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ITepiindn

H ovomuartiky arnotignon tng amodotikdtntog vOg opyavicHoy Kot 1 optofétnon
eMTELEIUOV  OTOYOV OTOTEAOVV GUUTANPOUOTIKEG OEUEMMOEIS TTLYES Yoo TNV
evpubun Aertovpyion tov kot T PrOCWOTYTA TOL. TVVEM®G, £ivol amoapaitnTn 1M
V100ETNON TEYVIKOV 0EI0AOYNONG TTOL AapBavouy VoYM GAOVG TOVG TOPAYOVTES ATO
10 MEPPAALOV AELTOVPYIOG TOV OPYAVIGHOV, DGTE VO EVTOTMILOVV TIG U OOO0TIKEG
TOPUYOYIKES SLOOIKOGIES KO VO TPOTEIVOLV EMAPKEIC TPOTOVS Yo TNV PEATI®OT TOLG.
Muw téton teyvikn etvar m Ilepifailovca Avaivon Asgdopévov — TTAA (Data
Envelopment Analysis - DEA), n omoia amotelel mAéov TN ONUOQIAEGTEPT UN
TOPOUETPIKT TEYVIKY] Y10 TV OTOTIUNGT TNG ATOSOTIKOTITOG OUOEWOMY LOVAS®V EVOC
oLoTNATOG (LOVAdES amOPaoNG) enl TN PACEL TOAATADY E1GPODV KOl TOAAATADY

EKPOMV.

O xhaooikég peBodoroyieg g ITAA Bewpovv TiIg LOVASES ATOPOONG MG «ULOdPa
kovtid» (black boxes) mov ypnowomololv €16poEg Yoo ™MV TOPAY®YN EKPODOV,
OYVOMVTOG TNV EGMTEPIKT TOLG dOUT. AVTO £XEL MG GUVEMELD TO. KAUGGIKA LOVTEAQ
mg [MTAA vo pmopodv pePIKOS UOVO Vo avTOmOKPlBOUV o1V OmoTiumomn g
AmOOOTIKOTNTOGS OTOV 1] ECMTEPIKN doun eivar Yvoot| Kot kpiown yo T Agttovpyia
™mg povadas. To kevd avtd épyetoan va kaivyer m Ilepiariiovca Avdivon
[Tolvotadokav Aepyacudv (Network DEA), 1 omoia amotelel mpoc@atn enéktoom
¢ Khaoowng [TAA. TIpoxkerton yio pia peBodoroyion mov pmopet va epopproctet yio
™V 0E0AOYNON LOVAS®Y amdPAcTS, Ot omoieg amaptilovtat and ToAAY LEAN (YVOOT
KOl G OlEPYNCies, LTO-0100IKAGIEG, VTO-UOVAOES TapAy®YNG 1N oTdd), O10TL
AopBaver vTOY™M TNV ECOTEPIKT TOLG OOUN KO TIG GYEGES OAANAETIOPAONG TOV TN
ovvodgvovy. H kdbe povada amdeaons (cvommua) Asttovpyel wg éva diktvo amd
JTeTaYIEVESG dlepyaciec o1 omoieg cLVOEOVTOL KOl OAANAETOPOVV HUEGH ECOTEPIKMV
po®V vmompoidvtwv (evolauecmv peyedav), to omoia &yovv OTTO POAO SOTL
AmOTEAODV  TOVTOYPOVO EKPOEC UG VTO-0100IKACIOG KOl €0POES UG GAANG.
Evdeiktiko mapdostypo omoteAdet 1 €QOOIGTIKY] 0ALGION TOV TEPLEYEL TOAAG LEAN Ko
N €6puOuN N N UN OTOSOTIKY AglTOVPYiR TOV KABE LEAOVS OVTOVOKAGTOL GTI) GUVOAIKN
Aertovpyion TG ZVVERMDC, M EKTIUNOT TNG OULVOAIKNG  OMOJOTIKOTNTAG TNG
€POJLIOTIKNG 0ALGIONG (CLOTNUATOC) TPETEL VAL YIVETOL GUVTOVIGUEVO AauPdvovTog

VIOYT TIC OMOSOTIKOTNTES TOV UEADV TNG.



v mopoHoa SOaKTOPIK StoTpiPr) O1eEdyovpe oL AETTTOUEPT] OVOICKOTNON TV
puebodwv mov €yovv mpotabel ot Piproypapio oto mAaicto ¢ IlepiBdAiovoog
Avdlvong TTolvotadokdv Atepyacidv. MeAETOOUE TIC 1O1OTNTEC-YOPOKTNPIOTIKA
TOVG, TI§ TEYVIKEG EMAVONG 7OV YPNOUYOTOOVV KoOMDC KOl TIG OHOOTNTEG Kot
OlPOpEG TOVG MOTE Vo TIC KOTOTAEOLUE o€ KATNyopieg. AVAOEIKVOOLUE TO
HELOVEKTNLOTAL TOV TTLO O10OEGOUEVOV TPOCEYYICEWMV, TO, OTTOIN APOPOVV TNV KAMpLOKA
amodOCEMY KOl TNV 0adLVOUID VO OTOdMCOVV EMAPKY TANPOQOPio. MOTE Vo
KOTOGTHOOVV OOJ0TIKEG TIG UN 0modoTikég povades. Emiong, ot mpoceyyicelg mov
nwpoteivovtalr ot PipMoypaeio dev Stouc@aAilovv TN HOVASIKOTNTO TOV TUYLOV
OTOOOTIKOTNTOC T®V  LTO-OOIKACI®DV, CGLVER®S Oétovv o€ aueopritnon v
gyKvpdT T TOV TTApayoueEvev anotedecudtov. EpeaviCovtor dnAadn mepmtdcelg
O6mov TO 1010 EMIMESO GULVOMKNG OAMTOSOTIKOTNTAG TOV GCULGTHUOTOS UTOPEL Vo
TPOKVTTEL OO OLOPOPETIKOVG GLVOVAGHOVG TIUDV OTOOOTIKOTNTAS TOV ETLUEPOVG
dwdkacidv. Emiong, vmdpyovv mpoceyyicelg mov cuyvd HePOANTTOVV Kotd TNV
OMOTIUNOT TNG GLVOAIKNG OMOSOTIKOTNTOS TOL GUOTHUOTOS. ATOJEKVOOLUE OTL 1
afpototikn pEB0d0g pepoAnNTTEl KATA TNV OMOTIUNOT VIEP KATOIWV GUYKEKPUEVDV
otadiov. Emmpochitmg, deiyvoupe OTL 01 TPOTEVOUEVEG TPOGEYYIOELS OEV UTOPOVV

VO EPOPLOGTOVV GE YEVIKEG OIKTLAKEG OOUES TTOPAYMYIKMOV LOVASWV.

Mo v avtipetodnion Tov Topamdve adVVOUI®V, EI6AYoVUE VEEG pnebodoloyieg
ov Paciloviol 6TV EVOOUATMOT TEYVIKMOV TOAVKPITPLOL TPOYPOUUATIGHOD GTHV
[Tepipdrrovca Avaivon Agdopévav. Emkevipdvoope v €peuvd pog e povadeg
amoeocng mov TEPAoUPAvouy d00 VTO-01001KOGIEG OTETUYUEVES GE GEPE Kot
HOVTELOTOLOVHE TO TPOPANUO TNG HETPNONG TNG ATOOOTIKOTNTAS TOVG MG TPOPANLQ
TOAVKPITAPIOL  TPOYPOUUUOTICUOD.  XPNOUOTOOVUE  TPOUYUOTIKES  GLVOPTNGELS
enitevéng (achievement scalarizing functions) @ote va evooUATOGOVLE TIG 10£€G HOG
OAAG Kot TIG WOOTNTEG TG OUEPOANYING KOt TG LOVOIIKOTNTOG TOV OTOTEAECUATOV
nov Ba wpémetl va di€movy ot péBodor g [epifdrrovcag Avdivong ITolvotadiakmy
Apyacwwv. Eiodyovue 1t ovvBetikny mpocéyyion  (composition  approach),
AVTILETOTILOVTAG LE OVOETEPOTNTO TIC VTO-OLOOIKAGIES KOl KATACKEVALOVIE apytkd
éva povtélo pe o TpocBetikn cuvdptnon emitevéng Pacilopevol oty L1 petpik.
AVTO 10 HOVTEAD OTOOIOEL OUEPOANTITO ATOTEAEGUATO, TO. OTTOl0 OeEKOVILOVTOL MG
akpoio onueio (kopveéc) oto ovvopo Pareto. Zynuartilovpe emmAéov poviEA

YPNOYLOTOIDOVTAG GUVOPTNCELS €miTELENG, YL TNV KOTOOKELT, T®V  OTMOi®MV



epapuoloope pebBodoroyiec moivkpurnplog PeAtioronoinong mov Pacilovion oe
onueia ovagopdg (reference points). Eidikotepo, ypnoOTOO0OUE TV UETPIKN
Tchebycheff (Lx) yw tov eviomoud pag povadikng Pareto PBédtiomng Avong
EAOYIOTOTOLOVTOG TN HEYLOTN OomOKAlon amd To 10emdeg onpeio (ideal point). 'Htot
OTOYEVEL GTOV VIOAOYICUO TOV EMUEPOVS ATOOOTIKOTITMV TWV VLITO-O10OIKAGIDY OGO
dvvaTol TANGESTEPO. OTO LYNAOTEPO EMIMESN OMOOOTIKOTHTMV 7OV UTOPOLV VO
eMTOYOLV Ol VIo-dadikacieg Eeywpiotd. To poviého avtd amodidel apepdAnmTa
amoteAéopaTo Kol dto@aAilel T povadikdttd tovg. ‘Emetta, avamtbocovpe 600
pueBOO0VE TOV TOPEYOVV TNV ATOPAITNTI] TANPOPOPIN YL TOV CYNUATICUO TV
TPOPOADV TOV U1 OTOOOTIKOV HOVAO®V GTO oLVOPO amodotikotntoc. H mpdt
npokOTTeEl am’ evbeiog amd TV ovvbeTikn mpoofyyion eved 1 devTepn  ivol
TPOCAVOTOAIGHEVT] OTO VO KOTOOTNOEL OMOOOTIKEG TN UM OTOJOTIKEG LOVASES
EMPEPOVTAG OGO TO OLVATOV EAAYLIOTEG QALAYEG OTA OPYIKE EMITEDD TOV EVOLAUECOV

peyebmv.

211 GLVEKELX, SLATLTOVOLUE £VOV VEO OPIGUO TNG GUVOMKNG OTOSOTIKOTNTOG TMV
HOVAd®V amdPAoNG TTOV TEPLEYOLY OVO VLTO-OL0dIKAGIES JATETAYUEVES OE GEPA,
EUMVELGUEVOL OO TOV POLO TOL AdVVOLOL KPIKOL GTIG EPOOINCTIKES OAVGIOES Kot
and 1o Bedpnua g puéyotg ponc-eAdyiotng komng (max flow-min cut) ota dikrvoa.
Mo v agordynon tov povadwv mov TePLEXovy 600 LTO-O1001KOCIEG UE TOKIAN
oEPlOKT O10TOEN E0AYOVUE TV TTPOGEYYION TOL «odVvvauov Kpikov» (weak-link
approach). Avantoccovpe e véa puéhodo Pertiotomoinong max-min 00 @acemv pe
v omoia drceaiiletor 6t | mpokvTOoLGH AVom Ba eivar povadikn kot PEATIOTN
kata Pareto. Ilpotictog, peyiotomolovpe v €Adyomn  amodoTIKOTNTO
(arodoTIKOTNTA, TOL AOVVALOV KPTKOV) HETOED TMV LITO-O1AOTKAGIOV KOl TN GUVEXELL
dtcpoiilovpe 0Tt M TpoKOITOLGO AVoN givar povadikn Kot BéATiot Katd Pareto.
Mo v kaBodnynon g dadikaciog PEATIOTOTOINOTG P CILOTOWCAUE TIG WOEDOELS
ATOOOTIKOTNTESG TMOV VTTO-0100TKAGIDV, WGTOGO, OOPOPETIKES TPOTIUNCELS SOVVATOL VO

eVoOLaT®OOVV Y10 TOV EVIOTIGUO EVOAOKTIKOV BEATIOTOV Katd Pareto Avcewv.

Téhog, emaveEetalovpe t pebodoroyion tv Aviles-Sacoto et al (2015) wou
amodewkvoovpe  Ott  givar  mpoPAnuatikny.  IIpoteivovpe o evolAaKTikn

povtelonoinon n omoia dtopHdvet ta peBodoAOYIKA TPOPANLOTA TTOV TOPATI|POVLLE.



A&€erg Khrewnwa: Ilepifaiiovoa  Aviivon Aeoouévav, Ilepifotiovea  Avalvon
Tlolvorooiaxav Aiepyaciowv, oovletikn mpooéyyion, uédooos tov advvouov Kpikov,

TOLVKPITHPLOS TPOYPOLUATIOUOG.



Abstract

The systematic performance evaluation of the organizations as well as the target
setting are key aspects for its proper operation and viability. Thus, the adoption of
evaluation methods is necessary, which are capable of taking into account all the
environmental factors of the organization, identifying the inefficient production
processes and suggesting adequate ways to improve them. Such a method is Data
Envelopment Analysis (DEA), which is the most popular non-parametric technique
for assessing the efficiency of homogeneous decision making units (DMUSs) that use

multiple inputs to produce multiple outputs.

The DMUs may consist of several sub-processes (also known as stages, sub-units,
divisions etc.) that interact and perform various operations. However, the classical
DEA models treat the DMU as a “black box”, i.e. a single stage production process
that transforms some external inputs to final outputs. In such a setting, the internal
structure of the DMU is not taken into consideration. Thus, the conventional DEA
models fail to mathematically represent the internal characteristics of the DMUs, as
well as they fall short to provide precise results and useful information regarding the
sources that cause inefficiency. In order to take into account for the internal structure
of the DMUSs, recent methodological advancements are developed, which extend the
standard DEA and constitute a new field, namely the network DEA. The network
DEA methods are capable of reflecting accurately the DMUs’ internal operations as
well as to incorporate their relationships and interdependences. In network DEA, the
DMU is considered as a network of interconnected sub-units, with the connections
indicating the flow of intermediate products (commonly called intermediate measures
or links). An indicative example of such a DMU is a supply chain, which has a
network structure and is composed of several members whose performances affect the
overall performance of the supply chain. Therefore, the overall efficiency of the
supply chain (DMU) should be evaluated by taking into account the individual

efficiencies of its members in a coordinated manner.

In this thesis, we conduct a critical survey and categorization of the state-of-the art
network DEA methods and we classify a great volume of network DEA studies based

on the assessment method they follow. We unveil the relations and the differences of



the existing network DEA methods. Also, we uncover their defects concerning the
returns to scale, the inconsistency between the multiplier and the envelopment models
as well as the inadequate information that provide for the calculation of efficient
projections. The most important network DEA methods do not secure the uniqueness
of the efficiency scores, i.e. the same level of overall efficiency is obtained from
different combinations of the efficiencies of the sub-processes. Also, we prove that
the additive efficiency decomposition method unduly and implicitly assigns different
priority to the sub-processes, hence provides biased efficiency assessments. Finally,
we discuss about the inability of the existing approaches to be universally applied on

every type of network structure.

We develop two new approaches in network DEA that overcome effectively the
deficiencies and provide unique and unbiased efficiency scores, based on a multiple
objective framework. We focus our research to serial two-stage network structures
and we formulate the problem of their efficiency assessment as a multi-objective
mathematical programming problem. Initially, we introduce the composition
approach to two-stage network DEA, which is based on a bi-objective mathematical
program for the efficiency assessments. We employ two scalarization techniques,
firstly based on the L1 norm we aggregate the two objective functions additively
without giving any priority between them. The application of this scalarizing function
yields an extreme (vertex) Pareto-optimal solution. Then, we employ a min-max
scalarization technique, i.e. the Tchebycheff norm (L), which minimizes the distance
between the ideal point and the feasible objective functions space so as to locate a
point on the Pareto front not necessarily extreme. This model provides unique and
unbiased efficiency scores. In the composition approach, we estimate first the stage
efficiencies and then we aggregate them either additively or multiplicatively to obtain
the overall efficiency. Next, we develop two methods to derive the efficient frontier in
two-stage DEA and provide efficient projections. The first naturally stems from our
composition approach, while the second seeks to provide efficient projections by

altering the original levels of the intermediate measures at a minimum distortion.

We build upon the composition approach and we introduce the “weak-link”
approach to two-stage network DEA, which inherits the nice properties of the former,
i.e. provides unique and unbiased efficiency scores. Also, the “weak-link” approach

can be readily applied to various types of two-stage network structures. In this

vi



approach, we introduce a novel definition about the overall efficiency of the DMU,
inspired by the “weak link” notion in supply chains and the maximum-
flow/minimum-cut problem in networks. We incorporate this notion into the
assessment by assuming that given the stage efficiencies, the system efficiency can be
viewed as the maximum flow through the network and can be estimated as the min-
cut of the network, i.e. the system efficiency derives as the lowest of the stage
efficiencies. We mathematically represent this concept by employing a two-phase
max-min optimization method in a multi-objective programming framework, which
seeks to maximize the minimum weighted achievement from zero-level efficiency,
i.e. maximizing the lowest of the stage efficiencies (weak link). The proposed two-
phase procedure estimates the stage efficiencies and the overall efficiency
simultaneously by providing a unique Pareto optimal solution. The search direction
towards the Pareto front is driven by the assumption that the stage efficiencies are
proportional to their independent counterparts. External priorities can be also
introduced to our methodology so as to obtain alternative Pareto optimal solutions.
We conduct a systematic investigation of the sensitivity of the weak link so as to

identify the source of inefficiency in the two-stage processes.

Finally, we revisit the work of Aviles-Sacoto et al (2015) who studied a peculiar
situation of a two-stage process where some of the intermediate measures are inputs to
the second stage and at the same time external outputs from that stage. We show that
their modelling approach departs from the described setting and adapts a different
situation, where the specific intermediate measure is viewed either as input to or as
output from the second stage of the process. We alternatively propose a different
modelling approach for the performance assessment of the two-stage process under

examination, which rectifies the methodological problems that we observe.

Keywords: Data Envelopment Analysis (DEA), Network DEA, composition
approach, weak-link approach, multi-objective programming.
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Chapter 1: Introduction

Chapter 1

Introduction

Performance measurement deals with ongoing monitoring and evaluation of the operations of
the organizations so as to be able to improve their productivity and performance. Thus, the
performance measurement is a subject of major importance. Improving organization’s
performance requires accurate understanding as well as systematic assessment of its internal

structure, which is often a tough task because of organization’s complexity.

Two main approaches, the parametric and the non-parametric, are suggested in the
literature for the performance measurement of production units. In the parametric approach, a
production function is explicitly assumed so as to describe the relationships among the inputs
and the outputs that participate in the production process. However, the production function
can be hardly formulated or is completely unknown. On the contrary, the non-parametric
approach does not require any a priori specification of the underlying functional form that
relates the inputs with the outputs. Data Envelopment Analysis (DEA) is a powerful non-
parametric technique that is widely used for evaluating the performance of a set of
comparable entities, called decision making units (DMUs), which use multiple inputs to
produce multiple outputs. Charnes et al (1978) introduced DEA, based on Farrell’s (1957)
work of estimating technical efficiency with respect to a production frontier. DEA
circumvents the problem of specifying an explicit form of the production function by
constructing an empirical best practice production frontier by enveloping the observed data of
the DMUs. The linear programming is the underlying mathematical method that enables
DEA to determine the efficient production frontier and calculate the efficiency score of each
DMU. The efficiencies provided by DEA are relative rather than absolute, because each unit
is evaluated relative to the production frontier, i.e. the best practice units. DEA is capable of
uncovering the sources of inefficiency and providing prescriptions for improving the
inefficient units. DEA takes into account the returns to scale and the orientation of the
analysis in calculating efficiency. The CCR (Charnes et al, 1978) and the BCC (Banker et al,
1984) models have established the foundation for further research in this field. A rapid and

continuous growth has been reported since then, both in theoretical and application level. The
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theoretical advances of DEA as well as procedural issues are sufficiently described in Dyson
et al (2001), Thanassoulis et al (2008) and Cook and Seiford (2009). A remarkable body of
literature has been developed with a wide range of applications to measure the efficiency in
various sectors such as business and finance, public services, education, health care,

transportation, agriculture, supply chains etc. (Gattoufi et al, 2004).

The DMUs may have a complex structure that includes several interdependent operations
(also known as stages, sub-processes, sub-units, divisions etc.) with a series, parallel or
series-parallel arrangement. The conventional DEA models, however, regard the DMU as a
black box, treating them as single stage production processes that transform some external
inputs to final outputs. In such a setting, the internal structure and the interactions among the
comprised operations of the DMUs are not taken into consideration. However, a significant
number of studies has focused on assessing efficiency in multi-stage production processes,
where outputs from some stages, characterized as intermediate products (measures), are used

either as inputs to the other stages or as external outputs of the production process.

Seiford and Zhu (1999) assessed the efficiency of commercial banks in US by
considering the bank operations as a two-stage process. They assessed, however, the stage
efficiencies and the overall system efficiency independently with distinct standard DEA
models. The network DEA extends and complements the conventional DEA by considering
not only the internal structure of the DMUs but also the interactions among the sub-
processes. When theses interactions are not taken into account, the results may be distorted
and misleading. Hence, in contrast to traditional DEA models, the network DEA models
provide more accurate results and further insights concerning the sources of inefficiency.
Fare and Grosskopf (1996, 2000) were among the first to deal with efficiency assessments in
network DEA. Thorough classifications of network DEA models and methods developed for
various network configurations are given in Castelli et al (2010) and Kao (2014b). Moreover,
a collection of network DEA models is given in Cook and Zhu (2014). In this thesis, we
focus on two-stage series processes that are extensively studied in the literature. We show
that basic network DEA methods proposed in the literature suffer from shortcomings that
should be rectified before moving to more complex structures with many stages. Prominent
approaches developed to deal with two-stage series processes are the multiplicative
decomposition approach (Kao and Hwang, 2008), the additive decomposition approach
(Chen et al, 2009b) and the slacks-based network DEA model (Tone and Tsutsui, 2009).
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These are the first approaches to assess the stage efficiencies and the overall system

efficiency jointly in one program.

Kao and Hwang (2008) introduced an innovative approach by taking into account a series
relationship of the two stages and developed a model to estimate the overall efficiency of the
production process as the product of the efficiencies of the two individual stages. Their
multiplicative decomposition approach is based on the reasonable assumption that the values
of the intermediate measures (virtual intermediate measures) are the same, no matter if they
are considered as outputs of the first stage or inputs to the second stage. As they noted, the
decomposition of the overall efficiency to the stage efficiencies is not unique. In order to
check the uniqueness, they proposed a post-optimality procedure, to obtain the largest first
(or second) stage efficiency score while keeping the overall efficiency unchanged. Liang et al
(2008) under the same framework view the efficiency assessments in two-stage process in
terms of a game approach.

Maintaining the series relationship between the two stages, Chen et al (2009b) introduced
the additive efficiency decomposition in two-stage processes. They derive the overall
efficiency of the production process as a weighted average of the efficiencies of the
individual stages. Their modeling approach facilitates the linearization of a non-linear
mathematical program by assuming that the weights of the two stages derive endogenously
by the optimization process. However, we prove that this assumption leads to biased

efficiency assessments.

An issue investigated further in the literature is the derivation of the efficient frontier in
two-stage DEA. Chen et al (2010a) pointed out that adjusting the inputs and the outputs by
the efficiency scores is not sufficient to yield a frontier projection, when the additive
decomposition model is assumed. They developed instead, a model for deriving the efficient
frontier within the Kao and Hwang (2008) multiplicative framework. The inability of the
two-stage DEA models to locate correctly the efficient frontier, as it is the case with standard
DEA, is further examined in Chen et al (2013). In this paper, it was demonstrated that under
general network structures, the multiplier and the envelopment network DEA models are two

different approaches, thus, alternative methods to overcome this deficiency were reviewed.

In this thesis, we describe the advantages of the network DEA methods over the classical
DEA ones. We present in detail the most important of them and we provide a survey of the

network DEA studies across the literature. In addition, we carry out a critical review of the
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fundamental approaches in two-stage network DEA, namely the additive and the
multiplicative efficiency decomposition approaches and we discuss their inherent limitations
and shortcomings. The decomposition approaches provide non-unique efficiency scores,
while in the additive approach the assessment is biased. Based on a reverse perspective on
how to obtain and aggregate the stage efficiencies, that of the composition as opposed to the
decomposition, we introduce the composition approach to two-stage network DEA that
effectively overcomes the deficiencies of the aforementioned decomposition methods. In
other words, it provides unique and unbiased efficiency scores for the individual stages,
which are then composed to obtain the overall efficiency, by selecting the aggregation
method a posteriori. Also, we develop an envelopment model to derive the efficient

projections and render efficient the inefficient units.

Based on the composition approach we build the “weak-link” approach, which can be
applied to two-stage network structures of varying complexity. Inspired by the “weak link”
notion in supply chains and the maximum-flow/minimum-cut problem in networks we
introduce a novel definition of the system efficiency in two-stage network DEA. We adapt
this notion to the performance assessment of the two-stage processes by employing a two-
phase max-min optimization model in a multi-objective programming framework. We drive
the quest towards the Pareto front by rationally assuming that the stage efficiencies are
proportional to their independent counterparts. The proposed two-phase multi-objective
procedure provides a unique Pareto optimal solution, i.e. unique stage efficiency scores, and
the overall efficiency is derived as the lowest of the stage efficiencies. The properties of
unique and unbiased efficiency scores enable us to identify sufficiently the source of
inefficiency and demonstrate that the “weak-link” approach excels the decomposition

approaches.

Finally, in this thesis, we revisit the paper of Aviles-Sacoto et al (2015) who assessed 37
undergraduate business programs in U.S. as two-stage processes within the peculiar situation
of some of the intermediate measures, namely the internships, playing both an input and
output role in regard to the second stage. We reveal that the proposed modelling approach
deviates from the described scenario and depicts a different situation where the specific
intermediate measure is viewed either as input to or as output from the second stage of the
process. We develop instead an alternative modelling approach, within the context of network

DEA, so as to amend this issue.
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1.1 Motivation and objectives of the thesis

Network DEA broadens the application field of standard DEA so as to allow for efficiency
assessments when the DMUs have complex internal structure that consists of several sub-
processes. There is an increasing literature body on the field of network DEA and a variety of
methods, however, there is only one critical review (Chen et al, 2013) and four surveys
(Castelli et al, 2010, Agrell and Hatami-Marbini, 2013, Halkos et al, 2014 and Kao, 2014)
with divergent views on the classification of the studies concerning the modelling approach
and the network structure of the process. The most significant methods on the field of
network DEA, namely the multiplicative and the additive decomposition, have inherent
defects because they yield non-unique efficiency scores as reported in the literature.
Moreover, we show that the latter provides biased efficiency scores. In addition, the slacks-
based measure (SBM) approach (Tone and Tsutsui, 2009), which has already received much
attention from the research community, cannot be formulated and applied to production

processes with specific structures.
The above motivates us to define the objectives of this thesis as follows:

« To unveil relations and differences among the existing network DEA methods and present
the origin and evolution of the most important ones.

» To offer a thorough categorization and critical survey of the state-of-the art network DEA
methods.

» To uncover the deficiencies of the existing network DEA methods.

« To provide a deep examination of these defects so as to unveil their effects and give

comprehensive interpretations.

» To develop alternative network DEA methods that amend the reported defects.
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1.2 Contribution of the thesis

The contribution of the thesis to the network DEA literature is outlined below:

6 |

Provides a thorough survey of the network DEA literature and classifies the network

DEA studies according to the modelling approach they follow.

Reveals the shortcomings of the network DEA methods concerning the returns to scale,
the inconsistency between the multiplier and the envelopment models, the non-unique

efficiency scores, the biased assessments and the inability to be universally applied.
Establishes the properties that the network DEA methods should meet.

Introduces the composition approach to two-stage network DEA, as opposed to the
efficiency decomposition approach, by formulating the efficiency assessment of multi-
stage processes as multi-objective mathematical programming problem. The new

approach provides unique and unbiased efficiency scores.
Provides methods to derive the efficient frontier in two-stage DEA.

Introduces a novel definition of the system efficiency in two-stage processes, inspired by
the “weak link” notion in supply chains and the maximum-flow/minimum-cut problem in

networks.

Develops the “weak-link” approach to network DEA for the performance assessment of
two-stage processes of varying complexity, which identifies effectively the source of

inefficiency in a multi-stage process.

Reveals that the modelling approach of Aviles-Sacoto et al (2015) is misleading and
proposes enhancements by developing alternative modelling formulations for the

performance assessment of the specific two-stage process under examination.
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1.3 Organization of the thesis

The thesis is organized as follows:

Chapter 2: This chapter discusses the history and the origins of Data Envelopment Analysis

Chapter 3:

(DEA). It also provides the basic DEA concepts and definitions and describes the
properties that render DEA a powerful technique for performance measurement.
We present the classical DEA models, namely the CCR, the BCC, the additive
and the slacks based measure (SBM), and we discuss the relations and differences

among them.

Demonstrates the advantages of network DEA over the standard DEA for the
assessment of multi-stage processes. It also describes the evolution of network
DEA, it provides a detailed survey of the network DEA literature and categorizes
the existing studies based on the assessment approach that they follow. We
discern two assessment paradigms, the independent assessment paradigm and the
joint assessment paradigm. In the independent paradigm the performances of the
DMUs and the sub-processes are assessed independently whereas in the joint
paradigm the internal structure of the DMUs and the interdependencies among
the sub-processes are taken into consideration. There are three general approaches
that follow the joint assessment paradigm: the efficiency decomposition
approach, the slacks-based measure approach and the system-centric approach.
The most influential approaches are the efficiency decomposition and the slacks-
based measure. Thus, we discuss in detail the most important network DEA
methods of those categories and their extensions. In particular, we present the
additive and the multiplicative decomposition methods as well as the network
slacks based measure (NSBM). Also, we report the limitations of the
aforementioned methods, concerning the uniqueness of the stage efficiency
scores, the returns to scale assumed, the inconsistency between the multiplier and
the envelopment models as well as the insufficient information that provide for

the calculation of efficient projections.
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Chapter 4: In this chapter, we revisit the additive and the multiplicative efficiency

Chapter 5:

8 |

decomposition methods to discuss their shortcomings. Then, based on a reverse
perspective on how to obtain and aggregate the stage efficiencies, that of the
composition as opposed to the decomposition, we develop the composition
approach to two-stage network DEA that overcomes the deficiencies of the
decomposition methods. Selecting an output orientation for the first stage and an
input orientation for the second stage, we show that it is possible to obtain
unbiased efficiency scores for the two stages in a bi-objective optimization
framework. We propose two alternative models by employing different
scalarizing functions in a multi-objective linear programming (MOLP) model.
Firstly, we aggregate additively the two objectives in a single objective that
locates an extreme (vertex) Pareto-optimal solution. Then, we develop a min-max
model that provides unique efficiency scores by locating a point on the Pareto
front, not necessarily extreme. In the latter case, the stage efficiencies obtained
are more balanced. The individual efficiency scores are then used to calculate the
overall efficiency of the production process, by selecting the aggregation
(composition) method a posteriori. As the conflicting role of the intermediate
measures gives a peculiar character to two-stage processes that obscures the
standard DEA premises, we develop an envelopment model to locate the efficient

frontier, whose derivation from our primal multiplier model is justified.

In this chapter, we introduce a novel definition of the system efficiency in two-
stage network DEA, inspired by the “weak link” notion in supply chains and the
maximum-flow/minimum-cut problem in networks. We adapt this notion to fit
the multi-stage processes dealt with in network DEA, by assuming that given the
stage efficiencies, the system efficiency can be viewed as the maximum flow
through the network and can be estimated as the min-cut of the network. Thus,
our primary goal is to estimate the stage efficiency scores in a manner that the
minimal stage efficiency (the weak link) and, thus, the overall system efficiency
gets the maximum possible value. The mathematical representation of this
concept is expressed by the weighted max-min formulation which seeks to
maximize the minimum weighted achievement from zero-level efficiency. For

this purpose, we develop a two-phase max-min optimization technique in a multi-
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objective programming setting to estimate the stage efficiencies and the overall
efficiency simultaneously. The “weak-link” approach is an advancement of the
composition approach, therefore it gains the nice properties of providing unique
and unbiased efficiency scores unlike the decomposition methods. The “weak-
link” approach can be applied to various types of two-stage network structures.
The proposed two-phase procedure secures the Pareto optimality condition and
provides a unique point on the Pareto front, i.e. unique stage efficiency scores, by
maximizing the lowest of the stage efficiencies (weak link). We derive the stage
efficiency scores based on the assumption that they are proportional to their
independent counterparts, i.e. the independent stage efficiencies define the search
direction towards the Pareto front. However, beyond this rational assumption,
external priorities can be explicitly introduced to our models to obtain alternative
Pareto optimal solutions, i.e. different stage and overall efficiencies. Also, we
provide a systematic investigation of the sensitivity of the weak link in order to
identify adequately the source of inefficiency. Finally, a detailed comparison with

the multiplicative approach highlights the advantages of our method.

Revisits the work of Aviles-Sacoto et al (2015) who studied the efficiency
assessment of 37 undergraduate business programs in U.S. as two-stage
processes, where some of the intermediate measures are inputs to the second
stage and at the same time external outputs from that stage. Under this peculiar
situation they developed a network DEA assessment framework based on the
additive decomposition method. However, as we demonstrate, the original
modelling approach followed in Aviles-Sacoto (2015) arbitrarily, yet
unnecessarily, departs from the described setting and adapts a different situation,
where the specific intermediate measure is viewed either as input to or as output
from the second stage of the process. Thus, we propose an alternative modelling
approach for the performance assessment of the undergraduate business

programs, in the context of network DEA.

Chapter 7: Concluding remarks are drawn based on the research findings and directions for

future research on the field of network DEA are provided.
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1.4 Publications based on the thesis
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Chapter 2

Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric and “data driven” technique that is
based on linear programming. It was developed for measuring the relative efficiencies of a set
of comparable entities, called Decision Making Units (DMUSs), which convert multiple inputs
into multiple outputs. The definition of a DMU is generic since the application field of DEA
includes various forms of DMUs, such as hospitals, universities, banks, supply chains,
countries and so forth. As noted in Cooper (2014), the term “DMU” is coined so as to
emphasize the purpose of DEA “to be useful to managers and policy makers not only in
measuring the efficiency of different organizations but also in guiding them how that could be
accomplished”. The fundamental concept of DEA is to identify the best practice DMUs so as
to form an efficient frontier and act as benchmark for the non-frontier units. Using this
information, the non-frontier (inefficient) units can be compared with the benchmarks and

their level of efficiency can be measured.

DEA was developed as an alternative to the econometric (parametric) approach for the
efficiency measurement of production units. In the econometric approach an explicit
production function is assumed (e.g. Cobb-Douglas) and the parameters of this function are
estimated so as to fit the observations. On the other hand, in DEA no assumptions are made
for the underlying functional form that transforms inputs to outputs. DEA builds an empirical
best practice production frontier based on the observed data and provides performance

measures by comparing the observations by the best practice units.

As noticed in Cooper et al (2007), Cooper and Lovell (2011) and Cooper (2014), the
basic concepts of DEA were initiated by Farell (1957), who established a piecewise linear
envelopment of the data as the most pessimistic specification of the production frontier by
solving systems of linear equations. Farrell reported the inadequacies of the existing
efficiency and productivity measures in the presence of multiple inputs, i.e. the average
productivity for an individual input (ignoring all other inputs) and the efficiency index in

which a weighted average of inputs is compared with output. Being inspired by the activity

| 13



PhD Thesis — G. Koronakos

analysis of Koopmans (1951) and Debreu (1951), he provided new efficiency measures
which are based on radial equiproportionate reductions or expansions of the inefficient
observations to the production frontier. That is to say, Farell (1957) introduced a measure of
technical efficiency based on the relative notion of comparing the inputs and outputs of
similar DMUJs, i.e. he proposed a measure of relative technical efficiency. However, Farell
(1957) failed to generalize his formulations to the multiple inputs-outputs case and confined

to situations with many inputs but a single output.

Charnes et al (1978) built upon Farrell’s work and the works of Charnes and Cooper
(1961), (1962), on linear and fractional programming respectively, and made the connection
between Farrell’s technical efficiency measure and the classic output to input ratio measure
of efficiency. Actually, Charnes et al (1978) enabled the efficiency assessment to deal with
multiple inputs and outputs by generalizing the single output-input ratio measure of
efficiency in terms of a fractional linear program. In order to be aligned with the classic
definition of efficiency, i.e. the ratio of output to input, they transformed the multiple inputs
and outputs into single “virtual” input and “virtual” output. The virtual input and output are
formed as weighted sums, where the weights are not given a priori but they derive from the
optimization process. Also, they presented the conversion of the fractional linear program to
an equivalent linear program, which as Cooper et al (2007) noticed is “dual to the problem

formulated by Farrell”.

It is worth to note that Farrell and Fieldhouse (1962) based on Hoffman’s comments
about Farrell’s framework (cf. the discussion section for his work included in Farrell’s
paper), provided sufficiently the linear programming formulation for the single-output case.
However, they did not provide rigorous mathematical details and interpretations. Bringing
them all together, A. Charnes, W.W. Cooper and E. Rhodes established the DEA for the
performance measurement of DMUs and extended its power and computational convenience
based on mathematical programming. They also provided a strict mathematical framework

that eases the analysts and the decision makers to follow and comprehend.

The origins and the historical evolution of DEA are succinctly outlined by Seiford (1996),
Forsund and Sarafoglou (2002), Cooper and Lovell (2011) and Cooper (2014).
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Chapter 2: Data Envelopment Analysis

2.1 Basic concepts and definitions

The DMUs are homogeneous production units that transform multiple inputs into multiple
outputs, which are non-negative scalars. In real-world problems the identification of the
inputs and the outputs for the performance assessment of DMUs may be a rough task. It is
however of great importance, because the chosen inputs and outputs should effectively
portray the DMUSs’ operations. The inputs and the outputs of DMUs could be of different
type and of unit of measurement. A schematic representation of a DMU is given in Figure 2.1

below.

— —
Inputs ¥ DML Outputs ¥
_— —

Fig. 2.1: A typical representation of a DMU

2.1.1 Production Possibility Set (PPS)

As noticed, the primary purpose of DEA is to identify the best production practice among the
DMUs so as to derive an empirical production frontier. The best production practice is
derived from any DMU of the production possibility set (PPS) that produces the highest
possible levels of output given its level of inputs. The PPS, also known as technology, is
related to the production process operated by the DMUSs. It is a convex set that contains all
the feasible levels of outputs that can be produced from the available levels of inputs, no
matter if they are not observed in practice. These feasible input-output correspondences are
obtained using interpolations between the observed input-output bundles of the DMUs.
Assuming n DMUs, each using m inputs X; = (x;,i=1,..,m),j =1,..,n to produce s

outputs ¥; = (y,;,7 = 1, ...,s), we denote the PPS as T:
T ={(X,Y) € RT"*5| X can produce Y}

In DEA, a certain assumption concerning the returns-to-scale (RTS) is required for the
construction of the PPS. The RTS describe the environment in which the DMUs operate. In

particular, the RTS indicate for each DMU the relation between a proportional change in
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inputs and the resulting change in outputs. Under the constant returns to scale (CRS)
assumption a proportional increase in input levels results in an equiproportionate increase in
the output levels. If this assumption does not hold, then the DMUs operate under variable
returns to scale (VRS). Specifically, when the output levels increase by a greater proportion
than the proportional increase in the input levels, then increasing returns to scale (IRS) exist.
On the other hand, when the output levels increase by a lower proportion than the
proportional increase in the input levels, then decreasing returns to scale (DRS) exist.
Conclusions about the RTS should be drawn from the specific characteristics of the DMUs
and the environment in which they operate.

Beyond the assumption of the RTS, the PPS (T) construction is based on the principle of
minimal extrapolation, i.e. the PPS is the smallest convex set enveloping all the observations
(DMUs). The PPS is build on the following axioms:

e Inclusion of observations:

X.
Each observed DMU [Y]] eT.
]

e Monotonicity:

X; X
If [/ € Tand X = X; then |0 | € T.
Y; ! Y

X; _ X;
If [Y]] €T and Yy <Y then [Yo_] eT.

e No output can be produced without some input:

0
If Y; >0 and Yj#0 then [Y] ¢T.
j

e Ray unboundedness (CRS):

J
Y:

X X;
If[ ]eT=>k [Y.]ET, VEKERS j=1,..,n.
J J

e Convexity:

Any convex combination of DMUs that belong to T, belong to T, i.e.

X.
?=1Aj [Y}]] € T127=1/1j =1,42=20,j=1,..,n.
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The mathematical representation of the PPS for the n DMUs under constant returns to

scale (CRS) assumption is as follows:
n n
TCRS = J(X,Y) | Z;tjxj < X,Z;tjyj >Y,24>0j=1,.,n (2.1)
j=1 j=1

The corresponding PPS under variable returns to scale (VRS) is given below:

n n n (2.2)
TVRS = {(X,Y) | Z%‘Xj sX,zAij 2 Y'Zﬂi =1420j=1..n
j=1 j=1 j=1

The difference between T°®° and TY®° is the convexity constraint 7,2, =1. The

incorporation of this constraint allows for constant, increasing and decreasing returns to scale.
Also, it leads to smaller PPS with tighter envelopment of the observations (DMUs). We
provide in Figure 2.2 a schematic representation of TR® and TVR® for a case of seven DMUSs,
labelled A to G, that use one input to produce one output, as presented in Table 2.1.

