
University of Piraeus Department of Digital Systems

MSc Programme of Digital Systems and Services

A study on algorithms for maximizing the

influence score of spatio-textual objects

Network-Oriented Information Systems

Stella Maropaki

Athens, March 2016

http://www.ds.unipi.gr/en/
http://msc.ds.unipi.gr/en/
http://msc.ds.unipi.gr/en/category/network-oriented-systems/

Stella Maropaki ii March 2016

Πανεπιστημιο Πειραια Τμημα Ψηφιακων Συστηματων

Π.Μ.Σ. Ψηφιακα Συστηματα και Υπηρεσιες

Μελέτη αλγορίθμων για τη μεγιστοποίηση

βαθμού επιρροής σε Spatio-Textual

αντικείμενα

Δικτυοκεντρικά Πληροφοριακά Συστήματα

Στέλλα Μαροπάκη

Αθήνα, Μάρτιος 2016

http://www.ds.unipi.gr/
http://msc.ds.unipi.gr/
http://msc.ds.unipi.gr/category/network-oriented-systems/

Stella Maropaki iv March 2016

Abstract

Nowadays, more and more applications are used that manage spatial objects annotated

with textual descriptions. Advanced query operators and data indexes have become, not

just useful, but indispensable, in order to help users handle the huge amount of available

data by answering efficiently in their queries. With these data, users are offered the

opportunity to pose spatio-textual queries with their preferences. The results of such a

query consists of spatio-textual objects ranked according to their distance from a desired

location and to their textual relevance to the query. A problem that arises from this

context is how to select a set of at most b keywords to enhance the description of a

spatial object, in order to make the object appear in the TOPk results of as many users

as possible. This problem is referred in later work as Best Term and it is proven that it

is NP-hard.

In this thesis we study the design and development of an algorithm that approximately

solves this problem. The presented algorithm focuses on using efficiently the data struc-

ture of an IR-tree index, that is build over the spatio-textual data, in order to compute

the b keywords needed. An extended number of experiments will be demonstrated that

will show the effectiveness of the proposed algorithm. A comparative performance analy-

sis will be provided for this algorithm and the already introduced algorithms as baselines.

As it will be shown by the experimental studies, this algorithm is an efficient solution for

the Best Term problem.

Περίληψη

Στις μέρες μας, χρησιμοποιούνται όλο και περισσότερο εφαρμογές που διαχειρίζονται χω-

ρικά αντικείμενα σε συνδυασμό με περιγραφές κειμένου. Ανεπτυγμένοι τύποι ερωτημάτων

και ευρετήρια δεδομένων, έχουν γίνει όχι μόνο χρήσιμα, άλλα και σχεδόν απαραίτητα, ώστε

να βοηθούν τους χρήστες να χειρίζονται τον μεγάλο όγκο των διαθέσιμων δεδομένων, α-

παντώντας τους αποτελεσματικά στα ερωτήματά τους. Με αυτά τα δεδομένα, δίνεται στους

χρήστες η δυνατότητα να θέσουν spatio-textual ερωτήματα με τις προτιμήσεις τους. Τα

αποτελέσματα ενός τέτοιου ερωτήματος, συνιστώνται από spatio-textual αντικείμενα, κα-

ταταγμένα ανάλογα την απόστασή τους από μία επιθυμητή τοποθεσία και την λεκτική ο-

μοιότητά τους με το ερώτημα. ΄Ενα πρόβλημα που προκύπτει, είναι το πώς να επιλέξεις

το πολύ b λέξεις κλειδιά, ενισχύοντας την περιγραφή ενός χωρικού αντικειμένου, ώστε να

εμφανίζεται αυτό στα TOPk αποτελέσματα, σε όσο το δυνατόν περισσότερους χρήστες. Το

πρόβλημα αυτό θα αναφέρεται στο εξής ως Best Term, και αποδεικνύεται ότι είναι NP-hard.

Σε αυτήν την διπλωματική εργασία, μελετάμε τον σχεδιασμό και την ανάπτυξη ενός αλ-

γορίθμου που λύνει προσεγγιστικά αυτό το πρόβλημα. Ο αλγόριθμος που παρουσιάζεται,

εστιάζει στο να χρησιμοποιεί αποτελεσματικά την δομή δεδομένων ενός IR-tree,που δη-

μιουργήθηκε από τα spatio-textual δεδομένα, ώστε να υπολογίζει τις b λέξεις που απαι-

τούνται. Θα παρουσιαστεί ένας εκτενής αριθμός πειραμάτων, που αποδεικνύουν την αποτε-

λεσματικότητα του αλγόριθμου. Επίσης, θα δοθεί μια συγκριτική ανάλυση απόδοσης μεταξύ

αυτού του αλγορίθμου και των ήδη υπαρχόντων. ΄Οπως θα φανεί από την μελέτη των πει-

ραματικών αποτελεσμάτων, ο αλγόριθμος αυτός είναι μια αποδοτική λύση για το Best Term

πρόβλημα.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Christos Doulkeridis, for his support,

advising and guidance. Also Dr. Kjetil Nørv̊ag for his help and cooperation during the

fulfillment of this thesis.

I would also like to thank Orestis Gkorgkas for his suggestions, help and patience during

the implementation of the work.

Last but not least, I would like to thank my family and friends for their support and

encouragement.

Stella Maropaki

Athens, March 2016

Stella Maropaki viii March 2016

Contents

1 Introduction 1

1.1 Thesis Contribution . 1

1.2 Thesis Outline . 2

2 Related Work 3

2.1 Keyword Recommendation . 3

3 Preliminaries 7

3.1 TOPk query . 7

3.1.1 TOPk query Definition . 7

3.1.2 TOPk query Computation . 8

3.2 Reverse TOPk query . 10

3.2.1 Reverse TOPk query Definition 10

3.3 R-tree . 11

3.3.1 R∗-tree . 12

3.4 IR-tree . 14

4 Problem Definition 17

4.1 Spatio-Textual Object . 17

4.2 User Preferences . 18

4.3 Spatio-Textual Queries . 19

4.4 Best Term Definition . 20

5 Baseline 23

5.1 Best Term First . 23

5.2 Graph-Based Term Selection . 25

Stella Maropaki ix March 2016

CONTENTS

5.2.1 Graph Construction . 26

5.2.2 Best Subgraph Selection . 27

6 Approach 29

6.1 The Idea . 29

6.2 Algorithm . 30

6.2.1 Variations . 34

7 Experimental Results 35

7.1 Experiments Description . 35

7.2 Experimental Results . 36

7.2.1 Varying Data Cardinality . 36

7.2.2 Varying User Preferences . 38

7.2.3 Varying k Parameter . 39

7.2.4 Varying Number of New Terms 40

7.2.5 Varying α Parameter . 41

7.2.6 Varying Maximum Preference Size 42

8 Conclusion 45

8.1 Conclusion . 45

8.2 Future Work . 45

Stella Maropaki x March 2016

List of Figures

3.1 Onion method TOPk computation . 9

3.2 Branch-and-bound TOPk computation 10

3.3 R-tree example . 13

3.4 IR-tree example . 15

4.1 Spatio-Textual Objects and User Preferences Example 18

7.1 Evaluating the quality of results . 37

7.2 Varying Data cardinality . 38

7.3 Varying User Preferences cardinality . 39

7.4 Varying k . 40

7.5 Varying b . 41

7.6 Varying α . 42

7.7 Varying Maximum Preference Size . 43

Stella Maropaki xi March 2016

LIST OF FIGURES

Stella Maropaki xii March 2016

List of Tables

3.1 Leaf inverted files . 15

3.2 Non-leaf inverted files . 15

4.1 Spatio-Textual TOPk and RTOPk Queries Example 20

Stella Maropaki xiii March 2016

LIST OF TABLES

Stella Maropaki xiv March 2016

List of Algorithms

1 Best Term First (BTF) Algorithm . 24

2 Graph Construction (GC) Algorithm . 26

3 Best Subgraph Selection (BSS) Algorithm 28

4 Tree Based Selection (TBS) Algorithm 31

5 Best Terms Non Leaf (BTNL) Algorithm 32

6 Best Terms Leaf (BTL) Algorithm . 33

7 Estimate Delta Inf (EDI) Algorithm . 33

Stella Maropaki xv March 2016

LIST OF ALGORITHMS

Stella Maropaki xvi March 2016

Chapter 1

Introduction

Nowadays, numerous applications provide services to the users concerning location and

textual relevance, and so spatio-textual search became more and more popular. The

object of a spatio-textual query is to retrieve a ranked set of TOPk spatio-textual objects

that are close to the query prefered location and have high textual similarity with the

preferred keywords. For example, consider a database that contains information about

recreational establishments, such as hotels. Each tuple of the database is represented as

a point in a data space annotated with their facilities as keywords. A user query could

be a search for hotels in a specific city, or area of interest and a set of facilities included

in the hotels, such as ”pool” or ”restaurant”.

