s, for solving scientific

and applied problems revealed additional shortcomings of the model identification

approach. It was the fist time that researchers utilized computers in an attempt to

analyze sophisticated models that had many factors or in order to obtain more precise

approximations.

In particular, the computer analysis of large scale multivariate problems revealed

the phenomenon that R. Bellman called “the curse of dimensionality”. It was ob-

served that increasing the number of factors that have to be taken into consideration

requires an exponentially increasing amount of computational resources. Thus, in

real-life multidimensional problems where there might be hundreds of variables, the

belief that it is possible to define a reasonably small set of functions that contains a

good approximation to the desired one is not realistic.

Approximately, at the same time, Tukey demonstrated that the statistical compo-

nents of real-life problems cannot be described by only classical distribution functions.
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By analyzing real-life data, Tukey discovered that the corresponding true distribu-

tions are in fact different. This entails that it is crucial to take this difference into

serious consideration in order to construct effective algorithms.

Finally, James and Stein showed that even for simple density estimation problems

(i.e. determining the location parameters of a n > 2 dimensional normal distribution

with a unit covariance matrix) the maximum likelihood method is not the best one.

Therefore, all three beliefs upon which the classical parametric paradigm relied

turned out to be inappropriate for many real-life problems. This had an enormous

consequence for statistical science since it looked like the idea of constructing statis-

tical inductive inference models for real-life problems had failed.

2.1.3 Model Prediction

The return to the general problem of statistical inference occurred so imperceptibly

that it was not recognized for more than 20 years since Fisher’s original formulation of

the parametric model. Of course, the results from Glivenko, Cantelli and Kolmogorov

where known but they were considered to be inner technical achievements that are

necessary for the foundation of the statistical inference. In other words, these results

could not be interpreted as an indication that there could be a different type of

inference which is more general and more powerful than the classical parametric

paradigm.

This question was not addressed until after the late 1960’s when Vapnik and Cher-

vonenkis started a new paradigm called Model Prediction (or predictive inference).

The goal of model prediction is to predict events well, but not necessarily through

the identification of the model of events. The rationale behind the model prediction

paradigm is that the problem of estimating a model is hard (ill-posed) while the

problem of finding a rule for good prediction is much easier (better-posed). Specifi-

cally, it could happen that there are many rules that predict the events well, and are

very different from the true model. Nonetheless, these rules can still be very useful

predictive tools.

The model prediction paradigm was initially boosted when in 1958 F. Rosenblatt,
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a physiologist, suggested a learning machine (computer program) called the Percep-

tron for solving the simplest learning problem, namely the pattern classification /

recognition problem. The construction of this machine incorporated several exist-

ing neurophysiological models of learning mechanisms. In particular, F. Rosenblatt

demonstrated that even with the simplest examples the Perceptron was able to gener-

alize without constructing a precise model of the data generation process. Moreover,

after the introduction of Perceptron, many learning machines were suggested that

had no neurobiological analogy but they did not generalize worse than Perceptron.

Therefore, a natural question arose:

Does there exist something common in these machines? Does there exist a general

principle of inductive inference that they implement?

Immediately, a candidate was found as a general induction principle, the so called

empirical risk minimization (ERM) principle. The ERM principle suggests the uti-

lization of a decision rule (an indicator function) which minimizes the number of

training error (empirical risk) in order to achieve good generalization on future (test)

examples. The problem, however, was to construct a theory for that principle.

At the end of 1960’s, the theory of ERM for the pattern recognition problem was

constructed. This theory includes the general qualitative theory of generalization that

described the necessary and sufficient conditions of consistency of the ERM induction

principle. Specifically, the consistency of the ERM induction principle suggests that

it is valid for any set of indicator functions, that is {0, 1} valued functions on which

the machine minimizes the empirical risk. Additionally, the new theory includes the

general quantitative theory describing the bounds on the probability of the (future)

test error for the function minimizing the empirical risk.

The application of the ERM principle, however, does not necessarily guarantee

consistency, that is convergence to the best possible solution with an increasing num-

ber of observations. Therefore, the primary issues that drove the development of the

ERM theory were the following:

1. Describing situations under which the method is consistent, that is, to find the

necessary and sufficient conditions for which the ERM method define functions
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that converge to the best possible solution with an increasing number of obser-

vations. The resulting theorems thereby describe the qualitative model of ERM

principle.

2. Estimating the quality of the solution obtained on the basis of the given sample

size. This entails, primarily, to estimate the probability of error for the function

that minimizes the empirical risk on the given set of training examples and

secondly to estimate how close this probability is to the smallest possible for the

given set of functions. The resulting theorems characterize the generalization

ability of the ERM principle.

In order to address both issues for the pattern recognition problem it is necessary

to construct a theory that could be considered as a generalization of the Glivenko-

Cantelli-Kolmogorov results. This is equivalent to the following statements:

1. For any given set of events, to determine whether the uniform law of large

numbers hold,that is whether uniform convergence takes place.

2. If uniform convergence holds, to find the bounds for the nonasymptotic rate of

uniform convergence.

This was the theory constructed by Vapnik and Chervonenkis which was based on

a collection of new concepts, the so-called capacity concepts for a set of indicator

functions. The most important new concept was the so-called VC dimension of the

set of indicator functions which characterizes the variability of the set of indicator

functions. Specifically, it was found that both the necessary and sufficient conditions

of consistency and the rate of convergence of the ERM principle depend on the capac-

ity of the set of functions that are implemented by the learning machine. The most

preeminent results of the new theory that particularly relate to the VC dimension are

the following:

1. For distribution-independent consistency of the ERM principle the set of func-

tions implemented by the learning machine must have a finite VC dimension.
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2. Distribution-free bounds on the rate of uniform convergence depend on the VC

dimension, the number of errors, and the number of observations.

The bounds for the rate of uniform convergence not only provide the main the-

oretical basis for the ERM inference, but also motivate a new method of inductive

inference. For any level of confidence, an equivalent form of the bounds define bounds

on the probability of the test error simultaneously for all functions of the learning ma-

chine as function of the training errors, of the VC dimension of the set of functions

implemented by the learning machine, and of the number of observations. This form

of the bounds led to a new idea for controlling the generalization ability of learning

machines:

In order to achieve the smallest bound on the test error by minimizing the number of

training errors, the machine (set of functions) with the smallest VC dimension should

be used.

These two requirements define a pair of contradictory goals involving the simultane-

ous minimization of the number of training errors and the utilization of a learning

machine (set of functions) with a small VC dimension. In order to minimize the num-

ber of training errors, one needs to to choose a function from a wide set of functions,

rather than from a narrow set, with small VC dimension. Therefore, to find the best

guaranteed solution, one has to compromise between the accuracy of approximation

of the training data and the capacity (VC dimension) of the machine that is used for

the minimization of errors. The idea of minimizing the test error by controlling two

contradictory factors was formalized within the context of a new induction principle,

the so-called Structural Risk Minimization (SRM) principle.

The fundamental philosophy behind the SRM principle is the so-called Occam’s

razor which was originally proposed by the William of Occam in the fourteenth cen-

tury, stating that entities should not be multiplied beyond necessity. In particular,

the most common interpretation of Occam’s razor is that the simplest explanation is

the best. The assertion coming from the SRM theory, however, is different suggesting

that one should choose the explanation provided by the machine with the smallest

capacity (VC dimension).
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The SRM principle constitutes an integral part of the model prediction paradigm

which was established by the pioneer work of Vapnik and Chervonenkis. Specifically,

one of the most important achievements of the new theory concerns the discovery

that the generalization ability of a learning machine depends on the capacity of the

set of functions which are implemented by the learning machine which is different

from the number of free parameters. Moreover, the notion of capacity determines the

necessary and sufficient conditions ensuring the consistency of the learning process

and the rate of convergence. In other words, it reflects intrinsic properties of inductive

inference.

In order to extend the model prediction paradigm, Vapnik introduced the Trans-

ductive Inference paradigm in the 1980’s. The goal of transductive inference is to

estimate the values of an unknown predictive function at a given point of interest,

but not in the whole domain of its definition. The rationale behind this approach is

that it is possible to achieve more accurate solutions by solving less demanding prob-

lems. The more general philosophical underpinning behind the transductive paradigm

can be summarized by the following imperative:

If you possess a restricted amount of information for solving some general problem,

try to solve the problem directly and never solve a more general problem as an in-

termediate step. It is possible that the available information is sufficient for a direct

solution but is insufficient for solving a more general intermediate problem.

In many real-life problems, the goal is to find the values of an unknown function

only at points of interest, namely the testing data points. In order to solve this prob-

lem the model prediction approach uses a two-stage procedure which is particularly

illustrated in Fig. 2.1.
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Figure 2.1: Inference Models

At the fist stage (inductive step) a function is estimated from a given set of

functions, while at the second stage (deductive step) this function is used in order to

evaluate the values of the unknown function at the points of interest. It is obvious

that at the first stage of this two-stage scheme one addresses a problem that is more

general than the one that needs to be solved. This is true since estimating an unknown

function involves estimating its values at all points in the function domain when only

a few are of practical importance. In situations when there is only a restricted amount

of information, it is possible to be able to estimate the values of the unknown function

reasonably well at the given points of interest but cannot estimate the values of the

function well at any point within the function domain. The direct estimation of

function values only at points of interest using a given set of functions forms the

transductive type of inference. As it is clearly depicted in Fig. 2.1 the transductive

solution derives results in one step, directly from particular to particular (transductive

step).

2.2 Machine Learning Categorization According to

the Amount of Inference

Although machine learning paradigms can be categorized according to the type

of inference that is performed by the corresponding machines, a common choice is

to classify learning systems based on the amount of inference. Specifically, this cat-
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egorization concerns the amount of inference that is performed by the learner which

is one of the two primary entities in machine learning, the other being the supervi-

sor(teacher). The supervisor is the entity that has the required knowledge to perform

a given task while the learner is the entity that has to learn the knowledge in order

to perform a given task. In this context, the various learning strategies can be dis-

tinguished by the amount of inference the learner performs on the information given

by the supervisor.

Actually, there are two extreme cases of inference, namely performing no infer-

ence and performing a remarkable amount of inference. If a computer system (the

learner) is programmed directly, its knowledge increases but it performs no inference

since all cognitive efforts are developed by the programmer (the supervisor). On

the other hand, if a systems independently discovers new theories or invents new

concepts, it must perform a very substantial amount of inference since it is deriving

organized knowledge from experiments and observations. An intermediate case could

be a student determining how to solve a math problem by analogy to problem so-

lutions contained in a textbook. This process requires inference but much less than

discovering a new theorem in mathematics.

Increasing the amount of inference that the learner is capable of performing, the

burden on the supervisor decreases. The following taxonomy of machine learning

paradigm captures the notion of trade-off in the amount of effort that is required of

the learner and of the supervisor. Therefore, there are four different learning types

that can be identified, namely rote learning, learning from instruction, learning by

analogy and learning from examples.

2.2.1 Rote Learning

Rote learning consists in the direct implanting if knowledge into a learning system.

Therefore, there is no inference or other transformation of the knowledge involved on

the part of the learner. There are, of course, several variations of this method such

as:

• Learning by being programmed or modified by an external entity. This variation



Chapter 2: Machine Learning 25

requires no effort in the part of the learner. A typical paradigm is the usual

style of computer programming.

• Learning by memorization of given facts and data with no inference drawn from

incoming information. For instance, the primitive database systems.

2.2.2 Learning from Instruction

Learning from instruction (or learning by being told) consists in acquiring knowl-

edge from a supervisor or other organized source, such as a textbook, requiring that

the learner transforms the knowledge from the input language to an internal repre-

sentation. The new information is integrated with the prior knowledge for effective

use. The learner is required to perform some inference, but a large fraction of the

cognitive burden remains with the supervisor, who must present and organize knowl-

edge in a way that incrementally increases the learner’s actual knowledge. In other

words, learning from instruction mimics education methods. In this context, the ma-

chine learning task involves building a system that can accept and store instructions

in order to efficiently cope with a future situation.

2.2.3 Learning by Analogy

Learning by analogy consists in acquiring new facts or skills by transforming and

increasing existing knowledge that bears strong similarity to the desired new concept

or skill into a form effectively useful in the new situation. A learning-by-analogy

system could be applied in order to convert an existing computer program into one

that performs a closely related function for which it was not originally designed.

Learning by analogy requires more inference on the part of the learner that does rote

learning or learning from instruction. A fact or skill analogous in relevant parameters

must be retrieved from memory which will be subsequently transformed in order to

be applied to the new situation.
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2.3 Learning from Examples

Learning from examples is a model addressing the problem of functional depen-

dency estimation within the general setting of machine learning. The fundamental

components of this model, as they are illustrated in Fig. 2.2, are the following:

1. The generator of the data G.

2. The target operator or supervisor’s operator S.

3. The learning machine LM.

Figure 2.2: Learning from Examples

The generator G serves as the main environmental factor generating the indepen-

dently and identically distributed (i.i.d) random vectors x ∈ X according to some

unknown (but fixed) probability distribution function F (x). In other words, the gen-

erator G determines the common framework in which the supervisor and the learning

machine act. The random vectors x ∈ X are subsequently fed as inputs to the target

operator (supervisor S) which finally returns the output values y. It is important to

note that although there is no information concerning the transformation of input

vector to output values, it is known that the corresponding target operator exists and

does not change. The learning machine observes l pairs

(x1, y1), · · · , (xl, yl) (2.18)

(the training set) which contains input vectors x and the supervisor’s response y.

During this period the learning machine constructs some operator which will be used
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for prediction of the supervisor’s answer yi on an particular observation vector x

generated by the the generator G. Therefore, the goal of the learning machine is to

construct an appropriate approximation. In order to be a mathematical statement,

this general scheme of learning from examples needs some clarification. First of all, it

is important to describe the kind of functions that are utilized by the supervisor. In

this thesis, it is assumed that the supervisor returns the output value y on the input

vector x according to a conditional distribution function F (y|x) including the case

when the supervisor uses a function of the form y = f(x). Thus, the learning machine

observes the training set, which is drawn randomly and independently according to a

joint distribution function F (x, y) = F (x)F (y|x) and by utilizing this training set it

constructs an approximation to the unknown operator. From a formal point of view,

the process of constructing an operator consists in developing a learning machine

having the ability to implement some fixed set of functions given by the construction

of the machine. Therefore, the learning process is a process of choosing an appropriate

function from a given set of functions.

2.3.1 The Problem of Minimizing the Risk Functional from

Empirical Data

Each time the problem of selecting a function with desired qualities arises, one

should look in the the set of possible functions for the one that satisfies the given

quality criterion in the best possible way. Formally, this means that on a subset Z

of the vector space Rn, a set of admissible functions {g(z)}, z ∈ Z, is given, and a

functional

R = R(g(z)) (2.19)

is defined as the criterion of quality for the evaluation of any given function. It is then

required to find the function g′(z) minimizing the functional (2.19) assuming that the

minimum of the functional corresponds to the best quality and that the minimum of

(2.19) exists in {g(z)}. In the case when the set of functions {g(z)} and the functional

R(g(z)) were explicitly given then finding the function g′(z) which minimizes (2.19)

would the subject of the calculus of variations. In real-life problems, however, this
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is merely the case since the most usual situation is that risk functional is defined on

the basis of a given probability distribution F (z) defined on Z. Formally, the risk

function is defined as the mathematical expectation given by the following equation

R(g(z)) =

∫
L(z, g(z))dF (z) (2.20)

where the function L(z, g(z)) is integrable for any g(z) ∈ {g(z)}. Therefore, the

problem is to minimize the risk functional (2.20) in the case when the probability

distribution F (z) is unknown but the sample

z1, · · · , zl (2.21)

of observations drawn randomly and independently according to F (z) is available.

It is important to note that there is a substantial difference between problems aris-

ing when the optimization process involves the direct minimization of the functional

(2.19) and those encountered when the functional (2.20) is minimized on the basis

of the empirical data (2.21). In the case of minimizing (2.19) the problem reduces

to organizing the search for the function g′(z) from the set {g(z)} which minimizes

(2.19). On the other hand, when the functional (2.20 is to be minimized on the basis

of the empirical data (2.21), the problem reduces to formulate a constructive criterion

that will be utilized in order to choose the optimal function rather than organizing

the search of the functions in {g(z)}. Therefore, the question in the first case is: How

to obtain the minimum of the functional in the given set of functions? While in the

second case the question is: What should be minimized in order to select from the set

{g(z)} a function which will guarantee that the functional (2.20) is small?

Strictly speaking, the direct minimization of the risk functional (2.20) based on the

empirical data (2.21) is impossible based on the utilization of methods that are develop

in optimization theory. This problem, however, lies within the core of mathematical

statistics.

When formulating the minimization problem for the functional (2.20), the set of

functions g(z) will be given in a parametric form {g(z, α), α ∈ Λ}. Here α is parameter

from the set Λ such that the value α = α∗ defines the specific function g(z, α∗) in the

set g(z, α). Therefore, identifying the required function is equivalent to determining
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the corresponding parameter α ∈ Λ. The exclusive utilization of parametric sets of

functions does not imply a restriction on the problem, since the set Λ, to which the

parameter α belongs, is arbitrary. In other words, Λ can be a set of scalar quantities,

a set of vectors, or a set of abstract elements. Thus, in the context of the new notation

the functional (2.20) can be rewritten as

R(a) =

∫
Q(z, α)dF (z), α ∈ Λ (2.22)

where

Q(z, α) = L(z, g(z, α)) (2.23)

The function Q(z, α) represents a loss function depending on the variables z and α.

The problem of minimizing the functional (2.22) may be interpreted in the follow-

ing simple way: It is assumed that each function Q(z, α), α ∈ Λ (e.g each function

of z for a fixed α = α∗), determines the amount of loss resulting from the realization

of the vector z. Thus, the expected loss (with respect to z) for the function Q(z, α∗)

will be determined by the integral

R(α∗) =

∫
Q(z, α∗)dF (z) (2.24)

This functional is the so-called risk functional or risk. The problem, then, is to choose

in the set Q(z, α), α ∈ Λ, a function Q(z, α0 which minimizes the risk when the

probability distribution function is unknown but random independent observations

z1, · · · , zl are given.

Let P0 be the set of all possible probability distribution functions on Z and P some

subset of probability distribution functions from P0. In this context, the term “un-

known probability distribution function”, means that the only available information

concerning F (z) is the trivial statement that F (z) ∈ P0

2.3.2 Induction Principles for Minimizing the Risk Func-

tional on Empirical Data

The natural problem that arises at this point concerns the minimization of the risk

functional defined in Eq. 2.24 which is impossible to perform directly on the basis of an
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unknown probability distribution function F (x) (which defines the risk). In order to

address this problem Vapnik and Chervonenkis introduced a new induction principle,

namely the principle of Empirical Risk Minimization. The principle of empirical risk

minimization suggests that instead of minimizing the risk functional (2.22) one could

alternatively minimize the functional

Remp(α) =
1

l

l∑
i=1

Q(zi, α) (2.25)

which is called the empirical risk functional. The empirical risk functional is con-

structed on the basis of the data z1, · · · , zl which are obtained according to the

distribution F (z). This functional is defined in explicit form and may be subject to

direct minimization. Letting the minimum of the risk functional (2.22) be attained

at Q(z, α0) and the minimum of the empirical risk functional (2.25) be attained

at Q(z, αl) then the latter may be considered as an approximation to the function

Q(z, α0). This principle of solving the empirical risk minimization problem is called

the empirical risk minimization (induction) principle.

2.3.3 Supervised Learning

In supervised learning (or learning with a teacher), the available data are given in

the form of input-output pairs. In particular, each data sample consists of a particular

input vector and the related output value. The primary purpose of this learning

paradigm is to obtain a concise description of the data by finding a function which

yields the correct output value for a given input pattern. The term supervised learning

stems from the fact that the objects under consideration are already associated with

target values which can be either integer class identifiers or real values. Specifically,

the type of the output values distinguishes the two branches of the supervised learning

paradigm corresponding to the learning problems of classification and regression.

The Problem of Pattern Recognition

The problem of pattern recognition was formulated in the late 1950’s. In essence,

it can be formulated as follows: A supervisor observes occurring situations and de-
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termines to which of k classes each one of them belongs. The main requirement of

the problem is to construct a machine which, after observing the supervisor’s classi-

fication, realizes an approximate classification in the same manner as the supervisor.

A formal definition of the pattern recognition learning problem could be obtained

by considering the following statement: In a certain environment characterized by a

probability distribution function F (x), situation x appears randomly and indepen-

dently. The supervisor classifies each one of the occurred situations into one of k

classes. It is assumed that the supervisor carries out this classification by utilizing

the conditional probability distribution function F (ω|x), where ω ∈ {0, 1, · · · , k−1}.
Therefore, ω = p indicates that the supervisor assigns situation x the class p. The

fundamental assumptions concerning the learning problem of pattern recognition is

that neither the environment F (x) nor the decision rule of the supervisor F (ω|x) are
known. However, it is known that both functions exist meaning yielding the existence

of the joint distribution F (ω, x) = F (x)F (ω|x).
Let ϕ(x, α), α ∈ Λ be a set of functions which can take only k discrete values

contained within the {0, 1, · · · , k−1} set. In this setting, by considering the simplest

loss function

L(ω, ϕ) =

{
0, if ω = ϕ;

1, if ω ̸= ϕ.
(2.26)

the problem of pattern recognition may be formulated as the minimization of the risk

functional

R(α) =

∫
L(ω, ϕ(x, α))dF (ω,x) (2.27)

on the set of functions ϕ(x, α), α ∈ Λ. The unknown distribution function F (ω,x)

is implicitly described through a random independent sample of pairs

(ω1,x1), · · · , (ω1,xl) (2.28)

For the loss function (2.26), the functional defined in Eq. 2.27 determines the average

probability of misclassification for any given decision rule ϕ(x, α). Therefore, the

problem of pattern recognition reduces to the minimization of the average probability

of misclassification when the probability distribution function F (ω,x) is unknown but

the sample data (2.28) are given.
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In this way, the problem of pattern recognition is reduced to the problem of min-

imizing the risk functional on the basis of empirical data. Specifically, the empirical

risk functional for the pattern recognition problem has the following form:

Remp(α) =
1

l

l∑
i=1

L(ωi, ϕ(xi, α)), α ∈ Λ (2.29)

The special feature of this problem, however, is that the set of loss functionsQ(z, α), α ∈
Λ is not as arbitrary as in the general case defined by Eq. 2.23. The following restric-

tions are imposed:

• The vector z consists of n + 1 coordinates: coordinate ω, which takes on only

a finite number of values and n coordinates (x1, · · · , xn) which form the vector

x.

• The set of functions Q(z, α), α ∈ Λ, is given by Q(z, α) = L(ω, ϕ(x, α)), α ∈ Λ

taking only a finite number of values.

This specific feature of the risk minimization problem characterizes the pattern recog-

nition problem. In particular, the pattern recognition problem forms the simplest

learning problem because it deals with the simplest loss function. The loss func-

tion in the pattern recognition problem describes a set of indicator functions, that is

functions that take only binary values.

The Problem of Regression Estimation

The problem of regression estimation involves two sets of elements X and Y

which are connected by a functional dependence. In other words, for each element

x ∈ X there is a unique corresponding element y ∈ Y . This relationship constitutes

a function when X is a set of vectors and Y is a set of scalars. However, there

exist relationships (stochastic dependencies) where each vector x can be mapped

to a number of different y’s which are obtained as a result of random trials. This is

mathematically described by considering the conditional distribution function F (y|x),
defined on Y , according to which the selection of the y values is realized. Thus, the
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function of the conditional probability expresses the stochastic relationship between

y and x.

Let the vectors x appear randomly and independently in accordance with a dis-

tribution function F (x). Then, it is reasonable to consider that the y values are

likewise randomly sampled from the conditional distribution function F (y,x). In this

case, the sample data points may be considered to be generated according to a joint

probability distribution function F (x, y). The most intriguing aspect of the regres-

sion estimation problem is that the distribution functions F (x) and F (y|x) defining
the joint distribution function F (y,x) = F (x)F (y|x) are unknown. Once again, the

problem of regression estimation reduces to the approximation of the true joint dis-

tribution function F (y|x) through a series of randomly and independently sampled

data points of the following form

(y1,x1), · · · , (yl,xl) (2.30)

However, the knowledge of the function F (y,x) is often not required as in many

cases it is sufficient to determine one of its characteristics, for example the function

of the conditional mathematical expectation:

r(x) =

∫
yF (y|x) (2.31)

This function is called the regression, and the problem of its estimation in the set

of functions f(x, α), α ∈ Λ, is referred to as the problem of regression estimation.

Specifically, it was proved that the problem of regression estimation can be reduced to

the model of minimizing risk based on empirical data under the following conditions:∫
y2dF (y,x) <∞ and

∫
r2(x)dF (y,x) <∞ (2.32)

In deed, on the set f(x, α) the minimum of the functional

R(α) =

∫
(y − f(x, α))2dF (y,x) (2.33)

(provided that it exists) is attained at the regression function if the regression r(x)

belongs to f(x, α), α ∈ Λ. On the other hand, the minimum of this functional is



Chapter 2: Machine Learning 34

attained at the function f(x, a∗), which is the closest to the regression r(x) in the

metric L2(P )

p(f1, f2) =

√∫
(f1(x)− f2(x))2dF (x) (2.34)

if the regression r(x) does not belong to the set f(x, α), α ∈ Λ.

Thus, the problem of estimating the regression may be also reduced to the scheme

of minimizing a risk functional on the basis of a given set of sample data. Specifically,

the empirical risk functional for the regression estimation problem has the following

form:

Remp(α) =
1

l

l∑
i=1

(yi − f(xi, α))
2, α ∈ Λ (2.35)

The specific feature of this problem is that the set of functions Q(z, α), α ∈ Λ, is

subject to the following restrictions:

• The vector z consists of n+1 coordinates: the coordinate y and the n coordinates

(x1, · · · , xn) which form the vector x. However, in contrast to the pattern

recognition problem, the coordinate y as well as the function f(x, a) may take

any value in the interval (−∞,∞)

• The set of loss functions Q(z, α), α ∈ Λ, is of the form Q(z, a) = (y− f(x, α))2

2.3.4 Unsupervised Learning

If the data is only a sample of objects without associated target values, the problem

is known as unsupervised learning. In unsupervised learning there is no teacher. Hence

a concise description of the data can be a set of clusters or a probability density stating

how likely it is to observe a certain object in the future. The primary objective of

unsupervised learning is to extract some structure from a given sample of training

objects.
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The Problem of Density Estimation

Let p(x, α), α ∈ Λ, be a set of probability densities containing the required density

p(x, α0) =
dF (x)

dx
(2.36)

It was shown that the minimum of the risk functional

R(α) =

∫
ln p(x, α)dF (x) (2.37)

(if it exists) is attained at the functions p(x, α∗) which may differ from p(x, α0) only

on a set of zero measure. Specifically, Bretagnolle and Huber proved the following

inequality ∫
|p(x, α))− p(x, α0))|dx ≤ 2

√
R(α)−R(α0) (2.38)

according to which the problem of estimating the density in L1 is reduced to the

minimization of the functional (2.37) on the basis of empirical data. In particular,

the corresponding empirical risk functional has the following form

Remp(α) = −
l∑

i=1

ln p(xi, α) (2.39)

The special feature of the density estimation problem is that the set of functions

Q(z, α) is subject to the following restrictions:

• The vector z coincides with the vector x.

• The set of functions Q(z, α), α ∈ Λ, is of the form Q(z, α) = − log p(x, α),

where p(x, α) is a set of density functions. The loss function Q(z, α) takes on

arbitrary values on the interval (−∞,∞).

Clustering

A general way to represent data is to specify a similarity between any pair of

objects. If two objects share much structure, is should be possible to reproduce the

data from the same prototype. This is the primary idea underlying clustering methods

which form a rich subclass of the unsupervised learning paradigm. Clustering is one
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of the most primitive mental activities of humans, which is used in order to handle

the huge amount of information they receive every day. Processing every piece of

information as a single entity would be impossible. Thus, humans tend to categorize

entities (i.e. objects, persons, events) into clusters. Each cluster is then characterized

by the common attributes of the entities it contains.

The definition of clustering leads directly to the definition of a single “cluster”.

There have been proposed many definitions over the years but most of them are based

on loosely defined terms such as “similar”, “alike” or they are oriented to a specific

kind of clusters. Therefore, the majority of the proposed definitions for clustering

are of vague or of circular nature. This fact reveals that it is not possible to provide

a universally accepted formal definition of clustering. Instead, one can only provide

an intuitive definition stating that given a fixed number of clusters, the clustering

procedure aims to find a grouping of objects (clustering) such that similar objects

will be assigned to same group (cluster). Specifically, if there exists a partitioning of

the original data set such that the similarities of the objects in one cluster are much

grater than the similarities among objects from different clusters, then it is possible

extract structure from the given data. Thus, it is possible to represent a whole cluster

by one representative data point. More formally, by letting

X = {x1, · · · ,xl} (2.40)

be the original set of available data the m - clustering R of X may be defined as

the partitioning of X into m sets (clusters) C1, · · · , Cm such that the following three

conditions are met:

• Ci ̸= ∅, i = 1, · · · ,m

• ∪m
i=1Ci = X

• Ci ∩ Cj = ∅, i ̸= j, i, j = 1, · · · ,m

It must be noted that the data points contained in a cluster Ci are more “similar” to

each other and less similar to the data points of the other clusters. The quantification,

however, of the terms “similar” and “dissimilar” is highly dependent on the type of
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the clusters involved. The type of the clusters is determinately affected by the shape

of the clusters which in tern depends on the particular measure of dissimilarity or

proximity between clusters.

2.3.5 Reinforcement Learning

Reinforcement learning is learning how to map situations to actions in order to

maximize a numerical reward signal. The learner is not explicitly told which ac-

tions to take, as in most forms of machine learning, but instead must discover which

actions yield the most reward by trying them. In most interesting and challenging

cases, actions may affect not only the immediate reward, but also the next situation

and, through that all subsequent rewards. These two characteristics (trial and error,

and delayed reward) are the most important distinguishing features of reinforcement

learning. Reinforcement learning does not define a subclass of learning algorithms,

but rather a category of learning problems which focuses on designing learning agents

which cope with real-life problems. The primary features of such problems involves

the interaction of the learning agents with their environments in order to achieve a

particular goal. Clearly, this kind of agents must have the ability to sense the state of

the environment to some extent and must be able to take actions affecting that state.

The agent must also have a goal or goals relating to the state of the environment.

Reinforcement learning is different from the classical supervised learning paradigm

where the learner is explicitly instructed knowledgable external supervisor through

a series of examples that indicate the desired behavior. This is an important kind

of learning, but alone is not adequate in order to address the problem of learning

from interaction. In interactive problems it is often impractical to obtain correct and

representative examples of all the possible situations in which the agent has to act. In

uncharted territory, where one would expect learning to be more beneficial, an agent

must be able to learn form its own experience.

One of the challenges that arises in reinforcement learning and not in other kinds

of learning is the tradeoff between exploration and exploitation. To obtain a lot of

reward, a reinforcement learning agent must prefer actions that is has tried in the past
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and found to effective in producing reward. However, the discovery of such actions

require that the agent has to try actions that he has not selected before. In other

words, the agent has to exploit what is already known in order to obtain reward,

but it is also important to explore new situations in order to make better action

selections in the future. The dilemma is that neither exploitation nor exploration can

be pursued exclusively without failing at the task. The agent must try a variety of

actions and progressively favor those that appear to be best. Moreover, when the

learning problems involves a stochastic task, each action must be tried many times

in order to reliably estimate the expected reward.

Another key feature of reinforcement learning is that it explicitly considers the

whole problem of a goal-directed agent interacting with an uncertain environment.

This is in contrast with many learning approaches that address subproblems with-

out investigating how they fit into a larger picture. Reinforcement learning, on the

other hand, starts with a complete, interactive goal-seeking agent. All reinforcement

learning agents have explicit goals, can sense aspects of their environments, and can

choose actions to influence their environments. Moreover, it is usually assumed from

the beginning that the agent has to operate despite significant uncertainty about the

environment it faces. For learning research to make progress, important subproblems

have to be isolated and studied, but they should be incorporated in the larger picture

as subproblems that are motivated by clear roles in complete, interactive, goal-seeking

agents, even if all the details of the complete agent cannot yet be filled in.

2.4 Theoretical Justifications of Statistical Learn-

ing Theory

Statistical learning theory provides the theoretical basis for many of today’s ma-

chine learning algorithms and is arguably one of the most beautifully developed

branches of artificial intelligence in general. Providing the basis of new learning

algorithms, however, was not the only motivation for the development of statistical

learning theory. It was just as much a philosophical one, attempting to identify the
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fundamental element which underpins the process of drawing valid conclusions from

empirical data.

The most well-studied problem in machine learning is the problem of classifi-

cation. Therefore, the theoretical justifications concerning the Statistical Learning

Theory will be analyzed within the general context of supervised learning and specif-

ically pattern classification. The pattern recognition problem, in general, deals with

two kind of spaces: the input space X, which is also called the space of instances,

and the output space Y, which is also called the label space. For example, if the

learning task is to classify certain objects into a given, finite set of categories, then

X consists of the space of all possible objects (instances) in a certain, fixed represen-

tation, while Y corresponds to the discrete space of all available categories such that

Y = {0, · · · , k − 1}. This discussion, however, will be limited to the case of binary

classification for simplicity reasons which yields that the set of available categories

will be restricted to Y = {−1,+1}. Therefore, the problem of classification may

be formalized as the procedure of estimating a functional dependency of the form

ϕ : X → Y, that is a relationship between input and output spaces X and Y re-

spectively. Moreover, this procedure is realized on the basis of a given set of training

examples (x1, y1), · · · , (xl, yl), that is pairs of objects with the associated category

label. The primary goal when addressing the pattern classification problem is to find

such a mapping that yields the smallest possible number of classification errors. In

other words, the problem of pattern recognition is to find that mapping for which the

number of objects in X that are assigned to the wrong category is as small as possible.

Such a mapping is referred to as a classifier and the procedure for determining this

mapping on the basis of a given set of training examples a classification algorithm or

classification rule. A vary important issue concerning the definition of the pattern

recognition problem is that no particular assumptions are made on the spaces X and

Y. Specifically, it is assumed that there exists a joint distribution function F on

Z = X×Y, and the training examples (xi, yi) are sampled independently from this

distribution F . This type of sampling is often denoted as iid (independently and

identically distributed) sampling.

It must be noted that any particular discrimination function ϕ(x) is parameterized
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by a unique parameter α ∈ Λall which can be anything from a single parameter value

to a multidimensional vector. In other words, Λall denotes the set of all measurable

functions from X to Y corresponding to the set of all possible classifiers for a given

pattern recognition problem. Of particular importance is the so-called Bayes Classifier

ϕBayes(x), identified by the parameter αBayes, whose discrimination function has the

following form

ϕBayes(x, αBayes) = argmin
ω∈Y

P (Y = ω|X = x) (2.41)

The Bayes classifier operates by assigning any given pattern to the class with the

maximum a posteriori probability. The direct computation of the Bayes classifier,

however, is impossible in practise since the underlying probability distribution is com-

pletely unknown to the learner. Therefore, the problem of pattern recognition may be

formulated as the procedure of constructing a function ϕ(x, α) : X→ Y, uniquely de-

termined by the parameter α, through a series of training points (x1, y1), · · · , (xl, yl)

which has risk R(α) as close as possible to the risk R(αBayes) of the Bayes classifier.

2.4.1 Generalization and Consistency

Let (x1, y1), · · · , (xl, yl) be a sequence of training patterns and αl be the function

parameter corresponding to the classifier obtained by the utilization of some learning

algorithm on the given training set. Even though it is impossible to compute the true

underlying risk R(αl) for this classifier according to Eq. 2.27, it is possible to estimate

the empirical risk Remp(αl) according to Eq. 2.29 accounting for the number of errors

on the training points.

Usually, for a classifier αn learned on a particular training set, the empirical risk

Remp(αl) is relatively small since otherwise the learning algorithm will not even seem

to be able to explain the training data. A natural question arising at this point is

whether a function αl which makes a restricted number of errors on the training set

will perform likewise on the rest of the X space. This question is intimately related

to the notion of generalization. Specifically, a classifier αl is said to generalize well if

the difference |R(αl) − Remp(αl)| is small. This definition, however, does not imply

that the classifier αl will have a small overall error Remp but it just means that the
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empirical error Remp(αl) is a good estimate of the true error R(αl). Particularly bad

in practise is the situation where Remp(αl) is much smaller than R(αl) misleading to

the assumption of being overly optimistic concerning the quality of the classifier.

The problem concerning the generalization ability of a given machine learning

algorithm may be better understood by considering the following regression example.

One is given a set of observations (x1, y1), · · · , (xl, yl) ∈ X ×Y where for simplicity

it is assumed that X = Y = R. Fig. 2.3 shows a plot of such a dataset, indicated by

the round points, along with two possible functional dependencies that could underlie

the data.

Figure 2.3: Regression Example

The dashed line αdashed represents a fairly complex model that fits the data per-

fectly resulting into a zero training error. The straight line, on the other hand, does

not completely explain the training data, in the sense that there are some residual

errors, leading to a small training error. The problem regarding this example concerns

the inability to compute the true underlying risks R(αdashed) and R(αstraight) since

the two possible functional dependencies have very different behavior. For example,

if the straight line classifier αstraight was the true underlying risk, then the dashed line

classifier αdashed would have a high true risk, as the L2 distance between the true and

the estimated function is very large. The same also holds when the true functional
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dependency between the spaces X and Y is represented by the dashed line while the

straight line corresponds to the estimated functional dependency. In both cases the

true risk would be much higher than the empirical risk.

This example emphasizes the need to make the correct choice between a relatively

complex function model, leading to a very small training error, and a simpler function

model at the cost of a slightly higher training error. In one form or another, this issue

was extensively studied within the context of classical statistics as the bias-variance

dilemma. The bias-variance dilemma involves the following dichotomy. If a linear

fit is computed for any given data set, then every functional dependency discovered

would be linear but as a consequence of the bias imposed from the choice of the

linear model which does not necessarily comes from the data. On the hand, if a

polynomial model of sufficiently high degree is fit for any given data set, then the

approximation ability of the model would fit the data perfectly but it would suffer

from a large variance depending on the initial accuracy of the measurements. In other

words, within the context of applied machine learning, complex explanations show

overfitting, while overly simple explanations imposed by the learning machine design

lead to underfitting. Therefore, the concept of generalization can be utilized in order

to determine the amount of increase in the training error in order to tolerate for a

fitting a simpler model and quantify the way in which a given model is simpler than

another one.

Another concept which closely related to generalization is the one of consistency.

However, as opposed to the notion of generalization discussed above, consistency is

not a property of an individual function, but a property of a set of functions. The

notion of consistency, as it is described in classical statistics, aims to make a statement

about what happens in the limit of infinitely many sample points. Intuitively, it seems

reasonable to request that a learning algorithm, when presented with more and more

training points, should eventually converge to an optimal solution.

Given any particular classification algorithm and a set of l training points, αl

denotes the parameter identifying the obtained classifier where the exact procedure

for its determination is not of particular importance. Note that any classification

algorithm chooses its functions from some particular function space identified by the
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complete parameter space Λ such that F = {ϕ(x, α) : α ∈ Λ}. For some algorithms

this space is given explicitly, for others it only exists implicitly via the mechanism

of the algorithm. No matter how the parameter space Λ is defined, the learning

algorithm attempts to choose the parameter αl ∈ Λ which it considers as the best

classifier in Λ, based on the given set of training points. On the other hand, in

theory the best classifier in Λ is the one that has the smallest risk which is uniquely

determined by the following equation:

αΛ = argmin
α∈Λ

R(α) (2.42)

The third classifier of particular importance is the Bayes classifier αBayes introduced in

Eq. 2.41. Bayes classifier while being the best existing classifier may be not included

within the parameter space Λ under consideration, so that R(αΛ) > R(αBayes).

Letting (xi, yi)i∈N be an infinite sequence of training points which have been drawn

independently from some probability distribution P , and for each l ∈ N, αl be a

classifier constructed by some learning algorithm in the basis of the first l training

points the following types of consistency may be defined:

1. The learning algorithm is called consistent with respect to Λ and P if the risk

R(αl) converges in probability to the risk R(αΛ) of the best classifier Λ, that is

for all ϵ > 0,

P (R(αl)−R(αΛ) > ϵ)→ 0 as n→∞ (2.43)

2. The learning algorithm is called Bayes-consistent with respect to P if the risk

R(R(αl)) converges to the risk R(αBayes) of the Bayes classifier, that is for all

ϵ > 0,

P (R(αl)−R(αBayes) > ϵ)→ 0 as n→∞ (2.44)

3. The learning algorithm is called universally consistent with respect to Λ (resp

universally Bayes-consistent) if it is consistent with respect to Λ (reps Bayes-

consistent) for all probability distributions P .

It must be noted that none of the above definitions involves the empirical riskRemp(αl)

of a classifier. On the contrary, they exclusively utilize the true risk R(αl) as a quality
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measure reflecting the need to obtain a classifier which is as good as possible. The

empirical risk constitutes the most important estimator of the true risk of a classifier so

that the requirement involving the convergence of the true risk (R(αl)→ R(αBayes))

should be extended to the convergence of the empirical risk (Remp(αl)→ R(αBayes)).

2.4.2 Bias-Variance and Estimation-Approximation trade-off

The goal of classification is to get a risk as close as possible to the risk of the Bayes

classifier. A natural question that arises then, concerns the possibility of choosing

the complete parameter space Λall as the parameter space Λ utilized by a particular

classifier. This question raises the subject of whether the selection of the overall best

classifier, obtained in the sense of the minimum empirical risk,

αl = arg min
α∈Λall

Remp(α) (2.45)

implies consistency. The answer for this question is unfortunately negative since the

optimization of a classifier over too large parameter (function) spaces, containing all

the Bayes classifiers for all probability distributions P , will lead to inconsistency.

Therefore, in order to learn successfully it is necessary to work with a smaller param-

eter (function) space Λ.

Bayes consistency deals with the convergence of the term R(αl)−R(αBayes) which

can be decomposed in the following form:

R(αl)−R(αBayes) = (R(αl)−R(αΛ))︸ ︷︷ ︸
estimationerror

+(R(αΛ)−R(αBayes))︸ ︷︷ ︸
approximationerror

(2.46)

The first term on the right hand side is called the estimation error while the second

term is called the approximation error. The first term deals with the uncertainty

introduced by the random sampling process. That is, given a finite sample, it is

necessary to estimate the best parameter (function) in Λ. Of course, in this process

there will be a hopefully small number of errors which is identified by the term

estimation error. The second term, on the other hand, is not influenced by random

qualities. It particularly deals with the error made by looking for the best parameter

(function) in a small parameter (function) space Λ, rather than looking for the best
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parameter (function) in the entire space Λall. Therefore, the fundamental question

in this context is how well parameters (functions) in Λ can be used to approximate

parameters (functions) in Λall.

In statistics, estimation error is also called the variance, and the approximation

error is called the bias of an estimator. The first term measures the variation of the

risk of the function corresponding to the parameter αl estimated on the sample, while

the second one measures the bias introduced in the model by choosing a relatively

small function class.

Figure 2.4: Illustration of estimation and approximation error

In this context the parameter space Λ may be considered as the means to balance

the trade-off between estimation and approximation error. This is particularly illus-

trated in Fig. 2.4 which demonstrates that the selection of a very large parameter

space Λ yields a very small approximation error term since there is high probability

that the Bayes classifier will be contained in Λ or at least it can be closely approxi-

mated by some element in Λ. The estimation error, however, will be rather large in

this case since the space Λ will contain more complex functions which will lead to

overfitting. The opposite effect will happen if the function class corresponding to the
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parameter space Λ is very small.

Figure 2.5: Trade-off between estimation and approximation error

The trade-off between estimation and approximation error is explicitly depicted in

Fig. 2.5. According to the graph, when the parameter space Λ corresponds to a small

complexity function space utilized by the classification algorithm, then the estimation

error will be small but the approximation error will be large (underfitting). On the

other hand, if the complexity of Λ is large, then the estimation error will also be

large, while the approximation error will be small (overfitting). The best overall risk

is achieved for “moderate” complexity.

2.4.3 Consistency of Empirical Minimization Process

As it was originally discussed in section 2.3.2 the ERM principle provides a more

powerful way of classifying data since it is impossible to directly minimize the true

risk functional given by Eq. 2.27. In particular, the ERM principle addresses the

problem related with the unknown probability distribution function F (ω,x) which

underlies the data generation process by trying to infer a function f(x, α) from the

set of identically and independently sampled training data points. The process of

determining this function is based on the minimization of the so-called empirical risk

functional which for the problem of pattern classification is given by the Eq. 2.29.
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The fundamental underpinning behind the principle of Empirical Risk Minimization

is the law of large numbers which constitutes one of the most important theorems

in statistics. In its simplest form it states that under mild conditions, the mean

of random variables ξi which have been drawn iid from some probability distribution

function P converges to the mean of the underlying distribution itself when the sample

size goes to infinity:

1

l

l∑
i=1

ξi → E(ξ) for l→∞ (2.47)

A vary important extension to the law of large numbers was originally provided by

Chernoff inequality [Chernoff,1952] which was subsequently generalized by Hoefffing

[Hoeffding,1963]. This inequality characterizes how well the empirical mean approxi-

mates the expected value. Namely, if ξi, are random variables which only take values

in the [0, 1] interval, then

P (|1
l

l∑
i=1

ξi − E(ξ)| ≥ ϵ) ≤ exp(−2lϵ2) (2.48)

This theorem can be applied to the case of the empirical and the true risk providing

a bound which states how likely it is that for a given function, identified by the

parameter α, the empirical risk is close to the actual risk:

P (|Remp(α)−R(α)| ≥ ϵ) ≤ exp(−2lϵ2) (2.49)

The most important fact concerning the bound provided by Chernoff in 2.49 is its

probabilistic nature. Specifically, it states that the probability of a large deviation

between the test error and the training error of a function f(x, α) is small when the

sample size is sufficiently large. However, by not ruling out the presence of cases

where the deviation is large, it just says that for a fixed function f(x, α), this is very

unlikely to happen. The reason why this has to be the case is the random process that

generates the training samples. Specifically, in the unlucky cases when the training

data are not representative of the true underlying phenomenon, it is impossible to

infer a good classifier. However, as the sample size gets larger, such unlucky cases

become vary rare. Therefore, any consistency guarantee can only be of the form “the

empirical risk is close to the actual risk, with high probability”.
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Another issue related to the ERM principle is that the Chernoff bound in 2.49 is

not enough in order to prove the consistency of the ERM process. This is true since

Chernoff inequality holds only for a fixed function f(x, α) which does not depend on

the training data. While this seems to be a subtle mathematical difference, this is

where the ERM principle can go wrong as the classifier αl does depend on the training

data.

2.4.4 Uniform Convergence

It turns out the conditions required to render the ERM principle consistent involve

restricting the set of admissible functions. The main insight provided by the VC

theory is that the consistency of the ERM principle is determined by the worst case

behavior over all functions f(x, α), where α ∈ Λ, that the learning machine could

use. This worst case corresponds to a version of the law of large numbers which is

uniform ever all functions parameterized by Λ.

Figure 2.6: Convergence of the empirical risk to the actual risk

A simplified description of the uniform law of large numbers which specifically

relates to the consistency of the learning process is given in Fig. 2.6. Both the

empirical and the actual risk are plotted as functions of the α parameter and the set

of all possible functions, parameterized by the set Λ, is represented by a single axis of
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the plot for simplicity reasons. In this context, the ERM process consists in picking

the parameter α that yields the minimal value of Remp. This process is consistent if

the minimum of Remp converges to that of R as the sample size increases. One way to

ensure the convergence of the minimum of all functions in Λ is uniform convergence

over Λ. Uniform convergence over Λ requires that for all functions f(x, α), where

α ∈ Λ, the difference between R(α) and Remp(α) should become small simultaneously.

In other words, it is required that there exists some large l such that for sample size

at least n, it is sure that for all functions f(x, α), where α ∈ Λ, the difference

|R(α) − Remp(α)| is smaller than a given ϵ. Mathematically, this statement can be

expressed using the following inequality:

sup
α∈Λ
|R(α)−Remp(α)| ≤ ϵ. (2.50)

In Fig. 2.6 this means that the two plots of R and Remp become so close that their

distance is never larger than ϵ. This, however, does not imply that in the limit of

infinite sample sizes, the minimizer of the empirical risk, αl, will lead to a value of the

risk that is as good as the risk of the best function, αΛ, in the function class. The latter

is true when uniform convergence is imposed over all functions that are parameterized

by Λ. Intuitively it is clear that if it was known that for all functions f(x, α), where

α ∈ Λ, the difference |R(α)−Remp(α)| is small, then this holds in particular for any

function identified by the parameter αl that might have been chosen based on the

given training data. That is, for any function f(x, a), where α ∈ Λ, it is true that:

|R(α)−Remp(α)| ≤ sup
α∈Λ
|R(α)−Remp(α)| (2.51)

Inequality 2.51 also holds for any particular function parameter αl which has been

chosen on the basis of a finite sample of training points. Therefore, the following

conclusion can be drawn:

P (|R(α)−Remp(α)| ≥ ϵ) ≤ P (sup
α∈Λ
|R(α)−Remp(α)| ≥ ϵ) (2.52)

where the quantity on the right hand side represents the very essence of the uniform

law of large numbers. In particular, the law of large numbers is said to uniformly
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hold over a function class parameterized by Λ if for all ϵ > 0,

P (sup
α∈Λ
|R(α)−Remp(α)| ≥ ϵ)→ 0 as l→∞ (2.53)

Inequality 2.51 can be utilized in order to show that if the uniform law of large

numbers holds for some function class parameterized by Λ, then the ERM is consistent

with respect to Λ. Specifically, inequality 2.51 yields that:

|R(αl)−R(αΛ| ≤ 2 sup
α∈Λ
|R(α)−Remp(α)| (2.54)

which finally concludes:

P (|R(αl)−R(αΛ| ≥ ϵ) ≤ P (sup
α∈Λ
|R(α)−Remp(α)| ≥

ϵ

2
) (2.55)

The right hand side of inequality 2.55 tends to 0, under the uniform law of large

numbers, which then leads to consistency of the ERM process with respect to the

underlying function class parameterized by Λ. Vapnik and Chervonenkis proved that

uniform convergence as described by inequality 2.53 is a necessary and sufficient

condition for the consistency of the ERM process with respect to Λ. It must be noted

that the condition of uniform convergence crucially depends on the set of functions

for which it must hold. Intuitively, it seems clear that the larger the function space

parameterized by Λ, the larger the quantity supα∈Λ |R(α)−Remp(α)|. Thus, the larger
Λ, the more difficult it is to satisfy the uniform law of large numbers. That is, for

larger function spaces (corresponding to larger parameter spaces Λ) consistency is

harder to achieve than for smaller function spaces. This abstract characterization

of consistency as a uniform convergence property, whilst theoretically intriguing, is

not at all that useful in practise. This is true, since in practise it is very difficult

to infer whether the uniform law of large numbers holds for a given function space

parameterized by Λ. Therefore, a natural question that arises at this point is whether

there are properties of function spaces which ensure uniform convergence of risks.

2.4.5 Capacity Concepts and Generalization Bounds

Uniform convergence was referred to as the fundamental property of a function

space determining the consistency of the ERM process. However, a closer look at this
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convergence is necessary in order to make statements concerning the behavior of a

learning system when it is exposed to limited number of training samples. Therefore,

attention should be focused on the probability

P (sup
α∈Λ
|R(α)−Remp(α)| > ϵ) (2.56)

which will not only provide insight into which properties of function classes determines

the consistency of the ERM process but will also provide bounds on the risk. Along

this way, two notions are of primary importance:

1. the union bound and

2. the method of symmetrization by a ghost sample.

The union bound

The union bound is a simple but convenient tool in order to transform the standard

law of large numbers of individual functions into a uniform law of large numbers over

a set of finitely many functions parameterized by a set Λ = {α1, α2, · · · , αm}. Each

of the functions {f(x, αi) : αi ∈ Λ}, satisfies the standard law of large numbers in the

form of Chernoff bound provided by inequality 2.49, that is

P (|R(αi)−Remp(αi)| ≥ ϵ) ≤ 2 exp(−2lϵ2) (2.57)

In order to transform these statements about the individual functions {f(x, αi) : αi ∈
Λ} into a uniform law of large numbers the following derivations are necessary

P (sup
α∈Λ
|R(α)−Remp(α)| > ϵ) = P (

m∪
i=1

|R(αi)−Remp(αi)| > ϵ)

≤
m∑
i=1

P (|R(αi)−Remp(αi)| > ϵ)

≤ 2m exp(−2lϵ2) (2.58)

It is clear that the difference between the Chernoff bound given by 2.49 and the

right hand side of 2.58 is just a factor of m. Specifically, if the function space F =

{f(x, αi) : αi ∈ Λ} is fixed, this factor can be regarded as a constant, and the term
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2m exp(−2lϵ2) still converges to 0 as l → ∞. Hence, the empirical risk converges to

0 uniformly over F as l→∞. Therefore, it is proved that ERM process over a finite

set Λ of function parameters is consistent with respect to Λ.

Symmetrization

Symmetrization is an important technical step towards using capacity measures

of function classes. Its main purpose is to replace the event supα∈Λ |R(α)−Remp(α)|
by an alternative event which can be solely computed on a given sample size. As-

sume that a new ghost sample {(x′
i, y

′
i)}li=1 is added to the initial training sample

{(xi, yi)}li=1. The ghost sample is just another sample which is also drawn iid from

the same underlying distribution and which is independent of the first sample. The

ghost sample, however, is a mathematical tool that is not necessary to be physically

sampled in practise. It is just an auxiliary set of training examples where the cor-

responding empirical risk will be denoted by R′
emp(α). In this context, Vapnik and

Chervonenkis proved that for mϵ2 ≥ 2

P (sup
α∈Λ
|R(α)−Remp(α)| > ϵ) ≤ 2P (sup

α∈Λ
|Remp(α)−R′

emp(α)| >
ϵ

2
) (2.59)

Here, the first P refers to the distribution of an iid sample l, while the second one

refers to the distribution of two samples of size l, namely the original sample and

the ghost one which form an iid sample of size 2l. In the latter case, Remp, measures

the empirical loss on the first half of the sample, and R′
emp on the second half. This

statement is referred to as the symmetrization lemma referring to the fact that the

attention is focused on an event which depends on a symmetric way on a sample of

size l. Its meaning is that if the empirical risks of two independent l-samples are close

to each other, then they should also be close to the true risk. The main purpose of

this lemma is to provide a way to bypass the need to directly estimate the quantity

R(α) by computing the quantity R′
emp(α) on a finite sample size.

In the previous section the uniform bound was utilized as a means to constraint

the probability of uniform convergence in terms of a probability of an event referring

to a finite function class. The crucial observation is now that even if Λ parameterizes

an infinite function class, the different ways in which it can classify a training set of l
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sample points is finite. Namely, for any given training point in the training sample, a

function can take only values within the set {−1,+1} which entails that on a sample

of l points {x1, · · · ,xl}, a function can act in at most 2l different ways. Thus, even

for an infinite function parameter class Λ, there are at most 2l different ways the

corresponding functions can classify the l points of finite sample. This means that

when considering the term supα∈Λ |Remp(α)−R′
emp(α)|, the supremum effectively runs

ever a finite set of function parameters. In this context, the supremum over Λ on the

right hand side of inequality 2.59 can be replaced by the supremum over a finite

function parameter class with at most 22l function parameters. This number comes

as a direct consequence from the fact that there is a number of 2l sample points for

both the original and the ghost samples.

The Shattering Coefficient

For the purpose of bounding the probability 2.56, the symmetrization lemma

implies that the function parameter class Λ is effectively finite since it can be restricted

to the 2l points appearing on the right hand side of 2.59. Therefore, the function

parameter class contains a maximum number of 22l elements. This is because only

the values of the functions on the sample points and the ghost sample points count.

In order to formalize this, let Zl = {(x1, y1), · · · , (xl, yl)} be a given sample of size

l and let |ΛZl
| be the cardinality of Λ when restricted to {x1, · · · ,xl}, that is, the

number of function parameters from Λ that can be distinguished from their values

on {x1, · · · ,xl}. Moreover, let N (Λ, l) be the maximum number of functions that

can be distinguished in this way, where the maximum runs over all possible choices

of samples, so that

N (Λ, l) = max {|ΛZl
| : x1, · · · ,xl ∈ X} (2.60)

The quantity N (Λ, l) is referred to as the shattering coefficient of the function

class parameterized by Λ with respect to the sample size l. It has a particularly simple

interpretation: it is the number of different outputs {y1, · · · , yl} that the functions

parameterized by Λ can achieve on samples of a given size l. In other words, it

measures the number of ways that the function space can separate the patterns into
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two classes. Whenever, N (Λ, l) = 2l, this means that there exists a sample of size

l on which all possible separations can be achieved by functions parameterized by

Λ. In this case, the corresponding function space is said to shatter l points. It

must be noted that because of the maximum in the definition of N (Λ, l), shattering

means that there exists a sample of l patterns which can be shattered in all possible

ways. This definition, however, does not imply that all possible samples of size l will

be shattered by the function space parameterized by Λ. The shattering coefficient

can be considered as a capacity measure for a class of functions in the sense that it

measures the “size” of a function class in a particular way. This way involves counting

the number of functions in relation to a given sample of finite training points.

Uniform Convergence Bounds

Given an arbitrary, possibly infinite, class of function parameters consider the

right hand side of inequality 2.59 where the sample of 2l points will be represented by

a set Z2l. Specifically, the set Z2l may be interpreted as the combination of l points

from the original sample and l points from the ghost sample. The main idea is to

replace the supremum over Λ by the supremum over ΛZ2l
where the set Z2l contains at

most N (Λ, l) ≤ 22l different functions, then apply the union bound on this finite set

and then the Chernoff bound. This leads to a bound like 2.58, with N (Λ, l) playing

the role of m. Essentially, those steps can be written down as follows:

P (sup
α∈Λ
|R(α)−Remp(α)| > ϵ) ≤ 2P (sup

α∈Λ
|Remp(α)−R′

emp(α)| >
ϵ

2
)

= 2P ( sup
α∈ΛZ2l

|Remp(α)−R′
emp(α)| >

ϵ

2
)

≤ 2N (Λ, 2l) exp(
−lϵ2

4
) (2.61)

yielding the following inequality

P (sup
α∈Λ
|R(α)−Remp(α)| > ϵ) ≤ 2N (Λ, 2l) exp(

−lϵ2

4
) (2.62)

The notion of uniform bound may be utilized in order to infer whether the ERM

process is consistent for a given class of function parameters Λ. Specifically, the
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right hand side of 2.62 guarantees that the ERM process is consistent for a given

class of function parameters Λ when it converges to 0 as l → ∞. In this context,

the most important factor controlling convergence is the quantity N (Λ, 2l). This is

true since the second factor of the product 2N (Λ, 2l) exp(−lϵ2

4
) is always the same for

any given class of function parameters. Therefore, when the shattering coefficient is

considerably smaller than 22l, say N (Λ, 2l) ≤ (2n)k, it is easy to derive that the right

hand side of the uniform bound takes the form

2N (Λ, 2l) exp(
−lϵ2

4
) = 2 exp(k log(2l)− l

ϵ2

4
) (2.63)

which converges to 0 as l → ∞. On the other hand, when the class of function

parameters coincides with the complete parameter space Λall then the shattering

coefficient takes its maximum value such that N (Λ, 2l) = 22l. This entails that the

right hand side of 2.62 takes the form

2N (Λ, 2l) exp(
−lϵ2

4
) = 2 exp(l(2 log(2))− ϵ2

4
) (2.64)

which does not converge to 0 as l→∞.

The union bound however cannot directly guarantee the consistency of the ERM

process when utilizing the complete parameter space Λall. The reason is that in-

equality 2.62 gives an upper bound on P (supα∈Λ |R(α)−Remp(α)| > ϵ) which merely

provides a sufficient condition for consistency but not a necessary one. According to

[Devroye et al, 1996] a necessary and sufficient condition for the consistency of the

ERM process is that

log
N (Λ, 2l)

l
→ 0 (2.65)

2.4.6 Generalization Bounds

Sometimes it is useful to reformulate the uniform convergence bound so that the

procedure of initially fixing ϵ and subsequently computing the probability that the

empirical risk deviates from the true risk more than ϵ is reversed. In other words,

there are occasions when it would be reasonable to initially specify the probability

of the desired bound and then get a statement concerning the proximity between the



Chapter 2: Machine Learning 56

empirical and the true risk. This can be achieved by setting the right hand side of

inequality 2.62 equal to some δ > 0, and then solving for ϵ. The resulting statement

declares that with probability at least 1−δ, any function in {f(x, a) : α ∈ Λ} satisfies

R(α) ≤ Remp(α) +

√
4

l
(log(2N (Λ, 2l)− log(δ))) (2.66)

Consistency bounds can also be derived by utilizing inequality 2.66. In particular,

it is obvious that the ERM process is consistent for a given function class parameter-

ized by Λ when the term

√
log(2N (Λ,2l))

l
converges to 0 as l→∞. The most important

aspect concerning the generalization bound provided by inequality 2.66 is that it holds

for any function in {f(x, a) : α ∈ Λ}. This constitutes a highly desired property since

the bound holds in particular for the function which minimizes the empirical risk,

identified by the function parameter αl. On the other hand, the bound holds for

learning machines that do not truly minimize the empirical risk. This is usually in-

terpreted as a negative property since by taking into account more information about

a function, one could hope to obtain more accurate bounds.

Essentially, the generalization bound states that when both Remp(α) and the

square root term are small simultaneously then it is highly probable that the error on

future points (actual risk) will be small. Despite sounding like a surprising statement

this claim does not involve anything impossible. It only says that the utilization of a

function class {f(x, a) : α ∈ Λ} with relatively small N (Λ, l), which can nevertheless

explain data sampled from the problem at hand, is not likely to be a coincidence. In

other words, when a relatively small function class happens to “explain” data sam-

pled from the problem under consideration, then there is a high probability that this

function class captures some deeper aspects of the problem. On the other hand, when

the problem is too difficult to learn from the given amount of training data, then it

necessary to use a function class so large that can “explain” nearly everything. This

results in a small empirical error but at the same time increases the magnitude of the

square root term. Therefore, according to the insight provided by the generalization

bound, the difficulty of a particular learning problem is entirely determined by the

suitability of the selected function class and by the prior knowledge available for the

problem.
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The VC dimension

So far, the various generalization bounds were expressed in terms of the shattering

coefficient N (Λ, l). Their primary downside is that they utilize capacity concepts

that are usually difficult to evaluate. In order to avoid this situation, Vapnik and

Chervonenkis introduced the so-called VC dimension which is one of the most well

known capacity concepts. Its primary purpose is to characterize the growth behavior

of the shuttering coefficient using a single number.

