
  

 
Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής 

Πρόγραμμα Μεταπτυχιακών Σπουδών 
«Πληροφορική» 

 
 

Μεταπτυχιακή Διατριβή 

 

 

 

 

 

 

 
  
 
Τίτλος Διατριβής 

 

Μελέτη αλγορίθμων ομαδοποίησης σε περιβάλλον 

προγραμματισμού Python 

 

Python based study of clustering algorithms 

 

 
Ονοματεπώνυμο Φοιτητή 

 

Αθανάσιος Σκουρτανιώτης 

 

 
Πατρώνυμο 
 

 

Ευάγγελος 

 

 
Αριθμός Μητρώου 
 

 

ΜΠΠΛ/ 14075 

 

 
Επιβλέπων 
 

 

Άγγελος Πικράκης, Επίκουρος καθηγητής 

 

 

 

 

 

 

 

 

 

 

Ημερομηνία Παράδοσης           Νοέμβριος 2016 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Τριμελής Εξεταστική Επιτροπή 

 
 

(υπογραφή) 
 
 
 
 
 

(υπογραφή) (υπογραφή) 

Άγγελος Πικράκης  
Επίκουρος Καθηγητής 

Χαράλαμπος Κωνσταντόπουλος 
Επίκουρος Καθηγητής 

Μιχαήλ Ψαράκης 
Επίκουρος Καθηγητής 

   

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               3 

Ευχαριστίες 

 
Θα ήθελα να ευχαριστήσω θερμά τον καθηγητή μου και επιβλέποντα της 
Μεταπτυχιακής μου διατριβής κ. Άγγελο Πικράκη για την καθοδήγησή του στη 
συγγραφή της.  
 
Αφιερώνω αυτή την εργασία στη γυναίκα μου, Αφροδίτη, και στη νεογέννητη κόρη 
μας. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               4 

 

Abstract 

 
Cluster analysis is the field of unsupervised learning that includes processes 
which divide data into groups according to a proximity measure. We briefly 
review the theoretical foundations of the field and provide a description of 
the programming concepts and tools used throughout this study. We also 
describe, build and use statistical techniques and indices suitable for the 
evaluation of clustering results. We implement seven different data clustering 
algorithms which can be organized into three different categories and test 
each one of them on three different datasets of synthetic data. In the final 
chapter, which can be considered a second distinctive part, we apply some of 
these algorithms combined together to accomplish image segmentation analysis 
tasks. We execute our algorithms on a set of images and measure the 
performance of those clustering-based segmentation results with reference to 
human made segmentation. We finally propose and construct a merging technique 
based on depth first search algorithm that when applied to an already 
clustered image, raises the performance dramatically. 
 
 
 
 
 
 
 
 
 

Περίληψη 

 
Η ανάλυση συστάδων είναι ο τομέας εκείνος της χωρίς επίβλεψη μηχανικής μάθησης 
που περιλαμβάνει διαδικασίες διαχωρισμού δεδομένων σε ομάδες σύμφωνα με κάποιο 
μέτρο εγγύτητας. Συνοπτικά εξετάζουμε το θεωρητικό υπόβαθρο του τομέα αυτού 
και παρέχουμε μία περιγραφή των εννοιών και των εργαλείων που χρησιμοποιούνται 
στην παρούσα εργασία. Επίσης περιγράφουμε και υλοποιούμε στατιστικές τεχνικές 
και δείκτες κατάλληλους για την αξιολόγηση των αποτελεσμάτων διαχωρισμού σε 
συστάδες. Υλοποιούμε εφτά διαφορετικούς αλγορίθμους ανάλυσης συστάδων που 
δύνανται να οργανωθούν σε τρεις διαφορετικές κατηγορίες και εξετάζουμε κάθε 
έναν από αυτούς σε τρία διαφορετικά σύνολα τεχνητά δημιουργηθέντων δεδομένων. 
Στο τελευταίο κεφάλαιο, που μπορεί να θεωρηθεί ως δεύτερο ξεχωριστό μέρος, 
εφαρμόζουμε κάποιους από τους υλοποιημένους αλγορίθμους συνδυαστικά μεταξύ 
τους, στον τομέα της ανάλυσης κατάτμησης εικόνας. Εκτελούμε τους αλγόριθμούς 
μας πάνω σε ένα σετ από εικόνες και μετράμε την απόδοση των αποτελεσμάτων μας 
με βάση αναφοράς τα αποτελέσματα που έχουν προκύψει από την κατάτμηση που 
πραγματοποίησε κάποιος άνθρωπος στην ίδια εικόνα, χρησιμοποιώντας μόνο την 
αίσθηση της όρασής του. Τέλος, προτείνουμε και υλοποιούμε μία τεχνική 
ενοποίησης βασισμένη στον αλγόριθμο αναζήτησης κατά βάθος η οποία όταν 
εφαρμόζεται σε μία εικόνα ήδη χωρισμένη σε συστάδες, αυξάνει δραματικά την 
απόδοση του αποτελέσματος.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               5 

Contents 
Abstract .................................................................... 4 

Περίληψη .................................................................... 4 

Chapter 1 Introduction .................................................... 7 

1.1 Cluster analysis .................................................... 7 

1.1.1 Definition of cluster ........................................... 7 

1.1.2 Process of cluster analysis ..................................... 9 

1.1.3 Applications of cluster analysis ............................... 10 

1.1.4 Categories of Clustering Algorithms ............................ 11 

1.2 General programming Implementation Notes ........................... 11 

1.3 Notes on Proximity Measures and Cluster Representatives ............ 13 

Chapter 2 Cluster Validity ............................................... 14 

2.1 Statistical Testing ................................................ 14 

2.1.1 Internal Criteria .............................................. 14 

2.1.2 External Criteria .............................................. 16 

2.2 Non statistical Testing ............................................ 17 

2.2.1 Hard clustering indices ........................................ 18 

2.2.2 Fuzzy clustering indices ....................................... 21 

Chapter 3 Cost Function Minimization Clustering Algorithms ............... 23 

3.1 Fuzzy Clustering Algorithm ........................................... 24 

3.1.1 Implementation Notes .............................................. 26 

3.1.2 Disadvantages of the algorithm .................................... 27 

3.1.3 Algorithm’s testing on synthetic data ............................. 28 

3.2 Possibilistic Clustering ............................................. 33 

3.2.1 Disadvantages of the algorithm .................................... 34 

3.2.2 Implementation Notes .............................................. 34 

3.2.3 Algorithm’s testing on synthetic data ............................. 35 

3.3 Hard Clustering Algorithms ........................................... 42 

3.3.1 Disadvantages of the algorithm .................................... 42 

3.3.2 Algorithm’s testing on synthetic data ............................. 43 

Chapter 4 Sequential algorithms .......................................... 47 

4.1 Basic Sequential Algorithmic Scheme (BSAS) ......................... 47 

4.1.1 Implementation Notes ........................................... 48 

4.1.2 Disadvantages of the algorithm ................................. 48 

4.1.3 Testing on synthetic data ...................................... 51 

4.2 Two Threshold Sequential Scheme (TTSS) ............................. 58 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               6 

4.2.1 Disadvantages of the algorithm ................................. 59 

4.2.2 Testing on synthetic data ...................................... 59 

Chapter 5 Clustering algorithms based on graph theory .................... 62 

5.1 Minimum Spanning Tree Algorithm .................................... 62 

5.1.1 Implementation Notes ........................................... 63 

5.1.2 Disadvantages of the algorithm ................................. 64 

5.1.3 Testing on synthetic data ...................................... 66 

5.2 Delaunay Triangulation Algorithm...................................... 76 

5.2.1 Disadvantages of the algorithm ................................. 77 

5.2.2 Testing on synthetic data ...................................... 78 

Chapter 6 Application of Cluster Analysis to Image Segmentation .......... 82 

6.1 Testing on real data ............................................... 82 

6.2 Merging Procedure .................................................. 89 

Conclusions ................................................................ 96 

Appendix ................................................................... 97 

User Guide ............................................................... 97 

Documentation ............................................................ 98 

Bibliography .............................................................. 111 

 
 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               7 

Chapter 1                                                                         

Introduction 

1.1 Cluster analysis 

Cluster analysis can be found in the bibliography with several names. Data 
clustering, unsupervised learning, segmentation analysis are some of them. 
There are also many overlapping definitions about what cluster analysis is and 
what it does. According to the classical book of the field, (Jain & Dubes, 
1988), cluster analysis is a field of exploratory data analysis which 
organizes data by abstracting underlying structure either as a grouping of 
individuals or as an hierarchy of groups. According to (Anderberg, 1973) and 
(Bezdek J. , 1981), cluster analysis searches for structures within data. 
According to (Guojun Gan, 2007) it is a method of creating groups of objects, 
or clusters, in such a way that objects in one cluster are very similar and 
objects in different clusters are quite distinct. Finally, (Jain A. K., 2008) 
provides a slightly more formal definition of a clustering procedure by 
suggesting that given a representation of n objects, one must find K groups 
based on a measure of similarity such that objects within the same group are 
alike but the object in different groups are not alike. 

It is obvious that in order to give an adequate definition of the cluster 
analysis, we should try first to find a definition for the most important 
building block of this field, the cluster structure. This is the subject of 
the following section. 

1.1.1 Definition of cluster 

The most essential structure in cluster analysis is obviously the “cluster”. 
We should attempt to reach to a definition of the term “cluster” by reviewing 
two examples where such a definition would come handy.  

In the first example we suppose that we need to classify
1
 some books. If we 

are free to choose any rule to apply to this classification task then the 
basic question raised is which would be this rule and which would be the 
procedure to come up to it. The result of the classification would obviously 
be different depending on whether it is conducted based on each book’s type or 
the release year of each book, or the nationality of the author, or the size 
of each book or even something seemingly irrational such as which is the 
second letter of each book’s title etc. Namely, there are countless ways to 
classify books, some definitely more functional than others in certain cases. 
However, is there a commonly accepted way to measure this functionality and 
define the most appropriate clustering criterion for classifying books? 

(Bonner, 1964) defines this criterion as the one that satisfies the most 
the value judgment of the user and produces some value to him. Following this 
very general definition of the clustering criterion, the term “cluster” is 

                            
1
 Nowadays, it has prevailed to use the terms “classify” and “classification” in order to refer to 
the methodology applied to supervised learning problems where, contrary to unsupervised learning, 
each vector contains a feature that is a target class and takes only discrete values. In the 
current context though we use these terms to refer to the unsupervised classification which most 
of the times is called “clustering”. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               8 

described as a term that lacks a formal definition and is only required to 
“produce a value to the investigator”. Although it is correct, this 
definition’s disadvantage is that it does not distinguish between different 
cluster partitions. As long as a partition “produces value” to a researcher it 
is valid. It disregards, or not mentions at all, probably in order to be more 
general, the fact that some partitions are more natural than others. This can 
be easily seen in the second example. 

In this example let us move one step further by considering the scatter 
plot (a) below, where the separate instances – which could be the books of the 
first example - are represented as dots in the R

2
 space: 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Compared to the first example, here we have already chosen the criteria to 

classify the instances, we have quantified them into two features, a and b, 
and we just need to make a decision on which is the best classification. 
Obviously, there are not many people who would argue that, intuitively, the 
best way to classify the instances is the one presented in the scatter plot 
(b) where the instances are divided in three different categories 
discriminated by different colors. This realization indicates that 
practically, the choice of a specific partition over the others is not a 
totally subjective task as (Bonner, 1964) indicated. Furthermore, it answers 
the question imposed in the previous paragraph. There is actually a way, a 
method to define the most appropriate classification. For the time being we 
can call it “human perception”. 

It is the human perception that makes us choose out of the very large 
number

2
 of possible partitions of the set of instances a specific partition. 

                            
2 The number of possible partitions of a set of n instances to m clusters can be found by 
computing the Stirling numbers of the second kind either recursively based on the below formulas:  

Base cases: S(0,0) = 1, S(n,0) = S(0,n) = 0 
Recursive case: S(m, n) = S(m-1, n-1) + nS(m-1, n) 

 
or by using the formula:  

Figure 1 - a) A scatter plot of random vectors, b) The same set of 
vectors divided into 3 groups represented by different colors 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               9 

The next step is to quantify the “human perception” intrinsic mechanism into 
some measurable amount. This is of course something that has little to do with 
data analysis, but is rather a matter of other scientific fields.  

Indeed, the first field to study the way our visual perception works was 
psychology. A German movement named the Gestalt school of psychology which was 
based on Berlin roughly in the first half of the 20

th
 century, stressed the 

importance of perceptual organization. The main idea of the Gestalt psychology 
was that the whole is different from the sum of its parts(Irvin Rock, 1990). 
(Wertheimer, 1923), one of the three founders of Gestalt psychology defined 
the grouping laws that can be used to build the whole structures out of their 
parts. There are several different laws, however we are interested only in two 
of them that according to (Feldman, 1995) can be used to distinguish the 
clusters of figure (a). These are the laws of proximity and good continuation. 
The law of proximity stresses that an individual perceive two objects that are 
close to each other as a group. The law of good continuation indicates that 
elements that form smooth continuations tend to be perceptually grouped 
together. In our case of figure (a) only the law of proximity applies. In more 
complex datasets we shall use both laws. All these ideas were unified at the 
second half of the 20

th
 century under the scientific field of “Cognitive 

Science”, and its subfield, “Perception”.  

(Cormack, 1971) makes also an excellent effort to provide a synopsis of 
some of the most important early attempts during 1940 – 1970, to assign a 
definition to the term “cluster”. The two basic ideas on which those attempts 
were based can be summarized into two properties that every cluster should 
possess, “internal cohesion” and “external isolation”. These ideas are 
analogous to the concepts stressed by the adapted to the clustering issues 
Gestalt psychology. 

What becomes clear from this partly historical, partly empirical review of 
the attempts to define the term cluster is that there cannot be one unique 
formal definition for it. On the contrary, the definition depends on two 
things. The first is the problem that is attempted to be solved and the second 
is the methodology, in other words the algorithm used to solve it. Different 
problems or different algorithms will most likely lead to different clustering 
results, providing in such a way a different definition of the term “cluster”. 
At the same time though, we accept that in order to proceed to a clustering 
task we must introduce some commonly accepted properties that characterize a 
clustering effort as a “good” one. These two properties are the ones described 
in the previous paragraph. 

1.1.2 Process of cluster analysis 

There have been many suggestions of the steps that a clustering task is 
consisted of. (Buhmann, 2002) has introduced a model divided into four stages, 
data representation, modeling, optimization and validation. However, the model 

                                                                                

       
 

  
       

 

 
       

 

   

 

 
In the case where the number m of the clusters is undefined, then one has to compute the Stirling 
numbers for all possible values of m, something that is extremely computationally demanding and 
most of the times cannot be accomplished. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               10 

provided by (Jain, Murty, & Flynn, 1999), expanded by (Theodoridis & 
Koutroumbas, 2009) and slightly amended by our own observations during 
constructing and using clustering algorithms describes the clustering task in 
a clearer way. It is the following: 

o Data Collection: This is the initial phase of every clustering task. The 
researcher usually ends up with a bunch of unprocessed raw data which are 
unsuitable for immediate process. 

o Data Preparation: This stage includes the feature selection, the data 
preprocessing and the data transformation. All these procedures’ purpose is to 
convert the raw data of the previous step to a properly meaningful dataset 
that will be fed into the clustering algorithm. This is one of the most 
important steps of the clustering task. Many times the success of an algorithm 
depends on the preparation of the dataset conducted during this stage. 

o Proximity measure: The definition of a distance metric takes place at 
this stage. It is a decision that depends a lot on the type of cluster 
representative, so this is another thing that has to be defined at this stage. 
A very common combination that is being used in this thesis is the Euclidean 
distance as a distance measure and the point as a cluster representative. 

o Clustering criterion: (Theodoridis & Koutroumbas, 2009) use this term to 
refer to the definition of the kind of cluster structures that can be 
discovered in the dataset (for example compact or elongated). It is the same 
stage that in (Buhmann, 2002) is described as “modeling”. 

o Clustering algorithm: This stage includes the selection of the 
clustering algorithm, the procedure of defining its requested parameters and 
its execution. We should note here that the definition of the values of the 
parameters of the clustering algorithm is usually achieved through the 
execution of validity indices, as we will see in practice in the following 
chapters. However this procedure should not be confused with the last stage of 
the cluster analysis process, the validation. 

o Validation: In this final stage the evaluation of the clustering results 
takes place. 

1.1.3 Applications of cluster analysis 

There are numerous applications of cluster analysis algorithms and techniques 
to real world problems. (Jain A. K., 2008) mentions image segmentation, 
document clustering, grouping of customers into different types for efficient 
marketing, studying of genome data in biology. According to the writer, if we 
attempted to categorize all the possible uses of cluster analysis, then we 
would end up to three main purposes: 

 Compression: organizing and summarizing data. 

 Natural classification: identify the degree of similarity among 

forms or organisms. 

 Underlying structure: to gain insight into data. 

 

 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               11 

1.1.4 Categories of Clustering Algorithms 

Several categorization efforts of the numerous clustering algorithms have been 
suggested. Most of these categorizations divide them into two main categories, 
hierarchical and partitional. 

 Hierarchical algorithms. 

The name of the algorithms of this category derives from the fact that 

they divide a set of instances to a number of clusters which have an 

hierarchical structure. Hierarchical structure in this context means that 

every cluster is a subset of another cluster with the exception of one which 

contains all the others and is not part of any other. As this structure can be 

easily represented mentally and visually with the aid of a tree, researchers 

use a kind of diagram called dendrogram in order to observe the results of any 

hierarchical clustering.  

These algorithms are further divided into two categories based on the 

way they build the clusters, agglomerative and divisive. Agglomerative 

algorithms start by assigning each vector in a cluster and then merge these 

clusters at each step into larger ones. Divisive algorithms conduct the exact 

opposite process by assigning all vectors in one cluster and then further 

dividing this cluster into smaller ones. 

 Partitional algorithms. 