Table 2.1: Single input-output case

DMU A B C D E F G
Input (X) 3 4 10 7 5 9 8
Output (Y) 1 5 8 2 3 5 4

Output (Y)

2 s 6 8 10 1
Input (X)
Fig. 2.2: Production possibility sets and efficient frontiers under CRS and VRS assumption
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Under CRS assumption, the PPS that envelops all the data points (DMUSs) is defined by
the horizontal axis and the ray from the origin through DMU B. This ray constitutes the CRS
efficient frontier, i.e. the efficient subset of the PPS. Under VRS assumption, the efficient
frontier is determined by the DMUs A, B and C. The piecewise PPS envelops all the DMUs
within the region bounded by the efficient frontier ABC, the horizontal line passing through
C and the vertical line passing through A. The returns to scale are increasing along AB,
constant to point B and decreasing along BC. As can be deduced, the assumption of the

returns to scale affects the shape of the PPS and therefore the performance of the DMUs.

2.1.2 Efficiency measurement

The technical efficiency is a radial distance measure that derives for each evaluated DMU by
means of a maximal feasible radial contraction of its input levels given its levels of outputs
(input orientation). With an output orientation the distance is measured by means of a
maximal feasible radial expansion of its output levels given its levels of inputs. Koopmans
(1951) extended the optimality concept of Pareto optimality and provided a definition of
technical efficiency, which is adapted in DEA:

Definition 2.1: A DMU is technically efficient if, and only if, an increase in any output or a
decrease in any input is possible only by decreasing at least some other output or by

increasing at least some other input.

2.1.2.1 Ilustrative example: the CRS case

We revisit now the typical example of the seven DMUs (A to G) with the single input-output,

as given in the previous section.

Table 2.2: Single input-output case

DMU A B C D E F G
Input (X) 3 4 10 7 5 9 8
Output (Y) 1 5 8 2 3 5 4
Output/Input 0.333 1.25 0.8 0.286 0.6 0.556 0.5
CRS efficiency 0.267 1 0.64 0.229 0.48 0.444 0.4
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The output/input ratio of each DMU is the slope of the ray passing through the origin of the
axes and the DMU. The ray with the highest slope that passes from the origin through point B
is the CRS efficient frontier. Therefore DMU B is efficient and defines the CRS efficient
frontier. The other DMUs, namely A, C, D, E, F and G are inefficient as they lie below the
efficient frontier. The output per input ratio for each DMU is presented in the third row of
Table 2.2. The CRS technical efficiency of the DMUs is a relative measure that can be
calculated by taking the output/input ratio with that of output/input ratio of the efficient DMU

(B):

output per input of DMU i ]
< , <1,i=A4,B,C,D,EF,G
output per input of DMU B

The last row of Table 2.2 presents the technical efficiency for each DMU. When input

orientation is selected, the technical efficiency of the DMU E is derived by the ratio% =
1

0.48 . When output orientation is selected, the technical efficiency is derived by the inverse of

the ratio % = 2.083, i.e. the technical efficiency is ﬁ = 0.48. Hence, under the CRS

3

assumption the input and output oriented measures provide the same efficiency score.

10
c
8 .
& 6 1
s i
£ : b
3 i G
4 i -
1
1
o P | T Q
]
1
2 4 i
]
]
]
1
1
&
0 2 4 E; 6 8 10 12

Input (X)
Fig. 2.3: CRS technical efficiency and projections of DMU E
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The inefficient DMU E can be rendered efficient by a horizontal projection to the
efficient frontier at point E2 (2.4, 3), when input orientation is selected. This is accomplished
by reducing its input level to the extent that the technical efficiency indicates, i.e. 0.48-5 =
2.4, while its output level is maintained. Alternatively, when output orientation is selected,
the DMU E can be projected vertically to point E4 (5, 6.25) of the efficient frontier,. This is
achieved by increasing its output levels using the inverse of technical efficiency, i.e. 2.0833-3
=6.25.

2.1.2.2 Ilustrative example: the VRS case

When variable returns to scale are assumed the technical efficiency can be analyzed to two
components, namely the VRS technical efficiency and the “scale” efficiency (SE). Banker et
al (1984) showed that the CRS technical efficiency can be derived as the product of the VRS
technical efficiency and the scale efficiency. The technical efficiency (TE) obtained under
CRS and VRS assumptions, is called global and pure technical efficiency accordingly (cf.
Cooper et al, 2007). The scale inefficiency is attributed to either decreasing or increasing
returns to scale. A DMU is scale inefficient when it operates away from its most productive
scale size (MPSS), see Banker (1984) and Banker et al (1984). The MPSS is a point on the

CRS efficient frontier that maximizes the average productivity for its input-output bundle.

In Figure 2.4 below we illustrate the example of single input-output case under VRS
assumption. The VRS efficient frontier is constituted by the DMUs A,B and C. As we can
see, the CRS efficient DMU B is also VRS and scale efficient, i.e. it operates at the MPSS.
On the other hand, the VRS efficient DMU A is scale inefficient because it operates on the
IRS part of the VRS frontier. Analogously, the VRS efficient DMU C is scale inefficient
because it operates on the DRS part of the VRS frontier. The inefficient DMU E can be
rendered VRS efficient by projecting it to the points Es or Es onto the VRS efficient frontier,

depending the orientation selected. Assuming an input orientation, the VRS technical

efficiency and the scale efficiency can be determined by the ratios % and % respectively.
1 1E5

The CRS technical efficiency for the DMU E is decomposed as:

E\E, EEs EE,

CRSTE = VRSTE x SE = = X
E.E EE  EEs
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Output (Y)

Fig. 2.4: Technical and scale efficiency for DMU E

Summing up, the technical inefficiency expresses for an inefficient DMU the failure to
use the lowest possible level of input given its output or to produce the highest possible level
of output volume given its input. The scale inefficiency is attributed to the size of operations
of a DMU and represents deviation from the MPSS (CRS efficient frontier). We shall see in

the next sections, how the aforementioned concepts can be accommodated in an operationally
implementable form.

2.2 Basic DEA models

In this section we outline the four basic DEA models that originate from different
assumptions on the way the inefficient units are projected on the efficient frontier (radial or
non-radial). The radial efficiency measure assumes a proportional contraction (expansion) of
inputs (outputs) towards the frontier. The radial measure is used in the two milestone DEA
models, namely the CCR (Charnes et al, 1978) and the BCC (Banker et al, 1984) models.
These models have become standards in the literature of performance measurement under the

assumption of constant and variable returns to scale respectively. The non-radial efficiency
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measure differs from the radial efficiency measure in that the projections on the efficient

frontier are made by non-proportional reductions (increases) of the input (output) levels.

2.2.1 The CCR model

The CCR model was introduced by Charnes et al (1978) to measure the relative efficiency of
decision making units under the constant returns to scale assumption. The efficiency of a
DMU s defined as the ratio of the weighted sum of outputs (total virtual output) to the
weighted sum of inputs (total virtual input), with the weights being obtained in favor of each
evaluated unit by the optimization process.

2.2.1.1 Multiplier form

Assume n DMUSs, each using m inputs to produce s outputs. We denote by yyjthe level of the
output r(r=1,...,s) produced by unit j (j=1,...,n) and xi the level of the input i (i=1,..., m)
used by unit j. The vector of inputs for DMU j is X; = (xy;, ...,xmj)T and the vector of

outputs is ¥; = (y;, ...,yrj)T. The basic CCR model that provides the CCR efficiency for the

DMUjo is given below:

max ejo =—

s.t. 2.3)

wY; .
— <1, j=1,..,n
nX;

n=0w=0

The model (2.3) is formulated and solved for each DMU in order to obtain its efficiency
score. The variables #=(y1, ...,nm) and w=(wx, ...,ws) are the weights associated with the inputs
and the outputs respectively. These weights are calculated in a manner that they provide the
highest possible efficiency score for the evaluated DMUjo. The constraints of model (2.3)

limit the efficiency scores of the DMUSs in the interval (0, 1].

The CCR model (2.3) can be transformed to a linear program by applying the Charnes
and Cooper (1962) transformation (C-C transformation hereafter). The transformation is

carried out by considering a scalar ¢t € R* such as tnX;, =1 and multiplying all terms of
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model (2.3) with t>0 so that v = t, u = tw. The linear equivalent of model (2.3) is expressed

as:
max e;, = uY;
s.t.
vXj, =1 (2.4)
uf; —vX; <0, j=1,..,n
v=20u=0
The decision variables (v,u) of model (2.4) often are constrained to positive values by
replacing the non-negativity constraints v,u>0 with v,u>¢, where ¢ is a non-Archimedean
infinitesimal. This is done in order to avoid giving a zero weight to some of the inputs and the

outputs. Once an optimal solution v*,u” of model (2.4) is derived, the input oriented CCR-

efficiency e for DMUjo under evaluation is obtained directly from the objective function.

Definition 2.2 (CCR-Efficiency): The DMUj, is CCR-efficient if and only if e; =1 and
there exists at least one optimal solution (v*, u”), with u™>0 and v">0. Otherwise, the DMUj,
is CCR-inefficient.

At the optimal solution of model (2.4) at least one constraint of the inequality constraints is
binding (i.e. it holds as equality). The binding constraints that hold as equality (u*Y; — v*X; =

0) indicate the reference units for the evaluated unit.

2.2.1.2 Envelopment form

The envelopment form of the CCR model derives as the dual of the multiplier form (2.4) as

follows:
min 6
s.t.
6X;, —X1=0 (2.5)
YA-Y, >0
A=20
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The envelopment form (2.5) represents explicitly the way that the evaluated units are
projected on the efficient frontier. The correspondence of the constraints and the variables of
models (2.4) and (2.5) is presented in Table 2.3.

Table 2.3: Correspondence between models (2.4) and (2.5)

. - Variables of Variables of .
Constraints of multiplier - Constraints of envelopment
envelopment model  multiplier model
model (2.4) (2.5) (2.4) model (2.5)
vXj, =1 0 v>0 0Xj, — X120
1d§—-v)g:§(lj5= 1,..,n 1>0 u>0 YA=Y >0

The constraints of the envelopment model (2.5) make evident its relation with the CRS
production possibility set TRS(2.1). These constraints require the proposed activity (6.Xjo, Yio)
to belong to the TS, The objective of the input oriented model (2.5) is to seek for the
minimum @ that reduces radially the input levels (Xjo) to 6Xjo onto the boundary of TCRS,
maintaining the output levels (Yjo). In order to account for input excesses and output shortfalls
the non-negative slack variables s~ = (s7,...,s;)T and st = (s, ...,s)T are introduced in
model (2.5) to get its standard form as follows:

min @

s.t.

0X;, —XA—s" =0 (2.6)

Y, -YAl+st=0

A>0,s"=0st>0

The model (2.6) is solved by the following two-phase LP procedure is solved:
Phase |

The model (2.6) is solved in order to derive the efficiency score 6 for the evaluated DMUjo.

Phase 11

Using the optimal value 8" from Phase I, the following model is solved to find a solution that
maximizes the sum of input excesses and output shortfalls, where e=(1,...,1) is a vector of

ones.
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maxes™ +est

S.t.
XA+s™ =6°X;, 2.7)
YA—s* =Y,

A>0,s"=0st>0

Definition 2.3: Given an optimal solution (6* 1*,s™*,s*) from Phases | and I, the evaluated
DMUj, is CCR-inefficient if and only if §"=1 and all slacks are zero (s~ = 0,s**=0).
Otherwise, the DMUj, is CCR-inefficient.

The Definition 2.2 characterizes the efficient units in terms of the multiplier form whereas the
Definition 2.3 characterizes the efficient units in terms of the envelopment form. These two
definitions are equivalent according to complementary slackness theorem. Accordingly, the

Definition 2.3 is equivalent to Pareto-Koopmans efficiency (Definition 2.1).

Given the optimal solution (6%, 1*,s7,s**) derived by Phases | and Il (models (2.6) and
(2.7)) the projections of the evaluated unit jo (X;,,Y;,) on the efficient frontier are obtained as

follows:

(2.8)

2.2.1.3 Input-Output oriented models

The technical efficiency of a DMU can be measured by adopting either an input or an output
orientation. If the conservation of inputs is of greater importance an input orientation is
selected. Alternatively, if the expansion of outputs is considered more important according to
the analyst’s perspective an output orientation is selected. The two variants of the CCR model

in multiplier and envelopment forms are presented in Table 2.4 below.
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Table 2.4: Input and output oriented CCR models

Multiplier form Envelopment form

max ej, = uYj, min6
3 s.t. s.t.
3
5 v, =1 (24) 60X, —XA—s" =0 (2.6)
2  ul—vX;<0, j=1,.,n Y, -YA+sT =0

v=0,u=>0 A=0,s"=>0,st*>0

1

mme—_ = UXJ-O max @
- Jo
s S.t.
= s.t.
5 Xi —Xu—1t" =0
2 uy, =1 (2.9) Xj, —Xu (2.10)
s Y, —Yu+1t=0
35 wi-vX<0, j=1,..,n Pl m T

u=0,1"=>01"=>0
v=20u=0

The optimal solutions of the input and output oriented models are related as follows:

. 0 =1/p’

o sTtT=1"/p",i=1,...m

o st'=1/p*r=1,..,s

2.2.1.4 ITllustrative example

We illustrate the above models and concepts with an example of seven DMUs (A to G) that

use a single input to produce two outputs as shown in Table 2.5 below:

Table 2.5: Example of seven DMUs with single input and two outputs

DMU A B C D E F G
Input (X1 2 2 10 4 4 1 1
Output (Y1) 4 6 30 4 12 1 4
Output (Y?) 14 6 10 20 24 7 2
Output (Y1) / Input (X} 2 3 3 1 3 1 4
Output (Y1) / Input (X} 7 3 1 5 6 7 2
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To make the representation of the units in two dimensional space possible the outputs per

unit of input are calculated. Table 2.6 exhibits the results obtained from the multiplier model

(2.9) or its dual, the envelopment model (2.10), i.e. the inverse of the efficiency scores (¢”),

the optimal weights (v}, uj,u3) in terms of the multiplier model, the reference set of the

inefficient units with the intensities and the input excesses (z7*) and the output shortfalls

+x +x
137 ) .

Table 2.6: CCR output oriented results

*

Reference

DMU 7 vy uj u; st Intensity variables t7* " (S
A 1 1 0.111 0.111 - Uy =1 0 0 0
B 1.2 1.2 0.267  0.067 E,G ur =04, u; =06 0 0 0
C 1333 1.333 0.333 0 G e =1 0 0 0.667
D 1.4 14 0 0.2 A Uy =1 0 0.6 0
E 1 1 0.111 0.111 - g =1 0 0 0
F 1 1 0 0.143 A Uy =1 0 1 0
G 1 1 0.222  0.056 - e =1 0 0 0

The DMUs A, E and G are efficient, while the other DMUs are inefficient. Figure 2.5

below depicts the production possibility set (shadowed region), the efficient frontier defined

by the efficient units A, E, and G and the projections of the inefficient DMUs on the frontier.

8 -

Output Y2/ InputX1
NN

D,

A

Fig. 2.5: Production possibility set, efficient frontier and projections

Output Y1 / Input X1
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The output oriented projections of the inefficient units are obtained from the following

relations:

(2.12)

The DMU F is inefficient because although ¢ =1 there is an output short fall (z7* = 1)
with respect with output Y. Hence, DMU F can be rendered efficient by increasing the
output Y7 indicated by the amount z7* = 1. Graphically, this is accomplished by moving from
point F to point A. Using the formulations (2.12) we derive the improvements (X3, Y2, ¥?) for
the DMU F as follows:

Xf=Xt—-t"=1-0=1lor Xp=pX;=1-1=1
V= Vi+ri" =114+1=2o0r Vi =p¥} =1-2=2

V2= VP+13" =1-7+0=7or Vi=puYi=1-7=7

The DMU D is inefficient as ¢ =1.4>1. Its projection D1 on the frontier can be derived by
increasing proportionally the two outputs by ¢"=1.4, however this radial improvement is not
sufficient to restore the efficiency of unit D as there is an extra improvement (non-radial) of
output Y by 77 = 0.6. Therefore, DMU D has to move first to point D; and then on point A
of the efficient frontier. The projections (X3,Y2,¥2) for the DMU D are calculated as

follows:

Xb=Xp—1"=1-0=1lor Xp=pXj=1-1=1
V=9 V) +1{"=14-1406=2 or¥ =¥ =1-2=2

Ve=o@Vi+13"=14-540=7or V=Y =1-7=7
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The projections of DMUs B and C are obtained accordingly:

Xe=X5—17"=1-0=1 or Xp =, Xg + ;X =04-1+06-1=1
V=9 Y5+t =12-3+0=360r Vg =Y} + 4 Y; =04-3+0.6-4=3.6

Y2=¢V2+15"=12-3+0=23.6 or 1732=yZYEZ+uZYG?=0.4-6+0.6-2=3.6

Xt=Xt—-11"=1-0=1lor X} =pXt=1-1=1
Vo=@ Y0 +17"=1333-34+0=4or V} =Y} =1-4=4

V=9 V¢+13"=1333-1+0667=2o0r V2= Yi=1-2=2

In Table 2.7 below, we provide the projections for the inefficient DMUs.

Table 2.7: Projections

DMU B C D F
Input X! 1 1 1 1
Output Y1 3.6 4 2 2
Output Y2 3.6 2 7 7

2.2.2 The BCC model

The CCR model was extended to the BCC model by Banker et al (1984) so as to
accommodate variable returns to scale (VRS). The incorporation of variable returns to scale
in DEA allows for decomposing the overall efficiency to technical and the scale efficiency in

contrast to the CCR model which aggregates them into a single measure.

A structural difference of the CCR and the BCC models is the additional free of sign
variable uo in the multiplier form of the latter, which is the dual variable associated with the

additional convexity constraint (eA=1) in the envelopment form. Table 2.8 exhibits the
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multiplier and the envelopment forms of the input oriented and the output oriented BCC

models.

Table 2.8: Input and output oriented BCC models

Multiplier form Envelopment form
min 0
max uY; — ug
S.t.
8 s.t.
= 0X;, —XA—s" =0
= vXj, =1 (2.13) (2.14)
= Y}o —YA+ S+ =
= qu—uO—vXjSO, j=1..,n
= eA=1
v=20uz=0
A=>0,s"=>0,s*>0
max
minvX; —ug v
= s.t.
2 s.t.
@ XjO—X,Ll—T_=0
5] uY; =1 (2.15) (2.16)
5 @Y, —Yu+tt=0
=3 u¥; —vX;+uy <0, j=1,..,n
@] el=1

v=>20u=0
A=>0,t"=>0,tt>0

We give in Table 2.9 the primal and dual correspondences of the constraints and the variables

of the BCC input oriented models.

Table 2.9: Correspondence between models (2.13) and (2.14)

Constraints of multiplier model Va“?bles of \f"’}“?bles Og | Constraints of envelopment
(2.4) envelopment  multiplier mode model (2.5)
' model (2.5) (2.4) '
vXj, =1 o 120 0Xj, XA 20
UY}'—UX}'—E'LLOSO,].=1,...,TL /120 UZO YAZYJO
Uy er=1
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The definition of efficiency is analogous to the Definitions 2.2 and 2.3. The efficiency
scores obtained from the BCC model are not less than the corresponding ones obtained from
the CCR model. The boundary of the VRS production possibility set is closer to the
observations (DMUSs) since, the convexity constraint imposed in the BCC envelopment
model spans a subset of the CRS production possibility set (see Fig. 2.2).

The prevailing returns to scale can be identified by the optimal solution of both multiplier
and envelopment BCC models. Banker et al (1984) determined the returns to scale (RTS)
using the optimal value of the free variable in the multiplier models. Banker (1984) and
Banker and Thrall (1992) identified the RTS by the intensity variables (lambdas) of the

envelopment models.

Theorem: Given the point (XO, yo)that lies on the efficient frontier, the returns to scale at this

point are identified by the following conditions:

1. Increasing returns to scale (IRS) prevail at (Xo,yo) if and only if u} < 0 for all
optimal solutions.

2. Decreasing returns to scale (DRS) prevail at (Xo,yo) if and only if u}, > 0 for all
optimal solutions.

3. Constant returns to scale (CRS) prevail at (X,,Y,) if and only if u} =0 in any

optimal solutions.

We point out that the input and output oriented BCC models may determine different
returns to scale, i.e. the results may depend on the orientation adopted (cf. Banker et al,
2004). For the same DMU, the BCC input oriented may identify IRS while the BCC output
oriented may identify DRS. This is attributed to the nature of the VRS technology (see
Figures 2.2 and 2.4) and the projections of the evaluated unit onto the VRS frontier. In the
example portrayed in Figure 2.4, concerning the inefficient DMU E, IRS prevail at the
frontier point Es which is obtained by the input oriented projection, while DRS prevail at the

frontier point Es which is derived by its output oriented projection.
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2.2.3 The additive model

A natural evolution of the CCR and the BCC models is the additive model proposed by
Charnes et al (1985). The CCR and BCC models are based on input or output orientation and
they provide efficiency scores via a radial measure. On the contrary, in the additive model
both orientations are combined, thus it is non-oriented. The additive model deals directly with
the input excesses and output shortfalls and, in contrast to the CCR and the BCC models, it
does not provide a direct measure of efficiency, but it distinguishes only among efficient and
inefficient units. Table 2.10 below exhibits the multiplier and the envelopment forms of the

additive model under both CRS and VRS assumptions.

Table 2.10: Additive DEA models

Multiplier form Envelopment form

maxes” +est

= min vXj0 —quo .
g s -
2 (217) XA+s™ =X (2.18)
a uY; —vX; <0, j=1,..,n
%) YA-s* =Y,
6 v=1lu=>1
A>0,s"=>0,s">0
maxes” +est
s minvX; —uY; +u, s.t.
5 e XA +s™ =X,
5 (2.19) (2.20)
ﬁ u¥; —u, —vX; <0, j=1,..,n YA—st =Y
< v>lLu>1 ed=1

A=>0,s"=>0,st=>0

A DMU is efficient according to the additive model if and only if at the optimal solution
all slacks are zero (s™* = 0,s** = 0), i.e. there are not any input excesses or output shortfalls.
Under the CRS assumption, a DMU is deemed efficient by the additive model if and only if is
deemed efficient by the CCR model. Also, under VRS assumption, a DMU is deemed
efficient by the additive model if and only if is deemed efficient by the BCC model.
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2.2.4 The Slacks-Based Measure (SBM)

A limitation of the additive model is that only discriminates the efficient from the inefficient

DMUs without providing an efficiency measure for the evaluated units. Tone (2001)

introduced the slacks based measure (SBM) which is a successor of the additive model that is

capable of providing the efficiency scores of the evaluated units. Tone (2001) built upon the

additive model and introduced a non-radial measure of efficiency that takes into account the

input excesses and the output shortfalls. The fractional form of the SBM model is as follows:

1 -
1——¥itisi /xi,

1
1+ EZi:lS;/yrjo

min

(2.21)

The model (2.21) can be converted to the following non-linear program by multiplying

both terms of the objective function by a positive scalar variable t such that ¢t + (%Zizl tsy/

yrjo) =1

1 m
mint — %z tsi /xij,
i=1

S.t.

1 S
t+ (Ez ts;f/yrjo) =1 (2.22)

r=1

XA+ s~ =X]0

Y/1—5+=1§-0

A>0,s">0st>0t>0

Then model (2.22) can be transformed to a linear equivalent by applying the following

variable transformation u=t1, 6°'=s and ¢ =ts™.
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1
minp =t _EZ o; /xij,
i=1
s.t
1 S
t+ (Ez J;/Yrjo) =1 (223)
r=1
Xp+o~ =tXj,
Yu—ot =1ty

u=0,0"=0,0"=20t>0

Note that t>0 by virtue of the first constraint of model (2.23). A DMU is efficient if the
optimal value of the objective function is one (p"=1), which indicates that there are no input

excesses or output shortfalls (6”=0 and ¢*"=0).

Conclusion

Data Envelopment Analysis enabled the efficiency assessment of units that use multiple
inputs to produce multiple outputs, without the need of a priori knowledge of the production
function. Also DEA requires very few assumptions, therefore it opened up the possibilities
for use in a wide range of applications. Great attention has been paid to DEA from the
research community as well as from operations analysts, because of its practical usefulness

on providing performance measures and handling effectively the sources of inefficiency.

However, the further development of DEA is needed so as to address the new real world
problems and the emerging issues caused by the growing complexity of the production
conditions. For instance the DMUs may consist of sub-processes with a complex internal
structure. Despite the exquisite properties of the DEA models presented in this chapter, these
models do not take into account the possible internal structures of the DMUs and they carry
out the assessments of the DMUs as single stage processes. Thus, they cannot provide
meaningful results when applied to multi-stage processes as we will see in the following

chapters.
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Chapter 3

Review of Network DEA methods

Network DEA is an extension of conventional DEA developed to take account of the internal
structure of DMUs. The DMUs often consist of sub-units that interact and perform various
operations. The traditional DEA models treat the DMUs as single stage production processes
that transform some external inputs to final outputs. In such a setting, the internal structure of
the DMUSs is not taken into consideration and the linking activities are neglected. Cook and
Zhu (2014) stressed out that in conventional DEA the DMU is treated as a black box and its
internal structure and operations are ignored. In addition, Kao (2017) pointed out that “when
interactions among divisions are not taken into account, the results will be distorted and
misleading”. Kao and Hwang (2008) showed that the standard DEA models may deem a
DMU overall system efficient even though all their sub-units are inefficient. Conclusively,
the standard DEA models fail to adequately capture and mathematically represent the
aforementioned characteristics of the DMUs. Also, they fall short to shed light on the sources
of inefficiency as well as to provide succinct guidance for the improvement of the inefficient
DMUs and sub-units. On the other hand, in network DEA, the DMU is considered as a
network of interconnected sub-units, with the connections indicating the flow of intermediate
products (commonly called intermediate measures or links). In the literature, these sub-units
are also known as stages, divisions, sub-DMUs, sub-systems, sub-processes, processes,
procedures, components and functions. Albeit in this thesis we may use these terms
interchangeably, we mainly adopt the term “stage” when we refer to the sub-units of the
DMuUs. The advantage of the network DEA models is their ability to reflect accurately the
DMUs’ internal operations as well as to incorporate their relationships and interdependences.
Therefore, they yield more representative and precise results than the conventional DEA
models and provide more information regarding the sources that cause inefficiency. Cook and
Seiford (2009) included the network DEA models to the methodological developments of
DEA and mentioned that these models allow the detailed examination of the inner workings
of a production process, which leads to a greater understanding of that process. Indeed,

having a full picture of the internal structure of DMUs and examining their sub-units in a
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coordinated manner will provide further insights for the performance assessment and will

assist better the decision making.

Fare and Primont (1984) and Charnes et al (1986) were the first studies, to the best of our
knowledge, in the field later named network DEA by Fare and Grosskopf (2000). Fare and
Primont (1984) distinguished the internal structure of multi-plant firms, i.e. firms that own
many plants. They defined the firm’s technology by constructing first the technology of each
plant. Their approach was applied to a selected sample of electric generating firms which
consists of nineteen plants in Illinois. Later, Kao (1998) applied their approach for the
efficiency assessment of eight Taiwanese forest districts with 34 working circles. The
performance of each working circle was measured based on the technology constructed from
all of them. Charnes et al (1986) assumed that the US army recruitment is comprised of two
processes, namely the awareness creation and the contract establishment. Charnes et al (1994)
characterized the two-stage process assumed in Charnes et al (1986) as a stratified production
process where a hybrid modelling approach was used. The work of Fare and Grosskopf
(2000) is considered pioneering in the field of network DEA. Although the terms “black box”
and network technology had been earlier reported in the studies of Fare (1991), Fare and
Whittaker (1995), Fare and Grosskopf (1996) and Fare et al (1997), it was Fare and
Grosskopf (2000) who first coined the term network DEA and provided a consolidated

framework of the aforementioned studies for multi-stage processes with various structures.

Network DEA has already attracted the interest of researchers and a significant body of
research is devoted to both theory and applications. Kao (2014b) noticed that the number of
publications before 2000 was two or three per year, thereafter though it has rapidly grown.
Liu et al (2013), in their citation-based literature survey for DEA for the period 1978-2010,
considered the field of network DEA as a subarea which is relatively active in recent years.
However, from 2010 onwards there has been a blast of publications on network DEA. Some
of these studies explore the properties of the existing methods while others apply them to real
world problems. The application field of network DEA as we will also see below is very
wide, e.g. supply chains, banking, education, sports just to mention some. The network DEA
methods can now be straightforwardly and effectively employed for the performance
evaluation of a supply chain and its members which is undoubtedly a rough task. Agrell and
Hatami-Marbini (2013) provided a thorough review for network DEA methods including
studies devoted to supply chain performance analysis. They also remarked that the supply

chains are complex multi-stage systems with interrelations, which use multiple inputs to
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produce multiple outputs. Hence, the network DEA methods can be adequately employed for
their performance assessment. Many prominent approaches are developed to deal with the
variety of the structures, the interdependencies and the conflicting interests of the sub-units.
Most of the network DEA studies are dedicated to the performance assessment of DMUs with
a specific internal structure. A DMU may consist of sub-units arranged in series, in parallel or
a mixture of these. Cook et al (2010a) and Chen et al (2013) provide insights and directions
for further research for the two-stage network structures arranged in series. Castelli et al
(2010) and Halkos et al (2014) provided comprehensive categorized overviews of models and
methods developed for different multi-stage production architectures. Kao (2014b) provides
an excellent review and classification of network DEA methods according to the model they
use and the network structure that they examine. Moreover, a collection of network DEA
methods is given in Cook and Zhu (2014).

The aim of this chapter is to describe the underlying notions of network DEA, to present
the state of the art in the field and to review the most significant network DEA methods.
Also, our goal is to provide a comprehensive insight and categorization of the network DEA
literature in a unified manner. In particular, we present the possible network structures that a
DMU may be characterized of, we demonstrate the advantages of the network DEA over the
standard DEA, we provide a critical review of the most influential approaches and we discuss
their extensions, inherent limitations and shortcomings. In addition, we track the majority of
multi-stage DEA applications and we classify them according to the method they utilize.
Hence, this chapter presents a complete survey of the network DEA literature.

3.1 Network structures and assessment paradigms

The DMUs may have various types of internal structures. However, we discern that their
production processes may be arranged either in series, in parallel or in series-parallel. The
series and the parallel production processes are two distinctive network architectures studied
extensively in the literature. In this section, we provide some illustrative examples of network
structures which are used as the basis for the development of the most significant network
DEA methods. The four types of series two-stage network processes depicted in Figure 3.1

are the basis for the development of network DEA theory and applications.
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Fig. 3.1: The four types of series two-stage processes

In the Type | two-stage process (Fig. 3.1a) the first stage uses external inputs (X) to produce
the intermediate measures (Z), which are subsequently used as inputs to the second stage
which produces the final outputs (Y). In Type I structure, nothing but the external inputs to
the first stage enters the system and nothing but the outputs of the second stage leaves the
system. This is the elementary network structure that has drawn the attention of most of the
research work. Wang et al (1997) and Seiford and Zhu (1999) are the first who studied

processes of Type | structure.

In the production process of Type Il (Fig. 3.1b) each DMU uses the external inputs (X) in
the first stage to yield the intermediate measures (Z), which then are used along with the
additional external inputs (L) to the second stage to yield the final outputs (Y), as depicted in
Figure 3.1b. That is, the second stage uses except from the intermediate measures additional
external inputs (L) for exclusive use. Liang et al (2006), under game theoretic concepts,
studied a supply chain with two stages, the seller and the buyer, where the buyer (second
stage) uses extra inputs. Notice that the Type Il structure may be varied by assuming that the
external inputs (X) can be freely shared between the stages in conjunction with or without the
additional inputs (L). Such a variation is considered in Chen et al (2006), where the impact of
the Information Technology (IT) on firm performance is examined.

38 |

v



Chapter 3: Review of Network DEA methods

In the production process of Type Il (Fig. 3.1c), the first stage produces some final

outputs (K) beyond the intermediate measures (Z).

In the production process of Type IV (Fig. 3.1d) external inputs and final outputs appear
in both stages. The first stage uses the inputs (X) to generate the final outputs (K) and the
intermediate measures (Z). The second stage uses the intermediate measures (Z) and the
additional external inputs (L) for the production of the final outputs (Y). This type of network
structure was first studied in Charnes et al (1986), Fare (1991), Fare and Whittaker (1995)
and Fare and Grosskopf (1996).

The four types of network structures portrayed in Figure 3.1 can be generalized to series
structures with more than two stages. Figure 3.2 exhibits a series network structure where
each DMU is considered as a multi-stage process with v stages. Actually, the general series

multi-stage process depicted in Figure 3.2 is the multiple of Type IV.

pDMU | X! X2 XV

Zl

—
¥
| o]
<

vl e v

k Y k

Fig. 3.2: A general multi-stage series process

Another basic network structure of the DMUs is a production process whose sub-
processes are configured in parallel. Figure 3.3 below depicts the internal structure of a DMU
with v parallel processes without interdependencies. Each sub-process transforms the external
inputs (X) to final outputs (Y). A characteristic example of units that can be considered as
parallel production processes are the academic departments, where teaching and research are
two separate functions with specific resources and outputs. Analogously, a university can be
viewed as a DMU and its departments can be regarded as the individual parallel sub-units. A
modification of the parallel structure of Figure 3.3 may involve shared flows among the
stages, i.e. the sub-processes, instead of consuming dedicated inputs, they share common
resources (external inputs). Such a case was examined by Fare et al (1997) who assessed the

performance of 57 grain farms with one shared input, namely the land. The land is allocated
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among four different agricultural operations, specifically the crops of corn, soybeans, wheat
and the double crop soybeans. Based on Fare et al (1997), Vaz et al (2010) studied 78
Portuguese retail stores, each one comprised of five sections, namely groceries, perishables,
light bazaar, heavy bazaar and textiles. These sections operate in parallel and share the floor
area. In the educational sector, Beasley (1995) and Mar Molinero (1996) developed nonlinear
models to measure teaching and research performance as parallel academic operations, in the

presence of two shared inputs, namely general and equipment expenditures.

DMU
X1 1 Y1
2 2
X X ) Y
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
X v v

Fig. 3.3: A production process with parallel sub-processes

The basic series and parallel configurations are not always sufficient to describe real
world situations. Therefore, more complex network structures, mixtures of aforementioned
ones can be used to represent in detail the relationships among the sub-processes. Figure 3.4

below portrays for example such a network structure composed of a combination of series

and parallel structures.
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Fig. 3.4: Mixed network structure with series and parallel sub-processes

Such a structure was studied by Lewis and Sexton (2004) who assessed the performance of
30 teams (DMUs) of the Major League Baseball in the US. They assumed that the operation
of each team is represented by a network of five distinct sub-processes. The first and the
second correspond to the team’s front office operations, while the other three correspond to

the team’s on-field operations.

The performance assessment of DMUs within the network DEA framework is carried out
by a variety of approaches, which can be categorized into two assessment paradigms, namely,
the independent assessment paradigm and the joint assessment paradigm. In the independent
assessment paradigm the standard DEA models are used to assess the performance of the
DMUs and the sub-processes independently. In the joint assessment paradigm the internal
structure of the DMUs and the interdependencies among the sub-processes are taken into
account, also the efficiency assessment of the sub-processes and the whole system is made
simultaneously. There are three general approaches that follow the joint assessment
paradigm: the efficiency decomposition approach, the slacks-based measure approach and
the system-centric approach. The categorization is based on the perspective of each approach
about the relationships between the system (DMU) and the stage efficiencies as well as on the
kind of information provided for the performance of the individual stages and the system.
The interaction between the sub-processes is taken into account by these approaches,
however their difference lies on the way that the overall and the stage efficiencies are
derived. In particular, the efficiency decomposition approach measures the system efficiency

first and then the stage efficiencies are calculated ex post. In the slacks-based measure
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approach the overall efficiency is obtained from the aggregation of the stage efficiencies with
various ways as we will see further on. As system-centric we characterize the network DEA
methods that take into account the internal structure of the DMUs and the interdependencies
among the stages, but they provide only an overall performance measure without generating
the stage efficiencies. In the system-centric methods there is no functional form that connects

the overall and the stage efficiencies.
We give below the notation that will be employed in the current chapter:
j €] ={1,..,n}: The index set of the n DMUs.
Jo € J: Denotes the evaluated DMU.
6 € 4 ={1,...,v}: The index set of the v processes that each DMU;j is composed.
X; = (x;,i = 1, ..., m): The vector of external inputs used by DMU;.
Z; = (2zpj,p = 1, ...,q): The vector of intermediate measures for DMU;.
Y; = (ysj,7 = 1, ...,s): The vector of final outputs produced by DMU;.
Li = (laj,d = 1, ...,a): The vector of extra inputs in structures of Type | and IV.
K; = (k¢j,c = 1,...,b): The vector of extra outputs in structures of Types I11 and V.
n = (M, ..., Nm): The vector of weights for the external inputs in the fractional model.
v = (vq, ..., Uyp): The vector of weights for the external inputs in the linear model.

@ = (@1,.,9q): The vector of weights for the intermediate measures in the fractional
model.

w = (wy, ..., wg): The vector of weights for the intermediate measures in the linear model.
w = (wq, ..., wg): The vector of weights for the outputs in the fractional model.

u = (uq, ..., Ug): The vector of weights for the outputs in the linear model.

g = (91, -, 9a): The vector of weights of extra inputs in the fractional model.

¥ = (Y1, ---,Yq) - The vector of weights for the extra inputs in the linear model.

A: The intensity vector for the first stage.

. The intensity vector for the second stage.

e?: The overall efficiency of DMU;.
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e; . The efficiency of the first stage for DMU,.

: The efficiency of the second stage for DMU;.

: The efficiency of the v stage for DMU;.

E}: The independent efficiency score of the first stage for DMU,.

E?: The independent efficiency score of the second stage for DMU,.

3.2 Independent assessments

The independent approach is an elementary method for the assessment of DMUSs that consist
of sub-processes. Although the internal structure of the DMUs is recognized, the stage
efficiencies and the overall system efficiency are calculated independently. The standard
DEA model is used separately in each stage without considering possible conflicts and
connections among them. In this approach the stages are treated as operating independently
of one another and are assessed as independent DMUSs, hence the impact of each stage to the

overall efficiency cannot be measured.

Consider the basic input oriented CRS-DEA models that estimate independently the
stage-1, the stage-2 and the overall efficiency for the evaluated unit jo with the simple Type-I
(see Fig. 3.1a):

Stage 1: Stage 2: Overall:
; wY; wY;

E = max Jo E} = max— Jo E? = max Jo

T)on gDZ]'o nXJ'o
s.t. s.t. s.t.
i<, j= GD ov g jotn G2 Wiy g G
nX; Pz nX;
1,..,n p=20w=0 n=0,w=0
20,920

Notice that the output oriented variants of the above models can be also used, as well as
different assumptions concerning the returns to scale (VRS etc.). The CRS input oriented

models (3.1) and (3.2) yield the independent stage efficiencies while model (3.3) provides the
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overall efficiency of the DMU jo. In model (3.3) only the external inputs (X) and the final
outputs (Y) are used for the assessment of the evaluated unit jo, whereas in models (3.1) and
(3.2) for stage-1 and stage-2 respectively, only their individual inputs and outputs are taken
into account, i.e. (X)—~(Z) for stage-1 and (Z)—(Y) for stage-2. As a result, the fact that the
outputs of the first stage are the inputs to the second stage is ignored. Moreover, the overall
efficiency is not connected to the individual efficiencies since they are evaluated
independently. In effect, the efficiency scores derived by the independent approach are
misleading. This has been reported by Kao and Hwang (2008, 2010), as a DMU may be
overall efficient while the individual stages are not. Such irregular results are attributed to the
fact that no coordination between the stages is assumed. Finally, the stage and the overall
efficiency scores obtained by the independent approach serve as upper bounds of the stage
and system efficiencies respectively. Because of its simplicity the independent approach can
be applied to any network structure since the relationships among the stages are not taken

into account.

Significant studies that employed the independent approach and have attracted the
scientific interest are, among others, that of Charnes et al (1986), Chilingerian and Sherman
(1990), Wang et al (1997), Seiford and Zhu (1999), Zhu (2000), Sexton and Lewis (2003)
and Lewis and Sexton (2004). In Charnes et al (1986), the army recruitment was viewed as a
two-stage process, namely the awareness creation and the contract establishment.
Chilingerian and Sherman (1990) modeled the medical service as a two-stage process, where
the first stage is under the control of the management and the second stage is controlled by
the physician. In stage-1 the management handles the assets of the hospitals and provides
with clinical outputs which are used as inputs to the stage-2. In the second stage, the
physicians decide how to utilize these inputs so as to provide medical care to the patients. To
be more specific, the inputs of stage-1 are nurses, management and support staff, medical
supplies, various expenditures, capital and fixed costs. The intermediate measures generated
by stage-1 and conveyed to stage-2 include hours of nursing care, counseling services and
therapy, volume of diagnostic tests, drugs dispensed and other quantitative indicators about
the medical treatment issued. The final outputs of stage-2 are research grants and quantitative
indicators for the patients and the trained staff. Wang et al (1997) studied the impact of IT on
the performance of 36 banks. They assumed a simple two-stage process of Type I (Fig. 3.1a)
where the first stage represents the funds collection and the second the investment. Seiford
and Zhu (1999) studied the performance of the top 55 commercial banks in USA by
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considering both the operational and the market performance. They modelled the bank
operations as a simple two-stage process of Type I, with the stage-1 representing profitability
and the stage-2 marketability. Within a similar framework, Zhu (2000) evaluated the
performance of profitability and marketability of the Fortune 500 companies. Sexton and
Lewis (2003) evaluated the performance of 30 teams of the Major League Baseball in the
USA, by modelling the whole team’s operations as a two-stage process of Type I, with stage-
1 representing front-office operation and stage-2 representing on-field operation. Lewis and
Sexton (2004) extended their previous study by modelling the team’s operations with the
network structure depicted in Figure 3.4. In particular, the first two stages correspond to the
team’s front office operations, which use funds (player salaries) to acquire talent, whereas the
rest three stages correspond to the team’s on-field operations, which utilize talent to win

games.