A sample of size l is said to be shuttered by the function parameter class Λ if this

class parameterizes functions that can realize any labelling on the given sample, that

is |ΛZl
| = 2l. The VC dimension of Λ, is now defined as the largest number l such

that there exists a sample of size l which is shuttered by the functions parameterized

by Λ. Formally,

V C(Λ) = max{l ∈ N : |ΛZl
| = 2l for some Zl} (2.67)

If the maximum does not exists is defined to be infinity. For example, the VC dimen-

sion of the set of liner indicator functions

Q(z, α) = θ{
l∑

p=1

apzp + a0} (2.68)

in l-dimensional coordinate space Z = (z1, · · · , zl) is equal to l + 1, since using

functions from this set one can shutter at most l + 1 vectors. Moreover, the VC

dimension of the set of linear functions

Q(z, α) =
l∑

p=1

apzp + a0 (2.69)

in l-dimensional coordinate space Z = (z1, · · · , zl) is equal to l + 1, since a linear

function can shutter at most l + 1 points.

A beautiful combinatorial result proved simultaneously by several people [Vapnik

and Chervonenkis,1971] and [Sauer,1972],[Shelah,1972] characterizes the growth be-

havior of the shattering coefficient and relates it to the VC dimension. Let Λ be a
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function parameter class with finite VC dimension d. Then

N (Λ, l) ≤
d∑

i=0

(
n

i

)
(2.70)

for all l ∈ N. In particular, for all l ≥ d the following inequality holds

N (Λ, l) ≤ (
en

d
)
d

(2.71)

The importance of this statement lies in the last fact. If l ≥ d, then the shuttering

coefficient behaves like a polynomial function of the sample size l. According to

this result, when the VC dimension of a function parameter class is finite then the

corresponding shuttering coefficients will grow polynomially with l. Therefore, the

ERM process is consistent with respect to a function parameter space Λ if and only if

V C(Λ) is finite.

A fundamental property shared by both the shuttering coefficient and the VC

dimension is that they do not depend on the underlying probability distribution P ,

since they only depend on the function parameter class Λ. One the one hand, this is

an advantage, as the capacity concepts apply to all possible probability distributions.

On the other hand, this can be considered as a disadvantage, as the capacity concepts

do not take into account particular properties of the distribution at hand.

A particular class of distribution independent bounds is highly related with the

concept of Structural Risk Minimization. Specifically, these bounds concern the sub-

set of totally bounded functions

0 ≤ Q(z, α) ≤ B, α ∈ Λ (2.72)

with finite VC dimension such as the set of indicator functions. The main result for

this set of functions is the following theorem: With probability at least 1 − δ, the

inequality

R(α) ≤ Remp(α) +
Bϵ

2
(1 +

√
1 +

4Rempα

Bϵ
) (2.73)

holds true simultaneously for all functions of the set (2.72) where

ϵ = 4
d(ln 2l

d
+ 1)− ln δ

l
(2.74)

and B = 1.



Chapter 2: Machine Learning 59

The Structural Risk Minimization Principle

The ERM process constitutes a fundamental learning principle which efficiently

deals with problems involving training samples of large size. This fact is specifically

justified by considering inequality 2.73 which formulates the conditions that guarantee

the consistency of the ERM process. In other words, when the ratio l/d is large, the

second summand on the right hand side of 2.73 will be small. The actual risk is then

close to the value of the empirical risk. In this case, a small value of the empirical

risk ensures a small value of the actual risk. On the other hand, when the ratio l/d is

small, then even a small value for the empirical risk will not guarantee a small value

for the actual risk. The latter case indicates the necessity for a new learning principle

which will focus on acquiring a sufficiently small value for the actual risk R(α) by

simultaneously minimizing both terms on the right hand side of inequality 2.73. This

is the basic underpinning behind the principle of Structural Risk Minimization (SRM).

In particular, SRM is intended to minimize the risk functional R(α) with respect to

both the empirical risk and the VC dimension of the utilized set of function parameters

Λ.

The SRM principle is based on a nested structural organization of the function

set S = Q(z, α), α ∈ Λ such that

S1 ⊂ S2 · · · ⊂ Sn · · · (2.75)

where Sk = {Q(z, α) : α ∈ Λk} are subsets of the original function space such that

S∗ = ∪kSk as it is illustrated in Fig. 2.7

Figure 2.7: Admissible structure of function sets
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Moreover, the set of utilized functions must form an admissible structure which

satisfies the following three properties:

1. The VC dimension dk of each set Sk of functions is finite.

2. Any element Sk of the structure contains totally bounded functions

0 ≤ Q(z, α) ≤ Bk, α ∈ Λk

3. The set S∗ is everywhere dense in S in the L1(F ) metric where F = F (z) is the

distribution function from which examples are drawn.

Note that in view of (2.75) the following assertions are true:

1. The sequence of values of VC dimensions dk for the elements Sk of the structure

S in nondecreasing with increasing k

d1 ≤ d2 ≤ · · · ≤ dn ≤ · · ·

.

2. The sequence of values of the bounds Bk for the elements Sk of the structure S

in nondecreasing with increasing k

B1 ≤ B2 ≤ · · · ≤ Bn ≤ · · ·

Denote by Q(z, αk
l ) the function that minimizes the empirical risk in the set of func-

tions Sk. Then with probability 1 − δ one can assert that the actual risk for this

function is bounded by the following inequality

R(αk
l ) ≤ Remp(α

k
l ) +Bkϵk(l)(1 +

√
1 +

4Rempαk
l

Bϵk(l)
) (2.76)

where

ϵk(l) = 4
dk(ln

2l
dk

+ 1)− ln δ
4

l
(2.77)

For a given set of observations z1, · · · , zl the SRM method actually suggests that

one should choose the element Sk of the structure for which the smallest bound on
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the risk is achieved. In other words, the SRM principle introduces the notion of a

tradeoff between the quality of approximation and the complexity of the approximating

function as it is particularly illustrated in Fig. 2.8

Figure 2.8: Admissible structure of function sets

Therefore, the SRM principle is based upon the following idea: To provide the

given set of functions with an admissible structure an then to find the function that

minimizes risk (2.76) over given elements of the structure. This principle is called the

principle of structural risk minimization in order to stress the importance of choosing

the element of the structure that possesses an appropriate capacity.
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The Class Imbalance Problem

3.1 Nature of the Class Imbalance Problem

As the field of machine learning makes a rapid transition from the status of ”aca-

demic discipline” to that of ”applied science”, a myriad of new issues, not previously

considered by the machine learning community are now coming into light. One such

issue is the class imbalance problem. The class imbalance problem corresponds to the

problem encountered by inductive learning systems when the assumption concern-

ing the similarity of the prior probabilities, of target classes to be learned, is grossly

violated. In other words, the class imbalance problem arises on domains for which

one class is represented by a large number of examples while the other is represented

only by a few. This entails that the ratios of the prior probabilities between classes

are extremely skewed. The same situation arises when the target classes are assigned

with extremely unbalanced misclassification costs.

The class imbalance problem is of crucial importance since it is encountered in a

wide range of machine learning applications such as:

• environmental

• cultural

• vital

62
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• medical

• commercial

• astronomical

• military

• person identification - face recognition - authorship verification

• information retrieval

• computer security - intrusion detection

• user modelling - recommendation

Although practitioners might already have known the class imbalance problem

early, it made its appearance in the machine learning / data mining society about 15

years ago. Its importance grew as more and more researchers realized that their data

sets were imbalanced resulting in suboptimal classification performance. For example,

the problem occurs and hinders classification in applications such as the detection of

fraudulent telephone calls or credit card transactions in [66] and [146, 31] respectively.

A similar classification problem is addressed by the authors in [64] where they try to

identify unreliable telecommunications customers. The highly unbalanced nature of

these classification problems comes from the fact that the class of interest occupies

only a negligible fraction of the patterns space so that the corresponding instances

are extremely infrequent to occur. Problems of kindred nature are also addressed in

applications as diverse as the detection of oil spills in radar images [123], in direct

marketing [137] where it is common to have a small response rate (about 1%) for most

marketing campaigns, in prediction of failures in manufacturing processes [182] or in

diagnosing rare diseases [129]. Extremely unbalanced classes also arise in information

retrieval applications [134], in learning word pronunciations [226] or in predicting

telecommunication equipment failures [238].

In [103, 102] the authors attempt to unify the relative research by focusing on the

nature of the class imbalance problem. Their primary motivation is to investigate the
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reasons why standard learners are often biased towards the majority class. According

to the authors, this is the primary effect of the class imbalance problem attributed to

the fact that such classifiers attempt to reduce global quantities such as the error rate

without taking the data distribution into consideration. As a result, examples from

the overwhelming class are well-classified whereas examples from the minority class

tend to be misclassified. Moreover, the authors are interested in identifying the par-

ticular domain characteristics that increase the severity of the problem. Specifically,

their research is focused on determining the exact way in which the degree of concept

complexity, the size of the training set and the degree of class imbalance, influence

the classification performance of standard classifiers. Their findings indicate that the

problem is aggravated by increasing the degree of class imbalance or the degree of

concept complexity. However, the problem is simultaneously mitigated when the size

of the training set is sufficiently large. On the contrary, class imbalances do not hinder

the classification of simple problems such as the ones that are linearly separable.

The author in [62] considers the general setting of a binary classification problem

where the two classes of interest are namely the positive and negative classes of

patterns. In this setting, the class imbalance problem is identified as a major factor

influencing the generalization ability of standard classifiers. Specifically, the author’s

inquiry is focused on revealing the factors that cause learners to deviate from their

typical behavior according to which they should be able to generalize over unseen

instances of any class with equal accuracy. This of course is the ideal situation which

is violated in many real-world applications where learners are faced with imbalanced

data sets causing them to be biased towards one class. This bias is the result of

one class being heavily under represented in the training data compared to the other

classes. According to the author, it can be attributed to two factors that specifically

relate to the way in which learners are designed.

Firstly, inductive learners are typically designed to minimize errors over the train-

ing examples. Classes containing few examples can be largely ignored by learning

algorithms because the cost of performing well on the over-represented class out-

weighs the cost of doing poorly on the smaller class. Another factor contributing

to the bias is over-fitting. Over-fitting occurs when a learning algorithm creates a
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hypothesis that performs well over the training data but does not generalize well over

unseen data. This can occur on an under represented class.

The nature of the class imbalance problem was also studied in [236, 239]. Ac-

cording to the authors, many classifier induction algorithms assume that the training

and test data are drawn from the same fixed, underlying, distribution D. In partic-

ular, these algorithms assume that rtrain and rtest, the fractions of positive examples

in the training and test sets, approximate p the true prior probability of encounter-

ing a positive example. These induction algorithms use the estimated class priors

based on rtrain, either implicitly or explicitly, to construct a model and to assign

classifications. If the estimated value of the class priors is not accurate, then the

posterior probabilities of the model will be improperly biased. Specifically, increasing

the prior probability of a class increases the posterior probability of the class, moving

the classification boundary for that class so that more cases are classified into the

class.

Weiss in [237] identifies the direct link between the class imbalance problem and

rarity which may be encountered in two different situations. The first type of rarity

is called rare classes concerning the poor presence of instances of a particular class.

The second type of rarity concerns rare cases, which correspond to a meaningful but

relatively small subset of the data representing a subconcept or subclass that occurs

infrequently. Thus, rare cases are particularly related to “small disjuncts” that cover

a negligible volume of training examples. According to the author small disjuncts

play a fundamental role in the rarity problem since the lack of data makes it difficult

to detect regularities within the rare classes or cases. Specifically, it is documented

that in some cases small disjuncts may not represent rare or exceptional cases, but

rather noisy data. Thus, it is very important to keep only the meaningful small dis-

juncts that may be identified by the utilization of statistical significance tests. The

problem is that the significance of small disjuncts cannot be reliably estimated and

consequently significant small disjuncts may be eliminated along with the insignifi-

cant ones. Moreover, eliminating all small disjuncts results in increasing the overall

error rate and therefore is not a good strategy. The lack of data for the rare classes

or cases is also responsible for the inability of data mining systems to recognize ex-
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isting correlations between highly infrequent items. Specifically, in order to recognize

the correlation between two highly infrequent items a data mining system has to

lower the corresponding threshold value. This, however, will cause a combinatorial

explosion since frequently occurring items will be associated with one another in an

enormous number of ways. Another issue investigated by the author concerns the

divide-and-conquer approach adapted by many data mining algorithms. Decision

tree algorithms are a good example od this approach functioning by decomposing the

original problem into smaller and smaller problems. This process, however, results

in data fragmentation which constitutes a very significant problem since regularities

can then be found within each individual partition which contains less data.

The authors in [112, 211] are also interested in examining the contribution of rare

or exceptional cases on the class imbalance problem since they cause small disjuncts

to occur. In more detail, learning systems usually create concept definitions that

consist of several disjuncts where each disjunct constitutes a conjunctive definition

of a sub-concept of the original concept. The coverage of a disjunct corresponds to

the number of training examples it correctly classifies, and a disjunct is considered

to be small if that coverage is low. Thus, the formation of such subclusters are

very difficult to be recognized by standard classifiers justifying the fact that small

disjuncts are more error prone than large ones. However, the authors elaborate that

small disjuncts are not inherently more error prone than large disjuncts. On the

contrary, this is a result attributed to the bias of the classifiers, the class noise and

the training set size on the rare cases. Their experiments involved several artificially

generated domains of varying concept complexity, training set size and degree of

imbalance. In particular, they provide evidence that when all the subclusters are of

size 50, even at the highest degree of concept complexity, the error is below 1% which

entails that the erroneous classification effect if practically negligible. This suggests

that it is not the class imbalance per se that causes a performance decrease, but

rather, that it is the small disjunct problem created by the class imbalance (in highly

complex and small-sized domains) that cause that loss of performance. Additionally,

they examined the relevant classification performance of several standard classifiers

such as the C5.0 decision tree classifier, Multi-Layer Perceptrons(MLPs) and Support
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Vector Machines. Their findings demonstrate that C5.0 is the most sensitive to class

imbalances and that is because C5.0 works globally ignoring specific data points.

MLPs were found to be less error prone to the class imbalance problem than C5.0.

This is because of their flexibility: their solution gets adjusted by each data point in

a bottom-up manner as well as by the overall data set in a top-down manner. SVMs

are even less prone to the class imbalance problem than MLPs because they are only

concerned with a few support vectors, the data points located close to the boundaries.

The authors in [174] develop a systematic study aiming to question whether class

imbalances are truly to blame for the loss of performance of learning systems or

whether the class imbalance problem is not a problem per se. Specifically, they are

interested in investigating whether a learning system will present low performance

with a highly imbalanced dataset even when the classes are far apart. To this end,

the authors conducted a series of experiments on artificially generated datasets reveal-

ing that the distance between the class clusters is an important factor contributing

to the poor performance of learning systems independently of the presence of class

imbalance. In other words, their findings indicate that it is not the class probabilities

the main responsible for the hinder in the classification performance, but instead the

degree of overlapping between the classes. Thus, dealing with class imbalances will

not always help classifiers performance improvement.

In [44] it is stated that classification problems with uneven class distributions

present several difficulties during the training as well as during the evaluation pro-

cess of the classifiers. The context in which the authors conducted their experiments

was the customer insolvency problem which is characterized by a) very uneven dis-

tributions for the two classes of interest, namely the solvent and insolvent class of

customers b) small number of instances within the insolvent class (minority class)

and c) different misclassification costs for the two classes. In order to assess the ef-

fect of imbalances in class distributions on the accuracy of classification performance

several classifiers were employed such as Neural Networks(MLPs), Multinomial Logis-

tic Regression, Bayesian Networks(hill climbing search), Decision Tree(pruned C4.5),

SVMs and Linear Logistic Regression. The classifications results based on the True

Positive ratio which represents the ability of the classifiers in recognizing the minor-
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ity (positive) class (TP = Pr{predictedMinority|actuallyMinority}) demonstrate

poor efficiency. More specifically the best overall classifier was MLPs while SVMs

and Logistic Linear Regression treated all minority samples as noise.

3.2 The Effect of Class Imbalance on Standard

Classifiers

3.2.1 Cost Insensitive Bayes Classifier

In order to acquire a clearer understanding of the nature of the class imbalance

problem it is imperative to formulate it within the more general setting of a binary

classification problem. Specifically, binary classification problems will be addressed

within the broader framework of Bayesian Decision Theory. For this class of problems

one is given a pair of complementary hypotheses:

• H0 : the null hypothesis and

• H1 : the alternative hypothesis

Given a multidimensional vector space X and a particular instance represented by

the random observation vector x in X, the two hypotheses may be defined as follows:

• H0 : x belongs to Class Ω+ and

• H1 : x belongs to Class Ω-

where Class Ω- = Class ¬Ω+. Thus, the ultimate purpose of Bayesian Decision

Theory consists in finding out which one of the given hypotheses, H0 and H1, is true.

A natural solution to this binary hypothesis testing problem (link this with some

theoretical result form chapter 1) involves calculating the a posteriori probabilities,

P (H0|x) and P (H1|x), that x satisfies hypotheses H0 and H1 respectively. While the

a posteriori probabilities are unknown, it is assumed that the conditional probability

density functions of the observation vector given a specific hypothesis, p(x|H0) and
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p(x|H1), can be estimated. This is an underlying assumption of Bayesian Decision

Theory stating that the probability density function corresponding to the observation

vector x depends on its class. Moreover, the prior probabilities for each hypothesis,

P (H0) and P (H1), as well as the prior probability of the observation vector x, can

also be estimated. Then, the a posteriori probabilities P (H0|x) and P (H1|x) can be

worked out by utilizing Bayes Theorem:

P (Hj|x) =
p(x|Hj)P (Hj)

p(x)
, wherej ∈ {0, 1}. (3.1)

where p(x) corresponds to the probability density function of the observation vector

x for which we have:

p(x) =
∑
j

p(x|Hj)P (Hj), wherej ∈ {0, 1}. (3.2)

The estimation of the data probability density function constitutes an essential

prerequisite in order to solve the binary classification problem, but it does not solve

the problem per se. In addition, a decision rule must be defined to choose one

hypothesis over the other. The milestone of Bayesian Decision Theory is the so called

Bays Decision Rule which takes as input the class-conditional probability density

functions and the a priori probabilities. Bayes Decision Rule may be formally defined

as:
If P (H0|x) > P (H1|x), decide H0

If P (H1|x) > P (H0|x), decide H1

(3.3)

The case of equality is detrimental and the observation vector can be assigned to

either of the two classes. Thus, either of the two hypotheses may be considered to be

true. Using Eq. 3.3 the decision can equivalently be based on the inequalities:

p(x|H0)P (H0) ≷ p(x|H1)P (H1) (3.4)

A intrinsic property of Bayes Decision Rule is that it provides the optimal decision

criterion by minimizing the probability of error, given by the following equation:

P (error) =

∫
X

P (error,x)dx =

∫
X

P (error|x)p(x)dx (3.5)



Chapter 3: The Class Imbalance Problem 70

where the conditional probability of error may be computed as follows:

P (error|x) =

{
P (H0|x), if we decide H1;

P (H1|x), if we decide H0.
(3.6)

Having in mind that decisions are made on the basis of Bayes’ rule, Eq. 3.6 may be

written in the following form:

P (error|x) = min [P (H0|x), P (H1|x)] (3.7)

where P (H0|x)+P (H1|x) = 1. Eq. 3.7, then, entails that the conditional probability

of error P (error|x) is the smallest possible for any given observation vector x. As

a consequence the probability of error given by the integral in Eq. 3.5 is minimized

over all vector space X.

The previous results demonstrate the optimality of Bayesian classifier for any

given binary classification problem parameterized by the class-conditional and prior

probability density functions. Thus, it is of vital importance to unfold the vary

nature of the class imbalance problem within the framework of binary classification

problems and particularly to investigate its influence on the classification behavior of

the optimal Bayesian classifier. The class imbalance problem arises in situations when

the class priors are extremely skewed entailing that the volumes of positive X+ and

negative X- subspaces are proportionately asymmetric in magnitude. It is essential

to understand the exact way in which the class imbalance problem determinately

affects the decision making process which is formalized by the inequalities 3.4 of

Bayes Decision Rule.

Letting q = p(x|H0) and consequently 1 − q = p(x|H1), the inequalities in 3.4

may be written in the following form:

qP (H0) ≷ (1− q)P (H1) (3.8)

If q∗ corresponds to the class-conditional probability for which both sides of 3.8 are

equal then q∗ may be computed by the following equation:

q∗P (H0) = (1− q∗)P (H1) (3.9)
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which finally results in the following threshold value:

q∗ = p(H1) (3.10)

Eq. 3.10 then entails that the original form of Bays Decision Rule may be reformulated

as:
If q > q∗, decide H0

If q < q∗, decide H1

(3.11)

Since, q∗ provides the class-conditional probability threshold for making optimal de-

cisions as a function of the negative class prior, it is reasonable to investigate how the

prior class imbalance influences the threshold and consequently the decision making

process. Letting P0 = P (H0) and P1 = P (H1) be the class priors for the positive and

negative classes of patterns respectively, so that P0 + P1 = 1, the decision threshold

can be given by the following equation:

q∗(P0) = 1− P0, 0 ≤ P0 ≤ 1 (3.12)

Eq. 3.12 then can be utilized in order to infer the behavior of Bayesian classifier

over the complete range of class priors. However, the situations of primary concern

are those corresponding to extreme prior class probabilities when the positive (or

negative) class prior approaches the upper and lower limits of the [0, 1] interval.

Formally, in order to identify the behavior of q∗ with respect to the imbalance factor

P0 it would be reasonable to compute the following quantities:

• lim
P0→ 1

2

q∗(P0): which denotes the behavior of the class conditional probability

threshold when the class priors are completely balanced.

• lim
P0→1

q∗(P0) : which denotes the behavior of the class conditional probability

threshold when the class priors are completely imbalanced towards the positive

Ω+ class of patterns.

• lim
P0→0

q∗(P0) : which denotes the behavior of the class conditional probability

threshold when the class priors are completely imbalanced towards the negative

Ω- class of patterns.
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The first limit is given by the following equation:

lim
P0→ 1

2

q∗(P0) =
1

2
(3.13)

corresponding to the situation when class prior probabilities are completely balanced.

It is clear that such situation does not affect the decision making process. The second

limit is given by the equation:

lim
P0→0

q∗(P0) = 1 (3.14)

corresponding to the situation when the volume occupied by the subspace of positive

patterns is negligible in comparison with the volume occupied by the subspace of

negative patterns. Thus, according to Eq. 3.14 when P0 → 0 then q∗ → 1, which

yields that Bays Decision Rule may be reexpressed in the following form:

If q > 1, decide H0

If q < 1, decide H1

(3.15)

Eq. 3.15 then entails that it is impossible to choose H0 over H1 since the probability

threshold approaches the maximum possible value which cannot be exceeded. As

a consequence all decisions will be made in favor of the majority class of negative

patterns. Finally, the third limit is given by the equation:

lim
P0→1

q∗(P0) = 0 (3.16)

corresponding to the situation when the volume occupied by the subspace of negative

patterns is negligible in comparison with the volume occupied by the subspace of

positive patterns. Eq. 3.16 states that when P0 → 1 then q∗ → 0, which yields that

Bays Decision Rule may be reexpressed in the following form:

If q > 0, decide H0

If q < 0, decide H1

(3.17)

Eq. 3.17 then entails that it is impossible to choose H1 over H0 since the probabil-

ity threshold approaches the minimum possible value which is always exceeded. As

a consequence all decisions will be made in favor of the majority class of positive

patterns.
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3.2.2 Bayes Classifier vs Majority Classifier

The previous discussion reveals the presumable behavior of Bays classifier when

the class priors are extremely skewed, within the general setting of a binary classi-

fication problem. The main conclusion so far is that the decision making process is

biased towards the majority class of patterns, since Bays classifier will never predict

that a given pattern belongs to the minority class, when either one of the correspond-

ing prior class probabilities approaches the lower limit of the [0, 1] interval. Even so,

Bayes classifier demonstrates the optimal classification performance in terms of the

error probability. Specifically, the probability of error becomes infinitesimally small

as the degree of class imbalance increases. Let X0 and X1 be the subspaces of X so

that the following equations hold:

X0 = {x ∈ X : a(x) = H0}
X1 = {x ∈ X : a(x) = H1}

(3.18)

where a(x) ∈ {H0, H1} denotes the decision concerning the true hypothesis. Eqs. 3.18

then, may be utilized in order to reexpress the error probability in the following form:

P (error) = P (x ∈ X1, H0) + P (x ∈ X0, H1) (3.19)

where P (. , .) denotes the joint probability of two events. Subsequently, by taking

advantage of Bayes Theorem, Eq. 3.19 can be rewritten as:

P (error) = P (x ∈ X1|H0)P (H0) + P (x ∈ X0|H1)P (H1) (3.20)

which finally yields that the probability of error can be estimated by the following

equation:

P (error) = P0

∫
X1

p(x|H0)dx+ P1

∫
X0

p(x|H1)dx (3.21)

Thus, when P0 → 0 then |X0| → 0 which entails that X1 ≈ X and as a consequence

Eq. 3.21 may be rewritten as:

P (error) = P0

∫
X

p(x|H0)dx (3.22)
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which finally yields that P (error) → 0. On the other hand when P1 → 0 then

|X1| → 0 which entails that X0 ≈ X and as a consequence Eq. 3.21 may be rewritten

as:

P (error) = P1

∫
X

p(x|H1)dx (3.23)

which finally yields that P (error)→ 0. It must be mentioned that the probability of

error for Bayes classifier for any given pair of class priors (P0, P1) can be estimated

by utilizing Eq. 3.21 where the subspaces X0 and X1 may be determined from Eq. 3.9

by solving with respect to x.

Since the probability of error for the Bayesian classifier is infinitesimally small

when the class priors are extremely skewed, in order to reveal the exact nature of

the class imbalance problem it is desirable to estimate the error probability for any

class prior in the [0, 1] interval. In other words, in order to understand the exact way

in which highly asymmetric class priors affect the performance of Bayes classifier,

it is important to extend the monitoring of its classification performance within the

full range of class priors. Moreover, it is vital to identify the degree of overlapping

between the class-conditional probability density functions as a supplementary factor

which significantly affects the severity of the class imbalance problem.

Having in mind that the predictions of the Bayesian classifier are biased towards

the class with the dominant prior probability it is natural to compare its performance

against the majority classifier. The special feature of the majority classifier is that

its decisions are always made in favor of the majority class of patterns for any given

pair of class priors pertaining to the binary classification setting. Thus, the classi-

fication accuracy of any binary classifier can be measured in terms of the relative

error probability reduction with respect to the probability of error achieved by the

majority classifier. In other words, the majority classifier provides an upper bound

for the error probability as a function of the class priors.

In order to compare the classification performance of any binary classifier against

the majority one, it is necessary to express the error probability as a function of the

class priors P0 and P1. According to Eq. 3.20 it is possible to deduce for the error
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probability the following equation:

P (error) = P (H1|H0)P (H0) + P (H0|H1)P (H1) (3.24)

where the quantity P (Hi|Hj), for {i, j} ∈ {0, 1}, corresponds to the probability of de-

ciding in favor of Hi when Hj is true. Thus, the error probability of a binary classifier

may be formulated as a convex combination of the likelihood functions P (H1|H0) and

P (H0|H1) weighted by the class priors P0 and P1 respectively. The quantities False

Positive Rate(FPR) and False Negative Rate(FNR), which are thoroughly explained

in Section ??, may serve as good approximations of the likelihood functions under

consideration. Thus, the error probability of any binary classifier may be estimated

by the following equation:

P (error) = FNR P0 + FPR P1 (3.25)

where the first term corresponds to the Type I Error and the second term corresponds

to the Type II Error. Type I errors occur when patterns originating from the positive

class are misclassified as negative while Type II errors occur when patterns originating

from the negative class are misclassified as positive. By substituting P1 = 1 − P0 in

Eq.3.25 the latter may be rewritten in the following form:

P (error) = (FNR− FPR) P0 + FPR (3.26)

Eq. 3.26 describes the probability of error for any binary classifier as a linear function

of the positive class prior.

Generally, the graphical representation of any error probability function with re-

spect to some class prior defines an error curve summarizing the classification accu-

racy of any binary classifier. Specifically, the error curve in Eq. 3.26 corresponds to a

straight line which lies within the plane defined by the horizontal axis of positive class

priors and the vertical axis of error probabilities. In other words, the error curve in

Eq. 3.26 describes the exact way in which the positive class prior probability influences

the variation of the error probability in the [min(FPR,FNR) max(FPR,FNR)] in-

terval. Thus, the upper and lower bounds for the error probability will be given by
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the following equation

P (error) =

{
FPR, P0 = 0;

FNR, P0 = 1.
(3.27)

corresponding to the points of intersection of the error curve with the vertical lines

at P0 = 0 and P0 = 1.

Figure 3.1: Error Probability Curve

This is explicitly illustrated in Figure 3.1 which depicts the error probability curves

for two different binary classifiers over the full range of the [0, 1] interval. This il-

lustration can be utilized in order to directly determine the classifier that achieves

the minimum probability of error for any prior probability. Therefore, the relative

location of the two error curves indicates the relative classification performance of the

corresponding classifiers. Particularly, an error curve which is strictly below any other

curve within the previously defined plane, signifies a classifier with superior classifica-

tion performance. However, the existence of an intersection point between the error

curves suggests that there is no classifier outperforming the others for the complete
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range of prior probabilities. On the contrary, there is a subrange of dominance for

each binary classifier.

Of significant importance are the two trivial classifiers, namely the one that always

predicts that instances are negative and the one that always predicts that instances

are positive. Specifically, the trivial classifier that assigns patterns exclusively to the

negative class is dominated by the Type I Error, since there are no instances that are

classified as positive. This entails that the second term of Eq. 3.25 can be ignored

so that the error probability for this particular classifier degenerates to the following

equation:

P (error) = FNR P0 (3.28)

Moreover, the quantity FNR appearing in Eq. 3.28 corresponds to the fraction of

truly positive instances that are misclassified as negative. It is easy to deduce then

that this quantity will be equal to 1 when the positive class of patterns is completely

ignored. In other words, FNR = 1, when the complete set of positive instances will

be assigned to the negative class. Thus, the probability of error given by Eq. 3.28

can be reexpressed in the following form:

P (error) = P0 (3.29)

On the other hand, the trivial classifier that exclusively decides that patterns

originate from the positive class, is dominated by the Type II Error since there are no

instances that are classified as negative. This yields that the second term of Eq. 3.25

cancels out so that the error probability for this particular classifier may be simplified

to:

P (error) = FPR (1− P0) (3.30)

Here the quantity FPR denotes the fraction of truly negative instances that are

misclassified as positive. This entails that the quantity FPR will be equal to 1

since the entire set of negative instances will be misclassified as positive.Thus, the

probability of error given by Eq. 3.30 may be reformulated as:

P (error) = 1− P0 (3.31)



Chapter 3: The Class Imbalance Problem 78

The combination of these two trivial classifiers forms the majority classifier which

always predicts the most common class. Therefore, the probability of error for this

classifier will be given by unifying Eqs. 3.29 and 3.31 within a single equation as:

P (error) =

{
P0, 0 ≤ P0 ≤ 1

2
;

(1− P0),
1
2
≤ P0 ≤ 1.

(3.32)

Figure 3.2: Majority Classifier

Figure 3.2 depicts the error curve summarizing the classification performance of

the majority classifier compared against the error curve of a given binary classifier.

This graphical representation suggests that any single classifier with a non-zero error

rate will always be outperformed by the majority classifier if the prior probabilities

are sufficiently skewed and therefore of little use. This entails that a useful classifier

must appreciably outperform the trivial solution of choosing the majority class. More

importantly, it seems intuitive that a practical classifier must do much better on

the minority class, often the one of greater interest, even if this meant sacrificing

performance on the majority class.
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In order to complete the discussion concerning the effects of the class imbalance

problem on the classification performance of Bayes classifier it is necessary to mea-

sure how much it reduces the error probability of the majority classifier. Specifically,

the amount of relative reduction on the error probability of the majority classifier

may serve as an ideal measure of accuracy since the classification behavior of Bayes

classifier was proven to be biased towards the majority class of patterns when class

priors where severely skewed. Thus, an important issue that remains to be addressed

concerns the evaluation of this quantity within the full range of class priors and un-

der different degrees of overlapping between the class-conditional probability density

functions.

Therefore, the graphical comparison of the error curve corresponding to the Bayesian

classifier against the error curve of the majority one will reveal the relative classifi-

cation performance of the two classifiers. Having defined the error probability for

the majority classifier as a function of the positive class prior it is necessary to act

likewise for the error probability of the Bayesian classifier. A function of this form is

provided by Eq. 3.21 which explicitly represents the strong dependence between the

error probability of the Bayesian classifier and the prior probabilities of the positive

and negative classes of patterns. Specifically, the prior class probabilities affect the

decision subspaces X0 and X1 which may be expressed by refining Eqs. 3.18 in the

following form:

X0(P0) = {x ∈ X : q(x) > q∗(P0)}
X1(P0) = {x ∈ X : q(x) < q∗(P0)}

(3.33)

where q(x) represents the decision quantity p(x|H0) and q∗(P0) = 1−P0 denotes the

decision threshold. Thus, Eq. 3.21 may be rewritten as:

Perror(P0) = P0

∫
X1(P0)

q(x)dx+ (1− P0)

∫
X0(P0)

(1− q(x))dx (3.34)
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Figure 3.3: Majority Classifier

It is important to notice that the exact shape of the error curve corresponding to

the Bayesian classifier depends on the particular form of the class-conditional proba-

bility density functions p(x|H0) and p(x|H1) which are represented by the quantities

q(x) and 1− q(x) respectively. In case the class-conditional probability density func-

tions are given by the univariate normal distributions N1(µ1, σ1) and N2(µ2, σ2) so

that the distance between the means, |µ1 − µ2|, is sufficiently large then the error

curve for the Bayesian classifier will be represented by the solid curve in Figure 3.3.

Specifically, for the case of univariate normal distributions the degree of overlapping

between the class-conditional probability density functions can be measured by the

quantity:

D(µ1, µ2, σ1, σ2) = |µ1 − µ2| − |(µmax − 3σmax)− (µmin + 3σmin)| (3.35)

where:
µmin = min (µ1, µ2)

µmax = max (µ1, µ2)

σmin = σargmin(µ1,µ2)

σmax = σargmax(µ1,µ2)

(3.36)
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Figure 3.3 illustrates the relative locations of the error curves corresponding to the

Bayesian and Majority classifiers for the full range of positive class prior probabilities

when D >> 0. Therefore, it is easy to observe that the classification performance of

both classifiers coincides when the degree of overlapping is sufficiently small and the

class priors are severely skewed.

Figure 3.4: Different Distances

However, the remaining issue that needs to be addressed concerns the classification

behavior of the Bayesian classifier when the degree of overlapping increases so that

D << 0. This issue was particularly investigated in [57, 237] where the authors

conducted a sequence of experiments in order to reveal the classification behavior of

Bayes classifier under increasing degrees of overlapping between the class-conditional

probability density functions. Their results are summarized in Figure 3.4 which shows

the error curve for the Bayesian classifier (from top to bottom) for three different

distances between the means of the normal distributions. Specifically, the distances

were chosen in order to reduce the relative error probability by a factor of 20%,

50% and 80% when the classes are balanced. The series of progressively smaller
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triangles in Figure 3.4, made of dotted lines, were called error probability reduction

contours. Each error probability reduction contour indicates a specific percentage gain

on the error probability achieved by the majority classifier. The continuous curves

cross multiple contours indicating a decreasing relative error probability reduction as

imbalance increases. Specifically, focusing on the lower left hand corner of Figure 3.4,

where the negative instances are much more common than the positives, it is easy

to observe that the upper two curves have become nearly indistinguishable from the

majority classifier for ratios about 20:1. The lowest cost curve has crossed the 0.5 cost

reduction contour at an imbalance of about 10:1 and crossed the 0.25 cost reduction

contour at about 50:1. So even a Bayes optimal classifier with good performance,

say an error probability of 0.1 with no imbalance, fares a lot worse when imbalance

is severe. With imbalances as low as 10:1, and certainly for imbalances of 100:1 and

greater, the performance gain over the majority classifier is minimal.

Therefore, even the Bayes optimal classifier does only marginally better than a

trivial classifier with severe imbalance. This a very important conclusion since real

classifiers will do worse than Bayes optimal and often even worse than the trivial

classifier.

3.2.3 Cost Sensitive Bayes Classifier

While straightforward, however, the Bays’ Decision Rule does not take into consid-

eration the possibility of different misclassification costs. Under certain circumstances

the cost of misclassifying a pattern originating from Class Ω+ (Type I Error) is vital

to be assigned with a different value than that corresponding to the cost of mis-

classifying a pattern originating from Class Ω- (Type II Error). A necessity of this

kind naturally arises within the framework of medical machine learning applications

where Class Ω+ could correspond to ”Cancer” while Class Ω- could correspond to

”Healthy”. In this case Type I errors are much more costly than Type II errors since

it is far more dangerous for a patient to be misdiagnosed as healthy, when sick with

some dangerous disease, than it is to be misdiagnosed as having the disease when

healthy.
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This issue is taken into consideration by Bayes’ Criterion for Minimum Cost. The

Bayes’ Criterion for Minimum Cost predicts for a particular observation vector x

the hypothesis that leads to the lowest expected cost given a specification of costs for

correct and incorrect predictions. Formally, letting C(Hi|Hj) be the cost of predicting

hypothesis Hi when Hj is true, where {i, j} ∈ {0, 1}, this criterion states that the

optimal decision for a specific observation vector is in favor of hypothesis Hi that

minimizes the risk functional given by the following equation:

R(Hi|x) =
∑

j∈{0,1}

P (Hj|x)C(Hi|Hj) (3.37)

The risk functional in Eq. 3.37 corresponds to the risk taken when predicting that Hi

is the true hypothesis given the observation vector x. A basic assumption concerning

the cost specification is the “reasonableness” conditions stating that the cost for

labelling an example incorrectly should always be greater than the cost of labelling it

correctly. Mathematically, it should always be the case that C(H1|H0) > C(H0|H0)

and C(H0|H1) > C(H1|H1). Bayes’ Criterion for minimum cost may be summarized

as:
If R(H0|x) < R(H1|x), decide H0

If R(H1|x) < R(H0|x), decide H1

(3.38)

The case of equality is also detrimental which entails that either one of the two

hypotheses may be considered to be true. Using Eq. 3.37 the decision can equivalently

be based on the inequalities:

P (H0|x)C(H0|H0) + P (H1|x)C(H0|H1) ≷ P (H0|x)C(H1|H0) + P (H1|x)C(H1|H1)

(3.39)

Bays’ Criterion for Minimum Cost minimizes the average misclassification cost in the

same way the Bays’ Decision Rule minimizes the probability of error. Specifically,

the average misclassification cost will be given by the following equation:

R =

∫
X

R(a(x)|x)p(x)dx (3.40)

where R(a(x)|x) corresponds to the risk incurred when the decision a(x) is made

given a particular observation vector x. The risk incurred by making a particular
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decision on a given example is mathematically described as:

R(a(x)|x) =

{
R(H0|x), if we decide H0;

R(H1|x), if we decide H1.
(3.41)

Having in mind that the decisions are made on the basis of Bayes’ Criterion for

Minimum Cost, Eq. 3.41 may be written in the following form:

R(a(x)|x) = min [R(H0|x), R(H1|x)] (3.42)

Eq. 3.42, then, entails that the conditional cost is as small as possible for any given

observation vector x. An immediate consequence of this fact is that the average cost

given by the integral in Eq. 3.40 is minimized.

Given that p = P (H0|x) and consequently 1 − p = P (H1|x) the inequalities in

3.39 may be written in the following form:

p C(H0|H0) + (1− p) C(H0|H1) ≷ p C(H1|H0) + (1− p) C(H1|H1) (3.43)

If p∗ corresponds to the probability for which both sides of 3.43 are equal then p∗

may be computed by the equation:

p∗ C(H0|H0) + (1− p∗) C(H0|H1) = p∗ C(H1|H0) + (1− p∗) C(H1|H1) (3.44)

Thus, p∗ corresponds to the a posteriori probability threshold for making optimal

decisions. Its value can be directly computed by rearranging Eq. 3.44 and solving for

p∗ which leads to the following threshold value:

p∗ =
C(H0|H1)− C(H1|H1)

C(H1|H0)− C(H0|H0) + C(H0|H1)− C(H1|H1)
(3.45)

According to this interpretation Bayes’ Criterion for Minimum Cost may be reformu-

lated as follows:
If p > p∗, decide H0

If p < p∗, decide H1

(3.46)

where the prediction concerning the true hypothesis is exclusively based on the prob-

ability threshold provided by Eq. 3.45.
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The misclassification-cost imbalance problem arises in situations when Type I

and Type II Errors are assigned values which are extremely skewed in magnitude.

Specifically, these situations occur when the cost of misclassifying a pattern from

the positive (negative) class Ω+ (Ω-) is significantly greater than the cost of mis-

classifying a pattern from the negative (positive) class Ω- (Ω+). Mathematically,

this problem is associated with cost assignments for which C(H1|H0) >> C(H0|H1)

or C(H0|H1) >> C(H1|H0). A crucial point in obtaining a deeper understanding of

the misclassification-cost imbalance problem involves the identification of the primary

factor affecting the decision making process. This entails that one should focus on the

probability threshold p∗ which constitutes the fundamental component of the decision

making process. Specifically, it is essential to understand that assigning extremely

unbalanced misclassification costs results in extreme modifications of the probability

threshold. Having in mind the “reasonableness” conditions the probability threshold

value in Eq. 3.45 may be written in the following form:

p∗ ≈ C(H0|H1)

C(H1|H0) + C(H0|H1)
(3.47)

since the contribution of the terms C(H0|H0) and C(H1|H1) is practically negligible.

When the case is that Type I Errors are significantly greater than Type II Errors, it

is reasonable to assume that C(H1|H0) + C(H0|H1) ≈ C(H1|H0) which yields that

the probability threshold will be given by the following equation:

p∗ ≈ C(H0|H1)

C(H1|H0)
= 0 (3.48)

Thus, Bayes’ Criterion for Minimum Cost degenerates to the following form:

If p > 0, decide H0

If p < 0, decide H1

(3.49)

where it is obvious that the decision making process is biased towards the hypothesis

with the minimum misclassification cost, which is H0 for this particular occasion. On

the other hand, when the case is that Type II Errors are significantly greater than

Type I Errors, it is reasonable to assume that C(H1|H0) + C(H0|H1) ≈ C(H0|H1)

which yields that the probability threshold will be given by the following equation:

p∗ ≈ C(H0|H1)

C(H0|H1)
≈ 1 (3.50)
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Thus, Bayes’ Criterion for Minimum Cost degenerates to the following form:

If p > 1, decide H0

If p < 1, decide H1

(3.51)

where it is obvious that the decision making process is biased towards the hypothesis

with the minimum misclassification cost, which is H1 for this particular occasion. In

case, when the misclassification costs are completely balanced it is easy to deduce

for the probability threshold that p∗ ≈ 1
2
which yields that the misclassification-cost

imbalance problem vanishes.

In order to incorporate class conditional and prior probabilities within the decision

making process the a posteriori probability density functions, P (H0|x) and P (H1|x),
will be written as follows:

P (H0|x) = P (x|H0)P (H0)
p(x)

P (H1|x) = P (x|H1)P (H1)
p(x)

(3.52)

Letting, p(x|H0) = q and consequently p(x|H1) = 1− q, then the inequalities in 3.43

may be written in the following form:

q C(H0|H0)P0 + (1− q) C(H0|H1)P1 ≷ q C(H1|H0)P0 + (1− q) C(H1|H1)P1 (3.53)

If q∗ corresponds to the probability for which both sides of 3.53 are equal then q∗ may

be computed by the equation:

q∗ C(H0|H0)P0+(1−q∗) C(H0|H1)P1 = q∗ C(H1|H0)P0+(1−q∗) C(H1|H1)P1 (3.54)

Thus, q∗ corresponds to the class conditional probability threshold for making optimal

decisions. Its value can be directly computed by rearranging Eq. 3.54 and solving for

q∗ which yields that:

q∗ =
P1(C(H0|H1)− C(H1|H1))

P0(C(H1|H0)− C(H0|H0)) + P1(C(H0|H1)− C(H1|H1))
(3.55)

According to this interpretation Bayes’ Criterion for Minimum Cost may be reformu-

lated as follows:
If q > q∗, decide H0

If q < q∗, decide H1

(3.56)
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where the prediction concerning the true hypothesis is exclusively based on the class

conditional probability threshold provided by Eq. 3.55.

Eq. 3.55 may serve as an ideal starting point in order to conduct a further inves-

tigation concerning the intrinsic nature of the class imbalance problem. Specifically,

it can be used to unfold the reason why severe imbalance on the class priors determi-

nately affects the decision making process. In other words, Eq. 3.55 plays an essential

role in order to identify the direct link between the degree of class imbalance and the

class conditional probability threshold q∗. Suppose that the prior probabilities are

given by the following equations:

P0 = P (Ω+) = A+ z

P1 = P (Ω-) = B − z
(3.57)

whereA,B > 0 and A+B = 1 so that P0+P1 = 1. Both class prior probabilities vary

within the [0, 1] interval which indicates that z will vary within the [−A,B] interval.

In other words z is a factor accounting for the degree of imbalance between the class

prior probabilities. Thus, Eq. 3.55 may be rewritten in the following form:

q∗(z) =
(B − z)(C(H0|H1)− C(H1|H1))

(A+ z)(C(H1|H0)− C(H0|H0)) + (B − z)(C(H0|H1)− C(H1|H1))
(3.58)

where −A ≤ z ≤ B. Eq. 3.58 describes the class conditional probability threshold

as a function of the parameter z which quantifies the degree of prior class imbalance.

Thus, in order to identify the behavior of q∗ with respect to the imbalance factor z it

would be reasonable to compute the following quantities:

• lim
z→0

q∗(z) where A = B = 1
2
: which denotes the behavior of the class conditional

probability threshold when the class priors are completely balanced.

• lim
z→−A

q∗(z) : which denotes the behavior of the class conditional probability

threshold when the class priors are completely imbalanced towards the negative

Ω- class of patterns.

• lim
z→B

q∗(z) : which denotes the behavior of the class conditional probability

threshold when the class priors are completely imbalanced towards the posi-

tive Ω+ class of patterns.
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The first limit ,where A = B = 1
2
, corresponds to the situation when the class priors

are completely balanced which yields that:

lim
z→0

q∗(z) =
B(C(H0|H1)− C(H1|H1))

A(C(H1|H0)− C(H0|H0)) +B(C(H0|H1)− C(H1|H1))
(3.59)

When both classes are also assigned equal costs for correct and incorrect classifications

it is clear from Eq. 3.59 that when z → 0 then q∗ → 1
2
and the class imbalance problem

vanishes. The second limit corresponds to the situation when the class priors are

completely imbalanced towards the negative class Ω- of patterns which yields that:

lim
z→−A

q∗(z) =
(B + A)(C(H0|H1)− C(H1|H1))

(B + A)(C(H0|H1)− C(H1|H1))
= 1 (3.60)

In other words, when z → −A then q∗ → 1, which according to Bayes Criterion for

Minimum Cost in Eq. 3.56 yields that the decision making process will be biased in

favor of the negative class of patterns. Finally, the third limit corresponds to the

situation when the class priors are completely imbalanced towards the positive class

Ω+ of patterns which yields that

lim
z→B

q∗(z) = 0 (3.61)

Thus, when z → B then q∗ → 0, which according to Bayes Criterion for Minimum

Cost in Eq. 3.56 yields that the decision making process will be biased in favor of the

positive class of patterns.

The same kind of behavior will be observed when the class priors and misclas-

sification costs are simultaneously taken into consideration. For this purpose it is

convenient to express the class conditional probability threshold in the following form:

q∗ =
P (H1)C(H0|H1)− P (H1)C(H1|H1)

P (H0)C(H1|H0)− P (H0)C(H0|H0) + P (H1)C(H0|H1)− P (H1)C(H1|H1)
(3.62)

Then, according to the “reasonableness” conditions the quantities P (H1)C(H1|H1)

and P (H0)C(H0|H0) may be ignored since they contribute practically nothing. Thus,

the class conditional probability threshold will be approximately equal to:

q∗ ≈ P (H1)C(H0|H1)

P (H0)C(H1|H0) + P (H1)C(H0|H1)
(3.63)
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When P (H1)C(H0|H1) >> P (H0)C(H1|H0) then the class conditional probability

threshold will be written in the following form:

q∗ ≈ P (H1)C(H0|H1)

P (H1)C(H0|H1)
= 1 (3.64)

and as a consequence all decisions will be made in favor of hypothesisH1. On the other

hand, when P (H1)C(H0|H1) << P (H0)C(H1|H0) the class conditional probability

threshold will be written in the following form:

q∗ ≈ P (H1)C(H0|H1)

P (H0)C(H1|H0)
≈ 0 (3.65)

and as a consequence all decisions will be made in favor hypothesis H0.

3.2.4 Nearest Neighbor Classifier

The class imbalance effect on the Nearest Neighbor classifier was the subject of

several works such as [183, 124, 14] where the authors investigate the reasons why

abundant negative instances hinder the performance of standard classifiers. These

approaches are focused on designing binary classifiers addressing classification prob-

lems which involve two highly unbalanced and overlapping classes. Specifically, the

authors are interested in investigating the problem related to the designing of a bi-

nary classifier that should be able to discriminate the more infrequent (positive) class

against the majority (negative) one. It must be mentioned that the positive class of

patterns despite being under-represented in the training set, it is equally important

to the negative class.

The authors are primarily interested in explaining the performance of the Nearest

Neighbor (1-NN) classifier in such a setting. Specifically, they document that as the

number of negative examples in a noisy domain grows (with the number of positives

being held constant) so does the likelihood that the nearest neighbor of any example

will be negative. Thus, many positive examples will be misclassified. According to

the authors, this effect will be unavoidably magnified as the number of negatives is

infinitely increased so that the positive class of patterns will be totally ignored. In

other words, the (1-NN) classifier will fail to detect any of the sparse positive examples



Chapter 3: The Class Imbalance Problem 90

in a domain thriving on negative instances. Therefore, the k-nearest neighbor rule

will correctly recognize most examples of the majority class.

3.2.5 Decision Trees

The class imbalance effect on decision trees classifiers was studied in several works

such as in [236, 239, 14]. Specifically, the authors are interested in providing a qual-

itative description revealing the effect of class distribution on designing learning al-

gorithms which are based on a limited-size training set due to cost concerns. Their

research is focused on investigating the reasons for which classifiers perform worse on

the minority class within the general context of decision trees learning algorithms.

Specifically, they elaborate on two major observations that became clear through-

out their experimentation which involved 26 different data sets and a decision tree

classifier trained on these data sets.

The first observation is that the classification rules predicting the minority class

tend to have a much higher error rate than those predicting the majority class. Specif-

ically, it is documented that minority-biased classification rules perform worse than

their majority-biased counterparts mainly because there is an uneven distribution of

positive (minority) and negative (majority) class patterns within the testing set. The

authors elaborate that when decision trees classifiers are evaluated on a test set with

a 9 : 1 proportion in favor of the negative class patterns the leaves predicting the

minority class demonstrate an expected error rate of 90% while the leaves predicting

the majority class have an expected error rate of only 10%! Moreover, they argue

that minority-biased rules perform so poorly because they are generally formed from

fewer training examples than the majority-biased rules.

The second observation is that test examples belonging to the minority class are

misclassified more often than test examples belonging to the majority class. According

to the authors decision tress classifiers are supposed to handle all feature values, even

if they are not observed in the training data, so that it is possible for a leaf in the

decision tree to cover no training examples. In this case, if a learner adopts the

strategy of labelling the leaf with the majority class, the performance of the classifier
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on the majority-class examples will improve, but at the expense of the minority-

class examples. A second reason that classifiers perform worse on the minority-

class test examples is that a classifier is less likely to fully flesh out the boundaries

of the minority concept in the concept space because there are fewer examples of

that class to learn from. Thus, some of the minority-class test examples maybe

classified as belonging to the majority class. However, if additional examples of the

minority class were available for training, one would expect that the minority concept

to grow to include additional regions of the concept spaceperhaps regions that were

not previously sampled at all.

The effects of the class imbalance problem on decision trees classifiers were also

investigated in [183, 124]. Specifically, they provide evidence that the induction of

decision tree classifiers will also be affected. Decision trees are known to be universal

classifiers having the ability to realize any dichotomy of points in general position in a

n-dimensional continuous space by appropriately adjusting their size. Such classifiers

attempt to partition the instance space into regions labelled with the class that has

the majority in the region. This entails that when imbalanced classes are involved,

the regions with mixed positives and negatives will tend to be labelled with the

preponderant class. According to the authors, each positive example may be viewed

as being separated form other positives by a ”wall” of negatives which forces the tree

generator either to stop splitting or, in which case negatives are a majority, or it keeps

splitting until it forms a tiny region.

Finally, their experimentation involved the definition of an artificial test-bed where

random examples are generated for both the positive and negative classes of patterns.

Specifically, positive examples where drawn from a two-dimensional normal distribu-

tion with µ+ = [00] and σ+ = [11] while negative examples were drawn from a

two-dimensional normal distribution with µ− = [20] and σ− = [22]. In all runs,

the same 50 training positives were used, while the number of negatives grew from

50 to 800 in increments of 50. Performance was measured on an independent test-

ing set with the same proportion of positive and negative examples as the training

set. The classification results obtained by utilizing the C4.5 classifier [175] and 1-NN

demonstrate that as the set of negative instances outnumbers the corresponding set
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of positive instances, the performance on the majority class exceeds 90% while the

performance on the minority class collapses.

Further investigation in conducted by the authors in [14] where they focus on

decision trees classifiers in the presence of class overlapping. The authors argue that

they may need to create many tests to distinguish the minority class cases from

majority class cases. Moreover, they document that pruning the decision tree might

not necessarily alleviate the problem. This is due to the fact that pruning removes

some branches considered too specialized which results in labelling new leaf nodes

with the dominant class of this node. Thus, there is a high probability that the

majority class will also be the dominant class of those leaf nodes.

3.2.6 Neural Networks

It has been theoretically shown [85, 116, 184, 181, 231] that Neural Networks

classifiers approximate Bayesian a posteriori probabilities when the desired network

outputs are 1 of M and squared error or cross-entropy cost functions are used during

the training phase. However, this theoretical result relies on a number of assumptions

that guarantee the accurate estimation of these classifiers. Specifically, it is assumed

that

• the network size is large enough

• infinite training data are available so that the training procedure finds a global

minimum

• the a priori class probabilities of the test set are correctly represented in the

training set.

Notwithstanding, a commonly encountered problem in neural networks classifica-

tion is related to the case when the class frequencies in the training set are highly

skewed. This corresponds to the particular occasion when the number of training

examples from each class varies significantly between classes so that the resulting

classifier is biased towards the majority class. This is also the problem addressed by
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the authors in [176, 23, 5, 130] where they show that the class imbalance problem gen-

erates unequal contributions to the mean square error (MSE) in the training phase.

Thereby, the major contribution to the MSE is produced by the majority class. In

order to investigate the exact way in which the class imbalance problem affects the

Back Propagation algorithm it is convenient to consider the general framework of a

binary classification problem where the two classes of interest are namely Ω+ and

Ω− and the number of samples from each class is assumed to be in proportion to

the a priori probability of class membership. Therefore, the network output F (x;Θ)

will provide approximations to the a posteriori probabilities P (Ω+|x) and P (Ω−|x)
given the observation vector x and the vector Θ of internal network parameters. The

optimal network parameter vector Θ̂ will be determined by the utilization of the

Back Propagation algorithm which minimizes the MSE cost functional given by the

equation:

E(Θ) = E+(Θ)+E−(Θ) =
1

n+

n+∑
i=1

(yi−F (xi;Θ))2+
1

n−

n−∑
j=1

(yj−F (xj;Θ))2 (3.66)

where yi = +1,∀i ∈ [n+] denotes the target network output when presented with

a positive observation vector xi and yj = −1, ∀j ∈ [n−] denotes the target network

output when presented with a negative observation vector xj. Moreover, n+, n−

correspond to the numbers of training samples from the positive and negative classes

respectively. Nonetheless, the class imbalance problem refers to the situation when

the positive class of patterns (Ω+) corresponds to the minority class while the negative

class of patterns (Ω−) corresponds to the majority class so that n+ << n−. If this is

the case then E+(Θ) << E−(Θ) and ∥∇E+(Θ)∥ << ∥∇E−(Θ)∥ which finally yields

that ∥∇E(Θ)∥ = ∥∇E−(Θ)∥. Thus, −∥∇E(Θ)∥ is not always the best direction to

minimize the MSE in both classes. In addition, the angle between the two vectors

∇E+ and ∇E− is larger than 90◦ which entails that during the gradient descent, E−

tends to decrease and E+ tends to increase rapidly. As a consequence, when the value

of E+ approaches its upper limit convergence becomes slow.
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3.2.7 Support Vector Machines

Support Vector Machines (SVMs) are extensively discussed in section 5.1 where

the reasons for their remarkable success in many applications are thoroughly ex-

plained. However the success of SVMs is very limited when they are applied to the

problem of learning from imbalanced datasets in which negative instances heavily

outnumber the positive ones. This particular problem is studied in [4, 228, 248]

where the authors are interested in revealing the effects of class imbalance on SVMs.

According to the authors, the source of the boundary skew may be attributed to the

fact that the positive points lie further from the ideal boundary. In particular, they

mention that the imbalance in the training data ratio means that the positive in-

stances may lie further away from the “ideal” boundary than the negative instances.

This may be illustrated by considering the situation when one is to draw n randomly

chosen numbers between 1 to 100 from a uniform distribution. In such a case the

chances of drawing a number close to 100 would improve with increasing values of

n, even though the expected mean of the draws is invariant of n. As a result of this

phenomenon, SVMs learns a boundary that is too close to and skewed towards the

positive instances. Moreover, SVMs are trained in order to minimize an objective

function which simultaneously accounts for the margin between the positive and the

negative subspaces of patterns, and the associated misclassification error. For this

purpose there is a tradeoff parameter tolerating between the maximization of the

margin and the minimization of the error. If this regularization parameter is not very

large, SVMs simply learn to classify everything as negative because that makes the

“margin” the largest, with zero cumulative error on the abundant negative examples.

The only tradeoff is the small amount of cumulative error on the few positive ex-

amples, which does not count for much. This explains why SVMs fail completely in

situations with a high degree of imbalance. According to the authors the proportion

of positive and negative support vectors for the trained classifier may be identified

as a supplementary source of boundary skew. Specifically, it is argued that the de-

gree of class imbalance within the training data set determinately affects the degree

of imbalance related to the ratio between the positive and negative support vectors.
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Thus, a data set thriving in negative example will result in a set of support vectors

highly skewed towards the negative class. This entails that the neighborhood for any

data point close to the boundary will be dominated by negative support vectors and

hence the decision function would be more likely to assign a boundary point to the

negative class of patterns.



Chapter 4

Addressing the Class Imbalance

Problem

4.1 Resampling Techniques

Sampling is probably the most-direct approach that has been proposed as a remedy

for the class imbalance problem at the data level. The basic idea behind resampling

is to change the class priors within the training set by either increasing the number

of instances from the minority class (over-sampling) or by decreasing the number of

instances from the majority class (under-sampling). As a result, the class distribution

of the training data is modified so that the resulting data set is more balanced. In

other words, resampling techniques focus on alleviating classification problems that

are strongly related to the distribution of the training data within each class. As

it is argued in [236] the original distribution of training instances may not be the

optimal distribution to use for a given classifier. Specifically, when the case is that

the training data set is highly skewed towards a particular class, the original distri-

bution is almost always the most inappropriate one as it is evidenced by the trivial

majority classifier. Thus, the utilization of better class distributions will improve the

validation and testing results of the classifier. Although there is no real way to know

the best distribution for a problem, resampling methods modify the distribution to

one that is closer to the optimal distribution based on various heuristics. More im-

96



Chapter 4: Addressing the Class Imbalance Problem 97

portantly sampling techniques can be used in combination with any given classifier.

Moreover, under-sampling provides a solution for the majority of real world applica-

tions involving enormous data sets which have too be reduced in size. Finally, the

use of sampling rates allows the fine-tuning of class imbalances, and therefore their

resulting classification models and performance.

4.1.1 Natural Resampling

Given the general setting of a binary classification problem, Natural Resampling

refers to the process of obtaining more samples from the minority class in order to

be included in the training data set. Such an approach aims at representing both

classes with an equal number of training instances. Specifically, this technique may

be considered as a straightforward solution for the class imbalance problem since all of

the training samples remain drawn from the same natural phenomenon that originally

generated them. However, this is not always the case in real-world applications where

the available training instances are inherently skewed.

4.1.2 Random Over-Sampling and Random Under-Sampling

The simplest method to increase the size of the minority class corresponds to

Random Over-sampling, that is, a non-heuristic method that balances the class dis-

tribution through the random replication of positive examples [14, 137].On the other

hand, Random Under-sampling [103, 249] aims at balancing the data set through

the random removal of negative examples. Despite its simplicity, it has empirically

been shown to be one of the most effective resampling method. A common feature

of both sampling techniques is that each training sample has an equal probability of

being selected either to replicated or to be eliminated. However, it must be noted

that random over-sampling can increase the likelihood of occurring overfitting, since

it makes exact copies of the minority class examples. In this way, a symbolic clas-

sifier, for instance, might construct rules that are apparently accurate, but actually

cover one replicated example. On the other hand, the major drawback of random

under-sampling is that this method can discard potentially useful data that could be
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important for the induction process.

4.1.3 Under-sampling Methods

Tomek Links

Tomek links where originally defined in [220] as an under-sampling methodology

providing an elimination criterion which may be utilized in order to discard majority

samples from the training set. According to the author, Tomek links are formed

between pairs of training instances (x,y) if there is no point z in the training data

set for which it holds that d(x, z) < d(x,y) or d(y, z) < d(x,y), where d(x,y) is

the distance between two given examples. Specifically, it is elaborated that if two

examples form a Tomek link, then either one of these examples is noise or both

examples are close to the class boundary. As an under-sampling methodology Tomek

links imply that the patterns to be eliminated must be exclusively originating from

the majority class. Additionally, Tomek-link under-sampling is a general methodology

which can be applied in a variety of classification methods. In particular, it is very

useful for noisy datasets as this algorithm potentially removes those data points that

may be noise instances and could lead to classification errors. On the hand, its

major drawback is that this method can discard potentially useful data that could be

important for the induction process. Finally, it must be mentioned that this method

uses a time consuming algorithm of higher order complexity which will run slower

than other algorithms.