Contrary to hierarchical clustering, partitional algorithms result in 

grouping a set of vectors into a set of disjoint clusters without the 

hierarchical structure. One proposed categorization (Theodoridis & 

Koutroumbas, 2009) is: 

o Sequential: Algorithms that process the data sequentially. 

o Cost function optimization: Produce a clustering result by trying 

to minimize a cost function 

o Graph theory based: They regard data instances as nodes of a 

graph and then they apply a criterion to partition it. 

o Branch and bound clustering algorithms. 

o Genetic clustering algorithms. 

o Stochastic relaxation methods 

o Valley-seeking clustering algorithms. 

o Competitive learning algorithms. 

o Algorithms based on morphological transformation techniques. 

o Density-based algorithms. 

o Subspace clustering algorithms. 

o Kernel-based methods. 

1.2 General programming Implementation Notes 

Every algorithm that is described in this document has been implemented 
programmatically in Python. The implementation files are indicated in the 
proper position in each algorithm’s description. The fact that this code deals 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               12 

with data manipulation differentiates it a bit from “traditional programming” 
and maybe makes it peculiar for someone that sees it for the first time. The 
reason for this differentiation and some general comments on the 
implementation are described below. 

Programming in python is widely considered “high-level”, meaning that the 
programmer does not have to consider about issues such as for example direct 
memory management. Everything is managed by the built-in mechanisms of the 
language, letting the programmer consider only the aspects of the problem he 
is trying to solve. However as with many things in life, in programming 
everything is relative. Therefore, for certain tasks, including data 
manipulation, programming in “pure” python is considered extremely “low 
level”. This is due to the fact that all scientific fields that deal with data 
make heavy use of concepts of Linear Algebra. The most important reason for 
this is that the matrix, the basic structure defined in Linear Algebra 
provides an ideal basis for organizing and manipulating, through matrix 
operations, the data under investigation. Cluster analysis, seen as a subfield 
of Data analysis, is not an exception to this rule. 

The use of Linear Algebra raises the need for an implementation of the 
matrix structure programmatically. However, the introduction of the matrix 
structure in a program modifies decisively the whole approach to the data. The 
program does not deal with data as separate elements anymore, but as a 
collection of elements, stored in matrices, which are manipulated as a total. 
Even more specifically, the program “exchanges” loops that affect individual 
data, for matrix operations, that affect collections of data. 

The following example demonstrates this concept. Let us examine the 
difference in the implementation of a simple mathematical formula, the one 
used to find the euclidean distance between a list of points and a point. The 
two functions below do the same thing and return the same result, in different 
format, but still the same: 

Function 1: 
def euclidean_distance(data, point): 
    data_distances = [] 
    for d in data: 
        sum_of_squares = 0.0 
        for i in range(0, len(d)): 
            sum_of_squares += pow(d[i] - point[i], 2) 
        data_distances.append(sqrt(sum_of_squares)) 
    return data_distances 

 
Function 2: 
import numpy as np 
 
euclidean_distance = lambda data, point: np.sqrt(np.sum(np.power(data - point, 2), axis = 
1).reshape((len(data), 1))) 

 
The first function uses good old “high-level” python programming to 

transform the data element by element, whereas the second represents an even 
“higher-level” programming by utilizing the data structure of matrix, provided 
by the third party library Numpy in order to perform some matrix operations on 
the data

3
. One can easily observe that the two for loops of the first function 

                            
3
 This discussion about the low or high level of programming could go on, seemingly with no 

end, as Numpy array structures, in their turn, are considered low level compared to other 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               13 

have been squeezed somewhere in the matrix operation functions of the Numpy 
library. It is these functions’ responsibility to undertake the optimization 
of the operations they conduct, including the two for loops, at the low level. 

Although it does not constitutes a new programming paradigm the difference 
of programming by manipulating matrices is so critical that the concept “Array 
Programming” has been introduced to refer to programming with the use of 
arrays and matrices and there is also a discrete category of array programming 
languages. The basis of these languages was the paper (Iverson, 1962) which 
was implemented as a language with APL programming language. 

All the algorithms provided with the current thesis are implemented with 
the use of the described coding philosophy, into the frame of the functional 
programming paradigm. 

1.3 Notes on Proximity Measures and Cluster Representatives 

A very important concept to the majority of the clustering algorithms is the 
distance between certain elements of the clustering task, for example between 
two vectors or between a vector and a cluster representative, such as a 
centroid. This concept can be found in the bibliography under the name 
“proximity” and the different choices of distance measures are called 
“proximity measures”.  

These measures are divided into two major groups. The first group includes 
the “dissimilarity measures” which we can describe as the ones that take 
larger values, the larger the distance between two vectors becomes. It is 
obvious that these measures correspond to our intuition about how distance is 
measured. An example of a dissimilarity measure is the Euclidean distance. The 
second group includes the “similarity measures” which have the exactly 
opposite features. The larger the distance between two vectors is, the 
smallest value a similarity measure produces. 

There is a lot of discussion about the different proximity measures which 
can be applied in the clustering algorithms. We should note however that in 
this thesis we have not tried to apply any other measure in the algorithms 
described and implemented, other than the Euclidian distance. So the terms 
“proximity”, “distance” and “Euclidean distance” should be used here 
interchangeably.  

Furthermore, distance measures are not the only clustering task 
characteristics that come in a large variety of types. The same happens with 
cluster representatives. We can describe a cluster representative as a 
geometric structure than, as its name reveals, describes the cluster and is 
used in the several calculations as the cluster it represents. The most 
important types of representatives are point, hyperplane and hyperspherical 
representatives (Theodoridis & Koutroumbas, 2009). In the current thesis 
though we are restricted to point representatives. 

  

                                                                                
libraries. One such library is Pandas, which offers the DataFrame data structure which supports 
operations similar to Microsoft Excel spreadsheet.  

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               14 

Chapter 2                                                                    

Cluster Validity 

Clustering procedures on datasets lead to specific results. In case the 
vectors of the datasets are defined in the two dimensional space it is easier 
to evaluate these results by visual observation. However in cases of data with 
higher dimensionality such an evaluation is not that easy. This is mostly what 
created the need for the introduction of some standard procedures in order to 
evaluate the final result of a clustering algorithm. All such procedures that 
were developed were categorized under the umbrella term “cluster validity”.  

The reference source for cluster validity procedures is (Jain & Dubes, 
1988). The writers have divided the cluster validity indices into two main 
categories, statistical testing and non statistical testing. Statistical 
testing is, in its turn, divided into two categories that are named internal 
and external criteria for cluster validity, depending on the data they are 
based on, whereas non statistical testing contains all relative criteria. 
Below there is a description of how the methodology of each category works. 

2.1 Statistical Testing 

Let us go back in the basic question cluster validity attempts to answer, 
namely, if a clustering result is “good” or “bad”. The methodology followed by 
the statistical validity testing has two steps. The first step to a satisfying 
answer is to define an index that will measure this “good” or “bad” grade. The 
second step, which is a more challenging task, is to define a specific 
threshold, above or below which the index will be describing a “good” or “bad” 
clustering. We shall see the above steps under the frame of the subcategories 
of the statistical testing methods that we mentioned, internal and external 
criteria. 

2.1.1 Internal Criteria  

The target of evaluating a clustering partition using internal criteria is 
accomplished by using only the data themselves, contrary to as we will see, 
external criteria. The methodology includes running a clustering algorithm 
once on the dataset, and after that evaluating its performance.  

After choosing and calculating the index, we also need to define a 
threshold for it. This is where the statistical part of the specific procedure 
is revealed, as we need to adopt the Hypothesis testing methodology and adjust 
it to our clustering task. As this methodology suggests we must define two 
hypotheses, H0 and H1 that would reflect the two states of the problem we seek 
to solve. The alternative hypothesis H1 would suggest that there is a certain 
structure in our data set, whereas the null hypotheses H0 would suggest that 
our data set is completely random and consequently it presents no structure at 
all.  

There are three different ways we can choose to express the randomness in 
the null hypotheses and each one leads to different implementation. The first 
is to use “Random position hypothesis”. This is our choice in the accompanying 
implementation code of this thesis. As the name implies, in order to represent 
a totally random data set we pick random data in the same space and range 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               15 

where our initial data is defined, according to the uniform distribution. The 
second way is the “Random Graph hypothesis” and it is implemented by randomly 
creating different proximity matrices for the null hypothesis’ datasets. 
Finally, the third way is “Random label hypothesis”, where new random 
partitions of the original dataset are constructed. 

After choosing the way to express the null hypotheses we need to take 
sample distributions of the randomly chosen datasets and construct the 
probability density function of the index we have chosen. Unfortunately, this 
is a very computationally demanding task, so the only option we have is to 
take a limited amount of sample distributions and use them to extract the 
approximate probability density function of the index. This is accomplished by 
the so called Monte Carlo technique. 

After constructing the probability density function of the index under the 
null hypothesis, we usually assume that it is normally distributed. We place 
the index value of the dataset under consideration in the same histogram and 
we calculate its p-value, which is the probability that this value or an even 
more extreme value would come up as a result. If the p-value is less than a 
certain significance level that we empirically define at the level of 5%, then 
we reject the null hypothesis, meaning that we do not believe that the index 
value we have obtained is coming out of the random dataset’s probability 
distribution, so our dataset presents a structure. 

With regards to the indices to be used in the internal criteria 
validation, the bibliography ((Jain & Dubes, Algorithms for Clustering Data, 
1988), (Theodoridis & Koutroumbas, 2009)) does not propose the same variety of 
indices as in the case of external, or relative criteria. Therefore we limit 
ourselves only to the implementation of one index, the Hubert’s Gamma 
Statistic. This is defined as: 

 
   

 

 
              

 

     

   

   

   

 

 
(2.1)  

where X, Y are two matrices with the same dimensions. It is based in the 
same philosophy of the relation (2.14) used in (Bezdek & C, 1973) to find the 
average coupling between two subsets, as we will see in the section of the 
Partition Coefficient index. The difference is though that here we are talking 
about a “coupling”, a relation, between two matrices instead of two fuzzy 
subsets. 

In the case of internal criteria, X is the proximity matrix of the data 
set and Y is a N x N matrix defined as: 

 

         
                                          

                                                                       
  

 
It’s easy to see that the larger the value of Hubert’s Gamma, the largest 

the correlation between the two matrices. 
 
 
 
 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               16 

2.1.2 External Criteria  

Every algorithm presented in this thesis is tested against several synthetic 
datasets. These datasets are not created completely randomly. On the contrary, 
they are created as separate sets of vectors, in other words as clusters of 
vectors that are unified in one big dataset. This is due to the fact that an 
existing structure in the datasets is desirable in order to test whether our 
algorithm would succeed in revealing it or not. The fact is that we know this 
structure, we know in other words the solution –or at least a good solution – 
to the clustering task we attempt to solve, before we even solve it. Many 
problems in real life are similar to this situation. A certain amount of prior 
field knowledge usually exists and can be translated into an external 
partition of our dataset. In such case this partition can be used to validate 
the results of a clustering algorithm and this kind of validation is 
considered to belong to the external criteria.  

The procedure used in the external criteria validation is exactly the same 
as in the internal criteria. We pick up a meaningful index of our choice, we 
get a measure of it in our dataset and then we form the null hypothesis of 
position randomness by using a monte carlo simulation on a set of 100 
datasets. The simulation results in getting the probability distribution of 
the index which we consider a normal distribution and we finally use it in 
order to reject or accept the null hypothesis.  

The very sensible question raised at this point is why, since we have all 
the external information available, we aren’t just comparing the clustering 
result returned by our algorithm with this external information. We do not 
even need a sophisticated index, not to mention a statistically retrieved 
threshold, to express the similarity between the two partitions, the one we 
come up to and the external. A simple index, for example the Jaccard index, is 
adequate for a simple comparison of the two partitions. The answer is that we 
could perfectly evaluate the clustering only by a single comparison to the 
external data. However, in case we chose to go through all the complicated 
procedure described above, we then would be extending the testing to the 
quality of the external information we possess.  

In order to make it clearer, let us assume that someone expressed some 
doubt on the quality of our external partition knowledge. After all, who can 
guarantee that in every case our external partition is not some meaningless, 
random partition without real structure? Then every successful comparison to 
it, would lead to accepting a bad clustering result. This is where the 
described monte carlo sampling placed under the frame of statistical 
hypothesis testing gives us a hint of whether the external partition is 
actually not a random one. 

The indices we have implemented in the category of external criteria are 
four, the most usual ones used. In order to evaluate the first three of them 
we have to construct first a N x N utility table, where N is the number of the 
vector of the dataset. We define this table as a strictly upper(or lower) 
triangular matrix, since we are not going to fill in and use all its elements. 
Each element xij of the table would correspond to a pair of vectors xi, xj of 
the dataset and would take one of the four following values {SS, DD, SD, DS}. 
If we define C as the result of our clustering algorithm and as P the external 
partition we have available, then the first letter of each value is S(ame) if 
the two elements belong to the same cluster in C or D(ifferent) if they belong 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               17 

to different clusters. The second letter of each value is assigned in a 
similar manner, however with regards the P partition.  

After constructing the utility table we define the following measures 
which result by counting the different occurrences of the four values: 

a = count(SS), b = count(SD), c = count(DS), d = count(DD). 
We finally define M = a + b + c + d= N(N-1)/2 which is the total number of 

possible pairs. After this preprocessing, the calculation of the following 
indices is very easy: 

 Rand Statistic: This statistic is defined as (a + d)/M and was proposed 
by (Rand, 1971). It measures the percentage of the number of pairs of vectors 
that are either in the same cluster in both partitions, C and P, or belong to 
different clusters in both partitions. In other words, if the two partitions 
are exactly the same, the index will take its largest value, which is 1. In 
the opposite case, it can be easily seen that the value of the index would be 
0. 

 Jaccard Coefficient: This statistic is defined as a/(a + b + c). In a 
similar manner as Rand Statistic does, it measures the percentage of the pairs 
of vectors that are in the same cluster, but does not take the vectors in 
different clusters under consideration. Its values can vary in the range [0, 
1]. 

 Fowlkes and Mallows index: This statistic is defined as  
 

   
 
 

   
  and 

was proposed by (Fowlkes & Mallows, 1983). Since the index is proportional to 
a, the larger value it takes, the greater the similarity is between C and P. 

The final index we consider in this category is Hubert’s Gamma Statistic. 
We have already described this index in the section of the internal criteria. 
The only thing that is different here is the input data used to calculate the 
index. Instead of using the proximity matrix as the one of the two input 
arrays, we use and array X that has the value 1 if xi and xj belong to the same 
cluster with regards to the external clustering or 0 otherwise. The second 
input array remains the same. 

2.2 Non statistical Testing  

Although still a testing procedure, the non statistical testing philosophy is 
different than the one of statistical testing. In statistical testing we saw 
that we are executing a clustering algorithm over a dataset once and then we 
evaluate the clustering result. (Bezdek, Keller, Krisnapuram, & Pal, 2005) 
regard this procedure as a “parametric estimation method”, meaning that we 
estimate the parameters of some model and the validity indices measure the 
goodness of fit of the estimated parameters. 

On the other hand, the so called non-statistical testing has more the 
interpretation of “exploratory data analysis”. Every index we calculate 
describes one or more parameters of our model and measures its quality, 
defined by the partitioning of the dataset. (Jain & Dubes, Algorithms for 
Clustering Data, 1988) refer to the non statistical testing with the term 
“Relative Criteria” as opposed to the internal and the external criteria that 
we described in the previous sections. Practically though, in the frame of 
cluster analysis, conducting “non statistical or relative criteria testing” is 
synonym for “searching for the ideal number of clusters the dataset can be 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               18 

partitioned to”, or even more generally “searching for the best value of the 
clustering algorithm’s parameters”. 

This is why practically we place the relative criteria testing not in the 
validity stage but in the stage defined as clustering algorithm in 1.1.2. In 
the following chapters where several algorithms are described and tested over 
synthetic data, the relative criteria are used at the beginning of each 
clustering task in order to define the necessary parameters. The methodology 
used includes the execution of the the clustering algorithms sequentially, 
several times, each one with different parameter values and calculate the 
values of each index at the end of each execution. The values of the 
parameters for which the indices take their optimal values are then used in 
order to re-execute the algorithm and pass the results to the internal and 
external validity criteria, at the validity stage. 

Finally, one important question which could be raised with regards to non 
statistical testing is that it seems we are dealing with the problem of 
picking up the best clustering in an indirect way. We first cluster the 
dataset, we then measure one or more indices and finally we pick up the 
clustering where the indices have their minimum or maximum value. Why couldn’t 
we proceed directly to the optimization of the indices and simply choose the 
cluster for which the indices have their optimal value? 

(Bezdek, Keller, Krisnapuram, & Pal, 2005) answer that no indices can 
capture all the properties of a clustering that is considered “good”. On the 
other hand, even if it could, many indices cannot be optimized easily. This is 
why we use them after the clustering procedure. 

2.2.1 Hard clustering indices 

The hard clustering indices described below apply to datasets that have been 
clustered with an algorithm which leads to crisp or hard clusters. Once this 
criterion is fulfilled, the choice of the specific algorithm does not have any 
importance at all. It is the final – crisp – result that we feed into each 
index for evaluation. 

 The Dunn index: This index was proposed by (Dunn J. C., 1974). It is 
defined as: 

 
 

    
                               

                
 

 

 
(2.2)  

where             is the distance between two clusters, Cq, Cr and it is defined 

as: 
 

                                 

 

(2.3)  

where x, y are vectors in the dataset and          is the diameter of cluster 

Cp and is defined as  
 

                          

 

(2.4)  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               19 

In other words, the Dunn index is the value resulting after dividing the 
minimum distance among all pairs of clusters by the maximum diameter, which is 
obvious that it is essentially a measure of density. Consequently, we are 
seeking for as large values of the Dunn index as possible. 