3.3 Joint assessments

The independent approach neglects the conflicts or connections between the stages.
Contrarily, according to the joint assessment paradigm the overall and the stage efficiencies
are simultaneously estimated from one program. The efficiency decomposition approach and
the slacks-based measure approach are two characteristic families that follow the joint

assessment paradigm.

3.3.1 Efficiency decomposition approach

A major characteristic of the decomposition approach is that, apart from the definition of the
efficiency of the individual stages (stage efficiencies), it premises the definition of the overall
efficiency of the DMU together with a model to decompose the overall efficiency to the stage
efficiencies. Then, the efficiency scores of the stages derive as offspring of the overall
efficiency of the unit. The two basic decomposition methods dominating the literature on
two-stage DEA, i.e. the multiplicative method of Kao and Hwang (2008) and the additive
method of Chen et al (2009b) assume the same definitions of stage efficiencies but they differ
substantially in the definition of the overall system efficiency as well as in the way they

conceptualize the decomposition of the overall efficiency to the efficiencies of the individual

| 45



PhD Thesis — G. Koronakos

stages. In multiplicative efficiency decomposition, the overall efficiency is defined as a
product of the stage efficiencies, whereas in the additive efficiency decomposition, the

overall efficiency is defined as a weighted average of the stage efficiencies.

3.3.1.1 Multiplicative efficiency decomposition

The multiplicative efficiency decomposition method is introduced by Kao and Hwang (2008)
and Liang et al (2008) for the simple two-stage network structure of Type I (Fig. 3.1a).
Specifically, Liang et al (2008) studied the efficiency decomposition of the two-stage process
using game theoretic concepts. Under the multiplicative decomposition method the efficiency
of the entire process is decomposed into the product of the efficiencies of the two individual
stages. The overall efficiency and the stage efficiencies of the DMUj, under the CRS

assumption, are defined as follows:

% = a0 Y

0 _ WY;j 1:‘P_Zj,e_2_‘i’_yj (3.4)
nx;" o 9z;

In order to link the efficiency assessments of the two stages, it is universally accepted that the

values of the intermediate measures (virtual intermediate measures) should be same for both

stages, i.e. the weights associated with the intermediate measures should be the same (§ =

@), no matter if these measures are considered as outputs of the first stage or inputs to the

second stage. The decomposition model assumed is as follows:

wY ; QZ; wY;
nXj nX; 9Zj

i.e. the overall efficiency is defined as the square geometric average of the stage efficiencies.

Given the above definitions, the CRS input oriented model below assesses the overall

efficiency and the stage efficiencies of the evaluated unit jo:

ij

el = max —
Jo ano
s.t.
Z:
P54 <1, j=1,..,n (3.6)
nX;

(UY}<1 =1
— <1, j=1,...,n
pZj

n1=20,¢9p=20,w=0
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Notice that the constraints wY;/nX; <1, j=1,..,n are redundant and thus omitted.
Model (3.6) is a fractional linear program that can be modeled and solved as a linear program
(3.7) by applying the C-C transformation. The correspondence of variables is: v = ty, U =tw,

w = tp where t is a scalar variable such that: tnX; =1.

(o]

ej, = max quO
S.t.
'UX]'O =1

] (3.7)
WZj —vX]- <0, j=1,...,n

qu—WZj <0, j=1,..,n

v=20w=20u=0

Once an optimal solution (v*, w”, u”) of model (3.7) is obtained, the overall efficiency and the
stage efficiencies are calculated as follows:

o __ % 1 _ * 2 _ _Jo
ejo—quO, ejO—WZ' e, =— (38)

In parallel, Liang et al (2008) developed the multiplicative decomposition in the light of
game theoretic concepts. They characterized the multiplicative decomposition method
described above as a cooperative or a centralized game, i.e. they refer to model (3.7) as
centralized. In addition, they presented the case of non-cooperative game between the stages,
where preemptive priority is given to one stage like the leader-follower situations in
decentralized control systems. Liang et al (2008) and Cook et al (2010a) investigated the

relations among the cooperative, the non-cooperative and the conventional DEA approaches.

Notice that the overall efficiency is obtained as the optimal value of the objective function
of model (3.7), the stage-1 efficiency is given by the total virtual intermediate measure,
whereas the stage-2 efficiency derives as offspring of the overall and stage-1 efficiencies. A
major shortcoming of the multiplicative method is that the decomposition of the overall
efficiency to the stage efficiencies is not unique. Indeed, as the term wZ; does not appear in
neither the objective function or in the normalization constraint, its value may vary and still
maintain the optimal value of the objective function (i.e. the overall efficiency) and the
inequality constraints of model (3.7). Also, as noted by Kao and Hwang (2008) the above
deficiency renders the comparison of stage efficiencies among all DMUs lack a common
basis. That is why Kao and Hwang (2008) and Liang et al (2008) propose solving a pair of

linear programs, in a post-optimality phase, to obtain the largest scores for e} and e? while
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maintaining the overall efficiency score obtained by model (3.7). In particular, they
developed a procedure for testing the uniqueness of efficiency decomposition by maximizing
the efficiency of one stage under the constraint that the optimal overall efficiency obtained by
(3.7) is maintained. Then the efficiency of the other stage is calculated from (3.5). The

highest efficiency for the first stage is obtained by the following model.

1U

ej, = max WZ]-O

s.t.

UX]'O =1

uy, = e (3.9)

WZj —vXj <0, j=1,..,n
uY} —WZj <0 j=1,..,n

v=>20w=>0u=>0

Once an optimal solution (v', w", u”) of model (3.9) is obtained then e}V = w*Z; and the
efficiency of the second stage is derived by e?* = e? / el”. Alternatively, if priority is given
to the second stage the corresponding model to find its highest efficiency level is the

following:

2U

e, = max quO

S.t.

wZ =1

uyj, — e]‘-’onjO =0 (3.10)

wZ —vX; <0, j=1,..,n
uY} —WZj <0, j=1,..,n

v=20w=0u=0

Given an optimal solution (v*, w", u”) of model (3.10), the highest efficiency score of stage-2

is e’V = u'Y;, and the resulting efficiency of the first stage is ei" = e? / e?V. If ¢!V # e/l or

ejOth e]%L then the efficiency decomposition is not unique, in other words there are

alternative optimal solutions that yield the same level of overall efficiency, i.e. ep = ej -

2 _ U, 2L _
€o = € €Jo &

1L, ,2U
e
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The purpose of models (3.9) and (3.10), beyond checking the uniqueness of the efficiency
decomposition, is to provide also alternative solutions in case of non-uniqueness. The
argument is that one might wish giving priority to the first or the second stage in the
efficiency assessments. Although there is a rationale in this argument, the non-uniqueness of
the decomposition is still a problem, especially in the case that no priority is conceived by the
management. Notice that the above procedure can be also applied when output orientation is

selected using the output oriented models accordingly.

As mentioned above, Liang et al (2008) and Cook et al (2010a) viewed the efficiency
assessment of the two-stage process as a non-cooperative game under the leader-follower
assumption of a decentralized control system; this paradigm is also referred to as the
Stackelberg game. A DMU may be seen as a supply chain with two parts, consisting for
example of a manufacturer and a retailer. In such a setting, the manufacturer acts as a leader
whereas the retailer is treated as a follower. Assuming that the first stage is the leader then its
performance is computed first by applying the conventional DEA model. The leader (first
stage) seeks to maximize its performance without considering the follower (second stage).
The performance of the follower (second stage) is calculated subject to the requirement that
the leader’s efficiency is fixed at its optimal value. The following pair of LP models provides

the leader-follower solution given that the stage-1 is the leader.

8-1 Leader

g = max wZ Jo

s.t.
vXj, =1 (3.11)
ij —vXj <0, j=1,..,n

v=20w=0

Once the leader’s efficiency (e} “°**") is obtained the efficiency of the follower (second

stage) is obtained by the following model:
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2 Follower quO
g = Max — T eader
e;:
Jo
S.t.
UX]'O =1

wZ:. = 6’1 Leader (312)

Jo T Ty
WZ]—'UX]SO, j=1,...,n
ul; —wzZ; <0, j=1,..,n

v=20w=0u=0

Alternatively, if the second stage is assumed to be the leader then its efficiency score is
optimized first. The leader-follower modelling approach yields the maximum achievable
efficiency score for each stage when it acts as a leader, i.e. it generates the independent
efficiency scores (e} *" = E} ,e? 1¢2?°" = E?). Liang et al (2008) remarked that contrary to

the cooperative model (3.7), the non-cooperative one yields always unique efficiency

decomposition.

The envelopment form of the multiplicative decomposition model is studied by Chen et al
(2010a) and Chen et al (2013). The dual to the CRS input oriented model (3.7) is formulated

as follows:

min @
S.t.

XA < 0X;,
Yuzv, (3.13)
Z2-Zu= 0

A=20,u=0

Contrary to the standard DEA context where the multiplier and envelopment DEA models are
dual models and equivalent, as also remarked by Chen et al (2010a) and Chen et al (2013),
such is not necessarily true for the two forms of network DEA models. As they further noted,
the duals to the multiplier-based network DEA models may not provide the frontier
projections without exerting appropriate modifications to them. The above are also observed
for model (3.13), where the usual procedure of adjusting the inputs and outputs by the
efficiency scores is not adequate to provide a frontier projection. Also, model (3.13) does not
provide the stage efficiency scores. These irregularities may be attributed to the conflicting

nature of the intermediate measures and to the fact that may none DMU be overall efficient,
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i.e. may none DMU be efficient in both stages. Thus, new techniques are needed for the
determination of the efficient frontier of a two-stage process. Chen et al (2010a) developed
the alternative envelopment model (3.14), in order to overcome the reported inadequacies and
generate the efficient frontier. They replaced the observed levels of intermediate measures by
variables and separated the constraints associated with the intermediate measures.

min 0

S.t.

=
vV IA
<D

><z

o (3.14)

J

N
WY
Sn.

N
IA
O\

0

M=0,7Z, 20

~
\Y
=

Chen et al (2010a) showed that model (3.14) and model (3.13) yield the same overall
efficiency score i.e. 8 = 8, and model (3.14) provides additionally sufficient information on
how to project inefficient DMUs onto the efficient frontier. The projection (X;,, Z;,, ¥;,) for
DMUjo is derived by the optimal solution of model (3.14) as é'*on,Zjo,lg-o. The dual to model
(3.14) is as follows:

max ul/}0
s.t.
vXjO =1

wlZ; —vX; <0, j=1,..,n (3.15)
uy; —WZZj <0, j=1,..,n
w2—-wl<o0

v=>20,wl>0,w?>0u=>0

In model (3.14) the constraints Z; > 0 are redundant thus can be omitted. This affects model
(3.15) by converting the constraint w? —w! < 0 to equality (w? —w! = 0), i.e. the weights
concerning the intermediate measures are the same and model (3.15) is identical to model
(3.7). The findings discussed above are characterized as pitfalls of network DEA models by
Chen et al (2013). They proposed that under network DEA the envelopment models should
be used for deriving the frontier projection for inefficient DMUs and the multiplier ones for

the determination of the efficiency scores.
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Chen et al (2009a) and Cook et al (2010a) examined the relations and equivalences of the
multiplicative decomposition approach with other existing network DEA methods. In
particular, they established the equivalence between the studies of Fare and Grosskopf
(1996), Chen and Zhu (2004), Kao and Hwang (2008) and Liang et al (2008). In particular,
Chen et al (2009a) showed that the model of Chen and Zhu (2004) under CRS assumption is
equivalent to the output oriented model of Kao and Hwang (2008) and the centralized output
oriented model of Liang et al (2008). Also, Cook et al (2010a) illustrated that model (3.13),
the dual of model (3.7), is equivalent to the models proposed by Fare and Grosskopf (1996).
All these models, under CRS assumption, provide the same overall efficiency score for the

two-stage process of Figure 3.1a.

A major limitation of the multiplicative decomposition method is its inability to be
straightforwardly applied under the VRS assumption. This is because the extra free-in-sign
variables introduced in the VRS model will render the resulting model highly non-linear.
Later, Kao and Hwang (2011) proposed an approach to decompose technical and scale
efficiencies of the two-stage process. They derived the scale efficiencies for the two stages
assuming an input oriented VRS model for the first stage and an output oriented VRS model
for the second stage. Thus, the system efficiency is decomposed into the product of the

technical and scale efficiencies of the stages.

Extensions of the multiplicative efficiency decomposition

The multiplicative decomposition method can be readily applied to series multi-stage
processes of Type | but not to general network structures because the assumption that the
overall efficiency is the product of the stage efficiencies renders the resulting models highly
nonlinear. In Kao (2009a), (2009b), (2012), (2014a) and Kao and Hwang (2010) it is shown
that the overall efficiency of a DMU with the parallel structure of Figure 3.3 is the weighted
average of the stage efficiencies, where the weights are derived from the proportions of
inputs utilized by each stage. In the above studies the multiplicative decomposition method of
Kao and Hwang (2008) is modified so as to be applied to any type of series and series-
parallel multi-stage processes. Their modelling approach is based on the common assumption
that the weights associated with the intermediate measures are the same. Also, they deal with
general series and series-parallel multi-stage processes by transforming the multi-stage

process under evaluation. In particular, dummy sub-processes are introduced in the original
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multi-stage process, which operate in a parallel configuration with the actual sub-processes.
By applying this transformation the overall efficiency of the system is derived as the product
of the efficiencies of the sub-systems, where the efficiency of each modified process (sub-

system) is a weighted average of the efficiencies of the processes (real and dummies).

Below we give an example of the aforementioned technique applied to the Electricity
Service System (Fig. 3.5) originally discussed in Tone and Tsutsui (2009). The first process
(Generation division) generates electric power (Z1), which then is used to the second process
(Transmission division) in order to be sold to large customers as output (Y?) or to be sent as
intermediate measure (Z%) to the third process (Distribution division) so as to provide

electricity to small customers (Y?).

1 2 3
pmu | X X X

Z! 72

vY?2 vY3

Fig. 3.5: Electric power generation, transmission and distribution (Tone and Tsutsui, 2009).

The overall efficiency of the DMUj and the stage efficiencies are defined as follows:

w Y72 + uzYy?

el =
T v X+ v XE +vsXP

e.1 _ le];l 2 szjz + uZsz 3 u3Yj3 (316)

=— 2L =" "I pS__ -7
ToouX T o wiZi v X woZ + v

The series network structure described above can be transformed via the approach introduced
in Kao (2009a) to the network structure of Figure 3.6 below. The squares and circles

represent the actual and dummy processes respectively.
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DMU
Subsystem I Subsystem II Subsystem I1I

2

X! Y3
— N
XX Y?

Fig. 3.6: The transformed network process of Fig. 3.5

The modified network structure contains three subsystems arranged in series, where each of
them consists of an actual process and a dummy process operating in parallel. The dummy
processes are introduced so as to convey the inputs and the outputs dedicated to specific
processes throughout the system. The efficiencies of the three sub-systems are computed by

the ratio of their aggregate output to aggregate input.

L wiZP Xt usX) | wZP A w Y vX? L WY wslf

= ,eil = ,ert =
X v XP +usXP T o wiZ X X T woZP + us X Y

As mentioned above, the overall efficiency of a system, whose stages are in parallel, is the
weighted average of the stage efficiencies. Thus, in the above transformed network (Fig. 3.6)
the efficiency of each sub-system is obtained as the weighted average of the efficiencies of
the actual and dummy process. The weights are derived endogenously from the optimization
process as the proportions of inputs consumed by each process. Notice that the dummy

processes have the same inputs and outputs, therefore their efficiency score is one.
o o =tle! +tfef =tie! +(1—t}) where ¢! = (v,X})/(v1X]! + v, X7 +v3X}) and

1 4 __
th+tt=1

1 _ 42,2 5,5 _ 12,2 _ 42 2 _
o el =tief +t7e =tfef +(1-t7) where t

(WiZ! + v, X7) /(Wi Z] + v, X7 + vaXP) and 7 + 7 = 1

mnr _ 3,3 6,6 _ 43,3 3 3 _ 2 3 2 3 2
o el =tlel +tPel =tle? + (1 —t}) where ¢} = (W27 + v3X?)/(WoZ} + v3XP + u,¥7?)

3 6 __
andtj +tP =1
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From the above mathematical relationships it follows that the overall (system) efficiency of

the DMUj can be calculated as the product of the three sub-systems efficiencies.
e =ej e =[the} + (1 —t})] - [Fe? + (1 — )] - [ed + (1 - 1])]

The resulting model for the performance assessment for DMU jo with the above network

structure is given as:

o
%

= max qujg + u3Yj§
S.t.

1 2 3 _
v X, + v Xj +v3Xj =1

System WY + Uz — v X} — v X —vsXP <0, j=1,..,n

1 1 ; 3.17
Fprocess W14 TN S0 j=1en (3.17)

2 2 _ 1_ 2 o _
2" process WYt waZj —wiZy — X <0, j=1,..,n

u3Yj3 —WZZ]'Z —v3Xj3 <0, j=1,..,n

3" process
V1, Vp, V3, Wq, W, Uq, Uy = 0

Once an optimal solution of model (3.17) is obtained, the overall and the actual stage
efficiencies are calculated from the relationships (3.16). However, the decomposition of the
overall efficiency to the stage efficiencies might be not unique (Fukuyama and Mirdehghan,
2012). To summarize, the shortcoming of non-unique efficiency scores may occur in the
assessment of any type of network structure when the multiplicative decomposition method is

applied.

Alternative multiplicative efficiency decomposition methods

As shown above, a modified version of the multiplicative decomposition approach is
proposed by Kao (2009a), (2014a) so as to be applicable to any type of series and series-
parallel multi-stage processes. Beyond that, alternative methods have been developed whose
common characteristic is that the overall efficiency is defined as the product of the stage
efficiencies. However, generalizing this assumption to multi-stage networks different to Type
| leads to high non-linear models which are difficult to solve. A common solution practice is

to use parametric techniques.
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Zha and Liang (2010) studied a modified two-stage process of Type Il (Fig. 3.1b) where
the external inputs are freely allocated between the stages. In the study of Zha and Liang
(2010), the overall efficiency of the system is derived as the product of the efficiencies of the
two individual stages, as in Kao and Hwang (2008). Zha and Liang (2010) incorporated
game-theory framework and a heuristic procedure so as to overcome the linearization issues
raised by the adoption of the multiplicative format of the overall efficiency. In particular,
using the concept of Stackelberg (non-cooperative) game, they first computed the lower and
upper bounds of the stage efficiencies. Then, they incorporated this information into a non-
linear cooperative model and by treating the efficiency of one stage as a parameter they
succeeded to transform it to a parametric linear program. Their method is illustrated by using
the dataset of 30 top U.S. commercial banks which originally studied by Seiford and Zhu
(1999).

Li et al (2012) studied also a two-stage production process of Type Il (Fig. 3.1b) in the
view of cooperative (centralized control) and non-cooperative games (decentralized control).
They developed a parametric approach in order to obtain the stage efficiency scores and then
the overall efficiency is computed by the product of the stage efficiencies. Their approach is
demonstrated by evaluating the research and development of 30 Chinese regions. The stage

efficiencies as well as the overall efficiency are defined as follows:

e’ = e e

= er =
j T)Xj’ j QOZj+ng’ j j (318)

ol = %% 2 _ _©Yi 0 1, ,2
J

The extra inputs (L) which are utilized by the second stage render non-linear the function of
the overall efficiency. As a result, the objective function of the evaluation model proposed by
Li et al (2012) is non-linear:

ey = max P2 @y
nXj, @Zj, +gLj,
s.t.
:—)Z(j <0, j=1,..,n (3.19)
9 0, j=1..,n
pZi + gL;

1=20,¢=20w=09g=0
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In order to deal with the non-linearity issues the authors resorted to a heuristic search
procedure in order to estimate a global optimal solution. Firstly, they calculated the largest
efficiency score for one stage and then they included it as a parameter to the evaluation model
(3.19) so as to handle it as a parametric linear program. Assuming that in model (3.19) the
efficiency score of stage-1 is chosen to be treated as a parameter, then its upper bound is

obtained from the following linear model:

1 - .
Ejo = max wZ]0

S.t.

UX]'O =1

| (3.20)
WZj —vXj <0, j=1,..,n
uY]—WZ]+)/L] < 0, ]= 1,...,7’1

v=0Lbw=0u=0y=0

The largest first stage efficiency score (Ej, — independent efficiency score) is derived from
the optimal solution of model (3.20). Hence, the efficiency of the first stage (e;,) in model
(3.19) can be treated as a parameter in the interval [0, E} ] . Thus model (3.19), after applying

the C-C transformation, can be rewritten as follows:
¢f, = max ¢, -u¥,
s.t.

wZj +vyLj =1

wZ —vX; <0, j=1,..,n

uY; —wZ;+yL; <0, j=1,..,n (3.21)
wZj —eivX; =0

v=z0Lbw=20u=0y=0

ei. € [0,E} ]

The parameter e, is progressively increased by a small step until the upper bound E;, of the
interval is reached. For any given value of parameter e]%] the overall and the second stage
efficiency are calculated unless the program (3.21) is infeasible. Once the heuristic procedure
is finished then reasonably they select the stage efficiencies that yield the maximum

achievable level of overall efficiency.
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3.3.1.2 Additive efficiency decomposition

The additive efficiency decomposition method is introduced by Chen et al (2009b) for the
assessment of the two-stage process of Type | (Fig. 3.1a) and then is extended by Cook et al
(2010Db) for the evaluation of multi-stage processes of varying structures. Both studies have
already received great attention from the research community. In contrast to the
multiplicative efficiency decomposition method, the overall efficiency is obtained as a
weighted average of the stage efficiencies, where the weights represent the portion of all
inputs utilized by each stage. Notably, this aggregation method is used previously in some
network DEA studies without, however, being part of a well-established efficiency
decomposition framework. For instance, it is first appeared in Beasley (1995), who evaluated
the efficiency of teaching and research of the UK chemistry and physics departments and
viewed them as two processes that operate in parallel and share some resources. The
aforementioned aggregation method was also adopted by Cook and Hababou (2001), Cook
and Green (2004) and Jahanshahloo et al (2004), who similarly examined parallel production
processes with shared inputs. Amirteimoori and Kordrostami (2005) and Amirteimoori and
Shafiei (2006) aimed to measure the performance of series processes using the
aforementioned aggregation method about the overall and the stage efficiencies, however
they treated the stages in a non-coordinated manner. In particular, the weights associated with

the intermediate measures were different for each stage.

In the context of additive efficiency decomposition method, the overall efficiency and the

stage efficiencies, under CRS assumption, of the DMU j are defined as follows:

o _ a)Yj+(ij 1 _ (ij 2 a)Yj

T xrez, 6 (3.22)

F T T ez
The definition of the stage efficiencies are the same as in the multiplicative method, but the
additive method differentiates in the definition of the overall efficiency. In (3.22) the
intermediate measures appear in both terms of the fraction that defines the overall efficiency,
meaning that they are considered as inputs and as outputs simultaneously. The decomposition

model used is as follows:

wYit+@Z; QZj wY
ef ==t} 2+t tI+tf =1 (3.23)
an+(ij Y)X]' (ij
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i.e. the overall efficiency is expressed as a weighted arithmetic average of the stage
efficiencies. The functional forms of the weights derive by solving the system (3.23) for t}
and t7, as follows:

1_ M 2 9%
J ‘)7Xj+(ij' J ‘)7Xj+(ij

(3.24)

Chen et al (2009b) noticed that the weights ¢/ and tj2 “are intended to represent the relative
importance or contribution of the performance of stages 1 and 2, respectively, to the overall
performance of the DMU” and argued that the “size” of a stage reflects its importance. They
also noted that the size can be computed by the portion of total resources devoted to each
stage. It is worth to note that as the weights are functions of the virtual intermediate
measures, they depend on the unit being evaluated and, obviously, they generally
differentiate from one unit to another. Given the above definitions, the input oriented CRS

model below assesses the overall efficiency of the evaluated unit jo:

Z:
<1 j=1..n (3.25)

j
Y}<1 =1
— <1, j=1,..,n
©Zj

n=20,¢=20,w=0

Applying the C-C transformation to the linear fractional model (3.25), the following linear

program is modeled and solved:

e?

o = maxuY; +wZ;

s.t.
vXj, +wZj, =1 (3.26)
wZ; —vX; <0, j=1,..,n

uY;—wZz; <0, j=1,..,n

v=>20w=0u=0
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Once an optimal solution (v*,w",u”) of model (3.26) is obtained, the overall efficiency and the

stage efficiencies are calculated as follows:

o __ *V/. *rz.
€jo —uY}o+W Z]O

1 _ 2 _
th =v*X; t: = W*Z

Jo? “jO 'Jo
*
Jo U*XJ
o
0 _+1 ,1 *y
p2 = Sio”too _ W),
(0] 2 .
J t% wZj,

The overall efficiency e/, is obtained as the optimal value of the objective function, the
weight ¢, is obtained as the optimal virtual input, the weight ¢;, is obtained as the optimal
virtual intermediate measure and the efficiency of the first stage e, is given by the ratio of

the two weights whereas the efficiency of the second stage e, is obtained as offspring

o] 1 1 2
Of ejo , ejo , th , t]O .

In case an output orientation is selected, the “size” of each stage (weight) is measured by

the portion of the total outputs produced from each stage:

1 2 4Y

qu =+ ij uY} + ij

(3.28)

As above, the overall efficiency is expressed as a weighted arithmetic average of the stage
efficiencies:

vXitwZ; vX;
el =1L "J ]—t-1—1+tj2

WZ]'
J qu+WZj ) WZ]'

uyY;

1 2 _
; G+ =1 (3.29)

The output oriented model under CRS assumption is formulated as:

0 — s
ejp = minvX; +w’z;

s.t.
uYy, +wzj, =1 (3.30)
wZ; —vX; <0, j=1,..,n

uY;—wZz; <0, j=1,..,n

v=>20w=20u=0
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Similarly to the case of the multiplicative efficiency decomposition, the additive
decomposition of the overall efficiency to the stage efficiencies is non-unique. Chen et al
(2009b) developed a procedure, similar to that of Kao and Hwang (2008) and Liang et al
(2008), so as to derive extreme efficiency decompositions. Let t/*,t7* and e/}, the optimal
weights and the overall efficiency obtained from model (3.26). Then, if pre-emptive priority
is given to the first stage, the efficiency of that stage is calculated first in a manner that the

overall efficiency is maintained via the following model.

1U _
ej, =maxwizj
s.t.
UX]'O =1
N N (3.31)
(1—ey)wz;, +uY; =ef;
wZ —vX; <0, j=1,..,n
uV; —wZzZ; <0, j=1,..,n
v=20w=0u=0
The corresponding efficiency for the second stage is given by e’ = (e, — tiy el )/t7 . If

pre-emptive priority is given to stage-2, then the second stage eff|C|ency is first estimated

with the constraint that the overall efficiency is preserved, by the following model:

e?V = maxuY;
Jo Jo
s.t.

wZ; =1

Jo

(3.32)

wZj, +uYj, —efvX; = ejy
wZ —vX; <0, j=1,..,n
uY} —WZj <0, j=1,..,n

v=20w=0,u=0
The corresponding efficiency of the first stage is calculated by el = (e — t/efY ) /tjy .

The modelling approach adopted by Chen et al (2009b) for the additive efficiency
decomposition, enables the straightforward assessment of the two-stage process of Type |
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(Fig. 3.1a) under variable returns to scale. The overall efficiency of the DMU j as well as the

stage efficiencies under VRS assumption are defined as follows:

ovrs _ WZ]+§1+'LLY]+EZ 1_177'5 _ WZJ+§1 2_177-5 _ uY]+€2

e , e = . e; =
J WZj+1JXj J UXj J WZj

(3.33)
When input orientation is chosen, the weights that reflect the “size” of each stage are defined

as follows:

1 YN e Wy (3.34)

J v Yy
vXj+ij vXj+WZj

The overall efficiency is defined as a weighted arithmetic average of the stage efficiencies:

e] ]
WZj+17Xj UXj WZj

ovrs _ ij+fl+qu+€2 _ tl ij+€1 tz qu+§”2
) i ) ]

St =1 (3.35)
The resulting VRS input oriented model that provides the overall efficiency of DMU o is:

ey’ =maxwZ; +& +ufj +&

S.t.

'UX]'O + WZjo =1
(3.36)

wZ; —vX;j+§ <0, j=1,..,n
uf;—wz;+§, <0, j=1,..,n

v=>20w=0u=>0

Once an optimal solution of model (3.36) is derived, the stage efficiencies can be computed
from (3.33). Although the additive efficiency decomposition can be straightforwardly applied
to variable returns to scale, the standard property that the VRS efficiency scores are not less

than the CRS efficiency scores does not hold.
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Extensions of the Additive Efficiency Decomposition

Cook et al (2010b) extended the additive decomposition method of Chen et al (2009b) to
series, parallel and series-parallel multi-stage processes. For instance, we provide below the
additive modelling approach for a netwok stucture which consists of four sub-processes

arranged in a series-parallel (mixed) configuration.

DMU X3
3 3 4
4 23
Xl N 4 Y4 R
2 4
4 2 25
.
YIV X?,

Fig. 3.7: Multi-stage process (DMU) with series-parallel (mixed) internal structure

Following Chen et al (2009b), the overall efficiency is defined as a weighted arithmetic
average of the stage efficiencies:

o _ 41,1 2,2 3,3 4 _4 1 2 3 4 __
ef =tjej +tief +tjef +tie, i Htf+t7+t =1

. u Yt + wiZi, + Wfoj , w3Z3,
el =
J lejl

(3.37)

€ = T

wizs.
Bl B
] X3 323 ’ ] 4z4- 424-
v3Aj + wily, Waly, + w3l

The weight associated with each stage is obtained from the proportion of inputs that used by
this stage as follows:
~ v, X7 + lelej . v3 X} + Wf’Zf]_ . W§Z§]_ + W§Z§j (3.38)

v X}
tl=—L 2="- T 43 t =
] TVI 7 TVI J TVI ] TVI

| 63



PhD Thesis — G. Koronakos

where TVI = v, X} + v, X7 + v3X7 + wiZi +wiZi +w;Zy, +wiZs, . The efficiency
assessment of the multi-stage process depicted in Figure 3.7 is carried out by the following

model:

o _ 1 2 272 373 474 474
ej, = max u, Y, +u, Vi +wi leo + wy leo + WZZZJ-O + W3Z3J.0
S.t.

1 2 3 272 373 474 474 _
v X, + VX, + v X+ Wlleo + Wlleo + WZZZJ.0 + W3Z3j0 =1
u Yt + wiZi, + wfzfj -1X' <0, j=1,..,n

WiZ3 — v XP —wiZi <0, j=1,..,n (3.39)

474 3 373 .
W3Z3j— V3 X; —W1Z1,- <0, j=1,..,n

4 474 474 P —
u4Yj —W2Z2j—W3Z3jS0, j=1,..,n

2 3 4 4
V1, Vo, V3, Wi, Wi, W5, W3, Uy, Uy = 0

Once an optimal solution of model (3.39) is obtained the overall and the stage efficiencies for
DMUj, as well as the weights are calculated from the relationships (3.37) and (3.38)
respectively. Notably, model (3.39) inherits the defects of additive decomposition method in
the sense that the overall efficiency decomposition to stage efficiencies is not unique.

However, model (3.39) can be adapted to meet the VRS assumption.

Chen et al (2010b) extended the work of Chen et al (2009b) for the efficiency assessment
of two-stage production processes with shared resources. Particularly, they assumed a two-
stage process as in Figure 3.8 where the second stage uses, beyond the intermediate measures
(2), a portion of the external inputs (X). They applied their models to the assessment of the
benefits of information technology in banking industry, originally studied by Wang et al
(1997).
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DMU

1 > 2

¥
L

¥ |

(1-)X

Fig. 3.8: Two-stage production process with shared resources

Alternative additive efficiency decomposition methods

As alternative additive decomposition methods are considered those in which, the overall
efficiency is defined as a weighted arithmetic average of the stage efficiencies and the
weights are predetermined and given as parameters instead of being endogenously estimated
by the optimization process. However, notice that using this aggregation method for the
efficiency assessment of network structures of any form, leads to non-linear models.

Parametric techniques are commonly used to handle the non-linearity issues.

Liang et al (2006) proposed that the operations of a seller-buyer supply chain can be
modelled, under both cooperative and non-cooperative concepts, as a two-stage process of
Type 1 (Fig. 3.1b). They unified the performance assessment models of the two stages, based
on the common assumption that the weights of the intermediate measures are the same in
both stages. The overall efficiency is defined as the simple arithmetic average of the stage
efficiencies. When a leader-follower (non-cooperative game) situation is assumed, then
similar models to (3.11) and (3.12) are employed, which are adapted to Type Il structure.
Under the cooperative concept, the efficiencies of the seller and the buyer are jointly

maximized, thus the following non-linear model is derived:
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e = max1 Lt Y,
Jo 2|nX;,  @Zj +glL
S.t.
pZ; ,
—~ <0, j=1,..,n (3.40)
nX;
Y <0, j=1
———<0, j=1,..,n

n=0,¢>0w=>0,g=>0

Liang et al (2006) assumed the following transformation in order to transform the above

model to a parametric linear program.

™ =1/nX;,,1* =1/(9Z;, + gL;,)
v =71, wl = @1l

u = wt? w? = g1,y = gr?

From the above transformation, a linear relationship is implied between w! and w? i.e.
wr=¢wt, with § > 0 and ¢=(1-vL;,)/w'z, < (1/w'Z;,) since yL; +{w'z; =1

andw'z; <1,yLj >0.

1
el = maxz(wle0 + ulg-o)

Jo —

s.t.
UX]‘O =1
ijO + (Wleozl (341)

le] —vXj <0, ]= 1..,n
uY; —{w'Z; —yL; <0, j=1,..,n

v=20w!>0,u=0y=>0{=0

Notice that the first stage efficiency (w'Z;,) in model (3.41) will not be less than the lowest

efficiency score (e} 7°'°"e") obtained when the stage-1 is treated as a follower. Therefore,

the variable ¢ in model (3.41) can be treated as a parameter in the interval [0, 1/e]{)F ollowery

The model (3.41) is solved for different values of the parameter { and the pair of efficiency

scores that provides the maximum overall efficiency is selected.
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Chen et al (2006) examined the IT impact on banking industry previously studied by
Wang et al (1997) and Chen and Zhu (2004), they remarked though that these studies do not
fully characterize the IT impact on firm performance. Therefore, they proposed that the
external IT-related inputs of stage-1 should be shared with stage-2 (Fig. 3.8). Similar to Liang
et al (2006), they treat the resulting non-linear assessment model using the aforementioned
procedure and they calculate the overall efficiency from the simple arithmetic average of the

stage efficiencies.

Liang et al (2011) studied a serial two-stage production process with feedback, as
depicted in Figure 3.9. In this system, some outputs from the second process are fed back as

inputs to the first process, i.e. they have a double role serving both as inputs and outputs.

University
Fixed Assets SCI papers
Graduate Students o Reseal.‘ch
> ) SCI citations 5 Funding |
Researchers )
g National Awards
Size of University T

Fig. 3.9: Two-stage process with feedback

Similarly to the aforementioned studies the overall efficiency is derived as the arithmetic
average of the stage efficiencies. Again, the resulting non-linear model is transformed to a
parametric LP and a global optimal solution is obtained as in Liang et al (2006). Liang et al
(2011) illustrated their approach by measuring the performance of 50 Chinese universities. In
particular, they assumed as inputs to the first stage the fixed assets, the researchers, the
graduate students and the size of each university, while they assumed as outputs the numbers
of SCI papers, SCI citations and national awards. These outputs serve as inputs to the second
stage, i.e. they are the intermediate measures of the system, in order to attract research funds
from the granting agency. The research funding, which is the only output of the second stage,

is fed back to the first stage i.e. it serves also as input.
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3.3.2 Slacks-Based Measure approach

Tone and Tsutsui (2009) introduced the network slacks-based measure (NSBM) based on the
SBM and the weighted SBM proposed by Tone (2001) and Tsutsui and Goto (2009)
respectively. Their approach assesses simultaneously the overall and the stage efficiencies of
the evaluated units. They built their method in the envelopment form based on a generalized
production possibility set that describes the relationships of the multi-stage processes. In
particular, they assumed that a DMU consists of v sub-processes (6=1, ...,v), where each sub-
process consumes external inputs X°to produce some outputs Y? (the superscript ¢ denotes
the sub-process). The sub-processes are connected and interact via the intermediate measures
Z9v) where the superscripts ¢ and y (5#y) represent the source sub-process and the recipient
sub-process respectively. The generalized production possibility set {X? z©*) Y } under
VRS assumption is defined as:

XohS <X% 6=1,..,v

ZOWpS = 7B8¥) v (8,9)(as outputs from §)
ZGWpY = 76V v (§,1)(as inputs to )
YoRS =Y, §=1,..,v

>0, V(5)

eh? =1, v (8)

(3.42)

Notice that the intensity vector h’ is specific to each sub-process ¢ (6=1,...,v). The above
VRS production possibility set can be also used under CRS assumption by removing the last
set of convexity constraints (h°=1). Tone and Tsutsui (2009) proposed two options for

representing the constraints corresponding to the intermediate measures:

a) The “free” link case, where the linking flows are freely determined, i.e.
ZOWIps = 7B Y v(§,4). In this case, the intermediate measures that link the
stages are tested in the light of the other DMUs. Hence, the intermediate measures
may increase or decrease in order to preserve the continuity of being

simultaneously outputs of one stage and inputs to some other.

b) The “fixed” link case, where the intermediate measures are kept unchanged on

their initial levels, i.e. ZO¥IpS = Z].(f"”), Z7@pv = Zj.(f“/’), v(5,1). Notice that

68 |



Chapter 3: Review of Network DEA methods

the subscript jo denotes the DMU under evaluation. Tone and Tsutsui (2009)
remarked that if all the intermediate measures are fixed to their original levels
then the analysis to follow will treat the stages separately similar to the

independent assessment.

By incorporating the input and output slacks and one of the above options for the constraints

of the intermediate measures, the DMUJj, under evaluation is expressed as follows:

Xhe 4557 =X>,  5=1,.,v
Yohd —s8*t =v9, §=1,..,v
Jo (3.433)
eh® =1, §=1,..,v
R8>0, >0,5%* >0, &6=1,..,v
7@WIpS _ 7GWpY = 0, v (5,9) (free link) (3.43Db)
or
GY)pé _ 7(6) ) )
200 = 2,7, ¥ (8,9) (fixed link) (3.43c)

Y py — 76P)
ZOVRY =777, ¥ (8,9)

Tone and Tsutsui (2009), similar to the conventional SBM, proposed three different
efficiency measures based on the orientation, they formed the input, the output and the non-
oriented situation. When input orientation is selected then the overall efficiency of the DMUjo
is derived as a weighted arithmetic mean of the slacks-based measures of the individual
stages, i.e. e =¥5_,w®-e), with ¥%5_, w® = 1and w® > 0. The weights w’ are predefined

by the analyst and represent the importance of each stage. The input oriented NSBM model

for the efficiency assessment of the DMUJ, is as follows:

v ms S5—
R ] s 1 S;
ej, = min Ew 1—— ET
ms X

5=1 i=1 "o

(3.44)
subject to (3.43a), (3.43b) or (3.43c)

In model (3.44), the number of inputs consumed by each stage ¢ is denoted by ms, also the
free or the fixed link case can be used to represent the constraints corresponding to the
intermediate measures. When an optimal solution of model (3.44) is obtained then the overall
efficiency can be directly obtained from its objective function and the stage efficiencies are

calculated using the optimal input slacks s** as follows:
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ms
1 Zs-‘s_*
5 _ —
€ =17 _7”'5<- J;S >, T b -

When output orientation is selected, then the following NSBM model is used for the

S 5
S0 \1=1 Yo (3.46)

subject to (3.43a), (3.43b) or (3.43c)

performance assessment of the DMUjo:

v
1 )
9—9 = max Z w
Jo 5=1

The output oriented overall efficiency for DMUJ, is derived from the optimal value of the
objective function of model (3.46). The authors in order to confine the efficiency scores into
the range [0, 1], they expressed the output oriented stage efficiency scores using the optimal

output slacks s as:
95 = !

Jo
1 osg sSt*
T+ 22y 8
sg\ Ty
jo

As can be deduced the NSBM output oriented overall efficiency is the weighted harmonic

(3.47)

mean of the stage efficiency scores:

v .5
1_yw (3.48)

o 1)

9j0 5=1 ejo

In case non-orientation is selected, i.e. when both input and output slacks are taken into

consideration in the assessment, then the non-oriented NSBM model is expressed as:

v 1) 1 1 mgs S{S_
Zs=1W® (1= 5| LisaTs

ijo

1 (sss sp* 3.49
1+ g(er:1y7§jo>] ( )

{7 =min

v 1)
s=1W

subject to (3.43a), (3.43b) or (3.43c)
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Given the optimal solution of model (3.49), then the non-oriented overall efficiency is
straightforwadly derived from the objective function while the non-oriented stage efficiency

scores are calculated as follows:

1 m 56_*
()

ljo

1 (gss S2°°
t 55\ Zrea s
yT]'o

Once an optimal solution (h%*,s97*,s%**) of models (3.44), (3.46) or (3.49) is obtained,
then the projections onto the efficient frontier can be calsulated as follows:

§=1,..,v (3.50)

(1‘% = min

Xjf,* = in — s = xpd*, §=1..v

(3.51)

S5% _ yb S+% _ 8} 0% —
V=¥ 455 =YOR%, §=1,..,v

If the fixed link case is used in the assessment, then the intermediate measures will remain
unchanged to their intial levels. Otherwise, if the free link case is selected, then the

projections of the intermediate measures are computed as follows:

70" = ZGWps*, v (5,9) (3.52)

From the above we conclude that in the non-oriented case the relationship between the
overall efficiency and the stage efficiencies cannot be defined explicitly. Tone and Tsutsui
(2009) noticed that alternative forms of the overall efficiency could be used in the non-
oriented case. For instance, Lu et al (2014) modified the non-oriented NSBM (3.49) by
deriving the the non-oriented overall efficiency as the simple arithmetic mean of the non-

oriented stage efficiencies.