Condensed Nearest Neighbor Rule

The Condensed Nearest Neighbor(CNN) [92] is an under-sampling methodology

which is specific to the K-Nearest Neighbor (KNN) classification rule. Its primary

purpose consists in removing minority class examples that are distant from the de-

cision border while the remaining (safe majority or minority) examples are used for

learning. The training procedure of CNN is focused on finding a consistent subset of

training patterns. A subset Ê ⊆ E is specifically characterized as consistent with E
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if by training the 1-NN classifier on Ê all patterns in E will be correctly classified. In

particular, CNN starts by gathering a randomly drawn majority class example and

all minority class instances in Ê. Afterwards, the 1-NN leaning rule is utilized over

Ê in order to classify all examples in E. Finally, every misclassified example from E

is moved to Ê. The basic idea behind this implementation for finding a consistent

subset, which is not the smallest possible, is to eliminate training instances that are

considered as less relevant for learning.

One Sided Selection

One Sided Selection (OSS) [124] is another under-sampling method that was pro-

posed as a data level remedy for the class imbalance problem. The fundamental

underpinning behind this approach is once again a selection mechanism whose pur-

pose is to modify the distribution of negative samples. One sided selection operates

by generating a more representative subset of negative patterns which will be more

appropriate for training. In other words, it may be seen as a balancing procedure

which eliminates the less informative or more error prone negative instances. Specif-

ically, it focuses on eliminating negative patterns that suffer from class-label noise or

borderline patterns that lie close to the boundary between the positive and negative

examples. Redundant negative data points are also removed, even though they do

not hinder the classification performance, since they can be taken over by other ex-

amples. However, the elimination procedure ignores safe negative instances and the

complete set of positive patterns. It must be mentioned that the One Sided Selection

resampling technique utilizes the notion of consistency that was thoroughly discussed

in section 4.1.3. Thus, it is a natural consequence that an intelligent agent will try to

eliminate borderline examples and examples suffering from class-label noise. Such ex-

amples may be identified by taking advantage of the notion of Tomek links that were

discussed in section 4.1.3. The schematic representation of the One Sided Selection

resampling technique appears in Figures 4.1a, 4.1b and 4.1c where Figure 4.1a repre-

sents the original data set, Figure 4.1b depicts the identified Tomek links and finally

Figure 4.1c represent the resulting data set after the removal data points pertaining
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to Tomek links.

Figure 4.1: One Sided Selection

In particular, the algorithm for the one sided selection resampling technique is the

following:

1. Let S be the original training set and C be the temporary set of representative

points that are not yet eliminated during One Sided Selection.

2. Initially, C contains all positive examples from S and one randomly selected

negative sample.

3. Classify all elements in S with 1-NN rule using the examples in C, and com-

pare the assigned concept labels with the original ones. Move all misclassified

examples into C that is now consistent with S while being smaller.

4. Remove form C all negative examples participating in Tomek links. This re-

moves those negative examples that believed to be borderline and/or noisy. All

positive examples are retained. The resulting set of representative points is

referred to as T .

Neighborhood Cleaning Rule

The Neighborhood Cleaning Rule (NCL) is an under-sampling method that was

proposed in [129] as an extension to original OSS approach. According to the author,
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the major drawback of the OSS method is the utilization of the CNN rule which

is extremely sensitive to noise. Specifically, the author argues that the presence of

noisy examples in the final training set obtained by OSS, will hinder the classifica-

tion performance of any learning algorithm. This is attributed to the fact that noisy

training data will incorrectly classify several of the subsequent testing patterns. The

basic reasoning behind NCL is the same as in OSS since all patterns pertaining to

the class of interest will be retained in final training set. In contrast to OSS, NCL

emphasizes more on the data cleaning process than on the data reduction process.

In particular, the author elaborates that the quality of classification results does not

necessarily depend on the size of the class. There are small classes that identify well

and large classes that are difficult to classify. Therefore, it is necessary to identify

additional factors, such as noise, that may be hampering the classification perfor-

mance besides the class distribution. Moreover, the author is particularly interested

in developing an under-sampling methodology maintaining the original classification

accuracy while the data is being reduced. This is a very important aspect since the

primary purpose of any resampling technique is to improve the identification of the

minority class but without sacrificing classification accuracy on the majority one. In

this context the Wilson’s Edited Nearest Neighbor (ENN) rule [244] is applied in

order to identify the subset A1 of noisy patterns in the original data set O. ENN op-

erates by removing examples whose class label differs from the majority class of the

three nearest neighbors. Generally, ENN retains most of the data, while maintaining

a good classification accuracy. Another important feature of NCL is that it performs

neighborhood cleaning for examples in O. Specifically, the three nearest neighbors

in O that misclassify examples belonging to C are inserted into a temporary set A2.

However, in order to avoid excessive reduction of small classes, only examples from

classes larger or equal than 0.5|C| are considered while forming A2. Lastly, the union

of sets A1 and A2 is removed from T in order to produce the reduced data set S.

Letting T be the original set of the available training patterns and C be the class

of interest so that T = C ∪O then NCL algorithm is the following:

1. Split data T into the class of interest C and the rest of data O.
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2. Identify noisy data A1 in O with the edited nearest neighbor rule.

3. For each class Ci in O if ( x ∈ Ci in the 3-nearest neighbors of misclassified

y ∈ C) and ( |Ci| ≥ 0.5 |C| ) then A2 = {x} ∪ A2

4. Reduced data S = T − (A1 ∪ A2).

4.1.4 Over-sampling Methods

Cluster Based Over-sampling

The Cluster Based Over-sampling approach was proposed in [112] as a resam-

pling strategy which is based on clustering. The primary purpose of this approach

is to simultaneously address the problems related to between-class imbalance (the

imbalance occurring between the two classes of interest) and within-class imbalance

(the imbalance occurring between the subclusters of each class). This is achieved by

separately clustering the training data from each class and subsequently performing

random over-sampling cluster by cluster.

Specifically, the Cluster Based Over-sampling approach operates by initially uti-

lizing the k-means clustering algorithm on the training examples pertaining to both

the minority and the majority classes. In brief, k-means works by firstly selecting k

training examples at random as representative data points from each cluster. The in-

put vector of these representative examples represents the mean of each cluster. The

other training examples are processed one by one. For each of these examples, the

distance between it and the k-cluster centers is calculated. The example is assigned

to the cluster closest to it. The cluster receiving the example, has its mean vector

updated by averaging the input vectors of all its corresponding examples.

Once the training examples of each class have been clustered, the next step is the

over-sampling procedure for each one of the identified clusters. In the majority class,

all the clusters, except for the largest one, are randomly over-sampled so as to get

the same number of training examples as the largest cluster. Let maxclasssize be

the overall size of the largest class and Nmajorityclass be the number of clusters

in the majority class. In the minority class, each cluster is randomly over-sampled
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until each cluster contains maxclasssize∗Nmajorityclass/Nminorityclass patterns

where Nminorityclass represents the number of subclusters in the minority class.

Synthetic Minority Over-sampling Technique

The Synthetic Minority Over-sampling Technique (SMOTE) was proposed in [33]

as a methodology addressing the class imbalance problem. The main characteristic of

SMOTE is that the minority class is over-sampled by creating “synthetic” examples

rather than by over-sampling with replacement. Specifically, the synthetic examples

are generated in a less application specific manner, by operating in “feature space”

rather than in “data space”.

The minority class is over-sampled by taking each minority class sample and in-

troducing synthetic examples along the line segments joining any/all of the k minor-

ity class nearest neighbors. Depending upon the amount of over-sampling required,

neighbors from the k nearest neighbors are randomly chosen.

The original implementation of SMOTE considers only the five nearest neighbors.

For instance, if the amount of over-sampling needed is 200%, only two neighbors from

the five nearest neighbors are chosen and one sample is generated in the direction of

each. Synthetic samples are generated in the following way: Take the difference

between the feature vector (sample) under consideration and its nearest neighbor.

Multiply this difference by a random number between 0 and 1, and add it to the

feature vector under consideration. This causes the selection of a random point along

the line segment between two specific features. This approach effectively forces the

decision region of the minority class to become more general. SMOTE algorithm is

given by the following pseudo code listing in Algorithm 1.

Borderline-SMOTE

Borderline SMOTE was proposed in [86] as an extension to the original over-

sampling algorithm in an attempt to achieve a better classification performance. This

is particularly realized by the utilization of a training procedure which is focused on

identifying the borderline of each class as exactly as possible. Learning this region
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Algorithm 1 SMOTE(T ,N ,k)

INPUT: Number of minority class samples T; Amount of SMOTE N%; Number

of nearest neighbors k;

Output: (N/100) ∗ T synthetic minority class samples;

{If N is less than 100%, randomize the minority class samples as only a random

percent of them will be SMOTEd}
if N < 100 then

Randomize the T minority class samples;

T ← (N/100) ∗ T ;
N ← 100;

end if

N ← (int)(N/100); {The amount of SMOTE is assumed to be in integral multiples

of 100}
k ← Number of nearest neighbors;

numattrs ← Number of attributes;

Initialize Sample[ ][ ] ; {Array for original minority class samples}
newindex ← 0; {counts the number of the generated synthetic class samples}
Synthetic[ ][ ]← null; {Array of synthetic samples}
{Compute the k nearest neighbors for each minority class sample only}
for i← 1 to T do

Compute k nearest neighbors for i, and save the indices in nnarray;

Populate(N,i,nnarray);

end for

Populate(N,i,nnarray)

{Function to generate the synthetic samples}
while N ̸= 0 do

nn← rand(1,k); {This step chooses one of the k nearest neighbors of i}
for attr ← 1 to mumattrs do

diff ← Sample[nnarray[nn][atr] - Sample[i][atr];

gap← rand(0,1);

Synthetic[newindex][atr] ← Sample[i][atr] + gap ∗ dif ;
end for

newindex← newindex+ 1;

N ← N − 1;

end while

return
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in the pattern space is a very important issue for any classifier since the samples

in this neighborhood are more apt to be misclassified. On the other hand, samples

that lie far enough from the borderline are in general easier to be correctly classified.

In other words, this resampling technique is explicitly interested in strengthening /

over-sampling the more error prone borderline minority samples.

Borderline-SMOTE operates initially by determining the borderline minority ex-

amples and subsequently by generating synthetic examples from them, in order to

be included within the original training set. Let T be the complete set of available

training patterns so that P corresponds to the minority class of positive patterns and

N corresponds to the majority class of negative patterns. Specifically, the subsets of

positive and negative patterns may be denoted by the sets P = {p1, p2, . . . , ppnum}
and N = {n1, n2, . . . , nnnum} respectively, so that pnum is the number of positive

samples and nnum is the number of negative samples. In this context, the detailed

description of Borderline-SMOTE is the following:

1. Step1: For each pattern pi in the minority class P (pi i ∈ [pnum]) calculate

its m nearest neighbors within the complete training set T . The number of

majority samples among the m nearest neighbors is denoted by m′ so that

0 ≤ m′ ≤ m.

2. Step2: If m′ = m, entailing that all the m nearest neighbors are majority

samples, pi is considered to be noise and it is excluded from the following steps.

Ifm/2 ≤ m′ < m, namely the number of pi’s majority nearest neighbors is larger

than the number of minority ones, pi is considered to be easily misclassified and

assigned to the DANGER set. If 0 ≤ m′ < m/2, pi is safe and needs not to be

included in the following steps.

3. Step3: The examples in DANGER are the borderline data of the minority

class P so that DANGER ⊂ P . Setting DANSGER = {p′
1, p

′
2, · · · , p

′

dnum}
so that 0 ≤ dnum ≤ pnum the k nearest neighbors from P are calculated for

every sample in DANGER.

4. Step4: Generate s∗dnum synthetic positive examples from the data inDANGER,



Chapter 4: Addressing the Class Imbalance Problem 106

where s is an integer in the [1, k] interval. For each p
′
i, s of the k nearest neigh-

bors in P are randomly selected. Initially, the differences difj, j ∈ [s] between p
′
i

and its s nearest neighbors from P are calculated and subsequently each diffj

is multiplied by a random number rj, j ∈ [s] in the [0, 1] interval so that finally

s new synthetic minority examples are generated between p
′
i and its nearest

neighbors by utilizing the following formula: syntheticj = p
′
j + rj ∗ difj, j ∈ [s].

The above procedure is repeated for each p
′
i in DANGER and can attain a

total number of s ∗ dnum synthetic samples.

Generative Over-sampling

The Generative Over-sampling algorithm was introduced in [138] as a remedy

for the class imbalance problem. The characteristic feature of this approach is the

utilization of a probability distribution with resampling, which is argued to be natural

and well motivated. Specifically, the authors consider the general setting of a binary

classification problem where the original data set X is partitioned into two disjoint

sets Xtrain and Xtest of training and testing patterns respectively. In particular, the

original set of available patterns may be expressed as the union of points from sets P

and Q where:

• P is a set of points from one class whose probability distribution is unknown,

• Q is a set of points from a second class whose probability distribution is also

unknown

• and λ = |P |
|X| corresponds to the prior probability that a given point originated

from P .

According to the authors the distributions that generate P and Q can be arbi-

trarily complicated yielding that any binary classifier should have the ability to learn

how to distinguish points from P and points from Q. In this context, the special

case of a binary classification problem where the class priors are highly skewed may

be formulated in terms of P and Q by letting P representing the minority class of
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patterns and Q representing the majority class of patterns. Class imbalance is intro-

duced by considering that the minority class prior λ is much less than 1−λ. Thereby,

the goal of over-sampling is to increase the number of points drawn from the distribu-

tion that produces P . This entails that an ideal over-sampling technique should add

points to the training set Xtrain that have been drawn directly from the distribution

that originally produced P . Even though this is not the case for the majority of real

world applications where the original data distribution is unknown it is possible to

model this distribution in order to create additional data points from the class of in-

terest. Thus, a fundamental prerequisite of the Generative Over-sampling approach

is the existence of probability distributions that accurately model the actual data

distributions.

Generative Over-sampling works as follows:

1. a probability distribution is chosen in order to model the minority class

2. based on the training data, parameters for the probability distribution are

learned

3. artificial data points are added to the resampled data set by generating points

from the learned probability distribution until the desired number of minority

class points in the training set has been reached.

4.1.5 Combination Methods

SMOTE + Tomek links

SMOTE + Tomek links was first used in [13] in order to improve the classifi-

cation performance of learning algorithms addressing the problem of annotation in

Bioinformatics. According to the authors performing over-sampling on the minority

class does not completely alleviate the class imbalance problem. In many cases there

exist supplementary problems that are usually present in data sets skewed class dis-

tributions. Frequently, class clusters are not well defined since some majority class

examples might be invading the minority class space. The opposite can also be true,
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since interpolating minority class examples can expand the minority class clusters,

introducing artificial minority class examples too deeply in the majority class space.

Inducing a classifier under such a situation can lead to over-fitting. In this context,

Tomek links were incorporated as data cleaning procedure resulting in the creation

of better-defined class clusters. Thus, instead of removing only the majority class

examples that form Tomek links, examples from both classes are removed.

SMOTE + ENN

The motivation behind this method is similar to Smote + Tomek links. ENN

tends to remove more examples than the Tomek links does, so it is expected that

it will provide a more in depth data cleaning. Differently from NCL which is an

under-sampling method, ENN is used to remove examples from both classes. Thus,

any example that is misclassified by its three nearest neighbors is removed from the

training set.

4.2 Cost Sensitive Learning

Most of the currently available learning algorithms for classification were initially

designed based on the assumption that the same misclassification costs apply for all

classes. The realization that non-uniform costs are very usual in many real-world

applications has led to an increased interest in algorithms for cost-sensitive learning.

The direct link between the class imbalance problem and cost sensitive learning was

firstly identified in [147]. Specifically, it is argued that problems occurring when

dealing with highly skewed data sets can be handled in the same manner as the

problems related to learning when misclassification costs are unequal and unknown.

The problem of obtaining a classifier that is useful for cost sensitive learning was

particularly investigated in [60] within the context of optimal learning and decision

making when different misclassification errors incur different penalties. In particular,

the author provides a theorem showing how to modify the proportion of negative

samples in a training set in order to make optimal cost-sensitive decisions using a
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classifier induced by a standard learning algorithm. The relevant theorem was for-

mulated within the general setting of a binary classification problem focused on de-

signing a classifier that will be able to discriminate between a pair of complementary

hypotheses H0 and H1. Specifically, H0 corresponds to the hypothesis indicating that

a given pattern originated from the positive class of patterns while H1 corresponds

to the hypothesis indicating that a given pattern belongs to the negative class of pat-

terns. According to Eq. 3.46 optimal decisions are made on the basis of a probability

threshold (p∗) given by Eq. 3.45 as a function of the misclassification costs C(Hi|Hj)

where (i, j) ∈ {0, 1}. In other words, binary classification problems are reduced in

designing a classifier that given an observation vector x will decide whether or not

P (H0|x) ≥ p∗. Thus, the significance of the theorem proved in [60] is based on the

fact that it provides a way in order to obtain a standard classifier whose decisions

will be made on the basis of a general p∗.

The most common method of achieving this objective is to rebalance the training

data set by modifying the proportion of positive and negative samples. Even though

rebalancing is a common idea, the general formula describing the exact way in which

it will be correctly realized it is formulated by the following theorem:

Theorem: To make a target probability threshold p∗ correspond to a given probabil-

ity threshold p0, the original number of negative samples N0 in the training set should

be replaced by a number N∗ of negative samples given by the following equation:

N∗

N0

=
1− p∗

p∗
p0

1− p0
(4.1)

It is very important to understand the directionality of the theorem. Let L be a

learning algorithm that yields classifiers that make predictions based on the probabil-

ity threshold p0. Then, given a training set S and a desired probability threshold p∗,

the theorem says how to create a training set S
′
by changing the number of negative

training samples such that L applied to S
′
gives the desired classifier. The above

theorem, however, does not specify the exact way in which the number of negative
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samples should be modified. A learning algorithm can use weights on the training

samples that are specified by the ratio of negative samples given in Eq. 4.1 or it is

possible to apply a resampling technique.

4.2.1 The MetaCost Algorithm

The primary objective of cost sensitive learning is the minimization of the condi-

tional risk functional:

R(Hi|x) =
∑

j∈{0,1}

P (Hj|x)C(Hi|Hj) (4.2)

which was originally defined in Eq. 3.37. representing the expected cost of predicting

that hypothesis Hi is true given a particular observation vector x. Within the con-

text of a binary classification problem the Bayes optimal prediction is the one that

achieves the lowest possible overall cost. As it is thoroughly described in section 3.2.3

this is achieved by partitioning the complete pattern space X into two disjoint (pos-

sibly non-convex) regions Xj where j ∈ {0, 1} such that hypothesis Hj is the optimal

(least cost) prediction in region Xj. In other words, the goal of cost sensitive learning

is to find the frontiers between these regions, explicitly or implicitly. This, however,

can be an exceptionally difficult procedure when the cost of misclassifying patterns

originating from one class is more expensive than misclassifying patterns belonging

to the complementary class. In particular, regions which are associated with higher

misclassification costs will expand at the expense of the complementary regions even

if the conditional class probabilities P (Hj|x) remain unchanged. In fact, the opti-

mal predictions are unknown even for the pre-classified samples in the training set

since depending on the specific misclassification costs C(Hi|Hj) they may or may not

coincide with the classes that the samples are labelled with.

If the training samples were labelled with their optimal classes according the par-

ticular misclassification costs then an error-based classifier could be applied to learn

the optimal frontiers. This is true since in that case the patterns would be labelled

according to those frontiers. Specifically, in the large-sample limit, a consistent error-

based learner would learn the optimal, cost-minimizing frontiers. On the other hand,
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with a finite sample, the learner should in principle approximate the optimal zero-one

loss frontiers given the original training set. Zero-one loss frontiers are those corre-

sponding to a cost specification where C(Hi|Hj) = 0 for i = j and C(Hi|Hj) = 1 for

i ̸= j.

Based on this idea, the author in [55] proposed the MetaCost algorithm as a prin-

cipled method for making any classifier cost-sensitive by wrapping a cost-minimizing

procedure around it. Moreover, this approach treats the underlying classifier as black

box without requiring any knowledge of its functioning or applying any modification

to it. Specifically, the MetaCost algorithm utilizes a variant of Breiman’s bagging

[21] ensemble method in order to estimate the class probabilities P (Hj|x). It must

be mentioned that estimating these probabilities is different from finding class prob-

abilities for unseen patterns, and more importantly the quality of these estimates is

important only insofar as it influences the final frontiers that are produced. It is

true that probability estimates can be very poor and still can lead to optimal classi-

fication, as long as the class that minimizes the conditional risk given the estimated

probabilities is the same that minimizes it given the true ones.

In the bagging procedure, given a training set of size s, a “bootstrap” resample of

it is constructed by taking s samples with replacement from the training set. Thus, a

new training set of the same size is produced, where each of the original samples may

appear once, more than once or not ar all. This procedure is repeated m times, and

the resulting m models are aggregated by uniform voting. That is, an unclassified

sample is assigned to the class which is predicted by the greatest number of votes.

MetaCost differs from bagging in that the number n of examples in each resample

may be smaller than the training set size s which makes it more efficient. In short,

MetaCost works by initially forming multiple bootstrap replicates of the training set in

order to learn a different classifier on each copy. Subsequently, each class’s probability

for each example is estimated by the fraction of votes it receives from the ensemble.

The next step is the utilization of Eq. 3.37 in order to relabel each training sample

with the estimated optimal class. Finally, the classifier is reapplied on the relabelled

training set. It should be noted that the class assignment of an unclassified sample

can be performed by taking all the models generated into consideration. However,
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MetaCost can utilize only those models that were learned on resamples that did not

include the given example. The first type of estimate is likely to have lower variance,

because it is based on a larger number of samples, while the second id likely to have

lower statistical bias, because it is not influenced by the sample’s own class in the

training set. A detailed description of the MetaCost procedure is the following:

4.3 One Class Learning

4.3.1 One Class Classifiers

Several methods have been proposed in order to solve the one-class classification

problem:

1. the density estimation methods,

2. the boundary methods and

3. the reconstruction methods.

For each of the three approaches, different concrete models can be realized. These

one-class classification methods differ in their ability to cope with or exploit different

characteristics of the data. The important data characteristics that can be identified

are the feature scaling, the grouping of objects into clusters, the convexity of the

relative distribution and their placing in subspaces.

All one-classification methods, however, share two distinct elements. The first

element is a measure for the distance d(z) or resemblance (or probability) p(z) of an

object z to the target class which is represented by the given training set

X = {x1, · · · ,xl} (4.3)

The second element is a threshold θ on this distance or resemblance. New objects are

accepted by the description when the distance to the target class is smaller than the

threshold θd:

f(z) = I(d(z) < θd) (4.4)
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or when the resemblance is larger the threshold θp:

f(z) = I(p(z) > θp) (4.5)

where I(A) is the indicator function defined by the following equation:

I(A) =

{
1, if A is true;

0, otherwise.
(4.6)

The one-class classification methods differ in their realization of p(z) (or d(z)),

in their optimization of p(z) (or d(z)) and thresholds with respect to the training

set X. Most of the one-class classification methods focus on the optimization of

the resemblance model p or distance d. The optimization of the threshold is done

afterwards. Only a few one-class classification methods optimize the corresponding

model of p(z) or d(z) to an a priori defined threshold such as the Support Vector Data

Description method which will be thoroughly describe within the general context of

boundary methods for one-class classification.

The most important feature of the one-class classifiers is the tradeoff between the

fraction of the target class that is accepted, TPR, and the fraction of the outliers

that is rejected, TNR. This may be otherwise stated as the tradeoff between the

error of first type EI [Needs Equation] and the error of second type EI . The TPR

can be easily measured by utilizing an independent test set drawn from the same

target distribution. Measuring the TNR, on the other hand, requires an assumption

concerning the outlier density. In other words, in order to compute the true error

that corresponds to the classification performance of a particular one-class classifier

one should have complete knowledge concerning the joint probability density p(x, y).

However, in the case of one-class classification only the probability density for the

target class (p(x|H0)) is known. This entails that only the percentage of target

objects which are not accepted by the description , the FNR (EI type error), can

be minimized. This is trivially satisfied when the complete feature space is captured

by the data description. Thereby, when there are no example outlier objects, or an

estimate of the target distribution p(x|H1), it is not feasible to estimate the percentage

of outlier objects FPR that will be accepted by the description (EII type error).
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The main complication in one-class classification is that nothing is known about

the quantities TNR and FPR. Thus, in order to avoid the solution of accepting

all the data, an assumption concerning the outlier distribution has to be made. A

reasonable approach when there are no example from the outlier class is to assume

that outliers are uniformly distributed around the target class. The utilization of a

uniform outlier distribution also entails that when the EI type error is minimized, the

data description with minimal volume is obtained. Therefore, instead of minimizing

both EI and EII , it is reasonable to minimize a combination of the EI type error

and the volume of the description. Of course, when the true outlier distribution

deviates from the uniform distribution, it is reasonable that another data description

model will demonstrate better generalization performance, but this cannot be checked

without example outliers. The generalization of a method, then, can only be given

on the target data.

In order to illustrate the tradeoff between the FNR (EI type error) and the FPR

(EII type error) it is possible to consider the particular situation illustrated in Fig. 4.2.

Figure 4.2: Regions in one class classification

The banana shaped area corresponds to the target distribution XT . The circular

boundary corresponds to the data distribution which should describe the data. It is

obvious that some errors are unavoidable since a part of the target data is rejected

and some outliers are accepted. The tradeoff between the FNR and FPR cannot

be avoided since increasing the volume of the data description in order to decrease
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the EI type error, will automatically increase the number of accepted outliers, and

therefore the EII type error will also increase.

To obtain an estimate of the volume captured by a given description, objects can

be drawn from a uniform distribution over the target data. FPR then, corresponds

to the fraction of the outlier volume that is covered by the data description. Unfortu-

nately, the number of test objects can become prohibitively large, especially in high di-

mensional feature spaces. This subject may be illustrated by assuming that the target

class is distributed in d-dimensional hypersphere with radius R centered around the

origin such that the subspace of target corresponds to the set X = {x : ∥x∥2 ≤ R2}.
Moreover, the outliers may be assumed to be restricted within a hypecube in d-

dimensions described by the set Z = [−R,R]d. The corresponding volumes can be

estimated by utilizing the following equations:

VZ = (2R)d (4.7)

and

VX =
2Rdπ

d
2

dΓ(d
2
)

(4.8)

where Γ(n) corresponds to the gamma function defined by the following relationship:

Γ(n) = 2

∫ ∞

0

e−r2r2n−1dr (4.9)

It is obvious than when d is small (d < 6) the relevant volumes are of the same order,

but for higher dimensionalities VX decreases to zero, while VZ exponentially increases.

As a consequence, outliers will fall with zero probability within the hypersphere.

Thus, no matter how many outlier objects are drawn from the hypercube, all objects

will be rejected by the hypersphere. In practise, X and Z will have more complex

shapes, but when the volumes of the two regions differ, meaning that the outlier

set contains the target set (X(Z)), their volumes will still diverge with increasing

dimensionality d.

Choosing different thresholds for the distance d(z) or resemblance p(z) results in

different tradeoffs between the TPR and the TNR. In order to conduct a comparison

between methods which differ in definitions of d(z) or resemblance p(z) it is reasonable
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to fix the TPR and measure the TNR for each methodology. The distance measure is

optimized for some one-class classification methods with respect to a given threshold

θ so that different thresholds result in different definitions of d(z) or resemblance p(z).

Specifically, the threshold will be adjusted in order to accept a predefined fraction of

the target class. Thus, for a target acceptance rate TPR the corresponding threshold

θTPR will be defined as

θTPR :
1

l

l∑
i=1

I(p(xi) > θTPR) = TPR where xi ∈ X,∀i ∈ [l] (4.10)

Eq. 4.10 can be utilized in order to compute a different threshold θTPR for a range of

TPR values on the training set so that the TNR can be estimated on a set of example

outliers. When for all values of TPR the TNR is measured, it is possible to obtain

the Receiver Operating Characteristic (ROC) curve [Metz 1978]. ROC curves will be

thoroughly described within section ??. In order to find an error measure that fits

the one-class classifiers, it is desirable to set EI = 1−TPR and EII = 1−TNR, and

subsequently integrate EII over all possible thresholds corresponding to the different

possible values of the EI error. This may be formulated as:

E =

∫ 1

0

EII(EI)dEI =

∫ 1

0

∫
z

I(p(x) > θ)dzdθ (4.11)

4.3.2 Density Models

The most straightforward method in order to obtain a one-class classifier is to

estimate the density of the training data [Tarassenko et al. 1995] and to set a threshold

on this density. Several distributions can be obtained such as a Gaussian or a Poisson

distribution, and numerous tests, namely disordancy tests, are then available to test

new objects [Barnett and Lewis, 1978]. The most common density models are

1. the Normal Model

2. the Mixture of Gaussians and

3. the Parzen Density.
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The density model works quite well when it is flexible enough and the sample size

is sufficiently large. This approach, however, requires a large number of training

samples in order to overcome the problem related to the curse of dimensionality.

Nonetheless, the curse of dimensionality problem can be addressed by restricting the

dimensionality of the data and the complexity of the density model. Of course, when

the model does not fit the data very well there may be introduced a high degree of

variance which is also a problematic situation. Thus, determining the right model

to describe the target distribution and the given sample size constitutes a typical

incarnation of the bias-variance dilemma. It must be noted that density models have

an important advantage when a good probability model is assumed and the sample

size is sufficiently large. Density models are based on the optimization of the threshold

value, regulating the acceptance rate of target objects, which automatically results in

a minimum volume probability density model. By construction, only the high density

areas of the target distribution are included while superfluous areas will be discarded

from the description.

Gaussian Model

The simplest model corresponds to the Normal or Gaussian density [Bishop, 1995].

According to the Central Limit Theorem, when it is assumed that objects from one

class originate from one prototype and are additively disturbed by a large number of

small independent disturbances, then the model is correct. The probability distribu-

tion for a d-dimensional object is given by:

pN(z;µ,Σ) =
1

(2π)
d
2 |Σ| 12

exp{−1

2
(z− µ)TΣ−1(z− µ)} (4.12)

where µ is the mean and Σ is the covariance matrix. The method is very simple since

it imposes a strict unimodal and convex model on the data. Thus, the number of the

free parameters in the normal model is:

nfreeN = d+
d(d+ 1)

2
(4.13)

with d parameters for the mean µ and d(d+1)
2

for the covariance matrix Σ. In case of

badly scaled data or data with singular directions, the inverse of the covariance matrix
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cannot be calculated and should be approximated by applying some regularization

which is achieved by adding a small constant λ to the diagonal, Σ
′
= Σ+ λI. In this

case, the user has to supply the regularization parameter λ which is the only magic

parameter in the normal model. Moreover, this method is insensitive to data scaling

since the model utilizes the complete covariance structure of the data.

Another advantage of the normal density is the possibility to obtain an analytical

computation of the optimal threshold for a given value of the TPR. It is known

that for d independent normally distributed random variables x(i), the new variable

x
′
=
∑d

i=1
(x(i)−µ(i))2

σi
is distributed with a x2

d distribution where the parameter d

corresponds to the degrees of freedom. By considering the (squared) Mahanalobis

distance, the variable:

∆2 = (x− µ)TΣ−1(x− µ) (4.14)

for a given µ and Σ should also be distributed like x2
d. The threshold θTPR on ∆2

should be set at the pre-specified TPR:

θTPR :

∫ TPR

0

x2
d(∆

2)d(∆2) = TPR (4.15)

This threshold, however, will not be used since in most cases the target data will not

be normally distributed. Thus, Eq. 4.11 provides a more general reliable way to to

estimate the corresponding threshold given a particular value for the desired TPR.

Mixture of Gaussians

The Gaussian model assumes a very strong model of the data which, in particular,

should be unimodal and convex. This assumption is violated for the most datasets.

Thus, in order to obtain a more flexible density method, the normal distribution can

be extended to a mixture of Gaussians [Duda and Hart,1973]. A mixture of Gaussians

is a linear combination of normal distributions [Bishop,1995]

pMoG(x) =
1

NMoG

∑
j

ajpN(x;µj,Σj) (4.16)

where the aj’s are the mixing coefficients. This approach has a smaller bias than

the single Gaussian distribution, but it requires far more data for training. Thus,
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this method shows more variance when a limited amount of data is available. When

the number of Gaussians NMoG is defined beforehand by the user, the means µj and

the covariances Σj of the individual components can be efficiently estimated by an

expectation minimization routine [Bishop,1995;Bishop 1994a].

The total number of free parameters in the mixture of Gaussians is given by:

nfreeeMoG = (d+
d(d+ 1)

2
+ 1)NMoG (4.17)

that is one mean µj, one covariance matrix Σj and one weight aj for each component.

In order to reduce the number of free parameters, a common approach is the utilization

of diagonal covariance matrices Σj = diag(σj). The number of free parameters then

drops to:

nfreeeMoG = (2d+ 1)NMoG (4.18)

Parzen Density Estimation

The Parzen density estimator [Parzen,1962] is defined through a mixture of Gaus-

sian Kernels which are centered on the individual training objects with often diagonal

matrices Σj = hI as:

pp(x) =
1

l

∑
i

pl(x;xi, hI) (4.19)

The equal width h in each feature direction means that the Parzen density estimator

assumes equally weighted features and it will, therefore, be sensitive to scaling of

the feature values of the data, especially for lower sample sizes. In this context, the

training process of a Parzen density estimator reduces to the determination of one

single parameter which is the optimal width of the kernel h so that:

nfreep = 1 (4.20)

The optimal value for the parameter h is obtained by utilizing a maximum likelihood

solution [Kraaijveld, Duin 1991]. The Parzen density estimation method, however,

is vert week since there is a unique parameter that is user defined and there are

no supplementary magic parameters. This is true since a good description of the

training set depends upon the representational capability of the density model. The
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computational cost for training a Parzen density estimator is almost zero, but the

testing is expensive. All training objects have to be stored, and during testing,

distances to all training objects have to be calculated and sorted. This is a very

important drawback of the Parzen density estimator, especially when dealing with

large datasets in high dimensional feature spaces.

4.3.3 Boundary Methods

In chapter 2 it was argued that according to Vapnik when a limited amount of

data is given the best learning strategy is to avoid solving a more general problem

as an intermediate step in an attempt to solve a more general problem. The solution

of the more general problem might require more data than the original one. In this

context, the estimation of the complete data density for a one-class classifier might

be a too demanding task when only the data boundary is required. Therefore, in the

boundary methods only a closed boundary around the target set is optimized. The

most common boundary methods are the following:

1. K-Centers description method,

2. Nearest Neighbor description (NN-d) method and

3. Support Vector Data Description method.

Although, the volume is not always actively minimized in the boundary methods,

most methods have a strong bias towards a minimal volume solution. The size of

the volume depends on the fit of the method on the data. Boundary methods tend

to be sensitive to feature scaling since they heavily rely on the distances between

objects. On the other hand, the number of objects required is smaller than in the

case of density methods. So, although the required sample is smaller for the boundary

methods, a part of the burden is put onto well defined distances.

A fundamental aspect of boundary methods is that they cannot be interpreted as

probability. Assume that a method is trained such that a fraction f of the target set

is rejected. This corresponds to obtaining a threshold θf for this rejection rate on its
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particular resemblance measure d. Decreasing the threshold θf results in tightening

the description but does not guarantee that the high density areas will be captured.

Therefore, by changing the parameter f may require the retraining of the algorithm.

This is exactly the case for the Support Vector Data Description method.

K - Centers

The first boundary method to be discussed is the K - center method which covers

the dataset with k small balls with equal radius [Ypma and Duin, 1998]. The balls’

centers µk’s are placed on the training objects such that the maximum distance of

all minimum distances between training objects and the centers is minimized. Thus,

during the training phase the method is fitted on the data through the minimization

of the following error functional:

Ek−center = max
i

min
j
∥xi − µk∥2 (4.21)

The k-centers method uses a forward strategy which starts from a random initial-

ization. The radius is determined by the maximum distance to the objects that the

corresponding ball should capture. This, of course, entails that the k-centers method

is sensitive to outliers in the training set, but works sufficiently well when clear clus-

ters are present within the data. When the centers have been trained, the distance

from a test object z can be calculated by utilizing the following equation:

dk−center(z) = min
k
∥z− µk∥2 (4.22)

The training procedure incorporates several random initializations in order to avoid

a sub-optimal solution. Specifically, the best solution is determined in terms of the

smallest Ek−center. The number of free parameters coincides with the number k of

indices out of N that have to be selected so that:

nk−centers = k (4.23)

The user should also supply the maximum number of random initializations that will

be performed during the training procedure.
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Nearest Neighbor

The second method to be discussed is the nearest neighbor method, NN-d which

may be derived from a local density estimation by the nearest neighbor classifier

[Duda and Hart]. In the nearest neighbor method a cell in d-dimensions is centered

around the test object z. Subsequently the volume of this cell is incrementally grown

so that k objects from the training set are captured within the cell. The local density

then can be estimated by the following equation:

pNN(z) =
k/N

Vk(∥z−NN tr
k (z)∥)

(4.24)

where NN tr
k (z)∥) is the k nearest neighbor of z in the training set and Vk is the

volume of the cell containing the object. In the one-class classifier NN-d, a test

object is accepted when its local density is larger or equal to the local density of its

first nearest neighbor in the training set denoted by NN tr(z) = NN tr
1 (z). For the

local density estimation, k = 1 is used, so that:

fNN tr(z) = I(
1/N

V (∥z−NN tr(z)∥)
≥ 1/N

V (∥NN tr(z)−NN tr(NN tr(z))∥)
) (4.25)

which is equivalent to:

fNN tr(z) = I(
V (∥z−NN tr(z)∥)

V (∥NN tr(z)−NN tr(NN tr(z))∥)
≤ 1) (4.26)

The volume of the d-dimensional cell may be computed by the following equation:

V (r) = Vdr
d (4.27)

where Vd is the volume of a unit hypersphere in d-dimensions given by Eq. 4.8 and r

corresponds to the radius of the hypersphere. Therefore, the substitution of Eq. 4.27

in Eq. 4.28 finally yields that:

fNN tr(z) = I(
∥z−NN tr(z∥)

∥NN tr(z)−NN tr(NN tr(z)∥)
≤ 1) (4.28)

In other words, the distance from object z to its nearest neighbor in the training

set NN tr(z) is compared with the distance from this nearest neighbor to its nearest

neighbor.
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Support Vector Data Description

The Support Vector Data Description (SVDD) is a method which directly obtains

the boundary around a target dataset. In the most simple case a hypersphere is

computed so that it contains all target objects. In order to minimize the chance of

accepting outliers, the volume of the hypersphere is minimized. The model can be

rewritten in a form comparable to the Support Vector Classifier (SVC) [Vapnik, 1995]

which justifies the name Support Vector Data Description. Specifically, it offers the

ability to map the data to a new, high dimensional feature space without much extra

computational cost. By this mapping it is possible to obtain more flexible descriptors

so that the outlier sensitivity can be flexibly controlled. A more detailed discussion

of the SVDD method will be given in Section 5.

4.3.4 Reconstruction Methods

The reconstruction methods have not been primarily designed for one class clas-

sification, but rather to model the data. By using prior knowledge about the data

and making assumptions about the generating process, a model is chosen and fitted

to the data. New objects can now be described in terms of a state of the generat-

ing model. A fundamental assumption of this approach is that it provides a more

compact representation of the target data. Moreover, this representation simplifies

further processing without harming the information content.

The reconstruction methods that will be discussed in this section are the following:

1. K - Means;

2. Learning Vector Quantization; and

3. Self Organized Maps.

The basic functionality behind these approaches involves making assumption con-

cerning the data or their distribution. Moreover, they define a set of prototypes or

subspaces and a reconstruction error is minimized. The simplest reconstruction meth-

ods are the K-means clustering [Bishop, 1995] and the Learning Vector Quantization
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(LVQ) [Carpenter et al, 1991]. The basic assumption behind these approaches is that

the data are clustered and can be represented by a few prototype objects or codebook

vectors µk. Most often the target objects are represented by the nearest prototype

measured by the Euclidean distance. In other words. the prototype vectors define a

Voronoi tessellation [45] of the complete feature space. In the k-means clustering, the

placing of the prototypes is optimized by minimizing the following error functional:

Ek−m =
∑
i

min
k
∥xi − µk∥2 (4.29)

The k-means clustering method resembles the k-center method, but the important

difference is the error that is minimized. The k-center method focuses on the worst

case objects (the objects with the largest reconstruction error) and tries to optimize

the centers and the radii of the balls in order to accept all the data. On the other

hand, the k-means method focuses on averaging the distances to the prototypes of

all objects in order to be more robust against remote outliers. Furthermore, in the k-

center method the centers are placed, per definition, on some of the training objects,

while in the k-means method, all center positions are free. The distance d of an object

z to the target set is defined as the squared distance of that object to the nearest

prototype:

dk−m(z) = min
k
∥z− µk∥2 (4.30)

The (LVQ) algorithm is a supervised version of the k-means clustering and is

primarily used for classification purposes. For each of the training objects xi an

extra label yi is available indicating to which cluster it should belong. The LVW is

trained as a conventional neural network, with the exception that each hidden unit

is a prototype, where for each prototype µk a class label yk is defined. The LVQ

algorithm minimizes the classification error of the following form:

E0−1(f(xi;w), yi) =

{
0, if f(xi;w) = yi;

1, otherwise.
(4.31)

by updating the prototype nearest to the training object xi according to the following
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equation:

∆µk =

{
+η(xi − µk), if yi = yk;

−η(xi − µk), otherwise.
(4.32)

where η is the learning rate. This update rule is iterated over all training objects,

until convergence is reached. In both the k-means clustering and the LVQ the k

means µ have to be estimated so that the number of free parameters is given by:

nfreek−m = nfreeLV Q = kd (4.33)

Moreover, in both the LVQ and the k-means method, the usr should supply the

number of clusters k while the LVQ method requires the learning rate η.

In the Self Organizing Map (SOM) the placing of the prototypes is not only op-

timized with respect to the data, but also constrained to form a low-dimensional

manifold [Kohonen, 1995]. When the algorithm is converged, prototypes correspond-

ing to nearby vectors on the manifold have nearby locations in the feature space. In

most cases, 2- or 3- dimensional square grid is chosen for this manifold such that data

mapped on this manifold can be visualized afterwards. Higher dimensional manifolds

are also possible, but the require prohibitive storage and optimization costs. Specifi-

cally, for a dSOM dimensional manifold, the number of neurons becomes kdSOM . Thus,

in the optimization of the SOM kdSOM neurons have to placed in the d-dimensional

feature space. This entails that the number of free parameters in the SOM becomes:

nfreeSOM = dkdSOM (4.34)

where the dimensionality of the manifold dSOM , the number of prototypes per mani-

fold dimensionality k and the learning rate η are supplied by the user. The Euclidean

distance is once again used in the definition of the error and the computation of the

distance according to the following equation:

dSOM = min
k
∥z− µk∥2 (4.35)

The utilization of the Euclidean distance in the related methodologies, however, makes

them extremely sensitive to scaling of the features.
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4.3.5 Principal Components Analysis

Principal Components Analysis (PCA) [Bishop, 1995] is used for data distributed

in a linear subspace. In particular, the PCA mapping finds the orthonormal subspace

which captures the variance in the data as the best as possible in the squared error

sense. The simplest optimization procedure utilizes the eigenvalue decomposition in

order to compute the eigenvectors of the target covariance matrix. The eigenvectors

with the largest eigenvalues are the principal axis of the d-dimensional data pointing

in the direction of the largest variance. These vectors are used as basis vectors for

the mapped data. The number of basis vectors M is optimized in order to explain a

certain, user defined, fraction of the variance in the data. The basis vectors become

a d×M matrix W . Since these vectors form an orthogonal basis, the number of free

parameters in PCA becomes:

nfreePCA =

(
d− 1

M

)
(4.36)

The reconstruction error of an object z is now defined as the squared distance from

the original object and its mapped version:

dPCA(z) = ∥z− (WW T )z∥2 (4.37)

PCA works well when a clear linear subspace is present. Specifically, for very low

sample sizes the data is automatically located in a subspace. When the intrinsic

dimensionality of the data is smaller than the feature size, the PCA can still generalize

well from the low sample size.

4.3.6 Auto-Encoders and Diabolo Networks

Auto-encoders [Japkpwitz, 1995] and diabolo networks are focused on learning a

representation of the data. Both methods are trained to reproduce the input pat-

terns their output layer. In other words, they perform the identity operation. Auto-

encoders and diabolo networks are distinguished on the basis of the number of hidden

layers and the sizes of the layers.
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Figure 4.3: Auto - Encoders and Diabolo Networks.

Figure4.3 depicts the basic architecture of auto-encoders and diabolo networks

where the units are represented by circles and the weights by arrows. In the auto-

encoder architecture just one hidden layer is present with a large number (nauto) of

hidden units. Each unit in an auto-encoder network utilizes conventional sigmoidal

transfer functions. On the other hand, in diabolo networks, three hidden layers are

used with non-linear sigmoidal transfer functions. In particular, the second layer

contains a very low number of hidden units (ndiab) which form the bottleneck layer.

The other two layers can have an arbitrary number of hidden units which is larger

than the number of units in the bottleneck layer. Both types of networks are trained

by minimizing the mean squared error. By doing so, it is anticipated that the target

objects will be reconstructed with smaller error than outlier objects. Thus, the dis-

tance between the original object and the reconstructed one forms a measure of the

distance of an object z to the training set:

ddiab(z) = ∥fdiab(z;w)− z∥2

dauto(z) = ∥fauto(z;w)− z∥2 (4.38)

Auto-encoder networks with a single hidden layer provide a linear principal com-

ponent type of solution. This entails that the auto-encoder network tends to find a
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data description which resembles the PCA description. On the other hand, the small

number of neurons in the bottleneck layer of the diabolo network act as an informa-

tion compressor. Thus, in order to obtain a small reconstruction error on the target

set, the network is forced to train a compact mapping of the data into the subspace

coded by these hidden neurons. The number of neurons in the smallest layer gives

the dimensionality of this subspace. More importantly, due to the non-linear transfer

functions of the neurons in the other layers, this subspace can become non-linear.

When this subspace matches the subspace in the original data, the diabolo networks

can perfectly reject objects which are not in the target data space. On the other hand,

when the subspace is as large as the original feature space, no distinction between

target and outlier data can be expected.

The number of free parameters can be very high for both the auto-encoder as well

as the diabolo network. The number of input and output neurons is given by the

dimensionality d of the data. By defining nauto to be the number of hidden units in

the auto-encoder the the total number of wights in the auto-encoder including bias

terms will be given by:

nfreeauto = dnauto + nautod+ d (4.39)

= (2d+ 1)nauto (4.40)

For the diabolo network the number of neurons in the bottleneck layers should be

added to the number of neurons in the other hidden layers so that the number of free

parameters will be given by the following equation:

nfreediab = ndiab(4d+ 4ndiab + 5) + d (4.41)
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Algorithm 2 MetaCost(S,L,C,m,n,p,q)

INPUT: S is the training set; L is a classification algorithm; C is a cost matrix;

m is the number of resamples to generate; n is the number of examples in each

resample; p is True iff L produces class probabilities; q is True iff all samples are

to be used for each example;

OUTPUT: M is the model produced by applying L to S;

for i=1 to m do

Let Si be a resample of S with n examples;

Let Mi be the model produced by applying L to Si;

end for

for each example x in S do

for each class j do

Let P (Hj|x) = 1∑
i

∑
i P (Hj|x,Mi);

if p then

P (Hj|x) is produced by Mi

else

P (Hj|x,Mi) = 1 for the class predicted by Mi for x and 0 for all the others;

end if

if q then

i ranges over all Mi;

else

i ranges over all Mi such that x /∈ Si

end if

Let x’s class = argmini P (Hj|x)C(Hi|Hj)

end for

end for

return M.



Chapter 5

Machine Learning Paradigms

5.1 Support Vector Machines

Support Vector Machines (SVMS) are gaining much popularity as one of the effec-

tive methods for machine learning in recent years. In pattern classification problems

with two-class sets, they are generalizing linear classifiers in high-dimensional feature

spaces through non-linear mappings defined implicitly by kernels in Hilbert space so

that they may produce non-linear classifiers in the original space.

Linear classifiers are then optimized to give maximal margin separation between

classes. This task is performed by solving some type of mathematical programming

such as quadratic programming (QP) or linear programming (LP).

5.1.1 Hard Margin Support Vector Machines

Let S = {(x1, y1), ..., (xl, yl)} be a set of training patterns such that xi ∈ ℜn and

yi ∈ {0, 1}. Thus, each training input belongs to one of two disjoints classes which

are associated with the labels yi = +1 and yi = −1, respectively.
If these data points are linearly separable, it is possible to determine a decision

function of the following form:

g(x) = wTx+ b = ⟨w,x⟩+ b (5.1)

130
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which is parameterized by the n-dimensional weight vector w ∈ ℜn and the bias term

b ∈ ℜ.
The decision function g(x) defines a hyperplane in the n-dimensional vector space

ℜn which has the following property:

⟨w,x⟩+ b =

{
> 0, for yi = +1;

< 0, fpr yi = +1.
(5.2)

Because the training data are linearly separable, there will not be any training

instances satisfying ⟨w,x⟩+b = 0. Thus, in order to control separability, the inequal-

ities in 5.2, may be reformulated as:

⟨w,x⟩+ b =

{
≥ +1, for yi = +1;

≤ −1, fpr yi = +1.
(5.3)

Here, +1 and −1 on the right-hand sides of the inequalities can be replaced by

a constant k(k > 0) so that the values +1 and −1 will appear as a and −a. By

dividing both sides of the inequalities by k the original form in 5.3 will be obtained.

Inequalities 5.3 may equivalently be rewritten in the following form:

yi(⟨w,xi⟩+ b) ≥ 1,∀i ∈ [l] (5.4)

by incorporating the class labels.

The hyperplane g(x) = ⟨w,x⟩ + b = c for −1 < c < +1 forms a separating

hyperplane in the n-dimensional vector space ℜn that separates xi, ∀i ∈ [l]. When

c = 0, the separating hyperplane lies within the middle of the two hyperplanes with

c = +1 and c = −1.
The distance between the separating hyperplane and the training datum nearest

to the hyperplane is called the margin. Assuming that the hyperplanes g(x) = +1

and g(x) = −1 include at least one training datum, the hyperplane g(x) = 0 has the

maximum margin for −1 < c < +1. The region {x : −1 ≤ g(x) ≤ +1} is called the

generalization region of the decision function.

Figure I shows two decision functions that satisfy the inequalities in 5.4, which

are separating hyperplanes. It is obvious that such separating hyperplanes are not
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unique. However, one must choose the one that results in higher generalization ability.

It must be mentioned that the generalization ability of a separating hyperplane de-

pends exclusively on its location, which yields that the hyperplane with the maximum

margin is called the optimal hyperplane.

Assuming that no outliers are included within the training data and the unknown

test data will obey the same probability law as that of the training data, it is intu-

itively clear that the generalization ability will be maximized if the optimal hyperplane

is selected as the separating hyperplane.

Now consider determining the optimal hyperplane.The Euclidean distance for a

training datum x to the separating hyperplane parameterized by (w, b) is given by

the following equation:

R(x;w, b) =
|g(x)|
∥w∥

=
|⟨w,x⟩+ b|
∥w∥

(5.5)

This can shown as follows. Having in mind that the vector w is orthogonal to the

separating hyperplane, the line l(x;w) that goes through x and that is orthogonal to

the hyperplane is given by the following equation:

l(x;w) =
a

∥w∥
w+ x (5.6)

where |a| is the Euclidean distance from x to the hyperplane. This line crosses the

separating hyperplane at the point where g(l(x;w)) = 0 which yields that:

g(l(x;w)) = 0⇔ (5.7a)

wT l(x;w) + b = 0⇔ (5.7b)

wT (
a

∥w∥
w+ x) + b = 0⇔ (5.7c)

a

∥w∥
wTw + wTx+ b = 0⇔ (5.7d)

a

∥w∥
∥w∥2 = −wTx− b⇔ (5.7e)

a = −g(x)

∥w∥
⇔ (5.7f)

|a| = g(x)

|∥w∥
(5.7g)
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Let x+,x+ be two data points lying on the hyperplanes g(x) = +1 and g(x) = −1
respectively. In order to determine the optimal hyperplane one has to specify the

parameters (w, b) that maximize the quantity:

γ =
1

2
{R(x+;w, b) +R(x−;w, b))} = 1

∥w∥
(5.8)

which is referred to as the geometric margin. The geometric margin quantifies the

mean distance of the points x+,x+ from the separating hyperplane.

Therefore, the optimal separating hyperplane can be obtained by maximizing the

geometric margin which is equivalent to minimizing the following quantity:

f(w) =
1

∥w∥2
(5.9)

with respect to the hyperplane parameters (w, b) subject to the constraints defined

by the inequalities in 5.4.

The Euclidean norm ∥w∥ in 5.9 is used in order to transform the optimization

problem involved into a quadratic programming one. The assumption of linear sep-

arability means that there exist (w, b) that satisfy the set of constraints defined by

5.4. The solutions for 5.9 that satisfy 5.4 are called feasible solutions.

Because the optimization problem has a quadratic objective function where the

inequality constraints are defined by affine functions, even if the solutions are non-

unique, the value of the objective function is unique. The non-uniqueness is not a

problem for support vector machines. This is one of the advantages of the support

vector machines over neural networks which have several local optima.

Another point that needs to be mentioned is that the optimal separating hyper-

plane will remain the same even if it is computed by removing all the training patterns

that satisfy the strict inequalities in 5.4. Figure I shows such points on both sides of

the separating hyperplane which are called support vectors.

The primal optimization problem related to the Hard Margin Support Vector

Machine may be formulated as follows:

min
w,b

1

2
∥w∥2 (5.10a)

s.t yi(⟨w,xi⟩+ b) ≥ 1, ∀i ∈ [l] (5.10b)
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The primal variables corresponding to the convex optimization problem defined in

5.10 are the parameters (w, b) defining the separating hyperplane. Thus, the number

of primal variables is equal to the dimensionality of the input space plus 1 which

is n + 1. When the dimensionality of the input space is small, the solution of 5.10

can be obtained by the quadratic programming technique. It must be mentioned that

Support Vector Machines operate by mapping the input space into a high-dimensional

feature space which in some cases may be of infinite dimensions. The solution of the

optimization problem is then too difficult to be addressed in its primal form. A

natural solution to overcome this obstacle is to reexpress the optimization problem

in its dual form whose number of variables coincides with the number of the training

data.

In order to transform the original primal problem into its corresponding dual it is

necessary to compute the Lagrangian function of the primal form which is given by

the following equation:

L(w, b, a) =
1

2
⟨w,w⟩ −

l∑
i=1

ai{yi(⟨w,xi⟩+ b)− 1} (5.11)

where a = [a1 . . . al]
T is the matrix of the non-negative (ai ≥ 0) Lagrange multipliers.

The dual problem is subsequently formulated as follows:

max
a

min
w,b

L(w, b, a) (5.12a)

s.t ai ≥ 0, ∀i ∈ [l] (5.12b)

Then according to the KT theorem the necessary and sufficient conditions for a

normal point (w∗, b∗) to be an optimum is the existence of a∗ such that:

∂ L(w∗, b∗, a∗)

∂w
= 0 (5.13a)

∂ L(w∗, b∗, a∗)

∂b
= 0 (5.13b)

a∗i {yi(⟨w∗,xi⟩+ b∗)− 1)} = 0,∀i ∈ [l] (5.13c)

yi(⟨w∗,xi⟩+ b∗)− 1) ≥ 0,∀i ∈ [l] (5.13d)

a∗i ≥ 0,∀i ∈ [l] (5.13e)
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Eq. 5.13c describes the KKT complementarity conditions from which we may induce

that:

• for active constraints for which a∗
i = 0 we have that yi(⟨w∗,xi⟩+ b∗)− 1) > 0.

• for inactive constraints for which a∗
i > 0 we have that yi(⟨w∗,xi⟩+ b∗)−1) = 0.

The training data points xi for which a∗
i > 0 correspond to the support vectors that

lie on the hyperplanes g(x) = +1 and g(x) = −1. Eq. 5.13a provides the optimal

value for the parameter w which is given by the following equation:

w∗ =
l∑

i=1

a∗i yixi (5.14)

Similarly, Eq. 5.13b yields that:
l∑

i=1

a∗i yi = 0 (5.15)

Substituting Eqs. 5.13a, 5.13b in Eq 5.11 we get for the Lagrangian that:

L(w, b, a) =
l∑

i=0

ai −
1

2

l∑
i=1

l∑
j=1

aiajyiyj⟨xi,xj⟩ (5.16)

According to Eqs. 5.13e, 5.15 and 5.16 the dual optimization problem originally de-

fined in 5.12 may be rewritten in the following form:

max
a

l∑
i=0

ai −
1

2

l∑
i=1

l∑
j=1

aiajyiyj⟨xi,xj⟩ (5.17a)

s.t
l∑

i=1

a∗i yi = 0 (5.17b)

and ai ≥ 0,∀i ∈ [l] (5.17c)

Notice that the dependence on the original primal variables is removed in the dual

formulation of the optimization problem where the number of variables is equal to

the number of the training patterns. Moreover, having in mind that:

l∑
i=1

l∑
j=1

aiajyiyj⟨xi,xj⟩ = ⟨
l∑

i=1

aiyixi,
l∑

j=1

ajyjxj⟩ ≥ 0 (5.18)
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the dual optimization problem in 5.17 corresponds to a concave quadratic program-

ming problem. Thus, if a solution exists, namely the classification problem is linearly

separable, then there exists a global solution for a∗. The optimal weight vector then

given by Eq. 5.14 realizes the maximal margin hyperplane with geometric margin:

γ∗ =
1

∥w∗∥
(5.19)

Let SV denote the set of of indices corresponding to the support vectors for which

the associated Lagrange multipliers are a∗i ̸= 0. Then according to the KKT comple-

mentarity conditions given by 5.13c we have that:

yi{(⟨w∗,xi⟩+ b∗)− 1)} = 0, ∀i ∈ [SV ] (5.20)

Additionally, let SV + be the support vectors for which yi = +1 such that:

⟨w∗,xi⟩+ b∗ = +1, ∀i ∈ SV + (5.21)

and SV − the support vectors for which yi = −1 such that:

⟨w∗,xi⟩+ b∗ = −1,∀i ∈ SV − (5.22)

Subsequently, by summing Eqs. 5.21, 5.22 over all the corresponding indices we get

that: ∑
i∈SV +

⟨w∗,xi⟩+ b∗ +
∑

i∈SV −

⟨w∗,xi⟩+ b∗ = n+(+1) + n−(−1) (5.23)

which finally yields that:

b∗ =
1

n+ + n−{(n
+ − n−)−

∑
i∈SV

⟨w∗,xi⟩} (5.24)

Finally, the optimal separating hyperplane can be expressed in the dual represen-

tation by the following equation:

g(x) =
l∑

i=1

a∗i yi⟨xi,x⟩+ b∗ =
∑
i∈SV

a∗i yi⟨xi,x⟩+ b∗ (5.25)
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5.1.2 Soft Margin Support Vector Machines

Within the framework of Hard Margin Support Vector Machines, it is assumed

that the training data are linearly separable. However, when the data are linearly

inseparable there is no feasible solution and as a consequence the optimization prob-

lem corresponding to the Hard Margin Support Vector Machine is unsolvable. A

remedy for this problem is the extension of the original Hard Margin paradigm by

the so called Soft Margin Support Vector Machine. The main idea of the Soft Margin

Support Vector Machine constitutes in allowing for some slight error which is repre-

sented by the slack variables ξi(ξi ≥ 0). The introduction of slack variables within

the original notation yields that the inequalities defined in 5.10 will be reformulated

as:

yi(⟨w,xi⟩+ b) ≥ 1− ξi,∀i ∈ [l] (5.26)

The primary reason for the utilization of slack variables is that there will always exist

feasible solutions for the reformulated optimization problem.

Figure II shows that the optimal separating hyperplane correctly classifies all

training data xi for which 0 < ξi < 1, even if they do not have the maximum margin.

However, the optimal separating hyperplane fails to correctly classify those training

patterns for which ξi > 1, as they lie beyond the location of the g(x) = 0 hyperplane.