 The Davies-Bouldin index: (Bouldin & Davies, 1979) proceeded to the 
definition of some attributes that should be possessed by a general index 
which aims to measure the separation of the clusters produced after executing 
a clustering algorithm on a dataset. Based on them, the writers provide a 
theoretical formulation of a clustering measure and at the same time, an 
example of such a measure which as they note, is one of the simplest 
satisfying their definitions. 

We can describe the proposed index with the below equations: 
 

 
     

      

   

 

 

 
(2.5)  

where S is called the dispersion of a cluster Ci and is defined as: 
 

 

     
 

  
        

 

     

 

 
 

 

 

 
 

(2.6)  

and Mi,j is the distance between two clusters which can be the euclidean 
distance between their representatives.  

We also define for every cluster Ri as 
 

                         (2.7)  

 
and finally the Davies Bouldin index is defined as: 

 
 

     
 

 
    

 

   

 
 

(2.8)  

 
The dispersion of a cluster measures the average distance of the cluster’s 

vectors from its representative. It is a measure of the compactness of the 
cluster. This means that small values of R reveal compact (small dispersion) 
and clearly separated (large distance) clusters. For every cluster we choose 
the maximum R, the most penalizing case of R and we use it to calculate the 
average R which consists of the Davies Bouldin index. It is obvious that the 
minimum value of the index for different values of the number of clusters 
reveals the ideal number of clusters. 

 
 The silhouette index: This index is described on (Kaufman & Rousseeuw, 
2005) and is based on the notion of silhouette, introduced in (Rousseeuw, 
1986). In order to define the silhouette, one must first define the value 
s(i): 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               20 

 
    

      
           

 
 

(2.9)  
 

where i = 1 … N ,where N is the total number of vectors in the dataset, ai is 
the average distance of xi to all other vectors belonging to the same cluster 
with xi and bi is the minimum average distance of xi to all vectors belonging 
to its closest cluster. 

For each cluster we define the silhouette width as the average of the si 
for all the vectors that belong to it and finally we define the global 
silhouette index which is the average silhouette width of all the clusters the 
dataset has been partitioned to. 

We can intuitively think of bi, the cluster which has minimum average 
distance from xi, as the second best choice for clustering xi, after of course 
ai. The larger bi is, compared to ai, the worse choice it becomes and so the 
better is our clustering partition. The opposite holds when bi is small 
compared to ai. This fact along with the observation that si takes values in 
the range [-1, 1] results in considering values of the silhouette index close 
to 1 as indication of a good clustering, whereas values close to -1, as 
indication of bad clustering. 

 The Gap statistic: The first step in defining the Gap statistic index is 
to define two basic measures. The first is the sum of the distances between 
all available pairs of all the vectors X belonging to a cluster C. That is: 

 
               

               

  
(2.10)  

 
The second is the measure W which is defined as: 
 
 

     
 

   
   

 

   

 
 

(2.11)  

 
Obviously, the most compact the clusters are, the lower are the distances 

between the pairs of the vectors that belong to them and the lower is the 
value of W. 

The problem raised at this point is the complete lack of a threshold to 
define whether a value of W is large or small. In order to overcome this issue 
(Tibshirani, Walther, & Hastie, 2001) who proposed the index resorted to the 
same technique we used in order to obtain thresholds in the case of internal 
and external indices. They suggested using a monte carlo technique in order to 
get datasets uniformingly distributed at the same space our clustering task is 
defined and use these datasets as reference distributions. The writers call 
this procedure a “standardization” of log(Wm) which takes place by comparing 
log(Wm) with its expectation under the reference distribution En(log(Wm)). 
Mathematically this can be written as: 

 
                                 (2.12)  

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               21 

which is the Gap index. The furthest          is from En(log(Wm)), that is the 
maximum value Gap takes for every value of m, gives an estimation for the 
optimal number of clusters. 

2.2.2 Fuzzy clustering indices 

Fuzzy clustering indices apply to datasets that have been partitioned by the 
fuzzy clustering algorithm. The common characteristic that they all have is 
that they introduce into their calculations a basic structure of the fuzzy 
clustering algorithm, which we will study at the relative chapter, the 
partition matrix. 

 Partition Coefficient: This index was proposed by (Bezdek & C, 1973) and 
the only parameter it is based upon is the partition matrix U formed after the 
implementation of the fuzzy clustering algorithm. It is defined as: 

 
 

       
 

 
     

   
    

 
  
       

 

 

   

 

   

 
 

(2.13)  

 
and it is based on the definition of average coupling between two subsets 

of a partition, provided in the same paper:  
 

  

 
       

 

   

 
(2.14)  

 
for all 1 ≤ i, j ≤ c with i ≠ j.  

It is a really simple index, both with regards to its concept and its 

implementation. The values of the index vary in the range  
 

 
    where 

 

 
 

indicates that the clustering can be described as so “fuzzy” that it probably 
has no clustering structure at all, whereas 1 indicates that the clustering is 
crisp. As (Bezdek, Keller, Krisnapuram, & Pal, 2005) stresses, PC maximizes on 
every crisp partition produced by the fuzzy clustering algorithm, so it would 
make sense to choose the clustering that gives the index its maximum value, 
for every m≥2. However, (Theodoridis & Koutroumbas, 2009) underline that the 
index exhibits a negative dependence on the number of clusters m and instead 
of searching for a maximum point one should search in the index’s plot for a 
“knee” like formation. Specific examples of the algorithm will be presented in 
following sections.  

 Partition Entropy Coefficient: (Bezdek J. C., Mathematical Models for 

Systematics and Taxonomy, 1975) extended the concept of the fuzzy entropy of 

(Deluca & Termini, 1972) and used it to describe the fuzziness of a partition 

U. It is defined as  

 
 

        
 

 
               

 

   

 

   

 

 

 
(2.15)  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               22 

and its values vary in the range          . Its behavior is similar to the 
partition coefficient index, so the same comments are valid for this index 
too, although in the opposite direction, since this index increases as m 
increases. 

 Xie-Beni: (Xie & Beni, 1991) realized that one of the major disadvantages 
of the partition coefficient index was that, apart from the monotonic 
decreasing tendency with m that is mentioned above, it also did not give any 
importance at all to geometrical properties of the data set. Their effort to 
introduce such a geometric property measure into a cluster validity index led 
to the Xie-Beni index. 

The paper explains thoroughly the procedure which results to the below 
definition of the index: 

 
 

   
     

         
  

   
 
   

     
   

        
  

 
(2.16)  

 
where the nominator is defined as σ =      

         
  

   
 
    and is the total 

variation of the data set under consideration and              
   

        
 
 is 

called the separation of the fuzzy partition. With the appropriate 
transformations, for m = 2, the index can be written in the form: 
 
 

   
  

      
  

(2.17)  

 
which indicates that the minimization of the cost function leads to the 
minimization of S. Consequently, this is what we are looking for in this 
index, the number of clusters m where the index takes its minimum value. 

 Fukuyama – Sugeno index: This is an index which, as in the case of the 
Xie-Beni, takes under consideration the geometric properties of the data set, 
by introducing into its definition two distance measures. These are the 
compactness of the clusters         

  and the distance of the cluster 

representatives from the mean vector        
 
. The definition of the index 

is:  
 

 
          

 

 

   

 

 

   

         
          

 
    

 

 
(2.18)  

 
The minimum of the index indicate a good clustering.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               23 

Chapter 3                                                                                     

Cost Function Minimization Clustering Algorithms 

If we assume a set of N vectors {xi  ℝ
k
 | 0≤i≤N, k ℝ} and its cost function 

 
 

              
 
        

 

   

 

   

 

 

 

(3.1)  

where θ is the unknown parameter vector which describes each cluster, m is the 

a priori known number of clusters,     

       
       
 
   

 
   

 
 

    

   
   
 

   

           ℝ 
      , is a 

weight vector, q ℝ, and           is the distance metric from a vector xi to the 

cluster representative θj, then the minimization of this function with regards 
to θ determines the values of θ that give us the best clustering of our data 
set. 

Before proceeding to the task of minimizing the cost function, we should 
stress the important role played by the weight matrix U. It is the existence 
of this matrix in the definition of the cost function that provides great 
flexibility to define different types of clustering algorithms based on the 
same cost function. As we are going to see, only by amending the constraints 
imposed to the elements of the weight matrix makes us able to define three 
different types of clustering algorithms, namely fuzzy, possibilistic and hard 
clustering. The specific constraints for each one of them will be presented in 
the relative sections. 

For now, let us first plot the values J of the cost function against all 
the possible values of the θ vector, considering that our data set is divided 
into two clusters, so the θ vector consists of two representatives, θ = [θ1, 
θ2]

Τ
 . The U matrix is assigned some random values in the space [0, 1]. 

 
Figure 2 - Cost function minimization - file: minimizing_cost_function.py 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               24 

It is obvious from the 3-D plot that the function converges to a global 
minimum. If the values of the weights of the U matrix were known a priori, as 
we assumed in order to construct this plot, then the task of minimizing the 
function would be easy and limited to the calculation of the gradient of J(θ) 
with respect to θ. However, the weights are not known, so we will approach the 
problem by using an iteration algorithm integrated in our algorithms. We shall 
see this algorithm, called the generalized expectation maximization algorithm, 
customized for each one of our algorithms in the following sections. 

3.1 Fuzzy Clustering Algorithm 

(Zadeh, Fuzzy Sets, 1965) stressed the important role played by imprecisely 
defined “classes” in human thinking. The two examples of such classes he 
mentions are “the class of beautiful women” and “the class of tall men”. 
Obviously, there are not strictly defined criteria in order to classify a 
woman as beautiful or a man as tall. Another more general example of the 
importance of vagueness in everyday situations is mentioned in (Bezdek J. C., 
1993). When we are passengers in a car and we want to advice the driver when 
to apply the brakes in case of a red light, we will prefer to say “Apply the 
brakes soon”, instead of “Apply the brakes 15 meters before the light”. 

Zadeh named these classes “fuzzy sets”, in contrast to ordinary sets(in 
part of the bibliography named as “crisp”), and he also provided a 
mathematical model for them. The cornerstone of his model is the membership 
function. This is a function that characterizes every fuzzy set and assigns to 
every object of the space under investigation, a real number k, k Ɛ [0,1] , 
which measures the “grade of membership” of the specific object to the 
specific set. Namely, in a space Ω, ∀ x Ɛ Ω, the membership function is 
defined as f: Ω → [0,1]. 

It may seem that fuzzy set theory coincides with Probability theory, since 
they both provide a model to measure uncertainty. In fact there has been a lot 
of discussion on this issue(Zimmermann, 2001), (Bezdek J. C., 1993). The two 
theories however are totally different both mathematically and semantically. 
What is important here is to stress that fuzzy clustering model is not 
considered a probabilistic model. 

According to (Guojun Gan, 2007) the first researchers who applied fuzzy 
set theory to clustering were (Bellman, Kalaba, & Zadeh) and (Ruspini, 1969). 
Later, (Dunn J. , 1973) proposed a “fuzzy” variation of the k-means algorithm. 
The proposed algorithm was later improved by (Bezdek J. , 1981). The way the 
algorithm applied the theory of fuzzy sets to the task of clustering was by 
implementing the basic fuzzy set theory concept of membership function to the 
clustering problem. Specifically, in fuzzy clustering k-means (FCA), a vector 
is possible to belong to more than one cluster at the same time. The grade of 
membership of the corresponding vector i to the corresponding cluster j is 
defined by the corresponding element uij of the weight matrix U. There is also 
the constraint that the sum of the memberships – weights of the same vector 
with regards to all the clusters must be equal to 1. 

Using mathematical notation we can express the above constraints: 
 

                   (3.2)  

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               25 

 
            

 

 

 

 

 
(3.3)  

 
 

        

 

   

       
 

(3.4)  

 
Since we want to optimize a function under a constraint, we form the 

following Lagrangian function: 
 

 

             
 
                     

 

   

 

 

   

 

   

 

   

 

 

 
(3.5)  

 
Taking the gradient of this function and setting it equal to 0: 
 

 

    

 
 
 
 
 
 
 

   

       

    
        

   
       

   

   

 
 
 
 
 
 
 

   

 

 
 
 

(3.6)  

Expanding the function L makes the calculation of the partial derivatives 
a bit easier: 

 
           

              
              

                   
              

         
     

                                                        
 
Consequently: 
 

        

    
     

   
               

(3.7)  

 
         

   
      

 
 
         

   
  

 

   

 
 

(3.8)  

 
 

        

   
          

 

   

    
 

(3.9)  

 
From equations (3.3), (3.7), for every cluster s, where         
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               26 

 
     

 

  
        
        

 

 
    

   

 
 

(3.10)  

 
Unfortunately, the three equations above cannot give closed-form solutions 

so, as usually happens in such cases, an iterative scheme comes to our rescue. 
This is the generalized Expectation Maximization scheme that consists of two 
steps with the same name: 

The expectation step (E-step) where each vector is assigned to the cluster 
with the most likelihood to belong to and the maximization step (M-step) where 
the parameters(centroids) are recalculated. 

The algorithm can be described as follows: 

Input values: data, number of clusters, fuzzifier 
 

 initialize    for every j randomly 

 while termination condition: 

o E-step: for i = 1 to N 

 for j = 1 to m 

       
 

  
        

        
 

 
   

 
   

 

o M-step:        
    

 
       

 
   

  
  
 
      

   

 

 
Returns: clustered data 

3.1.1 Implementation Notes 

At the first part of the function fuzzy(data, no_of_clusters, 
centroids_initial = None, q = 1.25), all the necessary structures are being 
initialized. These are: 

The partition matrix: The numpy array U that contains the weights assigned 
to each vector with regards each centroid. 

The centroids_initial: A numpy array containing the initial values of the 
centroids. These can be generated in a random order, which is the most usual 
scenario, or provided as a parameter to the algorithm. The necessity that led 
us to provide this second way of setting up the centroids came from the 
relative criteria of cluster validity that demanded running the algorithm 
several times, by amending only certain parameters of it, but not the position 
of the centroids which had to be the same for the consecutive executions of 
the program.  

Using the numpy function choice along with the parameter replace set to 
False, assures that the centroids would be unique. The program will throw an 
error if the number of clusters is larger than the length of the array 
np.arange(np.min(data), np.max(data), 0.1) which is highly unlikely. 

centroids_new: The termination criterion of the algorithm demands to 
compare the consecutive values of the centroids. This array serves as a 
structure which will hold the newly created centroid values. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               27 

centroids_history: For better visualization of the results we present all 
the previous positions of the centroids. This array serves as a structure 
which will hold them together. 

The second part of the algorithm includes the iteration until the 
algorithm converges to a local or global minimum. The first for loop inside 
the main while loop is the expectation step where the values of the partition 
matrix U are calculated by matrix operations. The second loop is the 
maximization step where the centroids are being updated with new values. The 
last important part of the main while loop is where the termination condition 
is basically checked, as we are implementing a “python version” of the do – 
while loop, as the algorithm needs to make at least one iteration in any case. 

The algorithm calculates also the η(ita) value, which is necessary as a 
parameter for the execution of the possibilistic clustering algorithm as we 
will see in the next section.  

Finally, each vector i is assigned to the cluster j with the highest    . 

3.1.2 Disadvantages of the algorithm 

(Nikhil, Kuhu, Keller, & Bezdek, 2005) define the disadvantage of the FCA as 
the fact that noisy points, meaning points that their absolute distance from a 
centroid has a relatively large value, may be given a large value of 
membership, even though we should expect these points to have a small, if any, 
such value. This comes straight from the fact that in the definition of the 
algorithm we have imposed the constraint (3.3), which practically means that 
we are obliged to give a membership to every vector in any case, and also the 
membership of a vector to a cluster depends on the inverse relative distance 
from the cluster’s centroid, as in (3.10), and not of the absolute distance. 
The writers provide an excellent example in order to demonstrate this point. 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               28 

3.1.3 Algorithm’s testing on synthetic data 

 Blobs 

We have chosen to test the FCA in a challenging dataset. It consists of 4 
blobs of 500 vectors and two of the blobs are so close to each other that can 
be wrongfully assumed to be one cluster. After running the relative fuzzy 
indices on the dataset we get the following plots:  

 

Figure 3 - Relative indices for FCA for 4 blobs of 500 nodes, seed = 46 

 
We notice that three of the four indices (Partition Coefficient, Partition 

Entropy, Xien – Ben) take their optimal values at m = 3 indicating that 3 is 
the best number of clusters. The values of these indices at m = 4 however are 
not very far from their optimal ones. On the other hand, the Fukuyama Sugeno 
index is the only index that indicates that the optimal number of clusters is 
4, something which agrees with the parameters we used when we constructed the 
dataset. Let us execute the FCA for m = 3 and m = 4. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               29 

 
 

It is in such datasets where the subjective nature of cluster analysis is 
revealed. Here we are not in place to provide a clear answer as to whether 3 
or 4 clusters are the optimal solution, at least visually. If we rely on the 
indices things do not become much clearer since they reach to different 
results according to the methodology they use. One solution to this is always 
the external criteria indices that compare our clustering result with an 
external partition and in this case are obviously in favor of the four-
clustered solution which we accept as the correct one. 

In such case, we distinguish the Fukuyama Sugeno index as the only one 
which gave a correct, with reference to the external partition, indication of 
the number of clusters. This does not mean of course that this index will give 
correct results for all datasets, compared to the other indices. Different 
indices might perform differently in different datasets.  

The internal and external indices for the last execution of the FCA are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - a) Execution of FCA for m = 3, seed = 46, b) Execution of FCA for m – 4, seed = 46 

Figure 5 - Internal Criteria, FCA, Gamma index for dataset of 4 blobs, 500 nodes, seed = 46 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               30 

 
Figure 6 - External Criteria for FCA on dataset of 4 blobs, 500 nodes, seed = 46 

The internal criteria reject the null hypothesis of randomness as we expected, 
so the clustering result is acceptable according to them. With regards to the 
external criteria, we should check the four indices we are calculating on 
figure 6 for two things. The first is the absolute value of the indices, apart 
from the gamma index which is not normalized, and then whether their value 
accept or reject the null hypothesis. The absolute value of the Rand 
statistic, the Jaccard coefficient and the Fowlkes and Mallows are very close 
to 1 (something that cannot be seen in the current printscreen, as it is 
zoomed-in), which was expected and also they reject the null hypothesis so it 
is clear that we have an indication of the existence of a structure in our 
dataset.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               31 

 Concentric Circles 

The FCA fails to reveal the correct clustering structures in cases where the 
shape of the data is non-spherical. This is not due to the algorithm itself 
but because of the fact that in the current setup we are using centroids as 
the cluster representatives. Different representative structures, such as 
hyperplane or hyperspherical shapes would probably lead to better results in 
this type of datasets. 