1.1 Thesis Contribution

An interesting problem that arises form the context of the spatio-textual TOPk queries is

how to improve the ranking of a spatio-textual object for as many users as possible. This

problem is reduced to the problem of how to select a set of at most b keywords to enhance

the description of a spatial object, in order to make the object appear in the TOPk results

of as many users as possible. This problem is referred as Best Term problem, and is proven

to be NP-hard. This work presents an approximate algorithm to solve the Best Term

problem, including a variation of an already existing algorithm. Finally, a comparative

experimental analysis is demonstrated, that shows that the proposed algorithms are an

efficient solution to the problem and need less processing time and are less resource

demanding.

Stella Maropaki 1 March 2016

1. INTRODUCTION

1.2 Thesis Outline

In Chapter 2 we describe the work that has already been made in topics related to this

thesis and explicate why this work cannot apply to our problem. Chapter 3 gives a brief

introduction about the preliminaries needed for this thesis, such as the TOPk and the

Reverse TOPk query and their use. Furthermore basic background information about R-

tree index and its variations is provided. The problem statement of this thesis is described

thoroughly in Chapter 4, where the spatio-textual objects and the Best Term problem

are defined. In Chapter 5 two baseline algorithms are described and their advantages

and disadvantages are discussed. Chapter 6 explicates the idea of the approach in this

thesis, describes the algorithm implemented and defines its complexity. The experimental

results of this thesis are presented in Chapter 7 and a conclusion is made in Chapter 8

along with some future work proposals.

Stella Maropaki 2 March 2016

Chapter 2

Related Work

In this Chapter the work that has already been introduced and is related to this thesis

will be described. A brief description on what algorithms have already been used will be

given, and the reason they cannot be used in this work will be explained.

2.1 Keyword Recommendation

Zhang et al. [10] proposed a novel algorithm for advertising keywords recommendation

for short-text web pages by leveraging the contents of Wikipedia. Their work is based on

the fact, that Wikipedia contains numerous entities that have links to other entities on

related topics. More specifically, considering a target web page, they proposed the use

of a content-biased Page Rank on the Wikipedia graph, to rank the related entities. In

addition to this, they added an advertisement-biased factor in the model, so high-quality

advertising keywords could be recommended. The approach on solving the problem of the

keywords recommendation consists of two stages. In the first stage, candidate keywords

are extracted from the target web page. In the second stage they are using a random

walk based algorithm applied to the Wikipedia graph, so related keywords to the target

web page are recommended. Given these two facts, advertising keywords that are both

relevant to a target web page and valuable for advertising are recommended. As shown

by the experimental results, this proposal approach produces substantial improvement in

the precision of the top 20 recommended keywords on short-text web pages over existing

approaches.

Stella Maropaki 3 March 2016

2. RELATED WORK

The work of Fuxman et al. [3] is based on the idea, that search engines are paid by

businesses that are interested in displaying ads for their site alongside the search results.

Given that, their main problem to handle is the keyword generation. Given a business

that is interested in launching a campaign, suggest keywords that are related to the

specific campaign. For this reason they are taking a different approach than Zhang et

al. by suggesting the use of the query logs of the search engine. In order to solve the

problem, they identify queries related to a campaign by exploiting the associations be-

tween queries and URLs as they captured by the user’s click. As a result, these queries

are suitable for giving good keyword suggestions, since they capture the ”wisdom of the

crowd” as to what is related to a site. They produce the desired result by formulating

the problem as a semi-supervised learning problem and by proposing algorithms within

the Markov Random Field model. The experimental part of this work is based on real

query logs and clearly shows the algorithms that being used, scale to large query logs and

produce meaningful results with minimal effort. The main advantages of this method are

two. First, this method strongly exploits the significance of ”wisdom of the crowd” for

keyword generation and second, suggested keywords take into account the click-through

traffic that they generate in the search engine and as a result they are more directly

monetizable.

Ravi et al. [6] aims towards the automatic construction of online ad campaigns. For

this purpose they propose a variety of algorithmic methods to generate bid phrases.

Their approach consists of two main phases. In the first phase candidate bid phrases are

generated by a number of methods. In this phase among other methods it is introduced a

(monolingual) translation model capable of generating phrases not contained within the

text of the input. In the second phase candidate bid phrases are ranked in a probabilistic

framework by using both the translation model as well as a bid phrase language model.

In order to achieve the desired results experiments were made with a large collection of

existing ads and their landing pages. Every bid phrase associated to a given ad becomes

a ”labeled” instance of the form (landing page, bid phrase). After that they evaluate

their methods based on how well they can predict these bid phrases given the landing

page.

The aim of the aforementioned approaches is to identify potentially relevant queries to the

Stella Maropaki 4 March 2016

2.1 Keyword Recommendation

advertised products and form bid phrases based on the identified queries. This approach

is inherently different, because the above techniques try to predict relevant queries and

do not consider the relevance of the advertised product in relation to similar products. In

addition, they do not consider top-k search criteria as the appearance of a product in a

search result is decided mainly on the bidding strategy. On the contrary, the aim of this

work is to enhance the description of a spatio-textual object and to increase the number

of queries for which the target product appears in the top-k list of the search results. In

this effort, it is taken into consideration not only the user preferences, but also the rest

of the spatio-textual objects that are relevant to those queries.

Stella Maropaki 5 March 2016

2. RELATED WORK

Stella Maropaki 6 March 2016

Chapter 3

Preliminaries

In this Chapter an introduction is made in the TOPk and in the Reverse TOPk queries.

Their definition is set and basic computing algorithm is described in the Section 3.1 and

the Section 3.2. Moreover, basic background is given about the R-tree index and its

variation in the Section 3.3, while in the Section 3.4 the IR-tree variation that has been

used in this thesis is described.

3.1 TOPk query

Nowadays that there is a huge amount of data available on the Web and in various

databases, the users prefer to retrieve a limited set of k answers that best suit their

preferences. The TOPk query was introduced in order to help users retrieve the best

answers that they prefer in a short time. Furthermore, a ranked query in a huge dataset

will take a long time. With TOPk query a user will get the ranked results during the

execution of the query.

3.1.1 TOPk query Definition

In order to get the TOPk results a ranking should be made to the data. The ranking of

tuples of the data is based on an aggregated score that occurs when a scoring function

f is applied on certain attributes of the data. This scoring function declares the users’

preferences and is also called ”preference function”. The most common scoring function is

the linear or the weighted f(tuple) = w1∗attribute1+w2∗attribute2+...+wn∗attributen,

Stella Maropaki 7 March 2016

3. PRELIMINARIES

where w1 + w2 + ... + wn = 1. In this kind of scoring functions great weight value wi

denotes high preference in feature i. The definition of the TOPk query is the following:

Definition 1 : (TOPk query) Given O a set of objects o where o=[attr1,attr2,...,attrn],

a set of users U and a number k such as 0 ≤ k, the TOPk(u) set will hold the best

k objects specified by the user’s weights u, where u = [w1, w2, ..., wn]. More specific,

TOPk(u) ⊆ O, |TOPk(u)| = k and ∀o1, o2 : o1 ∈ TOPk(u), o2 ∈ O − TOPk(u) it holds

that f(o1, u) ≥ f(o2, u).

By the definition 1 of the TOPk query it is obvious that only k tuples are returned as a

result from the dataset, and these k tuples are determined by the scoring function. The

scoring functions are different for each user, and each k tuple set is different for different

functions.

3.1.2 TOPk query Computation

The naive algorithm to compute the TOPk result set computes the score of all the tuples

in the dataset, sorts them according to their score and then chooses the first k and re-

turns them as a result. But the number of tuples in a dataset could be very big and the

number k could be very small. For these the naive algorithm is not efficient. The best

case scenario would be if only the TOPk tuples’ scores would be computed.

The onion technique [1] uses the precomputed convex hulls of the dataset. The con-

vex hull [9] of a set of points X in the Euclidean space is the smallest region of points

that inside this region they can be paired with a straight line and that line is also in the

region. The algorithm uses the convex hulls of the dataset in order to compute the TOPk

results. The top-1 results are in the outside layer of the convex hulls i.e. in the layer 1,

the top-2 results are either one of the other points in the outside layer of the convex hulls

or in the next layer, i.e. in the layer 2. This procedure is repeated until all the TOPk

results are found. In the figure 3.1 an example of the convex hulls and the layers of the

TOPk computation are shown.