The Primal optimization problem corresponding to the Soft Margin Support Vec-

tor Machine is formulated by introducing a tradeoff parameter C between the margin

maximization and the minimization of the sum of slack variables. The first quantity

directly influences the generalization ability of the classifier while the second quan-

tifies the empirical risk of the classifier. Thus, the primal form of the optimization

problem is mathematically defined as follows:

min
w,b,ξ

1

2
∥w∥2 + C

l∑
i=1

ξi (5.27a)

s.t yi(⟨w,xi⟩+ b) ≥ 1− ξi,∀i ∈ [l] (5.27b)

and ξi ≥ 0,∀i ∈ [l] (5.27c)

In order to form the dual representation of the original optimization problem it is

necessary to estimate the corresponding Lagrangian function which may be obtained
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by the following equation:

L(w, b, ξ, a,β) =
1

2
⟨w,w⟩+ C

l∑
i=1

ξi −
l∑

i=1

ai{yi(⟨w,xi⟩+ b)− 1 + ξi} −
l∑

i=1

βiξi

(5.28)

which subsequently may be rewritten as:

L(w, b, a) =
1

2
⟨w,w⟩ −

l∑
i=1

aiyi(⟨w,xi⟩ − b

l∑
i=1

aiyi +
l∑

i=1

{C − ai − βi}ξi (5.29)

where a = [a1 . . . al]
T and β = [β1 . . . βl]

T are the matrices of the non-negative (ai ≥ 0)

and (βi ≥ 0) Lagrange multipliers. Moreover vector ξ = [ξ1 . . . ξl]
T groups the set of

slack variables. The dual problem is subsequently formulated as follows:

max
a,β

min
w,b,ξ

L(w, b, a) (5.30a)

s.t ai ≥ 0, ∀i ∈ [l] (5.30b)

and βi ≥ 0, ∀i ∈ [l] (5.30c)

Then according to the KT theorem the necessary and sufficient conditions for a

normal point (w∗, b∗, ξ∗) to be an optimum is the existence of (a∗,β∗) such that:

∂ L(w∗, b∗, ξ∗, a∗,β∗)

∂w
= 0 (5.31a)

∂ L(w∗, b∗, ξ∗, a∗,β∗)

∂ξ
= 0 (5.31b)

∂ L(w∗, b∗, ξ∗, a∗,β∗)

∂b
= 0 (5.31c)

a∗i {yi(⟨w∗,xi⟩+ b∗)− 1 + ξi)} = 0, ∀i ∈ [l] (5.31d)

βiξi = 0, ∀i ∈ [l] (5.31e)

yi(⟨w∗,xi⟩+ b∗)− 1 + ξi) ≥ 0, ∀i ∈ [l] (5.31f)

a∗i ≥ 0, ∀i ∈ [l] (5.31g)

β∗
i ≥ 0, ∀i ∈ [l] (5.31h)

Eq. 5.31a yields that the optimal weight vector corresponding to the optimal sepa-

rating hyperplane will be given by the following equation:

w∗ =
l∑

i=1

a∗i yixi (5.32)
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while Eq. 5.31b yields that:

C − a∗i − β∗
i = 0,∀i ∈ [l]. (5.33)

Finally, Eq. 5.31c entails that:
l∑

i=1

a∗i yi = 0 (5.34)

Notice that the constraints defined by Eq. 5.33 and the set of inequalities in 5.31h

can be combined in the following way:

0 ≤ a∗i ≤ C (5.35)

Subsequently, by substituting Eq. 5.32, 5.33 and 5.34 in 5.29 the Lagrangian may be

simplified into the following form:

L(w, b, a) =
l∑

i=0

ai −
1

2

l∑
i=1

l∑
j=1

aiajyiyj⟨xi,xj⟩ (5.36)

By taking into consideration Eqs. 5.34, 5.35 and the simplified version of the La-

grangian given by Eq. 5.36 the dual optimization problem may once again be refor-

mulated as:

max
a

l∑
i=0

ai −
1

2

l∑
i=1

l∑
j=1

aiajyiyj⟨xi,xj⟩ (5.37a)

s.t
l∑

i=1

a∗i yi = 0 (5.37b)

and ai ≥ 0,∀i ∈ [l] (5.37c)

and βi ≥ 0, ∀i ∈ [l] (5.37d)

It is clear then from Eqs. 5.17 and 5.37 that both Hard and Soft Margin Support

Vector Machines share the same objective function with only difference being that

each constituent of the vector a of Lagrangian multipliers cannot exceed the tradeoff

parameter C.

Eqs. 5.31d and 5.31e correspond to the KKT complementarity conditions which

combined with Eq. 5.34 identify three cases for the Lagrangian multipliers (ai):
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• a∗i = 0 ⇒ βi = C ̸= 0 ⇒ ξi = 0. Thus the training instance xi is correctly

classified.

• 0 < a∗i < C ⇒ βi ̸= 0⇒ ξi = 0⇒ yi(⟨w∗,xi⟩+ b∗) = 1, which means that xi is

a support vector which is called unbounded support vector.

• a∗i = C ⇒ βi = 0⇒ ξi ̸= 0⇒ yi(⟨w∗,xi⟩ + b∗)− 1 + ξi = 0, which means that

xi is a support vector which is called bounded support vector.

The decision boundary for the Soft Margin Support Vector Machine is given by

the equation:

g(x) =
l∑

i=1

a∗i yi⟨xi,x⟩+ b∗ =
∑
i∈SV

a∗i yi⟨xi,x⟩+ b∗ (5.38)

which is exactly the same with the one computed for the Soft Margin Support Vector

Machine.

A last issue concerning the analysis of the Soft Margin Support Vector Machine

that needs to be addressed is the derivation of the optimal values for the parameters

ξ and b of the primal optimization problem. Let Xu = {xi ∈ S : 0 < a∗i < C} and
Xb = {xi ∈ S : a∗i = C} be the sets of unbounded and bounded support vectors

respectively. Moreover, let SVu and SVb be the sets of indices corresponding to the

sets Xu and Xb respectively. Thus, the following equations hold:

yi(⟨w,x∗
i ⟩+ b∗) = 1,∀xi ∈ Xu (5.39)

Subsequently, let X+
u = {xi ∈ Xu : yi = +1} be the set of unbounded support vectors

that lie on the hyperplane g(x) = +1 and X−
u = {xi ∈ Xu : yi = −1} be the set of

unbounded support vectors that lie on the hyperplane g(x) = −1. Thus, the set of

unbounded support vectors Xu may be expressed as the union Xu = X+
u ∪X−

u of the

positive X+
u and negative X−

u unbounded support vectors. Assuming that |X+
u | = n+

u

and |X−
u | = n+

u are the cardinalities of the sets of positive and negative unbounded

support vectors respectively, the cardinality of the original set of unbounded support

vectors may be expressed as |Xu| = n+
u +n−

u . The same reasoning may be appplied to

the corresponding sets of indices SV +
u and SV −

u where |SV +
u | = n+

u and |SV −
u | = n−

u
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such that |SVu| = n+
u + n−

u . Eqs. 5.39 then, entails that:

⟨w∗,xi⟩+ b∗ = +1 , ∀i ∈ SV +
u (5.40a)

⟨w∗,xi⟩+ b∗ = +1 , ∀i ∈ SV −
u (5.40b)

Taking the sum over all possible indices for Eqs. 5.40 yields that:∑
i∈SV +

u

⟨w∗,xi⟩+ b∗ +
∑

i∈SV −
u

⟨w∗,xi⟩+ b∗ = n+
u (+1) + n−

u (−1) (5.41)

which finally gives the optimal solution for the parameter b of the primal optimization

problem as:

b∗ =
1

n+
u + n−

u

{(n+
u − n−

u )−
∑
i∈SVu

⟨w∗,xi⟩} (5.42)

Finally, the utilization of the following equation:

ξ∗i = 1− yi(⟨w∗,xi⟩) + b∗,∀i ∈ SVb (5.43)

provides the optimal values for the parameters ξi of the primal optimization problem.

Since, ξ∗i ≥ 0, ∀i ∈ S we may write that:

ξ∗i = max(0, 1− yi(⟨w∗,xi⟩) + b∗) (5.44)

Once again the optimal weight vector given by Eq. 5.32 corresponds to the optimal

separating hyperplane realizing the maximum geometric margin given by following

equation:

γ∗ =
1

∥w∗∥
(5.45)

5.2 One-class Support Vector Machines

A general definition of one class support vector machines goes here. Moreover,

definition of the training set X tr.



Chapter 5: Machine Learning Paradigms 142

5.2.1 Spherical Data Description

This method requires a model which gives a closed boundary around the data.

Thus, a hypersphere constitutes an ideal choice for such a model. The sphere, in

general, is characterized by a center a and a radius R which should be appropriately

determined so that the corresponding sphere contains all the training objects in X tr.

Demanding that all training objects in X tr are contained within the sphere is equiva-

lent to setting the empirical error to 0. Therefore, the structural error may be defined

analogously to SVM classifier according to the following equation:

Estruct(R, a) = R2 (5.46)

which has to be minimized with the constraints:

∥xi − a∥2 ≤ R2, ∀i ∈ [l] (5.47)

In order to allow the possibility for outliers in the training set, and thus making

the method more robust, the distance from objects xi to the center a should not

be strictly smaller than R2, but larger distances should be penalized. This entails

that the empirical error should not be zero by definition. Therefore, the primal

optimization problem for the SVDD has the following form:

min
R,a,ξ

R2 + C
l∑

i=1

ξi (5.48a)

s.t ∥xi − a∥2 ≤ R2 + ξi, ∀i ∈ [l] (5.48b)

and ξi ≥ 0, ∀i ∈ [l] (5.48c)

It is obvious that according to the new definition of the error:

E(R, a, ξ) = R2 +
l∑

i=1

ξi (5.49)

the empirical and structural errors are combined in a single error functional by intro-

ducing slack variables ξ (ξi ≥ 0, ∀i ∈ [l]). The parameter C represents the tradeoff

between the volume of the description and the errors.
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In order to transform the original problem into its corresponding dual, it is nec-

essary to compute the Lagrangian function of the primal form which is given by the

following equation:

L(R, a, ξ,α,γ) = R2 + C
l∑

i=1

ξi −
l∑

i=1

αi{R2 + ξi − ∥xi − a∥2} −
l∑

i=1

γiξi (5.50)

where α = [α1, · · · , αl]
T and γ = [γ1, · · · , γl]T are the non-negative Lagrange multi-

pliers so that αi ≥ 0 and γi ≥ 0, ∀i ∈ [l]. By grouping similar terms, the Lagrangian

function in 5.50 may be rewritten as:

L(R, a, ξ,α,γ) = R2(1−
l∑

i=1

αi) + (C − αi − γi)
l∑

i=1

ξi +
l∑

i=1

αi∥xi − a∥2 (5.51)

which can be equivalently reformulated as:

L(R, a, ξ,α,γ) = R2(1−
l∑

i=1

αi)+(C−αi−γi)
l∑

i=1

ξi+
l∑

i=1

αi{⟨xi, xi⟩−2⟨αi, xi⟩+⟨αi, αi⟩}

(5.52)

In this context, the dual optimization problem may be subsequently defined as:

max
α,γ

min
R,a,ξ

L(R, a, ξ,α,γ) (5.53a)

s.t αi ≥ 0, ∀i ∈ [l] (5.53b)

and γi ≥ 0, ∀i ∈ [l] (5.53c)

Then, according to the KT theorem the necessary and sufficient conditions for a

normal point (R∗, a∗, ξ∗) to be an optimum is the existence of a point (α∗,γ∗) such

that:
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∂ L(α,γ, R, a, ξ)

∂R
= 0 (5.54a)

∂ L(α,γ, R, a, ξ)

∂a
= 0 (5.54b)

∂ L(α,γ, R, a, ξ)

∂ξ
= 0 (5.54c)

α∗
i {R2 + ξi − ∥xi − a∥2} = 0, ∀i ∈ [l] (5.54d)

γ∗
i ξi = 0, ∀i ∈ [l] (5.54e)

α∗
i ≥ 0, ∀i ∈ [l] (5.54f)

γ∗
i ≥ 0, ∀i ∈ [l] (5.54g)

Eqs. 5.54a, 5.54b and 5.54c yield that:

l∑
i=1

α∗
i = 1 (5.55a)

a∗ =
l∑

i=1

αixi (5.55b)

C − α∗
i − γ∗

i = 0, ∀i ∈ [l] (5.55c)

Therefore, according to Eqs. 5.55a, 5.55b and 5.55c the Lagrangian may be reformu-

lated as:

L(R, a, ξ,α,γ) =
l∑

i=1

αi⟨xi,xi⟩ − 2
l∑

i=1

αi⟨a,xi⟩+
l∑

i=1

αi⟨a, a⟩ (5.56)

which finally gives that:

L(R, a, ξ,α,γ) =
l∑

i=1

αi⟨xi,xi⟩ −
l∑

i=1

l∑
j=1

αiαj⟨xi,xj⟩ (5.57)

According to Eqs. 5.79, 5.55 and 5.57 the dual form of the primal optimization prob-
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lem may be rewritten as:

max
α,γ

l∑
i=1

αi⟨xi,xi⟩ −
l∑

i=1

l∑
j=1

αiαj⟨xi,xj⟩ (5.58a)

s.t
l∑

i=1

αi{R2 + ξi − ∥xi − a∥2}, ∀i ∈ [l] (5.58b)

γiξi = 0, ∀i ∈ [l] (5.58c)

γi = C − αi, ∀i ∈ [l] (5.58d)

αi ≥ 0 (5.58e)

γi ≥ 0 (5.58f)

The combination of inequalities 5.58d, 5.58e and 5.58f yields that:

0 ≤ αi ≤ C (5.59)

The dual optimization problem that was previously formulated presents a well known

quadratic form. Its minimization is an example of a Quadratic Programming problem

and there exist standard algorithms in order to obtain its solution. Thus, the optimal

values α∗ and γ∗ for the Lagrangian multipliers are obtained. The Lagrangian formu-

lation of the problem can be utilized in order to provide a further interpretation for

the values of α∗. A characteristic of the Lagrange multipliers is that they only play

a role when the corresponding constraint should be enforced or violated. In other

words, they become active only for cases corresponding to active constraints of the

form {αi(R
2 + ξi − ∥xi − a∥2) = 0;αi > 0}. On the other hand, the contribution

of Lagrange multipliers is negligible for inactive constraints which may be defined as

{αi(R
2 + ξi − ∥xi − a∥2) < 0;αi = 0}.

When α∗
i = 0, it follows from Eq. 5.58d that γ∗

i = C ̸= 0 which according to

Eq. 5.58c yields that ξ∗i = 0. This entails that the corresponding training objects xi

fall within the hypersphere and the constraint ∥xi−a∥ ≤ R2 (inactive constraints).

When 0 < α∗
i < C, it follows from Eq. 5.58d that 0 < γ∗

i < C, that is γ∗
i ̸= 0,

which according to Eq. 5.58c yields that ξ∗i = 0. This means that the corresponding

training objects xi are on the hypersphere boundary defining the set SV nbd (active
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constrains). Therefore, the set SV nbd of training objects lying on the boundary of

the hypersphere can be defined as:

SV bnd = {xi ∈ X tr : α∗
i ∈ (0, C) so that ∥xi − a∥2 = R2} (5.60)

Finally, when α∗
i = C, it follows from Eq. 5.58d that γ∗

i = 0, which according

to Eq. 5.58c yields that ξ∗i > 0. This entails that when the Lagrange multipliers

hit the upper bound C, the hyperplane description in not further adjusted in order

to include the corresponding training point xi. In other words, the corresponding

training points will fall outside the hypersphere defining the set SV out. Therefore,

this set can be defined as:

SV out = {xi ∈ X tr : α∗
i = C so that ∥xi − a∥2 > R2} (5.61)

Figure 5.1: Support Vector Data Description.

These three situations are illustrated in full detail within figure 5.1. Having in

mind Eq. 5.55b, the center of the hypersphere a can be expressed as a linear combina-

tion of training objects with weights α∗
i > 0. Therefore, for the computation of a the
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training objects for which the Lagrangian multipliers are zero, may be disregarded.

Specifically, during the optimization of the dual problem it is often that a large frac-

tion of the weights becomes 0. Thus, the sum of Eq. 5.55b is formed by taking into

consideration a small fraction of training objects xi for which α∗
i > 0. These objects

are the support vectors of the description forming the corresponding set SV which

cam be expresses as:

SV = SV bnd ∪ SV out (5.62)

Moreover, the complete set of support vectors can be utilized in order to obtain the

optimal values for the slack variables ξ∗i according to the following equation:

∀xi ∈ SV, ξ∗i = max(0, ∥xi − a∥2 −R2) (5.63)

Since it is possible to give an expression for the center of the hypersphere a, it is

also possible to test whether a new object z will be accepted by the description. In

particular, this is realized by computing the distance from the object to the center

of the hypersphere a. In this context, a test object is accepted when the distance is

smaller or equal to the radius:

∥z− a∥2 = ⟨z, z⟩ − 2
l∑

i=1

αi⟨z,xi⟩+
l∑

i=1

l∑
i=1

αiαj⟨xi,xj⟩ ≤ R2 (5.64)

By definition, R2, is the squared distance from the center of the sphere a to one of

the support vectors on the boundary, given by the following equation:

R2 = ⟨xk,xk⟩ − 2
l∑

i=1

αi⟨xi,xk⟩+
l∑

i=1

l∑
j=1

αiαj⟨xi,xj⟩, ∀xk ∈ SV bnd (5.65)

This one-class classifier is the so-called Support Vector Data Description, which may

be written in the following form:

fSV DD(z; a, R) = I(∥z− a∥2 ≤ R2) (5.66a)

= I(⟨z, z⟩ − 2
l∑

i=1

αi⟨z,xi⟩+
l∑

i=1

l∑
i=1

αiαj⟨xi,xj⟩) (5.66b)
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5.2.2 Flexible Descriptors

The hypersphere is a very rigid model of the data boundary. In general it cannot

be expected that this model will fit the data well. If it would be possible to map the

data to a new representation, then one might be able to obtain a better fit between

the actual data boundary and the hypersphere model. Assuming that there exists a

mapping Φ of the data which improves this fit:

x∗ = Φ(x) (5.67)

then by applying this mapping in Eqs. 5.55 and 5.66 it is obtained that

L(R, a, ξ,α,γ) =
l∑

i=1

αi⟨Φ(xi),Φ(xi)⟩ −
l∑

i=1

l∑
j=1

αiαj⟨Φ(xi),Φ(xj)⟩ (5.68)

and

fSV DD(z; a, R) = I(⟨Φ(z),Φ(z)⟩ − 2
l∑

i=1

αi⟨Φ(z),Φ(xi)⟩+
l∑

i=1

l∑
i=1

αiαj⟨Φ(xi),Φ(xj)⟩)

(5.69)

It is obvious from Eq. 5.69 that all mappings Φ(x) occur only in inner products with

other mappings. Therefore, it is, once again, possible to define a a kernel function of

the following form:

K(xi,xj) = ⟨Φ(xi),Φ(xj))⟩ (5.70)

in order to replace all occurrences of ⟨Φ(xi),Φ(xj)⟩ by this kernel. More details

concerning the definition of the kernel function are discusses within the SVM section.

The utilization of the kernel function will finally yield that:

L(R, a, ξ,α,γ) =
l∑

i=1

αiK(xi,xi)−
l∑

i=1

l∑
j=1

αiαjK(xi,xj) (5.71)

and

fSV DD(z; a, R) = I(K(z, z)− 2
l∑

i=1

αiK(z,xi) +
l∑

i=1

l∑
i=1

αiαjK(xi,xj)) (5.72)

In this formulation the mapping Φ(•) is never used explicitly, but is only defined

implicitly by the kernel function K(•), the so-called kernel trick. Another important



Chapter 5: Machine Learning Paradigms 149

aspect of this data description method is that it provides a way to estimate the

generalization error of a trained SVDD. Specifically, when it is assumed that the

training set is a representative sample from the true target distribution, then the

number of support vectors may be considered as an indicator of the expected error

on the target set. On the other hand, when the training set is a sample which only

captures the area in the feature space, but does not follow the true target probability

density, it is expected that the error estimate will be far off. Letting f bnd
SV be the

fraction of training objects that become support vectors on the boundary and f out
SV be

the fraction of training objects that become support vectors outside the boundary,

then the error estimate according to the leave one out method becomes:

Ẽ ≤ f bnd
SV + f out

SV = fSV (5.73)

5.2.3 v - SVC

The basic assumption behind the SVDD method is that concerning the existence

of a hypersphere containing all the training objects. In particular, the hypersphere

was chosen because it provides a closed boundary around the data. Skolkopf proposed

another approach [Skolkopf et al, 1999], which is called the v-support vector classifier.

This approach is focused on placing a hyperplane such that it separates the dataset

from the origin with maximal margin. Although, this is not a closed boundary around

the data, it is proved by [D. M. J. Tax, 2001] that it provides identical solutions when

the data are processed so that they have unit norm. For a hyperplane w which

separates the data xi from the origin with maximal margin p, the following equation

must hold:

⟨w,xi⟩ ≥ p− ξi, ξi ≥ 0, ∀i ∈ [l] (5.74)

which yields that the function to evaluate a new test object z becomes:

fv−SV C = I(⟨w, z⟩ ≤ p) (5.75)
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In order to separate the data from the origin Skolkopf formulates the following primal

optimization problem:

min
w,ξ,p

1

2
∥w∥2 + 1

vl

l∑
i=1

ξi − p (5.76a)

s.t ⟨w,xi⟩ ≥ p− ξi, ∀i ∈ [l] (5.76b)

ξi ≥ 0, ∀i ∈ [l] (5.76c)

It must be noted that the term 1
2
∥w∥2 in the objective function corresponds to the

structural error while the empirical error is represented by the sum 1
vl

∑l
i=1 ξ. The

regularization parameter v ∈ (0, 1) is a user defined parameter indicating the frac-

tion of the data that should be accepted by the description. The transformation of

the original optimization problem into its corresponding dual, requires once again

the computation of the Lagrangian function which can be obtained by the following

equation:

L(w, ξ, p,α,β) =
1

2
∥w∥2+ 1

vl

l∑
i=1

(ξi− p)−
l∑

i=1

αi{⟨w,xi⟩− p+ ξi}−
l∑

i=1

βiξi (5.77)

Therefore, the dual optimization problem may be formulated as:

max
α,β

min
w,ξ,p

L(w, ξ, p,α,β) (5.78a)

s.t αi ≥ 0, ∀i ∈ [l] (5.78b)

βi ≥ 0, ∀i ∈ [l] (5.78c)
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Then according to KT theorem the necessary and sufficient conditions for a normal

point (w∗, ξ∗, p∗) to be an optimum is the existence of a point (α∗,β∗) such that:

∂ L(w, ξ, p,α,β)

∂w
= 0 (5.79a)

∂ L(w, ξ, p,α,β)

∂ξ
= 0 (5.79b)

∂ L(w, ξ, p,α,β)

∂p
= 0 (5.79c)

α∗
i {⟨w,xi⟩ − p+ ξi} = 0,∀i ∈ [l] (5.79d)

β∗
i ξi = 0,∀i ∈ [l] (5.79e)

α∗
i ≥ 0,∀i ∈ [l] (5.79f)

β∗
i ≥ 0,∀i ∈ [l] (5.79g)

Eqs.5.79a, 5.79b and 5.79c yield that:

w∗ =
l∑

i=1

α∗
ixi (5.80a)

1

vl
− α∗

i − β∗
i = 0, ∀i ∈ [l] (5.80b)

l∑
i=1

α∗
i = 1, ∀i ∈ [l] (5.80c)

Finally, according to equation 5.80 the Lagrangian function in Eq. 5.77 may be for-

mulated as:

L(w, ξ, p,α,β) = −1

2

l∑
i=1

l∑
j=1

αiαj⟨xi,xj⟩ (5.81)
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Having mind equations 5.79d, 5.79e, 5.79f, 5.79g, 5.80 and 5.81 the dual optimization

problem may be rewritten in the following form:

max
α,β

−1

2

l∑
i=1

j∑
j=1

αiαj⟨xi,xj⟩ (5.82a)

s.t
l∑

i=1

αiαj⟨xi, xj⟩ = 1 (5.82b)

1

vl
− α∗

i − β∗
i = 0, ∀i ∈ [l] (5.82c)

αi{⟨w∗,xi⟩ − p∗ + ξ∗i } = 0, ∀i ∈ [l] (5.82d)

β∗
i ξi = 0 (5.82e)

α∗
i ≥ 0 (5.82f)

β∗
i ≥ 0 (5.82g)

(5.82h)

Eqs. 5.82c, 5.82d, 5.82e, 5.82f and 5.82g can be combined into a single equation as:

0 ≤ α∗
i ≤

1

vl
(5.83)

The dual optimization problem is, once again, a well known quadratic optimization

problem which can be solved by standard optimization algorithms in order to ob-

tain the optimal values α∗,β∗ for the Lagrangian multipliers. The dual formulation

of the original optimization problem can be utilized in order to conduct a further

investigation concerning the optimal values of the Lagrangian multipliers. Specifi-

cally, when α∗
i = 0, then according to Eq. 5.82c β∗

i = 1
vl
̸= 0, which according to

Eq. 5.82e yields that ξ∗i ̸= 0. Therefore, the corresponding training objects fulfill

the constraints (inactive constraints). These training objects lie further than the

hyperplane boundary. On the other hand, when 0 < α∗
i < 1

vl
, then Eq. 5.82c yields

that 0 < β∗
i < 1

vl
, which according to Eq. 5.82e yields that ξ∗i = 0. This entails

that the corresponding training objects fulfill the constraints by lying on the bound-

ary of the hyperplane which maximally separates the data from the origin (active

constraints). Moreover, when α∗
i = 1

vl
, then Eq. 5.82c yields that β∗

i = 0, which

according to Eq. 5.82e entails that ξ∗i > 0. Thus, the corresponding training objects

fall outside the hyperplane boundary (active constraints).
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The subset of training objects for which α∗
i ∈ (0, 1

vl
) are the so-called boundary

support vectors which may be formally defined as:

SV bnd = {xi ∈ X tr : 0 < α∗
i <

1

vl
} (5.84)

while the set of training objects for which α∗
i = 1

vl
define the set of training objects

while lie on the hyperplane boundary, defining the set:

SV out = {xi ∈ X tr : α∗
i =

1

vl
} (5.85)

The union of sets SV bnd and SV out defines the set of support vectors such that:

SV = SV bnd ∪ SV out (5.86)

The sets SV bnd and SV out may be utilized in order to compute the optimal values for

the parameter p∗ and ξ∗. Specifically, by considering the set of support vectors lying

on the boundary of the hyperplane, the following equation holds:

∀xi ∈ SV bnd, ⟨w∗,xi⟩ − p∗ = 0 (5.87)

Therefore, by considering the sum over all boundary support vectors it is possible to

write that: ∑
xi∈SV

⟨w∗,xi⟩ − p∗ = 0⇔ (5.88a)∑
xi∈SV

⟨w∗,xi⟩ = nbnd
SV p

∗ ⇔ (5.88b)

p∗ =
1

nbnd
SV

∑
xi∈SV

⟨w∗,xi⟩ (5.88c)

The optimal values for the ξ∗i parameters may be obtained by considering the com-

plete set of support vectors SV such that:

ξ∗i = max(0, p∗ − ⟨w∗,xi⟩) (5.89)

By combining Eqs. 5.80a and 5.88 it is clear that:

p∗ =
1

nbnd
SV

∑
xi∈SV bnd

∑
xj∈SV

α∗
j⟨xi,xj⟩ (5.90)
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Having in mind Eq. 5.90 it is clear that the maximal margin parameter p∗ can be

expresses as a function of inner products between training data points. This entails

that the kernel trick may also be utilized in order to replace each inner product ⟨xi,xj⟩
occurrence with the equivalent form K(xi,xj).





Chapter 6

Immune System Fundamentals

6.1 Introduction

One of the primary characteristics of the human beings is their persistence in

observing the natural world in order to devise theories about how the many parts of

nature behave. The Newton’s laws of physics and Kepler’s model of planetary orbits

constitute two major examples of the unsettled human nature which for many years

now tries to unravel the basic underpinning behind the observed phenomena. The

world, however, need not just be observed and explained but utilized as inspiration

for the design and construction of artifacts, based on the simple principle stating that

nature has been doing a remarkable job for millions of years. Moreover, recent de-

velopments in computer science, engineering and technology has been determinately

influential in obtaining a deeper understanding of the world and particularly the bi-

ological systems. Specifically, biological processes and functions have been explained

on the basis of constructing models and performing simulations of such natural sys-

tems. The reciprocal statement is also true, meaning that the introduction of ideas

stemmed from the study of biology have also been beneficial for a wide range of ap-

plications in computing and engineering. This can be exemplified by artificial neural

networks, evolutionary algorithms, artificial life and cellular automata. This inspi-

ration from nature is a major motivation for the development of artificial immune

systems.

155
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In this context, a new field of research emerged under the name of bioinformatics

referring to the information technology (i.e. computational methods) applied to the

management and analysis of biological data. Its implications cover a diverse range

of areas from computational intelligence and robotics to genome analysis [9]. The

field of biomedical engineering, on the other hand, was introduced in an attempt to

encompass the application of engineering principles to biological and medical prob-

lems [192]. Therefore, the subject of biomedical engineering is intimately related to

bioinformatics.

The bilateral interaction between computing and biology can be mainly identified

within the following approaches:

1. biologically motivated computing where biology provides sources of models and

inspiration in order to develop computational systems (Artificial Immune Sys-

tems),

2. computationally motivated biology where computing is utilized in order to derive

models and inspiration for biology (Cellular Automata) and

3. computing with biological mechanisms which involves the use of the information

processing capabilities of biological systems to replace, or at least supplement,

the current silicon based computers (Quantum and DNA computing).

This thesis, however, is explicitly focused on biologically motivated computing

within the field of Artificial Immune Systems. In other words, the research presented

here does not involve the computational assistance of biology through the construction

of models that represent or reproduce biological functionalities of primary interest.

On the contrary, the main purpose of this thesis is to utilize biology, and immunology

in particular, as a valid metaphor in order to create abstract and high level represen-

tations of biological components or functions. A metaphor uses inspiration in order

to render a particular set of ideas and beliefs in such a way that they can be applied

to an area different than the one in which they were initially conceived. Paton in

[164] identified four properties of biological systems important for the development

of metaphors:
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1. architecture which refers to form or the structure of the system,

2. functionality corresponding to its behavior,

3. mechanisms which characterize the cooperation and interactions of the various

parts and

4. organization referring to the ways the activities of the system are expressed in

the dynamics of the whole.

6.2 Brief History and Perspectives on Immunol-

ogy

Immunology may be defined as the particular scientific discipline that studies

the defence mechanisms that confer resistance against diseases. The immune system

constitutes the primary bodily system whose main function is to protect our bodies

against the constant attack of external microorganisms. The immune system specif-

ically recognizes and selectively eliminates foreign invaders by a process known as

immune response. Individuals who do not succumb to a disease are said to be im-

mune, and the status of a specific resistance to a certain disease is called immunity.

The immune system has a major contribution in attaining the survival of a living

organism by acting efficiently and effectively. The are a large number of distinct

components and mechanisms acting on the immune system. Some of theses elements

are genetically optimized to defend against a specific invader, while others provide

protection a great variety of infecting agents. The circulation of immune cells, as

well as their traffic through the organism, is essential to immunosurveillance and to

an efficient immune response. Moreover, there exists a great redundancy within the

immune system which allows for the activation of many defence mechanisms against

a single agent. Studying the various defense mechanisms of the immune system is

of primary biological and computational importance since such mechanisms exhibit

exceptionally interesting adaptive and memory phenomena. The immune system, in

particular, possesses the capability of extracting information from the various agents
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(environment) and making available for future use in cases of re-infection by the same

agent.

Immunology is a relatively new science that was initially conceived in 1796. At

that time Edward Jenner discovered that the introduction of small amount of vaccinia,

or cowpox in an animal would induce future protection against the often lethal disease

of smallpox. This process is identified by the term vaccination and is still used in

order to describe the inoculation of healthy individuals with weakened samples of the

infectious agents. Therefore, vaccination aims at promoting protection against future

infection with a previously encountered disease.

When the process of vaccination was discovered by Jenner most of the primary

functionalities of the immune system remained unknown. Specifically, in the 19th

century, Robert Koch proved that infectious diseases are caused by pathogenic mi-

croorganisms; each of which is responsible for a particular infection or pathology. At

that time, there were identified four major categories of disease causing microorgan-

isms, or pathogens, namely: viruses, bacteria, fungi and parasites.

The initial breakthrough of immunology in the 19th century was followed by the

pioneer work of Louis Pasteur who successfully designed a vaccine against chicken-

pox in the 1980’s. Pasteur, although well versed in the development of vaccines,

was unaware of the mechanisms involved in the process of immunization, that is the

exploitation of these vaccines in order to protect an organism from future infection.

Pasteur attributed the phenomenon of immunization to the capability of vaccinia

elements in removing nutrients essential to the body so that the growth and prolifer-

ation process of disease causing agents was interrupted. In 1890, Emil von Behring

and Shibashuro Kitasato where the first that demonstrated that protection induced

by vaccination was not due to the removal of nutrients, but was associated with the

appearance of protecting elements in the blood serum of inoculated individuals. Their

discovery revealed that people who had been inoculated against diseases contained

certain agents that could in some way bind to other infectious agents. These agents

were named antibodies.

The first major controversy in immunology appeared when Elie Metchnikoff demon-

strated in 1882, primarily in invertebrates and later in mammals, that some cells were
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capable of “eating” microorganisms. These cells were named phagocytes and accord-

ing to Elie were the operating constituents of the mechanism that provides resistance

against the invading microorganisms. Therefore, based on Elie’s perspective, anti-

bodies were of little importance within the immune system. The conflict was resolved

in 1904 when Almroth Wright and Joseph Denys demonstrated that antibodies were

capable of binding with bacteria and promoting their destruction by phagocytes.

Another important discovery in the history of immunology was the formulation of

side-chain theory by Paul Ehrlich in 1890s. The main premise of this theory was that

the surfaces of white blood cells, such as B-cells are cover with several side-chains, or

receptors. In particular the receptors on the surfaces of the B-cells form chemical links

with the antigens encountered. In a broad sense, any molecule that can be recognized

by the immune system is called an antigen. The variety of the existing receptors on

the surface of the various B-cells ensures the existence of at least one receptor with

the ability to recognize and bind with a given antigen. Moreover, it was shown that

the exposure and binding with a given antigen is followed by an explosive increase in

the production of antibodies.

The production of the required antibodies in order to fight the infection from anti-

gens was explained by the formulation of a new theory, the so-called providential (or

germinal) theory. Providential theory suggests that antibodies might be constructed

from the collection of genes, or genome, of the animal. Therefore, it was suggested

that the contact of a receptor on a B-cell with a given antigen would be responsible

for selecting and stimulating the B-cell. This results in increasing the production

of these receptors, which would then be secreted to the blood stream as antibodies.

Therefore, Ehrlich’s theory was characterized as selectivist based on the selection and

stimulation events that dominate the immune response of a living organism. In this

context, antigens play the key role of selecting and stimulating B-Cells. The most

intriguing aspect of this theory relates to the implied idea that an almost limitless

amount of antibodies can be generated on the basis of a finite genome. The theory

also suggested that the antigens were themselves responsible for selecting an already

existing set of cells through their receptors.

However, in the time period between the years 1914 and 1955 the scientific commu-
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nity remained reluctant in completely adopting a selective theory for the formation of

antibodies. The theoretical proposals about such formations were mainly considered

as sub-cellular. This entails that the related research was focused on the creation of

the antibody molecules produced by cells, with the conclusion that the antigen would

bring information concerning the complementary structure of the antibody molecule.

This theory is called template instruction theory and was originally formulated by

Anton Breinl and Felix Haurowitz. This theory was subsequently developed and

defended by the Nobel Prize winner Linus Pauling. Pauling postulated that all anti-

bodies possess the same amino acid sequences, but their particular three-dimensional

configuration is determined during synthesis in direct contact with the antigen, which

would serve as a template.

Therefore, the early immunology was dominated by two controversial theories

concerning the structure of the antibody. On the one hand, the germinal or selective

theory suggested that the genome was responsible for the definition of the antibody

structure, while on the other hand, the instructionist or template theory suggested

that a fundamental intervention of the antigens in the antibody formation process.

The selective theories of antibody formation were revived in the early 1950s due to

Niels K. Jerne. Jerne assumed that a diverse population of natural antibodies would

appear during development, even in the absence of antigen interaction. The antigen

would be matched through the selection of circulating antibodies containing structures

complementary to this antigen. Therefore, the quality of an immune response to a

given antigen would depend upon the concentration of the circulating antibody of a

specific type and could be enhanced by the previous exposition to the antigen.

It remained for Burnet to assert that each cell produces and creates on its surface

a single type of antibody molecule. The selective event is the stimulus given by the

antigen, where those cells that produce antibodies complementary to it will prolifer-

ate (clonal expansion) and secrete antibodies. Clonal selection (or clonal expansion)

theory, formalized by Burnet in 1959, assumed that the generated antibody diversity

may be imputed to the activation of random processes in the antibody generation

process. According to Burnet, this process takes place during the neo-natal life, such

that immediately after birth, the animal would have a fixed repertoire of antibod-
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ies. Additionally, this theory postulated the death of any cell possessing antibodies

capable of recognizing self-antigens, named self-reactive cells, during the period of

diversity generation.

In 1971, Jerne argued that the elimination of self-reactive cells would constitute

a powerful negative selection mechanism. This would favor the cellular diversity in

cells that could potentially recognize antigens similar to the self. Considerations on

how the self-antigens, particularly those of the antibody molecules, named idiotopes,

could affect the diversity generation and the regulation if the immune responses, lead

to the Jerne’s proposal of the immune network theory. For this work Jerne received

the Nobel prize in 1984.

6.3 Fundamentals and Main Components

The immune system constitutes a natural, rapid and effective defense mechanism

for a given host against infections. It consists of a two-tier line of defense, namely

the innate immune system and the aadaptive immune system, as it is particularly

illustrated

Figure 6.1: Immune System
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Both systems depend upon the activity of a large number of immune cells [104,

106, 167] such aswhite blood cells, where the innate immunity is mediated mainly by

granulocytes and macrophages, and the adaptive immunity is mediated by lympho-

cytes. The cells of the innate immune system are immediately available for combat

against a wide range of antigens, without requiring previous exposure to them. This

reaction will occur in the same way in all normal individuals.

The antibody production in response to a determined infectious agent is called a

specific immune response, also known as adaptive immune response. The process of

antibodies production within the adaptive immune system is explicitly conducted as a

response against specific infections. In particular, the presence of certain antibodies in

an individual reflects the infections to which this individual has already been exposed.

A very interesting aspect of the adaptive immune system is that its cells are capable

of developing an immune memory, that is they are capable of recognizing the same

antigenic stimulus when it is presented to the organism again. This capability avoids

the re-establishment of the disease within the organism. Therefore, the adaptive

immune response allows the immune to improve itself with each encounter of a given

antigen.

The immune system consists of a number of components, one of these being lym-

phocytes. Lymphocytes are the primary mediators of the adaptive immune response

and are responsible for the recognition and elimination of the pathogenic agents.

These agents in turn proportion immune memory that occurs after the exposition to

a disease, or vaccination. Lymphocytes usually become active when there is some kind

of interaction with an antigenic stimulus leading to the activation and proliferation

of lymphocytes. There are two main types of lymphocytes

• B lymphocytes or B-cells and

• T lymphocytes or T-cells

the express in their surfaces antigenic receptors highly specific to a given antigenic

determinant. In particular, the B-cells have receptors that are able to recognize parts

of the antigens that freely circulate in the blood serum. The surface receptors on
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these B-cells respond to a specific antigen. When a signal is received by these B-cell

receptors, the B-cell is activated and will proliferate and differentiate into plasma cells

that secret antibody molecules in high volumes. Thee released antibodies, which are

soluble form of the B-cell receptors, are used in order to neutralize the pathogen,

leading to their destruction. Some to these activated B-cells will remain circulating

through the organism for long periods of time, thus guaranteeing future protection

against the same (or similar) antigen that elicited the immune response.

While the adaptive immune response results in immunity against re-infection to

the same infectious agent, the innate immune response remains constant along the life-

time of an individual, independent of the antigenic exposure. Altogether, the innate

and adaptive immune system contribute to an extremely effective defense mechanism.

6.4 Adaptive Immune System

The ability to present resistance against pathogens is shared by all living organ-

isms. The nature of this resistance, however, defers according to the type of organism.

Traditionally, research in immunology has studied almost exclusively the vertebrate

(animals containing bones) defense reactions and, in particular, the immune system

of mammals. Vertebrates have developed a preventive defense mechanism since its

main characteristic is to prevent infection against many kinds of antigens that can be

encountered, both natural and artificially synthesized.

The most important cells of the adaptive immune system are the lymphocytes.

They are present only in vertebrates who have evolved a system to proportionate a

more efficient and versatile defense mechanism against future infections. This is when

compared to those mechanisms of the innate immune system. However, the cells of

the innate immune system have a crucial role in the initiating and regulating of the

adaptive immune response.

Each naive lymphocyte (i.e one that has not been involved in an immune response)

that enters the blood stream carries antigen receptors of single specificity. The speci-

ficity of these receptors is determined by a special mechanism of gene rearrangement

that acts during lymphocyte development in the bone marrow and thymus. It can
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generate millions of different variants of the encoded genes. So though an individual

carries a single specificity receptor, the specificity of each lymphocyte is different.

There are millions of lymphocytes circulating throughout our bodies and therefore

they present millions of different specificities.

In 1959, Burnet formalized the selective theory which was finally accepted as the

most plausible explanation for the behavior of an adaptive immune response. This

theory revealed the reasons why antibodies can be induced in response to virtually

any antigen, and are produced in each individual only against those antigens to which

it was exposed. Selective theory suggested the existence of many cells that could

potentially produce different antibodies. Each of these cells had the capability of

synthesizing an antibody of distinct specificity which by binding on the cell’s surface

acted as an antigen receptor. After binding with the antigen, the cell is activated to

proliferate and produce a large clone. A clone can be understood as a cell or set of

cells that are the progeny of a single parent cell. In this context, the clone size refers

to the number of offspring generated by the parent cell. These cells would now secrete

antibodies of the same specificity to its cell receptor. This principle was named clonal

selection theory or clonal expansion theory and constitutes the core of the adaptive

immune response. Based upon this clonal selection theory, the lymphocytes can

therefore be considered to undergo a process similar to natural selection within an

individual organism as it was originally formulated by Darwin in [42]. Only those

lymphocytes that meet an antigen can interact with its receptor are activated to

proliferate and differentiate into effector cells.

6.5 Computational Aspects of Adaptive Immune

System

The adaptive immune system is subject of great research interest because of its

powerful information processing capabilities. In particular it performs many complex

computations in a highly parallel and distributed fashion [70]. Specifically, its over-

all behavior can be explained as an emergent property of many local interactions.
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According to Rowe [185], the immune system functionality resembles that of the hu-

man brain since it possesses the ability to store memories of the past in strengths

of the interactions of its constituent cells. By doing so, it can generate responses

to unseen patterns (antigens). The primary features of the adaptive immune system

which provide several important aspects to the field of information processing may

be summarized under the following terms of computation:

6.5.1 Pattern Recognition

From the view point of pattern recognition in the immune system, the most im-

portant characteristics of B- and T-cells is that they carry surface receptor molecules

capable of recognizing antigens. B-cells and T-cells receptors recognize antigens with

distinct characteristics. The B-cell receptor (BCR) interacts with antigenic molecules

free in solution, while the T-cell receptor (TCR) recognizes antigens processed and

bound to a surface molecule called major histocompatibility complex (MHC). The

antigen B-cell receptors are bound to the cell membrane and will be secreted in the

form of antibodies when the cell becomes activated. The main role of the B-cell is the

production and secretion of antibodies in response to pathogenic agents. Each B-cell

produces a single type of antibody, a property named monospecificity. These anti-

bodies are capable of recognizing and binding to a determined protein. The secretion

and binding of antibodies constitute a form of signaling other cells so that they can

ingest, process, and remove the bound substance.

Figure 6.2: B- cell detaching the antibody
molecule on its surface.

Figure 6.3: The portion of the antigen that
is recognized is called epitope.
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Figure 6.2 illustrates the B-cell detaching the antibody molecule on its surface.

The immune recognition occurs at the molecular level and is based on the comple-

mentarity between the binding region of the receptor and a portion of the antigen

called epitope. Whilst antibodies present a single type of receptor, antigens might

present several epitopes. This entails that different antibodies can recognize a single

antigen, as illustrated in Figure 6.3.

Figure 6.4: T-cell detaching the TCR on the cell surface.

While B-cells present memory antibody molecules on their surface, and maturate

within the bone marrow, the maturation process of T-cells occurs in the thymus.

T-cells functionality specializes in the regulation of other cells and the direct attack

against infect causing agents for the host organism. T-cells can be divided to two

major categories: helper T-cells(TH) and killer (or cytotoxic) T-cells(TK). T-cell anti-

genic receptors (TCR) are structurally different when compared to B-cell receptors

as it is particularly illustrated in Figure 6.4. The TCR recognizes antigens processed

and presented in other cells by a surface molecule called major histocompatibility

complex or MHC. Figure 6.4 also presents T-cell receptor binding with the MHC

complex.
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6.5.2 Immune Network Theory

Immune network theory or idiotypic network theory was formulated by N. K. Jerne

in 1974 [105] in an attempt to provide a conceptually different theory of how the im-

mune system components interact with each other and the environment. This theory

is focused on providing a deeper understanding concerning the emergent properties

of the adaptive immune system, such as learning and memory, self - tolerance, and

size and diversity of the immune repertoires. Immune network theory was based on

the demonstration that animals can be stimulated to make antibodies capable of rec-

ognizing parts of antibody molecules produced by other animals of the same species

or strain. This demonstration lead Jerne to realize that within the immune system

of one given individual, any antibody molecule could be recognized by a set of other

antibody molecules.

Jerne proposed the following notation in order to describe the immune network.

The portion of an antibody molecule which is responsible for recognizing (complemen-

tarily) an epitope was named paratope. An idiotype was defined as the set of epitopes

displayed by the variable regions of a set of antibody molecules, and an idiotope

was each single idiotypic epitope. The patterns of idiotopes are determined by the

same variable regions of antibody peptide chains that also determine the paratopes.

Thus, the idiotopes are located in and around the antigen binding site [98], and each

antibody molecule displays one paratope and a small set of idiotopes [105].

The immune system was formally defined as an enormous and complex network

of paratopes that recognize sets of idiotopes and of idiotopes that are recognized by

sets of paratopes. Therefore, each element could recognize as well as be recognized.

This property lead to the establishment of a network, and as antibody molecules

occur both free and as receptor molecules on B-cells, this network intertwines cells

and molecules. After a given antibody recognizes an epitope or an idiotope, it can

respond either positively or negatively to this recognition signal. A positive response

would result in cell activation, cell proliferation, and antibody secretion, while a

negative response would lead to tolerance and suppression.
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Figure 6.5: Immune Network Theory.

Figure 6.5 illustrates the paratope and idiotope of an antibody molecule as well as

the positive and negative responses according to network theory. From a functional

point of view , if a paratope interacts with an idiotope, even in the absence of antigens,

then the immune system must display a sort of eigen-behavior resulting from this

interaction. This is a fundamental property of the immune system upon which it

can achieve a dynamic steady state as its elements interact among themselves in

an activating or suppressing manner. In this context, network activation results in

increasing the concentration of the antibody molecules while network suppression

results in decreasing the concentration of the antibody molecules.

Figure 6.6 provides an illustration of the immune system behavior as it is inter-

preted through the utilization of the immune network provided by Jerne. When the

immune system is primed with an antigen, its epitope is recognized (with various

degrees of specificity) by a set of different epitopes, called pa. These paratopes occur

on antibodies and receptor molecules together with certain idiotopes, so that the set

pa of paratopes is associated with the set ia of idiotopes. The symbol paia denotes the

total set of recognizing antibody molecules and potentially responding lymphocytes

with respect to the antigen Ag. Within the immune network, each paratope of the

set pa recognizes a set of idiotopes and the entire set pa recognizes an even larger set

of idiotopes, and the entire set pa recognizes an even larger set of idiotopes. The set

ib of idiotopes is called the internal image of the epitope (or antigen) because it is

recognized by the same set pa that recognized the antigen. The set ib is associated
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with a set pb of paratopes occurring on the molecules and cell receptors of the set

pbib.

Figure 6.6:

Furthermore, each idiotope of the set paia is recognized by a set of paratopes, so

that the entire set ia is recognized by an even larger set pc of paratopes that occur

together with a set ic of idiotopes on antibodies and lymphocytes of the anti-idiotypic

set pcic. According to this scheme, it is reasonable to assume the existence of ever-

larger sets that recognize and or are recognized by previously defined sets within the

network. Besides the recognizing set paia there is a parallel set pxia of antibodies that

display idiotopes of the set ia in molecular association with combining sites that do

not fit the foreign epitope. The arrows indicate a stimulatory effect when idiotopes

are recognized by paratopes on cell receptors and a suppressive effect when paratopes

recognize idiotopes on cell receptors.
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6.5.3 The Clonal Selection Principle

As each lymphocyte presents a distinct receptor specificity, the number of lym-

phocytes that might bind to a given antigenic molecule is restricted. Therefore, in

order order to produce enough specific effector cells to fight against an infection,

an activated lymphocyte has to proliferate and then differentiate into these effec-

tor cells. This process, called clonal expansion, occurs inside the lymph nodes in a

micro-environment named germinal center (GC) and is characteristic in all immune

responses [240, 212].

The clonal selection principle (or clonal expansion principle) is the theory used

to describe the basic properties of an adaptive immune response to an antigenic

stimulus. It establishes the idea that only those cells capable of recognizing an anti-

genic stimulus will proliferate and differentiate into effector cells, thus being selected

against those cells that do not. Clonal selection operates on both T-cells and B-cells.

The main difference between B- and T- cell clonal expansion is that B-cells suffer so-

matic mutation during reproduction and B-effector cells are active antibody secreting

cells. In contrast, T-cells do not suffer somatic mutation during reproduction, and

T-effector cells are mainly active secretors of TK cells. The presence of mutational

and selectional events in the B-cell clonal expansion process allow these lymphocytes

to increase their repertoire diversity and also to become increasingly better in their

capability of recognizing selective antigens. Therefore, the genetic variation, selection,

and adaptation capabilities of B-cells provide the reasons for restricting the discussion

regarding the clonal selection principle on this specific type of immune cells.

When an animal is exposed to an antigen the B-cells respond by producing an-

tibodies. Each B-cell secrets a unique kind of antibody, which is relatively specific

for the antigen. Figure 6.7 presents a simplified description of the clonal selection

principle. Antigenic receptors on a B-cell bind with an antigen (I) and coupled with

a second signal (or co-stimulatory signal) from accessory cells, such as TH cells, allow

an antigen to stimulate a B-cell. This stimulation of the B-cell causes it to proliferate

(divide) (II) and mature into terminal (non-dividing) antibody secretion cells, called

plasma cells (III). While plasma cells are the most active antibody secretors, the
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rapidly dividing B-cells also secrete antibodies, although at a lower rate. The B-cells,

in addition to proliferating and differentiating into plasma cells, can differentiate into

long-lived B-memory cells (IV). Memory cells circulate through the blood, lymph,

and tissues and probably do not manufacture antibodies. However, when exposed to

a second antigenic stimulus they rapidly commence differentiating into plasma cells

capable of producing high affinity antibodies. These are pre-selected for the spe-

cific antigen that had stimulated the primary response. The theory also proposes

that potential self-reactive developing lymphocytes are removed from the repertoire

previously to its maturation.

Figure 6.7:

In summary, the main properties of the clonal selection theory are:

• Negative selection: elimination of newly differentiated lymphocytes reactive

with antigenic patterns carried by self components, named self-antigens;

• Clonal expansion: proliferation and differentiation on contact of mature lym-

phocytes with foreign antigens in the body;
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• Monospecificity : phenotypic restriction of one pattern to one differentiated cell

and retention of the pattern by clonal descendants;

• Somatic hypermutation: generation of new random genetic changes, subse-

quently expressed as diverse antibody patterns, by a form of accelerated somatic

mutation; and

• Autoimmunity : the concept of a forbidden cloneto early elimination by self-

antigens as the basis of autoimmune diseases.

6.5.4 Immune Learning and Memory

Antigenic recognition is not enough in order to ensure the protective ability of the

immune system over large periods of time. It is important for the immune system

to maintain a sufficient amount of resources in order to mount an effective response

against pathogenes encountered at a later stage. As in typical predator-prey situations

[214], the size of the lymphocyte subpopulation (clone) specific for the pathogen with

relation to the size of the pathogen population is crucial to determining the infection

outcome. Learning in the immune system involves rasing the population size and the

affinity of those lymphocytes that have proven themselves to be valuable during the

antigen recognition phase. Thus, the immune repertoire is biased from a random base

to a repertoire that more clearly reflects the actual antigenic environment.

The total number of lymphocytes within the immune system is not kept absolutely

constant since there exists a regulation process which increases the sizes of some

clones or decreases the sizes of some others. Therefore, if the learning ability of the

immune system is uniquely acquired by increasing the population sizes of specific

lymphocytes, it must either “forger” previously learned antigens, increase in size, or

constantly decrease the portion of its repertoire that is generated at random and that

is responsible for responding to novel antigens [171].

In the normal coarse of the evolution of the immune system, an organism would

be expected to encounter a given antigenic pattern repeatedly during its lifetime. The

initial exposure to an antigen that stimulates an adaptive immune response is handled
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by a small number of B-cells, each producing antibodies of different affinity. Storing

some high affinity antibody producing cells from the fist infection, so as to a large

initial specific B-cell sub-population (clone) for subsequent encounters, considerably

enhances the effectiveness of the immune response to secondary encounters. These

are referred to as memory cells. Rather than ‘starting from scratch’ every time, such

a strategy ensures both the speed and accuracy of the immune response becomes

successively stronger after each infection. This scheme is intrinsic of a reinforcement

learning strategy where the system is continuously learning from direct interaction

with the environment.

Figure 6.8: Primary, secondary and cross-reactive immune responses.

Figure 6.8 illustrates a particular scenario for the time evolution of an immune

response (memory) which is triggered by the introduction of an antigen Ag1 at time 0.

According to this scenario, the initial concentration of the antibodies specific to Ag1

will not be adequate until after a lag has passed so that the specific type of antibodies

starts to increase in concentration and affinity up to a certain level. Therefore, in

the course of the immune response, the infection is eliminated and the concentration

of the antibodies specific to Ag1 begins to decline. This first phase is known as the

primary response. When another antigen Ag2 (different from Ag1) is introduced,

the same pattern of response is presented, but for a kind of antibody with different
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specificity from the one that recognized Ag1. This demonstrates the specificity of the

adaptive immune response. On the other hand, one important characteristic of the

immune memory is that it is associative. This is specifically argued in [199] where the

authors elaborate that immunological memory is an associative and robust memory

that belongs to the class of distributed memories. This class of memories derives its

associative and robust nature by sparsely sampling the input space and distributing

the data among many independent agents [117]. B-cells adapted to a certain type

of antigen Ag1 can present a faster and more efficient secondary response not only

to Ag1, but also to any structurally related antigen, e.g., Ag′1. The phenomenon

of presenting a more efficient secondary response to an antigen structurally related

to a previously seen antigen is called immunological cross-reaction or cross-reactive

response. The immunological cross-reaction is equivalent to the generalization ability

of machine learning algorithms. The secondary immune response is characterized by

a shorter lag phase, a higher rate of antibody production, and longer persistence of

antibody synthesis. Moreover, a dose of antigen substantially lower than that required

to initiate a primary response can cause a secondary response.

The associative nature of the immune memory can be better understood through

the series of illustrations within the figures 6.9 (I) - 6.9 (IV), since they provide

a more vivid representation of the previously discussed immune response scenario.

This time, however, attention is focused on the immune recognition phenomena that

take place at the molecular level during the course of the primary and secondary

immune responses. Figure 6.9 (I) presents the initial immune system stimulation by

the antigenic pattern Ag1 where the stimulated B- and T-cells are considered to lie

within the ball of stimulation of that antigen [170]. Notice that immune molecules

and external pathogenic agents are both represented by points in a two dimensional

plane where the affinity of interaction between immune cells and antigenic patterns

is quantified by their distance.
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Figure 6.9: Primary, secondary and cross-reactive immune responses.

Figure 6.9 (II) depicts the state of the immune system towards the end of the

primary immune response where antibodies of higher affinity have increased in con-

centration in order to eliminate the majority of the antigenic patterns that circulate

in the blood serum. This is the very essence of the clonal selection principle [26]

according to which, only a specific subset of the available antibodies repertoire is

selected in order to proliferate in a process similar to natural evolution. At the end of

the immune response, the population of antibodies decreases since the antigen that

initially triggered the immune response is completely cleared. It is true, however, that

a persistent sub-population of memory cells (antibodies of high affinity) remains as it

is illustrated in figure 6.9 (III). So far, the mechanism by which memory cells persist

is not fully understood. One theory suggests that a prolonged lifetime is within the

nature of memory cells [145] while others propose a variety of mechanisms based on

the hypothesis that memory cells are restimulated at some low level. Such a theory is

the idiotypic network theory [105] in which cells co-stimulate each other in a way that
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mimics the presence of an antigen. Other theories suggest that small amounts of the

antigen are retained in lymph nodes [216, 217] or that the existence of related envi-

ronmental antigens provides cross-stimulation [148]. Although the idiotypic network

theory has been proposed as a central aspect of the associative properties of immuno-

logical memory [65, 75], it is but one of the possible mechanisms that maintains the

memory population and is key to neither the associative nor the robust properties

of the immunological memory. It is true, however, that the persistent population of

memory cells is the mechanism by which the immune system remembers. If the same

antigen is seen again, the memory population quickly produces large quantities of

antibodies and it is an often phenomenon that the antigen is cleared before it causes

any disease. This is the so-called secondary immune response according to which

a slightly different secondary antigen may overlap part of the memory population

raised by the primary antigen as it is illustrated in figure 6.9 (IV). In other words,

this is the cross-reactive response which in the context of computer science could be

characterized as associative recall. The strength of the secondary immune response is

approximately proportional to the number of memory cells in the ball of stimulation

of the antigen. If a subset of the memory population is stimulated by a related anti-

gen, then the response is weaker [58]. Therefore, memory appears to be distributed

among the cells in the memory population. Immunological memory is robust because,

even when a proportion of the memory population is lost, the remaining memory cells

persist to produce a response.

6.5.5 Immunological Memory as a Sparse Distributed Mem-

ory

Sparse Distributed Memories (SDMs) resemble the random access memory in a

computer since they share the same reading and writing functionalities. SDMs in

particular are written to by providing an address and data, and read from by pro-

viding an address and getting an output. Unlike random access memory, however,

the address space of SDM is enormous, sometimes 1000 bits, yielding 21000 possible

addresses. SDMs cannot instantiate such a large number of address-data locations.
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These instantiated address-data locations are called hard locations and are said to

sparsely cover the input space[118]. When an address is presented to the memory

hard locations that are within some threshold Hamming distance of the address are

activated. This subset of activated hard locations is called the access circle of the

address, as it is illustrated in figure 6.10 (I).

Figure 6.10: Sparse Distributed Memories

On a write operation, each bit of the input data is stored independently in a

counter in each hard location in the access circle. If the i-th data bit is a 1, the i-th

counter in each hard location is incremented by 1, if the i-th data bit is 0 the counter

is decremented by 1, as it is illustrated in figure 6.10 (II). On a read operation, each

bit of the output is composed independently of the other bits. Specifically, the value

of the i-th counter of each of the hard locations in the access circle are summed. If

the sum is positive the output for the i-th bit is a 1, if the sum is negative the output

is a 0, as it is illustrated in figure 6.10 (III).

The distribution of the data among many hard locations makes the memory robust
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to the loss of some hard locations, and it permits associative recall of the data if a

read address is slightly different from a prior write address. If the access circle of the

read address overlaps the write address, then the hard locations that were written to

by the write address are activated by the read address, and give an associative recall

of the write data, as it is illustrated in figure 6.10 (IV).

The correspondence between the two types of memories is easy to be identified

since both SDM’s and immunological memory use detectors in order to recognize

input. In the case of SDM, hard locations recognize an address, in the case of im-

munological memory, B- and T-cells recognize an antigen. In both systems the num-

ber of possible distinct inputs is huge and due to resource limitations, the number

of detectors is much smaller than the number of possible inputs. Therefore, in both

systems, the input recognition is performed through a partial match since the corre-

sponding input spaces are sparsely covered. Partial recognition in the case of SDM’s

is performed on the basis of the Hamming distance, and on the affinity, in the case

of immunological memory. Thus, in both systems an input pattern activates a subset

of detectors, which is the access circle of the input address in the context of SDM’s,

and the ball of stimulation of the antigen in the context of immunological memory.

In both systems, the input associated information is stored upon the available

detectors. In particular, SDM related information takes the form of exogenously

supplied bit string, while immunological memory related information is based on

mechanisms of the immune system determining whether to respond to an antigen

and with particular class of antibodies.

All the available information, in both systems, is distributed across activated de-

tectors. SDMs utilize the input data in order to adjust counters, while immunological

memory utilizes a large number of memory cells in order to determine the class of an-

tibodies to be produced. In particular, for the case of B-cells the information provided

by the invading antigenic pattern is used in order to create a highly specific, immune

competent, class of antibodies through a genetic reconfiguration process. Because all

the information is stored in each detector, each detector can recall the information

independently of the other detectors. The strength of the output, the signal, is an

accumulation of the information in each activated detector. Thus, as detectors fail,
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the output signal degrades gracefully, and the signal strength is proportional to the

number of activated detectors. Therefore, the distributed nature of information stor-

age, in both systems, makes them robust to the failure of individual detectors. In the

case of SDM, the data is distributed to hard locations, each of which have different

addresses, and in the case of immunological memory, to cells with different receptors.

In this context, if the activated subset of detectors of a related input (a noisy address

in the case of SDM, or mutant strain in the case of immunological memory) overlap

the activated detectors of a prior input (figures 6.9 (IV) and 6.10 (IV)), detectors

from the prior input will contribute to the output. Such associative recall, and the

graceful degradation of the signal as inputs differ, is due to the distribution of the

data among the activated detectors.

6.5.6 Affinity Maturation

In a T-cell dependent immune response, the repertoire of antigen-activated B-cells

is diversified by two major mechanisms:

• hypermutation and

• receptor editing.

Specifically, the pool of memory cells is established by the accumulation of only high-

affinity variants of the originally activated B-cells. This maturation process coupled

with the clonal expansion takes place within the germinal centers [212].

The set of antibodies that participates in a secondary immune response have, on

average, a higher affinity than those of the early primary response. This phenomenon,

which is restricted to the T-cell dependent responses, is referred to as the maturation

of the immune response. This maturation requires that the antigen-binding sites if

the antibody molecules in the matured response be structurally different from those

present in the primary response. Three different kinds of mutational events have been

observed in the antibody V-region [63]:

• Point mutations;
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• Short deletions; and

• Non-reciprocal exchange of sequence following gene conversion (repertoire shift).

The clonal expansion process involves a sequence of random changes, introduced

into the variable region (V-region) genes, in order to produce antibodies of increasingly

higher affinity. The set of memory cells is subsequently assembled by selecting these

higher affinity antibodies. It must be noted, that the final antibodies repertoire in not

only diversified through a hypermutation process. In addition, the immune system

utilizes complementary selection mechanisms, in order to preserve a dominating set of

B-cells with higher affinity receptors. However, the random nature of the somatic mu-

tation process involves the development of a large portion of non-functional antibodies

which under the pressure of the hypermutation process can develop harmful anti-self

specificities. Therefore, those cells with low affinity receptors, or self-reactive cells,

must be efficiently eliminated (or become anergic) so that they do not significantly

contribute to the pool of memory cells. This elimination process should be extended

to the subset of B-cells that contain damaged and, therefore, disabled antigen-binding

sites. The primary functionality of the immune systems that resolves this elimina-

tion process is called apoptosis and it is very likely to take place within the germinal

centers. Apoptosis constitutes an intrinsic property of the immune system dealing

with the programmed cell death when a cascade of intercellular events results in the

DNA condensation, fragmentation and death [149, 39]. It is clear then, that the two

major factors controlling the maturation of the immune response correspond to the

processes of somatic hypermutation and clonal selection.