Having noted the above, we see the relative indices to simply follow the 
monotonicity of m and not being able to provide trustworthy indications for 
the best clustering, since it is impossible to have one. 

 
Figure 7 - Relative indices for FCA for 2 concentric circles of 500 nodes, seed = 10 

Below we can see the clustering result along with the internal and 
external indices. What is important is that the external criteria correctly 
give the indication of a failed clustering attempt by accepting the null 
hypothesis. The internal criteria on the other hand wrongfully reject the null 
hypothesis but with a value for the gamma index very close to the values of 
the uniformingly distributed datasets created during the monte carlo 
simulations. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               32 

 
 

 

 
Figure 9 - External criteria for FCA with m = 3, 2 concentric circles, seed = 10 

Figure 8 – a) Execution for FCA with m = 3, 2 concentric circles, seed = 10 , b) Internal criteria for FCA 
with m = 3, 2 concentric circles, seed = 10 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               33 

3.2    Possibilistic Clustering 

(Zadeh, 1978) attempted to define a theory analogous to probability theory. He 
called it possibility theory and based it on fuzzy sets definition. He 
considered as the main application of his new theory the replacement of the 
probability on the statistical field of communication, which is nowadays known 
as information theory.  

One of the features of possibility theory which will concern us here is 
the notion of the possibility distribution function. We will not provide a 
definition, however a description of possibility distribution function is that 
it assigns to each variable a possibility value which, for each value u of X, 
is equal to the membership function of u. 

The possibilistic clustering algorithm (PCA) was proposed by (Krishnapuram 
& Keller, 1993) in order to overcome the disadvantage on the noisy data 
manipulation of the FCA, described in the relative section. As we noted, it is 
the constraint (3.3) that wrongfully raises the importance of the noisy 
vectors in the execution of the FCA. Consequently, the basis of the PCA is the 
relaxation of this constraint. Now, every membership value can belong in the 
range [0,1] and also: 

 
 

       

 

   

   
 

(3.11)  

 
Although it may seem like a small amendment, it actually changes the whole 

interpretation of the elements of the U matrix as defined in the FCA. Under 
the frame of PCA, each uij expresses the possibility the vector xi to belong to 
cluster cj. All the values of uij for 0 ≤ i ≤ N consist of the possibility 
distribution of the variable X for X = {x1, x2, … , xN}. Another term to name u 
elements is “typicality” of xi relative to cluster cj. 

Furthermore, the writers, in order to avoid trivial solutions, suggested 
that the cost function to be minimized should be added one more term: 

 
 

             
 
                     

 
 

   

 

   

 

   

 

   

 
 

(3.12)  

 
The differentiation of the above relation with respect to uij and after 

some calculations gives us: 
 

 
     

 

    
        
  

 

 
   

 
 

(3.13)  

 
This is exactly the part of differentiation between FCA and PCA and at the 

same time the point that raises all the strengths and weaknesses of the 
latter. According to the relation above, uij is inversely proportional to the 
absolute distance between the vector xi and the centroid vector cj. This 
practically means that the larger the distance, the smaller the value of uij 
and the less impact it would have during the next step of the iteration scheme 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               34 

of the algorithm, at the updating of the centroids. Although this solves the 
problem of the noisy vectors, as we shall see at the disadvantages of the PCA, 
makes the algorithm very sensitive to different initialization parameters. 

This is the reason the writers propose the initialization of PCA to be 
based on the output values produced from the FCA, after running on the 
dataset. These include the initial values of the centroid vectors and the 
values of the η parameter. More specifically, the values of the η parameter 
can be estimated as: 

 
 

    
    

 
        

 
   

    
  

   

 
 

(3.14)  

 
Practically, if we choose to apply this initialization technique, then PCA 

can be viewed not as a separate algorithm but as an adjustment to the FCA 
results which moves the centroids more towards the high density areas of each 
cluster. 

Finally, the algorithm described by pseudocode can be found below: 
 
Input values: data, number of clusters, fuzzifier 
 

 initialize        for every j randomly, or by running FCA 

 while termination condition: 

o E-step: for i = 1 to N 

 for j = 1 to m 

      
 

    
        

  
 

 
   

 

o M-step:        
    

 
       

 
   

  
  
 
      

   

 

 
Returns: clustered data 

3.2.1  Disadvantages of the algorithm 

The disadvantage of the PCM is that it depends heavily on the initialization 
values of the centroid vectors. It their values are close to each other, then 
the result of the algorithm is highly likely to be coincident clusters, 
although there are cases where this can be an advantage(Nikhil, Kuhu, Keller, 
& Bezdek, 2005). This is the reason why we usually initialize the algorithm by 
using the output of the FCM. 

3.2.2  Implementation Notes 

From the point of view of the programmatical implementation, PCA and FCA are 
structurally the same, except for some differences in the calculations of the 
values of their corresponding data structures. This means that the same 
comments and remarks made at the corresponding section of the FCA are still 
valid here. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               35 

3.2.3 Algorithm’s testing on synthetic data 

 Blobs 

We initiate the execution of the algorithm on the synthetic data by executing 
the relative indices which will give us an indication of the parameters to 
use. Possibilistic clustering can be considered a type of fuzzy clustering in 
the sense that every vector can simultaneously belong to two different 
clusters. Therefore, it makes sense to use the fuzzy clustering indices 
introduced in section 2.2.2.  

Once we get to use them, we notice however that the fuzzy indices do not 
present similar patterns to the ones produced during the execution of the FCA. 
They are rather characterized by an increasing tendency with regards to the 
number of the clusters. It is not difficult to understand the reason.  

In FCA the constraint (3.3) guarantees that the sum of all the elements of 
a partition matrix for one specific vector will always be equal to 1, 
regardless of the number of the clusters. The value of the fuzzy indices in 
the consecutive executions of the FCA takes under consideration a steady total 
amount of partitions of a vector to clusters. In the case of the PCA however 
the same constraint is eliminated. Now it is possible for a vector to belong 
in more than one clusters with high values of membership to each one of them. 
In fact, the larger the number of clusters, the larger is the value of the 
indices. 

One way to overcome this difficulty is proposed in (Miin-Shen & Kuo-Lung, 
2005). The authors propose a way to normalize the fuzzy indices in order to 
use them in the PCA framework. If we denote an index as μ, the calculation of 
its value for c different number of clusters, which implies c different 
memberships of each vector, then we can define the generalized validity 
indices as:  

      
      

       
 
   

 

for i = 1,….c and j = 1,…n. 

Finally, we noted in section 3.2 that PCA can be seen as an adjustment to 
the results obtained by FCA. Let us see what this practically means by 
executing the PCA in the same dataset, using the centroids returned by FCA as 
initialization values for the centroids in the PCA. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               36 

 
Figure 10 - Relative indices for PCA for 4 blobs of 500 nodes, seed = 46 

Here we have a repetition of the comments we made at the FCA section where 
we executed the algorithm on blobs. We can see that Partition and Partition 
Entropy Coefficient indicate that 3 is the best number of clusters, however 
not for q = 1.75. The same is valid for Xien - Bien (although it is not easily 
seen in the plot). Fukuyama Sugeno again takes its optimal value for number of 
clusters equal to 4.  

We choose to execute the PCA with parameters q = 1.25 and m = 3. The 
result is: 

 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               37 

 
 

Figure 12 - Internal Criteria Gamma index for dataset of 4 blobs, 500 nodes, seed = 46 

 

 
Figure 12 - External Criteria for PCA on dataset of 4 blobs, 500 nodes, seed = 46 

 

Figure 11 – a) Execution for PCA with m = 3, q = 1.25, 4 blobs, seed = 46, b) Internal Criteria Gamma index 
for dataset of 4 blobs, 500 nodes, seed = 46 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               38 

 
In the second scatter plot in figure 11 a) it can be easily observer, in 

the cluster depicted with the green color, how the PCA behaves as a refinement 
procedure by pulling the centroids towards the most high density areas of the 
clusters.  

The external criteria verify that our clustering is a good partition of 
the dataset. On the other hand, the internal criteria do not agree with this 
result if we consider the distribution of the gamma index a normal 
distribution. However, we can see that the gamma index for our clustering is 
lower than any other index run on the random datasets, so this is an 
indication of a good clustering. 
 

 Concentric Circles 

The relative indices can be found below: 

 
Figure 13  - Execution for PCA with m = 3, 2 concentric circles, seed = 10 

As in the case of FCA executed on the same dataset, we note that the 
indices are not able to give a correct indication on the number of clusters 
and the value of the fuzzifier parameter.  

Finally we can see below that most of the external indices reject the null 
hypothesis, however the result is not trustworthy. First because the 
distribution of the values of these indices cannot be considered a normal one 
and second because the values of the indices is small, something which 
indicates a low grade of matching between our clustering result and the 
external criteria. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               39 

 
 
 

 

 
Figure 15 - External criteria for PCA with m = 3, 2 concentric circles, seed = 10 

 
 
 
 

Figure 14 – a) Execution for PCA with m = 3, 2 concentric circles, seed = 10, b) Internal criteria for PCA 
with m = 3, 2 concentric circles, seed = 10 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               40 

 Moons 

Since the comments are the same with the concentric circles dataset examined 
before, we just provide the results of the execution without further comments: 
 

 
Figure 16 - Relative indices for PCA for 2 moons, of 500 nodes, seed = 10 

 

 
 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               41 

 
 
 
 
 
 
 

 
Figure 18 - External criteria for PCA with m = 3, 2 moons, seed = 10 

 

Figure 17- a) Execution for PCA with m = 3, 2 moons, seed = 10, b) Internal Criteria Gamma index for 
dataset of 4 blobs, 500 nodes, seed = 46 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               42 

3.3 Hard Clustering Algorithms 

All the algorithms of this category are based on the minimization of the cost 
function 2.1 where uij   {0,1}. The value 0 is assigned when the vector does 
not belong to a cluster whereas 1 is assigned when the vector belongs to a 
cluster. This is the reason why this type of clustering is called “hard” as 
opposed to “fuzzy”. Every vector either belongs to one specific cluster or 
not. 

In order to easily minimize the cost function, the following argument is 
used: if we assign each vector to its closest cluster, then the cost function 
will be minimized. This can be expressed in notation form: 
 

      
                                

                                                                       
  

 
The most known representatives of this category are k-means(Lloyd, 1982) 

and isodata algorithms (Ball & Hall, 1965). They are based on the same notion 
of minimization of the cost function, with their only difference being that 
the isodata allows for different number of clusters and does not require a 
predefined number. Their success is due to the fact that they are the simpler, 
the least sophisticated and therefore the fastest clustering algorithms.  

We will now examine the k-means algorithm as a representative of the hard 
clustering algorithms. The pseudocode can be found below: 

Input values: data, number of clusters 
 

 initialize        for every j randomly, or by running BSAS 

 while termination condition: 
o E-step: for i = 1 to N 

 for j = 1 to m 

       
                                

                                                                     
  

 set b(i) = j 
o M-step:                                                      

 
Returns: clustered data 

3.3.1 Disadvantages of the algorithm 

K-Means algorithm is very sensitive to the initial positions of the 
centroids. The naïve approach to their initialization is to pick up random 
positions in the space defined by the clustering task. Most of the times this 
leads the algorithm to a convergence to a local minimum of the cost function, 
even to simple clustering tasks. In order to overcome this major drawback we 
first execute a sequential algorithm on the dataset, such as BSAS that we will 
see in the next chapter, and we initialize the centroids of the k – means by 
setting them equal to the centroid values returned by the sequential 
algorithm.  

We should remember however that sequential algorithms are not being passed 
the number of clusters as an argument. This means that the number of clusters 
returned cannot be defined a priori. In cases where the sequential algorithm 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               43 

returns a larger number of centroids than the number we want to feed to our k 
– means algorithm, then we pass to the k-means only the number of the 
centroids demanded. In the opposite case, we initialize randomly the excessive 
centroids. It is a technique that in practice displayed very good results. 

3.3.2 Algorithm’s testing on synthetic data 

 Blobs 

We will first execute the k-means algorithm to a dataset of 4 blobs that can 
be characterized as a “perfect” one, since all the relative indices give 
indications of 4 as the perfect number of clusters. We can see the plots 
below: 

 
Figure 19 - Relative indices for k-means for 4 blobs, of 500 nodes, seed = 199 

The actual clustering result provides us with a visual evaluation that the 
clustering was the best one possible. So do the external and internal 
criteria: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               44 

  
 

 
 

 
Figure 21 - External Criteria for k-means for 4 blobs with m = 4, seed = 199 

 
Let us see however another execution on a different dataset.  

Figure 20 – a) Execution for k-means for 4 blobs with m = 4, seed = 199, b) Internal Criteria for k-
means for 4 blobs with m = 4, seed = 199 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               45 

 
Figure 22 - Relative indices for k-means for 4 blobs, of 500 nodes, seed = 185 

 
In this case, Dunn and Silhouette indices take their optimal values for m 

= 5, whereas Davies – Bouldin and Gap indices take their optimal values for m 
= 4. If we execute k-means for the two different values of m we get the 
following results: 

 
 

 
It is obvious that the values of Dunn and Silhouette indices are 

misleading due to the existence of one vector that could be characterized as 

Figure 23 - a) Execution for k-means for 4 blobs with m = 4, seed = 185, b) Execution for k-means for 
4 blobs with m = 5, seed = 185 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               46 

“noisy” since it is placed in a quite big distance from its centroids in the 
case of m = 4. When this vector is detached from its cluster and consists of 
one new cluster itself in the case of m = 5, then the results of the two 
indices are better. 

The conclusion is that the Dunn index and the silhouette index are not 
able to give us good indications of the correct number of clusters if they are 
executed in noisy datasets. Calculating indices by using extreme values, 
minimum or maximum, is not such a good indicator of a good clustering such as 
indices that are based on average values. 

 Concentric Circles - Moons 

K-means, executed by using centroids as cluster representatives cannot 
give satisfying results in datasets which form clusters with non compact 
shape. For reasons of completeness we present the result of the executions 
below.  

 

 
 
 
 
 
 
 

 
 

  

Figure 24 – a) Execution for PCA with m = 2, 2 concentric circles, seed = 10, b) Execution for k-means 
with m = 2, 2 moons , seed = 10 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               47 

Chapter 4                                                                           

Sequential algorithms 

The term “sequential” comes from the field of statistics call “Sequential 
analysis”(Ghosh & Sen, 1991). It is used to describe the unique feature of 
this field, to analyze the available data not all in once but partially. This 
technique usually applies to cases where the whole data are not available from 
the beginning but are collected gradually. 

Sequential clustering algorithms follow this exact technique. The main 
loop of the algorithm does not handle all the dataset as a group, as in the 
case of other non-sequential clustering algorithms, but in each step it 
confines itself to handling just one vector and immediately proceeds to the 
updating of the parameters of the algorithm (such as for example the 
centroids). 

4.1 Basic Sequential Algorithmic Scheme (BSAS) 

The BSAS is described in (Theodoridis & Koutroumbas, 2009) as a generalization 
of a scheme provided in (Hall, 1967). As the writers suggest the basic idea of 
the algorithm is to sequentially feed it the vectors of the dataset, one at a 
time, and either assign the vector to an already existing cluster, if its 
distance from this cluster is less than the value of a threshold Θ, or use it 
to initialize a new cluster if this distance is larger than the value of Θ. 

BSAS is a very good choice of clustering algorithm for big data, since it 
is very fast, its time complexity is only O(N). It also applies to cases where 
the data are not available all at once, but are gradually fed to the 
algorithm.(Trahanias & Skordalakis, 1989) mention as an example of such 
scenario the monitoring of a patient’s electrocardiogram for several days. The 
patterns in the electrocardiogram “have to be clustered as soon as possible in 
order to detect the presence or absence of certain abnormalities”. 

The pseudocode can be found below: 

Input values: data, threshold, (optional)maximum number of clusters 

 Use the first vector of the data to create a new cluster 

 Update the centroids by adding this new cluster 

 For each other vector xi in data: 
o count the distance from xi to the clusters’ centroids 
o take the closest cluster 
o if the closest distance is smaller than Θ: 

 add it to the closest cluster 
o else: 

 create a new cluster 
 Update the centroids 

 
Reassignment Procedure 

 For every vector in data: 
o find the closest cluster 
o assign the vector to the closest cluster 

 For every cluster: 
o update the representatives 

Outputs: The labeled data, the centroids 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               48 

4.1.1 Implementation Notes 

As in all algorithms implemented in this thesis, we express programmatically 
the final clustering by adding a column at the end of the data matrix which 
holds the number assigned to each cluster. In this implementation we keep two 
copies of the data matrix, one without this column, the data matrix, and 
another including this column, the clustered_data matrix. This has been 
decided mainly for performance –and convenience- reasons, so that we do not 
resort all the time to slicing the data matrix, in order to leave the cluster 
column out. 

The most important point in the BSAS implantation is the calculation of 
the threshold value out of the histogram of the vector distances we are 
describing in the next section. In order to calculate the histogram without 
plotting it we have used the function numpy.histogram(X, bins) instead of the 
hist function of the matplotlib.pyplot. We also used the argrelextrema(X, 
comparator) function of the scipy.signal package in order to calculate the 
peaks and valleys of the histogram. 