The drawback of this algorithm is that for n points in d dimensions the complexity of

computing the convex hulls is O(nd/2). Also this algorithm does not support updates

Stella Maropaki 8 March 2016

3.1 TOPk query

Figure 3.1: Onion method TOPk computation

on the dataset since it has to compute again all the convex hulls each time a point is

inserted, deleted or changed in the dataset.

Another method of computing the TOPk query result set is the Branch-and-bound

(BRS) [7] that pipelines the results in descending order by their score. This technique

uses an R-tree to index the dataset and to compute the score of each leaf and non-leaf

node, as shown in figure 3.2. For a leaf entry the score is it’s score. The score of an

intermediate entry is the largest score of any points that may lie in it’s subtree. In order

to compute the TOPk result set, BRS uses a sorted heap to traverse the R-tree nodes

according to their score in a descending order. At each step, the algorithm de-heaps the

entry having the largest score and if it is a leaf, the corresponding data point is returned

as a result, since it is guaranteed to have the largest score. If the de-heaped entry is

a non-leaf node in the R-tree, its child nodes are heaped according to their score. The

algorithm terminates when k data points have been returned.

This method has a small processing cost for all queries because it is not depended on the

scoring function of each user. The Branch-and-bound algorithm also has the minimum

possible space overhead since it uses only a sorted heap. It is also supports updates on

the dataset, since it is easy to update an R-tree and in most databases it is a trivial

process. Furthermore this algorithm can be used in many other ranked query variations

and not just the TOPk with only small changes.

Stella Maropaki 9 March 2016

3. PRELIMINARIES

Figure 3.2: Branch-and-bound TOPk computation

3.2 Reverse TOPk query

The TOPk query is a user-based query and so it is studied mainly from this angle for

efficient query processing. The Reverse TOPk query is, as it’s name implies, the reverse

process of a TOPk query and is studied from the perspective of the product manufacturer.

More specific, given a point in a dataset, and a set of users, the result of the Reverse

TOPk are the user preferences for which this query point is in the TOPk query result set.

3.2.1 Reverse TOPk query Definition

The Reverse TOPk query has been studied in two variations [8], the Monochromatic and

the Bichromatic. In the Monochromatic algorithm, the user preferences are not known,

only their distribution, and an estimation is made on the impact the query point will

have. This variation is useful in business analysis when no user preferences are known.

In the Bichromatic algorithm, the user preferences are known, and the purpose of the

algorithm is to identify the users that are interested in the given query point. This vari-

ation is important for example in commercials, in order to show the correct commercial

to the user interested in it.

The definitions of both Reverse TOPk query algorithms are the following:

Definition 2 : (Monochromatic Reverse TOPk query) Given a point q and a

positive number k, as well as a dataset S, the result set of the Monochromatic Reverse

Stella Maropaki 10 March 2016

3.3 R-tree

TOPk (mRTOPk(q)) query of point q is a collection of d-dimensional vectors wi, for

which ∃p ∈ TOPk(wi) such that fwi
(q) ≤ fwi

(p).

Definition 3 : (Bichromatic Reverse TOPk query) Given a point q and a positive

number k, as well as a dataset S and W , where S represents data points and W is a

data set containing different weighting vectors, a weighting vector wi ∈ W belongs to the

Bichromatic Reverse TOPk (bRTOPk(q)) result set of q, if and only if ∃p ∈ TOPk(wi)
such that fwi

(q) ≤ fwi
(p).

As indicated in the definitions, the result set of the Bichromatic algorithm contains a finite

number of weighting vectors (user preferences), while the Monochromatic algorithm aims

to describe the parts of the solution space that satisfy the query.

3.3 R-tree

Before the R-trees introduced, the B-trees where used in literature. Many variations

exists, such as B+-tree and B∗-tree, and so the keyword “B-tree” stands for all of them.

They were designed to handle one-dimensional data, like integers and strings, where an

ordering relation can be defined, and so they have been a standard access method in

many application systems for typical transaction processing.

B-trees were only able to handle one-dimensional data and could not cover the require-

ments of many new application areas with different types of data, such as geographical,

medical and scientific applications. Therefore a novel access method was proposed, the

R-tree [5]. This structure aimed at handling geometrical data, in more than one di-

mension, and many improving variations have been proposed for various instances and

environments.

The basic property of the R-tree is that it groups dynamically a set of d-dimensional ob-

jects by representing them with the minimum bounding d-dimensional rectangles (MBR)

of nearby objects. R-tree as a tree has nodes and all nodes are implemented as disk

pages. The leaf nodes of the tree contain pointers to the database objects and the non-

leaf nodes hold the corresponding MBRs that aggregate the MBRs of its children nodes.

Stella Maropaki 11 March 2016

3. PRELIMINARIES

Furthermore R-trees are highly balanced trees and because of their dynamic data struc-

ture, global reorganization is not needed for insertions and deletions.

The entries of the leaf nodes of an R-tree is a tuple of the form < mbr, oid >, where

mbr is the MBR that contains the object and oid is the object’s identifier. The leafs can

have maximum M entries and minimum m, where m ≤ M/2. The non-leaf nodes can

also have the same number of entries, i.e. between m and M . Each entry in the non-leaf

nodes is also a tuple of the form < mbr, p >, where mbr is the MBR that contains the

MBRs contained in this child and p is the pointer to a child node. The minimum number

of entries allowed in the root of the R-tree is 2 and all leaves of the R-tree must be in

the same level.

It is important to note that the MBRs may overlap and an MBR could be included

in more than one node but it is assigned to only one of them. For this, a spatial search

could search in many nodes in order to confirm whether a specific MBR exists or not.

In order to improve the search and search as less nodes as possible, the minimization of

the area of each MBR is necessary. For the same set of d-dimensional objects different

R-trees can be constructed. This depends on the order of the insertions and deletions of

the objects.

3.3.1 R∗-tree

A widely accepted variation on the R-tree is the R∗-tree that was introduced in order to

improve the R-tree and its features [5]. As discussed in the Section 3.3, the R-tree tries

to minimize the area of each MBR. R∗-tree has more criteria that intuitively improve the

performance of query processing. These criteria are the following:

• Minimization of the area covered by each MBR. This is the same criterion that is

also examined in the R-tree. It aims to minimize the area covered by each MBR

and so reduce the dead space inside the MBR but not affect the enclosed rectangles.

This helps to reduce the number of paths examined during query processing and

searching.

Stella Maropaki 12 March 2016

3.3 R-tree

Figure 3.3: R-tree example

• Minimization of overlap between MBRs. This criterion also helps to reduce the

number of paths examined during query processing and searching, since the larger

the overlapping between MBRs, the larger is the expected number of paths followed

for a query.

• Minimization of MBR margins (perimeters). This criterion is used to improve the

performance of queries that have a large quadratic shape. It aims to create more

quadratic rectangles, that are more easily packed. This helps the corresponding

MBRs at upper levels to be smaller and thus the minimization is indirectly achieved.

• Maximization of storage utilization. When utilization is low, more nodes tend to be

invoked during query processing. This holds especially for larger queries, where a

significant portion of entries satisfies the query. Moreover, the tree height increases

with decreasing node utilization.

When using the R∗-tree, an approach to find the best possible combinations of these

criteria is necessary, especially when some of the criteria are contradictory.

Stella Maropaki 13 March 2016

3. PRELIMINARIES

3.4 IR-tree

The IR-tree was introduced in [2] to help the needs of a TOPk query that takes into

account both location proximity and text relevancy for points of interest with associated

text. This type of query is called a location-aware TOPk text retrieval query (LkT). An

IR-tree is essentially an R-tree with inverted files. The idea is that each node of the

IR-tree should record a summary of the location information and the textual content of

all the objects in the sub-tree rooted at the node.

In a leaf node, the IR-tree, contains entries that have the form < O, rectangle, O.di >.

O refers to an object in the database D, rectangle is the MBR of the object O, and O.di

is the identifier of the document of the object O. In addition, a leaf node contains also

a pointer to an inverted file for the text documents of the objects being indexed. This

inverted file has a vocabulary for all distinct terms in the document of object O and a

set of posting lists, each of which relates to a term t. Each posting list is a sequence

of pairs < d,wd,t >, where d refers to a document containing term t, and wd,t is the

weight of term t in document d. Furthermore the inverted file can be distributed across

several machines while this is not easily possible for the R-tree. Also it is more efficient to

store each inverted file contiguously, rather than as a sequence of blocks or pages that are

scattered across a disk. For these, the inverted file is stored separately from the leaf node.