The immune response maturation in the time period between the primary to the

secondary exposure to the same or similar antigenic pattern is a continuous process.

This is justified by taking into consideration the time evolution of the affinity of

the available antibodies, as it is presented in figure 6.11. Therefore, there are four

essential features of the adaptive immune responses:

• Sufficient diversity to deal with a universe of antigens;

• Discrimination of self from non-self ;
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• Adaptability of the antibodies to the selective antigens; and

• Long lasting immunological memory.

Figure 6.11: The affinity maturation process

According to the original formulation of the clonal selection theory by Burnet[26]

memory was acquired by expanding the size of an antigen specific clone, with random

mutations being allowed in order to enhance affinity. Furthermore, self-reactive cells

would be clonally deleted during development. Recent developments suggest that

the immune system practises molecular selection of receptors in addition to clonal

selection of lymphocytes[158]. Instead of the clonal deletion od all the self-reactive

cells, occasionally B lymphocytes were found that had undergone receptor editing. In

other words, these B-cells had deleted their self-reactive receptors and developed new

entirely new receptors by genetic recombination.

George and Gray [74] argued that there should be an additional diversity introduc-

ing mechanism during the process of affinity maturation. Their contribution focuses

on the idea that receptor editing may be considered as a primary mechanism which

offers the ability to escape from local optima on an affinity landscape. Figure 6.12
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illustrates this idea by considering all possible antigen-binding sites depicted in the

x-axis, with most similar ones adjacent to each other. The Ag-Ab affinity, on the

other hand, is shown on the y-axis.

Figure 6.12: Receptor editing process.

Figure 6.12, assumes that a particular antibody (Ab1) is selected during a pri-

mary response, so that subsequent point mutation and selection operations, allow

the immune system to explore local areas around Ab1 by making small steps towards

an antibody with higher affinity, leading to a local optimum (Ab∗1). As mutations

with lower affinity are lost, the antibodies cannot go down the hill. Therefore, re-

ceptor editing is a process which allows an antibody to take large steps through the

landscape, landing in a local where the affinity might be lower (Ab2). However, oc-

casionally the leap will lead to an antibody on the side of a hill where the climbing

region is more promising (Ab3), in order to reach the global optimum. For this locale,

point mutations followed by selection can drive the antibody to the top of the hill

(Ab∗3).
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6.5.7 Self/Non-self Discrimination

For each of the two main types of cellular components in the lymphoid system

(B-cells and T-cells) there are three possible classes of repertoires:

• Potential repertoire: determined by the number, stricture, and mechanisms

of expression of germ-line collections of genes encoding antibodies or T-cell

receptors, plus the possible somatic variants derived from these. It corresponds

to the total repertoire that can be generated;

• Available (or expressed) repertoire: defined as the set of diverse molecules that

are used as lymphocyte receptors, that is, what can be used;

• Actual repertoire: the set of antibodies and receptors produced by effector lym-

phocytes activated in the internal environment which actually participate in the

interactions defining the autonomous activity in any given state.

The recognition ability of the immune system is complete. That is, the antibody

molecules and T-cell receptors produced by the lymphocytes of an animal can recog-

nize any molecule, either self or non-self, even those artificially synthesized. Antibody

molecules are equipped with immunogenic idiotopes, idiotopes that can be recognized

by the antigen binding sites on other antibodies. The completeness axiom states that

all idiotopes will be recognized by at least one antibody molecule, thus, being the

fundamental argument behind the concept of idiotypic networks. The main factors

contributing to the repertoire completeness are its diversity (obtained by mutation,

editing, and gene rearrangement), its cross-reactivity and its multispecificity [100].

Cross-reactivity and multispecificity are considered as the main reasons explaining

why a lymphocyte repertoire smaller than the set containing any possible antigenic

pattern can in practise recognize and bind to every antigen. The difference between

cross-reactivity and multispecificity is that the former indicates the recognition of

related antigenic patterns (epitopes) while the latter refers to the recognition of very

different chemical structures.

The completeness axiom represents a fundamental paradox, since it states that

all molecular shapes can be recognizes including our own, which are also interpreted
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as antigens, or self-antigens. The proper functionality of the immune system relies

upon its ability to distinguish between molecules of our own cells (self ) and foreign

molecules (non-self ), which are a priori indistinguishable. The inability of the immune

system to perform this extremely significant pattern recognition task results in the

emergence of autoimmune diseases which are triggered by immune responses against

self-antigens. Not responding against a self-antigen is a phenomenon called self-

tolerance or simply tolerance[122, 193]. The ability of the immune to react against

valid non-self antigens and to be tolerant against self-antigens is identified by the

term self / non-self discrimination.

Beyond the large stochastic element in the construction of lymphocyte receptors,

an encounter between a lymphocyte receptor and an antigen does not inevitably result

in activation of the lymphocyte. Such an encounter may actually lead to its death or

inactivation (anergy). Therefore, there is a form of negative selection that prevents

self-specific lymphocytes from becoming auto-aggressive. In contrast. a smaller per-

centage of cells undergo positive selection and mature into immunocompetent cells in

order to form the individuals’ repertoire.

Figure 6.13: Lymphocyte - Antigen Interaction.

Some of the main results of the interaction between a lymphocyte receptor and an

antigen are illustrated in figure 6.13, and can be listed together with their principal
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causes:

• Clonal Expansion: recognition of non-self antigens in the presence of co-stimulatory

signals;

• Positive Selection: recognition of a non-self antigen by a mature B-cell;

• Negative Selection: recognition of self-antigens in the central lymphoid organs,

or peripheral recognition of self-antigens in the absence of co-stimulatory signals;

and

• Clonal Ignorance: all circumstances in which a cell with potential antigen reac-

tivity fails to react the antigen, e.g., if the antigen concentration is very low or

if the affinity of the receptor for the antigen in question is low.

The negative selection process in particular concerns the maturation of T-cells

within the thymus gland. After their generation, T-cells migrate to the protected

environment of the thymus gland where a blood barrier prevents them from being

exposed to non-self antigens. Therefore, the majority of elements within the thymus

are representative of the self class of antigenic patterns rather than the self class.

As an outcome, the T-cells containing receptors capable of recognizing these self

antigens presented in the thymus are eliminated from the repertoire of T-cells [157].

All T-cells that leave the thymus to circulate throughout the body are said to be self

tolerant since they do not responde to self antigens. The most important aspect of

the negative selection process from an information processing point of view, is that

it suggests an alternative pattern recognition paradigm by storing information about

the complement set of patterns to be recognized.





Chapter 7

Artificial Immune Systems

7.1 Definitions

Artificial Immune Systems (AIS) may be defined as data manipulation, classifica-

tion, representation and reasoning methodologies which follow a biologically plausible

paradigm, that of the human immune system. An alternative definition suggests that

an artificial immune system constitutes a computational system based upon metaphors

of the natural immune system. In the same spirit, Dasgupta describes AIS as intelli-

gent methodologies inspired by the immune system toward real-world problem solving.

These definitions, however, do not emphasize the distinction between mathematical

theoretical immunology and biologically inspired computing. Therefore, a more gen-

eral, complementary definition is necessary in order to incorporate and summarize

the definitions already presented. In this context, AIS can be defined as adaptive

systems, inspired by theoretical immunology and observed functions, principles and

models, which are applied to problem solving.

According to the last definition, theoretical immunology and AIS can be differ-

entiated on the basis of their rationales. Artificial Immune Systems are intended to

problem solving within a wide range of application areas, whilst theoretical immunol-

ogy specializes in simulating and/or improving experimental analyzes of the immune

system. It must be noted, however, that artificial immune systems are not only re-

lated to the creation of abstract or metaphorical models of the biological immune

186
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system, but also utilize mathematical models of theoretical immunology in order to

address computational problems such as optimization, control and robot navigation.

Nevertheless, the majority of AIS exploit only a limited number of ideas and high

level abstractions of the immune system. Under the light of these clarifications, an

artificial immune system is any system that:

• incorporates,as the minimum, a basic model of an immune component such as

cell, molecule or organ;

• it is designed upon ideas stemmed from theoretical and/or experimental im-

munology;and

• its realization is strictly intended to problem solving.

Therefore, simply attributing “immunological terminology” to a given system is not

sufficient to characterize it as an AIS. It is essential that a minimal level of im-

munology is involved, such as a model to perform pattern matching, an incorporated

immune principle such as the clonal and/or the negative selection, or an immune

network model. In other words, the information processing abilities of the adaptive

immune system are the integral part of any methodology suggested by the new com-

putational paradigm of artificial immune systems. The most important information

processing properties of the adaptive immune system that should be incorporated, at

some degree, by any computational artifact are summarized within the following list:

• Pattern recognition: cells and molecules of the adaptive immune system have

several ways of recognizing patterns. For example, there are surface molecules

that can bind to an antigen or recognize molecular signals (e.g. lymphokines).

Moreover, there exist intra-cellular molecules (e.g. MHC) that have the ability

to bind to specific proteins, in order to present them in the cell surface to other

immune cells;

• Uniqueness : each individual possesses its own immune system, with its partic-

ular vulnerabilities and capabilities;
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• Self identity : the uniqueness of the immune system gives rise to the fact that

any cell, molecule and tissue that is not native to the body can be recognized

and eliminated by the immune system;

• Diversity : there exist varying types of elements (cells, molecules,proteins) that

circulate through the body in search of malicious invaders or malfunctioning

cells;

• Disposability : no single cell or molecule is essential for the functioning of the

immune system since the majority of the immune cells participate in an endless

cycle of death and reproduction during their lifetime. An exception to this

mechanism is exhibited by the long lived memory cells;

• Autonomy : there is no central “element” controlling the immune system. In

other words,it is an autonomous decentralized system which does not require any

external intervention or maintenance. Its operation is based upon the straight-

forward classification and elimination of pathogens. Moreover, the immune

system has the ability of partially repairing itself by replacing damaged or mal-

functioning cells;

• Multilayered :multiple layers of different mechanisms that act cooperatively and

competitively are combined in order to provide a high overall security;

• No secure layer : any cell of the organism can be attacked by the immune system,

including those of the immune system itself;

• Anomaly detection: the immune system can recognize and react to pathogens

that had never been encountered before;

• Dynamically changing coverage: as the immune system cannot maintain large

enough repertoires of cells and molecules to detect all existing pathogens, a

trade-off has to be made between space and time. This is accomplished by

maintaining a circulating repertoire of lymphocytes that are constantly changed

through cell death, production and reproduction;
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• Distributivity : the immune cells, molecules, and organs are distributed all over

the body with no centralized control;

• Noise tolerance: pathogens are only partially recognized since they are ex-

tremely tolerant to molecular noise;

• Resilience: corresponds to the ability of the immune system to overcome the

disturbances that might reduce its functionality.

• Fault tolerance: if an immune response has been built up against a given

pathogen and the responding cell type is removed, this degeneracy in the im-

mune repertoire is handled by making other cells to respond to that specific

antigen. Moreover, the complementary nature of the immune components en-

sures the reallocation of tasks to other elements in case any of them fails;

• Robustness : this property of the immune system can be fairly attributed to the

sheer diversity and number of the immune components;

• Immune learning and memory : the molecules of the immune system can adapt

themselves, structurally and in number, to the antigenic challenges. These

adaptation mechanisms are subject to a strong selective pressure, which en-

forces the elimination of those individuals that demonstrated the least ability

in fighting invading antigenic patterns. On the other hand, the same procedure

qualifies the retainment of those cells that promote faster and more effective

responses. These highly adaptive immune cells are the so-called memory cells

that undertake the burden of protecting an organism against any given anti-

genic challenge. Moreover, immune cells and molecules recognize each other

even in the absence of external pathogens endowing the immune system with a

characteristic autonomous eigen-behavior.

• Predator-pray pattern of response: the vertebrate immune system replicates cell

in order to cope with replicating antigens so that the increasing population of

these pathogens will not overwhelm the immune defenses. A successful immune

response relies upon the appropriate regulation of the immune cells population
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with respect to the number of the existing antigenic patterns. Therefore, the

idea response to an increasing number of antigenic patterns is the proliferation

of the immune competent agents. When the number of pathogens decreases,

the repertoires of immune cells returns to a steady state. The collapse of this

predator-pray pattern of the immune response is of vital importance since it

can lead to the eventual death of the host organism.

• Self organization: The particular pattern of interaction between antigenic agents

and immune molecules during an immune response is not determined a priori.

Clonal selection and affinity maturation are the fundamental processes that

regulate the adaptation of the available immune cells in order to cope with a

particular antigen. Specifically, the selection and expansion procedures involved

undertake the responsibility for the immune cells transformation into long living

memory cells.

7.2 Scope of AIS

The AIS community has been vibrant and active for more than a decade now,

producing a prolific amount of research ranging from modelling the natural immune

system, solving artificial or bench-mark problems, to tackling real-world applications,

using an equally diverse set of immune-inspired algorithms. Therefore, it is worthwhile

to take a step back and reflect on the contributions that this paradigm has brought to

the various areas it has been applied. Undeniably, there have been a lot of successful

stories during its maturation from a naive, alternative, computational paradigm to a

standard machine learning methodology. Specifically, the large amount of interesting

computational features of the adaptive immune system suggests an almost limitless

range of applications, such as:

• Clustering and Classification;

• Anomaly and Intrusion Detection;

• Optimization;
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• Control;

• Bioinformatics;

• Information Retrieval and Web Data Mining;

• User Modelling and Recommendation; and

• Image Processing

which prove the validity of the new computational field as a competitive machine

learning paradigm. The literature review presented here provides an overview of the

primary application areas to which AIS has currently been applied. This is accom-

plished by incorporating references from the International Conference on Artificial

Immune Systems (ICARIS) in the time period between the years from 2001 to 2009.

A very large number of papers fall under the general heading of Learning. Learning

can generally be defined as the process of acquiring knowledge from experience and

being able to generalize that knowledge to previously unseen problem instances. This

generic title applies to the fundamental problems of pattern recognition which involves

the unsupervised and supervised versions of machine learning such as clustering and

classification. Papers relating to clustering [159, 89, 48, 156, 178, 19, 36, 16, 41, 35,

24, 49, 36, 16] and classification [233, 139, 81, 30, 241, 234, 50, 186, 173, 73, 194, 67,

163, 159, 247, 150, 34] have been separated out from the general learning topic as sub-

categories relating particularly to comparing AIS-based clustering and classification

algorithms against conventional techniques. In this context, the relevant papers are

primarily interested in formalizing novel clustering or classification algorithms that

are subsequently applied on benchmark datasets in order to be compared against state

of the art algorithms. This comparison process utilizes the standard accepted quality

tests in data-mining such as the classification accuracy. It must be noted that a

significant branch of the relevant literature involves the theoretical justification of the

related AIS-based machine learning algorithms [32, 71, 206] that may be particularly

related to validation of negative selection algorithms and corresponding applications

[10, 78, 114, 61, 43, 208, 210, 162, 6, 143, 172, 59] or the mathematical formulation

of the underlying shape-spaces [90, 88, 144, 209, 54, 207].
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Anomaly detection has been an area of application that has attracted profound

interest within the AIS community. Such techniques are required to decide whether

an unknown test sample is produced by the underlying probability distribution that

corresponds to the training set of normal examples. Typically, only a single class is

available on which to train the system. The goal of these immune inspired systems is

to take examples from one class (usually what is considered to be normal operational

data) and generate a set of detectors that is capable of identifying a significant devi-

ation from the system’s expected behavior. Anomaly detection applications cover a

wide range within the AIS literature, such as hardware fault detection [27], faut detec-

tion in refrigeration systems [213], misbehavior detection in mobile ad-hoc networks

[187], temporal anomaly detection [82] and fault diagnosis for non-linear dynami-

cal systems [142, 83]. Other applications of AIS-based anomaly detection involve

the blacklisting of malicious nodes in peer-to-peer networks [113], the detection of

anomalies in a foraging swarm robotics system [128] and the identification of variable

length unknown motifs, repeated in time series data [245]. Moreover, the authors

in [198] articulate the idea of utilizing an AIS for the prediction of bankruptcy of

companies while the authors in [161, 17] proposed that anomaly detection in the con-

text of AIS can be a powerful tool for the task of spam detection. Finally, intrusion

detection applications and corresponding theoretical papers [7, 3, 215, 195, 84] may

be considered as a particular branch of anomaly detection applications specialized for

problems related to computer security and virus detection.

A number of publications relate to single [230, 115, 97, 101, 179, 40] and multi-

objective [38, 93, 229, 72, 37, 37, 51] constraint function optimization problems, often

declaring some success when compared against other state-of-the-art algorithms. The

majority of these publications are based on the application of the clonal selection

principle, resulting in a number of algorithms such as the CLONALG algorithm [47],

AINET [46] and the B-Cell algorithm [219].

A very interesting branch within the general context of AIS-related research con-

cerns the development of general purpose control applications [56] that exploit the

AIS’s ability to:
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• detect changes;

• coordinate agent activities;

• adapt to new information; and

• robustly operate on highly complex and indeterminacy environments in a self

adaptation manner that handles disturbances.

Therefore, Autonomous Robot Navigation [227, 141, 246, 132, 120] constitutes a

leading sub-field of AIS-based control applications. Specifically, the authors in [121,

160] investigate the idea of utilizing an AIS-based robot navigation system in a rescue

scenario. Other applications involve the incorporation of the AIS paradigm in order

to regulate a multi-vehicle based delivery system in an automated warehouse [126],

the development of an AIS-based control framework for the coordination of agents

in a dynamic environment [127, 140, 119] and the controlling of the heating of an

intelligent home [133]. A very interesting approach is presented by the authors in

[91] where they raise the question of whether an AIS-based learning strategy could be

utilized in order to develop an architecture that enables robot agents to accomplish

complex tasks by building on basic built-in capabilities.

The list of possible AIS-based applications cannot be completed without men-

tioning the utilization of the AIS paradigm in bioinformatics [204, 76, 18] and image

processing [15, 8]. Moreover, a very interesting application domain emerges within

the fields of recommendation [29, 152], information retrieval and filtering [131, 153],

and user modelling [154, 155].

7.3 A Framework for Engineering AIS

The fist issue that needs to be taken into consideration in the development pro-

cess of an artificial immune system is highly related to the problem domain that is

going to be applied. It is very important to identify the role assigned to the utilized

artificial immune system in order to devise the modelling and simulation details of
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the relevant biological phenomena. However, the implementation of an artificial im-

mune system may be reduced to the appropriate modelling of its primary mediators

independently of the particular application domain. In other words, a special purpose

artificial immune system can be realized by particularizing the modelling process of

its fundamental components, namely, the B-, T-cells and antibodies. Therefore, a

general framework for the implementation of an artificial immune system should, at

least, contain the following basic elements according to Timmis [218]:

• A representation for the components of the system;

• A set of mechanisms to evaluate the interaction of individual components with

the environment and each other. The environment is usually simulated by a set

of input stimuli and one or more fitness function(s) and;

• Procedures of adaptation that govern the dynamics of the system, that is the

particular laws of motion that describe the time evolution of the system’s behav-

ior.

This is the basis of the adapted framework in order to design artificial immune systems

as well: a representation to create abstract models of immune organs, cells, and

molecules; a set of functions, termed affinity functions, to quantify the interactions

of these “artificial elements”, and a set of general purpose algorithms to govern the

dynamics of the AIS.

The adapted framework can be represented by the layered approach appearing in

Figure 7.1. The application domain forms the basis of every system by determinately

affecting the selection of the representation model to be adapted. This constitutes

a crucial step in the designing process of a valid artificial immune system since the

adaptation of an appropriate representation scheme for its fundamental components is

the first milestone to be placed. The next step in the designing process of an artificial

immune system is the utilization of one or more affinity measures in order to quantify

the interactions of the elements of the system. There are many possible affinity

measures such as Hamming and Euclidean distances that are partially dependent

upon the adapted representation model. The final layer involves the use of algorithms
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or processes to govern the dynamics (behavior) of the system. In this context, the

description of the framework begins by reviewing a general abstract model of immune

cells and molecules, named shape-space. After presenting the shape-space approach,

the framework reviews the wide range of affinity measures that could be utilized in

order to evaluate the interactions of the elements of the AIS. Finally, the framework

presents a general description of the immune inspired algorithms that were studied

for the purposes of the current thesis.

Figure 7.1: Layered Framework for AIS.

7.3.1 Shape-Spaces

Perelson and Oster in 1979 [170] introduced the concept of shape-space (mathbbS)

by performing a theoretical study on clonal selection which was focused on quantifying

the interactions between molecules of the immune system and antigens. Specifically,

the authors raised the question of how large an immune repertoire has to be in order

for the immune system to function reliably as a pattern recognition system. Under

this perspective, the immune system was seen basically as a pattern (molecular)

recognition system that was especially designed to identify shapes. Therefore, the

shape-space approach presents, according to the authors, an ideal formal description

in order to model and evaluate interactions between antigens and antibodies which

can be extended to study the binding between any type of cell receptor and the

molecules they bind with.
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The affinity between an antibody and an antigen involves several processes, such as

short-range non-covalent interactions based on electrostatic charge, hydrogen binding,

van der Waals interactions, etc. In order for an antigen to be recognized, the molecules

(antigen and antibody) must bind complementary with each other over an appreciable

portion portion of their surfaces. Therefore, extensive regions of complementarity

between the molecules are required, as illustrated in Figure 7.2. The shape and charge

distributions as well as well as the existence of chemical groups in the appropriate

complementary positions, can be considered as properties of antigens and antibodies

that are important to determine their interactions. This set od features is called the

generalized shape of a molecule.

Figure 7.2: Recognition via regions of complementarity.

Assume that it is possible to adequately describe the generalized shape of an

antibody by a set of L parameters (e.g., the length, width, and height of any bump

or groove in the combining site, its charge, etc.). Thus, a point in an L-dimensional

space, called shape-space S, specifies the generalized shape of an antigen binding

region of the molecular receptors on the surface of immune cells with regard to its

antigen binding properties. Also, assume that a set of L parameters can be used in

order to describe an antigenic determinant, though antigens and antibodies do not

necessarily have to be of the same length. The mapping from the parameters to
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their biological counterparts is not important from a biological standpoint but will

be basically dictated by the application domain of the AIS.

If an animal has a repertoire of size N , i.e., N antibodies, then the shape-space

for that animal contains N points. These points lie within some finite volume V of

the shape-space since there is only a restricted range of widths, lengths, charges, etc.

Similarly, antigens are also characterized by generalized shapes whose complements

lie within the same volume V . If the antigen (Ag) and antibody (Ab) shapes are not

quite complementary, then the two molecules may still bind, but with lower affinity.

Figure 7.3: Shape-Space Model

It is assumed that each antibody specifically interacts with all antigens whose

complements lies within a small surrounding region, characterized by a parameter

ϵ named the cross-reactivity threshold. The volume Vϵ resulting from the definition

of the cross-reactivity threshold ϵ is called recognition region. As each antibody can

recognize (cross-react with) all antigens whose complements lie within its reaction

region, a finite number of antibodies can recognize a large number of antigens into

the volume Vϵ, depending on the parameter ϵ. If similar patterns occupy neighboring

regions of the shape-space, then the same antibody can recognize them, as long as an

appropriate ϵ is provided. Figure 7.3 illustrates the idea of a shape-space S, detaching
the antibodies, antigens, and the cross-reactivity threshold.
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Mathematically, the generalized shape of any moleculem in a shape-space S can be

represented as an attribute string (set of coordinates) of length L. Thus, an attribute

string m = ⟨m1,m2, · · · ,mL⟩ can be regarded as a point in an L-dimensional shape-

space, m ∈ SL. This string might be composed by any type of attribute, such as

real values, integers, bits, and symbols. These attributes are usually driven by the

problem domain of the AIS and their importance relies upon the quantification of

the system’s components interactions through the adapted affinity measure(s). Most

importantly, the type of the attribute will define the particular type of the shape-space

to be utilized as follows:

• Real-valued shape-space: the attribute strings are real-valued vectors, such that

S = R;

• Integer shape-space: the attribute strings are composed of integer values, such

that S = N;

• Hamming shape-space: composed of attribute strings built out of a finite al-

phabet of length M , such that S = Σ = {a1, · · · , aM} where Σ denotes a finite

alphabet composed of M letters. Usually, hamming shape-spaces are composed

of binary attribute strings, such that Σ = {0, 1};

• Symbolic shape-space: usually composed of different types of attribute strings

where at least one of them is symbolic, such as a “name”, a “category”, etc.

7.3.2 Affinity Measures

An affinity measure may be formally defined as a mapping:

D : SL × SL → R+ (7.1)

which quantifies the interaction between two attribute strings Ab,Ag ∈ SL into

a single nonnegative real value D(Ab,Ag) ∈ R+, corresponding to their affin-

ity or degree of match. In the general case, an antibody molecule is represented

by the set of coordinates Ab = ⟨Ab1, Ab2, · · · , AbL⟩, while an antigen is given by
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Ag = ⟨Ag1, Ag2, · · · , AgL⟩. Without loss of generality, antibodies and antigens are

assumed to be of the same length. Affinity measures are highly important from a com-

putational point of view since they constitute the cornerstone of any AIS-based clus-

tering, classification and recognition (negative selection) algorithm. In other words,

the interactions of antibodies, or of an antibody and an antigen are evaluated through

the utilization of an appropriate distance measure which in the context of AIS is

termed affinity measure.

Figure 7.4: Affinity landscape

Given an attribute string (shape) representation of an antigen and a set of anti-

bodies, for each attribute string of an antibody molecule, one can associate a corre-

sponding affinity with the given antigen. Thus, an affinity landscape can be defined

on the shape-space, as it is illustrated in Figure 7.4. Usually, the Ag − Ab (or

Ab−Ab) recognition status is evaluated through the utilization of a matching rule

M : SL × SL → {0, 1} (7.2)

such that:

M(Ab,Ag) =

{
I(D(Ab,Ag) ≥ θaff ), Hamming and Symbolic shape-spaces;

I(D(Ab,Ag) ≤ θaff ), Integer- and Real-Valued shape-spaces.

(7.3)



Chapter 7: Artificial Immune Systems 200

where I(·) denotes the indicator function and θaff is a predefined affinity threshold.

In other words, a matching rule with an associated affinity threshold introduces the

concept of partial match which is a fundamental control parameter for the generaliza-

tion ability of any AIS-based machine learning algorithm. Therefore, the components

of an artificial immune system are considered to recognize each other whenever their

affinity is within (or exceeds) a predefined threshold.

Hamming and Symbolic Shape-Spaces

In Hamming and Symbolic Shape-Spaces the Ag −Ab (or Ab−Ab) affinity is

proportional to the degree of complementarity (distance) between the corresponding

attribute strings Ab and Ag which quantifies the degree of their match. This fact

is particularly taken into consideration in Eq. 7.3 stating that two attribute strings

match when their distance (affinity) exceeds a predefined threshold. The following

list summarizes the most widely used affinity measures that are specifically suitable

for finite alphabet and symbolic shape-spaces:

1. Hamming or Edit Distance: The general form of Hamming or Edit distance

for finite alphabet or symbolic shape-spaces is given by the following equation:

D(Ab,Ag) =
L∑
i=1

δ(Abi, Agi) (7.4)

where

δ(Abi, Agi) =

{
1, Abi ̸= Agi;

0, otherwise.
(7.5)

while for binary shape-spaces the Hamming distance may be formulated as:

D(Ab,Ag) =
L∑
i=1

Abi ⊕ Agi (7.6)

having in mind that the binary operator ⊕ denotes the xor operation between

the bits Abi and Agi. The Hamming distance of two binary strings Ab and Ag

may be defined as the minimum number of point mutations required in order

to change Ab into Ag, where point mutations correspond to bit flips at certain

positions.
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2. Maximum Number of Contiguous Bits: This affinity measure can be de-

fined through the following equation:

D(Ab,Ag) = max
1≤k≤L
k≤m≤L

i=m∑
i=k

Abi ⊕ Agi (7.7)

for binary shape-spaces and through the following equation:

D(Ab,Ag) = max
1≤k≤L
k≤m≤L

i=m∑
i=k

δ(Abi, Agi) (7.8)

for finite alphabet and symbolic shape-spaces. It was originally proposed by

Percus et al. [168] in the form of the r-contiguous bits rule which may be

formulated as:

M(Ab,Ag) = I(D(Ab,Ag) ≥ r) (7.9)

where the affinity measure D(·) is provided by Eqs. 7.7 or 7.8. The r-contiguous

bits (rcb) matching rule requires r contiguous matching symbols in correspond-

ing positions. Considering the fact that perfect matching is rare, the choice of

rcb is mainly to simplify mathematical analysis with some flavor of immunology.

In fact, the incorporation of a partial matching rule is an integral component of

any AIS-based machine learning algorithm since it regulates its ability to gener-

alize from a limited number of training samples. Specifically, the value of r can

be used in order to balance between more generalization or more specification.

3. Maximum Number of Contiguous Bits in a Chunk: This affinity measure

is a variant of the maximum number of contiguous bits, given by the equation:

D(Ab,Ag, p) = max
p≤k≤L

i=k∑
i=p

Abi ⊕ Agi (7.10)

especially for binary shape-spaces. Its original proposal was by Balthrop et al.

[12] in the context of the R-Chunks matching rule given by the equation:

M(Ab,Ag) = I(D(Ab,Ag, p) ≥ r) (7.11)

where the affinity measure D(·) is given by Eq. 7.10. It is obvious that the

R-Chunks matching rule constitutes a simplification of the rcb matching rule



Chapter 7: Artificial Immune Systems 202

since the relevant complementarity requirement involves a portion of the original

attribute strings. Two binary strings Ab and Ag are considered to match, if

there exists a sub-range of r complementary bits at corresponding positions

within their original bit representations. The required matching degree p may

be considered as a window size parameter controlling the generalization ability

of the relevant AIS-based machine learning algorithms.

4. Multiple Contiguous Bits Regions: Shape-spaces that measure the number

of complementary symbols in a pair of attribute strings are more biologically

appealing. Therefore, extensive complementary regions might be interesting for

the detection of similar characteristics in symmetric portions of the molecules,

and can be useful for specific tasks, such as pattern recognition. An affinity

measure that privileges regions of complementarity was proposed by Hunt et al.

[99] and may be formulated as follows:

D(Ab,Ag) =
L∑
i=1

Abi ⊕ Agi +
∑
i

2li (7.12)

where li is the length of each complementarity region i with 2 or more con-

secutive complementary bits. Eq. 7.12 is termed the multiple contiguous bits

rule.

5. Hamming Distance Extensions: There is a wide range of affinity measures

that can be considered as extensions to the original Hamming distance function.

A relevant survey was provided by Harmer et al. [87] reviewing the several

approaches that have been employed in order to produce the number of features

that match or differ. The corresponding affinity measures are all based on the
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following basic distance measures:

a = a(Ab,Ag) =
l∑

i=1

Abi ∧ Agi (7.13)

b = b(Ab,Ag) =
l∑

i=1

Abi ∧ Agi
c (7.14)

c = c(Ab,Ag) =
l∑

i=1

Abi
c ∧ Agi (7.15)

d = d(Ab,Ag) =
l∑

i=1

Abi
c ∧ Agi

c (7.16)

where the binary operator ∧ corresponds to the logical conjunction between the

bits Abi and Agi. On the other hand, Abi
c andAgi

c denote the logical negation of

the original bits, assuming that Ab,Ag ∈ {0, 1}L. The basic distance functions
defined in Eqs. 7.13 - 7.16 may be combined into the following affinity measures:

(a) Russel and Rao:

D(Ab,Ag) =
a

a+ b+ c+ d
(7.17)

(b) Jacard and Needham:

D(Ab,Ag) =
a

a+ b+ c
(7.18)

(c) Kulzinski:

D(Ab,Ag) =
a

b+ c+ 1
(7.19)

(d) Socal and Michener:

D(Ab,Ag) =
a+ d

a+ b+ c+ d
(7.20)

which is equivalent to:

D(Ab,Ag) =
L∑
i=1

Abi⊕Agi (7.21)

where ⊕ corresponds to the logical negation of the xor operator between

the bits Abi and Agi.
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(e) Rogers and Tanimoto (the one discussed in Gonzalez et al. [77]):

D(Ab,Ag) =
a+ d

a+ b+ 2(c+ d)
(7.22)

which is equivalent to:

D(Ab,Ag) =

L∑
i=1

Abi⊕Agi
L∑
i=1

Abi⊕Agi + 2
L∑
i=1

Abi ⊕ Agi

(7.23)

This similarity measure was utilized by Harmer et al. [87] in order to eval-

uate the affinity between two bit-string molecules. The authors suggested

that this measure is more selective than the Hamming distance and less

than the affinity measure corresponding to the rcb matching rule.

(f) Yule:

D(Ab,Ag) =
ad− bc

ad+ bc
(7.24)

6. Landscape Affinity Measures: This class of affinity measures was proposed

in order to capture ideas of matching biochemical or physical structure, and

imperfect matching within a threshold of activation in an immune system. The

input attribute strings corresponding to the antibody or antigen molecules for

this class of affinity measures are sampled as bytes and converted into posi-

tive integer values in order to generate a landscape. The two resulting strings

are subsequently compared in a sliding window fashion. This process may be

formally described by letting Ab′ and Ag′ be the resulting string representa-

tions of the original binary strings Ab and Ag, after the application of the

byte sampling and the integer conversion processes. Therefore, the modified

input strings will be such that Ab′,Ag′ ∈ {0, · · · , 255}L
′
where L′ = L

8
. In this

context, the relevant landscape affinity measures will be defined as:

(a) Difference affinity measure:

D(Ab′,Ag′) =
L′∑
i=1

|Ab′i − Ag′i| (7.25)
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(b) Slope affinity measure:

D(Ab′,Ag′) =
L′∑
i=1

|(Ab′i+1 − Ab′i)− (Ag′i+1 − Ag′i)| (7.26)

(c) Physical affinity measure:

D(Ab′,Ag′) =
L′∑
i=1

|Ab′i − Ag′i|+ 3µ (7.27)

where µ = min{∀i, (Ab′i − Ag′i)}.

(d) Statistical Correlation affinity measure:

D(Ab′,Ag′) =
⟨Ab′,Ag′⟩
∥Ab′∥ · ∥Ag′∥

(7.28)

such that −1 ≤ D(Ab′,Ag′) ≤ 1. D(Ab′,Ag′) corresponds to the cor-

relation coefficient value that evaluates the similarity of the two attribute

strings. Eq. 7.28 is otherwise referred to as the cosine similarity measure.

7. All-Possible Alignments Affinity Measures: The affinity measures pre-

sented so far assume that there is only one possible alignment in which the

molecules (attribute strings) react. Nevertheless, from a biological perspective,

the molecules are allowed to interact with each other in different alignments.

This situation can be modelled by computing the total affinity of the two at-

tribute strings by summing the affinity of each possible alignment, as follows:

D(Ab,Ag) =
L−1∑
k=0

L−K∑
n=0

Abn+k ⊕ Agn (7.29)

Another possibility would be to determine all possible alignments for the two at-

tribute strings and subsequently compute the number of alignments that satisfy

the rcb matching rule, given by the following equation:

D(Ab,Ag) =
L−1∑
k=0

I(
L−k∑
n=0

Abn+k ⊕ Agn − r + 1) (7.30)
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An alternative approach would be to compute the maximum affinity over all

possible alignments by utilizing the following equation:

D(Ab,Ag) = max
0≤k≤L−1

L−k∑
n=0

Abn+k ⊕ Agn (7.31)

8. Permutation Masks: Permutation mask was proposed by Balthrop et al.

[12] as a significant improvement in the relevant literature of affinity measures

and corresponding matching rules for binary shape-spaces. According to the

authors, if there is intrinsic order of the bits in the representation, specific

bit order will hinder the detection of some patterns, since only the consecu-

tive bits are considered to decide a match. Therefore, a different permuta-

tion mask, or equivalently a different bit order in the representation, could

enable the detection of antigenic patterns that otherwise could not be caught.

Whether and how the bit order matters, however, depends on specific appli-

cations which is not the case for bit-order free affinity measures, such as the

Hamming distance. A permutation mask can be defined as a bijective map-

ping π that specifies a particular reordering for all elements Ag ∈ SL, such

that Ag1 → π(Ag1), · · · ,Ag|S|L → π(Ag|S|L). More formally, a permutation

π ∈ Sn, where n ∈ N, can be written as 2× n matrix, as follows:

π =

(
x1, · · · ,xn

π(x1), · · · , π(xn)

)
(7.32)

such that the first row presents the original elements and the second row the

corresponding rearrangements. In this context, an affinity measure that incor-

porates a particular permutation mask, can be defined by the following equation:

D(Ab,Ag,π) = D(Ab, π(Ag)) (7.33)

so that the corresponding matching rule will take the form:

M(Ab,Ag,π) = I(D(Ab, π(Ag)) ≥ r) (7.34)

9. Fuzzy Affinity Measure: Kaers et al. [114] suggested an alternative affinity

measure by introducing the notions of fuzzy antibody andMajor Histocompatibil-

ity Complex (MHC). These new features were proposed in order to incorporate
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antibody morphology within the definition of an affinity measure. Specifically,

antibody morphology was defined as a collection of basic properties of artificial

antibodies (detectors) including shape, data-representation and data-ordering,

accounting for the physical and chemical forces that act at the binding site of

real biological molecules. A fuzzy antibody may be defined as a string of fuzzy

membership functions (FMFs) according to the following equation:

Ab = ⟨F1,j1 , · · · , FL,jL⟩, ∀i ∈ [L], ∀ji ∈ [ni] (7.35)

where each fuzzy membership function Fi,j indicates the degree of recognition of

the i-th antigenic attribute by the i-th antibody attribute, such that Fi,j ∈ [0, 1].

Moreover, the parameter ni indicates the number of different fuzzy membership

functions for each attribute, that are available for a given antibody population.

In addition to this, a matching threshold θaff i is defined for every attribute

such that the affinity measure between an antibody and an antigen molecule

may be defined as:

D(Ab,Ag, p) =

p+r−1∑
q=p

Fq,jq(Agq)−
p+r−1∑
q=p

θaff i (7.36)

where 0 ≤ D(Ab,Ag, p) ≤ r. It is obvious that parameter p controls the

partial matching between the two attribute strings. Therefore, an alternative

affinity measure would be to consider the maximum distance over all possible

alignments between the given pair of attribute strings, as:

D(Ab,Ag) = max
0≤p≤L−r+1

D(Ab,Ag, p) (7.37)

This entails that the corresponding matching rule could be formulated as:

M(Ab,Ag) = I(D(Ab,Ag) ≥ θaff ) (7.38)

where θaff is an overall affinity measure. The proposed MHC metaphor is

implemented as a permutation mask similar to Balthrop et al. [12] in order to

handle the order of attributes.
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10. Value Difference Affinity Measure: This affinity measure relies upon the

Value Difference Metric (VDM) which was originally proposed by Stanfill and

Waltz [205] in order to provide an appropriate distance function for symbolic

shape-spaces and particularly for classification problems. The VDM defines the

distance between two values x and y of an attribute a as:

vdma(x, y) =
C∑
c=1

|Na,x,c

Na,x

− Na,y,c

Na,y

| =
C∑
c=1

|Pa,x,c − Pa,x,y| (7.39)

where

• Na,x: is the number of instances in the training set T that had value x for

attribute a;

• Na,x,c: is the number of instances in the training set T that had value x

for attribute a and an output class c. Note that Na,x is the sum of Na,x,c

over all classes given by the following equation:

Na,x =
C∑
c=1

Na,x,c (7.40)

• C: is the number of classes in the problem domain;

• q: is a constant usually set to 1 or 2;

• Pa,x,c: is the conditional probability that the output class is c given that

attribute a has the value x, defined as:

Pa,x,c =
Na,x,c

Na,x

(7.41)

The utilization of the VDM as an affinity measure results in the following for-

mula:

D(Ab,Ag) =
L∑
i=1

vdm(Abi, Agi)weight(Abi) (7.42)

where

vdm(Abi, Agi) =
C∑
c=1

(P (c|Abi)− P (c|Agi))2

=
C∑
c=1

(
N(c|Abi)
N(Abi)

− N(c|Agi)
Agi

)2 (7.43)
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and

N(Abi) =
C∑
c=1

N(c|Abi) (7.44)

N(Agi) =
C∑
c=1

N(c|Agi) (7.45)

such that

weight(Abi) =

√√√√ C∑
c=1

P (c|Abi)2 (7.46)

Using the affinity measure provided by the VDM, two values are considered to

be closer if they have more similar classifications (i.e. similar correlations with

the output classes), regardless of what order the values may have be given in.

11. Heterogeneous Value Difference Affinity Measure: This affinity measure

utilizes the Heterogeneous Value Difference Metric (HVDM) which is a variation

of the original (VDM) particularly suited for mixed data types, given by the

equation:

hvdm(Abi, Agi) =


√
vdm(Abi, Agi), if i is symbolic or nominal;
|Abi−Agi|

Ai,max−Ai,min
, if i is discrete or real.

(7.47)

where vdm(·, ·) is given by Eq. 7.43 and Ai,max, Ai,min correspond to the maxi-

mum and minimum values for the i-th attribute respectively.

Integer-Valued and Real-Valued Shape-Spaces

Although it is not fully in accordance with the biological concept of shape com-

plementarity, the affinity, in shape-spaces where the variables assume integer or real

values, is quantified by utilizing some generalization of the Euclidean distance. This

entails that the affinity is inversely proportional to the distance between a given pair

of antibody and antigen attribute strings, without reflecting or complementing it.

This is particularly taken into consideration in Eq. 7.3, stating that two attribute

strings match when their distance (affinity) is below a predefined threshold. There-

fore, the utilization of a generalized Euclidean distance function as an affinity metric,
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implies that there will be a geometric region of points in the shape-space such that

all antigens in this region will present the same affinity to a given antibody.

Figure 7.5: Affinity in Euclidean Shape-Spaces

This is illustrated in Figure 7.5 where all antigens lying within the geometric re-

gion a present the same affinity to the antibody Ab located at the center of geometric

region a. The same situation holds for the antigenic patterns lying within the geo-

metric region b since they all present the same affinity to the given antibody Ab. The

only difference is that antigenic patterns that lie within the geometric region a present

a higher affinity to the antibody Ab than those antigens lying within the geometric

region b. This is true since for the given pair of antigens Ag1 and Ag2, lying within

the geometric regions a and b respectively, it holds that ∥Ab−Ag1∥ < ∥Ab−Ag2∥.
Therefore, in most practical applications of AIS, similarity measures are used in

stead of complementarity ones, though the latter are more plausible from a biological

perspective. In such cases, the goal is to search for antibodies with more similar

shapes to a given antigenic pattern. The following list summarizes the most widely

used affinity measures that are particularly suitable for integer- and real-valued shape-

spaces:

1. Euclidean Distance Affinity Measure: Euclidean distance provides the

basic metric for the most widely used affinity measure in integer- and real-



Chapter 7: Artificial Immune Systems 211

valued shape-spaces, given by the equation:

D(Ab,Ag) = ∥Ab−Ag∥ =

√√√√ L∑
i=1

|Abi − Agi|2 (7.48)

A modification to this affinity measure was proposed by [79] where the au-

thors express the underlying distance function as a membership function of the

antibody, given by the following equation:

D(Ab,Ag) = exp{−∥Ab−Ag∥2

2r2
} (7.49)

This affinity measure assumes that each antibody recognizes only antigenic pat-

terns that lie within a hypersphere of radius r, whose center coordinates are

given by the antibody attribute string.

2. Normalized Euclidean Distance Affinity Measure: Most practical appli-

cations, however, utilize a normalized version of the original Euclidean distance,

such as the one given by the following equation:

D(Ab,Ag) =
∥Ab−Ag∥

σk

(7.50)

which is mostly employed when the given antigenic patterns are assumed to be

elements of disjoint clusters. In this context, σk indicates the cluster centroid

such that the corresponding affinity measure describes the sparseness of the

cluster. A more frequently used version of the normalized Euclidean distance

is the one that incorporates a data normalization process. Specifically, given a

real-valued representation of the attribute strings corresponding to the antibody

and antigen molecules, Ab,Ag ∈ RL, the i-th attribute Abi or Agi is considered

to lie within the [Ai,min, Ai,max] interval such that:

Ai,min ≤ Abi, Agi ≤ Ai,max ⇔
Ai,min − Ai,min ≤ Abi − Ai,min, Agi − Ai,min ≤ Ai,max − Ai,min ⇔
Ai,min − Ai,min

Ai,max − Ai,min

≤ Abi − Ai,min

Ai,max − Ai,min

,
Agi − Ai,min

Ai,max − Ai,min

≤ Ai,max − Ai,min

Ai,max − Ai,min

⇔

0 ≤ Abi − Ai,min

Ai,max − Ai,min

,
Agi − Ai,min

Ai,max − Ai,min

≤ 1

(7.51)
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Therefore, the incorporation of the data normalization process within the dis-

tance computation yields that:

D(Ab,Ag) =

√√√√ l∑
i=1

(
Abi − Ai,min

Ai,max − Ai,min

− Agi − Ai,min

Ai,max − Ai,min

)2

=

√√√√ L∑
i=1

(
Abi − Agi

Ai,max − Ai,min

)2 (7.52)

Letting Ab′ = ⟨Ab′1, · · · , Ab′L⟩ and Ag′ = ⟨Ag′1, · · · , Ag′L⟩ such that:

Ab′i =
Abi − Ai,min

Ai,max − Ai,min

(7.53)

Ag′i =
Agi − Ai,min

Ai,max − Ai,min

(7.54)

Eq. 7.52 can be rewritten as:

D(Ab′,Ag′) = ∥Ab′ −Ag′∥ =

√√√√ L∑
i=1

(Ab′i − Ag′i)
2 (7.55)

which according to Eq. 7.51 gives that the distance between any given pair of

antibody and antigen attribute strings satisfies the following inequality:

0 ≤ D(Ab′,Ag′) ≤
√
L (7.56)

A wide range of applications require that the utilized affinity measure is also

within a certain range (i.e. the [0, 1] interval), thus, modifying Eq. 7.52 into the

following equation:

D(Ab′,Ag′) =
1√
L
∥Ab′ −Ag′∥ (7.57)

3. Manhattan Distance Affinity Measure: Another widely used affinity mea-

sure is provided by the utilization of the Manhattan distance, given by the

equation:

D(Ab,Ag) =
L∑
i=1

|Abi − Agi| (7.58)
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which can be normalized as:

D(Ab′,Ag′) =
1

L

L∑
i=1

|Ab′i − Ag′i| (7.59)

where the Abi’s and Abi’s are given by the Eqs. 7.53 and 7.54.

4. Generalized Euclidean Distance Affinity Measure: Euclidean and Man-

hattan distances are not a panacea, especially when all the dimensions of the

input patterns’ space do not equally contribute in classification. Such cases can

benefit from the utilization of the generalized version of Euclidean and Man-

hattan distances given by the λ-norm Minkowski distance:

Dλ(Ab,Ag) = {
L∑
i=1

|Abi − Agi|λ}
1
λ (7.60)

for any arbitrary λ or the corresponding normalized version formulated as:

Dλ(Ab′,Ag′) = L− 1
λ · {

L∑
i=1

|Ab′i − Ag′i|λ}
1
λ (7.61)

Eq. 7.60 may be used in order to define the infinity norm Minkowski distance-

based affinity measure, according to the following equation:

D∞(Ab,Ag) = lim
λ→∞

Dλ(Ab,Ag) = max
1≤i≤L

{|Abi − Agi|} (7.62)

The utilization of the generalized Euclidean distance-based affinity measures,

Dλ(·), results in different shaped detection regions around a given antibody,

located at the center of the corresponding area. The term detection region

identifies the subrange of the shape-space that is recognized by a given anti-

body, such that Rλ(Ab) = {Ag ∈ S : Dλ(Ab,Ag) ≤ R}. In other words,

Rλ(Ab) contains the subset of the antigenic patterns that are within a prede-

fined distance from Ab, parameterized by λ and R, where R is the radius of

the detection region. Figs. 7.6(a) - (e) illustrate five different detection regions

in the shape-space S = [0, 1] × [0, 1] for five different values of the parameter

λ for an antibody located at the center of the corresponding shape-space, such

that Ab = [0.5 0.5].
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(a) D1-norm detection region. (b) D2-norm detection region

(c) D3-norm detection region. (d) D∞-norm detection region

(e) Dλ-norm detection region, λ ∈ (0, 1)

Figure 7.6: Generalized Euclidean Distances Detection Regions.
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5. Heterogeneous Euclidean Overlap Metric: This affinity measure can han-

dle mixed data with both continuous and nominal values, given by the equation:

D(Ab,Ag) =

√√√√ L∑
i=0

heom(Abi − Agi)2 (7.63)

where

heom(Abi, Agi) =

{
δ(Abi, Agi), if i is symbolic or nominal;
|Abi,Agi|
A−A

, if i is discrete or real.
(7.64)

6. Discretized Value Difference Metric Affinity Measure (DVDM): This

affinity measure allows for the use of VDM on real valued data. The funda-

mental prerequisite for the application of DVDM is the discretization of each

attribute range into s equal-width intervals. Therefore, the width wi of the

discretized interval for the i-th attribute will be given by:

wi =
Ai,min − Ai,max

s
(7.65)

In this context, the DVDM affinity measure may be defined as:

D(Ab,Ag) =
L∑
i=1

|vdm(disc(Abi), disc(Agi))|2 (7.66)

where

disc(Abi) =

{
⌊Abi−Ai,min

wi
⌋+ 1, if i is continuous;

Abi, if i is discrete.
(7.67)

and

disc(Agi) =

{
⌊Agi−Ai,min

wi
⌋+ 1, if i is continuous;

Agi, if i is discrete.
(7.68)

7.3.3 Immune Algorithms

The artificial immune system-based machine learning algorithms covered in the

current thesis pertain into three major categories:

1. Clustering;
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2. Classification; and

3. One Class Classification.

Therefore, the following sections are dedicated to thoroughly describe each algorithm

and provide the theoretical justification for its validity.

7.4 Theoretical Justification of the Machine Learn-

ing Ability of the Adaptive Immune System

Pattern recognition constitutes the fundamental machine learning capability of the

adaptive immune system which is of primary importance for the survival of any living

organism. The immune system of the vertebrates, in particular, is a highly evolved

biological system whose functionality is focused on the identification and subsequent

elimination of foreign material. In order to accomplish this task, the immune system

must be able to distinguish between foreign and self-molecules. Therefore, memorizing

and learning from the encountered antigenic patterns are essential prerequisites for the

pattern recognition functionalities of the immune system. Specifically, novel antigenic

shapes can be recognized by employing genetic mechanisms for change, similar to

those utilized in the biological evolution. In the immune system, however, these

operations run on a time scale that can be as short as a few days, making the immune

system an ideal candidate for the study and modelling of adaptive processes.

In this context, Farmer et al. [65] proposed a mathematical model, based on the

immune network theory of Jerne [105], which utilizes genetic operators on a time scale

fast enough to observe experimentally in a computer. Specifically, the relevant model

attributes the immune system’s ability to recognize novel antigenic patterns without

pre-programming, on the basis of its self-organized, decentralized and dynamic nature.

According to the authors in [65], the learning and memory phenomena exhibited by

the adaptive immune system can be reduced to the particular patterns (i.e. the

predator-pray pattern of immune response) of its dynamic behavior. That is, the

time evolution of its fundamental components governs the emergence of the high
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level pattern recognition characteristics of the immune system.

The ideal mathematical framework for describing the time evolution of such a

dynamical system is provided by the associated state vector and the corresponding

set of differential equations, determining the interactions between the elements of the

state vector. Specifically, the state vector S may be formally defined by the following

equation:

S = [X(t),Y(t)], where

X(t) = ⟨X1(t), · · · , XN(t)⟩, and

Y(t) = ⟨Y1(t), · · · , YM(t)⟩

(7.69)

where the variables {Xi(t), ∀i ∈ [N ]} and {Yi(t), ∀i ∈ [M ]} correspond to the instan-

taneous concentrations of the existent antibody and antigen molecules, respectively.

In particular, variable Xi(t) represents the concentration of the i-th type of antibodies

Abi at time t, whereas, variable Yi(t) represents the concentration of the i-th type

of antigens Agi at time t. Moreover, the different types of antibody and antigen

molecules present within the immune system at a particular moment are given by

the parameters N and M . Therefore, the state vector S provides qualitative and

quantitative information concerning the constituent elements of the immune system

at a given time instance.

The motion equations for each constituent of the state vector S are given by the

following set of differential equations:

dXi(t)

dt
= Fi(X(t),Y(t)) = Fi(t), ∀i ∈ [N ] (7.70)

dYi(t)

dt
= Gi(X(t),Y(t)) = Gi(t), ∀i ∈ [M ] (7.71)

where the particular form of the functions {Fi : RN+M → R} and {Gi : RN+M → R}
will be thoroughly described in the context of the various modes of interaction between

the elements of the immune system. Specifically, by letting

F(t) = [F1(t), · · · , FN(t)] (7.72)

G(t) = [G1(t), · · · , GM(t)] (7.73)

the time evolution of the state vector S(t) according to the Eqs. 7.70 and 7.71 may
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be written in the following form:

dST (t)

dt
=

[
dXT (t)

dt
dYT (t)

dt

]
=

[
FT (t)

GT (t)

]
(7.74)

An essential element of the model is that the list of antibody and antigen types is

dynamic, changing as new types of molecules are added or removed. Thus, it is more

appropriate to consider the quantities N and M in Eq. 7.69 as functions of time, such

that N = N(t) and M = M(t). In this context, the dimensionality of the state vector

may be also expressed as a function of time according to the following equation:

dim(S)(t) = N(t) +M(t) (7.75)

However, the quantities N(t) and M(t) are being modified in a slower time scale

than the quantities Xi(t) and Yi(t) so that it is possible to integrate Eq. 7.74 for a

series of simulations, ensuring that the exact composition of the system is examined

and updated as needed. This updating in performed on the basis of a minimum

concentration threshold, so that a particular variable and all of its reactions are

eliminated when the concentration drops below that threshold. This is an important

property of the model since new space is needed in a finite animal or computer

memory.

Antibody and antigen molecules are treated as being composed of elementary

binary strings corresponding to the epitopes or paratopes. Therefore, the utilized

shape-space for the paratope or epitope representation is the binary Hamming space,

such that S = ΣL, where Σ = {0, 1}. Specifically, an antibody molecule may be

represented as an ordered pair of paratope and epitope binary strings, such that

Ab = ⟨p, e⟩, where p, e ∈ S. Accordingly, an antigenic pattern may be represented

by the corresponding epitope binary string as Ag = ⟨e⟩, where e ∈ S.
The model proposed by Farmer et al. considers two modes of interaction amongst

the elements of the immune system. The first mode concerns the antibody-antibody

interaction while the second one focuses on the antibody-antigen interaction. It must

be noted, that these modes of interaction are essential for the derivation of the sys-

tem’s motion equations governed by the functions {Fi : i ∈ [N ]} and {Gi : i ∈ [M ]}
that can be analytically defined in the following way:
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• The set of functions defining vector F captures both modes of interaction since

it describes the time evolution of the antibody molecules concentrations. Specif-

ically, each vector element corresponds to a function Fi, given by the following

equation:

Fi(t) = c

[
N∑
j=1

djiXi(t)Xj(t)− k1

N∑
j=1

dijXi(t)Xj(t) +
M∑
j=1

djiXi(t)Yj(t)

]
−k2Xi(t)

(7.76)

The first term represents the stimulation of the paratope of a type i antibody,

Abi = ⟨pi, ei⟩, by the epitope of a type j antibody, Abj = ⟨pj, ej⟩. The second
term represents the suppression of a of type i antibody when its epitope is

recognized by the paratope of a type j antibody. The form of these terms is

dictated by the fact that the probability of collision between a type i antibody

and a type j antibody is proportional to XiXj. The parameter c corresponds

to a rate constant depending on the number of collisions per unit time and the

rate of antibody production stimulated by a collision. The term dij represents

the affinity measure between a type i epitope and a type j paratope, given by

the following equation:

dij = D(ei,pj) (7.77)

where D(·) is given by Eq. 7.30. The constant k1 represents a possible inequal-

ity between stimulation and suppression which is eliminated when dij = dji.

This immune network model, however, is driven by the presence of antigenic

patterns, represented by the third term. Therefore, this term corresponds to

the stimulation of a type i antibody when its paratope recognizes the epitope

of a type j antibody, which is proportional to the quantity XiYj, regulated by

the factor dji = D(ej,pi). This term changes in time as antigens grow or are

eliminated. The final term models the tendency of the cells to die in the absence

of any interaction, at a rate determined by the parameter k2.

• The set of functions defining vector G, on the other hand, is uniquely based on

the antibody-antigen mode of interaction describing the time evolution of the

antigen molecules concentration. Specifically, each vector element corresponds
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to a function Gi, given by the following equation:

Gi = −k3
M∑
j=1

dijXj(t)Yi(t) (7.78)

representing the suppression of the type i antigen when it is recognized by the

type j antibody.

The model proposed by Farmer et al. is a dynamical one where antibody and

antigenic molecules are constantly being added or removed from the immune sys-

tem. As it was previously mentioned, the elimination process consists in removing all

molecules and their corresponding interactions when their concentration drops below

a predefined threshold. However, reviewing the fundamental generation mechanisms

for the new antibody and antigen molecules is of greater importance since they are

essential for the emergence of the learning capabilities of the immune system. Ac-

cording to Farmer et al. new antibody types are generated through the application of

genetic operators to the paratope and epitope strings, such as crossover, inversion and

point mutation. Crossover is implemented by randomly selecting two antibody types,

randomly choosing a position within the two strings, and interchanging the pieces on

the side of the chosen position in order to produce two new types. Paratopes and

epitopes are crossed over separately. Point mutation is implemented by randomly

changing one of the bits in a given string, and inversion is implemented by inverting

a randomly chosen segment of the string. Random choices are weighted according to

concentration whenever appropriate. Antigens on the other hand, can be generated

either randomly or by design. Therefore, the learning ability of the adaptive immune

system can be primarily attributed in raising the population size and affinity of those

antibody types that present the maximum complementarity to a given antigenic pat-

tern. Increasing the population size of selected antibodies is particularly captured by

Eq. 7.76 while the affinity maturation process is captured through the application of

genetic operators in order to generate highly evolved immune competent antibodies.

The authors’ findings indicate that the ability of the immune system to learn and

effectively eliminate antigens depends upon the detailed regulatory rules governing

the operation of the system, as it is demonstrated by Eqs 7.76 and 7.78. Specifically,
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the fundamental hypothesis behind the immune network theory of Jerne [105], stat-

ing that internal recognition events between antibodies play crucial regulatory role

even in the absence of external antigenic stimulation, is experimentally justified. In

particular, it is argued that antibodies whose paratopes match epitopes are amplified

at the expense of other antibodies. According to the authors’ experimentation, when

k1 = 1 (equal stimulation and suppression) and k2 > 0 then every antibody type

eventually dies due to the damping term. On the other hand, letting k1 < 1 favors

the formation of reaction loops which form the fundamental underpinning behind the

ability of the immune system to remember certain states, even when the system is

disturbed by the introduction of new types.

Figure 7.7: Immunological Cycle

The formation of an immunological cycle initiated by the antigen Ag0 = ⟨e0⟩
is illustrated in Figure 7.7, where the presence of the epitope e0 increases the con-

centration of all antibodies that recognize that particular epitope. Letting this set

of antibodies be Ab1 = ⟨p1, e1⟩, then the concentrations of all antibodies that rec-

ognize epitopes on Ab1 will also increase. If this set of antibodies is identified by

Ab2 = ⟨p2, e2⟩, then the application of the same domino-recognition logic results in

a sequence of antibody molecules Ab1,Ab2, · · · ,Abn where the the epitope ei−1 of

the i− 1-th type antibody is recognized by the paratope pi of the i-th type antibody,

for i ∈ {2, · · · , n}. In this context, if Abn resembles the original antigen, its epitope

en will be recognized by the paratope p1 of Ab1, forming a cycle or autocatalytic
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loop of order n, even in the absence of the original antigenic shape. Therefore, mem-

orizing a given antigenic pattern can be achieved on the basis of an immunological

cycle containing at least one antibody type that resembles the original antigen.

The network approach adopted by Farmer et al. is particularly interesting for the

development of computational tools for clustering and classification. This is true since

this model naturally provides an account for emergent properties such as learning,

memory, self-tolerance, size and diversity of cell populations, and network interactions

with the environment and the self components. In general terms, the structure of most

network models can be described similarly to the way suggested by Perelson [169]:

Rate of

population

variation

=
Network

stimulation
−

Network

supression
+

Influx of

new

elements

−
Death of

unstimulated

elements

(7.79)

Perelson and Oster [170], in particular, studied the immune system from the view

point of a molecular recognition device which is designed in order to identify “foreign

shapes”. According to the authors, learning within the immune system involves

raising the population size and affinity of those antibodies that have proved to be

immune competent in previous encounters of antigenic patterns. In this context, the

authors investigate the relationship between the antibody repertoire size NAb and

the probability P of recognizing a random foreign molecule. Specifically, it is argued

that the probability of recognizing a foreign molecule increases with the antibody

repertoire size. This is the very essence of the clonal selection principle which was

originally formulated in order to explain how a great variety of different antigenic

patterns could elicit specific cellular or humoral immune responses. The basic premise

of the clonal selection principle is that the lymphocytes of a vertebrate organism have

the necessary information to synthesize the receptors to recognize an antigen without

using the antigen itself as a template. This is true, since during the course of an

immune response a selection mechanism is triggered by the antigens, enforcing the

proliferation of those antibodies with complementary receptors to the given antigenic

pattern.

The mathematical analysis provided by Perelson and Oster interprets the relia-
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bility of the immune system in terms of its antibody repertoire size. In particular,

their work attributes the pattern recognition ability of the immune system to the

existence of a large variety of antibody molecules with different three-dimensional

binding sites, specific for the different “antigenic determinants” found on antigen

molecules. Specifically, their findings indicate that when the size NAb of the avail-

able antibody repertoire is below a critical value then the immune system would be

very ineffectual. On the other hand, increasing the antibody repertoire size beyond

a critical value yields diminishing small increases in the probability of recognizing a

foreign molecule.

Figure 7.8: Euclidean Space Shape-Space Model where • represents an antibody
combining site and x represents an antigenic determinant shape.