4.1.2 Disadvantages of the algorithm 

The main disadvantages of the BSAS algorithm are the following: 

 The order the vectors are fed into the algorithm plays an important role 
to the final clustering results. The proposed remedy is to execute the 
algorithm many times and each time to present the data in different order 
(Theodoridis & Koutroumbas, 2009). After that, the choice of the number of the 
clusters should be the most frequent number of clusters resulting from all the 
different executions. Although this technique does not completely addresses 
the problem, it still is a good way to approach the best clustering partition.  

 The user is responsible to provide a value for the θ threshold. This can 
be difficult if there exists no indication at all about the magnitude of the 
distances between vectors. In order to overcome this we have developed an 
automatic technique in order to automatically provide a suggested value for θ 
to the algorithm. 

In order to choose the proper value for the threshold θ, we resort to the 
image segmentation processes of the computer vision field. One of the methods 
used there is called thresholding and consists of defining a fixed constant T, 
the threshold. Every pixel in a grayscale image that has intensity greater 
than t is replaced by a white pixel and on the other hand, every pixel that 
has intensity less than T is replaced by a black pixel. A description of the 
several techniques used in order to define the threshold value can be found in 
(Mehmet & Bulent, 2004). The technique we are choosing to adapt to our 
clustering algorithm is called “Peak and valley thresholding”.  

The first stage of this technique is the same for BSAS and for the 
sequential algorithm that we are going to see in the following section, TTSS, 
and consists of constructing the histogram of the different distances between 
the vectors of our dataset. The second stage includes “reading” the histogram 
and extracting the threshold directly out of it. 

In the case of BSAS we should think that the distances between the vectors 
of the dataset should roughly be divided into two categories. One is distances 
between vectors belonging to the same cluster which would be small and the 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               49 

other, distances between vectors belonging to different clusters which would 
be large. The way this is depicted in the histogram is by two peaks separated 
by a valley. Obviously our next step is to find the peaks of the histogram and 
define which of them would represent the small distances between each cluster 
and which one the large distances between vectors of different clusters.  

If the histogram has only two peaks, then our job is easy. However, many 
times this is not the case. In such cases, where the histogram has more than 
two peaks, we are choosing the two highest. After the peak determination, we 
search for the valley between the peaks. Again, if the number of valleys is 
only one, then we choose it. If the number of valleys is greater than one, we 
choose the deepest valley. The value of the threshold is the value of the 
distance at the point where the histogram takes its lowest value. 

As an example, let’s see the histogram below that corresponds to a data 
set of 10 blobs created from Gaussian pdfs of a total number of 1000 vectors. 

 
Figure 25 Histogram of the distances of 1000 vectors of 10 Gaussian pdfs 

In this histogram the two peaks are very obvious at x = 1.5 and x = 8.4. 
The valley between them is at x = 3.778, which is defined as the threshold for 
our algorithm. 

In the next section’s algorithm, the Two Threshold Sequential Scheme 
(TTSS), which is a variation of the BSAS, the technique is the same except 
from the fact that since we are seeking for two threshold values, one that 
would separate the smaller distances from the middle distances and one between 
the middle and the large distances, we are now searching for three peaks. The 
values of the thresholds would be the distance at the two deepest valleys 
between the three peaks. In our example below we can see the third peak at x = 
13.4 and the second valley at 12.73. 

As every technique that has to do with cluster analysis, automatic 
thresholding with the proposed technique does not give good results in a very 
noisy dataset. This is why in many cases, manual inspection and several tests 
need to be applied, as every different dataset needs different manipulation. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               50 

The automatic procedure should be regarded more as an indication of the value 
of the threshold rather than a method that always gives correct results. 

 After a vector is assigned to a cluster it cannot be reassigned to 
another one. In cases where, at the final results of the algorithm, a centroid 
has moved close to a vector that does not belong to the cluster it represents, 
this results in bad clustering. This can be easily seen in the example below. 

 

Figure 26 BSAS final results without Reassignment 

We can see from the first scatter plot above that some of the vectors 
belong to the cluster with green color, although they are closer to the 
centroid of the cluster with the red color. As noted before this happens 
because these green colored vectors were initially assigned to the green 
cluster, however at the end of the execution of the algorithm, the red cluster 
centroid approached them very closely. 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               51 

 
Figure 27 BSAS final results with Reassignment 

The way we are dealing with this inconsistence is by performing a 
reassignment procedure at the end of the BSAS algorithm, essentially a second 
pass over the dataset, during which we assign each vector to the cluster that 
is closer to it. The result for the same dataset appears at the second scatter 
plot. 

4.1.3 Testing on synthetic data 

 Blobs 

In order to calculate the indices for the crisp clustering results of the 
BSAS algorithm we have proceeded in a basic adjustment in the relative 
criteria script. In this case, the indices are calculated with regards to the 
different clustering results that take place after amending the value of the 
threshold parameter of the BSAS. This is contrary to the relative indices of 
the cost minimization algorithms where we were amending the number of clusters 
throughout the different executions. As a general rule, the relative indices 
for every algorithm are calculated with regards to the different parameters 
this algorithm is provided with. After running the relative criteria we get 
the following results: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               52 

 
Figure 28 - Relative Criteria Indices for 4 blobs of 500 nodes, seed = 121 

 
We can see from the plots above that the last two out of the three indices 

agree that the best clustering is taking place when the value of the threshold 
is in the range [4.8, 8.5]. On the other hand, Dunn Index suggests that the 
best clustering is obtained for values of t > 8.4. 

Let us execute the BSAS algorithm for t = 5 and t = 9 in order to include 
both cases:  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               53 

 
 
 

What we can visually confirm is that the correct value for the threshold θ 
is 5. This value partitions the dataset into three clusters which can be 
considered the correct number.  

The question raised here is why the Dunn Index gives us a clearly wrong 
indication about the partition. A general answer is that this index is 
dependent on extreme, maximum and minimum, values rather than average ones. A 
more specific answer is that in the partition of figure 29 a), the minimum 
distance between the clusters is 2.79 and the maximum diameter of a cluster is 
8.087. This raises the value of the index at 2.79/ 8.087 = 0.35. In figure 17 
b) where two of the clusters are merged into one, the minimum distance between 
clusters becomes 8.07 and the maximum diameter 14.15. This means that the 
minimum distance is raised by 2.89, whereas the maximum diameter only by 1.74. 
It is this relatively larger increase in the nominator of the index that gives 
us a larger value which leads to wrong indications about the value of the 
threshold. 

Having figured out the correct value for the threshold t we can now run 
the external and internal criteria: 
 
 

 

 

Figure 29 – a) Execution of BSAS for t = 5 for 4 blobs of 500 nodes, seed = 121, b) Execution of BSAS 
for t = 9 for 4 blobs of 500 nodes, seed = 121 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               54 

 
 

Figure 30 - Internal Criteria Gamma index for dataset of 4 blobs, 500 nodes, seed = 121 

 
Figure 31 - External Criteria for dataset of 4 blobs, 500 nodes, seed = 121 

The internal criteria reject the null hypothesis as expected. The external 
criteria also reject the null hypothesis however the absolute values of the 
first three are not close to one. The reason is that according to the external 
partition the number of the clusters should be 4. The two clusters however are 
so close that it is inevitable to consider them as one. 

 Concentric Circles 

We do not expect the BSAS algorithm to be able to recognize clusters of other 
shapes, except from compact ones. In this section and the next one we are 
interested to see how this failure is expressed in the values of the indices 
and in the actual clustering. The plotting of the relative indices can be seen 
below: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               55 

 

 
Figure 32 - Relative Criteria Indices for BSAS for 2 concentric circles of 500 nodes, seed = 121 

Compared to the plot of the previous test case, where we examined compact 
clusters, we can see that the values of the indices do not generally agree to 
some specific values for the threshold to give a good clustering. If we 
execute the BSAS with t = 1.1 which is the maximum value of the Dunn Index the 
result is the following: 

 
 

 
 

Figure 33 – a) Execution of BSAS for t = 1.1, concentric circles of 500 nodes, seed = 121, b) 
Internal Criteria for dataset of 2 concentric circles, 500 nodes, seed = 121 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               56 

 
Figure 34 - External Criteria for dataset of 2 concentric circles, 500 nodes, seed = 121 

 
As expected, the values of all the indices, internal and external, make us 

accept the null hypothesis of randomness which means that our clustering did 
not produce good results. 
 

 Moons 

The same comments made for the test on the concentric circles also apply in 
this test scenario. The null hypotheses of the external criteria are rejected 
as our dataset presents a structure, however the values of the indices are 
very low. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               57 

 
Figure 35 - Relative Criteria Indices for 2 moons of 500 nodes, seed = 121 

 
 
Figure 36 – a) Execution of BSAS for t = 1.1, moons of 500 nodes, seed = 121, b) Internal Criteria for 

dataset of 2 moons, 500 nodes, seed = 121 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               58 

 

 
Figure 37 - External Criteria for dataset of 2 moons, 500 nodes, seed = 121 

4.2 Two Threshold Sequential Scheme (TTSS) 

TTSS was proposed by (Trahanias & Skordalakis, 1989) as a slightly alternative 
approach to sequential clustering that would deal with the disadvantage of 
BSAS of not being able to reassign a vector to another cluster after it has 
been assigned to one, as we described at the relative section of this thesis. 

In the BSAS the distances are divided into two categories, the ones 
“smaller” than the value of the threshold θ and the ones “larger” than it. The 
writers introduced another distance between these two categories, the “middle” 
distance. In order to determine this extra kind of distance we need to define 
two thresholds instead of one let them be T1 and T2, T1 < T2. If the distance d 
between a vector and the nearest cluster is less than T1 or more than T2 then 
the algorithm works exactly the same way the BSAS does. If however T1 < d < T2, 
then the TTSS puts these vectors aside and tries to assign them to a cluster 
after having assigned all other vectors. If they still remain at this “middle” 
distance area, then one of them forms a new cluster and the procedure goes on 
until no vector remains unassigned. 

The pseudocode of the algorithm can be seen below: 

Input values: data, threshold1, threshold2 

 Use the first vector of the data to create a new cluster 

 Update the centroids by adding this new cluster 

 while there are still unprocessed vectors: 
o For each other vector xi in data: 

 if the xi is not processed: 

 count the distance from xi to the clusters’ centroids 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               59 

 take the closest cluster 
 if the closest distance is smaller than Θ: 

 add it to the closest cluster 
 else: 

 create a new cluster 

 Update the centroids 
o If no vector was assigned to a new or preexisting cluster: 

 create a new cluster 

 Update the centroids 
Outputs: The labeled data, the centroids 

4.2.1  Disadvantages of the algorithm 

The TTSS algorithm exchanges a less sensitivity to the order of data 
presentation with more complexity, but most of all with making the user 
responsible to define a second threshold value, along with the first one. 

4.2.2 Testing on synthetic data 

 Blobs 

After running the relative criteria we get the following results: 

 
Figure 38 - Relative Criteria Indices for TTSS for 4 blobs of 500 nodes, seed = 124 

What is noteworthy is that each index takes the same values for many of 
the different values of the threshold2. This is why there are so many values 
for threshold2 but so few line plots.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               60 

Every index indicates a different set of values for the two thresholds as 
the optimal one. For Dunn index this is t1 = 3.55, t2 = 4.26, for Davies-
Bouldin t1 = 3.20, t2 = 3.55 and for silhouette index is t1 = 4, t2 = 4.26. 
Let us execute all the above combinations of thresholds. The results are: 

 
 
 
 
 

 
The first execution in figure 27 a) partitions the dataset into 3 large 

clusters and assigns a few noisy vectors at their own separate cluster. The 
second execution at b) manages to partition the large cluster that is 
consisted of two separate blobs placed closely to each other into two smaller 
ones. Finally the third execution at c) partitions the dataset into three 
clusters. All executions make sense. The first because it isolates noisy 

Figure 39 – a) Execution of BSAS for t1 = 3.55, t2 = 4.26, 4 blobs of 500 nodes, seed = 124, b) 
Execution of BSAS for t1 = 3.20 t2 = 3.55, 4 blobs of 500 nodes, seed = 124, c) Execution of BSAS for 

t1 = 4, t2 = 4.26, 4 blobs of 500 nodes, seed = 124 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               61 

vectors, the second because it follows the external partition of 4 blobs and 
the third because it merges two blobs that are very close to each other into 
one cluster. In this case, all indices provide good indications. 

We choose to execute the internal and external criteria for the second 
execution at b).  All the results are the expected ones. 

 
Figure 40 - Internal Criteria for TTSS for dataset of 4 blobs, 500 nodes, seed = 124 

 
Figure 41 External Criteria for dataset of 4 blobs, 500 nodes, seed = 124 

 Concentric Circles - Moons 

As in BSAS the TTSS fails to reveal the structure of datasets having the above 
shapes. This is why we will not provide the results of the execution for such 
cases.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               62 

Chapter 5                                                                           

Clustering algorithms based on graph theory 

The algorithms of this category derive the main methods they use to approach 
the clustering problem from the theory of graphs. As opposed to the rest of 
the algorithms described in this thesis, in graph clustering we do not view 
the dataset as a set of vectors but rather as the nodes of a graph and the 
distances between them as the edges of the graph. (Marinus van Dongen, 2000) 
makes this distinction explicit by referring to graph clustering instead of 
vector clustering. According to the writer the two models do not exclude each 
other but one model may inspire methods which are hard to conceive in the 
other model. 

The steps required to divide a group of vectors into clusters according 
graph clustering algorithms can be summarized to just two: 

 Step 1: Take a random set of data vectors X   R
N
 and consider them the 

nodes of a graph. After that take the set of all possible edges between 
the nodes E = {Edge(xi, xj)| 0 ≤ i,j ≤ N, i ≠ j} and apply some criteria 
in order to choose a subset of E that will make the graph a connected 
one. There are several ways this can happen and several kinds of graphs 
we can come up with. In this thesis we examine the minimum spanning tree 
graph and the Delaunay triangulation graph. 

 Step 2: Partition the graph into subgraphs by applying some partitioning 
rules, usually rules that result in cutting off the longest edges. In 
this way, each subgraph consists of a cluster. 

5.1  Minimum Spanning Tree Algorithm 

Although similar attempts to cluster data based on the notion of the minimum 
spanning tree had been made in the past (Arkadev & Braverman, 1967) (Johnson, 
1967), this specific algorithm presented here is proposed by (Zahn, 1971) and 
is used in order to find clusters in the 2-D space. The definition of the 
cluster is based in the Gestalt psychology.  

The algorithm considers the data vectors as the nodes of a complete graph 
and at a second stage it constructs the minimum spanning tree of this graph. 
The third step is the most important, as it introduces the basic concept of 
the algorithm, the term “inconsistent” which is used to characterize the edges 
of the minimum spanning tree which are “significantly” larger than the average 
edges. 

The quantification of the term “significantly” and through this, the 
mathematical modeling of the “inconsistency” of the edges can be achieved in 
two ways. However, before we describe them, we should define the notion of the 
“neighborhood” used in both methods. For every edge ei, its neighborhood is 
the set of edges on paths from ei having a certain length that in our case is 
defined as an integer amount and provided to the algorithm as an argument. 
Since every edge is attached by default to two nodes, we can divide its total 
neighborhood in two parts, which can be denoted as N1 and N2, for each of the 
edges’ nodes. 

The first method of characterizing an edge as inconsistent is by setting a 
threshold to how many times the number of standard deviations of the weights 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               63 

of its total neighborhood can go above the mean weights of the total 
neighborhood. Mathematically this can be written as: 

 
 

                                  
 

(5.1)  

where q is the user defined integer number of standard deviations. 
 The second is by calculating the ratio between the weight of the edge 

under investigation and the neighborhood average weights and also setting a 
threshold to it, provided to the algorithm as user defined parameter. This can 
be written as: 

 
  

               
   (5.2)  

 
It is obvious that, different approaches applied in order to define the 

“inconsistency” of an edge can lead to different results. 
The algorithm is described as:  

Inputs: The data matrix, number of steps defining neighbor edges, number 
of standard deviations, threshold for the ratio of the weights 
 

 Construct a weighted complete graph G, by setting the data vectors as 
its vertices and the distance between two vertices as the weight of the edge 
that connects them. 

 Define the minimum spanning tree of G. 

 Define the inconsistent edges of the minimum spanning tree. 

 Define the clusters by defining the connected components of the minimum 
spanning tree after the removal of the inconsistent edges. 

 
Outputs: The labeled data 

5.1.1  Implementation Notes  

The easiest way to represent the two graphs that are manipulated in the 
algorithms, the complete graph and the minimum spanning tree (which is a 
special case of graph) is with the use of two-dimensional arrays, where the 
indices represent the nodes of the graph and the values of the arrays the 
weights of the edges. 

Constructing the complete graph by setting the euclidean distances as 
weights is an easy task and is accomplished by calculating the euclidean 
distance between all nodes of the graph. After that we build the MST matrix by 
executing the Kruskal algorithm. According to it, we iterate through the final 
number of the edges of the MST graph, which is known on advance and it is 
equal to N – 1, where N is the number of the nodes. In each iteration we add 
in the MST the edge with the minimum weight out of the set of the unvisited 
edges. 

The next step includes characterizing some of the edges as inconsistent. 
We already mentioned the two inconsistency criteria we can use. After many 
executions of the algorithm the best way is to use both the criteria in a 
supplementary way. So there may be cases where one criterion may fail by an 
edge still be characterized as inconsistent because of the other criterion. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               64 

However, what is more difficult from the implementation point of view, at this 
step is not applying the inconsistency criterion, but gathering all the 
weights of each edge’s neighborhood edges. As neighborhood edges we define the 
edges that lie k steps far from the edge under consideration. The value of k 
is provided as an argument to the algorithm. 

The solution that was chosen was to build a recursive utility function, 
the _recursion_util that would be called twice from the algorithm’s main 
function, one time for each of the nodes defining the edge under 
consideration. This function is then called min(k, depth of N1) more times and 
returns the list of weights of all the neighborhood edges. The same procedure 
is also applied for the N2 neighborhood.    