Notice that the above models are given under VRS assumption, however the CRS models
can be also formed regardless the orientation by removing the corresponding convexity
constraints. The experimentation of Tone and Tsutsui (2009) revealed that under CRS
assumption and employing the free link case the NSBM may deem inefficient all the DMUs
under evalution in each individual stage. This finding contradicts with the characteristics of
traditional DEA models where at least one DMU is deemed efficient so as to construct the

efficient frontier. On the other hand, the authors proved that under VRS assumption there is
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always at least an efficient DMU in each sub-process. As they further pointed out, this also

holds when the fixed link case is utilized under CRS assumption.

Fukuyama and Mirdehghan (2012) showed, by providing adequate examples, that the
NSBM of Tone and Tsutsui (2009) fails to identify the efficiency status of DMUs because the
slacks concerning the intermediate measures are not considered in the definitions of the
efficiencies. They proposed a revised PPS and a two-phase approach which identifies
sufficiently the efficiency status under the fixed link case only. Mirdehghan and Fukuyama
(2016) developed another two-phase approach by incorporating the notions of mathematical

dominance, which deals effectively with the free link case also.

Chen et al (2013) noticed that the network DEA methods that are developed on the basis
of the production possibility set, such as Tone and Tsutsui’s (2009) slacks-based method
should be re-examined with respect to the definition of the stage efficiencies. Especially, they
discovered that the NSBM of Tone and Tsutsui (2009) provides only the overall efficiency
when it is applied for the performance assessment of the two-stage processes of Type I (Fig.
3.1a). Chen et al (2013) argued that since the intermediate measures are the only outputs from
stage-1 and the only inputs to stage-2, then neither the input oriented NSBM for stage-2 nor
the output oriented NSBM for stage-1 can be formed. This relates, as noted above, with the
absence of the slacks associated with the intermediate measures in the definitions of the
efficiencies. They regarded this finding as a pitfall and they concluded that the NSBM
models can only yield the overall efficiency of the Type | two-stage process. In Table 3.1
below we demonstrate the applicability of the NSBM on various types of network structures.

Table 3.1: Applicability of NSBM

Network Structure Input Oriented Output Oriented Non-Oriented
Series - Type | - - -
Series - Type Il v - -
Series - Type 11 - v -
Series - Type IV v v v
Generalized Series 4 4 v
Parallel v v v
Series-Parallel (Mixed) v v v
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3.3.3 System-centric approach

The network DEA methods that are characterized as system-centric, they do not provide the
stage efficiencies but only the overall efficiency of the DMU under evaluation. Most of these
methods are modelled in the envelopment form which is based on the unification of the
production possibility sets of the individual stages. Kao (2014b) referred to such methods as
“system distance measure” methods, where an input or output oriented distance measure

model is employed to measure the overall efficiency of each DMU.

Notice that most system-centric methods originate from the pioneer work of Fare (1991).
Fare (1991) studied DMUs with the structure of Type IV (Fig. 3.1d) and combined the
production technology of the two stages to derive the entire-expanded technology of the
DMU. Their proposed model however yields only the overall efficiency of the DMU. Fare
and Whittaker (1995) employed the approach of Fare (1991) for the performance assessment
of 137 dairy farms in USA. Fare and Grosskopf (1996) studied the same network structure
and they followed the same practice to formulate the system technology. They built upon
Fare (1991) to construct Malmquist productivity indices (cf. Caves et al, 1982; Fare and
Grosskopf, 1992a) to draw efficiency comparisons between periods. Fare and Grosskopf
(2000), as mentioned above, unified the methods introduced by Fare (1991), Fare and
Whittaker (1995), Fare and Grosskopf (1996) and Fare et al (1997) to a generalized

framework for modelling various types of network structures.

3.4 Classification of network DEA studies

In this section we provide a thorough classification of network DEA studies involving
theoretical developments and applications. They are basically categorized according to the
assessment paradigm they follow i.e. independent, decomposition, slacks-based measure and

system-centric.

Table 3.2 below presents the studies that are based on independent assessments. For each
study we provide the reference, the network structure of the DMUSs, the number of stages and
the returns to scale assumed to form the production possibility set (PPS). We also indicate the
studies that provide theoretical developments or these that consists of applications and we

give a short description of the application field.
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Table 3.2: Studies based on independent assessments

Network No of PPS - . — T
Reference S Returnsto  Theoretic Application Application Field
tructure Stages Scale
Fare and Primont US coal-fired
Parallel v>2 VRS v v steam electric generating
(1984)
plants
Charnes et al (1986) Serlels\-/Type 2 CRS 4 4 US Military
Chilingerian and . . .
. v v
Sherman (1990) Series-Type | 2 CRS Medical services
Fare et al (1992b) Parallel v>2 CRS 4 -
Fare and Primont
v -
(1993) Parallel v>2 VRS
Wang et al (1997) Series-Type | 2 VRS v v IT on banks
Kao (1998) Parallel v>2 VRS v Taiwanese forests
(Sf;l;og)d and Zhu Series-Type | 2 CRS/VRS v v US commercial banks
Soteriou and .
; v v
Zenios (1999) Mixed 3 VRS Branches of a Cyprus bank
Zhu (2000) Series-Type | 2 CRS/VRS v Fortune 500 companies
Keh and Chu (2003)  Series-Type | 2 VRS v Grocery stores
Sexton and Lewis . Teams of USA Major
- v v
(2003) Series-Type | 2 VRS League Baseball
Luo (2003) Series-Type | 2 CRS/VRS v US large banks
Lewis and Sexton . Teams of USA Major
v v
(2004) Mixed 5 VRS League Baseball
Abad et al (2004) Series-Type 2 VRS v Stocks in th_e Spamsh
1 manufacturing industry
Keh et al (2006) Series-Type | 2 VRS v Asia—Pacific hotels
Lu (2009) Series-Type | 2 CRS/VRS v Taiwanese I1C-design firms
Loand Lu(2009)  Series-Type | 2 VRS v Taiwanese financial
holding companies
Lo (2010) Series-Type | 2 VRS v US S&P 500 firms
Tsolas (2011) Series-Type | 2 VRS v Greek commercial banks
Tsolas (2013) Series-Type | 2 VRS v Greek construction firms
Adler et al (2013) Mixed 3 VRS v v European airports
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In Table 3.3 below the fifth column (Model) indicates whether the study is seminal or

modification and extension of an existing one.

Table 3.3: Seminal efficiency decomposition approaches, modifications and extensions

Network No of PPS - T
Reference S Returnsto  Model Application Field
tructure Stages
Scale
. UK Chemistry and
Beasley (1995) Parallel 2 CRS Seminal Study Physics departments
Mar Molinero - UK Chemistry and
(1996) Parallel 2 CRS Modification of Beasley (1995) Physics departments
Tsai and Mar National Health
. Parallel 5 VRS Extension of Mar Molinero (1996) Service trusts in
Molinero (2002)
England
A Branches of a
Cook et al (2000) Parallel 2 CRS Modification of Beasley (1995) Canadian bank
Cook and . Branches of a
Hababou (2001) Parallel 2 VRS Extension of Cook et al (2000) Canadian bank
: Manufacturing
Cook and Green Extension of Cook et al (2000), :
(2004) Parallel 4 CRS Cooketal (2001) plants in steel
industry
Jahanshahloo et . Branches of an
al (2004) Parallel 3 CRS Extension of Cook et al (2000) Iranian bank
Amirteimoori - .
and Kordrostami Genergllzed v>2 CRS Extension of Beasley (1995) and Ilustrative data
Series Cook et al (2000)
(2005)
Amirteimoori Generalized :
and Shafiei Series / Series — v>2 CRS (E:)éfl? Sé'togl (&)E:)%a)sley (1995) and Ilustrative data
(2006) Type IV
. Extension of Tsai and Mar
Chen etal (2006)  Series —Type Il 2 CRS Molinero (2002) IT on banks
Liang et al . Extension of Tsai and Mar Ilustrative data on
(2006) Series—Typell 2 CRS " Molinero (2002) Supply Chains
Kao and Hwan Non-life Insurance
g Series —Type | 2 CRS Seminal Study Companies in
(2008) Tai
aiwan
Liang et al . . IT on banks / US
(2008) Series —Type | 2 CRS Seminal Study commercial banks
Extension of Beasley (1995),
Chen et al Amirteimoori and Kordrostami Non-life Insurance
(2009b) Series —Type | 2 CRS/VRS  (2005) and Amirteimoori and Companies in
Shafiei (2006) Taiwan
Extension of Beasley (1995), Cook Non-life Insurance
Generalized et al (2000), Amirteimoori and Companies in
Kao (2009a) Series / Parallel v>2 CRS Kordrostami (2005), Amirteimoori Taiwgn / Mustrative
/ Mixed and Shafiei (2006) and Kao and data
Hwang (2008)
Extension of Beasley (1995) and .
Kao (2009b) Parallel v>2 CRS Cook et al (2000) Taiwanese forests
. Non-life Insurance
Chen et al . Extension of Kao and Hwang o
(2010a) Series —Type | 2 CRS (2008) Co_mpames in
Taiwan
. Electric power
Cook et al Generalized . .
(2010b) Series / Mixed v>2 CRS Extension of Chen et al (2009b) companies /

Illustrative data
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Network No of PPS -
Reference Returnsto  Model Application Field
Structure Stages Scale
Chen et al Series —Type Il 2 VRS Extension of Chen et al (2009b) IT on banks
(2010b)
Zha and Liang . Extension of Kao and Hwang US commercial
(2010) Series —Type Il 2 CRS (2008) banks
Generalized S
Kao and Hwang Series / Parallel V2 CRS Unification of Kao (2009a) and Kao 1T on be_xnks/
(2010) / Mixed (2009b) Illustrative data
Kao and Hwang . Modification of Kao and Hwang
(2011) Series —Type | 2 VRS (2008)
Liang et al Series with Extension of Chen et al (2006) and . Lo
(2011) feedback 2 CRS  Liang et al (2006) Chinese universities
. . Extension of Kao and Hwang Regional R&D
Lietal (2012) Series —Type Il 2 CRS (2008) in China
Generalized . Electric power
. Extension of Kao (2009a), Kao .
Kao (2014a) Series / Parallel v>2 CRS companies /
/ Mixed (2009b) and Kao and Hwang (2010) Ilustrative data
. Nations in 2012
Li et al (2015) Series —Type | 2 VRS I(Ez)gggilon of Kao and Hwang London summer
Olympic Games
. Extension of Kao and Hwang Non-lifellns.urance
An et al (2016) Series —Type | 2 CRS (2008) Companies in
Taiwan

The following directed graphs depict the starting points and the advancements of the
multiplicative and the additive efficiency decomposition methods. Each node represents one
or more studies that constitute a milestone on each efficiency decomposition approach. The
edges indicate relationship between studies, i.e. the direction of each edge points from the
study used as theoretical basis to the study that extend this basis. By employing this
representation method we highlight the development of the efficiency decomposition
approaches and the knowledge flow paths. Notice that the colors on each node indicate the

type of network structures that examined in each study.
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Kao and Hwan§ 2008),
Liang et al (2008

) Kao (20092)

Kao and Hwang (2010)

Chen et al (2010a) Zha and Liang (2010)

Kao and Hwang(2011)

Li et al (2012)

Kao (2014a)

Li et al (2015)

’ Series
An et al (2016)

Series-Parallel (Mixed)

Fig. 3.10: Evolution of the multiplicative efficiency decomposition method

Below we provide the schematic representation of the evolution of the additive efficiency

decomposition method.
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Mar Molinero (1996)

Tsai and Mar Molinero (2002)

Chen et al (2006),
Liang et al (2006)

Liang et al (2011)

Chen et al (2010b)

Chen et al (2009b)

Cook et al (2010b)

Beasley (1995)

Amirteimoori and Kordrostami (2005),
Amirteimoori and Shafiei (2006

Cook et al (2000)

Cook and
Hababou (2001)

Cook and Green (2004)

Jahanshahloo
et al (2004)
I Kao (2009a) Kao (2009b)
Kao’and Hwang(2010)

4

Kao (2014a)

. Series
@ ranaliel

O Series-Parallel (Mixed)

Fig. 3.11: Evolution of the additive efficiency decomposition method

The applications of the multiplicative efficiency decomposition method are presented in

Table 3.4. The fifth column (Model) of Table 3.4 provides the model used in each study.

Table 3.4: Applications of the multiplicative efficiency decomposition method

Network No of PPS -
Reference Returnsto  Model Application Field

Structure Stages

Scale
. . Kao and Hwan Printed circuit board
Liu and Wang (2009)  Series —Type | 2 CRS (2008) g industry in Taiwan
Guan and Chen Series —Type High-tech innovations in
(2010) 1 2 CRS Kao (20092) Chinese provinces
Hsieh and Lin (2010)  Mixed 4 CRS Kao (2009a) 'T”;ﬁ,"v 2?1“0”3' hotels in
; Kao and Hwang .

Cao and Yang (2011)  Series —Type | 2 CRS (2008) Internet companies
Zhu (2011) Series —Type | 2 CRS é%%g;‘d HWang — Airlines
Lee and Johnson . Firms of semiconductor
(2011) Series —Type | 3 CRS Kao (20092) manufacturing industry
Lee and Johnson Mixed 4 VRS Kao (2009a) US airlines

(2012)
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Network No of PPS -
Reference Returnsto  Model Application Field
Structure Stages
Scale
: Kao and Hwang Lo
Chen et al (2012) Series —Type | 2 CRS (2008) Automotive industry
Limaei (2013) Series —Type | 2 CRS Kao and Hwang Iranian forests
(2008)
. Kao and Hwang -
Wanke (2013) Series —Type | 2 CRS Brazilian ports
(2008)
Wanke and Barros . Kao and Hwang -
(2014) Series —Type | 2 CRS (2008) Brazilian banks
Wanke et al (2016) Series —Type | 2 CRS Kao and Hwang Australian public schools

(2008)

Table 3.5 presents the applications of the additive efficiency decomposition method. Similar
to Table 3.4, in Table 3.5 the fifth column (Model) reports the model used in each study.

Table 3.5: Applications of additive efficiency decomposition method

Network No of PPS - o
Reference Returnsto  Model Application Field
Structure Stages
Scale
Diez-Ticio and Tsai and Mar . . .
Mancebon (2002) Parallel 2 VRS Molinero (2002) Spanish police service
Tsai and Mar . , .
Yu (2008) Parallel 2 VRS Molinero (2002) Taiwan’s bus transit System
Yu and Fan (2009) Mixed 3 CRS I(\fggé\;lollnero Taiwan’s bus transit system
Liu (2011) Series_Typel 2 CRS  Chenetal (2000p) |iwanese financial holding
companies
Guan and Chen Series —Type CRS/ Innovation activities of OECD
(2012) v 2 vrg ~ Chenetal (20090) o yirie
Premachandraetal  Series —Type 2 VRS Chen et al (2009b)  US mutual funds
(2012) Il
Lu et al (2012) Series —Type | 2 VRS Chen et al (2009b)  US airlines
Beasley (1995), . .
Kao (2012) Parallel 2 E/RRSS/ Kao (2009b) and geKartheTﬁ’S“'s”y and  Physics
Kao (2010) P
Rogge and Jaeger Mar Molinero . . S
(2012) Parallel 6 CRS (1996) Solid waste in municipalities
Da Cruz et al (2013)  Parallel 2 CRS Z%gl%e) and Jaeger Water utilities
Amirteimoori Series —Type 2 VRS Chen et al (2009b)  Car distribution and service
(2013) 1Y
Wang et al (2014) Series —Type | 2 VRS Chen et al (2009b)  Chinese commercial banks
. National Basketball Association
Yang et al (2014) Series —Type | 2 VRS Chen et al (2009b) (NBA) teams
Toloo et al (2015) Series —Type 2 CRS Chen et al (2006) IT on banks / UK Chemistry and

Physics departments
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Network No of PPS - T
Reference Returnsto  Model Application Field

Structure Stages

Scale
. Secondary
Halkos et al (2015a)  Series —Type | 2 VRS Chen et al (2009b) education in 65 countries
Halkos et al (2015b)  Series —Type | 2 VRS Chen et al (2009b)  Sustainability of European regions
Halkos etal (2016)  Series—Typel 2 VRS  Chenetal 2000p) Sustainable - development  of
countries with advanced economies

Series —Type | . Non-life Insurance Companies in

Guo etal (2017) [ Type ll 2 CRS Liang et al (2006) Taiwan / Regional R&D in China

The following table reports the studies that are based on the slacks-based measure approach.

The fifth column (Model) of Table 3.6 below indicates whether the study is seminal,

extension or application of an existing one.

Table 3.6: Studies based on the slacks-based measure approach

Network No of PPS - o
Reference Returnsto  Model Application Field

Structure Stages Scale
Tone and Tsutsui Generalized . . .
(2009) Series / Mixed v>2 CRS/VRS  Seminal Study Electric power companies

. UAE domestic
Avkiran (2009)  Mixed 3 VRS 1oneandTsutsui commercial
(2009)
banks
. Tone and Tsutsui Domestic airports of

Yu (2010) Mixed 3 CRS (2009) Taiwan
Fukuyama and . Extension of Tone and
Weber (2010) Series —Type | 2 CRS Tsutsui (2009) Japanese banks

Generalized Tone and Tsutsui .
Matthews (2013) Series 3 VRS (2009) Chinese banks
Lin and Chiu . Tone and Tsutsui . .
(2013) Mixed 4 VRS (2009) Taiwanese domestic banks
Akther et al . Fukuyama and Weber .
(2013) Series —Type | 2 CRS (2010) Bangladeshi banks

Tone and Tsutsui National innovation
Lu et al (2014) Series —Type | 2 VRS (2009) system among countries
: Tone and Tsutsui . L

Chang et al (2017)  Series —Type IV 2 VRS (2009) International cruise lines

Table 3.7 summarizes the studies that are characterized as system-centric. The fifth column

(Model) of Table 3.7 indicates whether the study is seminal, extension or application of an

existing one.
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Table 3.7: Studies based on the system-centric approach

Network No of PPS -
Reference Returns  Model Application Field
Structure Stages
to Scale
Fare (1991) Series —Type IV 2 CRS Seminal Study -
Fare and
Whittaker Series —Type IV 2 VRS Fare (1991) US dairy farms
(1995)
Fare and
Grosskopf Series —Type IV 2 CRS Extension of Fare (1991) -
(1996)
Fare et al - us
(1997) Parallel 4 CRS Seminal Study grain farms
Lothgren and
Tambour Series —Type IV 2 CRS Fare and Grosskopf (1996) Swedish pharmacies
(1999)
. Unification of Fare (1991), Fare
Fare and C_;enerallzed and Whittaker (1995), Fare and
Grosskopf Series / Parallel / v>2 CRS Grosskonf (1996) and E |
(2000) Mixed rosskopf ( ) and Fare et a
(1997)

Prieto and . .
Zofio (2007) Mixed 4 CRS Fare and Grosskopf (2000) OECD countries
Sheth et al - Bus routes in Virginia
(2007) Series —Type | 2 VRS Fare and Grosskopf (2000) State of USA
2%18; al Parallel 5 VRS Fare et al (1997) Portuguese retail stores

Supply Chains /
é%q%;t al Series 2 CRS Seminal Study Branches of China

Construction Bank
Chen and Yan . . . Ilustrative data on
(2011) Series / Mixed 2/3 CRS Seminal Study Supply Chains
I(_Zoozlag)o etal Series —Type IV 2 VRS Fare and Grosskopf (2000) Spanish airports
Wu et al Industrial production and
(2016) Series —Type IV 2 CRS Seminal Study pollution treatment of

Chinese regions
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Conclusion

The current chapter provides a detailed survey of the network DEA studies and reveals that a
great volume of network DEA literature exists. We demonstrated the usefulness of network
DEA and its advantages over the standard DEA for the assessment of multi-stage processes.
The most influential network DEA approaches are the efficiency decomposition approach and
the slacks-based measure approach. Thus, we presented in detail the most important network
DEA methods of those categories and we discussed their extensions and modifications. We
also reported their limitations concerning the returns to scale, the inconsistency between the
multiplier and the envelopment models as well as the inadequate information that provide for
the calculation of efficient projections. In addition, we reported most of the studies that apply
the existing network DEA methods to real word problems. The network DEA studies were
classified according to the model developed or used. We will revisit in the following chapters
the additive and the multiplicative decomposition methods to show that the former yields
biased efficiency results whereas they both provide non-unique stage efficiency scores. Then

we will develop novel methods capable of overcoming these drawbacks.
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Chapter 4

Composition versus decomposition in two-stage
Network DEA: a reverse approach

Based on a reverse perspective on how to obtain and aggregate the stage efficiencies, we
develop in this chapter the composition approach as opposed to the decomposition approach
discussed in the previous chapter. Our novel approach overcomes the deficiencies of the
decomposition methods, i.e. non-uniqueness of efficiency decomposition and bias. It is
developed for the elementary two-stage process of Type | (Fig. 3.1a), whereas extensions of
our concepts to more complex two-stage network processes will be presented in the next

chapter.

Estimating the stage efficiencies of multi-stage processes simultaneously can be
considered as a multi-objective optimization problem where the efficiency of each stage is
treated as a separate objective function with their contradictory nature being taken into
account. In section 4.1, we provide the basic concepts of multi-objective programming. In
section 4.2, we discuss the major shortcoming of the multiplicative (Kao and Hwang, 2008)
and the additive (Chen et al, 2009b) decomposition methods of providing non-unique
efficiency scores. Also, we revisit the latter to show that the efficiency estimates are biased
by unduly favoring one stage against the other. In section 4.3 we develop in detail our novel
approach and we show that it effectively overcomes the shortcomings of the decomposition
methods, i.e. it provides unique and unbiased stage efficiency scores. In section 4.4, we
provide the results derived from our approach and we draw extensive comparisons with those
obtained by the well-known methods on the literature. We apply our approach to
experimental data as well as to test data drawn from the literature. We give also rigorous

justifications for the similarities and the differentiations observed in the results.

As the conflicting role of the intermediate measures gives a peculiar character to two-
stage processes that obscures the standard DEA premises, we introduce, in section 4.5, an

envelopment model to derive the efficient frontier in two-stage DEA. It is linked to - and
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developed on the basis of - our primal multiplier efficiency assessment model. Furthermore,
we propose an alternative two-phase method that projects the inefficient units on the frontier
at a minimum distortion of the observed intermediate measures. The rationale for such a
treatment is that the intermediate measures, conceived as a hidden layer in the production
process, are the less controlled dimensions that should undergo changes at a minimum
deviation from their observed values. Finally, concluding remarks are drawn in the last

section of the chapter.

4.1 Basic concepts of multi-objective linear

programming

Multi-objective programming problems are concerned with the optimization of multiple
conflicting objectives (criteria). When both the objective functions to be optimized and the
constraints are linear then the multi-objective programming problem is called linear, MOLP
in brief. MOLP and DEA are similar in structure, the relationships between them are
explored, among others, by Golany (1988), Charnes et al (1989), Kornbluth (1991), Stewart
(1996), Joro et al (1998) and Cooper (2005). The base of combining MOLP and DEA is the
concept of Pareto efficiency which is present in both methods. Let the MOLP problem be

given as follows:

min f(a) = [fi(@), ..., fr(a)]
s.t. 4.1)
a€A

where fn(a), h=1,..,k, are linear objective functions to be minimized and 4#4 is a convex
polyhedron that denotes the set of all feasible solutions in decision (variables) space. Let C c
R", the image of A, denote the feasible region in objective functions (criterion) space, where ¢
€ C if and only if there exists a € A such that c=(fi(a),...,/k(a)). Single objective
programming is studied in decision space, whereas in MOLP the attention is mostly focused
in objective functions space. This is because the objective functions space usually is
considerably smaller than the dimension of the decision space and the decision makers are
mainly interested in the objective values. A MOLP problem rarely has a single optimal

solution that simultaneously minimizes all objectives but possibly there exist an infinite
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number of optimal solutions called efficient, non-dominated or Pareto optimal. A solution of
a MOLP problem is called efficient, non-dominated or Pareto optimal if there does not exist
another feasible solution that improves the value of at least one objective function without
deteriorating any other objective. In particular, a solution a'€ A is Pareto optimal if and only
if there does not exist another a € A such that fn(a) < fa(a") for all h=1,..,k and fj(a) < fj(a") for
at least one objective j. Otherwise, if and only if there does not exist another a &€ A such that

fa(a) < fn(a") for all h=1,..,k, then the solution a'€ A is weakly Pareto optimal.

4.1.1 Solution methods

Multi-objective programming methods are categorized according to the participation of the
decision maker in the solution process (cf. Hwang and Masud, 1979). The methods that
articulate preference information from the decision maker are classified as a priori, a
posteriori and interactive. Also, there are methods that do not articulate preference
information called no preference methods, whereby a neutral solution is generated. Most of
them however, are simplifications of the a priori methods by typically excluding the
parameters imposed by the articulation of preferences. A large variety of methods have been
developed within the aforementioned classes of methods for solving multi-objective
programming problems, see Steuer (1986) and Kaliszewski (2004). In our context though, we
selected the scalarization method to solve MOLP problems. Scalarization means to convert
the MOLP problem to a single objective LP, whose single objective function is termed
scalarizing function (cf. Miettinen and Makela, 2002). The aim is to establish relations
between the set of optimal solutions of the scalarized problem and the set of Pareto solutions
of the MOLP. The most widely used scalarization methods are the additive aggregation of the
objective functions (weighted sum method) and the weighted Tchebycheff or weighted min-
max method. In the weighted Tchebycheff method the distance between some reference point

and the feasible objective functions (criterion) space is minimized using the Loo norm.

Weighted Sum method

The MOLP (4.1) can be transformed to the following single objective LP (4.2) via the
weighted sum methodology which is introduced by Gass and Saaty (1955). The single
objective function of model (4.2) is constructed by the sum of the objective functions fu(a),
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h=1,...k, multiplied by the weighting factor tn, h=1,..,k, that reflects the relative importance of
each objective. The theory of the weighted sum method is covered in detail by Ehrgott
(2005).

k
min Zh=1thfh (@)

s.t. (4.2)

a€A

An optimal solution o' of the scalar LP model (4.2) is a Pareto optimal (non-dominated)
solution to MOLP (4.1), if and only if there are {t, > 0,h =1, ...,k / X}_; t,}, Setting one or
more of the weights to zero may result in weak Pareto optimal solution. The relations
between nonnegative weights and Pareto optimality are examined by Lin (1976). Alternative
Pareto optimal solutions can be obtained by changing the weights systematically. However,
varying the weights will not necessarily change the solution since altering the weights will
only provide extreme points (vertices) on the Pareto front, i.e. the solution jumps from one
extreme point to another. The means to generate the whole Pareto optimal set are explored

comprehensively by Censor (1977) and Chankong and Haimes (1983).

A special case of the weighted sum method results when equal importance is given to the
objective functions or equivalently no preference among them exists, i.e. t=1, h=1,..,k. In
this case, the preference-free scalarizing function is simply built by the sum of the objective

functions.

Weighted Tchebycheff method

The weighted Tchebycheff or weighted min-max scalarization method belongs to the class of
compromise programming methods (cf. Zeleny, 1973), it can be originally found in Bowman
(1976) and it is also utilized in the milestone methods of Choo and Atkins (1980) and Steuer
and Choo (1983). The weighted Tchebycheff method is based on the concept of minimizing
the distance to a given reference point utilizing the Loo norm. In particular, the Tchebycheff
norm minimization chooses the corner closest to the given reference point and still in contact
with the feasible region. A reference point (cf. Wierzbicki, 1980) consists of aspiration levels
(objective function values) that are desirable for the decision maker or can be any reasonable

point in the objective space. These points can be reservation points that must be attained or
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exceeded so as to be considered acceptable (cf. Reeves and MacLeod, 1999) or worst
outcome points that should be avoided (cf. Michalowski and Szapiro, 1992). In the frame of
our approach, we use the ideal point as a reference point which represents, in the objective
functions space, the ideal solution that simultaneously optimizes each objective separately.
The ideal solution (best possible attainment) is obtained by optimizing each of the objective
functions individually subject to the feasible region. In principle, it is reasonable when
forming a measure of distance to seek for a point that is as close as possible to the ideal one.
The MOLP (4.1) is scalarized via the weighted min-max methodology using the ideal point as

follows:

min max [t,(|fn(a) — fr D]

h=1,..,k

(4.3)
s.t.

a€A

where tn, h=1,...k, is the vector of the weights that reflect the relative importance of each
objective and f;;, h=1,....k, are the components of the ideal objective vector that constitutes
the ideal point in the objective functions space. Model (4.3) yields at least one solution that is
Pareto optimal for the MOLP (4.1). If the optimal solution of model (4.3) is unique then it is
a Pareto optimal solution to MOLP (4.1). In general, every optimal solution of model (4.3),
with positive weights (tn>0, h=1,...,k), is weakly Pareto optimal to MOLP (4.1) (cf. Yu, 1973
and Kaliszewski, 1994). However, in the case of two objectives (k=2), given a set of positive
weights (t,>0, h=I,...,k), the optimal solution of model (4.3) is unique and thus a Pareto
optimal (non-dominated) solution to MOLP (4.1) (cf. Ballestero and Romero, 1991). The
weighted Tchebycheff method, contrary to the weighted sum method, can generate the entire
Pareto optimal set of the MOLP (4.1) with variation of the weights ty, i.e. it also provides the

non-extreme points on the non-dominated surface (cf. Olson, 1993).

When all the objective functions are thought to be equally important or equivalently no
preference among them exists, i.e. t.=1, h=1,....k, then a special case of the weighted
Tchebycheff method occurs, namely the unweighted Tchebycheff method. Under this

assumption, problem (4.3) is also called method of the global criterion.
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4.2 Criticism of the efficiency decomposition

methods

In order to discuss and reveal the deficiencies of the decomposition methods it is sufficient to
refer to the elementary two-stage process of Type I. In this two-stage process some external

inputs X are transformed to final outputs Y via the intermediate measures Z.

DMU

Y

Fig. 4.1: The two-stage process of Type |

Assume n DMUs (j=1,...,n), each using m external inputs xij, i=1,...,m in the first stage to
produce g outputs zpj, p=1,...,q from that stage. The outputs obtained from the first stage are
then used as inputs to the second stage to produce s final outputs yrj, r=1,...,s. In this basic
setting, nothing but the external inputs to the first stage enters the system and nothing but the
outputs of the second stage leaves the system.

Throughout this chapter we use the following notation:
j €J=1{1,..,n}: The index set of the n DMUEs.
Jo € J: Denotes the evaluated DMU.
X; = (xl-j,i =1, ...,m): The vector of stage-1 external inputs used by DMU;.
Z; = (2zpj,p = 1, ...,q): The vector of intermediate measures for DMU;.
Y; = (yr;,r = 1,...,s): The vector of stage-2 final outputs produced by DMU;.
n = (M1, ..., Mm): The vector of weights for the stage-1 external inputs in the fractional model.
v = (vq, ..., Uyn): The vector of weights for the stage-1 external inputs in the linear model.

@ = (@1, --,9q): The vector of weights for the intermediate measures in the fractional
model.
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w = (wy, ..., wg): The vector of weights for the intermediate measures in the linear model.
w = (wq, ..., wg): The vector of weights for the stage-2 outputs in the fractional model.
u = (uq, ..., Ug): The vector of weights for the stage-2 outputs in the linear model.

e?: The overall efficiency of DMU;.

ejl: The efficiency of the first stage for DMU;.

ejz: The efficiency of the second stage for DMU;.

Ejl: The independent efficiency score of the first stage for DMU,;.
E]?: The independent efficiency score of the first stage for DMU,;.

A: The intensity vector for the first stage.
w: The intensity vector for the second stage.
s ": The vector of the input excesses.

s*: The vector of the output shortfalls.

4.2.1 Non-unique efficiency scores

Both the multiplicative (Kao and Hwang, 2008) and the additive (Chen et al, 2009b)
decomposition methods are developed on the basis of the two-stage process of Type I. As
noticed in Chapter 3, in both methods the decomposition of the overall efficiency to the stage
efficiencies is non-unique. Thus in both studies, similar post-optimality procedures were
developed to derive extreme stage efficiency scores, maintaining the overall efficiency
obtained from the decomposition models. Kao (2016) noticed that is critical to “identify the
most influential divisions that have decisive effects on the overall efficiency of the system”
because by improving these stages the system efficiency will be improved. However, this
cannot be exercised safely due to the non-uniqueness of the efficiency scores, i.e. alternative
efficiency decompositions deem different stage as influential. The shortcoming of non-unique
efficiency scores of the decomposition methods may occur in the assessment of any type of

network structure.
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4.2.2 Biased efficiency scores

The additive efficiency decomposition method also suffers from biased efficiency results as
we show below. We recall that the modelling approach of Chen et al (2009b) facilitates the
linearization of a non-linear mathematical program by assuming that the weights of the two
stages derive endogenously by the optimization process. We provide again the definitions of
the overall and stage efficiencies of the two-stage process of Type I (Fig. 4.1).

0 qu+WZj 1 _ WZj 2 qu

ej = vXj+WZj’ej - UX]" ej - wZj (44)
In additive efficiency decomposition method the overall efficiency is estimated as a weighted
average of the stage efficiencies. The additive decomposition model and the definitions of the

weights of the stages are expressed as follows:

o _ qu+WZj _ t1 WZj

uyY;
0 = +t7P L, tt+trP=1
‘UXj+WZj J UXj J WZj J J

1 _ UX]' 2 WZj

te =
J vXj+WZj’ J UXj+WZj

Given the above definitions, the model below assesses the overall efficiency of the evaluated
unit jo:

e’ =maxuY; +wZ;
] Jo Jo

s.t.
vXj, +wij, =1 (4.5)
wZ —vX; <0, j=1,..,n

uV; —wZz; <0, j=1,..,n

v=20w=20u=0

Once an optimal solution (v',W",u") of model (4.5) is obtained, the overall efficiency and the

stage efficiencies are calculated by the following relationships:
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0 __ % *
€0 =uY, +w'zZ;

R
tjo =v X]a ’ tJO =w Z]o (46)
* 0 _1 ,1 *y .
ol = Wi 2 _ %o to%o _ WY,
Jjo vx; ' )0 t? W*Z;
Jo jo Jo

The argument given in Chen et al (2009b) for the weights t} and t]-2 is that they represent the
relative contribution of the two stages to the overall performance of the DMU. The “size” of
each stage, as measured by the portion of total resources devoted to each stage, is assumed to
reflect their relative contribution to the overall efficiency of the DMU. However, as long as
the weights derive from the optimization process, they depend on the DMU being evaluated
and, generally, they are different for different DMUs. Thus, the “size” of a stage is not an
objective reality, as it is viewed differently from each DMU. But this is not the only
peculiarity emerging from the definition of the weights. Indeed, from the above relationships
and the definition of the weights we derive that the additive decomposition method biases the

efficiency assessments in favor of the second stage:
— — ,1
L=—=¢'<1

i.e.t7 <tf, which is a major a shortcoming. Indeed, the maximum value that t7 can attain is
0.5 and e/ increases (e; decreases) as t7 decreases. As long as the individual efficiency
scores are biased, the overall efficiency score is biased as well. In conclusion, the endogenous
weights assumed in Chen et al (2009b) for the individual stages favor the second stage

against the first one.

Notice, that the above finding is based upon an input oriented framework, though it is still
valid in the output oriented case. Also, this conclusion can be easily drawn for other types of
series multi-stage processes, regardless of the number of stages. Specifically, when the
additive decomposition method is applied to multi-stage processes of Type I, under both
input and output orientations, then it suffers from biased efficiency assessments. Also, when
it is applied to multi-stage processes of Type Il (Fig. 3.1c), then the aforementioned
shortcoming is reported only if input orientation is chosen. When the additive method is
applied to parallel network structures (Fig. 3.3) or under the VRS assumption of any type of

network structures, then we cannot predetermine the relationship of the weights of the stages.
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4.3 The composition approach to two-stage network

DEA

Unlike the decomposition methods presented in the previous chapter, our method does not
require an a priori definition of the overall efficiency. This grants our approach the flexibility
to select the aggregation method a posteriori. Thus, we call our method the “composition
approach” as opposed to the “decomposition approach”. Similarly to the other methods, we
assume that the weights associated with the intermediate measures are the same and we

define the efficiency of the two stages as follows:

él _PZj s _ wYj

Tk T gz

4.3.1 Constant returns to scale

Consider the reciprocal of model (3.1) that is the output-oriented CRS-DEA model for the
first-stage and the input-oriented CRS-DEA model (3.2) for the second-stage, where the same

intermediate weights are assumed for both stages:

Stage I: Output-oriented Stage II: Input-oriented
X; wY;

minn ! max —2°

(ijo (pZJO
s.t. (4.7) s.t. (4.8)
i1, j=1..,n Yict, j=1,.,n
PZj PZj
n=0,¢=0 p=z0,w=0

As mentioned earlier, models (4.7) and (4.8) provide the independent efficiency scores
1 /E}o , Efo for the first and the second stage respectively. Appending the constraints of model
(4.7) to model (4.8) and vice versa we get the following augmented models (4.9) and (4.10)

for the first and the second stage respectively:
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Stage I: Output-oriented Stage Il: Input-oriented
X; wY;

PZ; »Z;
s.t. s.t.
Pis1, j=1..,n 49 <1 j=1..,n (4.10)
qDZj (ij
<1, j=1,.,n i1, j=1,m,n
PZj PZj
n=20p=20w=0 n=20p=20w=0

Notice that an optimal solution of model (4.7) is also optimal in model (4.9). Indeed, one can
always choose small enough values for @ in model (4.9) to make any optimal solution of
model (4.7) feasible, yet optimal, in model (4.9). Analogously, an optimal solution of model
(4.8) is also optimal in model (4.10), as one can choose large enough values for # in model

(4.10) to make any optimal solution of model (4.8) feasible, yet optimal, in model (4.10).

Theorem 4.1: An optimal solution of model (4.7) is also optimal in model (4.9).
Proof:

Let 4" and 9" be an optimal solution of (4.7). First we will show that this solution is feasible
in (4.9). Indeed, it satisfies the first set of constraints of (4.9), as it is identical to the
constraints in (4.7). Notice that the first set of constraints of (4.9) is independent of the

variables @, which appear only in the second set of constraints. Then,

(@) If the number of outputs (Y) is lower or equal to the number of intermediate measures

(2), i.e. s <gq, then the second set of constraints of (4.9) is satisfied for

*_ min
_§0rzr >07r=1
r=—ma— = 0r=1,..,s

Yr

where z"™ =min{z,} is the smallest observed value of the intermediate measure zr and
J

"™ = max{y,} IS the largest observed value of output yr.
J
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(b) If the number of outputs (Y) is greater than the number of intermediate measures (2), i.e.
s>(, the second set of constraints of (4.9) is satisfied for
min

*
PpZp
w, =

= Olp = 1! '--!q;wr:OIT = q+ 1, ey S

max =
p

Thus, the optimal solution #” and ¢" of (4.7) is a feasible solution of (4.9). Moreover, as the
objective functions in both the (4.7) and (4.9) are independent of w, the above solution is

optimal in (4.9) as well. [

Theorem 4.2: An optimal solution of model (4.8) is also optimal in model (4.10).

Proof:

Let w” and ¢” be an optimal solution of (4.8). First we will show that this solution is feasible
in (4.10). Indeed, it satisfies the first set of constraints of (4.10), as it is identical to the
constraints in (4.8). Notice that the first set of constraints of (4.10) are independent of the

variables #, which appear only in the second set of constraints. Then,

(a) If the number of intermediate measures (Z) is lower or equal to the number of inputs (X),
i.e. ¢<m, the second set of constraints of (4.10) is satisfied for

* ,max
_ PpZp
P min
Xp

2 pr = 1!"'quni20pi = q+ 1,...,m

where 27 = max{z,;} is the largest observed value of the intermediate measure z, and
J

xpi" = mjin{xpj} is the smallest observed value of the input X,.

(b) If the number of intermediate measures (Z) is greater than the number of inputs (X), i.e.

g>m, the second set of constraints of (4.10) is satisfied for

*,_max
_ iz —1 1
=m0t T LM
X
* _max * _max
PmZm PmZm
Nm xmin xmin
m p=m+1
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Thus, the optimal solution " and ¢” of (4.8) is a feasible solution of (4.10). Moreover, as the
objective functions in both the (4.8) and (4.10) are independent of #, the above solution is

optimal in (4.10) as well. [

Models (4.9) and (4.10) have common constraints and, thus, can be jointly considered as a bi-
objective program:

min —J
PLj,
wYj,

max
pLj,

s.t. (4.11)

nX;

vz, =1, j=1..,n

wY; .
—1 <1, j=1,..,n
QZ;

n=20,¢=20w=0

Applying the C-C transformation, model (4.11) can be formulated and solved as a MOLP.
The correspondence of variables is v=t, u=zw, W=tp where 7 is a scalar variable such
that tpZ;, = 1.