In order to estimate the number of distinct antibody shapes required to reli-

ably recognize any given antigenic shape, Perelson and Oster assumed that antibody

shapes are randomly distributed throughout some volume V within the Euclidean

shape-space S with uniform density pAb. The restriction of the antibody binding sites

and antigenic determinant shapes within a volume V is justified by the fact that both

are characterized by finite size, and finite values of other physical parameters such as

charge. The choice of a random distribution for the shapes within V , on the other

hand, is based solely on the complete lack of knowledge about the actual distribution.

In any particular organism, however, the distribution is certainly not random since
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subregions of V corresponding to shapes of self antigens would have been deleted from

the available antibody repertoire through the mechanism of negative selection. On

the contrary, shapes that correspond to particular antigenic determinants of infectious

agents, may have increased in population due to the process of clonal selection.

In order to calculate the number of different antibody shapes required to cover

the sub-portion V of the shape-space S it is assumed that each antibody shape can

bind all antigenic patterns that are within a distance ϵ from its center, represented

by the corresponding attribute string. In other words, each attribute string may be

viewed as a point in the L-dimensional vector space S = ΣL, where Σ = R and the

distance between a given pair of points is measured via the Euclidean metric. This is

particularly illustrated in Figure 7.8 where each antibody string is assumed to be sur-

rounded by a ball or sphere of radius ϵ recognizing any antigenic pattern whose shape

happens to fall within that ball. Therefore, a limited number of antibodies results in

the occupation of a small fraction of the volume V by the associated recognition balls

so that a random antigen will have a high probability of escaping detection by any

antibody. Conversely, the existence of a large enough number of antibodies in the

shape-space S ensures that the corresponding recognition balls will asymptotically fill

the volume V , entailing that all antigens can be detected.

Each L-dimensional ball of radius ϵ takes up a volume cLϵ
L, where cL is a constant

which depends upon the dimensionality of S. For example, with an Euclidean metric,

for L = 2, c2 = π, for L = 3, c3 = 4
3
π and for an arbitrary L, cL = 2π

L
2

LΓ(L
2
)
, where

Γ(·) is the Gamma function. If there are a total NAb antibodies within the repertoire,

one would expect them to occupy a volume somewhat less than NAbcLϵ
L since balls

would overlap. In order to compare this volume to the total volume of the shape-

space occupied by both antibodies and antigens, it is assumed that V is a sphere of

radius R centered at a point p representing a typical shape in S. The total volume

of V is then cLR
L. Consequently, if

NAbcLϵ
L ≫ cLR

L (7.80)

or equivalently, if

NAb ≫
( ϵ

R

)−L

(7.81)
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the balls surrounding each antibody would overlap considerably and cover most of V .

Therefore, Eq 7.81 determines the minimum size of the available antibody repertoire

required in order to ensure the reliability of the immune system.

Assuming that the number of antibodies in each small subregion of V is distributed

Poissonly, then the probability that there are no antibodies within distance ϵ of a

randomly chosen antigenic shape is given by the exponential distribution. Having in

mind, that the mean number of antibodies in a volume cLϵ
L of the shape-space is

pAbcLϵ
L, the probability that no antibody is within distance ϵ of the antigen in the

L-dimensional shape-space, P0(ϵ, pAb, L), is given by:

P0(ϵ, pAb, L) = e−pAbcLϵ
L

(7.82)

Hence the probability, P (ϵ, pAb, L), that there are one or more antibodies within

distance ϵ of the antigen is given by the following equation:

P (ϵ, pAb, L) = 1− e−pAbcLϵ
L

(7.83)

In order to study the variation of P with ϵ, L and pAb it is convenient to non-

dimensionalize all the parameters. Thus, expressing pAb in the following form:

pAb =
NAb

cLRL
(7.84)

yields that P may be written as:

P = 1− e−NAbϵ̂
L

(7.85)

where ϵ̂ , ϵ
R
is non-dimensional and 0 ≤ ϵ̂ ≤ 1. The number of distinct antibodies in

a vertebrate’s repertoire can conceivably vary from 1 to many millions. From Eq. 7.85

it is obvious that P increases monotonically with NAb, when ϵ and L are held constant

and it is essentially 1 when NAb = 10ϵ̂−L. The parameter ϵ̂ may be considered as a

measure of the antibody specificity. Specifically, when ϵ̂ is large each antibody can

combine with a multitude of different shapes. On the other hand, when ϵ̂ is small

each antibody is assumed to combine with a small fraction of antigens which have

shapes very nearly complementary to that of the antibody. The antigens within a



Chapter 7: Artificial Immune Systems 226

distance ϵ̂ of an antibody all cross react. Thus, ϵ̂ can also be viewed as a measure of

the cross reactivity of random antigens with a given antibody. For a fixed repertoire

size, when ϵ̂ is small only a small fraction of shape space is covered by the balls of

radius ϵ̂ surrounding each antibody shape, and thus P is small. Conversely, when ϵ̂ is

large the balls surrounding each antibody overlap and cover all of V , so that P ≈ 1.

The number of parameters required to specify a point in shape-space, L, can be

interpreted as a measure of antibody and/or antigenic determinant complexity. A

simple shape can be described by very few parameters, while a complicated antigenic

determinant might require many parameters to specify its shape. With this interpre-

tation of L, Eq. 7.85 predicts that in order to maintain a given level of performance,

increases in antigen complexity, as measured by L, must be accompanied by large

increases in repertoire size. Moreover, there is a critical complexity, L∗, above which

the immune system cannot function effectively. Letting P ∗ be the minimum value of

P required for the efficient functioning of the immune system, then Eq. 7.85 yields

that the critical complexity will be given by the following equation:

L∗ =
ln{ln[1− P ∗]

− 1
NAb }

ln ϵ̂
(7.86)

For L ≪ L∗, P ≈ 1, whereas for L ≫ L∗, P ≈ 0. Having in mind that the immune

system of a vertebrate organism has evolved to the point where P ≥ P ∗ then it is

assumed that it can tolerate a fraction f , f ≤ f ∗ , 1−P ∗, of randomly encountered

antigens not being complementary to any antibody in its repertoire. Once again,

Eq. 7.85 may be utilized in order to derive that:

NAb ≥ N∗
Ab , −ϵ̂−L ln(1− P ∗) (7.87)

for P ≥ P ∗. Thus, the minimum repertoire size, N∗
Ab, varies as the logarithm of

(1− P ∗)−ϵ̂−L
and grows without bound as P ∗ approaches 1.

7.5 AIS-based Clustering

The generic immune network model proposed by Perelson [169] formed the basis

for the conception of many AIS-based machine learning algorithms, such as the Artifi-
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cial Immune NETwork (aiNet) clustering algorithm formulated by de Castro and Von

Zuben [47]. aiNet constitutes an immune network learning algorithm exploiting the

computational aspects of the Clonal Selection Principle. In particular, the network

is initialized with a small number of randomly generated elements. Each network

element corresponds to an antibody molecule which is represented by an attribute

string in an Euclidean shape-space. The next stage in the course of the algorithm

execution involves the presentation of the antigenic patterns. Each antigenic pattern

is presented to each network cell an their affinity is measured according to Eq. 7.48.

Subsequently, a number of high affinity antibodies are selected and reproduced (clonal

expansion) according to their affinity. In particular, the number of clones produced

for each antibody is proportional to the measure of its affinity with a given antigenic

pattern. The clones generated undergo somatic mutation inversely proportional to

their antigenic affinity. That is, the higher the affinity, the lower the mutation rate. A

number of high affinity clones is selected to be maintained in the network, constitut-

ing what is defined as a clonal memory. The affinity between all remaining antibodies

is determined. Those antibodies whose affinity is less than a given threshold are

eliminated from the network (clonal suppression). All antibodies whose affinity with

the currently presented antigen are also eliminated from the network (metadynam-

ics). The remaining antibodies are incorporated into the network, and their affinity

with the existing antibodies is determined. The final step of the algorithm is the

elimination of all antibody pairs whose affinity is less than a predefined threshold.

7.5.1 Background Immunological Concepts

The aiNet learning algorithm, in terms of the utilized biological concepts, can be

summarized as follows:

1. Initialization: crate an initial random population of network antibodies;

2. Antigenic presentation: for each antigenic pattern do:

(a) Clonal selection and expansion: for each network element, determine its
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affinity with the currently presented antigen. Select a number of high affin-

ity elements and reproduce (clone) them proportionally to their affinity;

(b) Affinity maturation: mutate each clone inversely proportional to each affin-

ity with the currently presented antigenic pattern. Re-select a number of

highest affinity clones and place them into a clonal memory set;

(c) Metadynamics : eliminate all memory clones whose affinity with the cur-

rently presented antigenic pattern is less than a pre-defined threshold;

(d) Clonal interactions : determined the network interactions (affinity) among

all the elements of the clonal memory set;

(e) Clonal suppression: eliminate those memory clones whose affinity with

each other is less than a pre-specified threshold;

(f) Network construction: incorporate the remaining clones of the clonal mem-

ory with all network antibodies;

3. Network interactions: determine the similarity between each pair of network

antibodies;

4. Network suppression: eliminate all network antibodies whose affinity is less than

a pre-specified threshold;

5. Diversity : introduce a number of new randomly generated antibodies into the

network;

6. Cycle: repeat Steps 2 to 5 until a pre-specified number of iterations is reached.

7.5.2 The AIN Learning Algorithm

The AIN developed is as an edge-weighted graph composed of a set of nodes, called

memory antibodies and sets of node pairs, called edges, with an assigned weight or

connection strength that reflects the affinity of their match. In order to quantify

immune recognition, we consider all immune events as taking place in shape-space

S which constitutes a multi-dimensional metric space where each axis stands for a
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physico-chemical measure characterizing a molecular shape. For the purposes of the

current we utilized a real valued shape - space where each element of the AIN is

represented by a real valued vector of L elements which implies that S = RL. The

affinity/complementarity level of the interaction between two elements of the AIN

was computed on the basis of the Euclidean distance between the corresponding

vectors in RL. The antigenic patterns set to be recognized by the developed AIN

will be composed of the set of M L - dimensional feature vectors while the produced

memory antibodies can be considered as an alternative compact representation of the

original feature vectors set. Each feature vector encapsulates the relevant information

content depending on the particular problem space.

The following notation will be adapted throughout the formulation of the learning

algorithm:

• Ab ∈ MN×L is the matrix storing the available antibody repertoire, such that

Ab = Ab{m} ∪Ab{d}.

• Ab{m} ∈ Mm×L is the matrix storing the total memory antibodies repertoire,

where m ≤ N .

• Ab{d} ∈ Md×L is the matrix storing the d new antibody feature vectors to be

inserted within the Ab pool such that d = N −m.

• Ag ∈MM×L is the matrix storing the antigenic population that is initially fed

within the algorithm.

• F ∈MN×M is the matrix storing the affinities between any given antibody and

any given antigen. In particular, the Fij element of the matrix corresponds

to the affinity between the i-th antibody and the j-th antigen feature vectors.

The affinity measures that can be utilized are thoroughly described within Sec-

tion 7.3.2.

• S ∈ MN×N is the matrix storing the similarities between any given pair of

antibody feature vectors. Specifically, the Sij element of the matrix corresponds

to the similarity between the i-th and j-th antibody feature vectors.
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• C ∈ MNc×L is the matrix storing the population of Nc clones generated from

Ab.

• C∗ ∈MNc×L is the matrix storing the population C after the application of the

affinity maturation process.

• Dj ∈M1×Nc is the vector storing the affinity measure among every element from

C∗ with the currently presented antigen Agj, such that Dj = {∥C∗
k−Agj∥, k ∈

[Nc]}

• ζ is the percentage of mature antibodies to be selected.

• Mj ∈M[ζ·Nc]×L is the matrix storing the memory clones for antigen Agj.

• Sm ∈M[ζ·Nc]×[ζ·Nc] is the matrix storing the similarities between any given pair

of memory antibody feature vectors.

• M∗
j ∈ MM ′

c×L is the matrix storing the M ′
c resulting memory clones after the

application of the clonal suppression process such that M ′
c < [ζ ·Nc].

• σd represents the AIN apoptosis criterion. It is the natural death threshold value

that corresponds to the maximum acceptable acceptable distance between any

antibody and the currently presented antigen Agj.

• σs represents the AIN suppression criterion. It is the threshold that corresponds

to the minimum acceptable distance between any pair of memory antibodies.

The aiNet learning algorithm aims at building a memory set that recognizes and

represents the data structural organization. The more specific antibodies, the less

parsimonious the network (low compression rate). On the other hand, the more

generalist the antibodies, the more parsimonious the network with relation to the

number of produced memory antibodies (improved compression rate). The suppres-

sion threshold σs controls the specificity level of the produced memory antibodies, the

clustering accuracy and network plasticity. In this context, the general form of the

AIN training algorithm appears in Fig. 7.9 while its analytical description involves

the following steps:
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1. At each iteration, do:

(a) For each antigenic pattern Agj ∈M1×L, where j ∈ [M ],do:

i. Determine its affinity Fj(i) ∈ MN×1 to all the available antibodies

Abi ∈M1×L, i ∈ [N ] such that Fj(i) = {∥Abi −Agj∥, ∀i ∈ [N ]}.

ii. Select a subset Ab{n} form Ab composed of the n highest affinity

antibodies.

iii. The n selected antibodies are going to proliferate inversely propor-

tional to their antigenic affinity Fj(i) generating a set C of clones.

The higher the affinity, the larger the clone size for each for each of

the n selected antibodies.

iv. The set C is submitted to a directed affinity maturation process gen-

erating a maturated set C∗. During the affinity maturation process

each antibody Ck from C will suffer a number of guided mutation

steps in order to approach the currently presented antigenic pattern

Agj within a neighborhood of radius r where r < σd. In each mutation

step, antibody Ck from C will be modified with a rate akj according

to the equation:

C∗
k = Ck + akj · (Agj −Ck) (7.88)

where akj is proportional to the antigenic affinity Fj(pk) of its parent

antibody, where pk corresponds to the parent antibody index of Ck

within the original antibody matrix Ab, such that akj ∝ Fj(pk) and

k ∈ [Nc], pk ∈ [n], j ∈ [M ].

v. Determine the affinity matrix Dj among the the currently presented

antigenAgj and all the elements of C∗. Specifically, the element Dj(k)

of D corresponds to affinity measure between the k-th element of C∗

and the j-th element of Ag such that Dj(k) = ∥C∗
k − Agj∥ where

k ∈ [Nc] and j ∈ [M ].

vi. From C∗ reselect a percentage z of the antibodies that present the

lowest distance to the currently presented antigen Agj and put them
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into a matrix Mj of clonal memory such that Mj ∈M[ζ·Nc]×L.

vii. Apoptosis : eliminate all the memory clones from Mj whose affinity to

the currently presented antigenic pattern is greater than a pre-specified

threshold sd such that Dj(k) > σd.

viii. Determine the affinity matrix Sm storing the distances between any

given pair of memory clones such that Sm = {∥Mj(i) −Mj(k)∥, i ∈
[ζ ·Nc], k ∈ [ζ ·Nc]}

ix. Clonal Suppression: Eliminate all memory clones for which Sik < σs

so that the resulting memory matrix M∗
j is obtained.

x. Concatenate the total antibody memory matrix Ab{m} with the resul-

tant clonal memory matrix M∗
j for the currently presented antigenic

pattern such that:

Ab{m} ← [Ab{m};M
∗
j ] (7.89)

(b) Determine the affinity matrix S storing the affinities between all possible

pairs of memory antibodies such that S = {∥Abi
{m}−Abk

{m}∥, i ∈ [m], k ∈
[m]}.

(c) Network suppression: Eliminate all memory antibodies such that Sik < σs.

(d) Build the total antibody matrix by introducing d randomly generated an-

tibody feature vectors according to the following equation:

Ab← [Ab{m};Ab{d}] (7.90)

2. Test the stopping criterion.

The selection of the n highest affinity antibodies is performed by sorting the distances

of the available antibodies with the currently presented antigenic pattern in ascending

order. Therefore, the amount Nc of clones generated for all these n selected antibodies

will be given by the following equation:

Nc =
n∑

i=1

[
βN

i

]
(7.91)
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where β is a multiplying factor and N is the total amount of antibodies. Each term

of this sum corresponds to the clone size of each selected antibody. For example, if

N = 100 and β = 1 then the highest affinity antibody (i = 1) will produce 100 clones,

while the second highest affinity antibody produces 50 clones, and so on.

The primary characteristic of the Artificial Immune Network learning algorithm

is the elicitation of a clonal immune response to each antigenic pattern presented to

the network. Moreover, this algorithm incorporates two suppression steps, namely

the clonal suppression and network suppression respectively. The clonal suppression

ensures the elimination of intra-clonal self recognizing antibodies that are the by

product of the generation of a different clone for each antigenic pattern. Network

suppression, on the other hand, is required in order to search for similarities between

different sets of clones. The resultant memory antibodies may be considered as the

internal images of the antigens (or group of antigens) that have been presented to the

network during the learning phase. Specifically, the network outputs can be taken to

be the matrix of antibody feature vectors Ab{m} and their affinity matrix S. While

matrix Ab{m} represents the network internal images of the antigens presented to the

aiNet, matrix S is responsible for determining which network antibodies are connected

to each other, describing the general network structure.

The Artificial Immune Network convergence can be evaluated on the basis of

several alternative criteria such as the following:

1. Stop the iterative process after a predefined number of iteration steps;

2. Stop the iterative process when the network reaches a pre-defined number of

antibodies;

3. Evaluate the average error between all the antigens and the network memory

antibodies according to the following equation:

E =
1

m ·M

m∑
i=1

M∑
j=1

∥Abi
{m} −Agj∥ (7.92)

and stop the iterative process if this average error is larger than a pre-specified

threshold. This strategy is particularly useful for obtaining less parsimonious
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solutions;

4. The network is supposed to have converged if its average error rises after k

consecutive iterations.

Figure 7.9: AIN Learning Algorithm

7.5.3 aiNet Characterization and Complexity Analysis

The aiNet learning model can be classified as a connectionist, competitive and con-

structive network, where the resultant memory antibodies correspond to the network

nodes while the antibody concentration and affinity may be viewed as their internal

states. Moreover, the utilized learning mechanisms govern the time evolution of the
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antibody concentration and affinity. The connections among the memory antibod-

ies, represented by the elements of matrix S, correspond to the physical mechanisms

that measure their affinity in order to quantify the immune network recognition. The

aiNet graph representation, in particular, provides a description of its architecture,

with the final number and spatial distribution of the identified clusters. The network

dynamics employed regulates the plasticity of the aiNet, while the mete-dynamics is

responsible for a broader exploration of the search-space. The competitive nature of

the Artificial Immune Network stems from the fact that its antibodies compete with

each other for antigenic recognition and, consequently, survival. Finally, the aiNet is

plastic in nature, in the sense that its architecture since the number and shape of the

immune cells are completely adaptable to the problem space.

The aiNet general stricture is different from the neural network models [94] if

one focuses on the function of the nodes and their connections. In the aiNet case,

the nodes work as internal images of ensembles of patterns (thus representing the ac-

quired knowledge), and the connection strengths describe the similarities among these

ensembles. On the other hand, in the neural network case, the nodes correspond to

processing elements while the connection strengths may represent the acquired knowl-

edge. More importantly, the immune clonal selection pattern of antigenic response

may be considered as a microcosm of Darwinian evolution. The processes of simu-

lated evolution proposed by Holland [96] try to mimic some aspects of the original

theory of evolution. Regarding the aiNet learning algorithm, it is possible to identify

several features in common with the process of simulated evolution which are mostly

encountered within the context of evolutionary algorithms. Firstly, the aiNet is a

population based algorithm since its initial state involves a random set of candidate

solutions (properly coded antibodies).

Analyzing an algorithm refers to the process of deriving estimates for the time and

space requirements of its execution. Complexity of an algorithm, on the other hand,

corresponds to the amount of time and space needed until its termination. Notice that

determining the performance parameters of a computer programm is not an easy task

since it is highly dependent on a number of parameters such as the computer being

used, the way the data are represented and with which programming language the
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code is implemented. In this section, the learning algorithm for the construction of an

Artificial Immune Network will be generally evaluated for its complexity in terms of

the computational cost per generation and its memory (space) requirements. Specif-

ically, the necessary time for an algorithm to converge can be measured by counting

the number of instructions executed, which is proportional to the maximum number

of iterations conducted. Regardless of the particular affinity measure employed, the

fundamental parameters characterizing the computational cost of the algorithm refer

to the dimension N × L of the available antibody repertoire, the total number of

clones Nc, the amount M of antigens to be recognized,the amount m of the produced

memory antibodies and the amount n and percentage ζ of the selected antibodies for

reproduction or storage as memory antibodies.

The AIN learning algorithm implemented has the following three main processing

steps:

1. Defining the affinity of antibodies (Steps: 1(a) i, 1(a) v, 1(a) viii and 1(b));

2. Eliminating antibodies whose affinities are below or above a pre-specified thresh-

old through the mechanisms of:

• Selection (Step 1(a) ii);

• Reselection (Step 1(a) vi);

• Apoptosis (Step 1(a) vii).

• Clonal Suppression (Step 1(a) ix);

• Network Suppression (Step 1(c));

3. Hyper-mutating the population (Step 1(a) iv).

The usual way of selecting n individuals from a population is by sorting their affinities

in the corresponding storing vector and subsequently extracting the n first elements

of the sorted vector. This operation can be performed in O(n) time where n is the

number of elements in the affinities vector. Moreover, the elimination processes that

take place within the leaning phase of the AIN algorithm involve the comparison
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of each element of a square affinity matrix against a pre-defined threshold. This

operation may be conducted in O(n2) time where n is the number of elements in each

matrix dimension. Finally, mutating the Nc clones demands a computational time of

order O(NcL).

Table 7.1: AIN Learning Algorithm Complexity

DESCRIPTION STEP TIME COMPLEXITY
SELECTION 1(a) ii O(N)

RESELECTION 1(a) vi O(Nc)
APOPTOSIS 1(a) vii O([ζ ·Nc])

CLONAL SUPPRESSION 1(a) xi O([ζ ·Nc]
2)

NETWORK SUPPRESSION 1(c) O(m2)
HYPERMUTATION 1(a) iv O(NcL)

Table 7.1 summarizes the individual complexities for each step of the AIN training

algorithm. Therefore, by summing up the computational time required for each of

these steps, it is possible to determine the computational time for each individual

iteration of the algorithm according to the following equation:

O(N +Nc + [ζ ·Nc] + [ζ ·Nc]
2 +m2 +NcL) = O(m2) (7.93)

since m >> [ζ ·Nc]. The total time complexity of the algorithm can be estimated

by taking into consideration the fact that these steps have to be performed for each

of the M antigenic patterns. Thus, the overall time complexity may be given by the

following equation:

Required Time = O(Mm2) (7.94)

It is important to note that m may vary along the learning iterations, such that at

each generation the algorithm has a different cost. Therefore, variable m in Eq. 7.94

may be considered as the average number of memory antibodies generated at each

generation. The required memory to run the algorithm, on the other hand, can be

estimated by summing the individual space requirement for each one of the utilized

variables Ag, Ab, Fj, C and C∗, Mj and M∗
j , and Sm. In particular, the overall

space requirement of the algorithm can be given by the following equation:

Required Memory = (M +N +Nc)L+N +Nc + [ζ ·Nc] +m2 (7.95)



Chapter 7: Artificial Immune Systems 238

7.6 AIS-based Classification

Experimentation with the Artificial Immune Network learning algorithm revealed

that the evolved artificial immune networks, when combined with traditional statis-

tical analysis tools, were very efficient at extracting interesting and useful clusters

from data sets. Moreover, the AIN learning algorithm may be utilized as a data

compression technique since the number of resulting memory antibodies in aiNet is

significantly lesser than the initial set of antigenic patterns but in a minimal aver-

age distance sense. Therefore, the evolved memory antibodies may be considered as

providing an alternative data representation that revelates their original space dis-

tribution. In addition, the AIN learning algorithm may be exploited as a dimension

reduction technique when the utilized distance function can serve as a correlation

measure between a given a pair of feature vectors. These feature vectors, however,

correspond to a column wise interpretation of the original data set, such that the

resulting memory antibodies may be considered as an alternative feature set for the

original data points.

Therefore, the exceptional success of the AIN training algorithm in dealing with

unsupervised learning tasks, lead Watkins et al. [235] to the conception of an Artificial

Immune Recognition System (AIRS) which is particularly suited for supervised learn-

ing problems. The goal of the AIRS algorithm is to develop a set of memory cells,

through the utilization of an artificial evolutionary mechanism, that may be used

in order to classify data. The primary mechanism for providing evolutionary pres-

sure to the population of the initial antibody molecules is the competition for system

wide resources. This concept is the means by which cell survival is determined and

reinforcement for high quality classification is provided.

The primary objective of the AIRS algorithm is to develop a set of immune compe-

tent memory cells, evolved from an initial population of randomly generated antibody

molecules. Therefore, the incorporation of a fitness concept is essential in order to

evaluate the pattern recognition ability of any given individual. In the AIRS al-

gorithm, fitness is initially determined by the stimulation response of a particular

antibody molecule to the currently presented antigenic pattern. According to this
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fitness value, each antibody molecule is allocated with a finite number of resources.

In this context, by purging the antibody molecules that exhibited the least ability to

acquire resources, the algorithm enforces a great selective pressure toward a place in

the search space that will provide the most reward. Otherwise stated, this process

ensures the survival of those individuals in the population that will eventually provide

the best classification results.

The antibody molecules surviving the competition for resources phase are further

rewarded by being given the opportunity to produce mutated offspring. Once again,

this competition for survival can be seen in a truly evolutionary sense. That is, while

the fittest individuals in a given round of antigenic exposure might not survive to

become a memory cell, their offspring might. Therefore, it it the survival of species

that the algorithm promotes.

7.6.1 Background Immunological Concepts

Table 7.2: Mapping between the Immune System and AIRS

Immune System AIRS
Antibody Combination of feature vector and vector class.
Shape-Space Type and possible values of the data vector.
Clonal Expansion Reproduction of highly stimulated antibody molecules.
Antigens Combination of training feature vector and training vector class.
Affinity Maturation Random antibody mutation and removal of the least stimulated.
Immune Memory Memory set of artificial antibody molecules.
Metadynamics Continual removal and creation of antibody and memory cells.

The artificial memory cells that are generated by the AIS-based classification al-

gorithm, embody several characteristics that are encountered in the natural immune

systems. Primarily, the produced memory cells are based on memory B Cells that

have undergone a maturation process in the body. In mammalian immune systems,

these antibody memory cells are initially stimulated by invading pathogens and sub-

sequently undergo a process of somatic hyper-mutation as a response to the original

signals indicating the antigenic recognition. The embodiment of this concept is seen

in the function of memory cells in the AIRS algorithm. The artificial memory cells
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may also be thought of as taking on the role of T Cells and Antigen Presenting Cells

to some degree. In natural immune systems T Cells tend to be associated with a

specific population of B Cells. When a T Cell recognizes an antigen, it then presents

this antigen to the B Cells associated with it for further recognition. In the context

of the AIRS algorithm this process may be encountered in the initial stages involving

the identification of the matching memory cell which in turn develops a population

of closely related antibody clones.

Table 7.2, in particular presents the fundamental immune principles employed

by the AIRS algorithm which, in terms of the utilized immune principles, may be

summarized as follows:

1. Initialization:

(a) Data normalization: All antigenic attribute strings are normalized such

that the distance between any given pair of antigens lies strictly in the

[0, 1] interval.

(b) Affinity threshold computation: After normalization the affinity threshold

is calculated corresponding to the average affinity value over all training

data.

(c) Memory cells initialization: The set of available memory cells for each

class of patterns pertaining to the training data is set to be null.

(d) Antibody cells initialization: The set of available antibody molecules for

each class of patterns pertaining to the training data is set to be null.

2. Antigenic presentation: for each antigenic pattern do:

(a) Memory cell identification: Find the memory cell that presents the highest

stimulation level to the currently presented antigenic pattern. If the set of

memory cells of the same classification as the currently presented antigen is

empty, then this antigen should be incorporated within the set of memory

cells. Additionally, the current antigen will be denoted as the matching

memory cell.
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(b) Antibody molecules generation: Once the matching memory antibody has

been identified, it is subsequently utilized in order to generate offsprings.

These offsprings are mutated clones of the matching memory cell that

will eventually be incorporated within the available antibodies repertoire.

Specifically, the number of mutated offsprings to be generated is propor-

tional to the stimulation level of the matching memory cell to the cur-

rently presented antigen. The mutation process, in particular, is performed

element-wise for each constituent of the antibody attribute string to be mu-

tated. Moreover, the decision concerning the mutation or not of a specific

element is randomly taken such that an average number of MutationRate

elements will be finally modified for each attribute string. The mutation

range for each element to be altered is also proportional to the stimula-

tion level of the matching memory cell, while the mutation magnitude is a

value randomly chosen according to the uniform distribution in the [0, 1]

interval.

(c) Stimulations computation: Each antibody molecule in the available reper-

toire is presented with the current antigen in order to determine the cor-

responding stimulation level.

(d) Actual learning process The goal of this portion of the algorithm is to

develop a candidate memory cell which is the most successful in correctly

classifying the currently presented antigen. Therefore, this algorithmic

step strictly concerns the antibodies pertaining to the same class with the

current antigen. The following sub-steps will be executed until the average

stimulation level of the available antibodies becomes greater than or equal

to a predefined threshold:

i. Stimulations normalization: The stimulation level for each antibody

is normalized across the whole antibody population based on the raw

stimulation value.

ii. Resource allocation: Based on this normalized stimulation value, each

antibody is allocated a finite number of resources.
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iii. Competition for resources: In case the number of resources allocated

across the population exceed a predefined maximum value, then re-

sources are removed from the weakest (least stimulated) antibody until

the total number of resources in the system returns to the number of

resources allowed. Moreover, those antibodies that have zero resources

are completely removed from the available antibody population.

iv. Stimulations re-computation: Re-estimate the stimulation levels for

each available antibody molecule to the currently presented antigen.

v. Candidate memory cell identification: The antibody molecule with

the highest stimulation level to the current antigen is identified as the

candidate memory cell.

vi. Mutation of surviving antibody molecules : Regardless of whether the

stopping criterion is met or not, all antibodies in the repertoire are

given the opportunity to produce mutated offsprings.

(e) Memory cell introduction:The final stage in the learning routine is the

potential introduction of the just-developed candidate memory cell into

the set of the existing memory cells. It is during this stage that the affinity

threshold calculated during initialization becomes critical since it dictates

whether the candidate memory cell replaces the matching memory cell

that was previously identified. The candidate memory cell is added to

the set of memory cells only if it is more stimulated by the currently

presented training antigen than the matching memory cell. If this test

is passed, then if the affinity between the matching memory cell and the

candidate memory cell is less than the product of the affinity threshold

and the affinity threshold scalar, then the candidate memory cell replaces

the matching memory cell in the set of memory cells.

3. Classification: The classification is performed in a k-nearest neighbor approach.

Each memory cell is iteratively presented with each data item for stimulation.

The system’s classification of a data item is determined by using a majority

vote of the outputs of the k most stimulated memory cells.
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7.6.2 The AIRS Learning Algorithm

The evolutionary procedure of developing memory antibodies lies within the core

of the training process of the proposed AIS-based classifier applied on each class of

antigenic patterns. The evolved memory cells provide an alternative problem domain

representation since they constitute points in the original feature space that do not

coincide with the original training instances. However, the validity of this alternative

representation follows from the fact the memory antibodies produced recognize the

corresponding set of training patterns in each class in the sense that their average

affinity to them is above a predefined threshold.

Figure 7.10: AIRS Learning Algorithm 1

To quantify immune recognition, all immune events are considered as taking place

in a shape-space S, constituting a multi-dimensional metric space in which each axis

stands for a physico-chemical measure characterizing molecular shape. Specifically, a

real-valued shape-space was utilized in which each element of the AIS-based classifier
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is represented by a real-valued vector of L elements, such that Σ = R and S = ΣL.

The affinity /complementarity level of the interaction between two elements of the

constructed immune-inspired classifier was computed on the basis of the Euclidean

distance between the corresponding vectors in S. The antigenic pattern set to be

recognized by the memory antibodies produced during the training phase of the AIS-

based classifier is composed of the set of representative antibodies, which maintain

the spatial structure of the set of all data in the music database, yet form a minimum

representation of them.

Figure 7.11: AIRS Learning Algorithm 2

The following notation will be adapted throughout the formulation of the Artificial
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Immune Recognition System learning algorithm:

• AT denotes the Affinity Threshold.

• ATS denotes the Affinity Threshold Scalar.

• CR denotes the Clonal Rate.

• MR denotes the Mutation Rate.

• HCR denotes the Hyper Clonal Rate.

• TR denotes the number of Total Resources, which is the maximum number of

resources allowed within the system.

• RA denotes the number of Resources Allocated within the system during the

training process on a particular antigenic pattern.

• NRR is the Number of Resources to be Removed in case RA > TR.

• C denotes the number of classes pertaining to a given classification problem.

• Ag ∈ MM×L is the matrix storing the complete set of training antigenic pat-

terns. This matrix may be considered as being constructed by the following

concatenation of matrices:

Ag = [Ag(1); · · · ;Ag(C)] (7.96)

where Ag(k) ∈MMk×L denotes the sub-matrix storing the training instances for

the k-th class of patterns, such that:

M =
C∑

k=1

Mk (7.97)

• Ab ∈ MN×L is the matrix storing the available antibody repertoire for the

complete set of classes pertaining to the classification problem under investi-

gation. This matrix may be considered as being constructed by the following

concatenation of matrices:

Ab = [Ab(1); · · · ;Ab(C)] (7.98)
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where Ab(k) ∈ MNk×L denotes the sub-matrix storing the available antibodies

for the k-th class of patterns, such that:

N =
C∑

k=1

Nk (7.99)

• S ∈M1×N is the vector storing the stimulation levels to the currently presented

antigenic pattern for the complete set of available antibodies in the repertoire.

This vector may be considered as being constructed by the following concate-

nation of matrices:

S = [S(1), · · · ,S(C)] (7.100)

where S(k) ∈M1×Nk
denotes the sub-vector storing the stimulation levels of the

available antibodies for the k-th class of patterns to the current antigen which

is also of the same classification.

• R ∈ M1×N is the vector storing the resources allocated for the complete set

of available antibodies in the repertoire after the presentation of the current

antigenic instance. This vector may be considered as being constructed by the

following concatenation of matrices:

R = [R(1), · · · ,R(C)] (7.101)

where R(k) ∈ M1×Nk
denotes the sub-vector storing the resources allocated for

the available antibodies of the k-th class of patters after the presentation of the

current antigenic instance which is also of the same classification.

• M ∈ Mm×L is the matrix storing the memory antibodies for each class of pat-

terns pertaining to a given classification problem. This matrix may be thought

of as being constructed by the following concatenation of matrices:

M = [M(1); · · · ;M(C)] (7.102)

where M(k) ∈ Mmk×L denotes the sub-matrix storing the memory antibodies

for the k-th class of patterns such that:

m =
C∑

k=1

mk (7.103)
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• s ∈ M1×C denotes the vector storing the average stimulation level of the avail-

able antibodies for each class of patterns, such that:

s = [s(1), · · · , s(C)] (7.104)

In this context, the sj(k) element denotes the average stimulation level for the

antibodies of the k-th class of patterns after the presentation of the j-th training

antigen pertaining to the same class, given by the following equation

Figure 7.12: AIRS Learning Algorithm 3

The analytical description of the AIRS algorithm which is illustrated within Figs. 7.10, 7.11

and 7.12, involves the following steps:
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1. Initialization:

(a) Compute the matrix D ∈MM×M of distances between all possible pairs of

antigens in Ag, where the utilized distance function is given by Eq. 7.57.

The Normalized Euclidean Distance provides an affinity measure for which

the distance value between any given pair of antigenic pattern lies within

the [0, 1] interval such that:

0 ≤ D(Agi,Agj) ≤ 1, ∀i ∈ [M ],∀j ∈ [M ] (7.105)

(b) Compute the affinity threshold (AT ) according to the following equation:

AT =
2

M(M − 1)

M∑
i=1

M∑
j=1

D(Agi,Agj) (7.106)

(c) Initialize matrices Ab, M and vectors S, R according to the following

equations:

Ab(k) ← [], ∀k ∈ [C] (7.107)

S(k) ← [], ∀k ∈ [C] (7.108)

R(k) ← [], ∀k ∈ [C] (7.109)

M(k) ← [], ∀k ∈ [C] (7.110)

such that:

Nk ← 0, ∀k ∈ [C] (7.111)

mk ← 0, ∀k ∈ [C] (7.112)

where [] denotes the empty matrix or the empty vector.

2. For each class k ∈ [C], of patterns do:

• For each antigenic pattern Ag
(k)
j ∈M1×L, where j ∈ [Mk], do:

(a) Determine the matching memory cell (m̂k
j )

m̂k
j =


Ag

(k)
j , j = 1;

arg max
m∈M(k)

j

stimulation(Ag
(k)
j ,m), otherwise. (7.113)
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and corresponding stimulation level (ŝkj )

ŝkj = stimulation(Ag
(k)
j , m̂k

j ) (7.114)

The stimulation level for a given pair of vectors x, y is given by the

following equation:

stimulation(x,y) = 1−D(x,y) (7.115)

such that the distance D(x,y) is once given by Eq. 7.57.

(b) Compute the matrix C(k) ∈ MNc×L of mutated clones, originating

from the matching memory cell m̂k
j , where the number of produced

antibodies Nc is given by the following equation:

Nc = HCR · CR · ŝkj (7.116)

Computing matrix C(k) requires the computation of two auxiliary ran-

dom matrices Pj,Qj ∈ MNc×L such that their elements Pj(l, p) and

Qj(l, p) are uniformly distributed in the [0, 1] interval, where l ∈ [Nc]

and p ∈ [L]. Matrix C(k), then, may be computed according to the

following equation:

C(k)(l, p) =

{
low(p) +Pj(l, p) · δkj , Qj(l, p) < MR;

m̂k
j , otherwise.

(7.117)

where δkj = 1− ŝkj and low(p) = max (0, m̂k
j (p)− 1

2
δkj ) Finally, update

matrix Ab(k) and variable Nk according to the following equations:

Ab(k) ← [Ab(k);C(k)] (7.118)

Nk ← Nk +Nc (7.119)

(c) Compute the sub-matrix S
(k)
j ∈M1×Nk

containing the stimulations of

the available antibodies for the k-th class of patterns after the pre-

sentation of the j-th antigen of the k-th class Ag
(k)
j according to the

following equation:

S
(k)
j (i) = stimulation(Ag

(k)
j ,Ab

(k)
i ), ∀i ∈ [Nk] (7.120)
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Compute the average stimulation level for the k-th class of patterns

after the presentation of the j-th antigenic instance originating from

the same class according to the following equation:

sj(k) =
1

Nk

Nk∑
i=1

S
(k)
j (i) (7.121)

(d) Actual learning process: While sj(k) < ST , do:

i. Normalize antibodies stimulations according to the following equa-

tions:

S
(k)
j,min = min

i∈[Nk]
S
(k)
j (i) (7.122)

S
(k)
j,max = max

i∈[Nk]
S
(k)
j (i) (7.123)

S
(k)
j (i) ←

S
(k)
j (i)− S

(k)
j,min

S
(k)
j,max − S

(k)
j,min

(7.124)

ii. Compute the sub-vector R
(k)
j ∈M1×Nk

of the available antibodies

resources for the k-th class of patterns after the presentation of

the j-th antigen from the same class, according to the following

equation:

R
(k)
j (i) = S

(k)
j (i) · CR, ∀i ∈ [Nk] (7.125)

iii. Compute the number of resources allocated by the complete set

of antibodies for the current class and antigen according to the

following equation:

RA =

Nk∑
i=1

R
(k)
j (i) (7.126)

iv. Compute the number of resources to be removed according to the

following equation:

NRR = RA− TR (7.127)

v. Reorder the elements in matrix Ab(k), and vectors S(k) and R(k)
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according to the permutation π : [Nk]→ [Nk], such that:

Ab(k) ← π(Ab(k)) (7.128)

S
(k)
j ← π(S

(k)
j ) (7.129)

R
(k)
j ← π(R

(k)
j ) (7.130)

which rearranges the elements in R
(k)
j , so that:

R
(k)
j (i) ≤ R

(k)
j (i+ 1), ∀i ∈ [Nk − 1] (7.131)

vi. Compute the vector I
(k)
j ∈M1×µ, where µ ≤ Nk, such that:

I
(k)
j = {r ∈ [Nk] :

r∑
i=1

R
(k)
j (i) < NRR} (7.132)

vii. Compute the optimal value r̂, given by the following equation:

r̂ = arg max
i∈I(k)j

σk
j (r) (7.133)

where σk
j (r) denotes the partial sum of the r first elements in R

(k)
j

given by the following equation:

σk
j (r) =

r∑
i=1

R
(k)
j (7.134)

viii. Compute the remaining number of allocated resources according

to the following equation:

RA =

Nk∑
i=r̂+1

R
(k)
j (7.135)

This number corresponds to the amount of system wide resources

after the removal of the r̂ least stimulated antibodies. This value,

however, yields a remaining number of resources to be removed

which is, once again, given by Eq. 7.127 such that:

0 < NRR < R
(k)
j (r̂ + 1) (7.136)
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ix. Eliminate a number NRR of resources from the r̂+1-th antibody,

such that:

R
(k)
j (r̂ + 1)← R

(k)
j (r̂ + 1)−NRR (7.137)

which finally yields NRR = 0 and R
(k)
j (r̂ + 1) > 0.

x. Remove the r̂ least stimulated elements from the available anti-

bodies repertoire corresponding to the current class and antigen

according to the following equation:

Ab(k) ← Ab(k) \ {Ab
(k)
1 , · · · ,Ab

(k)
r̂ } (7.138)

and re-estimate the number of antibodies for the current class of

patterns as:

Nk ← Nk − r̂ (7.139)

xi. Re-estimate vector S
(k)
j containing the stimulations for the avail-

able antibodies against the current antigen and associated class

according to Eq. 7.120. Subsequently, re-estimate the correspond-

ing average stimulation level sj(k) according to Eq. 7.121.

xii. Determine the candidate memory cell m̃k
j and corresponding stim-

ulation level s̃kj according to the following equations:

m̃k
j = arg max

m∈Ab(k)
stimulation(Ag

(k)
j ,m) (7.140)

s̃kj = stimulation(Ag
(k)
j , m̃k

j ) (7.141)

xiii. Compute the matrix C̃(k) ∈ MNc×L of mutated offsprings corre-

sponding to the surviving antibodies, such that:

Nc =

Nk∑
i=1

Nc(i) (7.142)

Estimating the number of clones for each surviving antibody re-

quires the computation of an auxiliary random vector zj ∈M1×Nk

such that each vector element zj(i), ∀i ∈ [Nk] is uniformly dis-

tributed in the [0, 1] interval. Therefore, the number of mutated
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clones to be produced from each surviving antibody will be given

by:

Nc(i) =

{
S
(k)
j (i) · CR, S

(k)
j (i) < zj(i);

0, otherwise.
(7.143)

In this context, matrix C̃(k) of mutated clones may be considered

to be constructed through the following concatenation process:

C̃(k) = [C̃
(k)
1 ; · · · ; C̃(k)

Nk
] (7.144)

involving the sub-matrices of mutated clones C̃
(k)
i , ∀i ∈ [Nk] pro-

duced for the i-th antibody of the k-th class Ab
(k)
i , such that

C̃
(k)
i ∈MNc(i)×L where

C̃
(k)
i =

{
Ĉ

(k)
i , S

(k)
j (i) < zj(i);

[], otherwise.
(7.145)

In other words, the elements Ĉ
(k)
i ∈ MNc(i)×L denote the non-

empty sub-matrices of C̃(k), such that Nc(i) ̸= 0. Determining

sub-matrices Ĉ
(k)
i , ∀i : Nc(i) ̸= 0 requires the computation of

two random matrices Pi,Qi ∈ MNc(i)×L such that their elements

Pi(l, p) and Qi(l, p) are uniformly distributed in the [0, 1] interval

where l ∈ [Nc(i)] and p ∈ [L]. The elements of matrix Ĉ
(k)
i may

be then computed by the following equation:

Ĉ
(k)
i (l, p) =

{
low(p) +Pi(l, p) · δkj (i), Qi(l, p) < MR);

Ab
(k)
i (p), otherwise.

(7.146)

where δkj (i) = 1− S
(k)
j (i) and low(p) = max(0,Ab

(k)
i (p)− 1

2
δkj (i))

Finally, update matrix Ab(k) and variable Nk according to the

following equations:

Ab(k) ← [Ab(k); C̃(k)] (7.147)

Nk ← Nk +Nc (7.148)
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(e) Memory cell introduction: If s̃kj > ŝkj , then:

i. dcm = D(m̃k
j , m̂

k
j )

ii. If dcm < AT · ATS, then:

– Update the sub-matric M(k) of memory cells for the class of

the currently presented matrix and the corresponding number

of memory cells mk according to the following equations:

M(k) ← M(k) \ {m̂k
j} (7.149)

mk ← mk − 1 (7.150)

These operations correspond to the substitution of the matching

memory cell by the candidate memory cell.

iii. Incorporate the candidate memory cell within the sub-matrix of

memory cells pertaining to the same class as the currently pre-

sented antigenic pattern according to the following equations:

M(k) ← [M(k); m̃k
j ] (7.151)

mk ← mk + 1 (7.152)

7.6.3 Source Power of AIRS Learning Algorithm and Com-

plexity Analysis

The AIRS learning algorithm was originally conceived in an attempt to demon-

strate that Artificial Immune Systems are amenable to the task of classification.

AIRS formulation, in particular, is based on the principles of resource limited Arti-

ficial Immune Systems where the competition for system wide resources forms the

fundamental framework in order to confront supervised learning problems. As it will

be thoroughly described within the next section:

1. AIRS has been extremely effective in a broad array of classification problems,

including paradigms with high dimensional feature spaces, multi-class classifi-

cation problems and real-valued feature domains.
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2. General purpose classifiers such as Neural Networks, although highly compe-

tent, perform poorly until an appropriate architecture is determined, and the

search for the most suitable architecture may require substantial effort. AIRS

performance, on the contrary, has been experimentally tested to be within a

couple of percentage points of the best results for the majority of problems to

which it has been applied. Moreover, that best results obtained by AIRS are

highly competent.

3. The primary feature of the AIRS learning algorithm is its self-adjusting nature,

justifying its ability to consistently perform over a wide range of classification

problems.

Therefore, it is of crucial importance to reveal the source of the classification power ex-

hibited by this alternative machine learning paradigm. The authors in [80] investigate

the hypothesis that the evolutionary process of deriving candidate memory cells from

an initial population of antibody molecules is the fundamental underpinning behind

the AIRS algorithm. Specifically, it is argued that the memory cell pool produced as

a final result may serve as an internal image of the important aspects of the problem

domain whose capturing is essential for a high classification performance. This con-

jecture, in particular, is experimentally tested by replacing that part of the algorithm

with a function which directly generates candidate memory cells from some suitably

constrained probability density function that resembles the original space distribution

of the training data. The results obtained indicate that this replacement does not

significantly affects the classification performance of the algorithm, thus, providing

evidence supporting the initial hypothesis.

Finally, it is very important to estimate the time and space complexity of the AIRS

classification algorithm since they provide essential information concerning its overall

performance when compared against state of the art supervised learning paradigms.

Regardless of the particular affinity measure employed, the fundamental parameters

characterizing the computational cost of the algorithm refer to the dimension Nc×L

of the mutated antibody clones to be produced, the total number of antibodies in the

repertoire N , the amount M of training antigens to be recognized and the amount m
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of the produced memory antibodies.

The most time consuming computational steps of the AIRS learning algorithm

appear in the following list:

• Memory Cell Identification: (Step 2(a));

• Mutated Clones Generation - Phase A: (Step 2(b));

• Stimulation Levels Normalization: (Step 2(d) i);

• Least Stimulated Antibodies Identification: (Step 2(d) v);

• Candidate Memory Cell Identification: (Step 2(d) xii);

• Mutated Clones Generation - Phase B: (Step 2(d) xiii).

since they involve sorting operations on a given vector of elements or the generation

of a matrix of mutated clones. It is important to note that Steps 2(a) and 2(b) are

executed once per antigenic pattern while Steps 2(d) i, v, xii and xiii are executed

until a pre-defined condition is met for each antigenic pattern.

Table 7.3: AIRS Learning Algorithm Complexity

DESCRIPTION TIME COMPLEXITY
Memory Cell Identification O(m)

Mutated Clones Generation - Phase A O(mL)
Stimulation Levels Normalization O(N)

Least Stimulated Antibodies Identification O(N)
Candidate Memory Cell Identification O(N)
Mutated Clones Generation - Phase B O(NL)

Table 7.3 summarizes the overall time complexity for each individual processing

step of the AIRS learning algorithm. Therefore, by summing up the computational

time required for each individual step, it is possible to estimate the overall time

complexity of the algorithm according to the following equation:

O(m) +O(mL) +O(N) +O(N) +O(N) +O(NL) = O(NL) (7.153)
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since N ≫M . In fact, the total number of produced antibodies may be expressed as

N = k̂M where k̂ is the average number of produced antibodies per antigenic pattern.

In this context, the overall time complexity may be given by the following equation:

Required Time = O(k̂ML) (7.154)

where k̂ is strictly dependent on the stimulation threshold ST , such that k̂ = f(ST )

and f is a monotonically increasing function. Specifically, when the stimulation

threshold approaches 1, them the time complexity of the algorithm is extremely in-

creased. However, the generalization ability of the classifier relies upon tuning the

stimulation threshold at values that are significantly lesser than its maximum value.

The required memory to run the algorithm, on the other hand, can be estimated by

summing up the individual space requirement for each one of the utilized variables

Ag, Ag, D, C, C̃, S, R, M and s. In particular, the overall space requirement of

the algorithm can be given by the following equation:

Required Space = (M +N +m+ 2Nc)L+ 2N + C +M2 (7.155)

7.7 AIS-based Negative Selection

Negative Selection (NS) was the first among the various mechanisms in the im-

mune system what were explored as a computational paradigm in order to develop

an Artificial Immune System. Specifically, it was introduced in 1994 by Forrest et

al. in [69] as a loose abstract model of biological negative selection that concentrates

on the generation of change detectors. It is often referred to as negative detection

since the set of generated detectors are intended to recognize events indicating that

a given set of self attribute strings deviate from an established norm. Although the

original version of the Negative Selection algorithm has been significantly evolved and

diversified over the years since its original conception, its main characteristics remain

unchanged forming the backbone for any negative selection based algorithm.

The initial formulation of the NS algorithm by Forrest et al. involves the definition

of a collection S of self attribute strings that have equal lengths over a finite alphabet
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Σ such that S ⊂ S = ΣL. This collection of self strings is usually considered to be

protected or monitored against changes. For example, S may be a program, data file

or normal pattern of activity, which is segmented into equal-sized substrings. The

actual process of the algorithm is completed in two phases, namely the training and

testing phase as follows:

Figure 7.13: Negative Selection Algorithm: Censoring Phase

• Training Phase: this phase is usually referred to as the censoring or the gener-

ation phase of the NS algorithm involving the generation of a set R of detectors

that fail to match any self attribute string in S. Specifically, during the genera-

tion phase of the algorithm, which is illustrated in Figure 7.13, an initial set of
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detectors R0 is generated by some random process and is subsequently censored

against the set S of self samples resulting in a set R of valid non-self detectors.

A crucial factor of the NS algorithm is that it does require an exact or perfect

matching between a given pair of attribute strings. On the contrary, the degree

of match is evaluated in a partial manner so that two attribute strings are con-

sidered to mach when their affinity exceeds a predefined threshold. In case, a

binary alphabet Σ is chosen for the data representation such that Σ = {0, 1},
the notion of partial match is realized through the utilization of the r-contiguous

bits matching rule where r is a suitably chosen parameter.

Figure 7.14: Negative Selection Algorithm: Monitoring Phase
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• Testing Phase: this phase is usually referred to as the monitoring or the detec-

tion phase during which a subsequent version S∗ of the self-set S is continually

checked against the detector set R for changes, indicating the presence of noise

or corruption within the initial data set. Specifically, during the detection phase

of the algorithm, which is illustrated in Figure 7.14, each element of the set S∗ is

checked against each element of the detector set R for matching. If any non-self

detector matches a self-string, then a change is known to have occurred since

the detectors are designed in order to not match any of the original strings is

S.

The most important aspects of the NS algorithm appear in the following list:

1. Each copy of the detection algorithm is unique. Most detection algorithms need

to monitor multiple sites (e.g., multiple copies of software or multiple computers

on a network). In these distributed environments, any single detection scheme

is unlikely to be effective, since detection failure on a particular site results in an

overall system failure. The NS algorithm approach, on the other hand, involves

the protection of each particular site with a unique set of detectors. Therefore,

even if one site is compromised, other sites will remain protected.

2. Detection is probabilistic. One consequence of using different sets of detectors

to protect each entity is that probabilistic detection methods are feasible. This

is because an intrusion at one site is unlikely to be successful at multiple sites.

The utilization of probabilistic detection methods ensures high system-wide

reliability at relatively low processing and memory cost. The price, of course,

is a somewhat higher chance of intrusion at each particular suite.

3. The detection functionality of the NS algorithm relies upon its ability to prob-

abilistically recognize any foreign activity than looking for known patterns of

anomaly. Traditional protection systems, such as virus or intrusion detection

programs operate by scanning for unique patterns (e.g., digital signatures) that

are known at the time the detection software is distributed, thus leaves systems
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vulnerable to attack by novel means. The NS algorithm approach, on the con-

trary, learns the self-defining patterns of behavior so that it will gain the ability

to probabilistically identify any deviation from self.

providing justifications concerning its validity as an alternative anomaly detection

approach. Finally, the most significant characteristics of this alternative classification

paradigm include:

1. The negative representation of information, since from a machine learning point

of view the NS algorithm outputs the complementary concept of the real target

concept. Although it is obviously distinct from any learning mechanism in the

positive space, its strength and applicability has been proved over a wide range

of applications.

2. The utilization of some form of detector set as the detection / classification

mechanism. Generating an appropriate set of detectors constitutes an essential

element of any NS algorithm regulating the non-self coverage and the resulting

classification / generalization performance of the algorithm.

3. The most important feature of the NS algorithm in the context of this thesis is

its validity as an alternative one-class classification paradigm that can efficiently

address the class imbalance problem. This is true, since the ultimate purpose

of the NS algorithm is to discriminate between two classes of patterns based

on samples that originate uniquely from the minority class of self / normal

patterns. In other words, NS algorithms in general, have been proved extremely

competitive against classification problems involving the identification of a class

of patterns that occupies only an insignificant amount of volume in the complete

space of patterns.

7.7.1 Background Immunological Concepts

The Negative Selection algorithm proposed by Forrest et al. constitutes an alter-

native approach to the problem of change detection based on the principles of self /
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non-self discrimination in the natural immune system. This discrimination is achieved

in part by T-cells, which have receptors on their surface that can detect foreign pro-

teins (antigens). During the generation of T-cells, receptors are made by a pseudo-

random genetic rearrangement process. Then they undergo a censoring process, called

negative selection, in the thymus gland where T-cells reacting against self-proteins

are destroyed, so that only those that do bind to self-proteins are allowed to leave

the thymus. These maturated T-cells then circulate throughout the body to perform

immunological functions protecting the host organism against foreign antigens. The

negative selection algorithm works on similar principles, generating detectors ran-

domly, and eliminating the ones that detect self, so that the remaining T-cells can

detect any non-self instance. Table 7.4, in particular summarizes the immunological

principles employed by the artificial NS algorithm.

Table 7.4: Mapping between Biological and Artificial Negative Selection

Biological NS Artificial NS
T-Cell Detector
Shape-Space Type and possible values of attribute strings.
Self Space Attribute stings indicating normal behavior (to be monitored).
Non-Self Space Attribute stings indicating abnormal behavior (to be recognized).
Affinity Measure Distance / Similarity Measure.
Partial Recognition R-contiguous bits matching rule.

7.7.2 Theoretical Justification of the Negative Selection Al-

gorithm

The main feature of the NS algorithm proposed by Forrest el al. concerns the

utilization of a binary shape-space such that all immunological events may be con-

sidered as taking place within S = ΣL where Σ = {0, 1}. Therefore, self (S) and

non-self (N ) spaces may be defined as subsets of the original binary string space S
such that S = S ∪ N and S ∩ N = ∅ where |N | ≫ |S|. In this context, the artificial

counterparts, detectors and training self-samples, of the original biological molecules,

T-cells and antigens, are all represented as binary strings of equal length. The pri-

mary objective of the Negative Selection algorithm consists in randomly generating
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a set of detectors

D ⊂ N = {d1, · · · ,dm} (7.156)

that can recognize almost any binary string in the non-self space N on the basis of a

limited size self-space sample

Ŝ ⊂ S = {s1, · · · , sn} (7.157)

without recognizing any string in it. More formally, NS algorithm aims at developing

a set of detectors D given a self-sample Ŝ such that:

∀s ∈ Ŝ, ∀d ∈ D ¬match(s,d) (7.158)

and the probability of not recognizing any sting inN is given by a predefined threshold

Pf according to the following equation:

P (∃n ∈ N : ∀d ∈ D, ¬match(n,d)) = Pf (7.159)

The matching rule utilized by the NS is the rcb matching rule defined in Eq. 7.9,

taking into special consideration the fact that a perfect matching between two random

binary strings of equal length is an extremely rare event. Specifically, the probability

PM that two random strings of equal length L over a finite alphabet of m elements

match at least r contiguous locations is given by the following equation [167, 168]:

PM ≈ m−r (L− r)(m− 1)

m+ 1
(7.160)

which provides a good approximation if m−r ≪ 1.

The most important issue concerning the validity of the NS algorithm as an al-

ternative machine learning paradigm, is that it is mathematically feasible despite its

counter-intuitive nature. That is, the vast majority of the non-self space can be ef-

ficiently covered by a limited number of detectors that one can accurately estimate

having in mind the particular requirements of a given classification problem. In other

words, the number of necessary detectors that need to be randomly generated in order

to ensure a maximum probability of failure (Pf ), may be formally defined as a func-

tion of the cardinality of the self-space (NS), the probability of matching between two

random strings in S (PM) and the probability threshold Pf . Specifically, by making

the following definitions and calculations:
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• NR0 : is the number of initial detector strings before the censoring phase.

• NR: is the number of detectors after the censoring phase corresponding to the

size of the repertoire.

• NS: is the number of self strings.

• PM : is the matching probability for a random pair of strings.

• f : the probability of a random string not matching any of the NS self stings,

such that f = (1− PM)Ns .

• Pf : the probability that NR detectors fail to detect an abnormal pattern.

the number of required detectors may be estimated according to the following pro-

cedure. In particular, assuming that PM is small and NS is large, then the following

equations hold:

f ≈ e−PMNS (7.161)

NR = NR0 · f (7.162)

Pf = (1− PM)NR (7.163)

Moreover, if PM is small and NR is large, then:

Pf ≈ e−PMNR (7.164)

Thus,

NR0 = NR · f =
− lnPf

PM

(7.165)

Therefore, by solving Eqs. 7.161 and 7.162 with respect to NR0 , the following formula

is obtained:

NR0 =
− lnPf

PM · (1− PM)NS
(7.166)

It is important to note that the number of initial detectors to be generated is mini-

mized by choosing a matching rule such that

PM ≈
1

NS

(7.167)
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Having in mind the above analysis, the following observations can be made on the

NS algorithm:

1. It is tunable, since by choosing a desired probability threshold (Pf ), the number

of required detector strings can be estimated through the utilization of Eq. 7.166.

2. NR is independent of NS for fixed PM and Pf according to Eq. 7.165. That is,

the size of the detector set does not necessarily grow with the number of strings

being protected. Therefore, it is possible to efficiently protect very large data

sets.

3. The probability of detection increases exponentially with the number of inde-

pendent detection algorithms. If Nt is the number of copies of the algorithm,

then the probability of the overall system to fail will be given by the following

equation:

P = Pf
Nt (7.168)

4. Detection is symmetric, since changes to the detector set are detected by the

same matching process that notices changes to self. This implies that the set

of training self strings may be considered as change detectors for the the set of

generated detectors.

Finally, the above analysis may be utilized in order to estimate the computational

cost of the NS algorithm, having in mind, that its execution relies upon the following

basic operations:

• Phase I: generating a random string of fixed length; and

• Phase II: comparing two strings in order to check whether they meet the match-

ing criterion.

Assuming that these operations take constant time, then the time complexity of the

algorithm will be proportional to the number of strings in R0 (i.e., NR0) and the

number of strings in S (i.e., NS) in Phase I and proportional to the number of strings
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in R (i.e., NR) in Phase II. Therefore, the time complexity of the NS algorithm may

be given by the following equation:

Required Time = O

(
NS ·

− lnPf

PM · (1− PM)NS

)
(7.169)

7.7.3 Real Valued Negative Selection with Variable-Sized De-

tectors

Most research in negative selection algorithms utilizes the general framework pro-

vided by binary shape-spaces. Binary representation is usually a natural choice since

it provides a finite problem space that it is easier to analyze by enumerative combi-

natorics and it is more straightforward to use for categorized data. However, the vast

majority of real-world applications require the utilization of real-valued, continuous

shape-spaces extending the representation ability of the discrete binary space. Specif-

ically, there is a wide range of classification problems that are naturally real-valued,

imposing the adaptation of real-valued representation, which is more for suitable for

the interpretation of the results and the establishment of a more stable algorithm by

maintaining affinity within the representation space.

Real-valued negative selection algorithms operate on the basis of the same princi-

ples as the original NS algorithm in the binary shape-space. In particular, detectors

are randomly generated and subsequently eliminated according to the philosophy of

the initial algorithm, with the only difference being the utilization of an infinite size

continuous alphabet, such that Σ = R and S = ΣL. Therefore, the generated detec-

tors correspond to real-valued attribute stings of equal size that may be represented

as points in a multi-dimensional vector space.

Independent of the particular affinity measure utilized and corresponding match-

ing rule, detectors usually share some common characteristics such as the number

of contiguous bits required for a matching in a binary string space or the distance

threshold deciding recognition in a real-valued representation. Generally, there is a

common affinity threshold θaff , as it is formulated in Eq. 7.3, among the detectors

determining the recognition status between a given pair of attribute strings. How-

ever, detector features can reasonably be extended to overcome this limitation. This
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is the primary insight that lead Ji and Dasgupta [108, 107, 109] to the conception of

a Real-Valued Negative Selection algorithm with Variable-Sized Detectors, which is

usually referred to as V-Detector.