Finally, after obtaining the MST matrix and the inconsistent edges, we 
need to cut the MST at the inconsistent edges. The cut would create a forest 
of threes, each of which will consist of a separate cluster. We know that the 
graph traversing algorithm that creates a forest of trees is depth first 
search, so we are implementing a dfs recursive function that will assign to 
each node a cluster id depending on which tree it belongs to. 

5.1.2  Disadvantages of the algorithm 

Although simple as a concept, the MST algorithm has a more complex 
implementation than other clustering algorithms so it should not be considered 
for a speed execution.  

The most important disadvantage however is the case when different 
clusters are separated by two or more adjacent edges, rather than one, which 
have greater weight than the average. In such case a formation like a “bridge” 
is created that leads to the non separation of the different clusters. (Zahn, 
1971) describes an aspect of this disadvantage as the case of “touching 
clusters”. 

We can observe an example of such a case to the figures below. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               65 

 
Figure 42 - MST execution on three clusters with 120 nodes, seed = 34 

 
Figure 43 - The MST of three clusters with 120 nodes along with edge weights, seed = 34 

In Figure 49 we can see that although we would expect three clusters, the 
cluster in the middle of the feature space is considered the same with the 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               66 

larger one on the upper left side. The reason can be seen on Figure 50 below. 
The two clusters are connected with an edge that has a weight of 2.01. The 
edges that consist of the neighborhood of this edge are large enough for this 
edge to be characterized as inconsistent, given of course the specific 
parameterization we used to run the algorithm. 

One final disadvantage is that it creates separate clusters for the noisy 
nodes. We can see this in the execution below. 

 
Figure 44 - MST execution on a single cluster with 300 nodes, seed = 25 

All around the single cluster we can spot nodes having colors other than 
blue which means that they belong to different clusters. One remedy would be 
to run a merge procedure after the execution of the MST, between such clusters 
with a small number of nodes, for example 1 – 5, and assign them to the 
nearest larger cluster. 

We have implemented such a procedure in our code for clusters that have up 
to only two nodes. 

5.1.3 Testing on synthetic data 

 Blobs 

We first execute the relative criteria indices on sequential executions on the 
dataset during which we are varying the parameters of the algorithm. Since MST 
algorithm is a hard clustering algorithm, the relative criteria indices we 
have chosen to implement are indices defined for this type of clustering, 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               67 

namely Dunn and Silhouette index. However, instead of varying the number of 
clusters as in the case of the k-means algorithm, we have adjusted our code so 
that to calculate the indices values to variations of 2 of the parameters used 
in MST algorithm, the k number of neighbor nodes and the t threshold of the 
second inconsistency criterion. We left q unchanged to 1.5 since it is the 
parameter which affects the least the clustering result among the two others.  

 
Figure 45 MST - Relative Criteria Indices for 4 blobs of 500 nodes, seed = 118 

We can notice that the plots of both the indices look alike. They both 
suggest that the best clustering results are obtained for values of f above 
2.7 and for values of k roughly between 3 and 6. We tested all the possible 
combinations of k and f that maximize the indices and we have confirmed that 
the clustering in all of them is the same and the best that could be made.  

It can be seen below: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               68 

 
Figure 46 - Execution of MST for k = 4, f = 2.7 for 4 blobs of 500 nodes, seed = 118 

 

 
Figure 47 - Internal Criteria Gamma index for dataset of 4 blobs, 500 nodes, seed = 118 

 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               69 

 
Figure 48 - External Criteria for dataset of 4 blobs, 500 nodes, seed = 118 

 
The only index for which the null hypothesis is accepted is the Hubert’s 

Gamma index. However, and this is valid for all external criteria indices, the 
values of this index are almost all concentrated into one bin (roughly 90% of 
them) so we cannot make easily the assumption that they are normally 
distributed. After all the index’s value for our dataset is larger than all of 
the values of the same index for the random datasets created with the monte 
carlo simulation.  

The second example we will see on this category of datasets is one where 
the MST algorithm fails to provide the best clustering result due to the 
“touching clusters” disadvantage. We execute the relative indices and the MST 
for the dataset with seed 121: 

 
Figure 49 - MST - Relative Criteria Indices for 4 blobs of 500 nodes, seed = 121 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               70 

 

 
Figure 50 - Execution of MST for k = 3, f = 3.5 for 4 blobs of 500 nodes, seed = 121 

The clustering result of figure 38 is the best that can be accomplished by 
MST. No other combination of parameters can lead the indices at better values 
due to the fact that between the two clusters on the right there are some 
nodes that act as a “bridge” between them, making it impossible for the 
algorithm to separate them without disturbing the rest of the partition. 

 Concentric circles 

In the case of non spherical clusters, the silhouette index does not 
perform correct, as it was not designed for them. Consequently, we should 
ignore the results taken from it. However, the Dunn Index performs pretty well 
in the case of concentric circles by giving correct indications of the values 
of the parameters that should be used in the MST algorithm executions. We 
should not consider though using it as an general index designated to be 
applied in cases where the clusters are not spherical. It only works here 
because of the morphology of the dataset. Specifically, it is the nominator of 
the index, which is the minimum distance between nodes on different clusters 
that takes its maximum value when the clustering result returned is the 
correct one, meaning that every circle has been assigned to one cluster 
exactly. This is where the index also takes its largest value. The fact that 
the denominator also takes its maximum value at the same result, and therefore 
pushes the value of the index to a lower level, does not affect the index that 
much.  

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               71 

 
Figure 51 - Relative Criteria Indices for 2 concentric circles of 500 nodes, seed = 118 

After inspection of Figure 46 we run the MST algorithm with the parameters 
k = 4, f = 3.5. The result we take can be seen in the following scatter plots 
and histograms for the internal and external indices: 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               72 

 
Figure 52 - Execution of MST for k = 4, f = 2.7 for 2 concentric circles of 500 nodes, seed = 118 

 

 
Figure 53 - Internal Criteria for dataset of 2 concentric circles, 500 nodes, seed = 118 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               73 

 
Figure 54 - External Criteria for dataset of 2 concentric circles, 500 nodes, seed = 118 

As in the previous example for MST algorithm, the only index that does not 
agree with the correct clustering is the gamma index run for on the external 
criteria frame. We explained why we can overlook this result on the previous 
execution of the algorithm. 

 
 
 
 
 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               74 

 

 Moons 

 
Figure 55 - Relative Criteria for dataset of two moons, 500 vectors, seed = 118 

The same conclusion we made for the indices in the previous section is also 
valid here. The Dunn index, based on its nominator manages to perform well. On 
the other hand, the Silhouette index is useless in a non spherical dataset. 
Running the MST with the one of the parameter pairs suggested by the Dunn 
Index, k = 3, f = 2.7, we obtain:  

 
Figure 56 - Execution of MST for k = 4, f = 2.7 for 2 moons of 500 nodes, seed = 118 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               75 

 
Figure 57 - Internal Criteria for dataset of 2 moons, 500 nodes, seed = 118 

 

 
Figure 58 - External Criteria for dataset of 2 moons, 500 nodes, seed = 118 

The clustering is the best possible. All remarks for internal and external 
criteria made in the previous section of concentric circles are valid here 
too.  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               76 

5.2  Delaunay Triangulation Algorithm 

(Eldershaw & Hegland) proposed an algorithm in order to overcome the 
limitation of many preexistent algorithms, mainly those which belong to the 
category of the cost minimizing function, to presume that the clusters under 
consideration are spherical. 

Following the general method described in Σφάλμα! Το αρχείο προέλευσης της 
αναφοράς δεν βρέθηκε., the proposed algorithm constructs the initial graph of 
the dataset by using the Delaunay triangulation technique(Delaunay, 1934), a 
technique heavily used in the computer graphics field. A visual example of the 
result of triangulating a dataset in this way is the following: 

 
Figure 59 - Example of Delaunay triangulation of a dataset of 1 blob of 20 nodes 

After the construction of the initial graph, a graph partitioning 
algorithm has to be defined in order to choose a cut-off point p that will 
partition the graph into clusters. The writers tested the technique used in 
the MST algorithm and we described in 5.1 with little grade of success, as it 
resulted in preserving all the edges due to the large number of edges coming 
from the same vertex, contrary to the small number that exists in minimum 
spanning tree graph. Another reason they suggest is that the MST technique is 
not effective on the presence of noisy data. 

The solution they propose is to divide the set of edges in two subsets. 
One subset will contain the inter-cluster edges and the other the intra-
cluster ones. Then, the following function is defined: 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               77 

 
     

           
   

   

  
 
           

   
   

  
   

 

 
(3.15)  

where each of the two terms is a measure of the variance of each subset. 
Obviously, the more homogenous the two subsets are, the less the value of T. 
So the purpose is the minimization of T with respect to the cut p. This is 
performed in an empirical way. The edges are sorted and then a number of 
twenty evenly spaced values of p are chosen. Twenty values of T are calculated 
and the p for which the T value is minimum is selected. 

Unfortunately, we could not reproduce the good results mentioned by the 
writers by using their suggested method. So we created a small and simple 
variation of it. Instead of summing up the variations of the two subsets and 
picking up the minimum summation, we calculated the differences between the 
means of the subsets and selected the cut p for which this difference was 
maximum. 

 
                  (3.16)  

 
The phrase “the simpler is better” matches perfectly here, since this 

simple technique led to pretty good results.  

5.2.1 Disadvantages of the algorithm 

Although the Delaunay triangulation algorithm does not require any 
parameter at all, which is a huge advantage, it has the same disadvantages 
that the MST algorithm has. The first is that it cannot avoid the curse of the 
“touching clusters”, which of course can be an advantage in cases where these 
clusters need to be recognized as one. An example can be found bellow:  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               78 

 
Figure 60 - Example of Delaunay clustering algorithm for 6 blobs of 1000 nodes, seed = 151 

Here, the “bridges” of nodes between the different clusters result in the 
failure of the algorithm, as it cannot distinguish in the cluster with black 
color the two(at least) separate clusters that we can easily see by mere 
visual observation. 

Finally, the algorithm assigns noisy isolated nodes to single clusters 
which can be easily handled with a merging procedure as mentioned in 5.1.2. 

5.2.2 Testing on synthetic data 

 Blobs 

Since the Delaunay triangulation algorithm (DTA) does not take any parameters 
we will not be running relative criteria for it. The execution on spherical 
clusters can be found below: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               79 

 
Figure 61 - Execution of DTA for 4 blobs of 500 nodes, seed = 352 

 
Figure 62 - Internal Criteria Gamma index for dataset of 4 blobs, 500 nodes, seed = 352 

When executing the monte carlo simulation all the uniformingly distributed 
vectors belong to one cluster as seen below: 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               80 

 
Figure 63 – DTA clustering of a uniformingly random dataset 

This means that the external indices calculated with reference to the 
random data produced by the monte carlo simulations have always the same 
value, as can be seen below. 
 

 Concentric circles – Moons 

 

 
 

 

Figure 64 – a) Execution of DTA for 2 concentric circles of 500 nodes, seed = 107, b) Execution of 
DTA for 2 moons of 500 nodes, seed = 118 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               81 

In the cases of non spherical clusters, the DTA will be able to 
distinguish clusters that have a certain distance between them. It fails to 
divide a dataset into clusters when the clusters are too close to each other, 
something obvious in Figure 56  b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               82 

Chapter 6                                                                                

Application of Cluster Analysis to Image Segmentation  

One of the most promising fields of research today is Computer Vision. 
Although Computer Vision has made great advances during the last decades it 
still remains very far away of its final, its ultimate goal. This is making 
computers able to interpret an image in the same effortless way humans and 
animals do (Szeliski, 2010). This definition of the scope of the field is 
usually offered as a meaningful definition of the field itself. One of the 
subfields of Computer Vision which is going to employ our efforts in the 
current chapter is image segmentation. This is because we can apply in this 
particular subfield the clustering algorithms of the previous chapters.  

According to (Shapiro & Stockman, 2000) image segmentation refers to the 
partition of an image into a set of regions that cover it. Another, more 
informal way to express the same meaning is found in (Szeliski, 2010) where 
image segmentation is described as the task of finding groups of pixels that 
“go together”. (Gonzalez & Woods, 2007) provide a mathematical definition of 
the process of image segmentation based on set theory. By reading these 
definitions, we can easily understand why image segmentation fits so well into 
the frame of cluster analysis as described in 1.1. In fact cluster analysis 
can provide a general model for solving image segmentation tasks. This is 
because the aim of both fields is to search into datasets for groups that 
present certain uniformity, compared to other groups. 

Although we will examine only one type of methods of image segmentation in 
the current thesis, the ones based on clustering techniques, there are several 
more techniques used in practice. We have already described threshold based 
techniques for example in 4.1.2, as a way to choose a value for the threshold 
in BSAS. Other ones include Edge based techniques, region based techniques 
etc.  

6.1  Testing on real data 

In order to test our algorithms on real data we use images that can be found 
on the site (Berkeley Segmentation Dataset and Benchmark). This is a very 
commonly used library of images for testing segmentation techniques. What is 
so special about these images is that they have been processed by 30 human 
subjects who gave their clustering results. We accept these human-processed 
results as a benchmark for the validation of our algorithms (remember the 
external criteria on section 2.1.2), or as the site describes it the human 
segmented images provide our ground truth boundaries.  

We have chosen some of the algorithms that we implemented in this thesis 
or a combination of them in order to test them on the images. The choice was 
not a free one, as the algorithms based on graph theory could not practically 
be used because of the time demanded to process the data. We have chosen 
instead to run  

 k-means after initialization of the centroids by using BSAS, 

 FCA after initialization of the centroids by using BSAS,  

 FCA and PCA after initialization of the centroids by using BSAS. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               83 

Regarding the validation, as we indicated in the previous paragraph, we 
use the external criteria and specifically a modification of the Rand index to 
measure the similarity between our clustering result and one human processed 
clustering result. The modification consists of the fact that the volume of 
the data is so large that it is impossible to calculate the rand index for all 
the pixels of the images. The workaround chosen was to uniformingly take 5000 
pixels, the same ones from each dataset, the clustered and the human 
segmented, and calculate the index based on them. 

Each of the algorithms was executed on three different images randomly 
picked out of the image library used. We have proceeded to sequential 
executions for m = 2…8, k, where m is the number of clusters and k the number 
of clusters used by the human object in order to segment the image. In order 
to visually observe the results of our clustering efforts, we assign a random 
color to each of the clusters and depict all the pixels of the image by using 
the corresponding color of the cluster they belong to. The clustered images we 
result in by using the clustering methods are placed into tables. The first 
image is the original one that can be seen as the starting point, whereas the 
final image is the human segmented image that can be seen as the final point, 
the point we want to reach to. 

Based on the notes above, the results can be found in the following pages: 

K-means – initialization with BSAS 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rand index: 0.604 
No of clusters = 2 

Original Image Rand index: 0.679 
No of clusters = 3 

Rand index: 0.75 
No of clusters = 6 

Rand index: 0.754 
No of clusters = 7 

Rand index: 0.756 
No of clusters = 8 

Rand index: 0.76 
No of clusters= 10 

Human Segmented 
Image 

Rand index: 0.757 
No of clusters = 4 

Rand index: 0.76 
No of clusters = 5 

Figure 65 – Image number 113044, k-means algorithm, BSAS for centroid initialization 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               84 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 66 -Image number 231015, k-means algorithm BSAS for centroid initialization 

Rand index: 0.668 
No of clusters = 2 

Original Image Rand index: 0.7512 
No of clusters = 3 

Rand index: 0.794 
No of clusters = 6 

Rand index: 0.802 
No of clusters = 7 

Rand index: 0.802 
No of clusters = 8 

Rand index: 0.805 
No of clusters= 28 

Human Segmented 
Image 

Rand index: 0.784 
No of clusters = 4 

Rand index: 0.794 
No of clusters = 5 

Figure 67 - Image number 181091, k-means algorithm, BSAS for centroid initialization 

Rand index: 0.515 
No of clusters = 2 

Original Image Rand index: 0.67 
No of clusters = 3 

Rand index: 0.784 
No of clusters = 6 

Rand index: 0.797 
No of clusters = 7 

Rand index: 0.812 
No of clusters = 8 

Rand index: 0.854 
No of clusters= 25 

Human Segmented 
Image 

Rand index: 0.731 
No of clusters = 4 

Rand index: 0.767 
No of clusters = 5 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               85 

 
FCA – initialization with BSAS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Rand index: 0.607 
No of clusters = 2 

Original Image Rand index: 0.702 
No of clusters = 3 

Rand index: 0.752 
No of clusters = 6 

Rand index: 0.75 
No of clusters = 7 

Rand index: 0.758 
No of clusters = 8 

Rand index: 0.76 
No of clusters = 

10 

Human Segmented 
Image 

 

Rand index: 0.754 
No of clusters = 4 

Rand index: 0.765 
No of clusters = 5 

Figure 68 - Image number 113044 FCA, BSAS for centroid initialization 

Rand index: 0.523 
No of clusters = 2 

Original Image Rand index: 0.67 
No of clusters = 3 

Rand index: 0.784 
No of clusters = 6 

Rand index: 0.8 
No of clusters = 7 

Rand index: 0.807 
No of clusters = 8 

Rand index: 0.851 
No of clusters= 25 

Human Segmented 
Image 

 

Rand index: 0.735 
No of clusters = 4 

Rand index: 0.767 
No of clusters = 5 

Figure 69 - Image number 231015, FCA, BSAS for centroid initialization 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               86 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Rand index: 0.663 
No of clusters = 2 

Original Image Rand index: 0.748 
No of clusters = 3 

Rand index: 0.792 
No of clusters = 6 

Rand index: 0.798 
No of clusters = 7 

Rand index: 0.803 
No of clusters = 8 

Rand index: 0.807 
No of clusters= 28 

Human Segmented 
Image 

 

Rand index: 0.78 
No of clusters = 4 

Rand index: 0.791 
No of clusters = 5 

Figure 70 - Image number 181091, FCA, BSAS for centroid initialization 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               87 

FCA and PCA - initialization with BSAS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Rand index: 0.284 
No of clusters = 2 

Original Image Rand index: 0.289 
No of clusters = 3 

Rand index: 0.665 
No of clusters = 6 

Rand index: 0.67 
No of clusters = 7 

Rand index: 0.67 
No of clusters = 8 

Rand index: 0.64 
No of clusters= 10 

Human Segmented 
Image 

 

Rand index: 0.65 
No of clusters = 4 

Rand index: 0.675 
No of clusters = 5 

Rand index: 0.517 
No of clusters = 2 

Original Image Rand index: 0.637 
No of clusters = 3 

Rand index: 0.706 
No of clusters = 6 

Rand index: 0.711 
No of clusters = 7 

Rand index: 0.701 
No of clusters = 8 

Rand index: 0.811 
No of clusters= 25 

Human Segmented 
Image 

 

Rand index: 0.705 
No of clusters = 4 

Rand index: 0.716 
No of clusters = 5 

Figure 71 - Image number 113044 FCA, PCA, BSAS for centroid initialization 

Figure 72 - Image number 231015, FCA, PCA, BSAS for centroid initialization 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We notice that the rand index calculated after the execution of the 

algorithms manages to reach up to the level of 85% in the case of the image 
231015. The highest values of the index are achieved when the number of 
clusters is the same as the number of the human defined segments. K-means and 
FCA give pretty much the same results in all the executions so we can safely 
consider that these two algorithms will achieve the same performance when 
executed on an image. On the other hand, the combination of FCA and PCA, does 
not reach similarly high values for rand index. What it actually does though 
is that it makes the objects of the image more compact. In a task where we 
would have to separate the foreground and the background of an image, this 
would probably be an algorithm of choice. 