In a non-leaf node, the IR-tree, contains entries that have the form< cp, rectangle, cp.di >.

cp is the address of a child node of R, rectangle is the MBR of all rectangles in entries

of the child node, and cp.di is the identifier of a pseudo document. A pseudo document

represents all documents in the entries of the child nodes, enabling the estimation of a

bound of the text relevancy to a query of all documents contained in the subtree rooted

at cp. The weight of each term t in the pseudo document referenced by cp.di is the

maximum weight of the term in the documents contained in the subtree rooted at node

cp.

In the figure 3.4 an example of an IR-tree is shown. In table 3.1 the inverted files of

the leaf nodes are shown and in table 3.2 the inverted files of the non-leaf nodes are shown.

Stella Maropaki 14 March 2016

3.4 IR-tree

Figure 3.4: IR-tree example

Vocabulary InvFile4 InvFile5 InvFile6 InvFile7

t1 < O1.doc,5> < O3.doc,2> < O5.doc,5> < O7.doc,7>

t2 < O1.doc,5>,

< O2.doc,4>

< O3.doc,1> < O5.doc,5> < O7.doc,2>

t3 < O1.doc,6> < O4.doc,1>,

< O8.doc,3>

< O6.doc,3>

t4 < O3.doc,5> < O5.doc,3> < O6.doc,2>,

< O7.doc,5>

Table 3.1: Leaf inverted files

Vocabulary InvFile1 InvFile2 InvFile3

t1 < R5.doc,5>,

< R6.doc,7>

< R1.doc,5>,

< R2.doc,2>

< R3.doc,5>,

< R4.doc,7>

t2 < R5.doc,5>,

< R6.doc,5>

< R1.doc,5>,

< R2.doc,1>

< R3.doc,5>,

< R4.doc,2>

t3 < R5.doc,6>,

< R6.doc,3>

< R1.doc,6>,

< R2.doc,3>

< R4.doc,3>

t4 < R5.doc,5>,

< R6.doc,5>

< R2.doc,5> < R3.doc,3>,

< R4.doc,5>

Table 3.2: Non-leaf inverted files

Stella Maropaki 15 March 2016

3. PRELIMINARIES

Stella Maropaki 16 March 2016

Chapter 4

Problem Definition

This Chapter describes the problem statement of this thesis. In order to define the prob-

lem first definitions should be provided for the Spatio-Textual Object in Section 4.1, the

User Preference in Section 4.2 and the TOPk query for Spatio-Textual Object in Sec-

tion 4.3. Consequently the Best Term Problem Definition will be provided in Section 4.4.

4.1 Spatio-Textual Object

A Spatio-Textual Object o is an object that consists of keyword terms and location. More

specific, it is a tuple with the form < o.T, o.L >, where o.T are the keyword terms of the

object and o.L is the location of the object in the R2 area.

Database with this kind of objects could be a database that holds information about

hotels, where the hotels have coordinates that denote their place and keywords that de-

note their facilities, as in the figure 4.1a. In this figure there are five hotels and for

example the hotel h1 is depicted as the tuple < [1, 5], [bar, pool, restaurant] >.

Let O be a set of spatio-textual objects. The vocabulary of the set O is the set A that

consists of all the distinct keyword terms of all the objects o that belong to the set O.

More specific, A =
⋃
o∈O o.T . Continuing the example of figure 4.1a, the vocabulary is

A = {bar, pool, restaurant}.

Stella Maropaki 17 March 2016

4. PROBLEM DEFINITION

(a) Hotels (b) Users

Figure 4.1: Spatio-Textual Objects and User Preferences Example

4.2 User Preferences

Users have preferences over the keywords and the location on the objects. Like objects,

User Preferences are also a tuple with the form < u.T, u.L, a >, where u.T are the desired

keyword terms, u.L is the location of the user in the R2 area and a is a number a ∈ [0, 1]

that indicates the importance of the location over matching the keyword terms.

Given a user preference, a score can be assigned to each object, according to the user’s

location and keywords, matching over the object’s location and keywords, using the equa-

tion 4.1.

f(o, u) = α ∗ δ(o.L, u.L) + (1− α) ∗ θ(o.T, u.T) (4.1)

where δ(o.L, u.L) is the spatial distance computed with the euclidean distance, and

θ(o.T, u.T) is the textual distance between the object’s and the user’s tuples computed

as 1−|o.T ∩u.T | ∗ |u.T |−1. Other textual similarity measures could be as well used, such

as cosine similarity or jaccard similarity coefficient. In this work they are not used since

it is needed to do a feature ranking and the provider isn’t worse if it has more keywords

than a user requests.

In the figure 4.1b there is an example of three User Preferences, with their location,

Stella Maropaki 18 March 2016

4.3 Spatio-Textual Queries

their desired keyword and their alpha factor. User Preference p1 for instance is depicted

as the tuple < [1, 8], [restaurant], 0.3 > and the score of hotel h1 is f(h1, p1) = 0.9.

4.3 Spatio-Textual Queries

The Spatio-Textual TOPk query is simply a TOPk query that takes into consideration

both spatial and textual relevance with a scoring function such as the one in the equa-

tion 4.1. The Spatio-Textual objects are ranked with their score and the k best are

returned to the user. In the context of this thesis we assume that the best preference is

the one with the minimum score.

Definition 4 : (Spatio-Textual TOPk query) Given O a set of spatio-textual objects

o, a user set of preferences U and a number k such as 0 ≤ k, the TOPk(u) set will

hold the best k spatio-textual objects specified by the user preferences u. More specific,

TOPk(u) ⊆ O, |TOPk(u)| = k and ∀o1, o2 : o1 ∈ TOPk(u), o2 ∈ O − TOPk(u) it holds

that f(o1, u) ≤ f(o2, u).

With this definition we can say that a user can see the objects that are included in his

TOPk result, or an object is visible from the users that have this object in their TOPk

sets. In order to find how many users can see a specific object, the reverse process of

TOPk should be defined, and so we define the Reverse TOPk.

Definition 5 : (Spatio-Textual Reverse TOPk query) Given an object q, a set of

user preferences U and a number k such as 0 ≤ k, the RTOPk(q) set will hold all the

user preferences ui from the set U for which the object q is visible, therefore q is included

in the TOPk of ui. More specific, RTOPk(q) ⊆ U and u ∈ RTOPk(q) if and only if

∃p ∈ TOPk(ui) such that f(q, ui) ≤ f(p, ui)

The number of users from which an object o is visible is called the Influence Score of

the object, I(o). Therefore I(o) = |RTOPk(o)|. Continuing the example given in the

previous sections, the TOP3(p1) set of user preference p1 are the hotels h1, h3 and h2.

In addition, the RTOP3(h1) set of the hotel h1 are the user preferences p1 and p2 and

therefore, I(h1) = 2. In the table 4.1 all the TOP3 and RTOP3 sets are shown for the

example given.

Stella Maropaki 19 March 2016

4. PROBLEM DEFINITION

Users TOP3

p1 h1, h3, h2

p2 h2, h1, h5

p3 q, h2, h3

Hotels RTOP3 Influence Score

h1 p1, p2 2

h2 p1, p2, p3 3

h3 p1, p3 2

h4 0

h5 p2 1

q p3 1

Table 4.1: Spatio-Textual TOPk and RTOPk Queries Example

4.4 Best Term Definition

Given a set of spatio-textual objects O and a set of user preferences U , a problem that

arises is how to increase the Influence Score of a specific spatio-textual object q, by

enhancing it’s description with at most b keywords, since the location cannot be changed.

This problem is known as Best Terms.

Definition 6 : (Best Terms query) Given a set of spatio-textual objects O, a set of

terms A =
⋃
o∈O o.T , a set of queries U , a scoring function f , an integer k, a spatio-

textual object q =< q.T, q.L >∈ O and an integer, the set BT is a set of terms such that

BT ⊆ A, BT ∩ q.T = ∅, |BT | ≤ b and ∀T ⊆ A−BT , |T | ≤ b it holds that I(q1) ≥ I(q2)

where q1 =< q.T ∪ q.T, q.L > and q2 =< q.T ∪ T, q.L >.

This problem is proven to be NP-hard by Gkorgkas et al. in [4]. Given this proof it

is infeasible to find an exact solution, even for medium-sized datasets. The solutions

provided in the following sections, Section 5 and Section 6, are approximate solutions.