(a) Constant-sized detectors. (b) Variable-sized detectors

Figure 7.15: Main concepts of Real-Valued Negative Selection and V-Detector.

The key idea behind this algorithm consists in assigning a different detection

region at each detector, parameterized by the corresponding affinity threshold. In

other words, each detector string in S = RL may be considered as the center of a

hyper-sphere, in the relevant L-dimensional Euclidean vector space, with an associ-

ated radius, defining the volume of the corresponding detection region. The radius is

a reasonable choice to make variable considering that the non-self regions to be cov-

ered by detectors are more likely to be in different scales. However, variable radius is

not the only possibility provided by the V-Detector algorithm. Detector variability

can also be achieved by utilizing different affinity measures such as the General-

ized Euclidean distance. Employing alternative affinity measures results in different

detection region shapes such as hyper-rectangles or hyper-hyperbolas constituting

generalizations of the 2-dimensional detection regions illustrated in Figs. 7.6(a) - (e).

Fig. 7.15 illustrates the core idea of variable-sized detectors in 2-dimensional

space. The white-colored circles represent the actual self-region, which is usually

given through the training data. The grey-colored circles, on the other hand, are the
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possible detectors covering the non-self region. Figs. 7.15(a) and (b) illustrate the

case for constant-sized and variable-sized detectors respectively. The issues related

to the existence of holes [53, 52, 243, 242, 95, 11] are represented by the black areas

within the two graphs corresponding to the porions of the non-self space that are

not covered by the set of generated detectors. Fig. 7.15(a), in particular, depicts the

existence of three major areas of the non-self space that the real-valued NS algorithm

with constant-sized detectors fails to cover, since it is impossible to place a detector

within those regions without matching the neighboring self elements. This, however,

is not the case when utilizing variable sized-detectors, as illustrated in Fig. 7.15(b),

where the portion of not-covered non-self space is minimized by the utilization of

variable-sized detectors. Specifically, the ability to use detectors of different radiuses

provides the flexibility to cover the space that was originally occupied by holes with

detectors of smaller size. Moreover, using variable-sized detectors, as illustrated in

Fig. 7.15(b) gives the opportunity to significantly reduce the total number of detectors

required in order to adequately cover the lager area of the non-self space.

The issue of holes was primarily identified by D’haeseleer [53, 52] as a major

detector coverage problem concerning the impossibility of constructing a detector

set capable of recognizing any string in the non-self space N . The existence of not-

covered holes within the non-self space was originally conceived by D’haeseleer within

the context of binary shape-spaces. Consider, for example, the case of a binary shape-

space S = {0, 1}L where the training set of self samples Ŝ contains the self-stings s1,s2

such that s1 = ⟨00111100⟩ and s2 = ⟨11111111⟩. Then, according to D’haeseleer any

non-self string n ∈ N such that n = ⟨b1b21111b3b4⟩, where b1, b2, b3, b4 ∈ {0, 1},
cannot be detected by any detector since it will match the self-strings s1,s2 according

to the rcb matching rule. In this context, D’haeseleer made a statistical analysis in

order to estimate the number of strings that would be impossible to detect.

Finally, it must be noted that the estimated coverage of the non-self space can be

used as a control parameter of V-Detector since it has the ability to automatically

evaluate the estimated coverage during its generation phase.
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7.7.4 AIS-based One-Class Classification

A very important property of computational negative selection is that it provides

an alternative theoretical framework for the development of one-class classification

algorithms. This is true, since negative selection algorithms deal with highly imbal-

anced problem domains where the only training samples originate from the minority

class of positive / target patterns. This entails that the complementary space of neg-

ative / outlier patterns remains completely unknown. Therefore, negative selection

algorithms involve extremely skewed binary classification problems where the target

class of interest occupies only a small fragment of the complete pattern space. The

fundamental difference, however, with traditional one-class classification paradigms

concerns the fact that NS algorithms do not operate by trying to estimate a sufficient

boundary around the subspace of positive patterns. On the contrary, the learning

process of a NS algorithm consists in generating an appropriate set of detectors that

almost completely covers the subspace of negative patterns. In other words, the

one-class learning paradigm inspired by the NS algorithm, instead of trying to ob-

tain a compact description of the target space, is focused on maximally covering the

complementary space of outliers with an appropriate set of detectors.

A formal description of the AIS-based one-class classification approach, in the

context of the utilized negative selection algorithm, may be conducted by initially

setting the underlying binary classification problem. Specifically, the V-Detector

algorithm employs a real-valued shape-space S which is assumed to be partitioned

into two disjoint subsets S and N , corresponding to the subspaces of self and non-self

patterns respectively, such that |N | ≫ |S| and:

S = [0, 1]L (7.170)

S = S ∪ N (7.171)

S ∩ N = ∅ (7.172)

Eq.7.170 yields that all artificial immune molecules, training self-cells and generated

detectors, are modelled as finite-sized attribute strings over the infinite alphabet

Σ = [0, 1]. Specifically, training self-samples and the centers of the generated detectors
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may be considered as normalized points in the L-dimensional vector space S. The

application of the same normalization philosophy on the affinity measure results in

the utilization of the Normalized Euclidean distance, given by Eq. 7.57, such that:

∀ x,y ∈ S D(x,y) ∈ [0, 1] (7.173)

All immune recognition events in S are modelled through the notion of the detec-

tion region. Specifically, each artificial immune molecule s ∈ S is associated with a

detection radius r(s), such that:

r : S→ [0, 1] (7.174)

and

∀s ∈ S, r(s) = Rself (7.175)

where Rself is the constant radius value associated with each training self-sample.

Therefore, the detection region assigned to an immune molecule s ∈ S with an asso-

ciated detection radius r(s) will be given by the following equation:

R(s, r(s)) = {x ∈ S : D(x, s) ≤ r(s)} (7.176)

corresponding to a hyper-sphere of radius r(s) centered at the point s ∈ S. In this

context, the matching rule for a given pair of immune molecules may be expressed in

the following form:

M(x,y) = I(y ∈ R(x, r(x)) ∨ x ∈ R(y, r(y)) (7.177)

Having in mind the previous definitions, the ultimate purpose of AIS-based one-

class classification may be defined as follows:

Definition 1. Given a set Ŝ ⊂ S of training self-samples where Ŝ = {s1, · · · , sn}
with an associated self detection radius Rself , develop a set of detectors D ⊂ N where

D = {d1, · · · ,dm} so that the associated detection radiuses will be given by the set

R = {r(d) : d ∈ D} and the following constraints are satisfied:
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1.

∀d ∈ D, d /∈ RŜ (7.178)

where RŜ denotes the region of positive patterns given by the following equation:

RŜ =
∪
s∈Ŝ

R(s, r(s)) (7.179)

2.

P (∃n ∈ N : n /∈ RD) = 1− C0 (7.180)

where RD̂ denotes the region of negative patterns given by the following equation:

RD =
∪
d∈D

R(d, r(d)) (7.181)

and C0 the estimated percentage of coverage of the non-self space N .

Definition 2. The detector coverage of a given detector set may be defined as the

ratio of the volume of the non-self region that can be recognized by any detector in the

detector set to the volume of the entire non-self region. In general, this quantity may

be expressed according to the following equation:

C0 =

∫
x∈D dx∫
x∈N dx

(7.182)

In case the shape-space in question is discrete and finite, Eq. 7.182 may be reexpressed

in the following form:

C0 =
|D|
|N |

(7.183)

Fig. 7.16 illustrates the three regions in question: self-region, covered non-self

region and uncovered non-self region for the particular case involving a 2-dimensional

shape-space, such that S = [0, 1]2. In statistical terms, the points of the non-self

region form the population of interest which is generally of infinite size. In this

context, the probability of each point to be covered by detectors has a binomial

distribution. Therefore, the detector coverage is the same as the proportion of the

covered points, which equals to the probability that a random point in the non-self

region is a covered point. Assuming that all points from the entire non-self space are
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equally likely to be chosen in a random sampling process, the probability of a sample

point being recognized by detectors is thus equal to C0.

Figure 7.16: Self / Non-Self Coverage

7.7.5 V-Detector Algorithm

According to the original conception of the V-Detector algorithm its operation

consists in randomly generating a set of detectors until the estimated coverage of

the non-self space is approximately equal to C0 and at the same time the estimated

coverage of the self-space is below a predefined threshold Cself . The input arguments

to the algorithm are the set Ŝ of training self-samples, the corresponding detection

radius Rself , and the maximum number of detectors Tmax that should not be ex-

ceeded. The estimated coverage of the self and non-self spaces constitute the primary

control parameters of the V-Detector algorithm since they providing additional stop-
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ping criterions for its generation phase. Estimated coverage is by-product of variable

detectors based on the idea that when sampling k points in the considered space and

only one point is not covered then the estimated coverage would be 1− 1
k
. Therefore, if

m random tries are executed without finding an uncovered point then it is reasonable

to conclude that the estimated coverage is at least a = 1 − 1
k
. Thus, the necessary

number of tries in order to ensure that the estimated coverage is at least a will be

given by the following equation:

k =
1

1− a
(7.184)

Figure 7.17: V-Detector Algorithm I

The generation phase of the algorithm as it is illustrated in Fig 7.17 consists in
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continually sampling points in the considered shape-space according to the uniform

distribution, until the set of generated detectors reaches a predefined size. However,

the generation phase of the algorithm may be terminated before reaching the pre-

specified number of detectors in case the coverage of self or non-self spaces exceeds

a given threshold. Specifically, during the generation phase of the algorithm, each

candidate detector is checked for matching against the sets of training self-samples

and the already accepted non-self detectors. Each time a candidate detector is found

to lie within the already covered spaces of self or non-self patterns, this fact is recorded

in a corresponding counter in order to obtain the current estimate for the coverage

of the self or non-self spaces respectively. Therefore, in case the current coverage of

the self or non-self spaces exceeds the given threshold values, the generation phase of

the algorithm terminates. On the other hand, if the candidate detector, is neither an

already covered non-self instance nor a matched self-sample it is saved as a valid non-

self detector and the corresponding detection radius is based on the minimum distance

to each detector that is going to be retained. It is important to note that exceeding the

pre-specified level of self-space coverage indicates an abnormal algorithm termination.

This may be the case when the given training self data cover almost completely the

considered shape-space or the self-radius is set to be too large so that the whole space

is assigned to the positive class of patterns.

The following notation will be adapted throughout the formulation of the V-

Detector I one-class learning algorithm:

• S ∈ Mn×L is the matrix storing the training self patterns such that Si denotes
the i-th element of S where i ∈ [n].

• D ∈ Mm×L is the matrix storing the generated detectors such that Di denotes

the i-th element of D where i ∈ [m].

• R ∈ M1×m is the vector storing the radiuses of the generated detectors such

that R(i) is the radius associated with detector Di.

• Dd ∈ M1×m is the vector storing the distances from the currently generated

detector to all the previously accepted detectors.
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• Id ∈ M1×m̂, m̂ ≤ m is the vector storing the indices of the already accepted

detectors whose distances from the currently sampled detector are less than the

corresponding radiuses.

• Ds ∈ M1×n is the vector storing the distances from the currently generated

detector to all the training self samples.

• SCS (Self Coverage Status) is a boolean variable indicating whether the esti-

mated coverage of the self space is above a predefined threshold.

• NCS (Non-Self Coverage Status) is a boolean variable indicating whether the

estimated coverage of the non-self space is above a predefined threshold.

• COV ERED is a boolean variable indicating whether the currently generated

candidate detector is an already covered non-self string.

• SELF is a boolean variable indicating whether the currently generated candi-

date detector lies within the space covered by the training self patterns.

• C0 is the target value for the non-self space coverage.

• Cself is the maximum accepted percentage of self space coverage.

• Tmax is the maximum number of detectors to be generated.

• Rself is the detection radius associated with each training self pattern.

The analytical description of V-Detector I involves the following steps:

1. Initialization:

(a) m← 0

(b) D ← []

(c) R← []

(d) SCS ← FALSE

(e) NCS ← FALSE
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2. Generation:

• While (m ≤ Tmax) and (NCS = FALSE) and (SCS = FALSE) do:

(a) t← 0

(b) T ← 0

(c) COV ERED ← FALSE

(d) SELF ← FALSE

(e) While (COV ERED = TRUE) or (SELF = TRUE) do:

i. Compute vector x ∈ M1×L as a random point in the [0, 1]L, uni-

formly sampled.

ii. Compute matrix Dd ∈M1×m according to the following equation:

Dd(i) = D(x,Di), ∀i ∈ [m] (7.185)

iii. Compute vector Id ∈M1×m̂ where m̂ ≤ m according to the follow-

ing equation:

Id = {i ∈ [m] : Dd(i) ≤ R(i)} (7.186)

iv. if (m̂ = 0) then:

COV ERED ← TRUE

v. else:

A. t← t+ 1

B. if (t > 1
1−C0

) then:

NCS ← TRUE

vi. if (COV ERED = FALSE) and (NCS = FALSE) then:

A. Compute vectorDs ∈M1×n according to the following equation:

Ds(i) = D(x,Si), ∀i ∈ [n] (7.187)

B. Compute the candidate detector’s radius r according to the fol-

lowing equation:

r = min
i∈[n]
{Ds(i)−Rself} (7.188)
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C. if (r > Rself ) then:

– m← m+ 1

– R← [R, r]

– D ← [D;x]

D. else:

– SELF ← TRUE

– T ← T + 1

– if (T > 1
1−Cself

) then:

SELF ← TRUE

The time complexity of V-Detector I may be estimated by taking into consider-

ation that the most time consuming step of the algorithm is the one involving the

computation of the distance from the currently generated candidate detector to all

the available training self patterns. This individual processing step may be executed

in O(n) where n is the size of the given training set. Therefore, the overall time

complexity may be given according to the following equation:

Required Time = O(mn) (7.189)

where m is the total number of detectors to be generated. The required memory to

run the algorithm, on the other hand can be estimated by summing up the individual

space requirement for each of the most demanding utilized variables S, D, R, Dd,Ds

and Id. In particular, the overall space requirement of the algorithm can be given by

the following equation:

Required Space = (m+ n)L+ 2m+ m̂+ n (7.190)

7.8 Experimentation

This section presents the contribution of the current Ph.D thesis within the field

of Pattern Recognition, providing experimental justifications concerning the valid-

ity of Artificial Immune Systems as an alternative machine learning paradigm. The
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main effort undertaken in this dissertation is focused on addressing the primary prob-

lems of Pattern Recognition by developing Artificial Immune System-based machine

learning algorithms. Therefore, the relevant research is particularly interested in

providing alternative machine learning approaches for the problems of Clustering,

Classification and One-Class Classification, measuring their efficiency against state of

the art pattern recognition paradigms such as the Support Vector Machines. Pattern

classification is specifically studied within the context of the Class Imbalance Prob-

lem dealing with extremely skewed training data sets. Specifically, the experimental

results presented in this section involve degenerated binary classification problems

where the class of interest to be recognized is known through a limited number of

positive training instances. In other words, the target class occupies only a negligible

volume of the entire pattern space while the complementary space of negative patterns

remains completely unknown during the training process. The effect of the Class Im-

balance Problem on the performance of the utilized Artificial Immune System-based

classification algorithm constitutes one of the secondary objectives of this thesis.

The general experimentation framework adopted throughout the current disserta-

tion in order to assess the efficiency of the proposed clustering, classification and one

class classification algorithms was an open collection of one thousand (1000) pieces

from 10 classes of western music. This collection, in particular, has been extensively

used in applications concerning music information retrieval and music genre classi-

fication [221, 135]. The following list summarizes the pattern recognition problems

addressed in the current Ph.D thesis through the application of specifically designed

Artificial Immune System-based machine learning algorithms:

1. Artificial Immune System-Based music piece clustering and Database Organi-

zation [202, 201].

2. Artificial Immune System-Based Customer Data Clustering in an e-Shopping

application [203].

3. Artificial Immune System-Based Music Genre Classification [200].

4. A Music Recommender Based on Artificial Immune Systems [125].
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7.8.1 Dataset

The collection we have utilized in our experiments contains one thousand (1000)

pieces from 10 classes of western music. This collection, in particular, contains one

hundred (100) pieces, each of thirty second duration, from each of the following ten

(10) classes of western music:

Table 7.5: Classes of western music

Class ID Label
1 Blues
2 Classical
3 Country
4 Disco
5 Hip-Hop
6 Jazz
7 Metal
8 Pop
9 Reggae
10 Rock

The audio signal of each music piece may be represented in multiple ways accord-

ing to the specific features utilized in order to capture certain aspects of an audio

signal. More specifically, there has been a significant amount of work in extracting

features that are more appropriate for describing and modelling music signals. In

this paper, we have utilized a specific set of 30 objective features that were originally

proposed by Tzanetakis and Cook [221, 223] and have dominated the literature in

subsequent approaches in this research area. It is worth to mention that these fea-

tures not only provide a low-level representation of the statistical properties of the

music signal, but also include high-level information extracted by psychoacoustic al-

gorithms. In summary, these features represent rhythmic content (rhythm, beat and

tempo information), as well as pitch content describing melody and harmony of a

music signal.

Each file, which is of 30 seconds duration, is used as input to the feature extraction

module. Specifically, short time audio analysis was used in order to break the signal
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into small, possibly overlapping temporal segments of duration of 50 milliseconds

(covering the entire duration of 30 seconds), and process each segment separately.

These segments are called “analysis windows” or “frames” and need to be short

enough for the frequency characteristics of the magnitude spectrum to be relatively

stable. On the other hand, the term “texture window” describes the shortest window

(minimum amount of sound) that is necessary to identify music texture. The texture

window is set equal to 30 seconds in our system.

The actual objective features used in our system are the running mean, median

and standard deviation of audio signal characteristics computed over a number of

analysis windows. The feature vector constituents appear in Table 7.6. Table 7.6

summarizes the objective feature vector description1.

Music Surface Features

For the purpose of pattern recognition/classification of music files, we use the

statistics of the spectral distribution over time of the corresponding audio signals and

represent the “musical surface” [68, 223, 222]. Some of these statistics are defined

next.

• Spectral Centroid: This feature reflects the brightness of the audio signal

and is computed as the balancing point (centroid) of the spectrum. It can be

calculated as

C =

N−1∑
n=0

Mt[n] · n

N−1∑
n=0

Mt[n]

(7.191)

where Mt[n] is the magnitude of the Fourier transform at frame t and frequency

bin n.

• Spectral Rolloff: This feature describes the spectral shape and is defined as

the frequency R = R(r) that corresponds to r% of the magnitude distribution.

1STD stands for standard deviation.
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Table 7.6: Feature vector constituents

Feature ID Feature Name
1 Mean Centroid
2 Mean Rolloff
3 Mean Flux
4 Mean Zero-crossings
5 STD of Centroid
6 STD of Rolloff
7 STD of Flux
8 STD of Zero-crossings
9 Low Energy

[10 . . . 19] MFCCs
20 Beat A0
21 Beat A1
22 Beat RA
23 Beat P1
24 Beat P2
25 Beat Sum
26 Pitch FA0
27 Pitch UP0
28 Pitch FP0
29 Pitch IP0
30 Pitch Sum

It can be seen as a generalization of the spectral centroid, as the spectral centroid

is the roll-off value that corresponds to r = 50% of the magnitude distribution.

In our system, we used a roll-off value r = 95% which has been experimentally

determined. N is the length of the discrete signal stored in vector x.

R∑
n=0

Mt[n] = r ·
N−1∑
n=0

Mt[n] (7.192)

• Spectral Flux: This feature describes the evolution of frequency with time

and is computed as the difference of the magnitude of the short-time Fourier

transform between the current and the previous frame. Therefore, the spectral

flux is a measure of local spectral change, given by the equation
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SF =
N−1∑
n=0

(Nt[n]−Nt−1[n])
2 (7.193)

where Nt[n] and Nt−1[n] is the normalized magnitude of the short-time Fourier

transform at window t and t− 1, respectively.

• Zero-Crossings: A zero-crossing occurs when successive samples in a digital

signal have different signs. The corresponding feature is defined as the number

of time-domain zero-crossings in the signal. This feature is useful in detecting

the amount of noise in a signal and can be calculated as

Zn =
∑
m

|sgn[x(m)]− sgn[x(m− 1)]| · w(n−m) (7.194)

where

sgn[x(n)] =

{
1, x(n) ≥ 0

0, x(n )< 0
(7.195)

and

w(m) =

{
1
2
, 0 ≤ m ≤ N − 1

0, otherwise.
(7.196)

• Short-Time Energy Function: The short-time energy of an audio signal

x(m) is defined as

En =
1

N

∑
m

[x(m) · w(n−m)]2 (7.197)

where

w(m) =

{
1, 0 ≤ m ≤ N − 1

0, otherwise.
(7.198)

In Eqs. 7.194 and 7.197, x(m) is the discrete-time audio signal, n is the time

index of the short time energy and w(m) is a rectangular window. This feature

provides a convenient representation of the temporal evolution of the audio signal

amplitude variation.
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• Mel-Frequency Cepstral Coefficients (MFCCs): These coefficients are

designed to capture short-term spectral features. After taking the logarithm

of the amplitude spectrum obtained from the short-time Fourier transform of

each frame, the frequency bins are grouped and smoothed according to the Mel-

frequency scaling, which has been designed in agreement with human auditory

perception. mfccs are generated by decorrelating the Mel-spectral vectors with

a discrete cosine transform.

Rhythm Features and Tempo

Rhythmic features characterize the movement of music signals over time and con-

tain information as regularity of the tempo. The feature set for representing rhythm is

extracted from a beat histogram, that is a curve describing beat strength as a function

of tempo values, and can be used to obtain information about the complexity of the

beat in the music file. The feature set for representing rhythm structure is based on

detecting the most salient periodicities of the signal and it is usually extracted from

beat histogram. To construct the beat histogram, the time domain amplitude enve-

lope of each band is first extracted by decomposing the music signal into a number

of octave frequency band. Then, the envelopes of each band are summed together

followed by the computation of the autocorrelation of resulting sum envelop. The

dominant peaks of the autocorrelation function, corresponding to the various period-

icities of the signals envelope, are accumulated over the whole sound file into a beat

histogram where each bin corresponds to the peak lag. The rhythmic content fea-

tures are then extracted from the beat histogram, and generally they contain relative

amplitude of the first and the second histogram peak, ration of the amplitude of the

second peak divided by the amplitude of the first peak, periods of the first and second

peak, overall sum of the histogram.

Pitch Features

The pitch features describe melody and harmony information in a music signal.

A pitch detection algorithm decomposes the signal into two frequency bands and
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amplitude envelops are extracted for each frequency band where the envelope extrac-

tion is performed via half-way rectification and low-pass filtering. The envelopes are

summed and an enhanced autocorrelation function is computed so as to reduce the

effect of integer multiples of the peak of frequencies to multiple pitch detection. The

dominant peaks of the autocorrelation function are accumulated into pitch histograms

and the pitch content features extracted from the pitch histograms. The pitch con-

tent features typically include the amplitudes and periods of maximum peaks in the

histogram, pitch intervals between the two most prominent peaks, and the overall

sums of the histograms.

7.8.2 Artificial Immune System-Based Music Piece Cluster-

ing and Database Organization

This section presents the development of an Artificial Immune Network for clus-

tering the set of unlabelled multidimensional music feature vectors that are extracted

from the utilized music database. The proposed AIN-based clustering approach is as-

sessed for its music data organization and visualization abilities against standard ma-

chine learning approaches such as Agglomerative Hierarchical Data Clustering, Fuzzy

C-means and Spectral Clustering. The proposed methodology is combined with tra-

ditional agglomerative algorithms based on graph theory so that data clusters may

be visualized through the utilization of the minimum spanning tree representation.

It is important to note, that the identified data clusters present within the trained

Artificial Immune Network, correspond to the intrinsic clusters of the original music

dataset.

The original data set representation in 3 dimensions appears in Fig. 7.18 after the

application of the Principal Component Analysis (PCA) technique in order to reduce

the dimensionality of the input data matrix Ag ∈ M1000×30. It must be noted that

the PCA dimensionality reduction technique is exclusively employed for visualization

reasons since the clustering algorithms that have been applied operate on the original

30-dimensional data set. Moreover, the class label for each data pattern stored in

matrix Ag was completely ignored by each one of the utilized clustering algorithms
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in order to check their ability in recognizing the intrinsic data clusters that are present

within the given dataset.

Figure 7.18: Original Music Dataset Representation in 3 Dimensions

The AIN Learning Algorithm parameters for this particular clustering problem

are summarized in Table. 7.7 2, resulting in a total number of 10 memory antibodies

Table 7.7: AIN Learning Algorithm Training Parameters

AIN Parameter Value
N 10
n 10
ζ 1
σd 0.10
σs 0.20

GEN 1

2GEN corresponds to the number of iterations performed.
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directly corresponding to the intrinsic number of classes present within the given

dataset. The evolved memory antibodies representation in 3 dimensions after the

application of the PCA dimensionality reduction technique appears in Fig. 7.19

Figure 7.19: Evolved Memory Antibodies Representation in 3 Dimensions

Figs.7.21(a) and (b) reveal the underlying space distribution of the original dataset

by utilizing the minimum spanning tree and hierarchical dendrogram representa-

tion of the evolved memory antibodies. The leaves in the AIN-based dendrogram

in Fig. 7.20(b) are significantly fewer than the leaves in the hierarchically-produced

dendrogram in Fig. 7.20(a), which stems from the fact that the former correspond

to cluster representative points in the 30-dimensional feature space, while the latter

correspond directly to music pieces. Thus, the AIN-based dendrogram demonstrates

the intrinsic music piece clusters significantly more clearly and compactly than the

corresponding hierarchically-produced dendrogram. Moreover, the degree of intra-

cluster consistency is clearly significantly higher in the AIN-based rather than the

hierarchically-produced clusters, which is of course a direct consequence of a data
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redundancy reduction achieved by the AIN.

(a) Hierarchical Agglomerative Clustering-Based Dendrogram.

(b) AIN-Based Hierarchical Dendrogram.

Figure 7.20: Hierarchical AIN-Based Dendrogram.

Figs. 7.22(a),(b) and 7.23(a),(b) present the music collection organization obtained

by the application of the Spectral Clustering and the Fuzzy C-Means Clustering

algorithms respectively. Specifically, Figs. 7.22(b) and 7.23(b) present the cluster

assignment for each feature vector in the given database according to the particular

clustering algorithm. The cluster formation for the AIN-based clustering algorithm

appears in Fig. 7.21(b) revealing a more consistent grouping result.
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(a) Evolved Memory Antibodies Minimum Spanning Tree Representation.

(b) AIN-Based Data Points Clusters.

Figure 7.21: AIN-Based Clustering



Chapter 7: Artificial Immune Systems 289

(a) Spectral Clustering Based Dendrogram.

(b) Spectral Clustering Based Data Points Clusters.

Figure 7.22: Spectral Clustering.
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(a) Fuzzy Clustering based Dendrogram.

(b) Fuzzy c means based data points clusters.

Figure 7.23: Fuzzy Clustering.
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The experimental results presented here reveal that fuzzy c-means clustering as-

signed the same degree of cluster membership to all the data points, which implies

that certain intrinsic data dissimilarities were not captured by the fuzzy c-means

clustering algorithm and this makes the clustering result less useful. On the contrary,

AIN-based clustering returned significantly higher cluster homogeneity. Moreover,

the degree of intra-cluster consistency is clearly significantly higher in the AIN-based

rather than the hierarchical and spectral clusters, which is of course a direct conse-

quence of a data redundancy reduction achieved by the AIN.

7.8.3 Artificial Immune System-Based Customer Data Clus-

tering in an e-Shopping Application

In this section attention is focused on the problem of adaptivity of the interaction

between an e-shopping application and its users. The proposed approach is novel,

as it is based on the construction of an Artificial Immune Network (AIN) in which

a mutation process is incorporated and applied to the customer profile feature vec-

tors. AIN-based learning algorithm yields clustering results of users’ interests that

are qualitatively and quantitatively better than the results achieved by using other

more conventional clustering algorithms. This is demonstrated on user data that

we collected using Vision.Com, an electronic video store application that we have

developed as a test-bed for research purposes.

Problem Definition

The large quantity of information that exists in an electronic shop, as well as the

lack of human salesmen to assist customers, impose a need for adaptivity in e-shops.

Adaptivity provides individualized assistance to users, which is dynamically gener-

ated. Adaptive responses to users are usually created using the technology of adaptive

hypermedia [22]. To create such adaptive behavior of the e-shop to individual users,

the system needs information about them, so that it can generate hypotheses about

what they need and how they can be assisted in the most appropriate way. This

means that an adaptive e-shop needs user modelling components, which monitor the
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user’s actions and generate hypotheses about his/her preferences based on his/her

behavior. According to Rich [180] a major technique people use to build models of

other people very quickly is the evocation of stereotypes, or clusters of characteris-

tics. Given the fact grouping people can provide quick default assumptions about

their preferences and needs [180], the clustering of users’ interests has drawn a lot of

research energy for purposes of personalization of user interfaces.

One solution to the problem of grouping users’ behavior can be provided by clus-

tering algorithms that may group users dynamically based on their behavior while

they use a system on-line. The main advantage of such an approach is that the cat-

egorization of user behavior can be conducted automatically. Clustering algorithms

help adaptive systems to categorize users according to their behavior. More specifi-

cally adaptive e-commerce systems need not only to acquire information about users’

interests in products but also to have the ability to group users with similar interests.

By grouping users together systems can understand more clearly the user’s intention

and generate more efficient hypotheses about what a user might need. In this part,

clustering algorithms undertake the role of grouping users in an efficient way, thus

creating the bone structure of the user model. In this paper, we present an advanced,

immune network-based clustering approach that has been used to provide adaptivity

to a test-bed e-shop application constituting an e-video shop.

There are a lot of web-based recommendation applications that have used clus-

tering algorithms (e.g. [111], [196], [151], [110], [1], [232]). All of these applications

are recommendation systems, but are primarily concerned with the acquisition of

user behavior-related data. In contrast, our work has focused on incorporating an

evolutionary clustering algorithm based on the construction of an Artificial Immune

System (AIS), in order to personalize the developed e-shop system through grouping

similar users’ behavior. This means that we have used a very different algorithm that

has not been used by these systems. Similarly to our approach, [28] and [152] have

also utilized an AIS in order to tackle the task of film and web site recommendation

respectively by identifying a neighborhood of user preferences. Although, their sys-

tems have used a similar algorithm to the one presented in this paper, the algorithm

that we have used is significantly more sophisticated. In particular, we have based
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our research on the construction of an Artificial Immune Network which incorporates

a mutation process that applies to the customer profile feature vectors. More specif-

ically, our work has focused on how a significant amount of redundancy within the

customer profile dataset can be revealed and reduced, how many clusters intrinsic

to the customer dataset can be identified and what the spatial structure of the data

within the identified clusters is.

The proposed approach consists in developing an AIN for the problem of cluster-

ing a set of unlabelled multidimensional customer profile feature vectors generated in

an electronic video store application in which customer preferences are quantified and

groups of customer profiles are maintained. The utilized algorithm has been examined

thoroughly by comparing it with three other clustering algorithms, namely agglom-

erative hierarchical clustering, fuzzy c-means clustering and spectral clustering. A

video e-shop application has been developed for this purpose so that the customer

data collected could be fed into each of the four clustering algorithm in order to check

their relative performance in recognizing valid customer profiles.

Operation of e-Shop System and Customer Data Description

Vision.Com is an adaptive e-commerce video store that learns from customers

preferences. Its aim is to provide help to customers, choosing the best movie for

them. The web-based system ran on a local network with IIS playing the role of

the web server. We used this technique in order to avoid network problems during

peak hours. For every user the system creates a different record at the database.

In Vision.Com, every customer may browse a large number of movies by navigating

through four movie categories, namely social, action, thriller and comedy movies.

Every customer has a personal shopping cart. A customer intending to buy a movie

must simply move the movie into her/his cart by pressing the specific button. S/He

may also remove one or more movies from his/her cart by choosing to delete them.

After deciding on which movies to buy, a customer can easily purchase them by

pressing the button “buy”.

All navigational moves of a customer are recorded by the system in the statistics
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database. In this way Vision.Com maintains statistics regarding visits to various

movie categories and individual movies. Same type statistics are maintained for every

customer and every movie that was moved to a shopping cart. Moreover, the same

procedure is followed for those movies that are eventually bought by every customer.

All of these statistical results are scaled to the unit interval [0,1].

More specifically, Vision.Com interprets users actions in a way that results in

estimates/predictions of users interests in individual movies and movie categories.

Each users action contributes to the individual user profile by indicating relevant

degrees of interest into a movie category or individual movie. If a user browses into

a movie, this indicates interest of this user for the particular movie and its category.

If the user puts this movie into the shopping cart, this implies increased interest in

the particular movie and its category. Finally, if the user decides to buy the movie,

then this shows highest interest of this user in the specific movie and its category

and is recorded as an increase in an interest counter. On the other hand, if the user

removes the movie from the shopping cart without buying it, the interest counter

is unchanged. Apart from movie categories that are already presented, other movie

features taken into consideration are price range, leading actor and director. The

price of every movie belongs to one of the five price ranges in euro: 20 to 25, 26 to

30, 31 to 35, 36 to 40 and over 41. As a consequence, every customers interest in

one of the above features is recorded as a percentage of his/her visits to movie pages.

For example, interest of the customer at a particular movie category is calculated as

in Eq.7.199). Every result can also be considered as a probability of a customer’s

intention to buy a movie.

InterestInMovieCategory =
V isitsInSpecificCategory

V isitsInAllCategories
(7.199)

Vision.Com was used by 150 users to buy movies. The system collected data about

the user’s behavior. The data collected consisted of three similar parts. The first part

contains statistical data of the visits that every user made to specific movies. The

second part contains data of the cart moves (i.e. which movies the user moved into

his/her cart). The last part consists of statistical data concerning the preferences on

the movies bought by every user. Every record in every part is a vector of the same
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80 features that were extracted from movie features and represents the preferences

of a user. The 80 features of these vectors are computed as the movie features we

described above. Every 80 featured vector consists of the four movie categories, the

five price ranges, all the leading actors and all the directors. The value of each feature

is the percentage of interest of every individual customer in this particular feature

(Eq. 7.199).

In the context of Vision.Com, antibodies correspond to neighboring user profiles

that are represented by the feature vectors. Specifically, the immune network system

clustered users interests as well as movies and represented each resulting cluster with

corresponding antibodies.

Comparison of Customer Data Clustering Algorithms and Conclusions

The proposed clustering approach was realized on the basis of the real-valued

80-dimensional vector space R80 so that the affinity level between any given pair of

feature vectors may be computed by the Normalized Euclidean distance given by

Eq. 7.57. Therefore, S = [0, 1]30 is the resulting shape-space, quantifying all inter-

actions between elements of the utilized AIN. In this context, the antigenic pattern

set to be recognized by the evolved AIN is composed of a set of 150 80-dimensional

feature vectors such that Ag ∈ M150×80. The 3-dimensional representation of the

data points stored in matrix Ag appears in Fig. 7.24 after the application of the

PCA dimensionality reduction technique.

This section evaluates the clustering efficiency of the proposed AIS-based algo-

rithm against widely used machine learning paradigms such as a) agglomerative hi-

erarchical clustering, b) fuzzy c-means clustering and c) spectral clustering. The

ultimate purpose behind this comparison process is to determine which clustering

methodology is more efficient in identifying the number and constituent elements

of the most general customer profiles present within the given dataset. Specifically,

we applied these four clustering methodologies on the 150 customer profile feature

vectors collected as previously described.
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Figure 7.24: Evolved Memory Antibodies Representation in 3 Dimensions

The memory antibodies produced by the evolved AIN may be considered as pro-

viding an alternative compact representation of the original customer profile feature

vectors set. This is true since the set minimal set of the 6 generated memory an-

tibodies maintains the spatial structure of the original dataset. The ability of the

produced memory antibodies in revealing the underlying space distribution of the

given data set is clearly illustrated through the utilization of the minimum spanning

tree representation appearing in Fig. 7.25, indicating significant data compression,

combined with clear revelation and visualization of the intrinsic data clusters.

Also, in Fig. 7.26, we show the partitioning of the complete dataset into six clusters

by the spectral (center right), fuzzy c-means (bottom left), and AIN-based (bottom

right) clustering algorithms, respectively. We observe that spectral clustering does

not result in cluster homogeneity, while fuzzy c-means clustering results in higher

cluster homogeneity, but in only four clusters rather than six required.
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Figure 7.25: Evolved Memory Antibodies Representation in 3 Dimensions

Specifically, we observed that fuzzy c-means clustering assigned the same degree

of cluster membership to all the data points, which implies that certain intrinsic

data dissimilarities were not captured by the fuzzy c-means clustering algorithm and

this makes the clustering result less useful. On the contrary, AIN-based clustering

returned significantly higher cluster homogeneity. Moreover, the degree of intra-

cluster consistency is clearly significantly higher in the AIN-based rather than the

hierarchical and spectral clusters, which is of course a direct consequence of a data

redundancy reduction achieved by the AIN. These conclusions are highly supported

by the spectral clustering, fuzzy c-means clustering and AIN clustering-based data

clusters formations appearing in Figs. 7.27, 7.28 and 7.29.

Figs. 7.25 and 7.26, lead to the conclusion that Vision.Com customers exhibit

certain patterns of behavior when shopping and tend to group themselves into six

clusters. The 22 antibodies that arose via the AIN-based clustering algorithm cor-

respond to customer behavior representatives and, thus, can be seen as important
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customer profiles, which eventually correspond to stereotypes in user models. This

process is promising because it can provide recommendations based on the users’ in-

terests and the characteristics of a movie irrespective of whether this movie has ever

been selected by a user before. Thus, the recommendation system can recommend

new movies or movies newly acquired by the e-shop as efficiently as previously stored

movies. This approach forms the basis of work which is currently in progress and will

be reported on a future occasion.

Figure 7.26: Evolved Memory Antibodies Representation in 3 Dimensions
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Figure 7.27: Evolved Memory Antibodies Representation in 3 Dimensions

Figure 7.28: Evolved Memory Antibodies Representation in 3 Dimensions
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Figure 7.29: Evolved Memory Antibodies Representation in 3 Dimensions

7.8.4 AIS-Based Music Genre Classification

In this section the problem of automated music genre classification is addressed

through the utilization of a novel approach that is focused on the implementation of

an Artificial Immune System-based classifier. The proposed methodology relies upon

the AIRS learning algorithm which exploits the inherent pattern recognition capabili-

ties of the adaptive immune system. Automated music genre classification constitutes

a non-trivial multi-class classification problem since boundaries between genres are

extremely overlapping and fuzzy. Therefore, it may serve as an ideal framework in

order to assess the validity of the alternative machine learning paradigm proposed by

Artificial Immune Systems. The AIS-based classifier is initially compared against the

state of the art machine learning paradigm of Support Vector Machines in a variety

of classification settings with gradually increasing complexity. The primary domain

of interest, however, concerns the investigation of highly unbalanced classification

problems in the context of Artificial Immune Systems. The relevant research is moti-

vated by the observation that the natural immune system has the intrinsic property of
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self/non-self cell discrimination, especially when the non-self (complementary) space

of cells is significantly larger than the class of self cells. In other words, the inherent

ability of the adaptive immune system to persistently address a classification problem

that involves highly skewed pattern spaces, provides the fundamental inspiration in

order to investigate the Class Imbalance Problem within the framework of Artificial

Immune Systems.

The experimental results presented in this section are organized in three groups

of increasingly unbalanced classification problems appearing in the following list:

1. Balanced Multi Class Classification Problems: Tables 7.8 - 7.52 summa-

rize the relative classification performance of the AIS-based classifier in a series

of classification settings with gradually increasing complexity, against the SVM

classifier. Specifically, this group involves the full range between a simple bi-

nary classification problem to a very hard 10-class classification problem. The

complete range of problems addressed in this session is described within the

following list:

• C1 vs C2;

• C1 vs C2 vs C3;

• C1 vs C2 vs C3 vs C4;

• C1 vs C2 vs C3 vs C4 vs C5;

• C1 vs C2 vs C3 vs C4 vs C5 vs C6

• C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7;

• C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8;

• C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9;

• C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10;

2. One Against All Balanced Classification Problems: Tables 7.53 - 7.82

summarize the classification performance of the AIS-based classifier in a spe-

cial class of balanced binary classification problems, where a particular class of
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positive/target patterns is to be recognized against the complementary pattern

space. In other words, the complementary space of negative/outlier patterns

is systematically under-sampled so that both classes are equally represented

during the training process. The complete range of classification problems ad-

dressed in this session is described within the following list:

• C1 vs {C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C2 vs {C1 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C3 vs {C1 ∪ C2 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C4 vs {C1 ∪ C2 ∪ C3 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C5 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C6 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C7 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C8 ∪ C9 ∪ C10};

• C8 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C9 ∪ C10};

• C9 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C10};

• C10 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9};

3. One Against All Unbalanced Classification problems: Tables 7.83 - 7.132

summarize the classification performance of the AIS-based classifier in a series

of extremely unbalanced binary classification problems, where the negative class

of outlier patterns is not under-sampled so that it is equally represented with

the positive class of target patterns. This experimentation session, in particu-

lar, involves the classification problems with the highest degree of unbalance.

This is true, since the positive class of patterns to be recognized occupies only

a negligible volume of the complete pattern space so that the corresponding

training process is biased towards the majority class of patterns. The complete

range of unbalanced classification problems addressed in this session is described

by the following list:

• C1 vs {C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};
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• C2 vs {C1 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C3 vs {C1 ∪ C2 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C4 vs {C1 ∪ C2 ∪ C3 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C5 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C6 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C7 ∪ C8 ∪ C9 ∪ C10};

• C7 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C8 ∪ C9 ∪ C10};

• C8 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C9 ∪ C10};

• C9 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C10};

• C10 vs {C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ C9};

The experimental results presented in the following sections reveal the validity of

the alternative machine learning paradigm provided by Artificial Immune Systems.

The performance of the proposed classification methodology, in particular, was found

to be similar to that of the Support Vector Machines when tested in balanced multi-

class classification problems. The most important findings, however, relate to the

special nature of the adaptive immune system which is particulary evolved in order

to deal with an extremely unbalanced classification problem, namely the self/non-

self discrimination process. Self/Non-self discrimination within the adaptive immune

system is an essential biological process involving a severely imbalanced classification

problem since the subspace of non-self cells occupies the vast majority of the com-

plete molecular space. Therefore, the identification of any given non-self molecule

constitutes a very hard pattern recognition problem that the adaptive immune sys-

tem resolves remarkably efficient. This fact was the primary source of inspiration

that led to the application of the proposed AIS-based classification algorithm on a

series of gradually imbalanced classification problems. Specifically, the classification

accuracy of the AIS-based classifier is significantly improved against the SVM clas-

sifier for the balanced One vs All classification problems where the class of outlier is

appropriately down-sampled so that both classes are equally represented during the

training process.
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The most interesting behavior of the AIS-based classifier was observed during the

third experimentation session involving a series of 10 severely imbalanced pattern

recognition problems. Specifically, each class of patterns pertaining to the original

dataset was treated as the target class to be recognized against the rest of the classes of

the complementary space. In this context, the AIS-based classifier exhibited superior

classification efficiency especially in recognizing the minority class of patterns. The

true positive rate of recognition for the minority class of patterns is significantly higher

for the complete set of the utilized experimentation datasets. More importantly, the

proposed classification scheme based on the principles of the adaptive immune system

demonstrates an inherent ability in dealing with the class imbalance problem.

Balanced Multi Class Classification Problems

Table 7.8: AIRS Run Information

C1 vs C2
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 2
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.377
Total Training instances 200
Total Memory Cell Replacements 5
Mean Antibody Clones per Refinement Iteration 150.162
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.12
Mean Memory Cell Clones per Antigen 29.865
Mean Antibody Refinement Iterations per Antigen 19.555
Mean Antibody Prunings per Refinement Iteration 151.335
Data Reduction Percentage 2.5%
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Table 7.9: AIRS Classification Results

C1 vs C2
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 94%
Incorrectly Classified Instances 6%
Kappa statistic 0.88
Mean absolute error 0.06
Root mean squared error 0.2449
Relative absolute error 12%
Root relative squared error 48.9898%
Total Number of Instances 200

Table 7.10: AIRS Classification Results by Class

C1 vs C2
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.96 0.08 0.923 0.96 0.941
2 0.92 0.04 0.958 0.92 0.939

Table 7.11: SVM Classification Results

C1 vs C2
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 92.5%
Incorrectly Classified Instances 7.5%
Kappa statistic 0.85
Mean absolute error 0.075
Root mean squared error 0.2739
Relative absolute error 15%
Root relative squared error 54.7723%
Total Number of Instances 200
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Table 7.12: SVM Classification Results by Class

C1 vs C2
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.93 0.08 0.921 0.93 0.925
2 0.92 0.07 0.9294 0.92 0.925

Table 7.13: AIRS Run Information

C1 vs C2 vs C3
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 5
Affinity Threshold 0.369
Total Training instances 300
Total Memory Cell Replacements 1
Mean Antibody Clones per Refinement Iteration 151.486
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 160.392
Mean Memory Cell Clones per Antigen 119.797
Mean Antibody Refinement Iterations per Antigen 22.613
Mean Antibody Prunings per Refinement Iteration 156.477
Data Reduction Percentage 0.333%
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Table 7.14: AIRS Classification Results

C1 vs C2 vs C3
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 72.3333%
Incorrectly Classified Instances 27.6667%
Kappa statistic 0.585
Mean absolute error 0.1844
Root mean squared error 0.4295
Relative absolute error 41.5
Root relative squared error 91.1043
Total Number of Instances 300

Table 7.15: AIRS Classification Results by Class

C1 vs C2 vs C3
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.68 0.205 0.624 0.68 0.651
2 0.87 0.045 0.906 0.87 0.888
3 0.62 0.165 0.653 0.62 0.636

Table 7.16: SVM Classification Results

C1 vs C2 vs C3
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 75.3333%
Incorrectly Classified Instances 24.66674%
Kappa statistic 0.63
Mean absolute error 0.2874
Root mean squared error 0.3728
Relative absolute error 64.6667%
Root relative squared error 79.0921%
Total Number of Instances 300
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Table 7.17: SVM Classification Results by Class

C1 vs C2 vs C3
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.7 0.185 0.654 0.7 0.676
2 0.87 0.02 0.956 0.87 0.911
3 0.69 0.165 0.676 0.69 0.683

Table 7.18: AIRS Run Information

C1 vs C2 vs C3 vs C4
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 6
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.365
Total Training instances 400
Total Memory Cell Replacements 2
Mean Antibody Clones per Refinement Iteration 151.331
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 160.229
Mean Memory Cell Clones per Antigen 90.7
Mean Antibody Refinement Iterations per Antigen 22.152
Mean Antibody Prunings per Refinement Iteration 155.113
Data Reduction Percentage 0, 5%
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Table 7.19: AIRS Classification Results

C1 vs C2 vs C3 vs C4
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 68.5%
Incorrectly Classified Instances 31.5%
Kappa statistic 0.58
Mean absolute error 0.1575
Root mean squared error 0.3969
Relative absolute error 42%
Root relative squared error 91.6515%
Total Number of Instances 400

Table 7.20: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.58 0.143 0.574 0.58 0.577
2 0.87 0.017 0.946 0.87 0.906
3 0.58 0.16 0.547 0.58 0.563
4 0.71 0.1 0.703 0.71 0.706

Table 7.21: SVM Classification Results

C1 vs C2 vs C3 vs C4
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 71%
Incorrectly Classified Instances 29%
Kappa statistic 0.6133
Mean absolute error 0.285
Root mean squared error 0.3635
Relative absolute error 76%
Root relative squared error 83.9422%
Total Number of Instances 400
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Table 7.22: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.54 0.127 0.587 0.54 0.563
2 0.89 0.017 0.947 0.89 0.918
3 0.62 0.113 0.646 0.62 0.633
4 0.79 0.13 0.669 0.79 0.725

Table 7.23: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 15.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 500
Total Memory Cell Replacements 5
Mean Antibody Clones per Refinement Iteration 148.348
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 160.23
Mean Memory Cell Clones per Antigen 91.032
Mean Antibody Refinement Iterations per Antigen 19.634
Mean Antibody Prunings per Refinement Iteration 152.501
Data Reduction Percentage 1%
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Table 7.24: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 61%
Incorrectly Classified Instances 39%
Kappa statistic 0.5125
Mean absolute error 0.156
Root mean squared error 0.395
Relative absolute error 48.75%
Root relative squared error 98.7421%
Total Number of Instances 500

Table 7.25: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.57 0.168 0.46 0.57 0.509
2 0.84 0.023 0.903 0.84 0.87
3 0.5 0.108 0.538 0.5 0.518
4 0.6 0.128 0.541 0.6 0.569
5 0.54 0.063 0.684 0.54 0.603

Table 7.26: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 63.4%
Incorrectly Classified Instances 36.6%
Kappa statistic 0.5425
Mean absolute error 0.2637
Root mean squared error 0.3515
Relative absolute error 82.4%
Root relative squared error 87.8721%
Total Number of Instances 500
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Table 7.27: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.47 0.108 0.522 0.47 0.495
2 0.88 0.015 0.936 0.88 0.907
3 0.63 0.105 0.6 0.63 0.615
4 0.55 0.143 0.491 0.55 0.519
5 0.64 0.088 0.646 0.64 0.643

Table 7.28: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5 vs C6
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.363
Total Training instances 600
Total Memory Cell Replacements 9
Mean Antibody Clones per Refinement Iteration 151.042
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.941
Mean Memory Cell Clones per Antigen 121.275
Mean Antibody Refinement Iterations per Antigen 21.235
Mean Antibody Prunings per Refinement Iteration 156.427
Data Reduction Percentage 1, 5%



Chapter 7: Artificial Immune Systems 313

Table 7.29: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 57.6667%
Incorrectly Classified Instances 42.3333%
Kappa statistic 0.492
Mean absolute error 0.1411
Root mean squared error 0.3756
Relative absolute error 50.8%
Root relative squared error 100.7968%
Total Number of Instances 600

Table 7.30: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.55 0.13 0.458 0.55 0.5
2 0.71 0.046 0.755 0.71 0.732
3 0.44 0.118 0.427 0.44 0.433
4 0.59 0.102 0.536 0.59 0.562
5 0.57 0.05 0.695 0.57 0.626
6 0.6 0.062 0.659 0.6 0.628

Table 7.31: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 61.8333%
Incorrectly Classified Instances 38.1667%
Kappa statistic 0.542
Mean absolute error 0.2375
Root mean squared error 0.3339
Relative absolute error 85.5067%
Root relative squared error 89.5877%
Total Number of Instances 600
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Table 7.32: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.48 0.112 0.462 0.48 0.471
2 0.75 0.036 0.806 0.75 0.777
3 0.58 0.074 0.611 0.58 0.595
4 0.6 0.1 0.545 0.6 0.571
5 0.6 0.066 0.645 0.6 0.622
6 0.7 0.07 0.667 0.7 0.683

Table 7.33: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 4
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.369
Total Training instances 700
Total Memory Cell Replacements 18
Mean Antibody Clones per Refinement Iteration 150.955
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.874
Mean Memory Cell Clones per Antigen 60.483
Mean Antibody Refinement Iterations per Antigen 21.214
Mean Antibody Prunings per Refinement Iteration 153.48
Data Reduction Percentage 2.571%
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Table 7.34: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 57.8571%
Incorrectly Classified Instances 42.1429%
Kappa statistic 0.5083
Mean absolute error 0.1204
Root mean squared error 0.347
Relative absolute error 49.1667%
Root relative squared error 99.1632%
Total Number of Instances 700

Table 7.35: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.53 0.135 0.396 0.53 0.453
2 0.78 0.043 0.75 0.78 0.765
3 0.54 0.09 0.5 0.54 0.519
4 0.58 0.088 0.523 0.58 0.55
5 0.55 0.055 0.625 0.55 0.585
6 0.57 0.055 0.633 0.57 0.6
7 0.5 0.025 0.769 0.5 0.606

Table 7.36: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 59.7143%
Incorrectly Classified Instances 40.2857%
Kappa statistic 0.53
Mean absolute error 0.2145
Root mean squared error 0.3179
Relative absolute error 87.6032%
Root relative squared error 90.8443%
Total Number of Instances 700
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Table 7.37: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.44 0.073 0.5 0.44 0.468
2 0.72 0.032 0.791 0.72 0.754
3 0.56 0.073 0.56 0.56 0.56
4 0.54 0.122 0.425 0.54 0.476
5 0.61 0.055 0.649 0.61 0.629
6 0.62 0.052 0.667 0.62 0.642
7 0.69 0.063 0.645 0.69 0.667

Table 7.38: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 10.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.365
Total Training instances 800
Total Memory Cell Replacements 25
Mean Antibody Clones per Refinement Iteration 148.391
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 166.172
Mean Memory Cell Clones per Antigen 60.746
Mean Antibody Refinement Iterations per Antigen 25.686
Mean Antibody Prunings per Refinement Iteration 150.189
Data Reduction Percentage 3.125%
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Table 7.39: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 52.5%
Incorrectly Classified Instances 47.5%
Kappa statistic 0.4571
Mean absolute error 0.1188
Root mean squared error 0.3446
Relative absolute error 54.2857%
Root relative squared error 104.1976%
Total Number of Instances 800

Table 7.40: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.47 0.114 0.37 0.47 0.414
2 0.71 0.023 0.816 0.71 0.759
3 0.49 0.093 0.43 0.49 0.458
4 0.49 0.089 0.441 0.49 0.464
5 0.41 0.051 0.532 0.41 0.463
6 0.58 0.059 0.586 0.58 0.583
7 0.48 0.031 0.686 0.48 0.565
8 0.57 0.083 0.496 0.57 0.53
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Table 7.41: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 57.125%
Incorrectly Classified Instances 42.875%
Kappa statistic 0.51
Mean absolute error 0.1961
Root mean squared error 0.3055
Relative absolute error 89.6429%
Root relative squared error 92.373%
Total Number of Instances 800

Table 7.42: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.47 0.084 0.443 0.47 0.456
2 0.73 0.024 0.811 0.73 0.768
3 0.52 0.07 0.515 0.52 0.517
4 0.49 0.097 0.419 0.49 0.452
5 0.53 0.043 0.639 0.53 0.579
6 0.65 0.054 0.631 0.65 0.64
7 0.66 0.064 0.595 0.66 0.626
8 0.52 0.053 0.584 0.52 0.55
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Table 7.43: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 6
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 900
Total Memory Cell Replacements 16
Mean Antibody Clones per Refinement Iteration 150.856
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.747
Mean Memory Cell Clones per Antigen 91.594
Mean Antibody Refinement Iterations per Antigen 21.087
Mean Antibody Prunings per Refinement Iteration 154.871
Data Reduction Percentage 1.778%

Table 7.44: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 48.6667%
Incorrectly Classified Instances 51.3333%
Kappa statistic 0.4225
Mean absolute error 0.1141
Root mean squared error 0.3377
Relative absolute error 57.75%
Root relative squared error 107.4709%
Total Number of Instances 900
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Table 7.45: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.52 0.106 0.38 0.52 0.439
2 0.79 0.034 0.745 0.79 0.767
3 0.49 0.088 0.412 0.49 0.447
4 0.49 0.096 0.389 0.49 0.434
5 0.21 0.058 0.313 0.21 0.251
6 0.57 0.046 0.606 0.57 0.588
7 0.45 0.02 0.738 0.45 0.559
8 0.55 0.068 0.505 0.55 0.526
9 0.31 0.063 0.383 0.31 0.343

Table 7.46: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 53%
Incorrectly Classified Instances 47%
Kappa statistic 0.4713
Mean absolute error 0.1798
Root mean squared error 0.2934
Relative absolute error 91.0243%
Root relative squared error 93.3676%
Total Number of Instances 900
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Table 7.47: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.44 0.075 0.423 0.44 0.431
2 0.72 0.02 0.818 0.72 0.766
3 0.54 0.058 0.54 0.54 0.54
4 0.43 0.1 0.35 0.43 0.386
5 0.34 0.054 0.442 0.34 0.384
6 0.62 0.054 0.59 0.62 0.605
7 0.64 0.051 0.61 0.64 0.624
8 0.55 0.051 0.573 0.55 0.561
9 0.49 0.066 0.48 0.49 0.485

Table 7.48: AIRS Run Information

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 10
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 19
Mean Antibody Clones per Refinement Iteration 150.977
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.864
Mean Memory Cell Clones per Antigen 152.033
Mean Antibody Refinement Iterations per Antigen 21.264
Mean Antibody Prunings per Refinement Iteration 157.801
Data Reduction Percentage 1.9%
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Table 7.49: AIRS Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 44.3%
Incorrectly Classified Instances 55.7%
Kappa statistic 0.3811
Mean absolute error 0.1114
Root mean squared error 0.3338
Relative absolute error 61.8889%
Root relative squared error 111.2555%
Total Number of Instances 1000

Table 7.50: AIRS Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10
AIRS Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.48 0.1 0.348 0.48 0.403
2 0.76 0.033 0.717 0.76 0.738
3 0.43 0.092 0.341 0.43 0.381
4 0.36 0.088 0.313 0.36 0.335
5 0.26 0.047 0.382 0.26 0.31
6 0.53 0.043 0.576 0.53 0.552
7 0.47 0.031 0.627 0.47 0.537
8 0.54 0.073 0.45 0.54 0.491
9 0.39 0.061 0.415 0.39 0.402
10 0.21 0.05 0.318 0.21 0.253
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Table 7.51: SVM Classification Results

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 50%
Incorrectly Classified Instances 50%
Kappa statistic 0.4444
Mean absolute error 0.1659
Root mean squared error 0.2827
Relative absolute error 92.1852%
Root relative squared error 94.2452%
Total Number of Instances 1000

Table 7.52: SVM Classification Results by Class

C1 vs C2 vs C3 vs C4 vs C5 vs C6 vs C7 vs C8 vs C9 vs C10
SVM Detailed Accuracy By Class

CLASS ID TP RATE FP RATE PRECISION RECALL F-MEASURE
1 0.4 0.061 0.421 0.4 0.41
2 0.72 0.026 0.758 0.72 0.738
3 0.51 0.059 0.49 0.51 0.5
4 0.44 0.083 0.37 0.44 0.402
5 0.42 0.05 0.483 0.42 0.449
6 0.61 0.051 0.57 0.61 0.589
7 0.63 0.053 0.568 0.63 0.597
8 0.52 0.039 0.598 0.52 0.556
9 0.48 0.06 0.471 0.48 0.475
10 0.27 0.073 0.29 0.27 0.28
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One vs All Balanced Classification Problems

Table 7.53: AIRS Run Information

C1 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 3

Table 7.54: AIRS Classification Results

AIRS CLASSIFIER
C1 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 75 25
2 85 15
3 85 15
4 55 45
5 65 35
6 65 35
7 65 35
8 50 50
9 75 25
10 85 15

MEAN VALUE 70.5 29.5
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Table 7.55: SVM Classification Results

SVM CLASSIFIER
C1 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 50 50
2 50 50
3 0 100
4 100 0
5 100 0
6 100 0
7 50 50
8 0 100
9 50 50
10 50 50

MEAN VALUE 55 45

Table 7.56: AIRS Run Information

C2 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 10.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
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Table 7.57: AIRS Classification Results

AIRS CLASSIFIER
C2 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 85 15
3 85 15
4 80 20
5 95 5
6 95 5
7 80 20
8 95 5
9 95 5
10 90 10

MEAN VALUE 90 10

Table 7.58: SVM Classification Results

SVM CLASSIFIER
C2 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 100 0
3 100 0
4 100 0
5 100 0
6 100 0
7 100 0
8 100 0
9 100 0
10 100 0

MEAN VALUE 100 0
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Table 7.59: AIRS Run Information

C3 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 3

Table 7.60: AIRS Classification Results

AIRS CLASSIFIER
C3 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 60 40
2 65 35
3 75 25
4 70 30
5 75 25
6 70 30
7 65 35
8 75 25
9 85 15
10 65 35

MEAN VALUE 70.5 29.5
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Table 7.61: SVM Classification Results

SVM CLASSIFIER
C3 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 50 50
3 50 50
4 50 50
5 50 50
6 100 0
7 50 50
8 50 50
9 50 50
10 100 0

MEAN VALUE 65 35

Table 7.62: AIRS Run Information

C4 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 3
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Table 7.63: AIRS Classification Results

AIRS CLASSIFIER
C4 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 70 30
2 85 15
3 70 30
4 70 30
5 80 20
6 65 35
7 90 10
8 65 35
9 60 40
10 90 10

MEAN VALUE 74.5 25.5

Table 7.64: SVM Classification Results

SVM CLASSIFIER
C4 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 50 50
2 100 0
3 100 0
4 100 0
5 100 0
6 50 50
7 100 0
8 100 0
9 50 50
10 50 50

MEAN VALUE 80 20
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Table 7.65: AIRS Run Information

C6 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10

Table 7.66: AIRS Classification Results

AIRS CLASSIFIER
C5 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 75 25
2 85 15
3 75 25
4 80 20
5 70 30
6 75 25
7 70 30
8 70 30
9 50 50
10 80 20

MEAN VALUE 73 27
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Table 7.67: SVM Classification Results

SVM CLASSIFIER
C5 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 0 100
2 100 0
3 50 50
4 50 50
5 0 100
6 0 100
7 100 0
8 100 0
9 0 100
10 50 50

MEAN VALUE 45 55

Table 7.68: AIRS Run Information

C6 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 10.0
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
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Table 7.69: AIRS Classification Results

AIRS CLASSIFIER
C6 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 80 20
2 80 20
3 80 20
4 70 30
5 85 15
6 80 20
7 80 20
8 85 15
9 90 10
10 80 20

MEAN VALUE 81 19

Table 7.70: SVM Classification Results

SVM CLASSIFIER
C6 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 50 50
3 100 0
4 100 0
5 100 0
6 100 0
7 100 0
8 50 50
9 100 0
10 100 0

MEAN VALUE 90 10
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Table 7.71: AIRS Run Information

C7 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 10
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10

Table 7.72: AIRS Classification Results

AIRS CLASSIFIER
C7 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 90 10
2 100 0
3 90 10
4 75 25
5 85 15
6 75 25
7 95 5
8 65 35
9 75 25
10 65 35

MEAN VALUE 81.5 18.5
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Table 7.73: SVM Classification Results

SVM CLASSIFIER
C7 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 100 0
3 100 0
4 50 50
5 100 0
6 50 50
7 100 0
8 100 0
9 50 50
10 50 50

MEAN VALUE 80 20

Table 7.74: AIRS Run Information

C8 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 4
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
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Table 7.75: AIRS Classification Results