We also notice that even in the cases where the Rand index comes to report 
pretty good values, the resulting images are over-segmented. This is of course 
expected since each object in the image is consisted of pixels that have 
different values of color for several reason, as we will see. In the following 
section we are applying a merging procedure on the clustered image that 
incorporates the small segments that are scattered throughout the image into 
larger segments. 

Figure 73 - Image number 181091, FCA, PCA, BSAS for centroid initialization 

Rand index: 0.667 
No of clusters = 2 

Original Image Rand index: 0.634 
No of clusters = 3 

Rand index: 0.746 
No of clusters = 6 

Rand index: 0.671 
No of clusters = 7 

Rand index: 0.74 
No of clusters = 8 

Rand index: 0.769 
No of clusters= 28 

Human Segmented 
Image 

 

Rand index: 0.68 
No of clusters = 4 

Rand index: 0.67 
No of clusters = 5 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               89 

6.2 Merging Procedure 

As we have already noted, we are making the assumption that the images under 
investigation are consisted of concrete objects which, for some reason, have 
different colors in different parts of their surface. This happens because of 
the reflection of the light, or because they are made of different materials. 
The assumption however considers that they present a basic structure, which is 
expressed by a basic color, which in turn is expressed by a basic cluster, 
into which we can integrate all the other secondary clusters that consist of 
the object under investigation. 

For example, if we represent an image array with the cluster id of each of 
its pixels we would have: 

5 5 5 5 5 5 5 
5 5 1 1 1 5 5 
5 5 5 1 1 5 5 
5 5 1 1 1 5 5 
5 5 5 5 1 5 5 
5 5 5 5 5 5 5 

Then the cluster with id = 1, which forms an “island” into the cluster 
with id = 5 can be integrated into the latter under our assumption. 

A way to find these islands into our clustered images is by using depth 
first search. We are defining a threshold for the largest number of pixels an 
“island” can have and we are then traversing the whole image. After finding 
one such “island” we keep track of which is the cluster of each of its 
neighborhood pixels. The cluster appearing the most is the prevailing, the 
dominant one, so the “island” is merged into this. 

For each algorithm we are executing the merging procedure on the 
clustering results of the previous section. The threshold value we 
experimentally found that it gives us good clustering values is 500. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               90 

 K-means – initialization with BSAS – after merging operation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rand index: 0.63 
No of clusters = 2 

Original Image Rand index: 0.702 
No of clusters = 3 

Rand index: 0.829 
No of clusters = 6 

Rand index: 0.816 
No of clusters = 7 

Rand index: 0.784 
No of clusters = 8 

Rand index: 0.843 
No of clusters= 10 

Human Segmented 
Image 

Rand index: 0.823 
No of clusters = 4 

Rand index: 0.815 
No of clusters = 5 

Figure 74 - Image number 113044, k-means algorithm, BSAS for centroid initialization, after merging 

Rand index: 0.511 
No of clusters = 2 

Original Image Rand index: 0.683 
No of clusters = 3 

Rand index: 0.808 
No of clusters = 6 

Rand index: 0.812 
No of clusters = 7 

Rand index: 0.819 
No of clusters = 8 

Rand index: 0.862 
No of clusters= 25 

Human Segmented 
Image 

 

Rand index: 0.751 
No of clusters = 4 

Rand index: 0.79 
No of clusters = 5 

Figure 75 - Image number 231015, k-means algorithm, BSAS for centroid initialization, after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               91 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rand index: 0.671 
No of clusters = 2 

Original Image Rand index: 0.748 
No of clusters = 3 

Rand index: 0.847 
No of clusters = 6 

Rand index: 0.841 
No of clusters = 7 

Rand index: 0.84 
No of clusters = 8 

Rand index: 0.849 
No of clusters= 28 

Human Segmented 
Image 

 

Rand index: 0.8 
No of clusters = 4 

Rand index: 0.822 
No of clusters = 5 

Figure 76 - Image number 181091, k-means algorithm, BSAS for centroid initialization, after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               92 

 

FCA initialization with BSAS – after merging operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Rand index: 0.519 
No of clusters = 2 

Original Image Rand index: 0.695 
No of clusters = 3 

Rand index: 0.81 
No of clusters = 6 

Rand index: 0.814 
No of clusters = 7 

Rand index: 0.822 
No of clusters = 8 

Rand index: 0.854 
No of clusters= 25 

Human Segmented 
Image 

 

Rand index: 0.773 
No of clusters = 4 

Rand index: 0.791 
No of clusters = 5 

Figure 78 - Image number 231015, FCA, BSAS for centroid initialization after merging 

Rand index: 0.629 
No of clusters = 2 

Original Image Rand index: 0.694 
No of clusters = 3 

Rand index: 0.783 
No of clusters = 6 

Rand index: 0.783 
No of clusters = 7 

Rand index: 0.784 
No of clusters = 8 

Rand index: 0.804 
No of clusters= 10 

Human Segmented 
Image 

 

Rand index: 0.823 
No of clusters = 4 

Rand index: 0.765 
No of clusters = 5 

Figure 77 Image number 113044 FCA, BSAS for centroid initialization after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               93 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

  

Rand index: 0.668 
No of clusters = 2 

Original Image Rand index: 0.769 
No of clusters = 3 

Rand index: 0.837 
No of clusters = 6 

Rand index: 0.842 
No of clusters = 7 

Rand index: 0.849 
No of clusters = 8 

Rand index: 0.826 
No of clusters= 28 

Human Segmented 
Image 

 

Rand index: 0.798 
No of clusters = 4 

Rand index: 0.814 
No of clusters = 5 

Figure 79 - Image number 181091, FCA, BSAS for centroid initialization after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               94 

FCA and PCA - initialization with BSAS after merging operation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rand index: 0.28 
No of clusters = 2 

Original Image Rand index: 0.28 
No of clusters = 3 

Rand index: 0.678 
No of clusters = 6 

Rand index: 0.684 
No of clusters = 7 

Rand index: 0.68 
No of clusters = 8 

Rand index: 0.69 
No of clusters= 10 

Human Segmented 
Image 

 

Rand index: 0.669 
No of clusters = 4 

Rand index: 0.694 
No of clusters = 5 

Figure 80 - Image number 113044 FCA, PCA, BSAS for centroid initialization after merging 

Rand index: 0.511 
No of clusters = 2 

Original Image Rand index: 0.61 
No of clusters = 3 

Rand index: 0.65 
No of clusters = 6 

Rand index: 0.655 
No of clusters = 7 

Rand index: 0.658 
No of clusters = 8 

Rand index: 0.798 
No of clusters= 25 

Human Segmented 
Image 

 

Rand index: 0.67 
No of clusters = 4 

Rand index: 0.663 
No of clusters = 5 

Figure 81 - Image number 231015, FCA, PCA, BSAS for centroid initialization after merging 

Figure 80 - Image number 113044 FCA, PCA, BSAS for centroid initialization after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The clustering results after the execution of the merging operation in some 
cases present significant improvement. For example, the rand index for the k-
means best execution increases for image 113044 from 76% to 84%. The results 
for the same algorithm on image 231015 increase from 81% to 85%. Similar 
increases are noted for the majority of the executions of the previous 
sections.  

What is more important though is the fact this merging operation 
accomplishes to make the objects on the image appear far more compact, 
something that cannot be achieved only by the execution of the clustering 
algorithms on the image. 

These results force us to consider clustering procedures not as 
independent procedures for image segmentation but better as the first stage to 
segmenting an image followed by refinement procedures one of which is the 
merging procedure just described. 

 

 
 
 

Rand index: 0.677 
No of clusters = 2 

Original Image Rand index: 0.637 
No of clusters = 3 

Rand index: 0.771 
No of clusters = 6 

Rand index: 0.77 
No of clusters = 7 

Rand index: 0.759 
No of clusters = 8 

Rand index: 0.776 
No of clusters= 28 

Human Segmented 
Image 

 

Rand index: 0.676 
No of clusters = 4 

Rand index: 0.667 
No of clusters = 5 

Figure 82 - Image number 181091, FCA, PCA, BSAS for centroid initialization after merging 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               96 

 

Conclusions 

 
Cluster analysis is the field of unsupervised learning that includes processes 
that divide data into groups according to some proximity measure. Cluster 
validity is the term used to refer to all procedures used to evaluate the 
final result of a clustering algorithm. We examined, implemented and tested on 
synthetic datasets seven different clustering algorithms along with all the 
appropriate cluster validity criteria. Finally we applied selected algorithms 
to the task of segmenting images and proposed an effective technique to make 
objects on clustered images more compact. 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               97 

Appendix 

The current section serves as a user guide and the documentation to the 
scripts provided along with the thesis at the location 
https://github.com/thanSkourtan/Cluster-Analysis-Algorithms. 

User Guide 

Every algorithm category can be located in the package named after it. For 
every algorithm there are two basic scripts. One of them is the basic module 
which is named after the algorithm and contains the implementation of the 
algorithm and the other is included in the folder test (this is not a module, 
so it cannot be imported anywhere) in each algorithm’s package and is named 
after the algorithms plus the string “_test” at the end of the script. The 
second file contains a class of type TestCase and each of the class’ functions 
can be regarded as a unit test. The important thing to note here is that 
although we are using the logic of unit tests, we are not exactly testing some 
functions but rather use the test functions as entry points for our scripts. 
Let us see an example that will make things clearer. 

 If we want to execute the k-means algorithm in a dataset of 4 blobs, 2 
features and 500 samples then we should go to the path 
‘./cost_function_optimization/tests/kmeans_test.py’ and choose the first 
function ‘testBlobs’ to run. This can be accomplished by commenting out the 
line ‘@unittest.skip(‘no’) that can be located in the line right above each of 
the test functions. From inside the test function we can change the parameters 
of the synthetic data as we wish. In the same way we can test the algorithms 
on concentric circles by running the function testCircles or moon-like data 
shapes by running the function testMoons. Same procedure applies in the test 
functions that execute the relative criteria and the image segmentation 
scripts. Regarding the last category of test function, they can be found only 
in kmeans_test, fuzzy_test and possibilistic_test scripts. 

Of course somebody could dispose the test scripts and directly call the 
algorithm functions with his own data. The test scripts in other words are not 
part of the library, but rather left there for convenience in order the user 
to find an already set up environment to execute the algorithms and reproduce 
the results included in this thesis. 

  

https://github.com/thanSkourtan/Cluster-Analysis-Algorithms


Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               98 

Documentation 

 

Module: internal_criteria.py 
 
A module containing all the necessary functions in order to run the internal 
criteria validation indices. The main reference for this module is 
(Theodoridis & Koutroumbas, 2009). 
 
Functions: 
 
internal_validity 
A function that wraps the rest of the functions of this module and calls them 
in the appropriate order. It could be defined as the only public function of 
the module.  
 
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 
Returns: 

 initial_gamma(float): the Gamma statistic of the clustering under 
consideration 

 list_of_gammas(list): the Gamma statistics of all the monte carlo 
sample distributions 

 result(string): a string containing the result of the function's 
computations 

         
significance_calc 
Calculates z-statistic for initial_gamma with regards to the normal 
distribution of list_of_gammas the p_value of the z-statistic and based on the 
results accepts or rejects the null hypothesis of randomness. 
         
Parameters: 

 initial_gamma(float): the Gamma statistic of the clustering under 
consideration 

 list_of_gammas(list): the Gamma statistics of all the monte carlo 
sample distributions 

Returns: 

 result(string): a string containing the result of the function's 
computations 

 
monte_carlo 
Creates 100 (could be set as argument) sampling distributions of uniformingly 
distributed data and calls the algorithm passed as argument in order to 
cluster each distribution and calculate its Gamma statistic. 
         
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               99 

 algorithm: the algorithm function to be used to cluster the data 
Returns: 

 list_of_gammas(list): the Gamma statistics of all the monte carlo 
sample distributions 

 
gamma 
Calculates the Hubert's Gamma Statistic for the proximity matrix P and matrix 
Y, where Y (i,j) = 1 if i, j are in the same cluster, 0 otherwise. These 
matrices are fixed for the internal criteria case so they are integrated into 
this function, rather than been provided as arguments. 
     
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

Returns: 

 g(float): the gamma index for P, Y 
         

Module: external_criteria.py 
 
A module containing all the necessary functions in order to run the external 
criteria validation indices. The main reference for this module is 
(Theodoridis & Koutroumbas, 2009). 
 
Functions: 
 
external_validity 
A function that wraps the rest of the functions of this module and calls them 
in the appropriate order. It could be defined as the only public function of 
the module.  
 
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 
Returns: 

 initial_indices(float): the initial indices of the clustering 
under consideration 

 list_of_indices(list): the list of calculated indices of all the 
monte carlo sample distributions 

 result_list(list): a list of strings containing the results of the 
function's computations 

significance_calc 
Calculates z-statistic for initial_indices with regards to the normal 
distribution of the values contained in the list_of_indices, the p_value of 
the z-statistic and finally, based on the results, accepts or rejects the null 
hypothesis of randomness. 
         
Parameters: 

 initial_indices (float): the initial indices of the clustering 
under consideration 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               100 

 list_of_indices (list): the list of calculated indices of all the 
monte carlo sample distributions 

Returns: 

 result(string): a string containing the result of the function's 
computations 

 
monte_carlo 
Creates 100 (could be set as argument) sampling distributions of uniformingly 
distributed data and calls the algorithm passed as argument in order to 
cluster each distribution and calculate the external indices. 
         
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 

 external_data_info(list): a list containing the cluster id for 
each of the vector of the dataset 

 algorithm(function object): the algorithm function to be used to 
cluster the data 

Returns: 

 list_of_gammas(list): the Gamma statistics of all the monte carlo 
sample distributions 

 
external_indices 
Calculates three indices (rand statistic, jaccard coefficient, Fowlkes and 
Mallows) based on a matrix P that shows the similarity between the clustering 
under consideration and an external clustering. Also calculates the Hubert's 
Gamma Statistic for matrices X and Y, where X (i,j) = 1 if i, j are in the 
same cluster in the clustering under consideration, 0 otherwise and  Y(i,j) = 
1 if i, j are in the same cluster in the external clustering,  0 otherwise.  
 
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 external_data_info(list): the external clustering results 
Returns: 

 rand_statistic(float): the rand statistic 

 jaccard_coefficient(float): the jaccard coefficient statistic 

 fowlkes_and_mallows(float): the Fowlkes and Mallows index 

 gamma(float): the gamma index for X, Y     
 

Module: relative_criteria.py 
A module containing the implementation of the all relative criteria indices. 
 
 
Functions: 
 
relative_validity_hard_sequential 
Defines the several values of the BSAS parameter. Then conducts successive 
executions of the algorithm by passing to it those values and calculates all 
the proper relative indices. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               101 

         
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
Returns: 

 no_of_threshold_values: the different values of the threshold 
parameter  

 DI, DB, SI: the arrays holding the values of the relative indices 
 

relative_validity_TTSS 
Defines the several values of the TTSS parameters. Then conducts successive 
executions of the algorithm by passing to it those values and calculates all 
the proper relative indices. 
         
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
Returns: 

 no_of_threshold_values1: the different values of the threshold1 
parameter  

 no_of_threshold_values2: the different values of the threshold2 
parameter  

 DI, DB, SI: the arrays holding the values of the relative indices 
 

relative_validity_hard_graph 
Defines the several values of the MST parameters. Then conducts successive 
executions of the algorithm by passing to it those values and calculates all 
the proper relative indices. 
         
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
Returns: 

 no_of_k_list: the different values of the k parameter  

 no_of_f_list: the different values of the f parameter  

 DI, SI: the arrays holding the values of the relative indices 
 

relative_validity_hard 
Defines the several values of the kmeans parameter. Then conducts successive 
executions of the algorithm by passing to it those values and calculates all 
the proper relative indices. 
 
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
         

Returns: 

 no_of_clusters_list: the different values of the clusters number 

 DI, DB, SI, GI: the arrays holding the values of the relative 
indices 

 
relative_validity_fuzzy 
Defines the several values of the fuzzy parameter. Then conducts successive 
executions of the algorithm by passing to it those values and calculates all 
the proper relative indices. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               102 

         
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
Returns: 

 no_of_clusters_list: the different values of the clusters number 

 values_of_q: the different values of the q parameter 

 PC, PE, XB, FS: the arrays holding the values of the relative 
indices 

 
relative_validity_possibilistic 
Defines the several values of the possibilistic parameter. Then conducts 
successive executions of the algorithm by passing to it those values and 
calculates all the proper relative indices. 
         