In the example given in figure 4.1 the query object is the spatio-textual object q and

the desired number of new keywords is b = 1. As shown in the table 4.1, the users that

are in q’s RTOPk set is the user p3 and it’s influence score of q is I(q) = 1. The q has

the keyword pool, and the vocabulary A consists of the keywords bar, pool, restaurant.

Since b = 1 one of the keywords bar or restaurant could be added to the q. In the case

where the keyword bar is added to the q then in its RTOPk set user p1 will be added

and so its influence score will be I(q) = 2. In the case where the keyword restaurant is

added to the q the user p2 will be added to the RTOPk set and the influence score will

Stella Maropaki 20 March 2016

4.4 Best Term Definition

be I(q) = 2. In this case where both options give the same increase in the influence score

of the q, both results are acceptable.

Stella Maropaki 21 March 2016

4. PROBLEM DEFINITION

Stella Maropaki 22 March 2016

Chapter 5

Baseline

This Chapter describes the two baseline algorithms that have already been introduced in

earlier work along with their advantages and disadvantages. In the Section 5.1 the Best

Term First algorithm is outlined and in the Section 5.2 the Graph-Based Term Selection,

a more efficient algorithm, is detailed.

5.1 Best Term First

As already discussed in Chapter 4, the Best Terms problem is NP hard and so Gkorgkas

et al. at [4] introduced a greedy algorithm, termed Best Term First (BTF), that provides

an approximate solution to this problem. This algorithm uses two IR-trees, one for the

spatio-textual objects, and one for the user preferences. It iterates and in each iteration

a new term is added to the query item q, until b new terms are added to the q. The term

in each iteration is chosen in such way that it increases the influence score of the query

item I(q).

This algorithm first creates a pseudo-preference q′ that only uses spatial similarity, with

a = 1, in order to access the user preferences in the IR-tree using only their distance

from the query item. In other words, it exploits the IR-tree in order to sort the user

preferences without the need of a sorting algorithm. In this way, the user preferences are

accessed from the closest to the farthest from the query item q and this sorted access is

used later in order not to perform some of the TOPk queries for the user preferences.

Stella Maropaki 23 March 2016

5. BASELINE

Algorithm 1 Best Term First (BTF) Algorithm

Input: U: set of users, D: set of objects, q: query point, b: number of new terms

Output: BT: set of new terms

1: C ← ∅, buffer ← ∅
2: q’ ←< q.T, q.L, 1 >

3: bestCandidate ←q

4: for i = 0; i < b; i+ + do

5: for all the t ∈ A− q.T do

6: C ← C ∪{<bestCandidate.T∪{t}, bestCandidate.L>}
7: end for

8: u ← next(U,q’)

9: while u 6= null do

10: τ ← max
p∈buffer

(f(p,u))

11: if ∃ c ∈ C : f(c,u) ≤ τ then

12: buffer ← TOPk(u)

13: τ ← max
p∈buffer

(f(p,u))

14: for all the c ∈C do

15: if f(c,u)≤ τ then

16: I(c) ← I(c)+1

17: end if

18: end for

19: end if

20: u ← next(U,q’)

21: end while

22: bestCandidate ← argmaxC(I(c))

23: end for

24: BT ← bestCandidate.T-q.T

25: return BT

In each of the b iterations, the algorithm creates a candidate set of spatio-textual objects

C, one for each term that can be added to the q where the size of the C is |C| = |A−q.T |,

where A is the dictionary of all keywords existing in the user preferences and spatio-

textual objects in the database. Each candidate has the location of q and as keyword

Stella Maropaki 24 March 2016

5.2 Graph-Based Term Selection

terms all the terms of the q plus one extra term to be added to the q. For each user, the

TOPk query is performed and if a candidate object is included in the result its influence

score is increased. A buffer is used in order not to perform all the TOPk queries for all

the user preferences. The buffer holds the result of the TOPk query from the previous

user preference and the score of each spatio-textua object is calculated for the current

user. If no candidate object has better score from the worst score in the buffer, then the

TOPk query is not performed for the current user. Else the TOPk query is performed

and the new results are hold in the buffer.

When all users are checked, the candidate object with the best influence score chosen

and its keyword term is added to the q. This process is repeated until b keyword terms

are added to the q. The pseudocode of the algorithm is shown in algorithm 1.

Although this algorithm uses a greedy approach, it reduces the computational cost of

performing all TOPk queries using the pruning conditions of user preferences with the

buffer. However, the number of b iterations is an important factor of the performance of

this algorithm, since it forces the algorithm to access the user preferences multiple times.

5.2 Graph-Based Term Selection

Gkorgkas et al. at [4], apart from Best Term First algorithm 5.1, introduced a novel

algorithm, termed Graph Based Term Selection. This algorithm, as the Best Term First

algorithm, provides an approximate solution to the Best Terms problem and uses two

IR-trees, one for the spatio-textual objects, and one for the user preferences.

As its name implies, Graph Based Term Selection uses a graph structure in order to

estimate the gain on the influence score of each new term combination that is going to be

added to the query object q. It consists of two algorithms, one 5.2.1 that creates a graph

with the terms to be added to the q and one 5.2.2 that traverses the graph and selects

the best combination of terms to be added to the q and increase its influence score.

Stella Maropaki 25 March 2016

5. BASELINE

5.2.1 Graph Construction

The Graph Construction algorithm, that is shown in algorithm 2, creates an weighted

graph in which each node is one term that can be added to q. The weights on each edge

depicts the increase on the influence score induced, if the respective set of terms is added

to q. The algorithm only accessed the user preferences from which q is not visible and in

maximum b terms need to be added to q in order to be visible to them. This subset of

user preferences is Û(q) and Û(q) ⊆ U .

Algorithm 2 Graph Construction (GC) Algorithm

Input: U: set of users, D: set of objects, q: query point, b: number of new terms

Output: G=(V,E): resulting graph

1: V ← ∅, E ← ∅, buffer ← ∅, G ←(V, E)

2: q’ ←< q.T, q.L, 1 >

3: u ← next(U,q’)

4: while u 6= null do

5: buffer ← TOPk(u)

6: τ ← max
p∈buffer

(f(p,u))

7: if f(c,u)> τ then

8: T ← u.T-q.T

9: V ← V∪T

10: λ← max(1, d(1− τ−αδ(q,u)
1−α)|u.T | − |q.T ∩ u.T |e)

11: if λ = 1 then

12: E ← E∪{e=(ti,ti, 1): ti ∈ T}
13: else if 1 < λ ≤ b then

14: E ← E∪{e = (ti, tj,
2

λ(λ−1)) : ∀ti, tj ∈ T and ti 6= tj}
15: end if

16: end if

17: u ← next(U,q’)

18: end while

19: return G

In the beginning, the algorithm traverses all user preferences, checks if u ∈ Û(q) and

adds to the graph G one node for each new term. The edges and the weights on them

Stella Maropaki 26 March 2016

5.2 Graph-Based Term Selection

are determined by the number of terms λ that need to be added to the user preference u

in order to be included in the RTOPk(q). The value of λ is calculated using the factor τ

and the equation 5.1. The τ depicts the worst score thah q needs in order to be included

in TOPk(u).

τ = α ∗ δ(q.L, u.L) + (1− α) ∗ |q.T ∩ u.T |+ λ

|u.T |
(5.1)

In case where λ ≤ 1, it means that only one term needs to be added and so the algorithm

adds a loop edge with weight equal to 1 to each term that is not contained in q but

contained in u. If an edge already exists, the already existing weight is increased by 1. If

λ > 1, it means that more than one terms need to be added to q in order to be included in

TOPk(u). In this case edges are added to the graph between all possible couple of terms

that are not contained in q but contained in u. The weight of each edge is we = 2
λ(λ−1)

that is the combination of all couple of terms added in order to make a sum of 1. If an

edge already exists, the new weight is added to the weight in the edge.

This algorithm iterates only one time through user preferences, but in contrary to the

Best Term First algorithm, it has to perform all TOPk queries. In addition, the size

of the graph depends on the number of distinct terms contained in Û(q). The major

disadvantage of this algorithm is that the graph may not fit in the main memory if the

distinct terms in Û(q) are numerous.

5.2.2 Best Subgraph Selection

After the creation of the graph with the terms and their estimation on the increase of

the influence score, the Best Subgraph Selection algorithm, shown in algorithm 3, selects

the best combination on terms that give the maximum increase in the influence score.

In the beginning, b nodes are chosen that have the highest degree and by them, b sub-

graphs are created with one node each. Then each subgraph is expanded with the node

that has the highest degree, i.e. has the maximum sum of weights, and is subsequent to

one of the already existing nodes in the subgraph. The recursion ends when the subgraph

has b nodes, or if it cannot expand further. Finally, the subgraph which has the highest

sum of edge weights is selected and the terms in its node are added to the q.