1 — i ]
Ej, = minvX;

2 g .
Ej, = maxuY;
s.t.

wz =1 (4.12)
WZ]- —vXj <0 j=1,..,n
qu —WZ]- <0 j=1,..,n

v=20w=20u=0

Optimizing the first and the second objective function separately one gets the independent
efficiency scores of the two stages (1/E}, < LEf, <1). In terms of MOLP, the
vector (E}, > 1,E%, < 1) constitutes the ideal point of the bi-objective program (4.12) in the
objective functions space. Thus, the efficiencies of the two stages can be obtained by solving
the MOLP (4.12). However, as the ideal point is not generally attainable, solving a MOLP

means finding non-dominated feasible solutions in the variable space that are mapped on the
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Pareto front in the objective functions space, i.e. solutions that they cannot be altered to
increase the value of one objective function without decreasing the value of at least one other
objective function. As already noticed, a usual approach in solving a MOLP is the scalarizing
approach, which transforms the MOLP in a single objective LP, whose optimal solution is a
Pareto optimal (non-dominated) solution of the MOLP. Aggregating additively the objective
functions and introducing a distance function are two alternative methods to build the
scalarizing function. We present both cases in the following, as they possess different

properties.

Firstly, by aggregating the two objective functions of MOLP (4.12) additively without
giving any priority (no preference) to the objectives we derive the following single objective
LP. In particular, we employ the special case of the weighted sum scalarizing method with all

weights equal to one, i.e. thi=1, h=1,... k.

min von — quo

s.t.
wZ; =1

& (4.13)
WZj —vXj <0 j=1,..,n

qu —WZj <0 j=1,..,n

v=>20w=0u=>0

Once an optimal solution (v*, w*, u”) of model (4.13) is obtained, the efficiency scores for

unit jo in the first and the second stage are respectively:

w*Z; 1 u‘y;
Al ] A2 Jo *
1 7 %o _ 82 = = u'Y _
o v X vXT 0 wrZj, Yo (4.14)

The optimal value of the objective function in (4.13) is v*X; —u'Y; = 0. The unit jo is

-
efficient in both stages and, thus, overall efficient, if and only if the optimal value of the
objective function is zero. Otherwise it is overall inefficient. Indeed, if v*X; —uY; = 0 then,
as w*Z; = 1and uY; < wZ; < vX; for every j, it holds that v*X; = w*Z;, = u'Y; =1,i.. ¢ =
1, éfo = 1. Model (4.13) does not provide a direct measure of the overall efficiency, as it is the
case in the multiplicative model (3.7) and the additive model (4.5), but it does discriminate

among overall efficient and inefficient units, a property that is closely related to the standard
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additive DEA model. However, it is the normalization constraint wz; =1, on the
intermediate measures in (4.13), that allows us to infer on the efficiency scores of the
individual stages, as given in (4.14). This is the key that enables us to assess the efficiencies

of the two stages simultaneously without the need to assume weights for the two stages.

The optimal solution (v*, w", u”) of model (4.13) is a Pareto optimal solution of the
MOLP (4.12) and the optimal vector (v*X; ,u*Y; )is a non-dominated point on the Pareto
front in the objective functions space of (4.12). This is a direct implication of the Geoffrion’s
(1968) theorem, which states that: given a multi-objective LP model {min f;,(a),h =
1,..,k / a € A,a >0}, a" is a Pareto-optimal (efficient) solution for this model if and only if
there are {t, >0,h=1,..,k/ X¥_ t, =1} such that a" is optimal for the scalar LP
model {min ¥f_, t, fu(a) / a € 4,a = 0}. Getting advantage of this property, one can scan the
Pareto front and get alternative Pareto optimal solutions by solving model (4.15), i.e. the

weighted counterpart of model (4.13), for different values of the parameter t with 0 <t < 1:

mintvX; — (1 —t)uY;,
s.t.
WZJ0 =

WZj —vXj <0 j=1,..,n

1
(4.15)

qu —WZ]- <0 j=1,..,n

v=20w=20u=0

We note that model (4.15) provides only extreme points on the Pareto front i.e. the optimal
solutions are confined to vertices of the efficient region only. Notice also that the same Pareto
optimal point can be obtained for a range of values of t, the so called indifference range.
Thus, the solution obtained from model (4.13) by way of its unweighted scalar objective
function can be obtained as well by giving different priorities (weights) to the two terms of
the objective function within their indifference range (Steuer, 1986). Figure 4.2 below, is a
general representation of the objective functions space of the MOLP (4.12) for an evaluated
unit (Xo, Zo, Yo). Actually, it is the plane in the three-dimensional space (vX, wZ, uY) that is
vertical to the axis wZ at wZ,-1. The point (E%, E?) represents the ideal point, whereas the
points A, B, C and D are the alternative Pareto optimal extreme points derived by the

parametric model (4.15) for different values of the parameter t. The crooked line ABCD
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represents the Pareto front in the objective functions space. The dotted line passing from the
point B has slope 1 and depicts the objective function of model (4.13), which, when
minimized for the optimal solution (v*, w", u”), takes the non-negative value v*X; —u'Y; =

b > 0 and locates the point B on the Pareto front.

MYO

0 vXp

Fig. 4.2: The Pareto front of MOLP (4.12) and the optimal solution of model (4.13)

Although it is not very likely to occur in practice, the Pareto optimal point derived by
model (4.13) and, thus, the efficiency scores of the two stages might be non-unique. This is
the case where a segment of the Pareto front has slope 1, i.e. when it is parallel to the
objective function line. For example, if the segment BC defined by the two successive Pareto
optimal points B and C was parallel to the objective function line, then B, C and any convex
combination of them would be optimal in terms of model (4.13). The uniqueness of the
Pareto optimal point (U*on,u*on) and, thus, the uniqueness of the optimal efficiency scores
of the two stages derived by model (4.13), can be tested by minimizing vX, and maximizing

uY, subject to the constraints of (4.13) plus the constraint vX; — uY; <v'X; —u'Y; .

Model (4.13) is equivalent to finding an optimal solution that locates a point on the Pareto
front at a minimum sum of the deviations vX; —1and 1 —uY;, (L1 norm) of (vX; ,uY; ) from
the boundary point (1,1) in the objective functions space. Next, we employ the unweighted
Tchebycheff norm (L. norm) to locate a unique solution on the Pareto front by minimizing

the maximum of the deviations vX; —E; and Ef —uY; of (vX;,uY; ) from the ideal
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point (Ej., E? ). This is accomplished by the following min-max model, where ¢ denotes the

largest deviation:

min é
s.t.

vX;, — 6 < Ej,
uY; +8&=Ej,
wZj =

WZj —vX]- <0 j=1,..,n

1

qu —WZj <0 j=1,..,n

v=20w=0u=06=0

(4.16)

Solving model (4.16) means searching for a solution where the deviations from the ideal

point are equal and minimized. As depicted in Fig.4.3, the min-max solution is point D, being

the intersection of the Pareto front and a ray from the ideal point (E*,E?) with slope (-1). The

main advantage of model (4.16) over model (4.13) and the decomposition models (3.7) and

(4.5) is that it provides a unique point, not necessarily extreme (vertex), on the Pareto front,

i.e. unique efficiency scores for the two stages. Once an optimal solution (v*, w", u®) of model

(4.16) is obtained, the stage efficiency scores for unit jo are as in (4.14).

EEYD

0

vEX- u*¥;=b=0

B¢

Fig. 4.3: The Pareto front of MOLP (4.12) and the optimal solution of model (4.16)
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Considering the weighted Tchebycheff distance, the following parametric min-max model

searches for a solution where the weighted deviations t(vX; —E}) and (1 —¢t)(E} —

uY;, )with 0 <t < 1, are equal and minimized.

mind
S.t.
thjo -6 < tE}o
(1-tuy; +8=(1-E},
(4.17)
wZ; —vX; < 0, j=1,..,n
uV; —wz; <0, j=1,..,n

v=20,w=0,u=0,6=0

Unlike the parametric model (4.15), the above min-max formulation (4.17) gives continuous
changes on the location of the Pareto optimal point for continuous changes of the parameter t.
Thus, the optimal solution of (4.17) responds accurately to any given set of weights that gives
priority to one stage over the other. In this sense, the unweighted min-max model (4.16)
aligns more effectively with the notion of “neutrality” in the efficiency assessments than

model (4.13) does and provides, thus, more balanced efficiency scores for the two stages.

Aggregation of the individual efficiencies

As noticed in Cook et al (2010a), it is reasonable to define the overall efficiency of the two-
stage process either as the average (arithmetic mean) of the efficiencies of the two individual
stages or as their product. Liang et al (2006) and Chen et al (2006) propose the use of the
arithmetic mean, in this line of thought, the overall efficiency of unit jo is defined as:

As the stage efficiencies are assumption-free, i.e. their assessment does not depend on any a
priori definition of the overall efficiency, alternatively, they can be aggregated

multiplicatively to get the overall efficiency as follows:
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In the following, we compare the overall and the stage efficiencies obtained from our
approach with those obtained from the additive and the multiplicative decomposition
methods. Although the overall efficiency scores é° and €° obtained respectively by our
aggregation method (simple arithmetic average) and the additive decomposition model (4.5)
are not comparable, because of the endogenous weights assumed for the two stages in the

latter, in the case of the multiplicative decomposition model (3.7) the following hold:

Theorem 4.3: If &2 =&/ - &7 is the overall efficiency score of the evaluated unit jo, with &},
é7 as derived by model (4.13), and e is its overall efficiency score obtained from model

(38.7) then €] <ej .

Proof:

Let (v', w’, u’) be an optimal solution of model (3.7) with e? =u'¥;, and (V', W', U") an

optimal solution of model (4.13) with @J(-)D = u"Y;, /v*X; . The following hold:

(@) (v’, w’, u’) is an optimal solution in model (3.6). This is a direct implication of the C-C
transformation.
(b) (v, W', U") is a feasible solution in (3.6). Indeed, (v, W, U”) is optimal in the following

ratio model:

S.t.

(ij— anSO, j=1,..,n
wY;—@Z; <0, j=1,..,n
n=20,¢=20,w=0

which derives from (4.13) by applying the inverse C-C transformation: n=v/z, p=w/t, o=u/t
with >0 such that t¢Z, = 1. As the above model and model (3.6) have the same feasible
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regions, (V', W', U") is feasible in (3.6). From a) and b) derives that &) =u'Y; /v X i<

u'Y; = e?, which completes the proof. [

Theorem 4.4: If &2 = ¢} - &7 is the overall efficiency score of the evaluated unit jo, with &},
é7 as derived by model (4.16), and e is its overall efficiency score obtained from model

(3.7) then é}’o <ej.

Proof:

Let (v', w’, u’) be an optimal solution of model (3.7) with e? = u'¥; and (v, W', U", §") an

optimal solution of model (4.16) with @}’o = u"Y;, /v*X; . The following hold:

(@) The sub-vector (v', W", u”) is a feasible solution of model (4.13). Indeed, given the
optimal §”, the optimal sub-vector (v*, w", u”) satisfies the three last constraints of (4.16),
which define the feasible region of (4.13).

(b) (v', W', U") is a feasible solution in (3.6) as well. The proof is as in Theorem 4.3(b).

Given (a) and (b), &7 < e} is direct implication of Theorem 4.3. [

> 7o —
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The case of a single intermediate measure

The following theorems complement the findings of Liang et al (2008), where it is shown that
the multiplicative approach provides the independent stage efficiencies when a single
intermediate measure is assumed in the two-stage process of Type I. In the Appendix, we
provide an illustrative example of this two-stage process with a single intermediate measure,
originally studied by Wang et al (1997).

Theorem 4.5: In a two-stage production process of Type | with a single intermediate
measure, the efficiency scores derived for the two stages by model (4.13) are identical to the

independent efficiency scores.

Proof:

Assuming different weights for the intermediate measures in each stage, model (4.13) can be

written as follows:

min vXj0 — quO

S.t.
Wz, =1 (4.18)

wZ —vX; <0, j=1,..,n
uy, —wZ; <0, j=1,..,n

v=20,w=0,w=0,u=0

where w and w are the weight variables associated to the intermediate measures for the first
and the second stage respectively. It derives straightforwardly that if (u”, v°, w*, w") is an
optimal solution of model (4.18), then (v, w") is optimal in the linear equivalent of model
(4.7) and (u*, W) is optimal in the linear equivalent of model (4.8). Thus, model (4.18) can
be used to estimate the independent efficiency scores of the two stages in one run for each
evaluated unit. Obviously, models (4.13) and (4.18) are equivalent if w = w, with w =
(Wl,...,wq),v’\? = (W1, ..., Wq) . This naturally holds in the case of a two-stage production
process with a single intermediate measure. Indeed, from model (4.18) derives that the
weights (w, w), associated with the single intermediate measure z, coincide and for each

evaluated unit jo can be obtained as w* = w* = 1/z; . [
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Theorem 4.6: In a two-stage production process with a single intermediate measure, the
efficiency scores derived for the two stages by model (4.16) are identical to the independent

efficiency scores.
Proof:

Similar to the proof of Theorem 4.5, assuming different weights for the intermediate

measures in each stage, the model (4.16) can be written as follows:

miné
s.t.

_ 1
von 1) < E]O

2
uYJo +6 = Ejo

wZ, =1 (4.19)

wZ; —vX; < 0, j=1,..,n
uY; —WZJ- <0, j=1,..,n

v>20w=20w=20u=>046=>0

In model (4.19) the weights w and w are the variables associated to the intermediate
measures for the first and the second stage respectively. Models (4.16) and (4.19) are
equivalent if w = w, withw = (wy, ..., w, ), W = (W, ..., W,). As occurs in model (4.18), in
model (4.19) as well, the weights (w, W), associated with the single intermediate measure z,
coincide and for each evaluated unit jo are calculated as w* = w"* =1/z; . To put it
differently, the competition between the stages over the intermediate measures is cancelled
and their single value is derived directly from the normalization constraints. The purpose of
model (4.19) is to minimize the deviations of the two objectives from their ideal values. If at
the given optimal solution (v*,u*,w*,w*, §*) of (4.19) the optimal value of ¢ is zero (6"=0),
then the two objectives achieve their ideal values. This happens because the first two
constraints of model (4.19) are always binding (cf. Ballestero and Romero, 1991, Tamiz et al,
1998 and Ogryczak, 2001). As a result, it straightforwardly derives that (v*, w*) are optimal
in the linear equivalent of model (4.7) and (u*, w*) are optimal in the linear equivalent of
model (4.8). From the above, we conclude that model (4.19) can be used to estimate the

independent efficiency scores of the two stages in one run for each evaluated unit. [
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4.3.2 Variable returns to scale

Our approach enables us to extend our developments under the variable returns-to-scale

(VRS) assumption by considering the VRS variants of models (4.7) and (4.8).

Stage /- VRS variant of (4.7)

nXj, — /2

min
»Zj,

S.t.

(4.20)

max

Stage /I - VRS variant of (4.8)

ijO -,
»Zj,

(4.21)

Models (4.20) and (4.21) yield the independent VRS efficiency scores for the two stages.

Working similarly to the CRS case, we formulate the augmented models (4.22) and (4.23),

for the first and the second stage respectively, by appending the constraints of model (4.20) to

model (4.21) and vice versa.

Stage /

P>, j=1,..,n

n=20p=20w=0

(4.22)

Stage 11

ijo — ¥,
max ——
pZ;
S.t.
wYj=1;
QZj
nXj—1
PZj

n=20p=20w=0

(4.23)

Since models (4.22) and (4.23) have common constraints can be jointly considered as a bi-

objective program:
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. nXj, — (2
min
(pio
max —2 i
(pio
s.t. (4.24)
nXj—Y1 >1, j= n
(ij ) ) )
WY j=; <1 ] — n
(pZJ ) ) )

n=20¢=20w=0

Applying the C-C transformation to model (4.24) can be formulated and solved as a MOLP.
The correspondence of variables is v=t7, u=tw, W= ¢, &i=ty1, H=1yw2 Where 7 is a scalar
variable such that zpZ, = 1. Below we give the VRS variant of the weighted sum model
(4.13):

minvX; —¢& —uYj, +¢;
s.t.
wZ; =1
& (4.25)
wZ —vX;+¢ <0, j=1,..,n
uY; —wiz; -§ <0, j=1,..,n

v=>20w=0u=0

As noticed in previous chapter the additive decomposition approach of Chen et al (2009b)
is extendable to VRS situations as well. Notably however, the principle that the VRS
efficiency scores are not less than their CRS counterparts does not generally hold in neither
the additive model or in our model (4.25) above. This irregularity can be attributed to the
conflicting nature of the intermediate measures, which have different interpretations in the
two stages. Adding however, the constraints vX; — & < 1/éfzs and uY;, — &, = é2zs in model
(4.25), where é2xrs and é5xs are the CRS efficiency scores obtained by model (4.13), rectifies
this irregularity for the units where it is observed, without affecting the efficiency scores of

the other units.
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The VRS variant of the min-max model (4.16) is given below:

mind

s.t.

vX;, —& — 6 <Ej,
uy; —§,+8 2 Ej,

o (4.26)

jo —

wZ —vX;j+¢§ <0, j=1,..,n

1

ul; —wz; —§, <0, j=1,.,n

v=20w=0u=06=0

Once an optimal solution of models (4.25) or (4.26) is obtained, the VRS efficiency
scores for unit jo in the first and the second stage are respectively:

* * *
N WZJO 1 AZ_uY;‘O_fZ

e: = = e; =
Jo * _&£* xY, _ £*x’7Jo *
viXj, — ¢ vX, —¢; w*Z

We note that in a two-stage production process with the structure of Figure 4.1, in case of
a single intermediate measure, the VRS efficiency scores derived for the two stages by
models (4.25) and (4.26) are identical to the VRS independent efficiency scores. The proofs

are similar to the proofs in Theorems 4.5 and 4.6.

4.4 Illustration and experimentation

We apply our approach to the 24 Taiwanese non-life insurance companies originally studied
in Kao and Hwang (2008). The authors noted that the production process of the non-life
insurance companies in Taiwan resembles the two-stage process that illustrated in Figure 4.1.
In the first stage (marketing of the insurance) were utilized two inputs (Operation expenses-
X1 and Insurance expenses-X2) in order to produce two intermediate measures (Direct
written premiums-Z1 and Reinsurance premiums-Z2). The direct written premiums are
obtained from the payments of the clients while the reinsurance premiums are received from
other insurance companies. Subsequently, in the second stage (investment) the intermediate

measures are used for the production of the two final outputs (Underwriting profit-Y1 and
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Investment profit-Y2). The collected premiums are invested in a portfolio, in accordance with

the Insurance Law of Taiwan, that includes bank deposits, marketable securities, real estate

and mortgage loans. Table 4.1 exhibits the data set.

Table 4.1: Taiwanese non-life insurance companies (source: Kao and Hwang, 2008)

DMU X1 X2 Z1 Z2 Y1 Y2
1 Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687
2 Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754
3 Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428
4 China Mariners 601,320 594,259 3,174,851 371,863 248,709 177,331
5 Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272
6 Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058
7 Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039
8 Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868
9 Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098
10  The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806
11 Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259
12 Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295
13 Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047
14  South China 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283
15 Cathay Century 2,184,944 651,063 10,422,297 749,893 3,355,197 555,482
16 Allianz President 1,211,716 415,071 5,606,013 402,881 854,054 197,947
17 Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984
18 AlU 757,515 547,997 3,631,484 995,620 692,731 163,927
19 North America 159,422 182,338 1,141,950 483,291 519,121 46,857
20 Federal 145,442 53,518 316,829 131,920 355,624 26,537
21 Royal & Sunalliance 84,171 26,224 225,888 40,542 51,950 6,491
22  Aisa 15,993 10,502 52,063 14,574 82,141 4,181
23 AXA 54,693 28,408 245,910 49,864 0.1 18,980
24 Mitsui Sumitomo 163,297 235,094 476,419 644,816 142,370 16,976
CRS Case

Table 4.2 displays the independent CRS efficiency scores (columns 2-3) of the two stages, as
obtained from models (4.7) and (4.8), and the efficiency scores (columns 4-7) obtained by
applying our model (4.13) on the data of Table 4.1. Also, Table 4.3 presents the ideal values
(columns 2-3) of vX; and uY; in the bi-objective LP (4.12) and the results (columns 4-8)

obtained by applying our model (4.16) on the data of Table 4.1.
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Table 4.2: Independent efficiencies and results from our model (4.13)

DMU U/E, E, gl g2 go=(81+8%)/2 go=glg?
1 0.9926 0.7134 0.9926 0.7045 0.8485 0.6992
2 0.9985 0.6275 0.9985 0.6257 0.8121 0.6248
3 0.6900 1 0.6900 1 0.8450 0.6900
4 0.7244 0.4323 0.7243 0.4200 0.5722 0.3042
5 0.8375 1 0.8307 0.9233 0.8770 0.7670
6 0.9637 0.4057 0.9606 0.4057 0.6831 0.3897
7 0.7521 0.5378 0.7521 0.3522 0.5521 0.2649
8 0.7256 0.5113 0.7256 0.3780 0.5518 0.2743
9 1 0.2920 1 0.2233 0.6116 0.2233
10 0.8615 0.6736 0.8615 0.5408 0.7012 0.4660
11 0.7405 0.3267 0.7292 0.2066 0.4679 0.1507
12 1 0.7596 1 0.7596 0.8798 0.7596
13 0.8107 0.5435 0.8107 0.2431 0.5269 0.1970
14 0.7246 0.5178 0.7246 0.3740 0.5493 0.2710
15 1 0.7047 1 0.6138 0.8069 0.6138
16 0.9072 0.3847 0.9072 0.3356 0.6214 0.3044
17 0.7233 1 0.7232 0.4597 0.5914 0.3325
18 0.7935 0.3737 0.7935 0.3262 0.5599 0.2588
19 1 0.4158 1 0.4112 0.7056 0.4112
20 0.9332 0.9014 0.9332 0.5857 0.7594 0.5465
21 0.7505 0.2795 0.7505 0.2623 0.5064 0.1969
22 0.5895 1 0.5895 1 0.7948 0.5895
23 0.8501 0.5599 0.8426 0.4989 0.6707 0.4203
24 1 0.3351 1 0.0870 0.5435 0.0870

Table 4.3: Ideal values and results from our model (4.16)

DMU E, E, 5 8! & go=(81+82)/2 go=gle?
1 1.0075 0.7134 0.0079 0.9848 0.7054 0.8451 0.6947
2 1.0015 0.6275 0.0014 0.9971 0.6260 0.8116 0.6242
3 1.4492 1 0 0.6900 1 0.8450 0.6900
4 1.3805 0.4323 0.0121 0.7181 0.4202 0.5692 0.3018
5 1.1940 1 0.0543 0.8011 0.9457 0.8734 0.7577
6 1.0377 0.4057 0.0019 0.9619 0.4037 0.6828 0.3883
7 1.3296 0.5378 0.1352 0.6827 0.4026 0.5426 0.2748
8 1.3782 05113 0.1038 0.6748 0.4076 0.5412 0.2750
9 1 0.2920 0.0597 0.9437 0.2323 0.5880 0.2192
10 1.1607 0.6736 0.1139 0.7845 0.5597 0.6721 0.4391
11 1.3504 0.3267 0.0991 0.6899 0.2276 0.4587 0.1570
12 1 0.7596 0 1 0.7596 0.8798 0.7596
13 1.2335 0.5435 0.2383 0.6794 0.3052 0.4923 0.2073
14 1.3800 0.5178 0.0956 0.6777 0.4222 0.5500 0.2861
15 1 0.7047 0.0671 0.9371 0.6376 0.7874 0.5976
16 1.1023 0.3847 0.0250 0.8871 0.3597 0.6234 0.3101
17 1.3825 1 0.3817 0.5668 0.6183 0.5925 0.3504
18 1.2602 0.3737 0.0401 0.7601 0.3335 0.5513 0.2565
19 1 0.4158 0.0038 0.9962 0.4120 0.7041 0.4104
20 1.0716 0.9014 0.2251 0.7712 0.6763 0.7238 0.5216
21 1.3324 0.2795 0.0127 0.7434 0.2668 0.5051 0.1984
22 1.6963 1 0 0.5895 1 0.7948 0.5895
23 1.1764 0.5599 0.0520 0.8141 0.5079 0.6610 0.4135
24 1 0.3351 0.2096 0.8267 0.1255 0.4761 0.1037
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For comparison purposes, we give in Table 4.4 the results obtained from the additive
decomposition model (4.5) of Chen et al (2009b) along with the weights (columns 2-6) and
the corresponding results obtained from the multiplicative decomposition model (3.7) of Kao
and Hwang (2008) (columns 7-9).

Table 4.4: Results from models (4.5) and (3.7)

Chen et al (2009b) Kao and Hwang (2008)

DMU el 2 e° t! t? el g2 e°
1 0.9926 0.7045 0.8491 0.502 0.498 0.9926 0.7045 0.6992
2 0.9985 0.6257 0.8122 0.500 0.500 0.9985 0.6257 0.6248
3 0.6900 1 0.8166 0.592 0.408 0.6900 1 0.6900
4 0.7243 0.4200 0.5965 0.580 0.420 0.7243 0.4200 0.3042
5 0.8307 0.9233 0.8727 0.546 0.454 0.8307 0.9233 0.7670
6 0.9606 0.4057 0.6887 0.510 0.490 0.9606 0.4057 0.3897
7 0.7521 0.3522 0.5804 0.571 0.429 0.6706 0.4124 0.2766
8 0.7256 0.3780 0.5795 0.580 0.420 0.6630 0.4150 0.2752
9 1 0.2233 0.6116 0.500 0.500 1 0.2233 0.2233
10 0.8615 0.5408 0.7131 0.537 0.463 0.8615 0.5408 0.4660
11 0.7291 0.2068 0.5088 0.578 0.422 0.6468 0.2534 0.1639
12 1 0.7596 0.8798 0.500 0.500 1 0.7596 0.7596
13 0.8107 0.2431 0.5565 0.552 0.448 0.6720 0.3093 0.2078
14 0.7246 0.3740 0.5773 0.580 0.420 0.6699 0.4309 0.2886
15 1 0.6138 0.8069 0.500 0.500 1 0.6138 0.6138
16 0.8856 0.3615 0.6395 0.530 0.470 0.8856 0.3615 0.3202
17 0.7232 0.4597 0.6126 0.580 0.420 0.6276 0.5736 0.3600
18 0.7935 0.3262 0.5868 0.558 0.442 0.7935 0.3262 0.2588
19 1 0.4112 0.7056 0.500 0.500 1 0.4112 0.4112
20 0.9332 0.5857 0.7654 0.517 0.483 0.9332 0.5857 0.5465
21 0.7505 0.2623 0.5412 0.571 0.429 0.7321 0.2743 0.2008
22 0.5895 1 0.7418 0.629 0.371 0.5895 1 0.5895
23 0.8426 0.4989 0.6854 0.543 0.457 0.8426 0.4989 0.4203
24 1 0.0870 0.5435 0.500 0.500 0.4287 0.3145 0.1348

Although one can spot only a few differences among the individual efficiency scores
obtained by model (4.13) and those obtained by models (4.5) and (3.7), in general, our
approach does not yield the same efficiency scores for the individual stages with the other
two methods. For instance, the stage-1 and stage-2 efficiency scores for DMU 16 (Allianz
President) differ substantially from those obtained from the additive decomposition method.
As regards the results obtained from the multiplicative decomposition method, the individual
efficiency scores are different for 9 of the 24 units. Our experiments with different randomly
generated data sets (100 data sets drawn from a uniform distribution, with 50 DMUs, 2
external inputs, 3 intermediate measures and 2 final outputs) revealed significant

differentiation in the efficiency results between the three methods.
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Figure 4.4 depicts the percentage of units in each run that showed different stage
efficiency scores, with respect to model (4.13) and the additive model (4.5). The range of

differences varies from 0% to 82%. In only one case the efficiency scores were identical for

all the units.
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Fig. 4.4: Percentage of units showing different stage efficiencies: model (4.13) vs. model
(4.5)

Analogously, Figure 4.5 depicts the percentage of units in each run that showed different
individual efficiency scores, with respect to model (4.13) and the multiplicative model (3.7).
The range of differences varies from 23% to 97%. None case was spotted with identical

efficiency scores for all the units.
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Fig. 4.5: Percentage of units showing different stage efficiencies: model (4.13) vs. model
3.7)

For the scores obtained from model (4.13), one can see that ! > e! and 2 < e? where ¢!
and e? are the stage-1 and stage-2 efficiency scores derived by either the additive or the
multiplicative models. These relations are completely verified throughout our experiments

mentioned above. As concerns the additive decomposition model (4.5), it is empirical
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evidence that the efficiency assessments are biased in favor of the second stage. As noted
earlier, in reference to the results obtained by models (4.13) and (4.5), all the units but one
(DMU 16) show identical individual scores for the two stages. A rigorous justification of
both the similarities and the dissimilarities in the results can be given by solving model (4.15)
for different values of the parameter t; O<t<1.Table 4.5 exhibits, for a limited number of
DMUs, the different efficiency scores with the indifference ranges of the parameter t. Due to
space limitations, we have omitted most of the DMUs that show identical results for all the
models. Column two shows the indifference ranges of the parameter t, within which the
efficiency scores remain the same. Columns four and five present the efficiency scores for the
two stages supported by the corresponding t-range in line. These scores correspond to
successive extreme points (vertices) on the Pareto front generated by model (4.15). The
asterisks in the last three columns indicate, among the alternative efficiency scores, those
derived by the additive decomposition model (4.5) of Chen et al (2009b), our model (4.13)
and the multiplicative model (3.7) of Kao and Hwang (2008), respectively. Column three
depicts the endogenous weight t> assumed for the second stage in model (4.5). As illustrated
above, the additive decomposition model (4.5) biases the efficiency assessments in favor of
the second stage, since the maximum value that t*> can attain is 0.5 and e? increases (e!
decreases) as t? decreases. Also, because the parametric model (4.15) is a composition rather
than a decomposition model, the effect of changing the parameter t is strictly interpreted in
relation to the weight t2. The coinciding efficiency scores derived by models (4.5) and (4.13),
for all the units but one (DMU 16) can now be rigorously justified by the fact that the
supporting t-ranges contain both the weight values for t? assumed by model (4.5) as well as
t=0.5, which reflects the neutral (unweighted) character of model (4.13). As concerns the
DMU 16, the t-range supporting the efficiency scores obtained by model (4.5) does not
include the parameter value t=0.5. This is exactly the source of differentiation in the results
for DMU 16. In addition, Table 4.5 shows that the parametric version of our model (4.13) can
effectively locate the individual efficiency scores obtained from both the additive and the

multiplicative decomposition methods.
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Table 4.5: Efficiency scores obtained by model (4.15) for different values of t

DMU t (indifference ranges) t? el e? ?g%gel ?2.01%%' ?g%(;el
3 (01 0.408 0690 1 " . .
(0, 0.3355) 0.738 1
5 [0.3355,0.9228) 0454 0831 0923 « « .
[0.9228, 1) 0.837 0.806
(0, 0.048) 0.300 0.538
[0.048, 0.0528) 0.382  0.502
. [0.0528,0.0575) 0.514 0.464
[0.0575, 0.1368) 0.575  0.452
[0.1368, 0.2718) 0671 0.412 .
[0.2718, 1) 0429 0752 0352 « «
(0, 0.0702) 0390 0511
[0.0702, 0.0907) 0.491 0.472
g  [0.0907,0.1192) 0.619 0.430
[0.1192, 0.2215) 0.663 0.415 .
[0.2215, 1) 0420 0726 0378 * *
(0, 0.1133) 0472 0327
[0.1133, 0.2114) 0.647 0.253 .
1 j0.2114, 0.651) 0422 0729 0207 + *
[0.651, 1) 0.741 0.168
(0, 0.1148) 0.338 0543
[0.1148, 0.1355) 0.405 0.480
[0.1355, 0.1647) 0519 0.395
13 [0.1647,0.2007) 0.672  0.309 .
[0.2007, 0.211) 0.729  0.280
[0.211, 1) 0.448 0811 0243 + *
(0, 0.0298) 0310 0518
[0.0298, 0.0334) 0.392 0.497
[0.0334, 0.0371) 0521 0.475
14 10.0371,0.1367) 0579 0.468
[0.1367, 0.3356) 0.670 0.431 .
[0.3356, 1) 0.725 0374 *
(0, 0.0281) 0599 0.385
[0.0281, 0.0504) 0.744 0375
16  [0.0504, 0.1406) 0.869 0.365
[0.1406, 0.491) 0470 0886 0362 « .
[0.491, 1) 0.907 0.336 .
(0, 0.1358) 0251 1
[0.1358, 0.1461) 0.333 0.845
[0.1461, 0.1564) 0.466  0.698
17 [0.1564, 0.2071) 0529  0.651
[0.2071, 0.3511) 0.628 0.574 .
[0.3511, 0.9451) 0420 0723 0460 * *
[0.9451, 1) 0.723  0.455
(0, 0.0619) 0.692 0.280
21 [0.0619, 0.2625) 0.732  0.274 «
[0.2625, 1) 0429 0751 0262 * *
(0, 0.1051) 0.399 0.335
[0.1051, 0.1441) 0.429 0314 «
24 0.1441,0.1663) 0.908  0.107
[0.1663, 1) 0500 1.000 0.087 x x
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Concerning the model (4.5) of Chen et al (2009b), the fact that the weight given to the
second stage is always at least as much as the weight given to the first stage, i.e. tj2 < tjl, the
additive decomposition method biases the efficiency assessments for the individual stages.
Thus, the overall efficiency score is biased as well. Indeed, although each DMU is free to
choose its own multipliers so as to maximize its efficiency score, the freedom in selecting the
weights t* and t* is structurally limited by t? < t}. The case of unit #3 in Tables 4.2, 4.3 and
4.4 is indicative. By selecting the weights t'=0.592 and t2=0.408 for the two stages, the stage
efficiencies and the overall efficiency score obtained by the additive decomposition method
are respectively e'=0.690, =1 and e°=0.817 (=0.592x0.690+0.408x1). We get the same
stage efficiencies by our model (4.13). This is due to the fact that these scores are maintained
for any value of the parameter te(0,1) in model (4.15) (see Table 4.5). However, taking the
simple (unweighted) average of the same individual scores gives an overall efficiency score
0.845, which is greater than the optimal overall efficiency obtained by the additive

decomposition method. The same holds for units #5 and #22.

As concerns the results obtained by the min-max model (4.16), one can see that the
efficiency scores of the individual stages are more balanced than those obtained by all the
other models. The fact that three units, namely units 3, 12 and 22, show identical efficiency
scores for the two stages across all models is justified by the fact that, for these units, the
ideal point is attainable and thus the Pareto front degenerates in this single point. Figure 4.6
depicts the Pareto front ABDE for unit 11, the Pareto optimal point B(1.3713,0.2066) derived
from model (4.13) that gives the optimal stage efficiency scores (0.7292,0.2066) as well as
the Pareto optimal point C(1.4495,0.2276) derived by the model (4.16) that gives the unique
optimal stage efficiencies (0.6899, 0.2276).

1 e e

uYqq

0

1 2 VX11

0
Fig. 4.6:The Pareto front of unit 11 and the Pareto points derived by models (4.13) and (4.16)
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VRS Case

Table 4.6 summarizes the results obtained from our VRS model (4.25) and the corresponding
results given in Chen et al (2009b) under the VRS assumption. The free of sign variables &
and & which are related to the first and the second stage respectively, verify that variable

returns to scale exist in each stage.

Table 4.6: Results from our VRS model (4.25) compared to VRS model (3.36) of Chen et al
(2009Db)

Our VRS model (4.25) | Chen et al (2009b) — VRS model(3.36)
o
DMU & & &t & (éié;) p el e &0 ft e
1 -0.012 0.004 1 0.736 0.868 0.990 0.743 0.867 0503  0.497
2 -0.001 0.029 1 0.711 0.856 1 0.711 0.856 0.500 0.500
3 -0.164 -0.010 0.700 1 0.850 0.690 1 0.818 0.587 0.413
4 -0.002 0.003 0.724 0.425 0.575 0.726 0424 0599 0581 0.419
5 -0.065 0.008 1 1 1 1 1 1 0.483 0.517
6 -0.466 0.018 0.975 0.490 0.733 0.964 0490 0.732 0511 0.489
7 -0.331 0.044 0.803  0.592 0.698 0.752 0593 0.684 0571 0.429
8 -0.146 0.676 0.838  0.687 0.762 0.783 0.722 0.754 0523 0477
9 -0.145 0.014 1 0.285 0.643 1 0.276 0.639 0.501 0.499

10 -0.001 0.062 0.862 0.727 0.794 0.862 0.727 0.780 0.538 0.462
11 -0.207 0.033 0.750 0.432 0.591 0.741 0.443 0.614 0576 0.424
12 0.010 0.004 0.968 0.803 0.885 0.968 0.803 0.887 0.511 0.489
13 -0.176 0.872 0.869 0.763 0.816 0.846 0.763 0.804 0.494 0.506
14 -0.001 0.069 0.725 0.555 0.640 0.725 0.555 0.654 0.581 0.419

15 0.011 0.050 1 0.880 0.940 1 0.880 0.940 0.503  0.497
16 0.009 0.055 0.910 0.417 0.663 0.911 0417 0.676 0.526 0.474
17 0.004 0.081 0.723 1 0.862 0.724 1 0.840 0.581 0.419
18 -0.161 0.007 0.974 0.278 0.626 0.850 0.369 0.618 0.517 0.483
19 0.058 0.457 1 0.657 0.828 1 0.657 0.833 0.515 0.485
20 0.095 0.133 0.894 1 0.947 0.902 1 0.946 0.548 0.452
21 0.233 -0.209 0.895 0.362 0.628 0.913 0.362 0.679 0575 0.425
22 1.022 -1.000 1 1 1 1 1 1 0.634 0.366
23 0.177 -0.122 0.972 0.620 0.796 0.976 0.620 0.815 0.547 0.453
24 -0.407 0.026 1 0.101 0.551 1 0.098 0564 0.517 0.483

In the standard DEA approach, the efficiency scores obtained under the VRS assumption
are not less than their counterparts under the CRS assumption (columns 2-3 in Table 4.2).
Although this is true in our additive two-stage DEA models for the overall efficiency scores,
the results reveal that the efficiency scores of some units, for the individual stages, do not
comply with this conventional principle. This is the case for the DMUs 12 and 20, with
respect to their first stage efficiency scores e!, and for DMU 18 with respect to the second
stage efficiency e?. A similar irregularity has been spotted in Chen et al (2009b), where

experimentation with the same date set indicated that the stage-1 VRS-efficiency scores of
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DMUs 1, 12 and 20 are less than their CRS counterparts, hence, not complying with the
standard DEA principles.

This irregularity is also observed in the results obtained from the VRS min-max model
(4.26). As it can be seen from Table 4.7, in the first stage the VRS efficiency scores of DMUs
1,2, 4,6 and 12 are lower than their CRS counterparts.

Table 4.7: Results from min-max model (4.26) under VRS assumption

DMU & & 8! & go=(81+82)/2
1 0.007 0.011 0.973 0.749 0.861
2 0.001 0.030 0.997 0.713 0.855
3 -0.164 0 0.700 1 0.850
4 -0.011 0.004 0.716 0.426 0.571
5 -0.095 0.008 1 1 1.000
6 -0.457 0.033 0.952 0.507 0.730
7 -0.332 0.045 0.802 0.592 0.697
8 -0.144 0.687 0.826 0.701 0.763
9 -0.143 0.013 0.991 0.286 0.639
10 -0.001 0.062 0.862 0.727 0.794
11 -0.101 0.042 0.746 0.437 0.591
12 0.011 0.009 0.955 0.814 0.885
13 -0.180 0.863 0.878 0.752 0.815
14 -0.007 0.066 0.722 0.556 0.639
15 0 0.050 1 0.880 0.940
16 0.010 0.046 0.902 0.420 0.661
17 0.004 0.081 0.723 1 0.862
18 -0.107 0.029 0.884 0.354 0.619
19 0.024 0.457 1 0.657 0.828
20 0.094 0.113 0.927 0.922 0.925
21 0.241 -0.217 0.878 0.363 0.621
22 0.759 0 1 1 1.000
23 0.185 -0.120 0.962 0.622 0.792
24 -0.344 0.027 0.829 0.143 0.486

However, as noted above, the aforementioned irregularities can be rectified by adding the

constraints vX;, — & < 1/ étgs and uY;, — &, = éZgs in our VRS models (4.25) and (4.26),

where é}ps and é2x¢ are the CRS efficiency scores obtained by model (4.13) and (4.16)
accordingly. Table 4.8 presents the results for the problematic units that derived after
appending the aforementioned constraints to models (4.25) and (4.26). We point out that the

efficiency scores for the rest units remained unchanged.
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Table 4.8: VRS results for the problematic DMUs after appending the additional constraints
to models (4.25) and (4.26)

Model DMU & & 8! & eo=(61+82)/2

12 0.009 0.001 1.000 0.769 0.885
(4.25) 18 -0.131 0.011 0.922 0.326 0.624

20 0.094 0.109 0.933 0.908 0.921

1 0.007 0.007 0.985 0.745 0.865

2 0.001 0.029 0.997 0.713 0.855
(4.26) 4 -0.008 0.004 0.718 0.426 0.572

6 -0.460 0.027 0.962 0.500 0.731

12 0.009 0.001 1 0.769 0.885

4.5 Deriving the efficient frontier

A peculiarity of the two-stage DEA models, resulting from the conflicting nature of the
intermediate measures, is that they are not capable of providing sufficient information to
derive the efficient frontier, as it is with the standard DEA models. Chen et al (2010a)
observed that the usual procedure of adjusting the inputs and outputs by the efficiency scores
is not sufficient to yield a frontier projection neither in the additive nor in the multiplicative
decomposition models. To overcome this inability, they proposed an envelopment model to
locate the efficient frontier in the Kao and Hwang’s (2008) multiplicative framework, by
setting the intermediate measures as variables to be estimated. This approach enabled them to
compute new levels for the inputs, the outputs and the intermediate measures that constitute
efficient projections. These projections depend on the orientation selected. Actually, if an
input orientation is assumed, new levels of inputs and intermediate measures are computed,
while the original levels of outputs are maintained. Accordingly, assuming an output
orientation, new levels of outputs and intermediate measures are obtained that maintain the
original input levels. However, the levels of intermediate measures in these two cases differ
substantially. Unfortunately, this technique cannot be applied in the additive decomposition
framework. Chen et al (2013) pointed out that the envelopment and the multiplier forms are
two types of network DEA models, which use different concepts of efficiency; the former is
developed explicitly on the basis of the production possibility set whereas the latter under the
standard DEA ratio efficiency. Unlike the standard DEA, network DEA duality may not lead
to a particular pair of network multiplier and envelopment models. Hence, Chen et al (2010a,

2013) proposed that the multiplier models should be used only for estimating the efficiency
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scores, while modified envelopment forms should be used for determining the frontier

projections of the inefficient DMUs.