Parameters: 

 X((N x m) numpy array): a data set of N instances and m features 
Returns: 

 no_of_clusters_list: the different values of the clusters number 

 values_of_q: the different values of the q parameter 

 PC, PE, XB, FS: the arrays holding the values of the relative 
indices 

 
Dunn_index 
Calculates the Dunn index of a clustered dataset. 
     
Parameters:  

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

Returns: 

 The Dunn index 
 
Davies_Bouldin 
Calculates the Davies Bouldin index of a clustered dataset. Whereas in Dunn 
index the distance between clusters is the distance between the closest 
vectors of the clusters, in Davies Bouldin the same distance is the distance 
between the centroids. 
     
Parameters:  

 X((N x m + 1) numpy array): a clustered data set of N instances, m 

features and the cluster id at the last column of each vector 

 centroids: The centroids returned from the clustering algorithm 

Returns: 

 The Davies Bouldin index 

 
silhouette_index 
Calculates the silhouette index of a clustered dataset.  
     
Parameters:  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               103 

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

Returns: 

 The silhouette index 
 
_gap_index_calculation 
Calculates the log(W) for the provided dataset. 
     
Parameters:  

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

Returns: 

 The log(W) 
 

gap_index 
Calculates the Gap index of a clustered dataset. 
     
Parameters:  

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

 no_of_clusters: the number of clusters 

 algorithm: the function object representing the algorithm that 
called the function 

Returns: 

 The Gap index 
 

Xie_Beni 
Calculates the Xie Beni index. 
     
Parameters: 

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

 centroids: the value of the centroids after running a clustering 
algorihtm on the data set 

 partition_matrix: the partition matrix 
Returns: 

 Xie_Beni(float): the value of the Xie Beni index 
 
fukuyama_sugeno 
Calculates the fukuyama sugeno index. 
     
Parameters: 

 X((N x m + 1) numpy array): a clustered data set of N instances, m 
features and the cluster id at the last column of each vector 

 centroids: the value of the centroids after running a clustering 
algorihtm on the data set 

 partition_matrix: the partition matrix 
Returns: 

 total_sum(float): the value of the fukuyama sugeno index 
 

 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               104 

Module: fuzzy_clustering.py 
A module containing the implementation of the fuzzy clustering algorithm. 
 
Functions: 
 
fuzzy 
An implementation of the fuzzy clustering algorithm. 
     
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 

 centroids_initial: the optional initial values for the centroids 

 q(integer): the fuzzifier parameter 
Returns: 

 data((N x (m + 1)) 2-d numpy array): the data set with one more 
column that contains the vector's cluster 

 centroids_new((k x n) 2-d numpy array): contains the k = 
no_of_clusters centroids with n features 

 ita(float): a parameter used in possibilistic clustering. 

 centroids_history((l x 2) 2-d numpy array): an array to keep the 
previous positions of the centroids for better visualisation of 
the result.  

 partition_matrix ((n x 2) 2-d numpy array): the matrix containing 
the weights which depict the grade of membership of a vector i to 
the cluster j 

 

Module: possibilistic_clustering.py 
A module containing the implementation of the fuzzy clustering algorithm 

 
Functions: 
 
possibilistic 
An implementation of the possibilistic clustering algorithm. 
 
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 
features 

 no_of_clusters(integer): the number of clusters 

 ita(list): contains the values of the ita parameter for every 
cluster 

 centroids_initial(numpy array): the optional initial values for 
the centroids 

 q(float): fuzzifier parameter 

Returns: 

 data((N x (m + 1)) 2-d numpy array): the data set with one more 
column that contains the vector's cluster 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               105 

 centroids_new((k x m)2-d numpy array): contains the k = 
no_of_clusters centroids with m features 

 centroids_history((l x 2) 2-d numpy array): an array to keep the 
previous positions of the centroids for better visualization of 
the result.  

 typicality_matrix ((n x 2) 2-d numpy array): the matrix containing 
the weights which depict the typicality                                                     
of a vector i to the cluster j 

 

Module: kmeans_clustering.py 
A module containing the implementation of the fuzzy clustering algorithm 
 
Functions: 
 
kmeans 
An implementation of the kmeans clustering algorithm. 
     
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 

features 

 no_of_clusters(integer): the number of clusters 

 centroids_initial(): the optional initial values for the centroids 

Returns: 

 data((N x (m + 1)) 2-d numpy array): the data set with one more 

column that contains the vector's cluster 

 centroids_new((k x n)2-d numpy array): contains the k = 

no_of_clusters centroids with n features 

 centroids_history((l x 2) 2-d numpy array): an array to keep the 

previous positions of the centroids for better visualisation of 

the result. 

 

Module: image_segm_utility.py 
Module of utility functions set to work along with the image repository of 
“The Berkeley Segmentation Dataset and Benchmark”. 
 
Functions: 
 
insert_clusters 
A function that takes the .seg format files along with the original image and 
returns the image as a numpy array, ALONG with the externally provided 
clusters (called segments in the seg file). 
 
Parameters: 

 original_image(string): the name of the original image. It must be 
placed into the “Images” folder. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               106 

 seg_file(string): the name of the .seg file with the human 
segmented results. It must be placed into the images folder. 

Returns: 

 clustered_image(numpy 3-d array): the .seg file in the form of a 
3-d numpy array which contains the segment id for each pixel. 

rand_index_calculation 
Calculates the rand index of two different clustering results. The matrices 
provided as arguments must be contain at least 5000 elements. Instead of 
comparing all elements, the function chooses 5000 element uniformingly 
distributed in the input matrices and perform its calculations solely on them. 
         
Parameters: 

 X_(numpy array): the first clustering result as a numpy array 

 external_info(numpy array): the second clustering result as a 
numpy array 

Returns: 

 rand index(float): the value of the rand index 

marging_procedure 
Takes a clustered image as a numpy 3-D array, containing the cluster id for 
each pixel, and transforms it in such a way that small clusters are merged 
into their neighborhood ones. 
     
Parameters: 

 image(3-D numpy array): array containing the cluster ids before 
the merge procedure 

 threshold(integer): the user defined threshold for the maximum 
number of pixels allowed in a recursion 

 Returns: 

 image(3-D numpy array): array containing the cluster ids after the 
merge procedure 

_moves 
Private function that takes the coordinates of the current position as 
arguments and calculates all the possible next positions.   
     

Parameters: 

 y(integer): the 'vertical coordinate' of the current pixel of the 
image  

 x(integer): the 'horizontal coordinate' of the current pixel of 
the image  

Returns: 

 list_of_new_positions(list): a list of tuples of length 2 
containing all the next possible pixels on the image, either 
eligible or not 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               107 

_constraints 
Private function that takes the coordinates of a position as arguments and 
calculates whether it is eligible or not. Please note that in order to process 
an image we reshape it to 2 dimensions 
     
Parameters: 

 y(integer): the 'vertical coordinate' of the position of the image  

 x(integer): the 'horizontal coordinate' of the position of the 
image  

 N(integer): the length of the second dimension of the image 

 m(integer): the length of the first dimension of the image 

Returns: 

 list_of_new_positions(list): a list of tuples of length 2 
containing all the next possible pixels on the image, either 
eligible or not 

_dfs_util 
Private function that implements the depth first search algorithms on the 
image by visiting pixels that belong to the same cluster. It also returns the 
cluster that appears most often in the neighborhood pixels. 
         
Parameters: 

 image(numpy array): the 2-D image array 

 y(integer): the 'vertical coordinate' of the current position of 
the image  

 x(integer): the 'horizontal coordinate' of the current position of 
the image  

 N(integer): the length of the second dimension of the image 

 m(integer): the length of the first dimension of the image 

 visited(numpy array): a 2-D array to hold the several stages of a 
pixel 

 pixels_cluster(integer): the cluster id of the current pixel  

 counter(integer): a counter to measure the recursion depth 

 dominant_cluster_list(numpy array): a list to count the prevailing 
cluster of the neighbourhood pixels 

 threshold(integer): the user defined threshold for the maximum 
number of pixels allowed in a recursion 

Returns: 

 list_of_new_positions(list): a list of tuples of length 2 
containing all the next possible pixels on the image, either 
eligible or not 

 

Module: MST.py 
A module containing the implementation of the Minimum Spanning Tree clustering 
algorithm. 
 
Functions: 
 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               108 

minimum_spanning_tree 
An implementation of the Minimum Spanning tree clustering algorithm. 
     
Parameters: 

 data((N x m) 2-d numpy array): a data set of N instances and m 

features 

 k(integer): the user defined step to define the depth of the 

neighborhood of a function 

 q(float): the user defined number of standard deviations of the 

weights mean above which an edge is considered inconsistent 

 f(float): the user defined threshold of the ratio of the weight of 

the edge under investigation and the neighborhood average weights  

Returns: 

 clustered_data((N x (m + 1)) 2-d numpy array): the data set with 

one more column that contains the vector's cluster 

 no_of_clusters(integer): the number of clusters 

 _dfs_util 
A private utility depth first search algorithm used in order to find the 
forest of trees the dataset is consisted of. 
         
Parameters: 

 MST: the minimum spanning tree matrix 

 s: the current node index 

 visited_nodes: the list of nodes that have been visited 

 cluster_id: the id of the cluster to be assigned to a node 

 data: the data matrix 

 
 
_recursion _util 
A utility recursive method used in order to gather the weights of an edge's 
neighborhood edges. 
         
Parameters: 

 nodes: the two nodes of the edge 

 k: the step defining the depth of the neighbourhoud edges 

 list_of_weights: a list to fill in the weights of the neighborhoud 
edges 

 MST: the minimum spanning tree matrix 

Returns:  

 list_of_weights: a list to fill in the weights of the neighborhoud 
edges 

 
 

Module: DTA.py 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               109 

A module containing the implementation of the Delaunay Triangulation 
clustering algorithm. 
 
 
minimum_spanning_tree_variation 
An implementation of a graph algorithm based on Delaunay triangulation graph. 
     
Parameters: 

 data((m x n) 2-d numpy array): a data set of m instances and n 
features 

Returns: 

 clustered_data((N x (m + 1)) 2-d numpy array): the data set with 
one more column that contains the vector's cluster 

_dfs_util 
A private utility depth first search algorithm used in order to find the 
forest of trees the dataset is consisted of. 
         
Parameters: 

 MST: the minimum spanning tree matrix 

 s: the current node index 

 visited_nodes: the list of nodes that have been visited 

 cluster_id: the id of the cluster to be assigned to a node 

 data: the data matrix 

 

Module: BSAS.py 
A module containing the implementation of the basic sequential scheme 
clustering algorithm. 
 
Functions:  
 
basic_sequential_scheme 
An implementation of the basic sequential scheme clustering algorithm. 
     
Parameters: 

 data((m x n) 2-d numpy array): a data set of m instances and n 
features 

 max_number_of_clusters(integer): the maximum allowable number of 
clusters     

Returns: 

 clustered_data((m x (n + 1)) 2-d numpy array): the data set with 
one more column that contains the vector's cluster 

 centroids((k x n)2-d numpy array): contains the k = no_of_clusters 
centroids with n features 

 no_of_clusters(integer): the final number of clusters created 

 
thresholding_BSAS 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               110 

A function to calculate the value of the threshold by using the peaks and 
valleys technique 
     
Parameters: 

 data((m x n) 2-d numpy array): a data set of m instances and n 
features 

Returns: 

 deepest_valley(float): the height of the histogram at the point of 
the deepest valley between the two highest peaks. It is actually 
the threshold value 

 

Module: TTSS.py 
A module containing the implementation of the Two Threshold Sequential Scheme. 

 
Functions:  

 
two_threshold_sequential_scheme 
An implementation of the two threshold sequential scheme clustering algorithm. 
     
Parameters: 

 data((m x n) 2-d numpy array): a data set of m instances and n 
features 

Returns: 

 clustered_data((m x (n + 1)) 2-d numpy array): the data set with 
one more column that contains the vector's cluster 

 centroids((k x n)2-d numpy array): contains the k = no_of_clusters 
centroids with n features 

 no_of_clusters(integer): the final number of clusters created 

 
thresholding_TTSS 
A function to calculate the values of the thresholds 
 
Parameters: 

 data((m x n) 2-d numpy array): a data set of m instances and n 
features 

Returns: 

 deepest_valley1(float): the height of the histogram at the point 
of the first deepest valley between the three highest peaks. It is 
actually the threshold 1 value 

 deepest_valley2(float): the height of the histogram at the point 
of the second deepest valley between the three highest peaks. It 
is actually the threshold 2 value 

  



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               111 

Bibliography 

Anderberg, M. R. (1973). Cluster Analysis for Applications.  
Arkadev, A., & Braverman, E. (1967). Computers and Pattern Recognition. 

Washington D.C.: Thompson Book Co. 
Ball, G., & Hall, D. (1965). Isodata, a novel method of data analysis and 

pattern classification. Technical Report. 
Bellman, R., Kalaba, R., & Zadeh, L. (n.d.). Abstraction and pattern 

classification. Journal of the American Society for Information Science 
and Technology, 2. 

Berkeley Segmentation Dataset and Benchmark. (n.d.). Retrieved from 
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segb
ench/ 

Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function 
Algorithms. Plenum Press. 

Bezdek, J. C. (1975). Mathematical Models for Systematics and Taxonomy.  
Bezdek, J. C. (1993). Fuzzy models - What are they, and why? IEEE Transactions 

on Fuzzy Systems, 1(1). 
Bezdek, J. C., Keller, J., Krisnapuram, R., & Pal, N. R. (2005). Fuzzy Models 

Algorithms for Pattern Recognition and Image Processing. Springer 
Science and Business Media, Inc. 

Bezdek, J., & C. (1973). Cluster Validity with Fuzzy Sets.  
Bonner, R. E. (1964). On some clustering techniques. International Business 

Machines Journal of Research and Development, 8(22-32). 
Bouldin, D. W., & Davies, D. L. (1979). A Cluster Separation Measure. IEEE 

Transactions on pattern analysis and machine intelligence, PAMI - 1(2). 
Buhmann, J. M. (2002). The Handbook of Brain Theory and Neural Networks.  
Cormack, R. M. (1971). A Review of Classification. Journal of the Royal 

Statistical Society, 134(3). 
Delaunay, B. (1934). Sur la sphere vide. Bulletin de l’Academie des Sciences 

de l' URSS. 
Deluca, A., & Termini, S. (1972). A definition of nonprobabilistic entropy in 

the setting of fuzzy sets theory. Inf and Control, 20(301 - 312). 
Dunn, J. (1973). A fuzzy relative of the ISODATA process and its use in 

detecting compact well-separated clusters. J. Cybernet, 3. 
Dunn, J. C. (1974). Well separated clusters and optimal fuzzy partitions. 

Journal of Cybernetics, 4. 
Eldershaw, C., & Hegland, M. (n.d.). Cluster Analysis using Triangulation. 

Computational Techniques and Applications. 
Feldman, J. (1995). Perceptual models of small dot clusters. DIMACS Series in 

Discrete Mathematics and Theoretical Computer Science. 
Fowlkes, E. B., & Mallows, C. (1983). A method for comparing two hierarchical 

clusterings. Journal of the American Statistical Association. 
Ghosh, B. K., & Sen, P. K. (1991). Handbook of sequential analysis. Marcel 

Dekker. 
Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing. Pearson 

International Edition. 
Guojun Gan, C. M. (2007). Data Clustering, Theory, Algorithms and 

Applications. American Statistical Association. 
Hall, A. V. (1967). Methods for demonstrating resemblance in taxonomy and 

ecology. Nature, 214. 
Irvin Rock, S. P. (1990). The Legacy of Gestalt Psychology. 



Master Thesis                                                                                                                           Athanasios Skourtaniotis 

 

 
Python based study of clustering algorithms                                               112 

Iverson, K. E. (1962). Notation as a Tool of Thought. Wiley. 
Jain, A. K. (2008). Data Clustering, 50 Years beyond K-means.  
Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice 

Hall Advanced Reference Series. 
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. 

ACM Computing Surveys. 
Johnson, S. (1967). Hierarchical clustering schemes. Psychometrika, 32. 
Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data. Wiley 

Interscience. 
Krishnapuram, R., & Keller, J. (1993). A possibilistic approach to clustering. 

IEEE Transactions on Fuzzy Systems, 1. 
Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on 

information theory. 
Marinus van Dongen, S. (2000). Graph clustering by flow simulation.  
Mehmet, S., & Bulent, S. (2004). Survey over image thresholding techniques and 

quantitative performance evalution. Journal of Electronic Imaging, 13. 
Miin-Shen, Y., & Kuo-Lung, W. (2005). Unsupervised possibilistic clustering. 

Pattern Recognition. 
Nikhil, P. R., Kuhu, P., Keller, J., & Bezdek, C. J. (2005). A Possibilistic 

Fuzzy c-Means Clustering Algorithm. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 
13(4). 

Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering 
Methods. Journal of the American Statistical Association. 

Rousseeuw, P. J. (1986). Silhouettes: a graphical aid to the interpretation 
and validation of cluster analysis. Journal of Computational and Applied 
Mathematics, 20. 

Ruspini, E. (1969). A new approach to clustering. Information and Control, 15. 
Shapiro, L., & Stockman, G. (2000). Computer Vision.  
Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer. 
Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition. Elsevier. 
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of 

clusters in a data set via the gap statistic. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology),, 63. 

Trahanias, P., & Skordalakis, E. (1989). An efficient sequential clustering 
method. Pattern Recognition, 22(4). 

Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II. 
Psycologische Forschung, 4. 

Xie, X. L., & Beni, G. (1991). A Validity Measure for Fuzzy Clustering. IEEE 
Transactions on pattern analysis and machine intelligence, 13(8). 

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3). 
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy 

sets and systems, 1(3). 
Zahn, C. T. (1971). Graph - Theoretical Methods for Detecting and Describing 

Gestalt Clusters. IEEE Transactions on Computers, C-20(1). 
Zimmermann, H. (2001). Fuzzy Set Theory and Its Applications. New York: 

Springer Science and Business Media, LLC. 
 