Stella Maropaki 27 March 2016

5. BASELINE

Algorithm 3 Best Subgraph Selection (BSS) Algorithm

Input: G=(V,E): graph, b: number of new terms

Output: BT: set of new terms

1: Q ← ∅, BT ← ∅
2: for i = 0; i < b; i+ + do

3: ti ← next node of G with the highest degree

4: Gti ← createSubgraph(ti)

5: Q.add(sumOfWeights(Gti), Gti)

6: end for

7: while |BT| ≤b do

8: GS ← Q.pop()

9: add to BT the b-|BT| highest degree nodes from GS

10: end while

11: return BT

Stella Maropaki 28 March 2016

Chapter 6

Approach

In this Chapter the idea of this thesis is introduced in the Section 6.1. In the Section 6.2

the implemented algorithm based on the idea is described while in the Section ?? the

design and the analysis of the code for this algorithm is documented.

6.1 The Idea

The idea of this algorithm is to try to avoid the disadvantages and keep the good aspects

the two algorithms in Chapter 5 have and try to integrate them into one new algorithm.

Algorithm Graph Based Term Selection 5.2 accesses only one time the user preferences.

In addition, algorithm Best Term First 5.1 doesn’t perform all the TOPk queries for all

user preferences. The search and the access of the user preferences on the IR-tree, and

the performing of TOPk query are the two most time consuming and resource demanding

processes that need to be avoided. Consequently the new algorithm needs to integrate

these two aspects from the two baseline algorithms.

Furthermore, intuitively, it needs less new terms to be added to q in order to add a

user preference to the RTOPk(q) if this user preference is closer to q. In other words,

the user preferences that are closest to q may have terms that when added to q help the

influence score increase more than the terms of farthest user preferences. In addition,

there was the observation that there are user preferences that are close to each other,

but they belong to different leafs in the IR-tree. Consequently, some leaves are accessed

more than one time which leads to more workload. Therefore, the idea of this algorithm

Stella Maropaki 29 March 2016

6. APPROACH

is to visit the user preferences according to their leaf entries along with their distance

from q, instead of visiting them only according their distance.

More specific, this algorithm, creates a candidate term set in each leaf-node of the user

preferences’ IR-tree it accesses and then chooses for the result the one that has the

maximum increase on the influence score. First, it accesses the leaf-node of the user

preferences’ IR-tree that is closest to q and using the Graph Based Term Selection algo-

rithm 5.2 finds a candidate term set. Then it examines all other nodes according to their

distance from q and from their inverted index gets the b most frequent terms. If there

are at least λmin common terms with one of the candidate term sets then it continues

examining the subtree of the specific node. If a leaf-node is reached and it has at least

λmin common terms with one of the candidate term sets, then a new term set is created

with the Graph Based Term Selection algorithm, and the influence score of the already

found term sets is been updated.

In case where a term set in the list exists that matches the b most frequent terms,

then this term set is considered the best for this node and an estimation of the increase

on the influence score is added to this term set without further examination of this node.

In other cases, where no term set is found that has at least λmin common terms with

the b most frequent terms of a specific node, the node is considered that it doesn’t have

terms that are potentially in the best term set and so it doesn’t need to be examined and

is pruned.

6.2 Algorithm

This new algorithm is named Tree Based Selection, shown in algorithm 4, is divided in

four other algorithms that are following described. The main algorithm initializes the

list with the candidate term sets C and sets it as a parameter to the next algorithm. In

the end it chooses the best candidate term set for the result.

The next algorithm is the Best Terms Non Leaf, shown in algorithm 5. This algorithm

examines all non-leaf nodes of the user preferences’ IR-tree until it reaches to a leaf node.

At first run, where the list with the candidate term sets C is empty it goes directly to

Stella Maropaki 30 March 2016

6.2 Algorithm

Algorithm 4 Tree Based Selection (TBS) Algorithm

Input: root: root of IR-tree of users, b: number of new terms

Output: BT: set of new terms

1: C ← ∅
2: bestTermsNonLeaf(root,C,b,0)

3: BT ← argmaxT∈C(T.DeltaInf)

4: return BT

the leaf node that is closest to q and then calls the next algorithm that processes the leaf

nodes. If the candidate term sets list C is not empty, then the set TTF is selected from the

inverted index of the node. The TTF set contains the b most frequent terms of a specific

node and is compared with the candidate term sets from the C list. If there are at least

λmin common terms between any term set and the TTF set then the algorithm continues

recursively to the children of this node. The value of λmin is estimated based on the last

accessed node and represents the minimum number of terms that were necessary in order

to add at least one user preference in the RTOPk(q) in the last accessed node.

The leaf nodes are processed by the Best Terms Leaf algorithm that is shown in algo-

rithm 6. This algorithm creates the candidate term set of a specific leaf node and adds

it to the C list. If C is empty, the Graph Based Term Selection 5.2 algorithm is used to

calculate a candidate term set. If C is not empty and exists a term set in the list that

matches the TTF set of terms, then this term set is considered the best term set for this

specific leaf node and an estimation of the influence score is made if the Estimate Delta

Inf algorithm and then added to the term set without further process of the leaf node.

On the other hand, if no term set matches the b most frequent terms, a new term set

must be created with the Graph Based Term Selection algorithm.

The estimation of the increase on the influence score in a term set of a specific leaf is

calculated with the influence scores of the other term sets. More specific, as shown in the

algorithm 7, the estimated increase is a combination of the gain in the influence score of

the last term set and the average gain in the influence score of all term sets found so far.

One of the advantages of this new algorithm is that any heuristic algorithm can be used

Stella Maropaki 31 March 2016

6. APPROACH

Algorithm 5 Best Terms Non Leaf (BTNL) Algorithm

Input: node: IR-tree node, C: candidate term-sets, b: number of new terms, λmin: min

number of terms

Output: λmin: min number of terms

1: proceed = false

2: if C=∅ then

3: proceed = true

4: else

5: TTF = the b terms of the node that have the highest TF

6: if ∃T ∈ C such that |T ∩ TTF | ≥ λmin then

7: proceed = true

8: end if

9: end if

10: if proceed then

11: while node has more children do

12: child = node.getNearestChild()

13: if child is parent to leaves then

14: λmin = bestTermsLeaf(child,C,b,λmin)

15: else

16: λmin = bestTermsNonLeaf(child,C,b,λmin)

17: end if

18: end while

19: end if

20: return λmin

in order to calculate new term sets in each leaf node, instead of the Graph Based Term

Selection. In addition, the pruning conditions on the user preferences’ IR-tree reduces

the cost in searching and accessing nodes of the IR-tree, as long as the cost of performing

TOPk queries in these nodes.

The implementation of Tree Based Selection and all its algorithms was made in Java.

The xxL library was imported and extended for the use of the IR-tree index. In addition,

Hash Maps and Hash Sets were also included in the implementation, where the use of a

Stella Maropaki 32 March 2016

6.2 Algorithm

Algorithm 6 Best Terms Leaf (BTL) Algorithm

Input: leaf: leaf of IR-tree of users, C: candidate term-sets, b: number of new terms,

λmin: min number of terms

Output: C: candidate term-sets, λmin: min number of terms

1: if C=∅ then

2: RES = GBTS(leaf,C,b)

3: λmin = RES.getMinLambda()

4: return C, λmin

5: end if

6: TTF = the set of b terms with the highest TF

7: if ∃T ∈ C such that
∑

t∈T TF (t) =
∑

t∈TTF
TF (t) then

8: ∆I = estimateDeltaInf(T,leaf)

9: T.estimateDeltaInf(∆I)

10: C.updateTermSet(T)

11: return C, λmin

12: else

13: RES = GBTS(leaf,C,b)

14: λmin = RES.getMinLambda()

15: return C, λmin

16: end if

Algorithm 7 Estimate Delta Inf (EDI) Algorithm

Input: T: Term-set, leaf: IR-tree leaf

Output: ∆I: score estimation

1: ∆I = 0.5 ∗ last gain+ 0.5 ∗ avg gain
2: return ∆I

fast searching data structure was needed. For statistics, Tally library was integrated into

the project, that could count different types of statistics, and create easy to see results.

Furthermore, the basic Graph-Based Term Selection algorithm and the Best Term First

algorithm, were already implemented by Gkorgkas et al. [4].