In the following, we formulate the envelopment form of model (4.13) and we use it as the
basis to derive the efficient frontier of the two-stage process. To this end, consider the
following model:

8j, = minvX;, —ulj,

s.t.

-wZ; =-1

o (4.27)

—wZ; +vX; = 0, j=1,..,n

—uY; +WZj >0, j=1,..,n

w—w=0

v=20w=0w=0u=0

Model (4.27) is strictly equivalent to model (4.13). The difference in the formulation is

that, in (4.27), different weight variables are used for the intermediate measures in the first
and the second stage, which then are explicitly equalized in the last constraint. The dual of

(4.27) is given below:

max 6; — 0,

s.t.

XA+s5~ =X,

Yu—st=Y, (4.28)

ZIA=0.Z,+d

Zu<6,Z,+d

A=0,u=0,s"=0,st=>0
where 61and 6, are free in sign scalar variables and d = (d,, ..., d,) is a vector of free in sign
variables. We note that in case the variables d were omitted from model (4.28), i.e. if the
constraint w — w = 0 in model (4.27) was eliminated, then the optimal values of 61 and 6> in
model (4.28) are the independent efficiency scores of stage-1 and stage-2 respectively
(6, = 1/E} = 1,6, = E} <1). However, in the optimal solution of (4.28), it is 6; — 6; =
gj, = 0, where g; denotes the optimal objective value in (4.27), or equivalently, in model
(4.13). If 67 — 6; = g = 0, then the evaluated unit is overall efficient. If 6; — 65 = gj >0,

the unit it is overall inefficient. The interpretation of model (4.28) is straightforward if we
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take into account the double and conflicting role of the intermediate measures and the way
that the primal model (4.13) was derived. With respect to the overall efficiency, whose

components of vX; , uY; appear in the objective function of (4.13) and (4.27), the model is of

o
the non-oriented additive form and is capable of discriminating among overall efficient and
overall inefficient units. With respect to the individual stages, the model simultaneously
encompasses an output orientation for stage-1, expressed by the constraint ZA > 6,Z, + d,
and an input orientation for the stage-2, expressed by the constraint Zu < 6,Z, + d. Model
(4.28) provides a dichotomic characterization of overall efficiency of the evaluated unit but
not the individual efficiency scores. This limitation, however, is in analogy with the relevant
limitation of Chen’s et al (2010a) oriented envelopment model developed for the
multiplicative decomposition method. Indeed, both the Chen’s et al (2010a) model and our
model (4.28) they provide the overall efficiency characterization they are structurally
designed for, i.e. the former provides the overall efficiency score, as it is based on an oriented
formulation, whereas the latter provides the overall efficiency status (efficient or inefficient)
of the units being evaluated, as it is based on an non-oriented additive formulation with
respect to external inputs and the final outputs. The analogy is completed by the fact that
none of the above provides the efficiency scores for the individual stages. Although 6; =
1/é1,0; = é? are feasible, yet optimal values of the variables 61 and 6, it is unlikely that they
will be obtained by solving (4.28). In fact, in the optimal solution (2%, u*, 61, 65,d*) of (4.28),
6; and @; can take any values by adjusting accordingly the values of d”, such that 6; — 6; =
gj.» Which prohibits the model (4.28) from providing the individual efficiency scores. This is
because the variables 61, 8 and d are free in sign and unbounded. Thus, the optimal 2™ and x*
as well as the optimal value of the objective function are not affected if we require 1> 1 and
6> < 1, which reflect the output and the input orientation assumed for stage-1 and stage-2
respectively. Similar remarks were made by Chen et al (2013), where they demonstrated that,
under network DEA, the envelopment models do not yield the stage efficiencies but the

overall efficiency.

Another issue with model (4.28) is that the divergent orientations imposed by the
constraints ZA > 6,Z, + d and Zu < 6,Z, + d on the intermediate measures do not allow it to
provide correct projections of the inefficient units on the efficient frontier. Chen et al (2010a)
overcame an analogous issue in their developments by solving a modified model, where the
observed values of the intermediate measures Z, in the constraints ZA > Z,and Zu < Z, are

replaced with variables Z that represent the projections for the intermediate measures. The
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transition of our basic envelopment model (4.28), in a form capable to derive the efficient
frontier, has exactly the same rationale: to make the right hand sides of the above two
constraints coincide. Setting 61 = 6> =1, i.e. at the value where 61> 1 and 6> < 1 meet, the right
hand sides of the last two constraints in (4.28) become Z, + d = Z,, where the variables Z,
represent, as in Chen et al (2010a), the targets for the intermediate measures. Hence, the
following model is solved to obtain the projections of the inefficient units on the frontier:

maxes™ +es*

s.t.

XA+s5 =X,

Yu-s*t =Y, (4.29)
ZA=1Z,

Zu <

Z,
0,u=0,s"=0,st=>0

NN
\VARRS

where the variables Z, are left free in sign. Actually, as Z, will never take negative values
because of the last constraint, the natural restrictions Z, > 0 are redundant and, thus, omitted.
Once an optimal solution (%, ", Z;,s™*,s**) of model (4.29) is obtained, the evaluated unit is
overall efficient if s™ =s* =0. The efficient projections of the inefficient units are

calculated by the following relationships:

~

X, =X,—s"* Y, =Y, +s* Zy=17;

Thus, an inefficient DMU (X,,Z,,Y,) is projected onto the efficient frontier at the point
(X,,2,,Y,). Model (4.29) is now in a pure additive form. Indeed, the dual of (4.29) is as

follows:

min vXjO — quO

S.t.

—WZj +vXj >0, j=1..,n
—uY;+wZ; 20, j=1,..,n (4.30)
v=e
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Table 4.9 below exhibits the projections obtained by applying model (4.29) to the data of
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Table 4.1.

min 17Xj0 — quO

S.t.

-wZ;+vX; 20, j=1,..,n

—uY;+wZz; =20, j=1,..,n

v=e
u=e

w=0

(4.31)

Table 4.9: Projections for Taiwanese non-life insurance companies by model (4.29)

DMU X1 X2 Z1 Z2 Y1 Y2
1 1,178,744.00 673,512.00  6,574,261.72 1,405,802.31  6,321,322.37 681,687.00
2 1,381,822.00 1,282,484.97  9,984,108.87 2,701,675.41 14,883,490.16 834,754.00
3 1,177,494.00 592,790.00  6,301,206.75 1,173,093.25  5,222,222.92 658,428.00
4 601,320.00 566,085.63  4,342,422.69 1,215,574.75  6,851,140.78 348,724.99
5 6,699,063.00 3,531,614.00 36,299,271.58 7,179,671.93 30,095,254.05 3,925,272.00
6 1,160,508.24 668,363.00  5,711,178.98 1,598,730.82  9,010,659.25 458,645.09
7 1,942,833.00 1,443,100.00 11,869,185.17 3,322,542.01 18,726,288.14 953,173.33
8 3,253,093.02 1,873,530.00 16,009,361.92 4,481,502.04 25,258,340.80 1,285,656.65
9 1,567,746.00 950,432.00  8,068,966.39 2,258,746.45 12,730,595.02 647,990.87
10 1,303,249.00 1,226,885.07 9,411,391.65 2,634,531.66 14,848,570.42 755,796.41
11 1,167,542.17 672,414.00 5,745,794.88 1,608,420.85  9,065,273.56 461,424.97
12 2,563,321.18 650,952.00  9,356,387.29 1,127,326.43  6,005,636.18 909,295.00
13 2,376,711.46 1,368,802.00 11,696,448.21 3,274,187.74 18,453,757.03 939,301.42
14 1,396,002.00 088,888.00  8,245,849.34 2,308,261.30 13,009,667.34 662,195.73
15 1,467,228.98 651,063.00  6,454,920.94 1,456,357.91  8,126,418.64 555,482.00
16 720,706.14 415,071.00  3,546,792.34 992,853.88  5,595,856.36 284,830.66
17 1,453,797.00 1,085,019.00 8,910,486.74 2,494,313.31 14,058,281.15 715,570.46
18 757,515.00 547,997.00  4,545,666.61 1,272,468.84  7,171,803.41 365,046.81
19 159,422.00 150,080.66  1,151,263.40 322,273.26  1,816,374.92 92,453.99
20 92,925.67 53,518.00 457,312.68 128,015.58 721,512.80 36,725.20
21 45,533.89 26,224.00 224,084.75 62,728.06 353,543.70 17,995.47
22 15,993.00 10,502.00 88,313.63 24,721.64 139,334.46 7,092.16
23 49,326.07 28,408.00 242,747.09 67,952.21 382,987.70 19,494.18
24 163,297.00 153,728.61  1,179,246.65 330,106.62  1,860,524.74 94,701.23

The efficiency status of these projections is verified by applying models (4.13) and (4.16)
to an expanded data set that contains both the original DMUs (Table 4.1) and their
projections (Table 4.9). Indeed, the results showed that all the projected units are rendered
efficient in both stages as well as in the overall sense, while the efficiency scores of the

original units remained unchanged. This confirms that our approach accurately determines
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the improvement targets on the efficient frontier. We extended our calculations by adding in
the expanded data set the projections derived by the other approaches. Particularly, we
incorporated the projections of Chen et al (2010a) and those obtained by the non-oriented
envelopment network DEA model (Chen et al, 2013), which is a modification of the slacks
based measure (SBM) model of Tone and Tsutsui (2009). The results showed that all the
projections, no matter the method that they derive from, are efficient. This verifies that our
models (4.13) and (4.16) maintain the efficiency status of alternative projections obtained by
the other methods. Notably, our projections were deemed efficient as well, when tested with
the decomposition models (3.7) and (4.5).

Minimizing the distortion of intermediate measures

The fact that the intermediate measures are outputs of the first stage and, simultaneously,
inputs to the second stage imposes that higher levels are desirable with respect to the first
stage, whereas lower levels are desirable with respect to the second stage. In addition, the
intermediate measures are conceived somehow as a “hidden layer” in the production process
and they are or should be the less controlled dimensions. Thus, we argue that improvement
suggestions with target setting should mainly involve the external inputs and the final
outputs, with the changes on the observed status of the intermediate measures being kept at a
minimum distortion of their original values. Based on this rationale we develop another two-
phase method that provides targets on the efficient frontier at a minimum distortion of the
observed status of the intermediate measures. Such an issue is not taken into account in other
projection methods (Chen et al, 2010a and Chen et al, 2013), where the projected levels of
the intermediate measures differ substantially from their original values and, moreover,

depend on the orientation assumed.

To develop our two-phase procedure, we select an input orientation for the first stage and
an output orientation for the second stage as follows:

Stage I: Input-oriented Stage II: Output-oriented

min 6, max 6,

S.t. S.t.

X1 <64X, (4.32) vYu=0,Y, (4.33)
ZA=Z, Zu<z,

220 p=0
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Appending the constraints of model (4.32) to model (4.33), and vice versa, we derive the

following two augmented models for the first and the second stage respectively:

Stage I: Input-oriented Stage II: Output-oriented

min 6, max 6,

s.t. s.t.

XA < 04X, Yu = 6,Y,

r=7Z, (4.34) zZu<z, (4.35)
Yu = 6,7, X1 < 64X,

u<z, Zr>2Z,

A=0,u=0 A=0,u=0

Since models (4.34) and (4.35) have common constraints, they enable us to jointly consider
them as a bi-objective linear program. By aggregating the two objective functions, we derive
a single-objective linear program, which is solved in the first phase. Actually, in phase-1 we
obtain the independent efficiency scores 67,8, of stage-1 and stage-2 respectively, which
then are passed in phase-1l. The optimal solution obtained by solving the phase-Il linear

program provides all necessary information to derive the efficient frontier.

Phase-1 Phase-11
min 6, — 6, max M(es™ + est) — (ed@ + eff)
s.t. s.t.
X1 < 64X, XA+s™ =01X,
2to (436) THTs =0 (4.37)

ZA=2Z, ZA+a-p =1z,
Zn=Z, Zu+ad—F <2z,

> > =
Az0,pz0 A=20,u=20,s"=20s">0a=>0,=0
0,<1,0,>1

Notably, model (4.37) encompasses both orientations (i.e. an input orientation for the first
stage and an output orientation for the second stage). Introducing the slacks with respect to
the external inputs and the final outputs in phase-11, we grant priority in the first term of the
objective function for defining the max-slack solution through a large positive number M.
The vectors of variables @ and  express the deviations of the projected intermediate

measures from their original values and are minimized in the second term of the objective
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function. Once an optimal solution (1", x*, @", ", s, s*) of model (4.37) is obtained, the

efficient projections are as follows:

~

Zj,=Zj,~a+p

The non-zero A’s (4; > 0) and u’s (u; > 0) define the reference sets of the evaluated unit jo
with respect to the first and the second stage respectively. Hence, an inefficient DMU jo is
projected onto the efficient frontier at the point ()?]-U,Zju,?]-u) . Table 4.10 shows the
projections obtained by applying our two-phase approach. We verified the efficiency status of
these projections by applying models (4.13) and (4.16) to an expanded data set that contains
both the original DMUs (Table 4.1) and their projections (Table 4.10). The results showed
that the projected DMUs are deemed efficient in each stage, as well as in overall sense. The

efficiency scores of the original DMUs remained unaffected. Hence, we conclude that our
method sufficiently determines the improvement targets on the efficient frontier.

Table 4.10: Projections for Taiwanese non-life insurance companies’ data set

DMU X1 X2 Z1 Z2 Y1 Y2
1 1,169,991.48 668,510.98 7,249,893.91 974,113.79 1,599,526.87 955,580.96
2 1,379,744.88  1,007,235.23  10,048,015.08  1,333,283.51 2,060,313.97  1,330,331.72
3 812,494.68 409,037.09 4,776,548 560,244 293,613 658,428
4 435,565.74 323,350.63 3,170,461.17 447,758.03 902,420.22 410,185.60
5 5,610,572.87  2,957,783.46  31,960,484.12 5,106,415.77  14,622,638.43 3,925,272
6 2,394,561.62 644,095.31 9,747,908 952,326 4,224,257.62  1,023,175.75
7 1,461,171.13  1,085,330.57 9,184,851.39  2,348,664.39  12,417,281.80 816,303.89
8 2,749,308.73  1,359,438.12  13,828,017.05 2,854,279.04  15,849,864.27  1,218,092.77
9 1,567,746 950,432 8,980,647.15  1,995,677.64 9,337,201.67 904,563.02
10 1,122,800.66 962,118.19 8,135,684.23  1,796,085.06 8,348,448.83 823,638.86
11 864,619.42 497,953.92 4,255,029.05  1,191,110.64 6,713,257.80 341,706.71
12 2,592,790 650,952 9,434,406 1,118,489 2,072,447.87  1,197,101.55
13 1,926,762.67  1,109,666.29 9,482,126.92  2,654,332.59  14,960,171.08 761,476.92
14 1,011,570.85 716,567.94 6,403,267.63  1,432,154.48 6,743,464.76 641,697.63
15 2,184,944 651,063 8,362,846.66  1,239,274.13 6,727,614.13 788,216.23
16 1,099,271.91 376,553.49 5,228,225.16 569,607.31 3,001,776.66 514,488
17 1,051,543.44 784,803.25 6,445,029.02  1,804,157.52  10,168,471.44 517,578.06
18 601,119.25 434,858.11 3,994,189.62 784,714.94 3,193,705.33 438,704.08
19 159,422 138,944.61 1,154,478.63 266,685.84 1,294,827.15 112,696.62
20 86,719.86 49,943.93 426,772.20 119,466.38 673,328.37 34,272.60
21 63,172.11 19,681.67 247,590.63 37,755.61 205,432.59 23,223.15
22 9,428.26 6,191.18 52,063 14,574 82,141 4,181
23 46,491.97 24,148.32 266,799.30 39,432.18 92,279.54 33,897.71
24 163,297 153,728.61 1,179,246.65 330,106.62 1,860,524.74 94,701.23
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As above, we extended our calculations by incorporating into the expanded data set the
projections derived by the other approaches. We used again the projections of Chen et al
(2010a) and those obtained by the modified version of the non-oriented SBM model used by
Chen et al (2013). The results of applying the models (4.13) and (4.16) to the expanded data,
revealed that all the projected DMUs were deemed as efficient. Also, our projections were
tested using the decomposition models (3.7) and (4.5) and they were deemed as efficient.
Consequently, all the projections, no matter the method that they derive from, are efficient.
However, unlike the other methods, our two-phase approach minimizes the deviation of the
projected intermediate measures from their original counterparts. We examined this
diversifying issue further by conducting experiments with 100 randomly generated data sets
drawn by the normal distribution (mean 0.5 and standard deviation 0.1). In each data set, 100
DMUs were considered with 2 external inputs, 2 intermediate measures and 2 external
outputs. We calculate the mean square distance (MSD) between the original intermediate
measures and the projected ones derived by our two-phase approach, the Chen’s et al (2010a)
input and output oriented models and the modified SBM model presented in Chen et al
(2013). The descriptive statistics that facilitate the comparisons are exhibited in Table 4.11
and Figure 4.7.

Table 4.11: MSD between the original and the projected intermediate measures

2 Phase Chen etal (2010a) - Chen et al (2010a) - Chen et al (2013) -
Input Oriented Output Oriented modified SBM
Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2
Min 0.0008 0.0018 0.0218 0.0201 0.0210 0.0422 0.0177 0.0400
Max 0.0251 0.0396 0.0672 0.0668 0.3615 0.4873 0.3586 0.4873
Average 0.0092 0.0105 0.0417 0.0415 0.1263 0.1283 0.1230 0.1272
St. Dev. 0.0059 0.0076 0.0095 0.0124 0.0751 0.0950 0.0759 0.0873
Z s 1 2
0.45 1
04 7
035 7
W 2 Phase 03 M 2 Phase
Chen-l 025 + Chen-l

m Chen-O 02 + W Chen-0

F == ==

0

min max average stdv min max average stdv

Fig. 4.7: MSD between the original and the projected intermediate measures (Z1, Z2)
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The results obtained from another experiment with 100 data sets generated by the same

distribution and parameters, but with 3 intermediate measures, are shown in Table 4.12 and
Figure 4.8.

Table 4.12: MSD between the original and the projected intermediate measures

Chen et al (2010a)-Input

Chen et al (2010a)-Output

2 Phase . . SBM
Oriented Oriented
Z1 z2 Z3 Z1 z2 Z3 Z1 z2 Z3 Z1 z2 Z3
Min 0.0014 0.0044 0.0197 0.0203 0.0210 0.0289 0.0403 0.0343 0.0288 0.0209 0.0404
Max 0.0531  0.0325  0.0469 0.0647 0.0646 0.0563 0.5840 0.4903 0.6087 0.5870 0.4875  0.6128
Average 0.0141  0.0120  0.0127 0.0344 0.0361 0.0355 0.1087 0.0964 0.1016 0.1064 0.0953  0.0997
St. Dev. 0.0082  0.0070  0.0083 0.0096 0.0094 0.0090 0.0876 0.0728 0.0853 0.0889 0.0750  0.0853
° 1 Zi ° ] z.
0.45
051 0.4
035
041 m 2 Phase 03 - 2 Phase
03 Chen-| 0.25 Chen-|
W Chen-0 0.2 A M Chen-0
0.2 7 SBM 0.15 - SBM
01 4 0.1 .l I
] I i 0.05
0 dﬁ_,——lﬂ 0 i{—.—,—J—-I—-—'
max average stdv min max average stdv
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Fig. 4.8: MSD between the original and the projected intermediate measures (Z1, Z2, Z3)

It is clear from the above results that our two-phase approach outperforms the other

relative approaches reported in the literature, with respect to the deviations of the projected

from the original intermediate measures.
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Conclusion

In this chapter, we introduced a novel composition approach to assess the individual and the
overall efficiencies for series two-stage processes of Type I. Our approach effectively
overcomes the shortcomings highlighted for the additive and the multiplicative
decomposition methods, by providing unique and unbiased efficiency scores for the two
stages. Based on a reverse perspective in aggregating the individual efficiency scores, i.e. the
composition as opposed to the decomposition approach, we estimate first the individual
efficiencies for the two stages, which then can be aggregated in either an additive or a
multiplicative form to obtain the overall efficiency. Our modelling approach is based on
MOLP techniques and on the selection of an output orientation for the first stage and an input
orientation for the second stage, with respect to the standard DEA ratio models. In this
manner, the intermediate measures are used as the basis to link the efficiency assessment
models for the two stages in a single linear program. The proposed approach is
straightforwardly extended to fit VRS situations. Acknowledging the inadequacies observed
for the envelopment network DEA models, we presented two methods to derive the efficient
frontier in two-stage DEA. The first stems from the envelopment form of our basic multiplier
model while the second aims to adjust the levels for the intermediate measures at a minimum

distortion of their original levels.
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Chapter 5

The “weak-link” approach to network DEA for
two-stage processes

In the previous chapter we introduced the composition approach in two-stage network
DEA. We used bi-objective linear programming to derive the efficiency scores for the
individual stages, which they were aggregated ex post to obtain the overall system
efficiency. Our approach provides unique and unbiased efficiency scores, in contrast
to the additive and the multiplicative decomposition methods. A limitation of this
approach is that it is restricted to the simple two-stage process of Type I, portrayed in
Figure 3.1a. This is an effect of the different orientations selected for the first and the
second stage, which in fact was made to simplify the models and keep them within the

field of linear programming (simplicity at the expense of generality).

In this chapter, we extend the composition paradigm to two-stage processes of
varying complexity and we introduce a novel definition of the system efficiency in
two-stage processes, inspired by the “weak link” notion in supply chains and the
maximum-flow/minimum-cut problem in networks (cf. Bazaraa et al, 2011). The
natural representation of the supply chain operations as a multi-stage process is
indicative of the synergy of supply chain management with network DEA, as they
benefit mutually from the development of methodological tools for performance
measurement. Adapting the “weak link” notion to fit the multi-stage processes dealt
with in network DEA, we develop a max-min optimization model to estimate the
stage efficiencies and the overall efficiency simultaneously in a multi-objective
programming framework. This is accomplished by a two-phase procedure that
provides Pareto optimal solutions and secures the uniqueness of the efficiency scores
for the two-stages. We also bring into light the advantages of our method by drawing
comparisons with the multiplicative method of Kao and Hwang (2008) and by
identifying effectively the source of inefficiency for the DMUs.
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5.1 The “weak-link” approach

We extend our composition approach presented in Chapter 4 by revisiting initially the
two-stage process of Type I, where each DMU transforms some external inputs X to
final outputs Y via the intermediate measures Z with a two-stage process, as depicted

in Figure 5.1.

DMU

hJ

Fig. 5.1: The two-stage process of Type |

We introduce at this point some notation that will be used henceforth:

j €J=1{1,..,n}: The index set of the n DMUEs.

Jo € J: Denotes the evaluated DMU.

X; = (x;,i = 1,...,m): The vector of stage-1 external inputs used by DMU;.

Z; = (2p,,p = 1, ...,q): The vector of intermediate measures for DMU;.

Y; = (yr;,r = 1,...,s): The vector of stage-2 final outputs produced by DMU;.

L; = (ldj, d=1,.., a): The vector of stage-2 extra in structures of Type I and IV.

K; = (kc =1, ...,b): The vector of stage-1 extra outputs in structures of Types IlI
and IV.

n = (1, -, Mm): The vector of weights for the stage-1 external inputs in the fractional
model.

v = (v, ..., V). The vector of weights for the stage-1 external inputs in the linear
model.

@ = (@1,--,9q) - The vector of weights for the intermediate measures in the
fractional model.

w = (wy, ..., w,): The vector of weights for the intermediate measures in the linear
model.
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w = (w4, ..., wg): The vector of weights for the stage-2 outputs in the fractional
model.
u = (uy, ..., Ug): The vector of weights for the stage-2 outputs in the linear model.

g = (g1, -, 9a): The vector of weights for the stage-2 extra inputs in the fractional
model.

Y = (Y1, --,Yq) - The vector of weights for the stage-2 extra inputs in the linear
model.

h = (h4, ..., hy): The vector of weights for the stage-1 extra outputs in the fractional
model.

1= (uq, ..., up) : The vector of weights for the stage-1 extra outputs in the linear
model.

e?: The overall efficiency of DMU;.

ej': The efficiency of the first stage for DMU;.

ejz: The efficiency of the second stage for DMU;.

Ejl: The independent efficiency score of the first stage for DMU;.
Ejz: The independent efficiency score of the first stage for DMU;.

Typically, the efficiencies of the first and the second stage of a DMU j are defined

as follows:

e-l—(ij Z_a)Yj

The basic input-oriented CRS-DEA models that estimate the stage-1 and the stage-2

efficiencies for the evaluated unit jo independently are as follows:

E = max(p Jo E} = max Jo

r]XJO (pZJO
s.t. (52) st (5.3)
(pZ]—T]X]SO, j:l,...,n (UYj_(ijSO, j:]_'___,n
nN=¢&@=¢ Q=Ew=¢
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Appending the constraints of model (5.2) to model (5.3), and vice versa, does not
affect the optimal efficiency scores attained by the models (5.2) and (5.3), see

Theorems 4.1 and 4.2. Thus, the models (5.2) and (5.3) can be written as follows:

YA

E;. = max
N4jo

s.t.

pZi—nX; <0, j=1,..,n (5.4)

wY,—9Z; <0, j=1,..,n

NZ2&EPZ2E&w=E

wY)

E]% = max
PLj,
S.t.

wZ; —nX; <0, j=1,..,n (5:5)

wY; —9Z; <0, j=1,..,n

NZ2&EQP=2E&w=E

The optimal efficiency scores EJ{) and Ejf) for the two stages are obtained by solving

the linear equivalents of models (5.4) and (5.5), derived by applying the C-C

transformation.

The following bi-objective mathematical program, is used for the performance

assessment of the elementary two-stage process of Type I (Fig. 5.1):

(5.6)

(5.7)

max e! = —L
ano
wY;
max e? = —2°
¢Zj0
S.t.
pZi—nX; <0, j=1,..,n
wY;—9Z; <0, j=1,..,n
NZ&6QP=2¢Ew=¢
or, equivalently:
max e = wZ;,
uyY;
max e =—2%
WZ]0
s.t.
vXjO =1

ij —vX]- <0, j=1,..,n
uV;—wZz; <0, j=1,..,n

V=2EW=EU=E
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Model (5.7) derives from (5.6) by applying the C-C transformation with respect to the
first objective function, i.e. multiplying all the terms of the fractional objective
functions and the constraints by t>0, such that tnX; =1 and setting ty=v, tw=u,
tp=w. Notice that in model (5.7) the second objective function is still in fractional

form.

The multiplicative decomposition method estimates the overall system efficiency
of the evaluated unit as the squared geometric average of the stage efficiencies. Given
thate; < landef <1itise’ <min{el,e’}. The latter holds as equality if and
only if at least one of the two stages is efficient, i.e. if e; = 1 and/ore’ = 1. This

property declares that the less efficient stage is determinant of the overall system
efficiency. This is a natural property that can be easily identified in multi-stage
processes, such as in supply chains. In such a context, the less efficient stage is called
the “weak link” of the supply chain. In this line of thought, Kao (2014a) states that
“Efficiency decomposition enables decision makers to identify the stages that cause
the inefficiency of the system, and to effectively improve the performance of the
system”. However, in order to draw safe conclusions about the system efficiency, the
identification of the weak link should meet two properties: a) uniqueness and b) being
supported by a reasonable and meaningful search orientation. As mentioned in Kao
and Hwang (2008), the stage efficiency scores obtained by the multiplicative method
are not unique in general, i.e. different efficiency scores can be obtained for the two
stages that maintain the same overall efficiency. Consequently, the weak link might
be interchanged between the two stages, depending on the decomposition selected.
Thus, as already remarked, the uniqueness property is not met by the model (3.7). We
will give such an example below to illustrate our approach in comparison with the

multiplicative method.

We define the system efficiency as the minimum of the stage efficiencies, i.e.

e® = min{e?, e?} (5.8)

To conceptualize our argument, let us resort to a max flow-min cut analogue. Figure
5.2 provides an alternative representation of the basic two-stage process, where the

role of nodes and links is interchanged. The link that connects the nodes X and Z
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represents the first stage of the process, with the nodes X and Z representing the inputs
to and the outputs from the first stage. The second link represents the second stage,
whose inputs and outputs are Z and Y respectively. At the DMU level, X and Y are the
external inputs and outputs respectively and Z represents the intermediate measures
linking the two-stages. The labels e® and e? assigned to the links represent their
capacity, that is the efficiencies of the stages. Given the stage efficiencies e and e?,
the system efficiency e can be viewed as the maximum flow through the two-stage
network and can be estimated as the min-cut of the network, which, in the case of the
simple network of Figure 5.2, is given by the minimal of the capacities of the two

links, i.e. e° = min{e?l,e?}.

Y

Fig. 5.2: An alternative representation of the two-stage process of Figure 5.1.

We focus on estimating the capacities (individual efficiency scores) of the two
stages in a manner that the minimal capacity (the weak link) and, thus, the overall
system efficiency gets the maximum possible value. The mathematical representation
of this notion is expressed by the weighted max-min formulation which seeks to

maximize the minimum weighted achievement from zero-level efficiency:

e = max,,,,[min{q.e}., g€} }] (5.9)
where q:>0 and g2>0 are strictly positive parameters (weights). A reasonable pair of
values for these parameters is q; = 1/Ejt and g, = 1/E]% (cf. Lightner and Director,

1981 and Buchanan and Gardiner, 2003). This implies that the estimated stage

efficiency scores will be proportional to their independent counterparts.
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5.1.1 Elementary two-stage process (Type I)

In this section we develop our approach for the elementary two-stage process of Type
I. With respect to the bi-objective mathematical program (5.7), the search for the
individual scores of the two stages is made in two phases: Phase | locates a point on
the upper-right boundary of the feasible region in the objective functions space of
(5.7) by means of the following max-min model (5.10), which maximizes the minimal

efficiency score, whereas Phase 11 provides a Pareto optimal solution.

Phase I:

uy;
wZj, (5.10)
vX; =1

WZj —vXj <0, j=1,..,n
qu —WZj <0 j=1,..,n

v2ew=egu=¢6602=20

Model (5.10) is the canonical form of the max-min model (5.9). The solution of a
weighted max-min problem, such as model (5.10), is weakly Pareto optimal (see, e.g.
theorem 5.7.1 in Miettinen, 1999, pp.171). At optimality, at least one of the first two
constraints in (5.10) will be binding. Although model (5.10) is non-linear, it can be
solved by bisection search (known also as dichotomy method) in terms of 6 in the

bounded interval [0,1], since 0 < 8 < 1 (cf. Despotis, 1996). Let 8 be a lower bound
of 6 for which the constraints of (5.10) are consistent (initially 8 = 0) and 6 an upper

bound of @ for which the constraints are not consistent (initially 8 = 1 + €), where ¢

is a very small positive number. Then the consistency of the constraints is tested for
' =6+ 8)/2. If they are consistent, 6" will replace 0; if they are not it will replace

6. The bisection search continues until both bounds come sufficiently close to each
other. Below we provide the bisection method in algorithmic form.
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Initialization

tolerance & > 0, lower bound 8 = 0, upperbound8 =1+¢, 6<6<6.
Loop

Stepl:=(0+6)/2.

Step 2: find a feasible solution for model (5.10) for the given value of 6.

Step 3: if there is a feasible solution for model (5.10) then § = @ else 6 = 6 .

Until |8 — 6] <e

Let (6%, v', W', u”) be an optimal solution of (5.10) the stage efficiencies are

calculated as follows:

The underlying idea in model (5.10) is to locate a point on the upper-right boundary
of the feasible region in the objective functions space of (5.7), which is formed by the
intersection of the boundary with a ray from the origin (0,0) to the ideal point
(EjloEfo) However, as the weak Pareto optimality is a weaker property than Pareto
optimality, it is not unlikely that the solution of (5.10) is Pareto optimal. This depends
on the shape of the boundary of the objective functions space where the Pareto front is
located, on the position of the ideal point relatively to that boundary and on the
weights used to drive the search, which in our case are related to the components of
the ideal point. This radial search approach for obtaining the individual efficiency
scores will be visualized in the illustration given below. The Phase Il model below
provides a Pareto optimal solution to (5.7). The model (5.11) is equivalent to
employing lexicographically the L1 norm on the set of optimal solutions of (5.10) (for

example Steuer and Choo, 1983).
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Phase I1:
max s, + S,
s.t.
N
wZj, = s1= ¢,

uy,

WZj —vXj <0, j=1,..,n

— ;W' Z;, —e ‘wZj =0

qu—WZj <0, j=1,..,n
1 2
0S51SE]'0,0S32SE]'0

V=2EWZ=EU=E

In fact, the phase 11 seeks for non-radial improvements of the efficiency scores on
the boundary of the objective functions space. As long as the solution obtained in
Phase | is weakly Pareto, in Phase Il at most one of the two optimal values of the
variables §; and s, will be strictly positive (i.e. $;3, =0). If §; = 0and $, =0, then
the Phase | solution is Pareto optimal.

In (5.11), the second constraint originates from its original non-linear form
(uY;,/wZ;)) — s, = e}” or uY; —s,wZ; — e *'wZ; = 0, where the virtual measure wZ;,
in the second term is replaced by sl+e]t* = s, +w"Z;,, as per the first constraint, to
get u¥j —sy5, — s;w*Z;, — e]%*wzj0 = 0. At optimality, it is s;s, = 0, because at least
one of the two variables will be zero (see above). So the non-linear term s; s, can be
omitted without altering the optimal solution, to get the linear form uY;, — s,w*Z; —
ef*wZ; = 0. Once the optimal solution (?,w,) of (5.11) is obtained, the individual
stage efficiency scores for unit jo as well as the overall efficiency of the system,

according to the definition (5.8), are respectively:

uy

— o — 57, 52 — 2o 50 — 1A2
é, = Xy, WZJO, é, = 2, é, = mln{
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Hlustration

To illustrate our approach we use a synthetic case with 30 DMUs, two inputs (X1,
X2), two intermediate measures (Z1, Z2) and two outputs (Y1, Y2). The data are
drawn from a uniform distribution in the interval [10,100] and are presented in Table
5.1.

Table 5.1: Synthetic data

DMU X1 X2 Z1 Z2 Y1 Y2
1 69.5 68.6 56.6 84.4 48.7 62.8
2 40.2 66.2 88 47.2 85.8 28.3
3 81.3 89.8 44.4 18.4 38.3 20.7
4 55 97.9 28.7 41.6 38.2 10.3
5 56.2 59.1 26.5 52.7 44.2 17.4
6 64.8 64.4 14.7 70.5 86.6 22.9
7 79.2 68.1 63.5 39.3 47.6 35
8 36 74.3 66.6 57.4 40.3 94.8
9 10.8 10.3 46.5 47.9 57.5 95.2
10 17.7 93.6 35.9 58.7 45.9 12
11 38.8 97.5 55.2 41.7 60.5 82.7
12 60.9 96.4 86 28.9 93.1 72.3
13 70.3 45.8 65.3 35.3 34.3 98.8
14 20.5 75.6 13.1 60 53.3 18.3
15 17.9 74.8 54.2 66.7 52.1 15.8
16 51.8 19.8 52.3 74.2 73.6 84.7
17 11.3 27.3 42.7 72.3 68.9 37.4
18 58.7 421 95.9 26.6 51.6 96.4
19 41.4 51.6 83 75.4 20.5 72
20 99.7 87.1 87.5 96.9 58.6 39
21 25.6 14.6 52 19.1 44.3 51.3
22 65.1 97.3 79.4 68 53.8 55.5
23 40.4 33 74.5 21.7 13.9 55.7
24 194 20.1 775 74.1 60.9 71
25 54.2 99.3 20.8 69.9 47.8 12.2
26 80.1 275 51.3 95.8 21.7 12.6
27 82.9 38.1 43.3 75.3 16.8 26.6
28 98.6 81.8 93.8 15.9 40.3 35.8
29 77.3 40.3 95.6 52.5 96.1 44.2
30 38.6 58.3 37.8 66.1 16 69.9

Tables 5.2 exhibits the results obtained from the multiplicative approach. The
figures in columns 2-4 are the overall and the stage efficiency scores obtained by the
multiplicative model (3.7). Columns 5-6 provide the maximal and the minimal
efficiencies for the first stage that maintain the overall efficiency score, whereas
columns 7-8 present the corresponding efficiencies for the second stage. They are all
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calculated by applying the uniqueness test proposed in Kao and Hwang (2008). The

results show that the efficiency decompositions for the units 8, 13, 18, 19, 23 and 30

are not unique.

Table 5.2: Results obtained from the multiplicative approach (Kao and Hwang, 2008)

DMU el g2 g° el el €2 ax e?
1 0.2316 0.5070 0.1174 0.2316 0.2316 0.5070 0.5070
2 0.3265 0.7508 0.2451 0.3265 0.3265 0.7508 0.7508
3 0.0866 0.6844 0.0593 0.0866 0.0866 0.6844 0.6844
4 0.1344 0.5830 0.0784 0.1344 0.1344 0.5830 0.5830
5 0.1688 0.5823 0.0983 0.1688 0.1688 0.5823 0.5823
6 0.1685 1 0.1685 0.1685 0.1685 1 1
7 0.1644 0.5613 0.0923 0.1644 0.1644 0.5613 0.5613
8 0.4297 0.6953 0.2987 0.4297 0.4145 0.7208 0.6953
9 1 1 1 1 1 1 1
10 0.5235 0.5149 0.2696 0.5235 0.5235 0.5149 0.5149
11 0.3113 0.8189 0.2550 0.3113 0.3113 0.8189 0.8189
12 0.2006 1 0.2006 0.2006 0.2006 1 1
13 0.3158 0.7390 0.2334 0.3158 0.2334 1 0.7390
14 0.3759 0.7190 0.2703 0.3759 0.3759 0.7190 0.7190
15 0.6443 0.4696 0.3026 0.6443 0.6443 0.4696 0.4696
16 0.6980 0.8163 0.5698 0.6980 0.6980 0.8163 0.8163
17 1 0.6694 0.6694 1 1 0.6694 0.6694
18 0.5046 0.4910 0.2477 0.5046 0.3021 0.8201 0.4910
19 0.4656 0.4237 0.1973 0.4656 0.4537 0.4348 0.4237
20 0.2311 0.3739 0.0864 0.2311 0.2311 0.3739 0.3739
21 0.5293 0.8807 0.4662 0.5293 0.5293 0.8807 0.8807
22 0.2438 0.4927 0.1201 0.2438 0.2438 0.4927 0.4927
23 0.5001 0.3652 0.1826 0.5001 0.3031 0.6025 0.3652
24 0.8855 0.5673 0.5023 0.8855 0.8855 0.5673 0.5673
25 0.1867 0.5291 0.0988 0.1867 0.1867 0.5291 0.5291
26 0.5850 0.1674 0.0979 0.5850 0.5850 0.1674 0.1674
27 0.3403 0.2273 0.0774 0.3403 0.3403 0.2273 0.2273
28 0.1455 0.4735 0.0689 0.1455 0.1455 0.4735 0.4735
29 0.3766 0.7660 0.2885 0.3766 0.3766 0.7660 0.7660
30 0.2274 0.9032 0.2054 0.2618 0.2274 0.9032 0.7847

The unit 18, for example,

iIs characterized by two extreme efficiency

decompositions (el,,, = 0.5046,e2 = 0.4910) and (el = 0.3021,e2,, = 0.8201) that

maintain the optimal overall efficiency e® = 0.2477 obtained by model (3.7).

Consequently, the identification of the weak link for unit 18 is not unique. Indeed,

according to the first decomposition, the second stage is identified as the weak link,
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whereas the second decomposition identifies the first stage as the weak link of the
process. Table 5.3 presents the results obtained by applying our proposed two—phase
approach. Columns 2-3 present the independent efficiency scores of the two stages
obtained from models (5.4) and (5.5). Columns 4-7 present the optimal value of 6, the
efficiency scores of the two stages obtained by model (5.11) and the overall system
efficiency, in line with the definition (5.8). Notice that the phase Il did not alter the
efficiency scores obtained in phase I, for any of the DMUs. That is, the phase I
solutions are Pareto optimal.