AIRS CLASSIFIER
C8 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 50 50
2 65 35
3 75 25
4 65 35
5 70 30
6 80 20
7 75 25
8 70 30
9 55 45
10 75 25

MEAN VALUE 68 32

Table 7.76: SVM Classification Results

SVM CLASSIFIER
C8 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 50 50
2 100 0
3 50 50
4 50 50
5 50 50
6 50 50
7 100 0
8 50 50
9 100 0
10 50 50

MEAN VALUE 65 35
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Table 7.77: AIRS Run Information

C9 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 2
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10

Table 7.78: AIRS Classification Results

AIRS CLASSIFIER
C9 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 65 35
2 75 25
3 75 25
4 90 10
5 70 30
6 80 20
7 75 25
8 70 30
9 65 35
10 65 35

MEAN VALUE 73 27
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Table 7.79: SVM Classification Results

SVM CLASSIFIER
C9 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 100 0
2 100 0
3 50 50
4 100 0
5 100 0
6 100 0
7 50 50
8 50 50
9 50 50
10 100 0

MEAN VALUE 80 20

Table 7.80: AIRS Run Information

C10 vs ALL BALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20.0
Hyper Mutation Rate 6
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
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Table 7.81: AIRS Classification Results

AIRS CLASSIFIER
C10 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 65 35
2 60 40
3 65 35
4 65 35
5 55 45
6 75 25
7 55 45
8 55 45
9 80 20
10 60 40

MEAN VALUE 63.5 36.5

Table 7.82: SVM Classification Results

SVM CLASSIFIER
C10 vs ALL BALANCED

FOLD ID ACCURACY ERROR RATE
1 50 50
2 0 100
3 100 0
4 100 0
5 100 0
6 100 0
7 50 50
8 100 0
9 100 0
10 100 0

MEAN VALUE 80 20
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One vs All Unbalanced Classification Problems

Table 7.83: AIRS Run Information

C1 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 25
Mean Antibody Clones per Refinement Iteration 150.278
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.166
Mean Memory Cell Clones per Antigen 125.851
Mean Antibody Refinement Iterations per Antigen 1.546
Mean Antibody Prunings per Refinement Iteration 156.36
Data Reduction Percentage 2.5%

Table 7.84: AIRS Classification Results

C1 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 87.2%
Incorrectly Classified Instances 12.8%
Kappa statistic 0.2558
Mean absolute error 0.128
Root mean squared error 0.3578
Relative absolute error 70.8319%
Root relative squared error 119.2564%
Total Number of Instances 1000



Chapter 7: Artificial Immune Systems 340

Table 7.85: AIRS Classification Results by Class

C1 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.31 0.066 0.344 0.31 0.326
Majority 0.934 0.69 0.924 0.934 0.929

Table 7.86: SVM Classification Results

C1 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90.1%
Incorrectly Classified Instances 9.9%
Kappa statistic 0.0179
Mean absolute error 0.099
Root mean squared error 0.3146
Relative absolute error 54.784%
Root relative squared error 104.8804%
Total Number of Instances 1000

Table 7.87: SVM Classification Results by Class

C1 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.01 0 1 0.01 0.02
Majority 1 0.99 0.901 1 0.948
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Table 7.88: AIRS Run Information

C2 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 15
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 26
Mean Antibody Clones per Refinement Iteration 150.333
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.204
Mean Memory Cell Clones per Antigen 126.304
Mean Antibody Refinement Iterations per Antigen 19.883
Mean Antibody Prunings per Refinement Iteration 156.334
Data Reduction Percentage 2.6%

Table 7.89: AIRS Classification Results

C2 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 94.6%
Incorrectly Classified Instances 5.4%
Kappa statistic 0.6973
Mean absolute error 0.054
Root mean squared error 0.2324
Relative absolute error 29.8822%
Root relative squared error 77.4593%
Total Number of Instances 1000
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Table 7.90: AIRS Classification Results by Class

C2 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.72 0.029 0.735 0.72 0.727
Majority 0.971 0.28 0.969 0.971 0.97

Table 7.91: SVM Classification Results

C2 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 95.2%
Incorrectly Classified Instances 4.8%
Kappa statistic 0.6923
Mean absolute error 0.048
Root mean squared error 0.2191
Relative absolute error 26.562%
Root relative squared error 73.0294%
Total Number of Instances 1000

Table 7.92: SVM Classification Results by Class

C2 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.61 0.01 0.871 0.61 0.718
Majority 0.99 0.39 0.958 0.99 0.974
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Table 7.93: AIRS Run Information

C3 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 2
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 38
Mean Antibody Clones per Refinement Iteration 149.589
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 158.526
Mean Memory Cell Clones per Antigen 31.399
Mean Antibody Refinement Iterations per Antigen 18.309
Mean Antibody Prunings per Refinement Iteration 150.923
Data Reduction Percentage 3.8%

Table 7.94: AIRS Classification Results

C3 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90%
Incorrectly Classified Instances 10%
Kappa statistic 0.2775
Mean absolute error 0.1
Root mean squared error 0.3162
Relative absolute error 55.3374%
Root relative squared error 105.4088%
Total Number of Instances 1000
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Table 7.95: AIRS Classification Results by Class

C3 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.24 0.027 0.5 0.24 0.324
Majority 0.973 0.76 0.92 0.973 0.946

Table 7.96: SVM Classification Results

C3 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90.1%
Incorrectly Classified Instances 9.9%
Kappa statistic 0.0481
Mean absolute error 0.099
Root mean squared error 0.3146
Relative absolute error 54.784%
Root relative squared error 104.8804%
Total Number of Instances 1000

Table 7.97: SVM Classification Results by Class

C3 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.03 0.002 0.6 0.03 0.057
Majority 0.998 0.97 0.903 0.998 0.948



Chapter 7: Artificial Immune Systems 345

Table 7.98: AIRS Run Information

C4 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 27
Mean Antibody Clones per Refinement Iteration 150.475
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.356
Mean Memory Cell Clones per Antigen 125.899
Mean Antibody Refinement Iterations per Antigen 19.992
Mean Antibody Prunings per Refinement Iteration 156.423
Data Reduction Percentage 2.7%

Table 7.99: AIRS Classification Results

C4 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 86%
Incorrectly Classified Instances 14%
Kappa statistic 0.2616
Mean absolute error 0.14
Root mean squared error 0.3742
Relative absolute error 77.4724%
Root relative squared error 124.7214%
Total Number of Instances 1000
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Table 7.100: AIRS Classification Results by Class

C4 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.36 0.084 0.321 0.36 0.34
Majority 0.916 0.64 0.928 0.916 0.922

Table 7.101: SVM Classification Results

C4 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90.1%
Incorrectly Classified Instances 9.9%
Kappa statistic 0.0179
Mean absolute error 0.099
Root mean squared error 0.3146
Relative absolute error 54.784%
Root relative squared error 104.8804%
Total Number of Instances 1000

Table 7.102: SVM Classification Results by Class

C4 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.01 0 1 0.01 0.02
Majority 1 0.99 0.901 1 0.948
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Table 7.103: AIRS Run Information

C5 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 19
Mean Antibody Clones per Refinement Iteration 150.415
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.296
Mean Memory Cell Clones per Antigen 125.858
Mean Antibody Refinement Iterations per Antigen 19.907
Mean Antibody Prunings per Refinement Iteration 156.387
Data Reduction Percentage 1.9%

Table 7.104: AIRS Classification Results

C5 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 87%
Incorrectly Classified Instances 13%
Kappa statistic 0.2225
Mean absolute error 0.13
Root mean squared error 0.3606
Relative absolute error 71.9387%
Root relative squared error 120.1845%
Total Number of Instances 1000
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Table 7.105: AIRS Classification Results by Class

C5 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.27 0.063 0.321 0.27 0.293
Majority 0.937 0.73 0.92 0.937 0.928

Table 7.106: SVM Classification Results

C5 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90%
Incorrectly Classified Instances 10%
Kappa statistic 0
Mean absolute error 0.1
Root mean squared error 0.3162
Relative absolute error 55.3374%
Root relative squared error 105.4088%
Total Number of Instances 1000

Table 7.107: SVM Classification Results by Class

C5 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0 0 0 0 0
Majority 1 1 0.9 1 0.947
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Table 7.108: AIRS Run Information

C6 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 4
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 24
Mean Antibody Clones per Refinement Iteration 150.293
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.191
Mean Memory Cell Clones per Antigen 62.976
Mean Antibody Refinement Iterations per Antigen 19.699
Mean Antibody Prunings per Refinement Iteration 153.135
Data Reduction Percentage 2.4%

Table 7.109: AIRS Classification Results

C6 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 92.2%
Incorrectly Classified Instances 7.8%
Kappa statistic 0.4786
Mean absolute error 0.078
Root mean squared error 0.2793
Relative absolute error 43.1632%
Root relative squared error 93.0945%
Total Number of Instances 1000
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Table 7.110: AIRS Classification Results by Class

C6 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.42 0.022 0.677 0.42 0.519
Majority 0.978 0.58 0.938 0.978 0.958

Table 7.111: SVM Classification Results

C6 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 91.9%
Incorrectly Classified Instances 8.1%
Kappa statistic 0.3425
Mean absolute error 0.081
Root mean squared error 0.2846
Relative absolute error 44.8233%
Root relative squared error 94.8679%
Total Number of Instances 1000

Table 7.112: SVM Classification Results by Class

C6 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.24 0.006 0.828 0.24 0.372
Majority 0.994 0.76 0.922 0.994 0.957
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Table 7.113: AIRS Run Information

C7 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 20
Mean Antibody Clones per Refinement Iteration 150.432
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.315
Mean Memory Cell Clones per Antigen 125.815
Mean Antibody Refinement Iterations per Antigen 19.973
Mean Antibody Prunings per Refinement Iteration 156.381
Data Reduction Percentage 2%

Table 7.114: AIRS Classification Results

C7 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90.8%
Incorrectly Classified Instances 9.2%
Kappa statistic 0.4498
Mean absolute error 0.092
Root mean squared error 0.3033
Relative absolute error 50.9104%
Root relative squared error 101.1046%
Total Number of Instances 1000
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Table 7.115: AIRS Classification Results by Class

C7 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.46 0.042 0.548 0.46 0.5
Majority 0.958 0.54 0.941 0.958 0.949

Table 7.116: SVM Classification Results

C7 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 92.1%
Incorrectly Classified Instances 7.9%
Kappa statistic 0.4051
Mean absolute error 0.079
Root mean squared error 0.2811
Relative absolute error 43.7166%
Root relative squared error 93.6894%
Total Number of Instances 1000

Table 7.117: SVM Classification Results by Class

C7 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.31 0.011 0.756 0.31 0.44
Majority 0.989 0.69 0.928 0.989 0.958
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Table 7.118: AIRS Run Information

C8 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 10
Hyper Mutation Rate 8
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 4
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 32
Mean Antibody Clones per Refinement Iteration 147.913
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 165.661
Mean Memory Cell Clones per Antigen 62.822
Mean Antibody Refinement Iterations per Antigen 24.011
Mean Antibody Prunings per Refinement Iteration 149.919
Data Reduction Percentage 3.2%

Table 7.119: AIRS Classification Results

C8 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 91.4%
Incorrectly Classified Instances 8.6%
Kappa statistic 0.4704
Mean absolute error 0.086
Root mean squared error 0.2933
Relative absolute error 47.5902%
Root relative squared error 97.7521%
Total Number of Instances 1000
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Table 7.120: AIRS Classification Results by Class

C8 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.46 0.036 0.59 0.46 0.517
Majority 0.964 0.54 0.941 0.964 0.953

Table 7.121: SVM Classification Results

C8 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 92%
Incorrectly Classified Instances 8%
Kappa statistic 0.3865
Mean absolute error 0.08
Root mean squared error 0.2828
Relative absolute error 44.2699%
Root relative squared error 94.2805%
Total Number of Instances 1000

Table 7.122: SVM Classification Results by Class

C8 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.29 0.01 0.763 0.29 0.42
Majority 0.99 0.71 0.926 0.99 0.957
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Table 7.123: AIRS Run Information

C9 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 2
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 34
Mean Antibody Clones per Refinement Iteration 149.756
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 158.687
Mean Memory Cell Clones per Antigen 31.431
Mean Antibody Refinement Iterations per Antigen 18.573
Mean Antibody Prunings per Refinement Iteration 151.072
Data Reduction Percentage 3.4%

Table 7.124: AIRS Classification Results

C9 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90.1%
Incorrectly Classified Instances 9.9%
Kappa statistic 0.2969
Mean absolute error 0.099
Root mean squared error 0.3146
Relative absolute error 54.784%
Root relative squared error 104.8804%
Total Number of Instances 1000
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Table 7.125: AIRS Classification Results by Class

C9 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.26 0.028 0.51 0.26 0.344
Majority 0.972 0.74 0.922 0.972 0.946

Table 7.126: SVM Classification Results

C9 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90%
Incorrectly Classified Instances 10%
Kappa statistic 0.0157
Mean absolute error 0.1
Root mean squared error 0.3162
Relative absolute error 55.3374%
Root relative squared error 105.4088%
Total Number of Instances 1000

Table 7.127: SVM Classification Results by Class

C9 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.01 0.001 0.5 0.01 0.02
Majority 0.999 0.99 0.901 0.999 0.947
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Table 7.128: AIRS Run Information

C10 vs ALL UNBALANCED
AIRS CLASSIFIER RUN PARAMETER VALUE
Affinity Threshold Scalar 0.2
Clonal Rate 20
Hyper Mutation Rate 10
Stimulation Threshold 0.99
Total Resources 150
Nearest Neighbors Number 10
Affinity Threshold 0.362
Total Training instances 1000
Total Memory Cell Replacements 24
Mean Antibody Clones per Refinement Iteration 150.428
Mean Total Resources per Refinement Iteration 150
Mean Pool Size per Refinement Iteration 159.298
Mean Memory Cell Clones per Antigen 157.128
Mean Antibody Refinement Iterations per Antigen 20.005
Mean Antibody Prunings per Refinement Iteration 157.933
Data Reduction Percentage 2.4%

Table 7.129: AIRS Classification Results

C10 vs ALL UNBALANCED
AIRS CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 89.8%
Incorrectly Classified Instances 10.2%
Kappa statistic 0.0556
Mean absolute error 0.102
Root mean squared error 0.3194
Relative absolute error 56.4442%
Root relative squared error 106.4577%
Total Number of Instances 1000
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Table 7.130: AIRS Classification Results by Class

C10 vs ALL UNBALANCED
AIRS Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0.04 0.007 0.4 0.04 0.073
Majority 0.993 0.96 0.903 0.993 0.946

Table 7.131: SVM Classification Results

C10 vs ALL UNBALANCED
SVM CLASSIFIER CLASSIFICATION PARAMETER VALUE
Correctly Classified Instances 90%
Incorrectly Classified Instances 10%
Kappa statistic 0
Mean absolute error 0.1
Root mean squared error 0.3162
Relative absolute error 55.3374%
Root relative squared error 105.4088%
Total Number of Instances 1000

Table 7.132: SVM Classification Results by Class

C10 vs ALL UNBALANCED
SVM Detailed Accuracy By Class

CLASS TP RATE FP RATE PRECISION RECALL F-MEASURE
Minority 0 0 0 0 0
Majority 1 1 0.9 1 0.947

7.8.5 Music Recommendation Based on Artificial Immune

Systems

In this section, the music recommendation process is addressed as a one-class

classification problem by developing an AIS-based Negative Selection (NS) algorithm.
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The primary objective of the proposed methodology is to exploit the inherent ability

of the NS-based classifier in handling severely unbalanced classification problems in

order to capture user preferences. The main idea that motivated the recommendation

approach presented in this section stems from the fact that users’ interests occupy only

a small fraction of a given multimedia collection. That is, the music preferences of a

particular user tend to be contained within a negligible volume of the complete pattern

space. Therefore, the problem of identifying multimedia instances that a specific user

would evaluate as preferable, constitutes an extremely unbalanced pattern recognition

problem that could be addressed within the context of one-class classification. This is

true, since in most real-life situations the user supplied feedback to a recommendation

system is exclusively given in the form of positive examples from the target class to

be recognized.

Specifically, the adapted approach decomposes the music recommendation prob-

lem into a two-level cascading recommendation scheme. The first recommendation

level incorporates the AIS-based one-class classification algorithm in order to discrim-

inate between positive and negative patterns on the basis of zero knowledge from the

subspace of outliers. The second level, on the other hand, is responsible for assigning

a particular degree of preference according to past user ratings. For this purpose,

the second recommendation level applies either a content-based approach or a col-

laborative filtering technique. The implementation and evaluation of the proposed

Cascade Hybrid recommender approach, enhanced by the one class classifier in the

first level and the collaborative filtering in the second level, demonstrates the ef-

ficiency of the proposed recommendation scheme. The presented technique benefits

from both content-based and collaborative filtering methodologies. The content-based

level eliminates the drawbacks of the pure collaborative filtering that do not take into

account the subjective preferences of an individual user, as they are biased towards

the items that are most preferred by the rest of the users. On the other hand,

the collaborative filtering level eliminates the drawbacks of the pure content-based

recommender which ignore any beneficial information related to users with similar

preferences. The combination of two approaches in a cascade form, mimics the social

process when someone has selected some items according to his preferences and asks
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for opinions about these by others, in order to achieve the best selection.

Fundamental Problems of Recommender Systems

In this section we refer the fundamental problems of recommender system and the

solutions that each of the above techniques offer to these.

The cold-start problem [191] related with the learning rate curve of the recom-

mender system. This problem could be analyzed into two different sub-problems:

• New-User problem, is the problem of making recommendations to new user

[177], as it is related with the situation where almost nothing is known about

his/her preferences.

• New-Item problem, is the problem where ratings are required for items that have

not been rated by users. Therefore, until the new item is rated by a satisfactory

number of users, the recommender system would not be able to recommend this

item. This problem it appears mostly to collaborative approaches, as it could

be eliminated with the use of content-based or hybrid approaches where content

information is used to infer similarities among items.

This problem is also related, with the coverage of a recommender which is a

measure for the domain of items over which the system could produce recom-

mendations. For example low coverage of the domain means that it is used a

limited space of items in results of recommender and these results usually could

be biased by preferences of other users. This is also known as the problem of

Over-specialization. When the system can only recommend items that score

highly against a users profile, the user is limited to being recommended items

that are similar to those already rated. This problem, which has also been stud-

ied in other domains, is often addressed by introducing some randomness. For

example, the use of genetic algorithms has been proposed as a possible solution

in the context of information filtering [197].

Novelty Detection - Quality of Recommendations. From those items that a recom-

mender system recommend to users, there are items that already known and items
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that are new (novel) unknown to them. Therefore, there is a competitiveness between

the desire for novelty and the desire for high quality recommendation. One the one

hand quality of the recommendations [189] is related with ”trust” that users express

for the recommendations. This means that recommender should minimize false posi-

tive errors, more specifically the recommender should not recommend items that are

not desirable. On the other hand, novelty is related with the ”timestamp - age” of

items, the older items should be treated as less relevant than the new ones which

means increase to the novelty rate. Thus, a high novelty rate will produce a poor

quality recommendations because the users would not be able to identify most of the

items in the list of recommendations.

The sparsity problem [2, 136] is related with the unavailability of a large number

of rated item for each active user. The number of items that are rated by users is

usually a very small subset of those items that are totally available. For example in

Amazon if the active users may have purchased 1% of the items and the total amount

of items is approximately 1 million of books this means that there are only 10, 000 of

books which are rated. Consequently, such sparsity in ratings affects in an accurate

selection of the neighbors in the step of neighborhood formation, and leads in poor

recommendation results.

A number of possible solutions have been proposed to overcome the sparsity prob-

lem such as content-based similarities, item-based collaborative filtering methods, use

of demographic data and a number of hybrid approaches [25]. A different approach

to deal with this problem is proposed in [190] where it is utilized dimensional re-

duction technique, such as Singular Value Decomposition, in order to transform the

sparse user-item matrix R into a dense matrix. The SVD is a method for matrix

factorization that produce the best lower rank approximations of the original matrix

[165].

Recommender systems, especially with large electronic sites, have to deal with

the problem of scalability as there is a constantly growing number of users and items

[20, 225]. Therefore, it required an increasing amount of computational resources

as the amount of data grows. A recommendation method that could be efficient

when the number of data is limited could be very time-consuming, scales poorly and
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unable to generate a satisfactory number of recommendations in a large amount of

data. Thus it is important the recommendation approach to be capable of scaling up

in a successful manner [188].

Recommendation as a One-Class Classification Problem

The main problem dominating the design of an efficient multimedia recommender

system is the difficulty faced by its users when attempting to articulate their needs.

However, users are extremely good at characterizing a specific instance of multimedia

information as preferable or not. This entails that it is possible to obtain a sufficient

number of positive and negative examples from the user in order to employ an ap-

propriate machine learning methodology to acquire a user preference profile. Positive

and negative evidence concerning the preferences of a specific user are utilized by the

machine learning methodology so as to derive a model of how that particular user

valuates the information content of a multimedia file. Such a model could enable a

recommender system to classify unseen multimedia files as desirable or non-desirable

according to the acquired model of the user preferences. Thus, the problem of recom-

mendation is formulated as a binary classification problem where the set of probable

classes would include two class instances, C+ = prefer / like and C− = don’t pre-

fer / dislike. However, the burden of obtaining a sufficient number of positive and

negative examples from a user is not negligible. Additionally, users find it sensibly

hard to explicitly express what they consider as non desirable since the reward they

will eventually receive does not outweigh the cost undertaken in terms of time and

effort. It is also very important to mention that the class of desirable patterns oc-

cupies only a negligible volume of the patterns space since the multimedia instances

that a particular user would characterize as preferable are only few compared to the

vast majority of the non - desirable patterns.

This fact justifies the highly unbalanced nature of the recommendation problem,

since non - targets occur only occasionally and their measurements are very costly.

Moreover, if there were available patterns from the non - target class they could not

be trusted in principle as they would be badly sampled, with unknown priors and ill
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- defined distributions. In essence, non - targets are weakly defined since they appear

as any kind of deviation or anomaly from the target objects.Since samples from both

classes are not available, machine learning models based on defining a boundary

between the two classes are not applicable. Therefore, a natural choice in order to

overcome this problem is building a model that either provides a statistical description

for the class of the available patterns or a description concerning the shape / structure

of the class that generated the training samples. This insight has led us to reformulate

the problem of recommendation as a one-class classification problem where the only

available patterns originate from the target class to be learned. Specifically, the one-

class to be considered as the target class is the class of desirable patterns while the

complementary space of the universe of discourse corresponds to the class on non-

desirable patterns. Otherwise stated, our primary concern is to derive an inductive

bias which will form the basis for the classification of unseen patterns as preferable or

not. In the context of building a music piece recommender system, available training

patterns correspond to those multimedia instances that a particular user assigned to

the class of preferable patterns. The recommendation of new music pieces is then

performed by utilizing the one-class classifier for assigning unseen music pieces in the

database either in the class of desirable patterns or in the complementary class of

non-desirable patterns.

The general setting of the recommendation problem where there is a unique class

of interest and everything else belongs to another class manifests its extremely non -

symmetrical nature.Additionally, the probability density for the class of target pat-

terns may be scattered along the different intrinsic classes of the data. For example

the universe of discourse for our music piece recommender system is a music database

which is intrinsically partitioned into 10 disjoint classes of musical genres. Thus, the

target class of preferable patterns for a particular may be formed as a mixing of the

various musical genres in arbitrary proportions. The non - symmetrical nature of the

recommendation problem is an additional fact validating its formulation as a one -

class learning problem.

Another important factor that leads toward the selection of one - class learning as a

valid paradigm for the problem of recommendation is that the related misclassification
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costs are analogously unbalanced. The quantities of interest are the false positive rate

and the false negative rate. The false positive rate expresses how often a classifier

falsely predicts that a specific pattern belongs to the target class of patterns while

it originated from the complementary class. The false negative rate expresses how

often a classifier falsely predicts that a specific pattern belongs to the complementary

class of patterns while it originated from the target class. In the context of designing

a music piece recommender system the cost related to the false positive rate is of

greater impact than the cost related to the false negative rate. False positives result

in recommending items that a particular user would classify as non - desirable thus

effecting the quality of recommendation. In contrast, false negatives result in not

recommending items that a particular user would classify as desirable. Thus, it is of

vital importance in minimizing the false positive rate which results in improving the

accuracy of recommendation.

Cascade Classification Architecture

The problem of recommendation is addressed by developing a two-level cascade

classification architecture. The first level involves the incorporation of a one-class

classifier which is trained exclusively on positive patterns. The one-class learning

component at the first level serves the purpose of recognizing instances from the class

of desirable patterns against those patterns originating from the class of non-desirable

ones. On the other hand, the second level is based on a multi-class classifier, which

is also trained exclusively on positive data, but in order to discriminate amongst the

various classes of positive patterns.

It must be mentioned that the class of negative / non-desirable patterns occupies

a significantly larger volume within the pattern space V in comparison with the

volume occupied by the positive / desirable patterns. This is a reasonable fact since

user preferences are concentrated within a small fraction of the universe of discourse.

Thus, in the context of building an efficient music recommendation system it is a

matter of crucial importance to be able to recognize the majority of instances that

belong to the complementary space of non-desirable data. This particular problem
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is addressed by the first level component of our cascade classification architecture by

developing a one-class classifier trained exclusively on samples from the minority class

of desirable patterns. In other words, the first level classifier is designated to confront

the extremely unbalanced nature of the underlying machine learning problem. This

problem arises when a content-based, item oriented approach is adopted in order

to address the problem of recommendation. The second level component addresses

the problem of discriminating amongst the classes of desirable patterns, which may

be formulated as a balanced multi-class machine learning problem since the users’

preferences are evenly distributed over the classes of desirable patterns.

In order to formulate the problem of recommendation as a two-level machine

learning problem, it is necessary to precisely define the training and testing proce-

dures followed for both classifiers. It must be explicitly mentioned that the training

procedure of classifiers at both levels is conducted exclusively on positive data. This

constitutes the most important aspect of our approach since we completely ignore the

majority class of non-desirable patterns during the training process. Negative pat-

terns are only used within the testing procedure where we need to accurately measure

the efficiency of the two-level classifier in predicting the class of unseen patterns.

Cascade Content Based Recommendation (First Level One Class - Second

Level Multi Class)

Let U = {u1, u2, . . . , um} be the set of users and I = {i1, i2, . . . , in} be the set

of items pertaining to the music database which was used for the implementation of

our music recommendation system. Each music file in the database corresponds to a

feature vector in the high-dimensional Euclidean vector space V, defined in section ??.

Each user that participated in our experiments was asked to assign a unique rating

value for each item in the database within the range of {0, 1, 2, 3}. Thus, user ratings
define four disjoint classes of increasing degree of interest, namely C0, C1, C2 and C3.

C0 corresponds to the class of non-desirable / negative patterns, while the class of

desirable / positive patterns may be defined as the union (C1∪C2∪C3) of C1, C2 and

C3. In order to indicate the user involvement in defining the four classes of interest,
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we may write that

∀u ∈ U, V = C0(u) ∪ C1(u) ∪ C2(u) ∪ C3(u) where

C0(u) ∩ C1(u) ∩ C2(u) ∩ C3(u) = ∅
(7.200)

More specifically, letting R(u, i) be the rating value that the user u assigned to item

i, the four classes of interest may be defined by the following equations:

C0(u) = {i ∈ I : R(u, i) = 0}
C1(u) = {i ∈ I : R(u, i) = 1}
C2(u) = {i ∈ I : R(u, i) = 2}
C3(u) = {i ∈ I : R(u, i) = 3}

(7.201)

At this point, we need to mention that if I(u) denotes the subset of items for

which user u provided a rating, it follows that ∀u ∈ U, I(u) = I. Thus, the positive /

desirable and negative / non-desirable classes of patterns for each user may be defined

as follows:
∀u ∈ U,P(u) = C1(u) ∪ C2(u) ∪ C3(u)

∀u ∈ U,N(u) = C0(u)
(7.202)

The training / testing procedure for the classifiers at both levels involves the parti-

tioning of each class of desirable patterns for each user into K disjoint subsets such

that:

∀u ∈ U, j ∈ {1, 2, 3}, Cj(u) =
∪

k∈[K]Cj(u, k) where

∀k ∈ [K], |Cj(u, k)| = 1
K
|Cj(u)| such that∩

k∈[K]Cj(u, k) = ∅

(7.203)

Letting Cj(u, k) be the set of patterns from the positive class j that is used throughout

the testing procedure then the corresponding set of training patterns will be denoted

as Ĉj(u, k) so that the following equation holds:

∀j ∈ {1, 2, 3}, ∀k ∈ [K], Ĉj(u, k) ∪ Cj(u, k) = Cj(u) (7.204)

In other words, Eq. 7.204 defines the K-fold cross validation partitioning that is

utilized in order to measure the performance accuracy of the cascade classification



Chapter 7: Artificial Immune Systems 367

scheme which lies within the core of our music recommendation system. If P (u, k),

N(u, k) are the sets of positive and negative patterns respectively, as they are pre-

sented to the first level classifier during the testing stage at fold k for a particular

user u, we may write that:

P (u, k) = C1(u, k) ∪ C2(u, k) ∪ C3(u, k)

N(u, k) = C0(u, k) = C0(u) = N(u)
(7.205)

In case the K-fold cross validation partitioning is not taken into consideration the set

of positive patterns for a particular user may be addressed as P (u) so that P (u) =

C1(u) ∪ C2(u) ∪ C3(u).

The training procedure concerning the first level of our cascade classification ar-

chitecture involves developing a one-class classifier for each particular user. These

one-class classifiers are trained in order to recognize those data instances that orig-

inated from the positive class of patterns. In other words, each one-class classifier

realizes a discrimination function denoted by fu(v), where v is vector in V, which is

learned from the fraction of training positive patterns. More specifically, if fu,k(v) is

the discrimination function that corresponds to user u at fold k, then this function

would be the result of training the one-class classifier on Ĉ1(u, k)∪ Ĉ2(u, k)∪ Ĉ3(u, k).

The purpose of each discrimination function fu(v) constitutes in recognizing the test-

ing positive patterns P (u) against the complete set of negative patterns N(u).

On the other hand, the training procedure that concerns the second level of our

cascade classification architecture involves developing a multi-class classifier for each

particular user. This entails training the multi-class classifier on the same set of

positive data, Ĉ1(u, k) ∪ Ĉ2(u, k) ∪ Ĉ3(u, k), but this time in order to discriminate

amongst the data pertaining to the set P (u, k). In other words, each second level

classifier realizes a discrimination function denoted by gu(v) whose purpose consists

in partitioning the space of testing positive data P (u) into the 3 corresponding sub-

spaces, C1(u), C2(u) and C3(u), of desirable patterns. If we need to explicitly address

the discrimination function concerning user u at fold k then we can write gu,k(v).

The recommendation ability of our system is based on its efficiency in predicting

the rating value that a particular user assigned to a music file which was not included
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Figure 7.30: Cascade Content-based Recommender.
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within the training set. Having in mind that P (u, k)∪N(u, k) is the set of testing data

that are presented to the fist level of our cascade classification mechanism, the one-

class component operates as a filter that distinguishes those music pieces that a user

assigned to the class of desirable patterns. Specifically, the first level discrimination

function fu,k(v) for user u at fold k partitions the set of testing data into positive and

negative patterns as it is depicted in figure 7.30. In other words,the testing procedure

concerning the first level of our cascade classifier involves the assignment of a unique

value within the set {−1, 1} for each input element such that:

∀u ∈ U, ∀k ∈ [K], ∀v ∈ P (u, k) ∪N(u, k), fu,k(v) ∈ {−1,+1} (7.206)

The subset of testing instances that are assigned to the class of desirable patterns are

subsequently fed to the second level classifier which assigns a particular rating value

within the range of {1, 2, 3}. Specifically, we may write that:

∀u ∈ U,∀k ∈ [K],∀v ∈ P (u, k) ∪N(u, k) : fu,k(v) = +1, gu,k(v) ∈ {1, 2, 3} (7.207)

Let the true rating value concerning an object v ∈ V for a particular user u at fold k

be Ru,k(v) so that the following equation holds:

∀u ∈ U, ∀k ∈ [K], ∀j ∈ {0, 1, 2, 3}, Ru,k(v) = j ⇔ v ∈ Cj(u, k) (7.208)

the estimated rating value assigned by our system will be addressed as R̂u,k(v). Thus,

the estimated rating can be computed by the following equation:

R̂u,k(v) =


0, ∀v ∈ P (u, k) ∪N(u, k) : fu,k(v) = +1;

1, ∀v ∈ P (u, k) ∪N(u, k) : fu,k(v) = −1 and gu,k(v) = 1;

2, ∀v ∈ P (u, k) ∪N(u, k) : fu,k(v) = −1 and gu,k(v) = 2;

3, ∀v ∈ P (u, k) ∪N(u, k) : fu,k(v) = −1 and gu,k(v) = 3.

(7.209)

Cascade Hybrid Recommendation (First Level One Class - Second Level

Collaborative Filtering)

The previous discussion manifests that the major problem addressed in this pa-

per is building an efficient music recommendation system in the complete absence
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of negative examples. Since negative examples are in general extremely difficult to

find we employed classification paradigms that operate exclusively on the basis of

positive patterns. This justifies the incorporation of the one-class classification com-

ponent within the first level our cascade classification architecture. Thus, the first

classification level serves the purpose of filtering out the majority of the non-desirable

patterns. However, our aim is to provide the user with high quality recommendations

which involves predicting the true class of unseen patterns with high accuracy. This

is the rationale behind the second classification level which takes as input the set of

patterns that were assigned to the minority class by the first classification level. In

order to provide high quality recommendations it is vital to correctly discriminate

amongst the various classes of desirable patterns. This effort is undertaken within

the second multi-class classification level of our cascade classification architecture.

A natural modification of our cascade classification architecture consists in replac-

ing the second multi-class classification level with a collaborative filtering component

as it is illustrated in figure 7.31. Having in mind that the first classification level re-

alizes the broader distinction between positive and negative patterns, the subsequent

collaborative filtering component produces specific rating values within the range of

{1, 2, 3}. Specifically, the collaborative filtering methods that we utilized were:

• Pearson Correlation [20]

• Vector Similarity [20] and

• Personality Diagnosis [166]

Personality Diagnosis (PD) may be thought of as a hybrid between memory- and

model-based approaches. The main characteristic is that predictions have a mean-

ingful probabilistic semantics. Moreover, this approach assumes that preferences con-

stitute a manifestation of their underlying personality type for each user. Therefore,

taking into consideration the active users known ratings of items, it is possible to

estimate the probability that he or she has the same personality type with another

user [166].
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Figure 7.31: Cascade Hybrid Recommender.
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The training and testing procedures concerning the second level collaborative

filtering component are identical to the ones used for the multi-class classification

component. Specifically, training was conducted on the ratings that correspond to

thecst of pattern Ĉ1(u, k) ∪ Ĉ2(u, k) ∪ Ĉ3(u, k). Accordingly, the testing procedure

was conducted on the rating values that correspond to the set of testing patterns

C1(u, k) ∪ C2(u, k) ∪ C3(u, k).

Measuring the efficiency of the Cascade Classification Scheme

The efficiency of the adapted cascade classification scheme was measured in terms

of the Mean Absolute Error and the Ranked Evaluation measure. The Mean Absolute

Error (MAE) constitutes the most commonly used measure in order to evaluate the

efficiency of recommendation systems. More formally, MAE concerning user u at fold

k may be defined as:

MAE(u, k) =
1

|P (u, k)|+ |N(u, k)|
∑

v∈P (u,k)∪N(u,k)

|Ru,k(v)− R̂u,k(v)| (7.210)

The Ranked Scoring (RS)[Needs Reference] assumes that the recommendation is pre-

sented to the user as a list of items ranked by their predicted ratings. Specifically,

RS assesses the expected utility of a ranked list of items, by multiplying the utility

of an item for the user by the probability that the item will be viewed by the user.

The utility of an item is computed as the difference between its observed rating and

the default or neutral rating d in the domain (which can be either the midpoint of

the rating scale or the average rating in the dataset), while the probability of viewing

decays exponentially as the rank of items increases. Formally, the RS of a ranked list

of items vj ∈ P (ui, k) ∪N(ui, k) sorted according to the index j in order of declining

Rui,k(vj) for a particular user ui at fold k is given by:

RSui,k =
∑

vj∈P (ui,k)∪N(ui,k)

max {Rui,k(vj)− d), 0} × 1

2(j−1)(i−1)
(7.211)

Having in mind that the set of testing patterns for the first level classifier at fold k is

formed by the patterns pertaining to the sets C0(u), C1(u, k), C2(u, k) and C3(u, k),
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we may write that

|P (u, k)| = |C1(u, k)|+ |C2(u, k)|+ |C3(u, k)| (7.212)

and

|N(u, k)| = |C0(u)| (7.213)

According to Eqs. 7.212 and 7.213 we may define the quantities true positive rate

(TPR), false negative rate(FNR), true negative rate (TNR) and false positive rate

(FPR) concerning user u for the f -th fold of the testing stage as follows:

TPR(u, k) =
TP (u, k)

|P (u, k)|
(7.214)

FNR(u, k) =
FP (u, k)

|P (u, k)|
(7.215)

TNR(u, k) =
TN(u, k)

|N(u, k)|
(7.216)

and

FPR(u, k) =
FP (u, k)

|N(u, k)|
(7.217)

It is important to note that the quantities defined by the Eqs. 7.214,7.215, 7.216,

and 7.217 refer to the classification performance of the first level classifier in the

adapted cascade classification scheme. True Positive TP (u, k) is the number of posi-

tive / desirable patterns that were correctly assigned to the positive class of patterns

while False Negative TN(u, k) is the number of positive / desirable patterns that

were incorrectly assigned to the negative class of patterns. True Negative TN(u, k)

is the number of negative / non - desirable patterns that were correctly assigned to

the negative class of patterns while False Positive FP (u, k) is the number of negative

/ non - desirable patterns that were incorrectly assigned to the positive class. More

formally, having in mind Eq. 7.209 the above quantities may be described by the

following equaytions:

TP (u, k) = {v ∈ P (u, k) : fu,k(v) = +1} (7.218)

FP (u, k) = {v ∈ N(u, k) : fu,k(v) = +1} (7.219)
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TN(u, k) = {v ∈ N(u, k) : fu,k(v) = −1} (7.220)

FN(u, k) = {v ∈ P (u, k) : fu,k(v) = −1} (7.221)

Computing the mean value for the above quantities through the different folds

results in the following equations:

TPR(u) =
1

K

∑
f∈F

TPR(u, k) (7.222)

FNR(u) =
1

K

∑
f∈F

FNR(u, k) (7.223)

TNR(u) =
1

K

∑
f∈F

TNR(u, k) (7.224)

FPR(u) =
1

K

∑
f∈F

FPR(u, k) (7.225)

It is possible to bound the mean absolute error for the complete two level classifier

according to its performance during the second stage of the multi-class classification

scheme. The best case scenario concerning the classification performance of the second

level multi-class classifier suggests that all the true positive patterns, which are passed

to the second classification level, are correctly classified. Moreover, the best case

scenario involves that all the false negative patterns of the first classification level

originated from C1. Thus, the following inequality holds:

∀u ∈ U ∀k ∈ [K] MAE(u, k) ≥ FN(u, k) + FP (u, k)

|P (u, k)|+ |N(u, k)|
(7.226)

Given the Eqs. 7.214,7.215, 7.216, and 7.217 and letting

λ(u, k) =
|P (u, k)|
|N(u, k)|

=
|P (u)|
|N(u)|

= λ(u) (7.227)

since the number of positive and negative patterns used during the testing stage do

not change for each fold and for each user, inequality 7.226 may be written as

MAE(u, k) ≥ FNR(u, k)× λ(u)

λ(u) + 1
+ FPR(u, k)× 1

λ(u) + 1
(7.228)

Given that

MAE(u) =
1

K

∑
k∈[K]

MAE(u, k) (7.229)
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inequality 7.228 may be written as:

MAE(u) ≥ FNR(u)× λ(u)

λ(u) + 1
+ FPR(u)× 1

λ(u) + 1
(7.230)

If we consider the average value for the mean absolute error over all users then we

may write that:

MAE =
1

|U |
∑
u∈U

MAE(u) (7.231)

which yields that:

MAE ≥ 1

|U |
∑
u∈U

FNR(u)× λ(u)

λ(u) + 1
+ FPR(u)× 1

λ(u) + 1
(7.232)

The worst case case scenario concerning the classification performance of the sec-

ond level is that the multi-class second level classifier incorrectly assigned all true

positive patterns to C3 while they originated from C1. In addition all the false nega-

tive patterns originated from C3 and all the false positive patterns were assigned to

C3. Thus, we may write the following inequality:

∀u ∈ U ∀f ∈ [K] MAE(u, k) ≤ 3× FN(u, k) + 2× TP (u, k) + 3× FP (u, k)

P (u, k) +N(u, k)
(7.233)

Given the Eqs. 7.214,7.215, 7.216, 7.217 and 7.227 then Eq. 7.233 may be written as:

MAE(u, k) ≤ 3× FNR(u, k)× λ(u)

λ(u) + 1
+

2× TPR(u, k)× λ(u)

λ(u) + 1
+

3× FPR(u, k)

λ(u) + 1
(7.234)

Given Eq. 7.229 inequality 7.234 yields that:

MAE(u) ≤ 3× FNR(u)× λ(u)

λ(u) + 1
+

2× TPR(u)× λ(u)

λ(u) + 1
+

3× FPR(u)

λ(u) + 1
(7.235)

Thus, the average value for the mean absolute error has an upper bound given by

the following inequality:

MAE ≤ 1

|U |
∑
u∈U

3× FNR(u)× λ(u)

λ(u) + 1
+

2× TPR(u)× λ(u)

λ(u) + 1
+

3× FPR(u)

λ(u) + 1

(7.236)
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Inequalities 7.232, 7.236 yield that the minimum and maximum values for the

average mean absolute error over all users are described by the following equations:

minu∈U MAE = 1
|U |
∑

u∈U
FNR(u)×λ(u)

λ(u)+1
+ FPR(u)

λ(u)+1
(7.237)

maxu∈U MAE = 1
|U |
∑

u∈U
3×FNR(u)×λ(u)

λ(u)+1
+ 2×TPR(u)×λ(u)

λ(u)+1
+

1
|U |
∑

u∈U
3×FPR(u)
λ(u)+1

(7.238)

System Evaluation

Data Description

The audio signal may be represented in multiple ways according to the specific

features utilized in order to capture certain aspects of an audio signal. More specifi-

cally, there has been a significant amount of work in extracting features that are more

appropriate for describing and modeling the music signal. In this paper we have uti-

lized a specific set of 30 objective features that was originally proposed by Tzanetakis

and Cook [224] which dominated many subsequent approaches in the same research

field. It is worth mentioning that these features not only provide a low level repre-

sentation of the statistical properties of the music signal but also include high level

information, extracted by psychoacoustic algorithms in order to represent rhythmic

content (rhythm, beat and tempo information) and pitch content describing melody

and harmony of a music signal. The music database that we utilized in order to

evaluate the accuracy of our recommendation system involved 1085 music pieces and

a set of 16 users. Each user has provided an average value of 360 positive ratings so

that the corresponding sparsity level, sparsity level = 1− non zero entries
total entries

, was found to

be 0.67.

Experimental Setup

The experimental results provided in this section correspond to the testing stage

of our system which was thoroughly described in section 6. Specifically, the evaluation

process involved three recommendation approaches:
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1. The first approach corresponds to the standard collaborative filtering method-

ologies, namely the Pearson Correlation, the Vector Similarity and the Person-

ality Diagnosis.

2. The second approach corresponds to the Cascade Content-based Recommenda-

tion methodology which was realized on the basis of a two-level classification

scheme. Specifically, we tested two types of one-class classifiers for the first

level, namely the One-Class SVM and the V-Detector. On the other hand, the

second classification level was realized as a multi-class SVM.

3. Finally, the third approach corresponds to the Cascade Hybrid Recommenda-

tion methodology which was implemented by a one-class SVM classification

component at the first level and a collaborative filtering counterpart at the sec-

ond level. Thus, the third recommendation approach involves three different

recommenders according to the different collaborative filtering methodologies

that can be embedded within the second level.

The following subsections provide a detailed description concerning the three types

of experiments that were conducted in order to evaluate the efficiency of our cascade

recommendation architecture.

• The first type of experiments demonstrates the contribution of the one-class clas-

sification component at the first level of our cascade recommendation system.

Specifically, we provide MAE / RS measurements concerning the mean overall

performance of the standard collaborative filtering methodologies in comparison

to the hybrid recommendation approach for the complete set of users. Addi-

tionally, we measure the relative performance of the Cascade Content-based

Recommender against the rest recommendation approaches in order to indicate

the recommendation system that exhibited the best overall performance.

• The second type of experiments demonstrates the contribution of the second

classification level within the framework of the Cascade Content-based Recom-

mendation methodology. The main purpose of this experimentation session was
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to reveal the classification benefit gained by the second multi-class classification

level.

• The third type of experiments constitutes a comparative study concerning the

classification performance of the Cascade Content-based Recommendation ap-

proaches. Specifically, we explicitly measure the relative performance of the

utilized one-class classifiers (One-Class SVM and V-Detector) in recognizing

true positive and true negative patterns.

Comparative study: Collaborative Filtering Methods, One Class Content-

based Methods, Hybrid Methods

In this section we provide a detailed description concerning the first type of ex-

periments. Our primary concern focused on conducting a comparative study of the

various recommendation approaches that were implemented in this paper. It is very

important to assess the recommendation ability of each individual system in order

to distinguish the one that exhibited the best overall performance. Specifically, the

recommendation accuracy was measured in terms of the average MAE over all folds

for the complete set of users. The details concerning the exact testing procedure for

each user are thoroughly described in section 6. Our findings indicate that there was

no recommendation approach that outperformed the others for the complete set of

users. This means that there were occasions for which the best recommendations, for

a particular user, were given by the standard Collaborative Filtering approach. On

the other hand, there were occasions for which either the Cascade Content-based Rec-

ommender or the Cascade Hybrid Recommender provided more accurate predictions

concerning the true user ratings.

Typical examples of the previously mentioned situations are illustrated in fig-

ures 7.32(a), 7.32(b) and 7.32(c). Specifically, figure 7.32(a) demonstrates that the

best recommendation approach for User1 was the Cascade Content-based Recom-

mender. The rest recommendation approaches in order of efficiency for User1 were the

Cascade Hybrid Recommender and standard Collaborative Filtering. Furthermore,

figure 7.32(b) demonstrates that the best recommendation approach for User13 was
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the standard Collaborative Filtering. The rest recommendation approaches for this

user were the Cascade Hybrid Recommender at the second place and the Cascade

Content-based Recommender at the third. Finally, figure 7.32(c) demonstrates that

the ranked list of efficiency for the set of the utilized recommendation approaches

presents the Cascade Content-based Recommender at the second place and the stan-

dard Collaborative Filtering at the third.

The most important finding that we need to convey as the result of the first exper-

imentation session concerns the fact that the best overall recommendation approach

over all users and folds was the Cascade Hybrid Recommender. This fact is explicitly

illustrated in figure 7.32(d) where the hybrid approach presents the lowest mean MAE

value taken over all users and folds during the testing stage. It is worth to mention

that the pure content-based and collaborative filtering methodologies occupy the sec-

ond and third positions respectively in the ranked list of the overall recommendation

accuracy. We postulate that this is not an accidental fact but it is an immediate

consequence that follows the incorporation of the one-class classification component

at the first level of the cascade recommendation scheme.

The recommendation approaches that rely exclusively on Collaborative Filtering,

estimate the rating value that a particular user would assign to an unseen item on the

basis of the ratings that the rest users provided for the given item. In other words,

the pure Collaborative filtering approaches do not take into account the subjective

preferences of an individual user, as they are biased towards the items that are most

preferred by the rest of the users. The major drawback of the standard collaborative

filtering approaches is that they disorientate the user by operating exclusively on a

basis formed by the preferences of the rest users, ignoring the particular penchant an

individual user might have.

On the other hand, the pure content-based recommendation approaches fail to

exploit the neighborhood information for a particular user. They operate exclusively

on classifiers which are trained to be user specific, ignoring any beneficial information

related to users with similar preferences. A natural solution to the problems related

to the previously mentioned recommendation approaches would be the formation of

a hybrid recommendation system. Such a system would incorporate the classification
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power of the Content-based Recommenders and the ability of standard collaborative

filtering approaches to estimate user ratings on the basis of similar users’ profiles.

The Cascade Hybrid Recommendation approach presented in this paper mimics

the social process when someone has selected some items according to his preferences

and asks for opinions about these by others, in order to achieve the best selection.

In other words, the one-class classification component, at the first level, provides

specialized recommendations by filtering out those music files that a particular user

would characterize as non-desirable. This is achieved through the user-specific train-

ing process of the one-class classifiers which are explicitly trained on user-defined

positive classes of patterns. On the other hand, the second level of recommendation

exploits the neighborhood of preferences formed by users with similar opinions. We

strongly claim that the recommendation superiority exhibited by the Cascade Hybrid

Recommender lays its foundations on the more efficient utilization of the Collabora-

tive Filtering component. This is achieved by constraining its operation only on the

subset of patterns that are already recognized as desirable. Therefore, this approach

resolves the problem of user disorientation by asking for the opinions of the rest users

only for the items that a particular user assigns to the positive class of patterns.

One Class SVM - Fraction: Analysis

This experimentation session reveals the contribution of the second multi-class

classification level in the overall recommendation ability of the Cascade Content-

based Recommender. Equations 7.237 and 7.238 provide the minimum and maximum

values for the average mean absolute error over all users, given the classification

performance of the first (one-class) classification level. Having in mind that the

previously mentioned lower and upper bounds on the average MAE concern the overall

performance of the cascade recommender at both levels, they reflect the impact of

the second multi-class classification component. The lower bound on the average

MAE indicates the best case scenario which involves that the second classification

level performs inerrably. On the other hand, the upper bound on the average MAE

indicates the worst case scenario, suggesting that the performance of the second
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classification level is a total failure. In this context, if we measure the actual value

for the average MAE (over all users) we can asses the classification influence of the

second level in the overall recommendation accuracy of our system. Thus, if the

actual value of the average MAE is closer to the lower bound, this implies that the

second classification level operated nearly to the best possible way. In the contrary,

if the actual value of the average MAE is closer to the upper bound, we can infer

that the second classification level yielded almost nothing to the overall performance

of our recommendation system. Figure 7.32 presents a curve of actual values for the

average MAE relative to the corresponding lower and upper bound curves. The set

of values for each curve is generated by parameterizing the one-class SVM classifier

with respect to the fraction of the positive data that should be rejected during the

training process.

Comparison study of One Class Methods

Finally, the third experimentation session involves a comparison of the utilized one

class classifiers, namely the one-class SVM and the V-Detector, concerning the clas-

sification performance of the corresponding cascade content-based recommendation

approaches. The relative performance of both classifiers was measured in terms of

the precision, recall, F1-measure and MAE. The precision is defined by the following

equation

Precision =
TP

TP + FP
(7.239)

which provides the average precision over all users and folds in relation to the average

values for the true positives and the false positives. The recall is defined by the

following equation

Recall =
TP

TP + FN
(7.240)

which provides the average recall over all users and folds in relation to the average

values for the true positives and the false negatives. Finally, the F1-measure is defined

by the following equation

F1 =
2× Precision×Recall

Precision+Recall
(7.241)
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which provides the average value for the F1-measure over all users and folds. Pre-

cision quantifies the amount of information you aren’t loosing while recall expresses

the amount of data you aren’t loosing. Higher values for precision and recall indicate

superior classification performance. The F1-measure is a combination of precision

and recall which ranges within the [0, 1] interval. The minimum value (0) indicates

the worst possible performance while the maximum value (1) indicates performance

of the highest efficiency. Figure 7.37 demonstrates the average value of the MAE for

both one-class classification approaches over all users and folds where the one-class

SVM classifier presents a lower MAE value in comparison to the V-Detector. MAE

is a measure related to the overall classification performance of the Cascade Content-

based Recommender where values closer to zero indicate higher classification accuracy.

It is very important to note that in the context of the highly unbalanced classifica-

tion problem related to recommendation, the quality that dominates the value of

MAE is the number of the the correctly classified negative patterns (True Negatives).

Since the vast majority of patterns belong to the negative class, correctly identifying

them reduces the overall classification inaccuracy. Thus, the lower MAE value for

the one-class SVM indicates that this classifier performs better in filtering out the

non-desirable patterns. On the other hand, the F1-measure, that specifically relates

to precision and recall according to equation 7.241, is dominated by the amount of

positive patterns that are correctly classified (True Positives), according to equa-

tions. 7.239 and 7.240. The F1-measure quantifies the amount of valuable positive

recommendations that the system provides to the user. Figures 7.35, 7.36 and 7.38

demonstrate that the V-Detector performs better in the context of providing valu-

able positive recommendations. This constitutes a major concern of recommendation

systems that specifically relates to the ability of the utilized classifiers in correctly

identifying the true positive patterns. The V-Detector classifier provides significantly

more true positive patterns as it is illustrated in figure 7.33 when it is compared

against the one-class SVM. Thus, if we consider the ratio

QualityRate =
F1

MAE
(7.242)
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as an overall measure that evaluates the quality of recommendation for both classifiers,

V-Detectors performs slightly better as is illustrated in figure 7.39. It is obvious

that high quality recommendations involve increasing the F1-measure values and

decreasing MAE which results in higher Quality Rate values. We need to mention

the measurement concerning the one-class SVM where conducted by rejected the 5%

of the positive patterns during the training procedure.

Finally, a remarkable finding concerns the behavior of the one-class classifiers with

respect to the fraction of positive and negative patterns that they identify during the

testing process. Our experiments indicate that:

• the classification performance of the one-class SVM classifier involves increasing

True Negative Rates as the fraction of rejected positive patterns during training

approaches the 95%,

• while the classification performance of the the V-Detector involves increasing

True Positive Rates as the parameter Co, which affects the estimated coverage

of the non-self (negative) space, decreases.

Thus, it is a matter of choice whether the recommendation process will focus on

increasing the true positive rate or the true negative rate. Increasing the true nega-

tive rate results in lower MAE values while increasing the true positive rate results

in higher F1-measure values. Specifically, the fact that the non-desirable patterns

occupy the vast majority of the universe of discourse suggests that the quality of

recommendation is crucially influenced by the number of the correctly identified neg-

ative patterns. In other words, constraining the amount of the false positive patterns

that pass to the second level of the recommendation system increases the reliability

related to the quality of the recommended items. The most appropriate measure

concerning the quality of recommendation is given by the Ranked Evaluation Score

since it presents the amount of true positive items that are at the top of the ranked

list. This fact is clearly demonstrated in figure 7.32(e) where the Ranked Evaluation

Score for the Cascade Content-based recommender of the one-class SVM outperforms

the rest recommendation approaches.
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(a) Content-based Recommender is the best for User 1

(b) Collaborative Filtering Recommender is the best for User 13

(c) Hybrid Recommender is the best for User 16
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(d) MAE (Mean for all users)

(e) Ranked Evaluation (Mean for all users)
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Figure 7.32: MAE Boundaries for One Class SVM.

Figure 7.33: True Positives Figure 7.34: True Negatives
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Figure 7.35: Precision Figure 7.36: Recall

Figure 7.37: MAE Figure 7.38: F1 Measure

Figure 7.39: Quality Rate for One Class Methods.



Chapter 8

Conclusions and Future Work

The primary effort undertaken in this dissertation was focused on addressing

the fundamental problems of Pattern Recognition by developing Artificial Immune

System-based machine learning algorithms. Therefore, the relevant research is partic-

ularly interested in providing alternative machine learning approaches for the prob-

lems of Clustering, Classification and One-Class Classification, measuring their ef-

ficiency against state of the art pattern recognition paradigms such as the Support

Vector Machines. The main source of inspiration stemmed from the fact that the

Adaptive Immune System constitutes one of the most sophisticated biological systems

that is particularly evolved in order to continuously address an extremely unbalanced

pattern classification problem, by performing the self / non-self discrimination pro-

cess. Pattern classification was specifically studied within the context of the Class

Imbalance Problem dealing with extremely skewed training data sets. Specifically,

the experimental results presented in this thesis involve degenerated binary classifica-

tion problems where the class of interest to be recognized is known through a limited

number of positive training instances. In other words, the target class occupies only

a negligible volume of the entire pattern space while the complementary space of neg-

ative patterns remains completely unknown during the training process. Therefore,

the effect of the Class Imbalance Problem on the performance of the proposed Arti-

ficial Immune System-based classification algorithm constitutes one of the secondary

objectives of this thesis.

388
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The proposed Artificial Immune System-based clustering algorithm was found to

be an excellent tool for data analysis demonstrating the following properties:

• reveals redundancy within a given data set;

• identifies the intrinsic clusters present within a given data set;

• unravels the spatial structure of a given data set by providing a more compact

representation.

The performance of the proposed Artificial Immune System-based classification al-

gorithm, on the other hand, was found to be similar to that of the Support Vec-

tor Machines when tested in balanced multi-class classification problems. The most

important findings, however, relate to the special nature of the adaptive immune

system which is particulary evolved in order to deal with an extremely unbalanced

classification problem, namely the self/non-self discrimination process. Self/Non-self

discrimination within the adaptive immune system is an essential biological process

involving a severely imbalanced classification problem since the subspace of non-self

cells occupies the vast majority of the complete molecular space. Therefore, the iden-

tification of any given non-self molecule constitutes a very hard pattern recognition

problem that the adaptive immune system resolves remarkably efficient. This fact

was the primary source of inspiration that led to the application of the proposed

AIS-based classification algorithm on a series of gradually imbalanced classification

problems. Specifically, the classification accuracy of the AIS-based classifier is signif-

icantly improved against the SVM classifier for the balanced One vs All classification

problems where the class of outlier is appropriately down-sampled so that both classes

are equally represented during the training process.

The most interesting behavior of the AIS-based classifier was observed during the

third experimentation session involving a series of 10 severely imbalanced pattern

recognition problems. Specifically, each class of patterns pertaining to the original

data set was treated as the target class to be recognized against the rest of the classes

of the complementary space. In this context, the AIS-based classifier exhibited su-

perior classification efficiency especially in recognizing the minority class of patterns.
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The true positive rate of recognition for the minority class of patterns is significantly

higher for the complete set of the utilized experimentation data sets. More impor-

tantly, the proposed classification scheme based on the principles of the adaptive

immune system demonstrates an inherent ability in dealing with the class imbalance

problem.

Finally, in this thesis the music recommendation process is addressed as a one-class

classification problem by developing an AIS-based Negative Selection (NS) algorithm.

The primary objective of the proposed methodology is to exploit the inherent ability

of the NS-based classifier in handling severely unbalanced classification problems in

order to capture user preferences. The main idea that motivated the recommendation

approach presented in this section stems from the fact that users’ interests occupy only

a small fraction of a given multimedia collection. That is, the music preferences of a

particular user tend to be contained within a negligible volume of the complete pattern

space. Therefore, the problem of identifying multimedia instances that a specific user

would evaluate as preferable, constitutes an extremely unbalanced pattern recognition

problem that could be addressed within the context of one-class classification. This is

true, since in most real-life situations the user supplied feedback to a recommendation

system is exclusively given in the form of positive examples from the target class to

be recognized.

Specifically, the adapted approach decomposes the music recommendation prob-

lem into a two-level cascading recommendation scheme. The first recommendation

level incorporates the AIS-based one-class classification algorithm in order to discrim-

inate between positive and negative patterns on the basis of zero knowledge from the

subspace of outliers. The second level, on the other hand, is responsible for assigning

a particular degree of preference according to past user ratings. For this purpose,

the second recommendation level applies either a content-based approach or a col-

laborative filtering technique. The implementation and evaluation of the proposed

Cascade Hybrid recommender approach, enhanced by the one class classifier in the

first level and the collaborative filtering in the second level, demonstrates the ef-

ficiency of the proposed recommendation scheme. The presented technique benefits

from both content-based and collaborative filtering methodologies. The content-based
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level eliminates the drawbacks of the pure collaborative filtering that do not take into

account the subjective preferences of an individual user, as they are biased towards

the items that are most preferred by the rest of the users. On the other hand,

the collaborative filtering level eliminates the drawbacks of the pure content-based

recommender which ignore any beneficial information related to users with similar

preferences. The combination of two approaches in a cascade form, mimics the social

process when someone has selected some items according to his preferences and asks

for opinions about these by others, in order to achieve the best selection. In particu-

lar, the Negative Selection-based One-Class Classifier at the first level of the proposed

methodology demonstrates superior recommendation quality. This is true, since the

corresponding true positive rate, is significantly higher than the one achieved through

the utilization of the One-Class Support Vector Machines.

A natural extension of the work presented in this thesis involves the incorpora-

tion of the proposed Artificial Immune System-based classification algorithms within

the general framework of combining pattern classifiers. The relevant experimentation

indicates that Artificial Immune System-based classification algorithms can be sig-

nificantly improved by adapting a pairwise combination technique. However, a very

interesting approach would be to exploit the multi-class classification ability of an

ensemble of Artificial Immune System-based One Class Classifiers. Moreover, a very

promising avenue of future research can be drawn by utilizing a game theoretic ap-

proach in order to devise more efficient strategies for the combination of the individual

classifiers.
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plications of attribute weighted artificial immune system (awais): Diagnosis of
heart and diabetes diseases. In ICARIS, pages 456–468, 2005.

[187] Slavisa Sarafijanovic and Jean yves Le Boudec. An artificial immune system
for misbehavior detection in mobile ad hoc networks with both innate, adaptive
subsystems and with danger signal, 2004.

[188] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based
collaborative filtering recommendation algorithms. In Proc. 10th international
conference on World Wide Web, pages 285–295, New York, NY, USA, 2001.
ACM.

[189] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of
recommendation algorithms for e-commerce. In Proc. 2nd ACM conference on
Electronic commerce, pages 158–167, New York, NY, USA, 2000. ACM.

[190] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl.
Application of dimensionality reduction in recommender system - a case study.
In In ACM WebKDD Workshop, 2000.

[191] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
Methods and metrics for cold-start recommendations. In SIGIR ’02: Proceed-
ings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 253–260, New York, NY, USA,
2002. ACM.

[192] H. P. Schwan. Biological Engineering. McGrew-Hill, 1969.



Bibliography 408

[193] R. S. Scjwartz and J. Banchereau. Immune tolerance. The Immunoloigist,
4(6):211–218, 1996.
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