Stella Maropaki 33 March 2016

6. APPROACH

6.2.1 Variations

For experimental reasons, a variation of Graph-Based Term Selection was made. In

this variation, the selection of keyword terms from the graph is made by selecting the

adjacent node that has the maximum of the maximum weights on its edges. In the

original algorithm, the selection was made by the adjacent node that has the maximum

summation of weights on its edges. This variation is named Graph-Based Term Selection

Max (GBTSM) and is also used in the Tree Based Selection, named Tree Based Selection

Max. Experiments were made by using both two variations of the two algorithms.

Stella Maropaki 34 March 2016

Chapter 7

Experimental Results

The experimental results are presented in the Chapter. A brief description about the

experiments made in this thesis is outlined in the Section 7.1, while the results of the

experiments are presented in the Section 7.2.

7.1 Experiments Description

The experiments were performed on the server comidor01.idi.ntnu.no which has 2.60GHz

processor, 32GB of RAM and 2TB of disk. In order to run the experiments, a dataset of

approximate 740K hotel descriptions from Booking.com was used. This dataset contained

a vocabulary of 958 features. The user queries that were generated had random preferred

location within the area of the hotels. The keyword terms were selected as a random set

from the available features in 100 hotels around the preferred location. In addition, both

datasets D and U were indexed using an IR-tree where the maximum capacity of each

node was 100 entries.

There were experiments with all five agorithms, the Graph-based Term Selection, the

Graph-based Term Selection with Max weight, the Best Term First, the Tree Based Se-

lection and the Tree Based Selection with Max weight. For all experiments the varying

parameters were the following:

• Data cardinality |D| = 10K, 20K, 50K, 100K

• User preferences |U| = 100K, 200K, 500K, 1M

Stella Maropaki 35 March 2016

7. EXPERIMENTAL RESULTS

• k parameter k = 3, 5, 10

• Number of new terms b = 1, 3, 5, 8

• α parameter α = random, 0.1, 0.3, 0.5, 0.9

• Max preference size = 2, 3, 5

The metrics for evaluation the algorithms were the increase in the influence score ∆I,

the number of I/O’s performed by each algorithm, the processing time and in the two

variations of Tree Based Selection the number of nodes pruned.

7.2 Experimental Results

The Best Term First algorithm requires high processing cost, and so the comparison with

this algorithm was made with smaller datasets. The default setting for this series of

experiments was |D|=10K, |U| = 10K, k = 5 and b=3. Figure 7.1 depicts the results

of this series of experiments, where the increase in the influence score ∆I is shown with

varying the data cardinality 7.1a, number of new terms 7.1c and k parameter 7.1e, and

the process time with varying the data cardinality 7.1b, number of new terms 7.1d and

k parameter 7.1f. It is obvious that BTF is the most time consuming algorithm, but in

terms of increase in the influence score it is quite close to the two variations of GBTS,

while the two variations of TBS achieve a smaller increase in the influence score.

7.2.1 Varying Data Cardinality

Figure 7.2 depicts the performance of the algorithms according to the number of spatio-

textual objects. Figure 7.2a shows that all algorithms perform similarly with respect to

the increase of the influence score. As the number of objects increase, the gain in the

influence score drops as more spatio-textual objects compete for the same number of user-

preferences and therefore it becomes harder for a query object to increase its influence

score. In addition, as the number of objects increase, the number of I/Os performed and

the process time increases too, as shown in figure 7.2b and figure 7.2d. As a dataset size

increases, the cost of a single TOPk query increases as well and therefore all algorithms

are affected. The effect on the variations of GBTS is greater than the variations of TBS,

Stella Maropaki 36 March 2016

7.2 Experimental Results

 0

 20

 40

 60

 80

100

10K 20K 50K 100K

∆
I

Data cardinality

GBTSM
GBTS

BTF
TBSM

TBS

(a) ∆I varying |D|

1.0

10.0

100.0

1.0k

10K 20K 50K 100K

T
im

e
(s

e
c
)

|D|

GBTSM
GBTS

BTF
TBSM

TBS

(b) time varying |D|

 0

 20

 40

 60

 80

100

120

1 3 5 8

∆
I

b

GBTSM

GBTS

BTF

TBSM

TBS

(c) ∆I varying b

100m

 1

 10

100

 1k

1 3 5 8

T
im

e
(s

e
c
)

b

GBTSM
GBTS

BTF
TBSM

TBS

(d) time varying b

 0

 20

 40

 60

 80

100

3 5 10

∆
I

k

GBTSM

GBTS

BTF

TBSM

TBS

(e) ∆I varying k

 1

 10

100

3 5 10

T
im

e
(s

e
c
)

k

GBTSM
GBTS

BTF
TBSM

TBS

(f) time varying k

Figure 7.1: Evaluating the quality of results

since TBS uses some pruning and estimation conditions in order not to compute some of

the TOPk queries needed, as shown in figure 7.2c.

Stella Maropaki 37 March 2016

7. EXPERIMENTAL RESULTS

 0
100
200
300
400
500
600
700
800
900

10K 20K 50K 100K

∆
I

|D|

GBTSM
GBTS

TBSM
TBS

(a) ∆I

0.0
20.0M
40.0M
60.0M
80.0M

100.0M
120.0M
140.0M

10K 20K 50K 100K

IO

|D|

GBTSM
GBTS

TBSM
TBS

(b) I/O

 1

 10

100

 1k

10K 20K 50K 100K

P
ru

n
e
d
 n

o
d
e
s

|D|

GBTSM
GBTS

TBSM
TBS

(c) pruned nodes

0.0
200.0
400.0
600.0
800.0

1.0k
1.2k
1.4k
1.6k
1.8k
2.0k

10K 20K 50K 100K

T
im

e
(s

e
c
)

|D|

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.2: Varying Data cardinality

7.2.2 Varying User Preferences

Figure 7.3 illustrates the performance of the algorithms according to the number of user

preferences. In the figure 7.3a it is shown that, again, all algorithms perform similarly

with respect to the increase of the influence score. As the number of user preferences

increase, the gain in the influence score increases as more user preferences can be added

to the RTOPk set of an object with an addition of a new set of terms. Furthermore, as

the number of user preferences increase, the number of I/Os performed and the process

time increases too, as shown in figure 7.3b and figure 7.3d, since more TOPk queries

need to be performed. As in the case of varying the data cardinality, in this case also,

the processing time and the number of I/Os performed are greater on the variations of

GBTS than the variations of TBS, since TBS doesn’t compute some of the TOPk queries,

and the number of pruned nodes increases as the user preferences increase, as shown in

Stella Maropaki 38 March 2016

7.2 Experimental Results

0.0
1.0k
2.0k
3.0k
4.0k
5.0k
6.0k
7.0k

100K 200K 500K 1M

∆
I

|U|

GBTSM
GBTS

TBSM
TBS

(a) ∆I

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k

100K200K500K 1M

IO

|U|

GBTSM
GBTS

TBSM
TBS

(b) I/O

 1

 10

100

 1k

 10k

100K 200K 500K 1M

P
ru

n
e
d
 n

o
d
e
s

|U|

GBTSM
GBTS

TBSM
TBS

(c) pruned nodes

0.0

500.0

1.0k

1.5k

2.0k

100K200K500K 1M

T
im

e
(s

e
c
)

|U|

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.3: Varying User Preferences cardinality

figure 7.3c.

7.2.3 Varying k Parameter

In figure 7.4 it is depicted the performance of the algorithms according to the number of

k parameter. As shown in the figure 7.4a, as k parameter is increased, the gain in the

influence score is increased, since more results could be found in the TOPk set and it is

easier for an object to be included in the TOPk set of a user preference. In addition more

processing time is needed, as shown in figure 7.4d, since more results need to be in the

result set, and so more objects need to be processed. The number of pruned nodes in the

variations of TBS, is almost stable as shown in figure 7.4c, since the condition to prune

a node depends on the b frequent terms of a node and the candidate term sets.

Stella Maropaki 39 March 2016

7. EXPERIMENTAL RESULTS

 0
100
200
300
400
500
600
700
800
900

3 5 10

∆
I

k

GBTSM

GBTS

TBSM

TBS

(a) ∆I

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

3 5 10

IO

k

GBTSM

GBTS

TBSM

TBS

(b) I/O

 1

 10

100

 1k

3 5 10

P
ru

n
e
d
 n

o
d
e
s

k

GBTSM

GBTS

TBSM

TBS

(c) pruned nodes

 0

 50

100

150

200

250

3 5 10

T
im

e
(s

e
c
)

k

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.4: Varying k

7.2.4 Varying Number of New Terms

Figure 7.5 shows the performance of the algorithms according to the number of new terms.