Table 5.3: Results obtained from models (5.10) and (5.11)

DMU E! E2 0 8l 82 8° = min{&?, 82}
1 0.2711 0.5511 0.8750 0.2372 0.4822 0.2372
2 0.5084 0.7508 0.7484 0.3805 0.5619 0.3805
3 0.1268 0.7391 0.7551 0.0958 0.5581 0.0958
4 0.1364 0.5830 0.9856 0.1345 0.5746 0.1345
5 0.2053 0.5842 0.8601 0.1766 0.5025 0.1766
6 0.2424 1 0.7799 0.1890 0.7799 0.1890
7 0.2065 0.5613 0.8497 0.1755 0.4769 0.1755
8 0.4297 0.7638 0.9483 0.4075 0.7243 0.4075
9 1 1 1 1 1 1
10 0.5310 0.5149 0.9865 0.5238 0.5079 0.5079
11 0.3304 0.9481 0.8910 0.2944 0.8448 0.2944
12 0.3280 1 0.7515 0.2465 0.7515 0.2465
13 0.3158 1 0.8597 0.2715 0.8597 0.2715
14 0.4574 0.8381 0.8296 0.3795 0.6953 0.3795
15 0.7329 0.4696 0.9087 0.6660 0.4267 0.4267
16 0.8058 0.8163 0.9003 0.7254 0.7349 0.7254
17 1 0.6694 1 1 0.6694 0.6694
18 0.5046 1 0.7007 0.3536 0.7007 0.3536
19 0.4656 0.4531 0.9647 0.4492 0.4371 0.4371
20 0.2392 0.3739 0.9691 0.2318 0.3624 0.2318
21 0.7889 0.9788 0.7597 0.5993 0.7436 0.5993
22 0.2833 0.4927 0.9117 0.2582 0.4492 0.2582
23 0.5001 0.7244 0.7100 0.3550 0.5144 0.3550
24 0.9278 0.5673 0.9638 0.8943 0.5468 0.5468
25 0.2297 0.5291 0.8523 0.1958 0.4509 0.1958
26 0.7491 0.1674 0.8467 0.6342 0.1417 0.1417
27 0.4250 0.3009 0.7769 0.3301 0.2337 0.2337
28 0.2540 0.8400 0.5664 0.1439 0.4757 0.1439
29 0.5255 0.7660 0.8001 0.4204 0.6129 0.4204
30 0.3304 0.9032 0.8213 0.2714 0.7418 0.2714

The curve AE in Figure 5.3 depicts the Pareto front for unit 18. The coordinates of the
point E(0.5046, 1) are the independent efficiency scores of the two stages. This is the
ideal point in the multi-objective programming terminology. The points A(0.2378,1)
and D(0.5046, 0.4910) are the extreme points on the upper-right boundary of the

feasible set in the objective functions space. The LP models that provide these two
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points are given below, details about the bounds on the efficient set and the range of
the values of the efficient points can be found in Ehrgott (2000). The points B(0.3021,
0.8201) and D represent the two extreme decompositions mentioned above. The
segment BD of the Pareto front depicts alternative decompositions, all maintaining the
same optimal overall efficiency e® = 0.2477, as shown in Table 5.2. Among them, D

is located as an optimal solution by the multiplicative decomposition model (3.7).
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Fig. 5.3: The Pareto front for unit 18

The point C(0.3536, 0.7007), which is formed by the intersection of the dotted line
OE with the Pareto front, depicts the unique Pareto optimal point obtained by model
(5.11)-same as from model (5.10). Thus, the overall system efficiency of unit 18 is
é2s=min{0.3536, 0.7007}=0.3536.

Sensitivity Analysis of the weak link

The optimal value of the objective function in model (5.10) is the ratio 6* = 0C/OE.
That is, the search direction employed for locating the point C on the Pareto front
assumes that the stage efficiency scores éﬁ) and é]% are proportional to their
independent counterparts E]%) and EJ%. This is a reasonable assumption but not

necessarily restrictive. For instance, one might weight differently the two stages in
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model (5.10), if it is to give some other priority to one stage over the other. In such a

case any other point on the Pareto front could be located. In a real-world application,

the management might be interested to investigate the range of weights, in which the

status of the stage, characterized as weak link, is preserved. Table 5.4 provides such

information concerning the sensitivity of the weak link when the weights given to the

two stages vary. For each unit it is sufficient to calculate the coordinates of the two

extreme points A(N,E?) and D(E',N?) on the Pareto front (columns 2-3 and 6-7

respectively) and the weights that drive the ray from the origin to these points

(columns 4-5 and 8-9 respectively). Columns 10-11 show the ranges of the weight g,

in which the status of the identified weak link for each unit is preserved.

Table 5.4: Sensitivity of the weak link

Coordinates of

Weights pointing

Coordinates of

Weights pointing

Ranges of normalized weight g,

A(NY,E?) AN, E?) D(EL,N?) D(EL,N?)
DMU N1 E? gt q4 E1l N2 q° q% Weak link

Stage-1 Stage-2
1 0.1891 0.5511 0.7445 0.2555 0.2711 0.2347 0.4641 0.5359 [0.2555-0.5) (0.5-0.5359]
2 0.3265 0.7508 0.6969 0.3031 05084 0.1948 0.2770 0.7230 [0.3031-0.5) (0.5-0.723]
3 0.0791 0.7391 0.9034 0.0966 0.1268 0.2558 0.6685 0.3315 [0.0966-0.3315]
4 0.1344 05830 0.8127 0.1873 0.1364 0.2850 0.6763 0.3237 [0.1873-0.3237]
5 0.1598 0.5842 0.7852 0.2148 0.2053 0.2604 0.5591 0.4409 [0.2148-0.4409]
6 0.1685 1 0.8558 0.1442 0.2424 0.3813 0.6114 0.3886 [0.1442-0.3886]
7 0.1644 05613 0.7735 0.2265 0.2065 0.2893 05835 0.4165 [0.2265-0.4165]
8 0.3423 0.7638 0.6905 0.3095 0.4297 0.6953 0.6180 0.3820 [0.3095-0.382]
9 1 1 0.5000  0.5000 1 1 0.5000  0.5000
10 05235 0.5149 0.4958 0.5042 05310 0.3450 0.3938 0.6062 [0.5042-0.6062]
11 0.2097 0.9481 0.8189 0.1811 0.3304 0.7410 0.6916 0.3084 [0.1811-0.3084]
12 0.2006 1 0.8329 0.1671 0.3280 0.4384 0.5720 0.4280 [0.1671-0.428]
13 0.2334 1 0.8108 0.1892 0.3158 0.7390 0.7006 0.2994 [0.1892-0.2994]
14 0.1484 0.8381 0.8496 0.1504 0.4574 0.2758 0.3761 0.6239 [0.1504-0.5) (0.5-0.6239]
15 0.6443 0.4696 0.4216 0.5784 0.7329 0.2935 0.2860 0.7140 [0.5784-0.714]
16 0.6980 0.8163 0.5391 0.4609 0.8058 0.3776 0.3191 0.6809 [0.4609-0.5) (0.5-0.6808]
17 1 0.6694 0.4010 0.5990 1 0.6694 0.4010 0.5990 0.5990
18 0.2378 1 0.8079 0.1921 0.5046 0.4910 0.4932 0.5068 [0.1921-0.5) (0.5-0.5068]
19 0.4197 0.4531 05192 0.4808 0.4656 0.4237 0.4764 0.5236 [0.4808-0.5) (0.5-0.5236]
20 02311 03739 0.6181 0.3819 0.2392 0.1877 0.4397 0.5603 [0.3819-0.5) (0.5-0.5603]
21 0.4217 0.9788 0.6989 0.3011 0.7889 0.4942 0.3852 0.6148 [0.3011-0.5) (0.5-0.6148]
22 0.2438 0.4927 0.6689 0.3311 0.2833 0.3538 05553 0.4447 [0.3311-0.4447]
23 0.2100 0.7244 0.7753 0.2247 0.5001 0.3652 0.4221 0.5779 [0.2247-0.5) (0.5-0.5779]
24 0.8855 0.5673 0.3905 0.6095 0.9278 0.4587 0.3308 0.6692 [0.6095-0.6692]
25 0.1867 0.5291 0.7391 0.2609 0.2297 0.2123 0.4803 0.5197 [0.2609-0.5) (0.5-0.5197]
26 0.5850 0.1674 0.2225 0.7775 0.7491 0.0703 0.0858 0.9142 [0.7775-0.9142]
27 0.2517 0.3009 0.5445 0.4555 0.4250 0.1031 0.1952 0.8048 [0.4555-0.5) (0.5-0.8048]
28 0.0418 0.8400 0.9526 0.0474 0.2540 0.1960 0.4356 0.5644 [0.047-0.5) (0.5-0.5644]
29 0.3766 0.7660 0.6704 0.3296 05255 0.2609 0.3318 0.6682 [0.3296-0.5) (0.5-0.6682]
30 0.2274 09032 0.7988 0.2012 0.3304 0.2918 0.4690 0.5310 [0.2012-0.5) (0.5-0.531]

Given the ideal point (E},E7 ) defined by the independent stage efficiency scores

of the evaluated unit jo, the extreme points A(N?,E7) and D(E;., N?) on the upper-
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right boundary of the feasible set in the objective functions space of (5.7), as depicted

in Figure 5.3, are obtained as follows:

For the point AN}, E? ), get N;! as the optimal value of the objective

function in the following linear program:

1 - .
Njo = max wZ]0

s.t.
UX]'O =1
W
wzj, (5.12)
wZ —vX; <0, j=1,..,n
uV; —wZzZ; <0, j=1,..,n
VZ2EW=EUZ=E
For the point D(E}, N7), get N/ as the optimal value of the objective
function in the following linear program:
2 _
Nj, = max uYj
s.t.
wZ;
Jo 1
W > Ej, (5.13)
0

wZ —vX; <0, j=1,..,n

Then, the normalized weights are as follows:

For the point A%, E2): qf = ——, a3 = 70

For the point D(E®,N?): g =
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Fig. 5.4: The location of the Pareto front
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Figure 5.4 exhibits the three possible positions of the Pareto front AD with respect
to the bisection line OB. The units depicted are No 15, 12 and 2 (Table 5.4). If N >
E?, then the line AD lies on the right of OB and the second stage will be steadily the
weak link (Fig. 5.4a). This is the case for units 10, 15, 24 and 26. If N? > E?, then the
line AD lies on the left of OB and the first stage will be steadily the weak link (Fig.
5.4b). This is the case for the units 3-8, 11-13 and 22. If none of the above holds, the
line AD intersects with the bisection line OB and the weak link is differentiated on the
left and on the right of the intersection point (Fig. 5.4c). This is the case for the units
1, 2, 14, 16, 18-21, 23, 25, 27-30. The units 9 and 17 are differentiated from the
others, as they achieve their ideal efficiency scores and the Pareto front degenerates to

a single point.

5.1.2 Two-stage process with extra inputs in the stage-
2 (Type II)

In the structure of Type I, the second stage uses some extra external inputs L beyond
the intermediate measures as depicted in Figure 5.5.

DMU L

Y

Fig. 5.5: The two-stage process of Type Il

In view of the “weak-link™ approach, the Fig. 5.5 can be alternatively represented by

the Fig. 5.6 below.

P System (DMU) _____________________ N
X {7z XZ { Y
: el e
PIRE— Stagel  ——a %-—--- Stagel - >

Fig. 5.6: An alternative representation of the two-stage process of Figure 5.5
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In this case, the efficiency of the first and the second stage of DMU j are defined as

follows:

e;l _ (ij 2 _ ij

= ,er =
J nX; J QZj+gLj

Analogously to the simple process elaborated in the previous section, the two-phase

procedure for estimating the stage efficiencies as well as the overall system

efficiency, in line with model (5.9), is as follows:

7.
max el = 2o
nX;
wY;
maxe? =——35°
(ijo + ngo
S.t.

pZi—nX; <0, j=1,..,n

NZEPZEW=EG=E

(5.14)

.

After applying the C-C transformation with respect to the first objective function we

derive the following model:

1_ .
maxe —WZJ0

uY;
maxe? =——2°
S.t.
vX 1

jo =

wZ —vX; <0, j=1,..,n

uY; —wZ; —yL; <0, j=1,..

VZEWZEUZEY 2E
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Phase I:
max 6
s.t.
1
WZ]'0 = 9Ej0
uy;
—L > gE?
wZj, +vLj, (5.16)
'UX]'O =1
WZj —vXj <0, j=1,..,n
uY; —wZ; —yL; <0, j=1,..,n

V2EW=gUu=¢€yYy 266020

Let (6%, v, w", u”, y") be an optimal solution of model (5.16) and the stage
efficiencies as follows:

1% _ W*Zjo — W*Z ez* _ u*on

Jo ™ v, Jot To wrzjo+yrLj,

The phase | solution is weakly Pareto optimal to the bi-objective program (5.15).
Phase I1:

Solve the following linear program:

max s,
S.t.

—g, = el*
WZj, =51 = ¢

uY;, — e]%*(ij0 + ijO) >0

vXj, =1 (5.17)
wZi—vX; <0, j=1,..,n

uY; —wZ; —yL; <0, j=1,..,n

VZ2EWZEUZEY =€

1_ ,1x
0S51SE]'0 ejo

Let (81, U, w, 1, 7) be the optimal solution of (5.17). If §; > 0, then the solution is

Pareto optimal and the stage efficiency scores are:

) - WZ]O éZ — uYj,
- ’ in = ~ =~
Jo vXj, Jo WZjo+VLjo
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Otherwise, solve the following program to get a Pareto optimal solution
(s'y, v, w',u',y") and the stage efficiency scores:
W’Zjo

’
e"l —_ 12 — quo

=9 plb=___ -0
Jo U’on "o W’Zjo+)/’Ljo

max s,
s. t.

1x*
WZjO = e,

quO — 5, = eZ*
. . 27 %o
WZ]0 +)/L]0

_ (5.18)
UX]'O =1

WZ]- —vXj <0 j=1,..,n

uY; —wZzZ; —yL; <0, j=1,..,n

VZEWZEUZEY =E

2 _ 2%
OSSZSE]'O eJO

Model (5.18) is non-linear but it can be solved by bisection search in terms of sz in
the bounded interval [0, E7 — e?"]. Obviously, in the case that the stage efficiency
scores, derived from the phase I, they are both equal to the corresponding independent
efficiency scores, there is no need to run the phase Il, since the Pareto front

degenerates to the point (Ej., E7 ).

Notice that in the two-stage process of Figure 5.5, choosing the minimum of e?, e?
as the system overall efficiency might underestimate it. To be more specific, if the
extra inputs L in the second stage are partly a substitute for the intermediate measures
Z to produce the final outputs Y, the weak link between the two stages can be
remedied by L. For instance, if el< e? and this difference is mainly attributed to the
economical input on L, taking e* as the overall efficiency may be deceptive since the
economical low level of input L may be a relative advantage for the stage under
consideration among its competing peer on L and probably underestimates the overall
system efficiency. In a two-stage process with extra inputs to the second stage, the
aforementioned effect must be taken into account in order to transfer the advantages
of stage-2, caused by the extra inputs L, to stage-1. An effective way to absorb these

effects in favor of the system efficiency is proposed below. Given the optimal solution
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(0, w,4,7), as derived by the two-phase procedure above, we modify the stage

efficiencies as follows:

I _ WZj,+VLj, 11 _ uYj,

Jo = oxj,47Ls," To T Wz, 47L, (5.19)

In (5.19), the adjusted stage efficiencies originate from the network structure depicted
in Figure 5.7a, which is a modification of the two-stage process of Figure 5.5. The
valued input 7L to the second stage is used as an input and, at the same time, as an
output from the first stage. So, the term yL is added to the numerator and to the
denominator of the original efficiency ratio to obtain the modified efficiency score e; .
A similar but equivalent representation to the modified structure of Figure 5.7a is the
network structure depicted in Figure 5.7b. This representation technique is coined by
Kao (2014a) to deal with general multi-stage systems. In the latter, the motivation was
to adjust the conventional stage efficiency scores, so as they meet the property that the
system efficiency is the product of the stage efficiencies. This is accomplished by

introducing the dummy process labelled 3, in a parallel configuration with the original

stage-1.
-~ ! =
yL | rL
» .
]::X' 1-.2 &}
] 1 - 2 —
L |
v
(a)
Subsystem I Subsystem II
|
7
X Z,L Y
—> 2
L
L
(b)

Fig. 5.7: The modified process of Figure 5.5
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The adjusted efficiency scores e and e/ are related to their original

counterparts &} and &7 as follows:
0 Jo

UX; VL
&, == &, +3 4 1
vXj0 =+ ijO vXjO =+ ij (5.20)
11 _ 32
€ = €y

That is, the adjusted efficiency e/ is a weighted average of the original efficiency
score ¢&;. and the efficiency score of the dummy process 3 associated to the first stage,
which is 1. Concerning the second stage, the corresponding efficiency e;! is not being
adjusted and remains éj%. Once the adjusted efficiency scores are obtained, the overall

efficiency of the evaluated unit is e? = min{e ,¢/'}. Kao (2014a) employed a similar
concept so as to decompose the overall system efficiency as the product of the
subsystems efficiencies, where the efficiency of each subsystem is a weighted average
of the efficiency of the corresponding process (stage) and the dummy process.
However, our methodology differs substantially in the optimality criterion used.
Indeed, our optimality criterion is to maximize the lowest of the stage efficiencies,

whereas the optimality criterion in Kao (2014a) is to maximize the overall efficiency.

Hlustration

We illustrate our two—phase procedure on a two-stage process of Type Il with a real
example about regional R&D process of 30 Provincial Level Regions in China, drawn
from Li et al (2012). The first stage represents the technology development whereas
the second one represents the economic application. The inputs of the first stage are
three indices from science and technology activities and government’s support,
namely the R&D personnel (X1), the R&D expenditure (X2) and the proportion of
regional science and technology funds in regional total financial expenditure (X3).
The intermediate measures (outputs of stage-1 and inputs to stage-2) are the number
of patents (Z1) and the number of papers (Z2). The extra input to stage-2 is the
contract value in technology market (L). The final outputs are four economic
indicators, namely the GDP (Y1), the total exports (Y2), the urban per capita annual
income (Y3) and the gross output of high-tech industry (Y4). The data are originally
obtained from “China statistical yearbook, 2009 and “China science and technology
statistical yearbook, 2009”. Table 5.5 below exhibits the dataset.
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Table 5.5: Data of 30 Provincial Level Regions in China from Li et al (2012)

DMU X1 X2 X3 Z1 Z2 L Y1 Y2 Y3 Y4
1 10.34786 668.63510 5.44577 9157 65951 1236.245 12153.03 483.7932 26738.48 2757.14
2 2.00665 79.45994 120381 834 13737 38.31581 6530.01 42.80071 15748.67  352.84
3 6.46163 423.37740 7.20187 5997 32733 435.4108 15046.45 1417.96027 28837.78 5557.45
4 2.87830 178.46610 3.02375 1889 12472 105.4611 7521.85 298.92719 21402.01 1901.07
5 3.01654 13595350 1.70264 795 13699 35.61736 10062.82 88.86487 14085.74  460.31
6 2.27886 135.38190 1.97549 824 9075 23.25944 12236.53 533.1911 19576.83 1972.01
7 1.27445 37.26124 0.81710 227 7856 35.62869 3387.56 7.35512 11929.78 67.39
8 1297681 652.98200 3.88757 11355 35773  170.985 39482.56 3589.54893 21574.72 17161.94
9 0.77328 26.41343 1.04000 322 4946 1.78061 3912.68 13.56612 12862.53  293.64
10 0.17583  5.78060 1.24906 84 2726  0.55563 1654.21 13.08632 13750.85 54.75
11  3.88080 134.84460 1.12576 691 17970 17.21118 1723548 156.88902 14718.25  629.17
12 3.70197 109.17040 1.06286 1142 14553 48.855 8587.00 100.82127 12565.98  311.40
13 4.79963 174.75990 1.22226 1129 21188 26.30461 19480.46 73.45376 1437156  953.23
14 512124 213.44900 1.21147 1478 25268 77.03287 12961.1 99.78796 14367.48 1039.52
15 3.49591 153.49950 1.33984 1752 21042 44.04324 13059.69 54.92034 15084.31 648.75
16 10.67826 701.95290 2.91286 5322 47441 108.2184 34457.3 1991.9919 20551.72 13015.35
17  1.83522 75.89360 0.85780 386 6811 9.78927 7655.18 73.68488 14021.54  755.65
18 2.60875 81.36019 1.28305 719 8987 19.75983 7278.75 31.24935 14006.27  537.66
19 543947 232.36870 2.14308 1993 20801 119.7095 15212.49 334.14928 15761.38 1313.84
20 0.30013  7.59379 0.98211 35 1240 8.49672 1081.27 2.51876 12691.85 19.22
21  8.33303 519.59200 1.92425 2865 26941 71.9391 33896.65 794.90706 17811.04 4555.71
22 252624 80.85633 1.12742 603 6757 16.20675 7358.31 28.37455 13996.55  196.47
23 4.23465 189.50630 1.13144 1342 26403 69.80741 8169.80 39.88149 14128.76  717.04
24 487863 214.45900 0.79759 1596 22568 54.59769 14151.28 141.69447 13839.40 1766.76
25 122051 37.23044 0.97287 476 7101 10.24687 6169.75 45.13252 14423.93  147.17
26 590844 398.83670 3.74258 4818 25638 56.45805 22990.35 1330.12954 24610.81 2672.09
27 156993 47.20277 1.11443 326 9982 1.76618 7759.16 83.7537 15451.48  273.67
28  1.27057 52.07259 0.93756 178 3214 14.76515 9740.25 23.15476 15849.19  236.61
29  0.33954 10.44221 1.01806 52 1365 0.89823 1353.31 7.4293 14024.70 32.89
30 0.82683 21.80426 1.19830 120 5688  1.20777 4277.05 109.34563 12257.52 23.74

As already noticed in Chapter 3, Li et al (2012) employed a parametric technique

for the assessment of DMUs with extra inputs in the second stage. They first derive

parametrically the stage efficiency scores and then they calculate the overall

efficiency as the product of the stage efficiencies. For comparison purposes we give in
columns (4-6) of Table 5.6 the results of Li et al (2012). Table 5.6 contains also the
independent (ideal) stage efficiency scores that derive from analogous models with

models (5.4) and (5.5); these models are given in the Appendix.

| 151



PhD Thesis — G. Koronakos

Table 5.6: Ideal scores and results from Li et al (2012)

DMU E! E? el g2 e® =el-e?
1 1 0.1598 1 0.1598 0.1598
2 1 0.2489 1 0.2489 0.2489
3 1 0.5728 0.8950 0.5365 0.4802
4 0.7426 0.5704 0.6774 0.5704 0.3864
5 0.6697 0.3895 0.6697 0.3895 0.2608
6 0.5668 1 0.5668 1 0.5668
7 1 0.3121 1 0.2207 0.2207
8 1 1 1 1 1
9 0.9398 1 0.9398 1 0.9398
10 1 1 1 1 1
11 0.8885 0.8351 0.8885 0.8351 0.7420
12 0.9328 0.2703 0.9328 0.2648 0.2470
13 0.8504 0.7373 0.8493 0.7373 0.6262
14 0.9060 0.3360 0.9060 0.2816 0.2551
15 1 0.3780 1 0.3685 0.3685
16 0.9225 1 0.9225 1 0.9225
17 0.5647 1 0.5644 0.9914 0.5595
18 0.7158 0.5184 0.7152 0.4947 0.3538
19 0.6969 0.3742 0.6671 0.3668 0.2447
20 0.4573 1 0.4573 1 0.4573
21 0.7101 0.8498 0.7101 0.8176 0.5806
22 0.5864 0.5709 0.5708 0.5156 0.2943
23 1 0.2509 1 0.1941 0.1941
24 1 0.4817 1 0.4566 0.4566
25 1 0.6159 1 0.5846 0.5846
26 0.9111 0.9541 0.7293 09171 0.6688
27 1 1 1 1 1
28 0.3599 1 0.3599 1 0.3599
29 0.4300 1 0.4300 1 0.4300
30 1 1 1 1 1

In Table 5.7 we present the results obtained from phase | and Il, we remark that
the stage efficiencies are not improved by phase II, in other words, models (5.16),
(5.17) and (5.18) produce the same stage efficiency scores. The adjusted efficiency
scores as well as the overall system efficiency are given in columns 5-7. The
advantages caused by the extra input L to the second stage are transferred to the
system efficiency for 6 of the 30 units. The observed level of extra input L for these
units is below the average level of input L for the current technology. For example,
for DMUs 6 and 9 the improvement on their adjusted efficiency scores (e') led also to
improvement on their overall efficiency. Theirs levels of input L are L¢=23.25944 and
Lo=1.78061 respectively whereas the average level of input L is 95.3524.
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Table 5.7: Results obtained from phases | and 11

DMU 0 at 82 e ell =82 e°
1 1 1 0.1598 1 0.1598 0.1598
2 1 1 0.2489 1 0.2489 0.2489
3 0.9111 0.9111 0.5219 0.9111 0.5219 0.5219
4 0.9402 0.6982 0.5363 0.6982 0.5363 0.5363
5 1 0.6697 0.3895 0.8497 0.3895 0.3895
6 1 0.5668 1 0.6137 1 0.6137
7 0.7830 0.7830 0.2444 0.7919 0.2444 0.2444
8 1 1 1 1 1 1
9 1 0.9398 1 0.9534 1 0.9534
10 1 1 1 1 1 1
11 1 0.8885 0.8351 0.9288 0.8351 0.8351
12 0.9848 0.9186 0.2662 0.9640 0.2662 0.2662
13 0.9989 0.8495 0.7365 0.9108 0.7365 0.7365
14 0.8614 0.7804 0.2894 0.7804 0.2894 0.2894
15 0.9839 0.9839 0.3719 0.9929 0.3719 0.3719
16 1 0.9225 1 0.9225 1 0.9225
17 0.9920 0.5602 0.9920 0.7049 0.9920 0.7049
18 0.9699 0.6943 0.5028 0.8285 0.5028 0.5028
19 0.9679 0.6746 0.3622 0.6746 0.3622 0.3622
20 1 0.4573 1 0.4573 1 0.4573
21 0.9701 0.6888 0.8244 0.8370 0.8244 0.8244
22 0.9362 0.5490 0.5345 0.7444 0.5345 0.5345
23 0.7984 0.7984 0.2003 0.7999 0.2003 0.2003
24 0.9515 0.9515 0.4583 0.9742 0.4583 0.4583
25 0.9652 0.9652 0.5944 0.9818 0.5944 0.5944
26 0.8659 0.7889 0.8261 0.8804 0.8261 0.8261
27 1 1 1 1 1 1
28 1 0.3599 1 0.3599 1 0.3599
29 1 0.4300 1 0.4308 1 0.4308
30 1 1 1 1 1 1

As shown in Tables 5.6 and 5.7 although the two approaches deem efficient the
same units in the second stage and in overall, they yield different stage efficiency
scores for 16 of the 30 units. In particular, for the first stage, Li et al (2012) estimate
eleven DMUs as efficient whereas only six of them are deemed efficient from our
approach. In Li et al (2012) the main goal is the detection of the pair of stage
efficiencies that provides the maximal squared geometric average, i.e. the maximal
overall efficiency, which is in compliance with the optimality criterion in the
multiplicative approach of Kao and Hwang (2008). As a result, when there is a large
discrepancy between the independent (ideal) efficiency scores, then the pair of stage
efficiencies that maximizes the overall efficiency would tend to lie on the extreme
points of the Pareto front. For instance for DMUs 7 and 23, the corresponding
solutions obtained from Li et al (2012) are located on the extreme points B of the

Pareto fronts as portrayed by Figures 5.8a and 5.8b respectively. As noted, this
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phenomenon can be associated with the large discrepancy between the independent
efficiency scores, i.e. for unit 7 the independent scores are E* =1, E?=0.3121 and for
unit 23 the corresponding scores are E =1, E>=0.2509. On the contrary, DMUs 7 and
23 are not deemed efficient in stage-1 by our approach, the corresponding Pareto
optimal points obtained by our two-phase procedure are depicted by points C on
Figures 5.8a and 5.8b. The independent (ideal) stage efficiencies are represented by
points E while the extreme Pareto optimal solutions by points A and B. Notice that the
points C are formed by the intersection of the ray from the origin to the point E with

the Pareto front.
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Fig. 5.8: Pareto fronts and Pareto optimal solutions of units 7 and 23
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The Fig. 5.9 depicts the Pareto fronts (curves AB) of four indicative units (namely,
units 3, 4, 14 and 26) shown in Table 5.7. The independent (ideal) stage efficiency
scores are portrayed by points E. The stage efficiencies derived by our two-phase
procedure are represented by points C, while the extreme points A and B on the
Pareto fronts are obtained by solving analogous LPs with programs (5.12) and (5.13),
see the Appendix for details.
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Fig. 5.9: Pareto fronts and Pareto optimal solutions for 4 indicative units
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5.1.3 Two-stage process with extra outputs from stage-
1 (Type III)

In the structure of Type Il1, the first stage produces some final outputs K that exit the

system, beyond the intermediate measures Z as depicted in Figure 5.10.

DMU

v

K

Y

Fig. 5.10: The two-stage process of Type IlI

An alternative portrayal of the conventional illustration of Fig. 5.10 is given below in
Fig. 5.11.

e System (DMU) _____________________ J
X {(z Xz { ¥
el e
PR Stagel - ” A Stage2  ----- »

Fig. 5.11: An alternative representation of the two-stage process of Figure 5.10

In this case, the efficiency of the first and the second stage of DMU | are typically

defined as follows:

e.1 _ (ij+th e? _ wYj

J nxj T ez

Working like in the previous sections, we provide below the bi-objective program
and the two-phase procedure for estimating the stage efficiencies and the overall

efficiency of the two stage process of Figure 5.10.
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max el = —(ijo + K,
n&X;
wY;
max e? = —22
Zfo
st (5.21)

pZ; +hK]- -nX; <0, j=1,..,n
wY, —9Z; <0, j=1,..,n

n=egp=gw=gh>c¢

Applying the C-C transformation with respect to the first objective function we

derive the following model:

Phase I:

1 —
maxe- =wZ; + ukK;

ulj,

2
maxe“ =
wZ

Jo

s.t.

vX, =1 (5.22)
wZi+uK; —vX; <0, j=1,..,n
qu —WZj <0 j=1..,n

VZ2EWZ=EUZEUZE

max 6
S.t.

wZ;, + pK;, = eEle

uyY;
2 > OE}
WZ]0

(5.23)

vX Jo

=1
wZ;+uK; —vX; <0, j=1,..,n
uV; —wZzZ; <0, j=1,..,n

V2EW=EU=EU=2E020

Let (6%, v, w', u, x") be an optimal solution of model (5.23) and the stage

efficiencies as follows:
_ W*Z]0+”*K] u*Y-

0 — * * 2% — ]0
v*X: - w Z}() + H K]() ! ej - w*Z .
]0 }0
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The phase | solution is weakly Pareto optimal to the bi-objective program (5.22):
Phase II:
Solve the following linear program:

max S;

s.t.

wZj, + uK; —s; = e’
uY —el'wz; =0
vX;, =1 (5.24)
wZi+uK; —vX; <0, j=1,..,n

uV; —wz; <0, j=1,..,n

VZ2EWZ=EUZEU=E

1 1=
0 S1 < E}'O—ejo
Let (3,,0,w,, 1) be the optimal solution of (5.24). If §; > 0, then the solution is
Pareto optimal and the stage efficiency scores are:

51 _ WZjotBKjo 52 _ Wi

Jo ok, o wzg,

Otherwise (when $; = 0), solve the following program to get a Pareto optimal
solution (s',, v',w’,u’, 1) and the stage efficiency scores:

n o _ W2t 2 _ WY,

e: = , =
]O v[on JO W’Zjo

max S,
s.t.

1x*
WZjo + 'quo = €jo
quO _ 2%
7. 527 €
w Jo

(5.25)

UX]'O =1

wZ;+uK; —vX; <0, j=1,..,n
uY; —wiz; <0 j=1,..,n
VZ2EWZEUZEU=E

2 _ 2%
OSSZSEjO ejo
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As noticed in the previous section, using the minimum of e!, e? as the system
overall efficiency might underestimate it because the potential advantages caused by
the economical low level of the extra inputs to stage-2 may not be reflected to the
overall efficiency. Therefore, we adjusted the stage efficiency scores in order to
capture and transfer the potential improvements to the overall efficiency. To be more
specific, in the two stage process of Figure 5.10 because the first stage has an extra
output K, flowing directly out of the system, the overall efficiency of the system
should be contributed by K without being stuck by the “weak link”. For example,
suppose that e! is greater than e? and this difference is mainly caused by the
prominent high output on K. Obviously, still assuming the minimum of these two
scores, i.e. €2, as the overall efficiency for the system does not suffice and the
potential high level of output K should be valued by the system. Given the optimal
stage efficiencies as follows in order to absorb the aforementioned effects in favor of

the system:

e, efl = oo (5.26)
Jo oX; Yo T Wz, +ik; :
o o [

_ WZj,+iKj,
The adjusted stage efficiencies in (5.26) originate from the network structure in
Figure 5.12a which is a recast of the two stage process depicted in Figure 5.10. The
valued external output 2K of the first stage is used as an input and, at the same time,
as an output from the second stage. The term 4K is added to the numerator and to the
denominator of the original efficiency ratio to obtain the modified efficiency score e;!
of the second stage. As already noted, in Kao (2014a) dummy processes were used in
a parallel configuration with the original stages for the representation of the modified
network structure. Figure 5.12b depicts the modified two stage process in accordance
with Kao (2014a).
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Fig. 5.12: The modified process of Figure 5.10

The adjusted efficiency scores e/ and e/ are related to their original

counterparts &} and &7 as follows:
0 Jo

€ = éjo
11 WZJ'o 52 ﬁKJo (®:27)
e == Xer+—-—X1
T WZ] + ﬁKjo ! WZ] + 'LALK]'O

The efficiency of the first stage remains unchanged, whereas for the second stage the
adjusted efficiency e/ is a weighted average of the original efficiency score é7 and
the efficiency score of the dummy process 3 associated with the second stage, which
is 1. Having derived the adjusted efficiency scores, then the overall efficiency of the

evaluated unit is e = minfe/ ,e/!}.
0 Jo’ “Jo
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Hlustration

In the following, we apply the “weak-link” approach to a real example taken from
Aviles-Sacoto et al (2015) who studied 37 schools of business. Aviles-Sacoto et al
(2015) viewed the undergraduate business programmes as two stage processes and
they developed a network DEA approach to deal with a peculiar setting where some
of the intermediate measures are inputs to the second stage and at the same time
external outputs from that stage. At the first stage the assessment is focused on the
outcomes which the students achieve before graduation while the second stage
captures the accomplishments after graduation. However, for illustration purposes we
examine only the scenario where the measures with the controversial role are operate
only as external outputs of the first stage. As inputs to stage-1 are used the percentage
of applicants rejected (X1), the academic rating (X2) and the percentage of students in
top 25% of their classes (X3). The external output of stage-1 is the percentage of
students receiving internships (K) while the intermediate measures, outputs of stage-1
and inputs to stage-2, are the percentage of accepted applicants enrolled (Z1) and the
percentage of students receiving institutional scholarships (Z2). The external outputs
of the second stage are the percentage of students who get jobs (Y1). Table 5.8

exhibits the data set as well as the independent stage efficiencies (last two columns).

Table 5.8: Data from Aviles-Sacoto et al (2015) and independent stage efficiencies

DMU X1 X2 X3 21 72 K Y1 E! E2
1 95 73 90 99 37 79 95 0.8923 0.5603
2 97 68 93 96 20  86.3 78 0.9073 0.7410
3 100 89 97 65 58  90.9 94 0.8861 0.5447
4 100 83 91 75 43 852 93 0.8846 0.5898
5 98 81 92 80 42 853 93 0.8884 0.5789
6 98 70 92 99 37  86.2 84 0.9238 0.4954
7 99 50 83 82 38  89.7 81 1 0.5233
8 95 70 89 28 30 841 83 0.8410 1
9 95 56 74 64 19 842 100 1 1
10 92 62 81 36 53 923 93 1 0.7216
11 96 68 83 100 48 773 97 0.9870 0.5052
12 87 61 94 26 61 777 100 0.7826 0.7813
13 74 21 77 20 65 708 71 1 0.5625
14 87 60 85 28 46 851 64 0.8992 0.5949
15 91 62 89 90 42 788 93 0.8915 0.5456
16 71 27 76 46 60 738 90 1 0.5889
17 88 54 88 30 50 89 82 0.9129 0.7047
18 79 57 80 33 60 86.2 90 0.9903 0.6633
19 93 64 99 21 50 97 85 0.8958 0.8134
20 98 66 94 95 31 617 97 0.7262 0.6303
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DMU X1 X2 X3 Z1 72 K Y1 E! E?
21 89 29 72 45 31 749 72 1 0.6947
22 86 48 77 45 26 737 95 0.8619 1
23 73 47 76 52 79 749 80 1 0.4212
24 13 42 75 74 15 636 55 1 0.6967
25 90 57 84 25 90  56.4 62 1 0.3621
26 91 58 72 35 42 821 76 1 0.6868
27 87 30 81 10 50 735 90 0.9075 1
28 76 41 83 23 68  68.8 82 0.8612 0.6083
29 29 26 75 33 63  62.9 66 1 0.4705
30 91 43 77 99 46  68.3 63 0.9835 0.3367
31 70 27 71 99 26 678 92 1 0.6723
32 89 33 71 53 38 581 74 0.81781 0.5937
33 73 40 80 38 59 87 68 1 0.4832
34 73 51 84 19 70 87.6 80 1 0.6034
35 89 46 72 99 71 532 75 1 0.3221
36 95 41 72 61 22 612 78 0.80158 0.7579
37 35 18 84.25 68 23 471 69 1 0.6175

Table 5.9 presents the stage efficiency scores obtained by our two-phase
procedure as well as the adjusted efficiencies that take into account the potential
improvements to the overall efficiency. The results show that the phase Il discovers
for some units, namely 2, 22, 27, 31 and 34, that their second stage efficiencies could
be improved. More specifically, for these DMUs model (5.25) reveals that the optimal
solutions derived by model (5.23) are weak Pareto and provides new solutions which

are Pareto optimal.
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Table 5.9: Results obtained from phases | and 11

DMU 0 el e? 8l 82 el =8t ell e®
1 0.9584 0.8551 0.5370 0.8551 0.5370 0.8551 0.8745 0.8551
2 0.9149 0.8301 0.6780 0.8301 0.6782 0.8301 1 0.8301
3 0.9931 0.8800 0.5410 0.8800 0.5410 0.8800 0.9007 0.8800
4 0.9862 0.8724 0.5817 0.8724 0.5817 0.8724 0.9004 0.8724
5 0.9785 0.8693 0.5665 0.8693 0.5665 0.8693 0.8948 0.8693
6 0.9639 0.8904 0.4775 0.8904 0.4775 0.8904 0.8680 0.8680
7 0.9918 0.9918 0.5190 0.9918 0.5190 0.9918 0.9021 0.9021
8 1 0.8410 1 0.8410 1 0.8410 1 0.8410
9 1 1 1 1 1 1 1 1
10 1 1 0.7216 1 0.7216 1 1 1
11 0.9608 0.9483 0.4854 0.9483 0.4854 0.9483 0.7638 0.7638

12 0.9758 0.7637 0.7624 0.7637 0.7624 0.7637 0.9535 0.7637
13 1 1 0.5625 1 0.5625 1 0.9833 0.9833
14 1 0.8992 0.5949 0.8992 0.5949 0.8992 1 0.8992
15 0.9678 0.8628 0.5280 0.8628 0.5280 0.8628 0.8719 0.8628
16 1 1 0.5889 1 0.5889 1 0.9198 0.9198
17 1 0.9129 0.7047 0.9129 0.7047 0.9129 1 0.9129
18 0.9892 0.9796 0.6562 0.9796 0.6562 0.9796 0.9356 0.9356
19 1 0.8958 0.8134 0.8958 0.8134 0.8958 1 0.8958
20 0.9337 0.6781 0.5885 0.6781 0.5885 0.6781 0.8060 0.6781
21 1 1 0.6947 1 0.6947 1 1 1

22 0.9989 0.8610 0.9989 0.8610 1 0.8610 1 0.8610
23 1 1 0.4212 1 0.4212 1 0.6578 0.6578
24 1 1 0.6967 1 0.6967 1 0.8913 0.8913
25 0.8154 0.8154 0.2952 0.8154 0.2952 0.8154 0.4122 0.4122
26 1 1 0.6868 1 0.6868 1 1 1

27 0.9974 0.9051 0.9974 0.9051 1 0.9051 1 0.9051
28 0.9470 0.8156 0.5761 0.8156 0.5761 0.8156 0.8643 0.8156
29 1 1 0.4705 1 0.4705 1 0.4705 0.4705
30 0.9736 0.9575 0.3278 0.9575 0.3278 0.9575 0.6595 0.6595
31 0.9522 0.9522 0.6402 0.9522 0.6427 0.9522 1 0.9522
32 0.9999 0.8177 0.5936 0.8177 0.5936 0.8177 0.8753 0.8177
33 1 1 0.4832 1 0.4832 1.0000 0.8932 0.8932
34 0.9715 0.9715 0.5862 0.9715 0.5913 0.9715 1 0.9715
35 1 1 0.3221 1 0.3221 1 0.3221 0.3221
36 0.9761 0.7825 0.7398 0.7825 0.7398 0.7825 0.9469 0.7825
37 0.9956 0.9956 0.6147 0.9956 0.6147 0.9956 0.6147 0.6147

Figure 5.13 depicts the Pareto fronts (curves AB) of four indicative units (namely
units 6, 28, 11 and 15). The independent (ideal) stage efficiency scores are portrayed
by points E. The stage efficiencies derived by our two-phase procedure are
represented by points C, while the extreme points A and B on the Pareto fronts are
obtained by solving analogous LPs with programs (5.12) and (5.13), see the Appendix

for details.
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Fig. 5.13: Pareto fronts and Pareto optimal solutions for 4 indicative units

5.1.4 General two-stage process (Type IV)

The general two-stage process depicted in Figure 5.14 differentiates from the other
types, in that the first stage produces some final outputs K that exit the system,
beyond the intermediate measures Z, and the second stage uses some extra external

inputs L.
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Fig. 5.14: The two-stage process of Type IV
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Fig. 5.15: An alternative representation of the two-stage process of Type IV

In this case, the efficiencies of the first and the second stage of DMU j are defined
as follows:

e-l _ WZj+,qu 6-2 _ qu
J vX; ' wZj+yL;j

Analogously to the other types of processes elaborated in previous sections, the
two-phase procedure for estimating the stage efficiencies as well as the overall system
efficiency is as follows:

max el = —(ijo + hKj,
nX;
wY;
max e? = —2°
(ijo + ngo
. (5.28)

©Zj+hK; —nX; <0, j=1,..,n
WY —¢Zj—gl; <0, j=1,..,n

n=egp=2cw=gh>¢gg=>c¢
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By applying the C-C transformation with respect the first objective function we derive

the following program:

1 _
maxe: =wZ; + pkK;

uyY;
maxe? =——3°
s.t.
_ (5.29)
vXjO =1
wZi+uK; —vX; <0, j=1,..,n
uY; —wz; —yL; <0, j=1,..,n
VZ2EWZEUZEYZEUZE
Phase I:
max 0
s.t.
1
uyY;
— Jo > gEj%
wZj, +vLj, (5.30)

UX]'o:l
wZ;+uK; —vX; <0, j=1,..,n
uY, —wZz; —yL; <0, j=1,..,n

VZ2EW2EU2EY2EU2EO=0

Let (6%, v', W', u”, y", «*) be an optimal solution of model (5.30), then the stage

efficiencies are calculated as follows:

W'Z; +U*K;
1x _ Jo Jo W*Zjo +‘Ll*K e.z* =

j . Jo! , .
Jo v X, o' 7J wW*Zj +¥*Lj,

* .
u Y]O

The phase I solution is weakly Pareto optimal to the bi-objective program (5.29):
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Solve the following linear program:

max s,
s.t.

wZj + uK; —s; = e’

uY, — e’ (wz;, +vL;,) =0

vX;, =1 (5.31)
wZi+uK; —vX; <0, j=1,..,n

uY; —wz; —yL; <0, j=1,..,n
VZ2EWZEUZEYZ2EU=E

1_ ,1x
OSS:lSE}'O ejo

A A A

Pareto optimal and the stage efficiency scores are:

o1 = MKy s WY,
Jo UX]'O Jo WZ]'O +]/Ljo

Otherwise, solve the following program to get a Pareto optimal solution

(s',,v',w',u',y’, 1) and the stage efficiency scores:

max s,
S.t.
1%

WZjo + 'LLKjo = o

uY}O 2%
ARSI
Wij, T Vij,
v, =1 (532)

uY, —wzZ; —yL; <0, j=1,..,n
V2EWZ2EUZEYZEU2E

2 _ 2%
OSSZSEjO e]

/ ’ 1
e,:!- — WZ]0+MK]O .,2 — U,on
7 ) 7 7

Jo 'UX]'O Jo WZ]0+]/ LJO
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Model (5.32) is non-linear but it can be solved by bisection search in terms of sz in
the bounded interval [0, E? — e?*]. Obviously, if the stage efficiency scores, derived
from the phase I, are both equal to the corresponding independent efficiency scores,
then there is no need to run the phase Il since the Pareto front degenerates to the

point (EL, E? ).