As it is expected and shown in figure 7.5a, increasing the number of new terms to be

added to an object, the gain in the influence score is increased, since the more keywords

an object has, the more users could attract. The number of I/Os performed and the

processing time increases also, as depicted in figure 7.5b and figure 7.5d, since more

terms need to be found. Figure 7.5c shows that the number of pruned nodes decreases as

the number of new terms increases. This happens because the condition to prune a node

examines the b most frequent terms of each node and the candidate term sets. Since

more terms are included in these two sets, it is less likely for a candidate term set to be

worse than the b most frequent terms of a node, and so less nodes are pruned.

Stella Maropaki 40 March 2016

7.2 Experimental Results

0.0
200.0
400.0
600.0
800.0

1.0k
1.2k
1.4k

1 3 5 8

∆
I

b

GBTSM

GBTS

TBSM

TBS

(a) ∆I

1.0

10.0

100.0

1.0k

10.0k

1 3 5 8

IO

b

GBTSM

GBTS

TBSM

TBS

(b) I/O

 1

 10

100

 1k

1 3 5 8

P
ru

n
e
d
 n

o
d
e
s

b

GBTSM

GBTS

TBSM

TBS

(c) pruned nodes

100m

 1

 10

100

 1k

1 3 5 8

T
im

e
(s

e
c
)

b

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.5: Varying b

7.2.5 Varying α Parameter

In figure 7.6 the performance of the algorithms is shown according to the number of α

parameter. In figure 7.6a it is depicted that the increase of α parameter has a decreasing

effect to the gain of influence score, while the random α parameter in each user preference

has a medium gain. The parameter α indicates the importance of distance over the match

of keyword terms, and so the greater the α, the greater the importance of distance is.

Consequently, it is easier to gain more users if the keyword matching is more important,

since the distance of an object cannot change in contrary to the keywords. The number

of I/Os and the processing time are almost stable, as shown in figure 7.6b and figure 7.6d,

since the number of data that need to be processed is not affected with the changes in

the α parameter.

Stella Maropaki 41 March 2016

7. EXPERIMENTAL RESULTS

 0
100
200
300
400
500
600
700
800
900

rand 0.1 0.3 0.5 0.9

∆
I

α

GBTSM

GBTS

TBSM

TBS

(a) ∆I

1.0

10.0

100.0

1.0k

10.0k

rand 0.1 0.3 0.5 0.9

IO

α

GBTSM

GBTS

TBSM

TBS

(b) I/O

 1

 10

100

 1k

rand 0.1 0.3 0.5 0.9

P
ru

n
e
d
 n

o
d
e
s

α

GBTSM

GBTS

TBSM

TBS

(c) pruned nodes

 1

 10

100

 1k

rand 0.1 0.3 0.5 0.9

T
im

e
(s

e
c
)

α

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.6: Varying α

7.2.6 Varying Maximum Preference Size

Figure 7.7 illustrates the performance of the algorithm according to the number of max-

imum preference size. As the maximum preference size increases, the possible gain of

influence score decreases, as shown in figure 7.7a. This happens because, for a large user

preference, more terms are required to be added to an object for it to be included in the

TOPk set of the user. This also affects the number of I/Os and the processing time, since

the larger the query is the more complex it is to be processed, as shown in figure 7.7b

and figure 7.7d. The number of pruned nodes is not affected, as shown in figure 7.7c

since the pruning conditions do not depend on the size of the queries.

Stella Maropaki 42 March 2016

7.2 Experimental Results

 0
100
200
300
400
500
600
700
800
900

2 3 5

∆
I

Max preference size

GBTSM
GBTS

TBSM
TBS

(a) ∆I

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

2 3 5

IO

Max preference size

GBTSM
GBTS

TBSM
TBS

(b) I/O

 1

 10

100

 1k

2 3 5

P
ru

n
e
d
 n

o
d
e
s

Max preference size

GBTSM
GBTS

TBSM
TBS

(c) pruned nodes

 0

 50

100

150

200

2 3 5

T
im

e
(s

e
c
)

Max preference size

GBTSM
GBTS

TBSM
TBS

(d) time

Figure 7.7: Varying Maximum Preference Size

Stella Maropaki 43 March 2016

7. EXPERIMENTAL RESULTS

Stella Maropaki 44 March 2016

Chapter 8

Conclusion

This Chapter concludes this thesis, with a brief discussion on its contribution and the

results that came out of this work in Section 8.1. Furthermore some proposal about the

future work possibilities are presented in the Section 8.2.

8.1 Conclusion

This work addresses the problem of increasing the influence score of a spatio-textual

object, by enriching its textual description with at most b selected keywords, named Best

Terms. It provides an approximate algorithm, that using the concepts of TOPk and

RTOPk queries, solves this problem. Experimental results are demonstrated, comparing

the already existing algorithms with the new proposed algorithm. Furthermore, variations

of the existing algorithms and the new algorithm is also compared. It is shown that the

new proposed algorithms are an efficient and scalable solution to the Best Terms problem,

that is less time consuming and resource demanding than the already existing algorithms.

8.2 Future Work

In future work, the aim is to examine more pruning conditions, other than the ones used

in this work. It is also possible to experiment with the traversal of the IR-tree with

the user preferences and the spatio-textual objects. In addition, more datasets could be

examined in terms of user preferences, that may follow different distribution, or some real

Stella Maropaki 45 March 2016

8. CONCLUSION

user queries. Last but not least, another interesting scenario would be to examine the

user preferences together with the spatio-textual object, without computing the TOPk

queries.

Stella Maropaki 46 March 2016

References

[1] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-Ling

Lo, and John R. Smith. The onion technique: Indexing for linear optimization

queries. In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’00, 2000.

[2] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k

most relevant spatial web objects. Proc. VLDB Endow., 2(1), Aug 2009.

[3] Ariel Fuxman, Panayiotis Tsaparas, Kannan Achan, and Rakesh Agrawal. Using

the wisdom of the crowds for keyword generation. In Proceedings of the 17th Inter-

national Conference on World Wide Web, WWW ’08, 2008.

[4] Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. Maxi-

mizing influence of spatio-textual objects based on keyword selection. In Advances

in Spatial and Temporal Databases. 2015.

[5] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadoloulos, and

Yannis Theodoridis. R-trees: Theory and Applications. Springer, 2006.

[6] Sujith Ravi, Andrei Broder, Evgeniy Gabrilovich, Vanja Josifovski, Sandeep Pandey,

and Bo Pang. Automatic generation of bid phrases for online advertising. In Proceed-

ings of the Third ACM International Conference on Web Search and Data Mining,

WSDM ’10, 2010.

[7] Yufei Tao, Vagelis Hristidis, Dimitris Papadias, and Yannis Papakonstantinou.

Branch-and-bound processing of ranked queries. Inf. Syst., 32(3), May 2007.

Stella Maropaki 47 March 2016

REFERENCES

[8] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørv̊ag. Reverse

top-k queries. In Proceedings of Conference on Data Engineering (ICDE), 2010.

[9] Wikipedia. Convex hull — wikipedia, the free encyclopedia, 2015. https://en.

wikipedia.org/wiki/Convex_hull.

[10] Weinan Zhang, Dingquan Wang, Gui-Rong Xue, and Hongyuan Zha. Advertising

keywords recommendation for short-text web pages using wikipedia. ACM Trans.

Intell. Syst. Technol., 3(2), Feb 2012.

Stella Maropaki 48 March 2016

https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/Convex_hull

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Related Work
	2.1 Keyword Recommendation

	3 Preliminaries
	3.1 TOPk query
	3.1.1 TOPk query Definition
	3.1.2 TOPk query Computation

	3.2 Reverse TOPk query
	3.2.1 Reverse TOPk query Definition

	3.3 R-tree
	3.3.1 R*-tree

	3.4 IR-tree

	4 Problem Definition
	4.1 Spatio-Textual Object
	4.2 User Preferences
	4.3 Spatio-Textual Queries
	4.4 Best Term Definition

	5 Baseline
	5.1 Best Term First
	5.2 Graph-Based Term Selection
	5.2.1 Graph Construction
	5.2.2 Best Subgraph Selection

	6 Approach
	6.1 The Idea
	6.2 Algorithm
	6.2.1 Variations

	7 Experimental Results
	7.1 Experiments Description
	7.2 Experimental Results
	7.2.1 Varying Data Cardinality
	7.2.2 Varying User Preferences
	7.2.3 Varying k Parameter
	7.2.4 Varying Number of New Terms
	7.2.5 Varying Parameter
	7.2.6 Varying Maximum Preference Size

	8 Conclusion
	8.1 Conclusion
	8.2 Future Work