As we already remarked when extra inputs or outputs exist then using the
minimum of e!, e? the system efficiency might underestimate it. Indeed, when K is
missing, as in Fig 5.5, the system should benefit from a potential economical level of
L. Analogously when the external input L to the second stage is missing, as in Fig
5.10, the overall efficiency of the system should be contributed by a potential
prominent high output on K. However these relative advantages of the unit against its
peers on L and K may be ignored when taking the overall efficiency as the minimum
of the stage efficiencies. In a general two-stage process, these effects must be
considered jointly, in a manner that the potential advantages-disadvantages of one
stage, caused by the extra inputs L and outputs K, are transferred to the other stage.
above, the stage efficiencies are adjusted to bring into play these in favor of the
system efficiency as follows:

o _ WZ G AL, Y HRKG,
Jo 0X; +7L;, ' o T wZ; +BK; +7L;

(5.33)

Figure 5.16a depicts a modification of the network structure of Figure 5.14, the
adjusted stage efficiencies that correspond to the modified efficiencies are given in
(5.33). The valued input 7L to the second stage is used as an input and, at the same
time, as an output from the first stage. So, the term 7L is added to the numerator and
to the denominator of the original efficiency ratio of stage-1 to obtain the modified
efficiency score e/ . Analogous is the treatment of the valued external output K of
the first stage in order to obtain the modified efficiency score ¢! of the second stage.
The modified structure in Figure 5.16b is an alternative, yet equivalent representation
of the structure in Figure 5.16a, introduced by Kao (2014a) to deal with general multi-
stage systems. In particular, two dummy processes, labelled 3 and 4, were added in a
parallel configuration with the original stages 1 and 2 respectively. As it is noticed,

each subsystem has a parallel structure composed of one real and one dummy process.
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Fig. 5.16: The modified process of Figure 5.14

The adjusted efficiency scores e and e/ are related to their original

counterparts &} and &7 as follows:
0 Jo

UX; VL
e, =+Xéﬁ) +AV—A><1
'UX]'O + yL]O UX]'O + yL]O
(5.34)
I _ WZjo + yLJ'o ) ”Kjo

e; — - = er +— - — X1
o wZj, + pKj, + VL, o wZj, + iKj, + VL,

That is, e/ is a weighted average of the original efficiency score é;. and the efficiency

score of the dummy process 3 associated to the first stage, which is 1. Analogous is

the derivation of ¢! as a function of @fo. Once the adjusted efficiency scores are

obtained, the overall efficiency of the evaluated unit is ef = min {e]’-o, e/ } As long as

the calculation of the adjusted efficiency scores are based on concepts introduced by
Kao (2014a), our results are comparable to those obtained by applying his
methodology (see illustration below). As already noted though, in essence our
methodology differs in the optimality criterion used. The optimality criterion in the
“weak-link” approach is to maximize the lowest of the stage efficiencies, following a

max-min modelling technique, whilst the optimality criterion in Kao (2014a) is to
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maximize the overall efficiency. The notions in Kao (2014a) are consistent with the
multiplicative decomposition approach (Kao and Hwang, 2008), where the overall
efficiency is defined as the ratio of the total virtual external output (uY + uK) to the

total virtual external input (vX + yL).

IHlustration

As an illustrative example we use a synthetic case with 30 DMUSs, three inputs to
stage-1 (X1-X3), two intermediate measures (Z1, Z2), two final outputs from stage-1
(K1, K2), two extra inputs to stage-2 (L1, L2) and two final outputs from stage-2 (Y1,
Y2). Table 5.10 exhibits the data, which are drawn column-wise from a uniform

distribution in the intervals given in the last row of Table 5.10.

Table 5.10: Synthetic data for the general two-stage process

DMU X1 X2 X3 Z1 Z2 K1 K2 L1 L2 Y1 Y2

1 223 132 546 1101 66.1 218 446 18 31 13.3 125
2 68.3 8.3 158 754 1164 198 12 196 258 2.4 18.2
3 52 192 312 943 599 473 474 115 225 2.3 36
4 31.8 12 403 664 1272 105 358 168 371 3 195
5 95.3 12 29 108.9 523 15 22,5 14 27.2 158 16.7
6 52.8 6.1 226 1024 788 69.6 27 148 449 126 204
7 50.5 9.3 48.7 1246 1206 522 49.8 5.9 38.5 9.5 20.5
8 80.1 174 584 645 1312 377 146 103 656 167 399
9 53.9 14 369 1298 1221 609 241 119 495 16.8 15
10 20.9 9.5 488 66.4 1325 122 687 101 545 10 28.3
11 82.5 7.1 16.8 719 1389 477 60.7 5.6 19.1 197 336
12 27 106 256 519 844 473 633 11 39.6 122 437
13 496 107 206 1255 973 153 326 177 389 189 447
14 55.7 194 466 915 1173 79 603 118 264 7.5 38.7
15 551 182 525 901 61 122 249 17 335 172 439
16 66.3 8 349 1311 637 57 30.7 107 525 112 155
17 93.3 6.3 435 535 1339 386 321 134 45 19.7 154
18 108 119 315 1187 894 349 236 11 67.3 8 205
19 98.5 6.8 213 754 133 28 289 161 26.7 9.5 20.3
20 278 171 249 81 522 306 143 169 353 174 154
21 42 7.2 59.7 984 1475 292 394 148 423 107 445
22 98.7 8.5 51 1328 606 273 693 198 619 199 333
23 535 156 257 935 1216 313 346 197 565 13 47.6
24 251 167 568 816 1456 621 748 117 174 7.6 29.9
25 96.3 153 451 1205 1336 257 568 197 169 149 385
26 97.9 6.8 531 1038 898 457 496 177 56.3 4.9 125
27 37.4 15 155 631 1282 531 22 55 57.7 5.8 11.8
28 70 128 215 1261 972 283 443 114  56.7 4.9 47.2
29 24 5.8 338 912 826 737 762 194 424 7.8 10.3
30 486 186 559 126 738 154 576 171 762 132 256

[10,100] [5,20] [10,60] [50,150] [50,150] [10,80] [10,80] [5,20] [10,80] [2,20] [10,50]
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Table 5.11 below exhibits the independent stage efficiency scores as well as the

results obtained by applying the proposed max-min approach.

Table 5.11: Results obtained from phase Il (same as from phase )

DMU E! E? 0 8t 82 e' e e°
1 0.7338 0.7327 0.9199 0.6750 0.6740 0.7326 0.7607 0.7326
2 1 0.4751 0.9792 0.9792 0.4652 0.9895 0.4732 0.4732
3 0.7608 1 0.9608 0.7310 0.9608 0.7987 0.9735 0.7987
4 0.8938 0.4268 0.8715 0.7789 0.3719 0.8790 0.3719 0.3719
5 0.6914 1 0.8272 0.5719 0.8272 0.6309 0.8272 0.6309
6 1 0.6708 1 1 0.6708 1 0.9507 0.9507
7 0.8812 0.6316 0.9609 0.8467 0.6069 0.9207 0.6117 0.6117
8 0.5496 0.9796 0.9120 0.5012 0.8934 0.5780 0.8934 0.5780
9 0.8656 0.7555 0.9554 0.8270 0.7218 0.8700 0.7253 0.7253
10 1 0.6316 1 1 0.6316 1 0.9089 0.9089
11 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1
13 1 0.8690 0.9677 0.9677 0.8409 0.9888 0.8409 0.8409
14 0.6687 0.9337 0.9999 0.6686 0.9336 0.6690 0.9997 0.6690
15 0.4215 1 0.9804 0.4132 0.9804 0.6281 0.9804 0.6281
16 0.9813 0.7660 0.7669 0.7525 0.5874 0.7897 0.6318 0.6318
17 1 1 0.9344 0.9344 0.9344 0.9496 0.9383 0.9383
18 1 0.5189 1 1 0.5189 1 0.5538 0.5538
19 1 0.5096 0.9757 0.9757 0.4972 0.9890 0.4972 0.4972
20 0.7676 1 0.9261 0.7109 0.9261 0.7549 0.9317 0.7549
21 1 0.7871 0.9969 0.9969 0.7846 0.9987 0.7846 0.7846
22 0.9591 1 0.8374 0.8031 0.8374 0.8264 0.8437 0.8264
23 0.8255 0.7260 0.9899 0.8171 0.7186 0.9100 0.7367 0.7367
24 1 0.9035 0.9597 0.9597 0.8671 0.9668 0.9571 0.9571
25 0.6613 1 1 0.6613 1 0.7661 1 0.7661
26 0.9447 0.2427 0.9727 0.9189 0.2361 0.9299 0.2688 0.2688
27 1 0.3791 1 1 0.3791 1 0.7900 0.7900
28 1 1 0.9030 0.9030 0.9030 0.9561 0.9143 0.9143
29 1 0.3762 1 1 0.3762 1 0.9807 0.9807

30 0.6246 0.6813 0.8876 0.5544 0.6047 0.6022  0.7161  0.6022

The results obtained by applying the methodology proposed in Kao (2014a) are
presented in Table 5.12. The two approaches deem the same DMUs as overall
efficient, namely DMUs 11 and 12. As regards the individual stage efficiencies our
approach reckons as efficient seven units in stage-1 (i.e. 6, 10, 11, 12, 18, 27 and 29)
and three in stage-2 (i.e. 11, 12, and 25), while the approach of Kao (2014a) deems
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efficient nine units in stage-1 (i.e. 6, 10, 11, 12, 13, 18, 21, 27 and 29) and five in
stage-2 (i.e. 5, 11, 12, 20, 25).

Table 5.12: Results obtained from applying the methodology of Kao (2014a)

DMU el e? E| En e°
1 0.6883 0.6161 0.6971 0.8960 0.6246
2 0.9565 0.4751 0.9783 0.4902 0.4796
3 0.6375 0.8472 0.9998 0.8472 0.8471
4 0.3856 0.3971 0.3858 0.9990 0.3855
5 0.3873 1 0.5770 1 0.5770
6 1 0.5642 1 0.9999 0.9999
7 0.8020 0.6315 0.9007 0.6455 0.5814
8 0.5419 0.8522 0.7791 0.8527 0.6643
9 0.7223 0.7498 0.7701 0.8361 0.6439
10 1 0.4816 1 0.9999 0.9999
11 1 1 1 1 1
12 1 1 1 1 1
13 1 0.8183 1 0.8425 0.8425
14 0.6137 0.7925 0.9994 0.7925 0.7921
15 0.3624 0.8614 0.8470 0.8614 0.7296
16 0.6033 0.4926 0.6033 0.9998 0.6032
17 0.9395 0.9300 0.9538 0.9342 0.8910
18 1 0.3284 1 0.9998 0.9998
19 0.8792 0.5096 0.9350 0.5378 0.5028
20 0.6679 1 0.7371 1 0.7371
21 1 0.7842 1 0.7842 0.7842
22 0.6347 0.9516 0.7349 0.9612 0.7064
23 0.8094 0.7190 0.9148 0.7527 0.6886
24 0.9331 0.8448 0.9331 0.9999 0.9330
25 0.5644 1 0.9997 1 0.9997
26 0.5552 0.2146 0.5553 0.9996 0.5551
27 1 0.2806 1 0.9998 0.9998
28 0.7393 0.9714 0.9075 0.9714 0.8815
29 1 0.3473 1 0.9998 0.9998
30 0.4752 0.6728 0.5892 0.7602 0.4479

Figure 5.17 exhibits the Pareto fronts (curves AB) of four indicative units
(namely, units 1, 5, 16 and 30) shown in Table 5.11. The points E represent the ideal
points whose coordinates are the independent efficiency scores of the two stages,
whereas the points C correspond to the assessed stage efficiency scores. The points A
and B, which represent the extreme points on the Pareto fronts, are obtained by

solving analogous LPs to models (5.12) and (5.13), these models are given in the
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Appendix. Notice that the points C are formed by the intersection of the ray from the

origin to the point E with the Pareto front.
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Fig. 5.17: Pareto fronts and Pareto optimal solutions for four indicative units

Before concluding remarks are drawn, it is worth having a more detailed portrayal
about the usefulness of the phase Il of our approach. For this purpose we create a
hypothetical scenario by employing the unit 24. The solution obtained by model
(5.30) for the unit 24 is depicted, in Figure 5.18, on the point B(0.9597, 0.8671) which
lies on the Pareto front. Therefore, the phase Il did not alter this solution. However, in
case different weights than the ideal efficiency scores will be used in the max-min
model (5.30) then a different solution will derive. For instance, the two extreme points

A and F are obtained by using the following weights:
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: E? Nt
For the point A(N%,E?): gf = N11EZ’ as = N1+EZ
N? F _ Et

For the point F(E',N?): qf =

Bringing into play any weighting scheme between (q,,q,) Where q; € [qf,¢] and
q2 € [q4, q%1, will yield a solution that is located on the boundary AF. Notice, that the
weak efficient solutions lie along the boundary line segment [C—> F), where the
parenthesis signifies that F is an open endpoint. The point F depicts a Pareto optimal
solution. Assuming for unit 24, the weights g; = 1 and g, = 0.8997 instead of q, =
E3, and q, = EZ, in model (5.30), then the phase | yields the stage efficiencies e, =
0.9623 and eZ, = 0.8658, which in Figure 5.18 are represented by point D(0.9623,
0.8658). Point D lies on the segment CD of the boundary which is parallel to the
horizontal axis, thus point D is weak Pareto. This issue is treated by the phase Il of
our method. Indeed, by employing model (5.31) of phase Il we derive the Pareto
optimal point F(1, 0.8658), which indicates that the efficiency of the first stage is
improved. This example demonstrates the potential issues that our phase Il can deal

with.
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Fig. 5.18: Pareto front and optimal solution for unit 24
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Conclusion

We introduced in this chapter a novel approach to two-stage network DEA based on
our composition approach presented in Chapter 4. We used a multi-objective
formulation and a max-min programming technique to assess the individual stage
efficiencies and the overall system efficiency, by maximizing the lowest of the stage
efficiencies (weak link). The two-phase procedure that we proposed provides Pareto
optimal solutions and a unique point on the Pareto front in the objective functions
space, i.e. unique efficiency scores for the two-stages. The search direction is driven
by the assumption that the efficiency scores of the two stages are proportional to their
independent counterparts. Thus, a point is located on the Pareto front along this
direction by maximizing the minimum of the stage efficiency scores. Then the system
efficiency is given as the minimum of the stage efficiencies. Although the above
assumption is rational, it is not restrictive in our models. External priorities for the
two-stages might be assumed to locate a different point on the Pareto front, i.e.
different stage and overall efficiencies. A systematic investigation of the sensitivity of
the weak link was also provided in order to identify adequately the source of
inefficiency. An issue that needs further investigation is the derivation of efficient
projections for the inefficient units directly from the proposed models. Our approach
is developed to deal with the four types of two-stage processes (as those categorized
in Chapter 3). A subject for future research is the extension of the weak-link approach

to general network structures involving series and parallel processes.
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Chapter 6

Two-stage Network DEA when intermediate
measures can be treated as outputs from the second
stage

In this chapter we revisit the work of Aviles-Sacoto et al (2015) to provide an alternative
modeling approach to the assessment of the efficiencies of undergraduate business programs,
in the context of network DEA, in a peculiar situation where one of the intermediate
measures must be considered as input to the second stage and, at the same time, as output of
the second stage. The motivating situation in Aviles-Sacoto et al (2015) refers to the
assessment of the efficiency of undergraduate business programs viewed as two-stage
processes, as depicted schematically in Figure 6.1. At the first stage the assessment is focused
on the outcomes which the students achieve before graduation while the second stage

captures the accomplishments after graduation.

DMU
X1 Z1
> > Y,
X, Z, "
» Stagel » Stage 2 Z,
X3 Zs >

Fig. 6.1: The output Z3 from stage-1 is considered simultaneously as input and output of
stage-2

Aviles-Sacoto et al (2015) viewed the undergraduate business programmes as two stage
processes and they studied 37 business schools. Table 6.1 exhibits the variables that are taken
into account with correspondence to Figure 6.1. A special case of their setup is already
examined in section 5.1.3 of previous chapter, where we applied the “weak-link” approach

and the complete data set of studied 37 schools of business is also given (Table 5.8).
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Table 6.1: Variables of the undergraduate business programs

External Inputs (X) Intermediate Measures (Z) External Outputs (Y)
Percentage of applicants Percentage of accepted Percentage of students who get
rejected (X1) applicants enrolled (Z1) jobs (Y1)

. . Percentage of students receiving Percentage of students receivin
Academic rating (X2) g g g g

institutional scholarships (Z2) internships (Zs)
Percentage of students in top Percentage of students receiving
25% of their classes (X3) internships (Zs)

Aviles-Sacoto et al (2015) describe convincingly that the output Zs of the first stage
should be considered both as an input to the second stage and as an output from the second
stage (external output). Their modeling approach is based on the additive decomposition
method of Chen et al (2009b), according to which the overall efficiency of the unit is defined
as a weighted arithmetic average of the stage efficiencies. However, asserting that the
conventional additive decomposition methodology is not applicable to such a peculiar
situation (we will comment on this issue in the next section), they define the efficiencies of
the two stages in an output-oriented VRS setting, in compliance of the modified network

structure exhibited in Figure 6.2, as follows:

3 1 2 2
e, = Zi:l ViXjp t U e, = Zd:l NaZgo T U
1 — 2 yE2 —
Ya=1NaZdao + 3230 U1Y10 + 9Z30 — h2Z3,

(6.1)

and the overall efficiency of the unit as a weighted arithmetic average of the stage
efficiencies:

3 1 2 2
Yic1ViXip T U+ XG-1MaZao T U

ey = wieq +wye, = 6.2
0 s 27 Y a—1MaZao + M3Z30 + W1 Y10 + 9230 — hZ3, (62)
with appropriate weights:
_ Z(Zizl NaZao t M3Z30
W =535
Ya=1NaZdo T N3Z30 + W1Y1o + 9Z30 — hz3,
(6.3)
U1Y10 + 9Z30 — hZ3o
W

Y a—1MaZao + M3Z30 + U1 Y10 + 9230 — hZ3,
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DMU
X,
— > M R u Yy
e > Stage 1 . Stage 2 .
age
VX R rZ R g g7z, R
v ’7323 v _hZS

Fig. 6.2: The modified network structure

On the basis of the above definitions, the following mixed-integer linear program with binary

variables is proposed to assess the overall and the stage efficiencies:

— ; 3 1 2 2
€0 = MINYi_1 ViXjo + 11 + Xg=1 TaZao + U

s.t.

2
Z TgZgo + 8230 + UY10 + VZ30 — P23, =1

d=1
3 2

Zvixij + ,ul - z TgZgj — 6Z3j >0, V]

i=1 d=1
2

z MaZaj + U2 — Wysj — vZsj + Pz3j =0, Vj (6.4)

d=1

§—y—-p=0

y—Me<0

B—Mf <0

et+f=1

v;, g, U, 0,7, B = 0;e, f binary

ul, u? unrestricted in sign

Model (6.4) is based on the output oriented VRS variant of the additive decomposition model
of Chen et al (2009b). The variables v;, 14,713, U1, g, h, ut,u? in the above ratio forms (6.1)

and (6.2) of the individual and the overall stage efficiencies are in correspondence with the
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variables v;, g, 8, 1,7, B, ut, u? in the linear model (6.4), obtained after applying the

transformation of Charnes and Cooper (1962).

6.1 Comments

While the definition of the efficiency of stage-1 in (6.1) is obvious, in the second stage the
intermediate measure Zz is moved from the input to the output side with a negative sign (-
hZs). So, in the denominator of the efficiency ratio of stage-2, which in fact represents the
total virtual output of the second stage, the Zs is counted twice, once with a positive and once
with a negative sign. This was deemed necessary by the authors after their observation that
putting Z3 in both the numerator and the denominator of the efficiency ratio of the second
stage, as in the following model (6.5), leads to erroneous results, in the sense that the second
stage will be always efficient. This argument is supported by assuming a feasible solution
where all the variables but g and h are set to zero and g=h. Although such a solution is
optimal when the second stage is assessed independently, in a joint assessment, as that
imposed by the additive decomposition method, this is not necessarily true. This is validated
in the next section. Moreover, forcing the free variable u? to take a zero value does not allow

the unit to freely exhibit increasing or decreasing returns-to-scale.

Z?i:l NaZao + hZBo + uZ
U1YV10 T 9Z30

mine, =

s.t.
(6.5)

Z(Zizl r’dzdj + hZ3j + uz

U1y1j + 9zsj

> 1 Vj

Uy, Mg, g, h = 0,u? unrestricted in sign

The last four constraints in (6.4) designate the role of intermediate measure Zs. In
particular, when in the optimal solution the binary variables take the valuese =0, f = 1,
then y = 0,8 = 6 and the intermediate measure Zz is considered as input to stage-2, as
depicted in Figure 6.3(a). Notice again, that Zs is moved to the output side but with a negative

sign (-#Zz). In the case that the binary variables take the valuese = 1,f = 0,then § = 0,y =
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6 and the intermediate measure Z3 is considered as output from stage-2, as depicted in Figure
6.3(b). In every case, the weights assigned to Zz are the same, no matter if it is considered as

input or as output.

DMU
oy » 7z, - uYy
:))2 ; Stage 1 A ; Stage 2 ]
107, v P2
(a) Zz is input to stage-2
DMU
oty > ™z R ury
22;23 : Stage 1 1,7, : Stage 2 7
v 523

(b) Zs is output from stage-2
Fig. 6.3: The network structures designated by the role of Z3

Our main concern is that the assessments made by model (6.4) differentiate and diverge
from the initial argument that the intermediate measure Zz should be an input to the second
stage and at the same time an output from that stage. Actually, the modelling approach
followed leads to a different situation where Zs is either an input to or an output from the
second stage. In the next section, we present the appropriate model that complies with the

original situation set in Aviles-Scoto et al (2015).
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6.2 Modelling the situation where some outputs of
the first stage are inputs to the second stage and

outputs from that stage

Assuming an output orientation in both stages, we define the efficiencies of stage-1 and

stage-2 as follows:

Y1 vixg +ut Yi=1NaZqo + U°
e, = 2 8y = (6.6)
2d=1 NaZao U1Y10 + N3Z30
Then the overall efficiency, as per the additive model, is
3 1 3 2
i—1 ViXjo T U™ + 2= Zgo t U
eo = wye, + Woey = 21—131 io Zd—l NaZado (67)
Yia=1MaZdao + U1YV10 + N3Z30
with weights:
_ Y3=1MdZdo
Wy =53
Yia=1MaZdao +U1Y10 + M3Z30
(6.8)

_ U1Y10 T N3Z30
Y a—1MaZao + U1Y10 + N3Z30

W

The following fractional program provides the overall efficiency of the evaluated DMU:

3 1 3 2
Yic1ViXip T U+ Xg-1MaZgo T U

Y3=1MdZao + U1Y10 + N3Z30

ey = min

>1Vj (6.9)

Yi-1 NaZq; + u*
U y1j + N3Z3j

> 1 Vj

U, Mg, Vi = 0,ul, u? unrestricted in sign
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The linear model below, as derived by the Charnes-Cooper transformation, estimates the
overall efficiency of the DMU in compliance with the original network structure depicted in

Figure 6.1.

3

3
ey = minz ViXip + U+ ) myzg,+u?
i=1 d=1

s.t.

3
Z TaZgo + UY10 + T3Z3, = 1

d=1
(6.10)
3 3
1 .
Zvixij+,u —ZTL'dZdj >0, Vj
i=1 d=1

3

Z MaZaj + W2 — Wy — 3235 20, Vj
d=1

v, g, 1 = 0; ut, u? unrestricted in sign

Table 6.2 exhibits the results obtained from model (6.10). Columns 2-4 show the overall
efficiency and the weights w1 and w» that were assumed, whereas columns 5-6 show the
efficiencies of the two stages. Notice here that applying the leader/follower notion as
introduced in Chen et al (2009b), as a means to estimate extreme values for the stage
efficiencies, we have got identical efficiency scores for the two stages, which means that the
decomposition of the overall efficiency to the stage efficiencies is unique. Notice also that, as
advised in the original paper of Aviles-Sacoto et al (2015), we have carried out the analysis
by assuming that each one of the weights w1 and w>, which are used to aggregate the stage
efficiencies, will take at least a value of 0.1.
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Table 6.2: Results obtained from model (6.10)

DMU € w; w, e, e,
1 105.89 0.10 0.90 108.04 105.65
2 105.29 0.50 0.50 110.58 100.00
3 102.68 0.47 0.53 100.00 105.03
4 105.29 0.47 0.53 106.38 104.31
5 105.31 0.47 0.53 106.04 104.65
6 105.20 0.50 0.50 110.41 100.00
7 100.17 0.50 0.50 100.34 100.00
8 106.12 0.50 0.50 112.23 100.00
9 100.00 0.10 0.90 100.00 100.00
10 100.00 0.50 0.50 100.00 100.00
11 104.24 0.10 0.90 108.37 103.78
12 101.66 0.10 0.90 116.62 100.00
13 100.00 0.50 0.50 100.00 100.00
14 104.03 0.50 0.50 108.06 100.00
15 107.67 0.10 0.90 107.94 107.64
16 100.00 0.50 0.50 100.00 100.00
17 101.75 0.50 0.50 103.49 100.00
18 101.23 0.50 0.50 102.46 100.00
19 100.00 0.50 0.50 100.00 100.00
20 106.59 0.10 0.90 129.38 104.06
21 100.00 0.50 0.50 100.00 100.00
22 105.79 0.10 0.90 117.28 104.51
23 104.60 0.50 0.50 109.20 100.00
24 100.00 0.50 0.50 100.00 100.00
25 130.22 0.62 0.38 126.30 136.57
26 100.00 0.50 0.50 100.00 100.00
27 103.38 0.50 0.50 106.77 100.00
28 113.53 0.50 0.50 127.06 100.00
29 100.00 0.50 0.50 100.00 100.00
30 111.72 0.50 0.50 123.44 100.00
31 100.00 0.50 0.50 100.00 100.00
32 108.35 0.50 0.50 116.70 100.00
33 100.00 0.50 0.50 100.00 100.00
34 100.00 0.50 0.50 100.00 100.00
35 120.67 0.63 0.37 100.00 155.50
36 113.63 0.50 0.50 127.25 100.00
37 100.00 0.50 0.50 100.00 100.00

In the next section we provide a model to assess the efficiency of the units under the
assumption that the intermediate measure Z3 is either input to the second stage or output
from that stage.
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6.3 Modelling the situation where some outputs of
the first stage are either inputs to the second

stage or outputs from that stage

In a manner analogous to that introduced in Aviles-Sacoto et al (2015), we define the stage
and the overall efficiencies, on the basis of the modified network structure depicted in Figure

6.4, as follows:

3 1 2 2
2i-1ViXjp T U _ 2a=1MaZao + hzz, + u

= e (6.11)
Yi—1MaZao + N3Z30 + hz3, 2 U1Y10 T 9Z30

€1

and the overall efficiency of the unit as a weighted average of the above stage efficiencies:

3 2
Xi=1 ViXio +u1+2d=1 NaZdo+hzzo+u?

2
Ya=1MdZdo+N3Z30+thZ30+tU1YV10+9Z30

ey = Wieq + wre, =

(6.12)
where the weights are selected appropriately as follows (cf. Chen et al, 2009b):
_ 2(21=1 NaZao t M3Z30 + hZ30
Wy = 2
Yia=1MdZdo + N3Z30 + hZ30 + U1 Y10 + G730
(6.13)

_ U1Y10 + 9Z30
Ya—1NaZao + M3Z3o + hz3p + Uy Y1, + 923,

w
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DMU
V]'Xl > anl u, Y]_
Yete * Stage 1 22 Stage 2
e > age 7
vXs | hZ, g g% ,
v 323

Fig. 6.4: An alternative modified network structure

According to the above definitions and applying the Charnes-Cooper transformation we
propose the following linear program with binary variables to assess the overall and the stage
efficiencies:

3 2
e, = minz ViXio + Ut + ) Tazge + Bz3e + u?

i=1 d=1
s.t.

2
z TqZgo + 0230 + Y10 + VZ30 + P23, =1

d=1
3 2

Zvixij + ,Lll - z TgZgj — 6Z3j - ﬁZ3O >0, V]

i=1 d=1

2 _ (6.14)
Z TaZqj + W* — Wy —VZ3; + Bz3; 20, Vj

d=1

6—y=0

y—Me<0

p—Mf<0

et+f=1

v;, g, 14, 0,Y, B = 0;e, f binary

ul, u? unrestricted in sign

Analogously to (6.4), the last four constraints in (6.14) designate the role of intermediate

measure Zz. In particular, when in the optimal solution the binary variables take the
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valuese = 0,f =1, theny = § = 0 and the intermediate measure Zs is considered as input
to stage-2, as depicted in Figure 6.5(a). When the binary variables take the valuese = 1, f =
0, then f = 0,y = 6 and the intermediate measure Zs is considered as output from stage-2, as
depicted in Figure 6.5(b). Notice that the latter network structure is identical to that assumed
in Aviles-Sacoto et al (2015). The differentiation is in the structure of Figure 6.5(a), where Z3

is conventionally treated, similarly to the other intermediate measures.

DMU
01X N mZy
uYy
X N oz, >
Stage 1 »  Stage 2
v3X3 , BZs
(a) Zz is input to stage-2
DMU
X
i > mZy uYy
bete » Stage 1 " Stage 2 ]
age
1)3‘X3 > 7[222 > g st >
19023

(b) Zs is output from stage-2
Fig. 6.5: The two network structures designated by the role of Z3

If it is to avoid solving LPs with binary variables, one could equivalently apply the
conventional additive decomposition models with respect to the network structures in Figure
6.5 (a) and (b) and then choose the minimum of the two estimated overall efficiencies as the
final result. Table 6.3 exhibits the results obtained from model (6.14). Columns 2-4 show the
overall efficiency and the weights assumed, column 5 shows the input/output characterization
of the intermediate measure Z3 as decided by the binary variables e and f, whereas columns 6-
7 show the efficiencies of the two stages. Applying the leader/follower notion, we have got
identical efficiency scores for the two stages, which means that the decomposition of the

overall efficiency to the stage efficiencies is unique.
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Table 6.3: Results obtained from model (6.14)

DMU €o w; w, Output/Input e e,
1 106.14 0.10 0.90 Output 107.31 106.01
2 110.51 0.40 0.60 Output 106.56 113.09
3 101.19 0.29 0.71 Output 100.85 101.32
4 105.16 0.28 0.72 Output 105.67 104.96
5 105.09 0.29 0.71 Output 104.89 105.17
6 108.26 0.39 0.61 Output 103.18 111.57
7 104.24 0.50 0.50 Output 100.34 108.14
8 110.59 0.37 0.63 Output 114.97 107.99
9 100.00 0.26 0.74 Output 100.00 100.00
10 100.00 0.29 0.71 Output 100.00 100.00
11 104.11 0.10 0.90 Input 105.68 103.93
12 101.42 0.10 0.90 Input 114.24 100.00
13 106.98 0.90 0.10 Input 100.00 169.79
14 111.00 0.50 0.50 Output 108.22 113.83
15 107.92 0.10 0.90 Output 107.74 107.93
16 106.84 0.57 0.43 Input 100.00 115.89
17 105.69 0.39 0.61 Output 103.49 107.12
18 104.14 0.28 0.72 Output 103.07 104.55
19 100.00 0.51 0.49 Output 100.00 100.00
20 104.61 0.10 0.90 Input 135.17 101.22
21 108.25 0.56 0.44 Output 100.00 118.76
22 105.51 0.10 0.90 Input 120.50 103.85
23 114.78 0.39 0.61 Output 100.00 124.30
24 100.00 0.82 0.18 Output 100.00 100.00
25 137.46 0.66 0.34 Input 119.34 173.39
26 106.14 0.58 0.42 Output 100.00 114.70
27 108.51 0.39 0.61 Input 117.32 102.81
28 118.55 0.51 0.49 Input 124.95 112.01
29 105.83 0.90 0.10 Input 100.00 158.32
30 128.37 0.68 0.32 Input 104.15 178.87
31 101.44 0.55 0.45 Input 100.00 103.19
32 112.41 0.60 0.40 Input 100.00 131.26
33 105.75 0.50 0.50 Output 100.00 111.49
34 105.36 0.50 0.50 Output 100.00 110.72
35 116.58 0.61 0.39 Input 104.46 135.87
36 116.15 0.56 0.44 Input 123.35 107.08
37 100.00 0.90 0.10 Input 100.00 100.00
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Conclusion

We presented in this chapter an alternative two-stage network DEA approach to the
assessment of the efficiencies of undergraduate programs in a peculiar situation where one of
the intermediate measures must be considered as input to the second stage and, at the same
time, as output of the second stage. Our contribution to this issue is motivated by an
observation we made that the original modeling approach followed in Aviles-Sacoto (2015)
arbitrarily, yet unnecessarily, deviates from that setting and designates a different situation
where the specific intermediate measure is viewed either as input to or as output from the

second stage of the process.
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Chapter 7

Conclusion

The field of study of this thesis is the network Data Envelopment Analysis, which is an
important extension of the Data Envelopment Analysis. We conducted a critical survey of the
network DEA literature as well as we introduced novel network DEA methods for the

performance assessment of the DMUSs that consist of several sub-processes.

Initially, we emphasized the advantages of the network DEA over the conventional DEA
and the new insights and possibilities that offers the former in the area of performance
measurement. When the internal structure of the DMU is known and the interrelations among
its sub-processes can be accurately depicted, then it is strongly recommended to avoid the
traditional perception of standard DEA that regards the DMU as a “black box”. Instead, it is
proposed that network DEA methods should be employed for the performance evaluation.
However, cautions should be taken because as we discussed and proved, there are some
deficiencies in the recent developments of network DEA. Hence, we carried out a thorough
categorization and critical survey of the state-of-the art network DEA methods, we unveiled
their relations and differences, we uncovered their defects and we revealed the effects of
these shortcomings in the efficiency assessments. We classified a great volume of network
DEA studies based on the assessment approach they follow. In particular, we defined two
assessment paradigms, the independent and the joint. In the independent assessment
paradigm the standard DEA models are employed to assess the performance of the DMUs
and the sub-processes separately. On the contrary, in the joint assessment paradigm the DMU
and its sub-processes are jointly evaluated. We specified three approaches as representatives
of the joint assessment paradigm, namely the efficiency decomposition approach, the slacks-
based measure approach and the system-centric approach. The categorization of the
approaches was based on the way they conceptualize the relationship between the system
(DMU) and the stage efficiencies as well as on the kind of information that they provide for
the performance of the individual stages and the system. We revealed the drawbacks of the
existing network DEA methods concerning the returns to scale, the inconsistency between
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their multiplier and envelopment models, the non-unique efficiency scores and the inability to
be universally applied on every type of network structure. Also, we proved that the additive
efficiency decomposition method provides biased efficiency assessments and we established
the properties that the network DEA methods should meet.

Then, we introduced the composition approach to two-stage network DEA, as opposed to
the efficiency decomposition approach. Our novel approach overwhelms the shortcomings
spotted for the additive and the multiplicative decomposition methods, i.e. it provides unique
and unbiased efficiency scores. Contrary to the decomposition approach, in composition
approach we first estimate the stage efficiencies and then we aggregate them either additively
or multiplicatively to obtain the overall efficiency. In the frame of our composition approach,
the efficiency assessment of the two-stage process is formulated as a multi-objective
mathematical programming problem. In particular, we formulated a bi-objective
mathematical program by assuming an output orientation for the first stage and an input
orientation for the second stage, where the intermediate measures were used as the basis to
link the efficiency assessments of the two stages. We employed two scalarization techniques
S0 as to convert the bi-objective problem to a single objective LP. Firstly, based on the L
norm we aggregated the two objective functions of the bi-objective program additively,
without giving any priority between them; the application of this scalarizing function yields
an extreme (vertex) Pareto-optimal solution. Then, we employed a min-max scalarization
technique, i.e. the Tchebycheff norm (L), which provides a point on the Pareto front not
necessarily extreme. Also, we developed two methods to derive the efficient frontier in two-
stage DEA and provide efficient projections. The first naturally stems from our composition
approach, while the second seeks to provide efficient projections by causing the less change

on the original levels of the intermediate measures.

Next, we built upon the composition approach and we introduced the “weak-link”
approach to two-stage network DEA, which inherits the nice properties of the former, i.e.
provides unique and unbiased efficiency scores. Also, the “weak-link” approach can be
readily applied to various types of two-stage network structures. In this approach, we
introduced a novel definition about the overall efficiency of the DMU, inspired by the “weak
link” notion in supply chains and the maximum-flow/minimum-cut problem in networks. We
incorporated this notion into the assessment by assuming that given the stage efficiencies, the
system efficiency can be viewed as the maximum flow through the network and can be

estimated as the min-cut of the network, i.e. the system efficiency derives as the lowest of the
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stage efficiencies. We mathematically represented this concept by employing a two-phase
max-min optimization method in a multi-objective programming framework, which seeks to
maximize the minimum weighted achievement from zero-level efficiency, i.e. maximizing
the lowest of the stage efficiencies (weak link). The proposed two-phase procedure estimates
the stage efficiencies and the overall efficiency simultaneously by providing a unique Pareto
optimal solution. The search direction towards the Pareto front is driven by the assumption
that the stage efficiencies are proportional to their independent counterparts. External
priorities can be also introduced explicitly to our methodology so as to obtain alternative
Pareto optimal solutions. We conducted a systematic investigation of the sensitivity of the
weak link so as to identify the source of inefficiency in the two-stage processes. A thorough
comparison with the multiplicative decomposition method illustrates the advantages of the

“weak-link” approach.

Finally, we revisited the work of Aviles-Sacoto et al (2015) who evaluated a peculiar
situation of 37 undergraduate business programs in U.S. as two-stage processes, where some
of the intermediate measures are inputs to the second stage and at the same time external
outputs from that stage. We revealed that their modelling approach departs from the
described setting and adapts a different situation, where the specific intermediate measure is
viewed either as input to or as output from the second stage of the process. We alternatively
proposed a different modelling approach for the performance assessment of the specific two-

stage process under examination.

Closing this thesis, we remark that out methods can be straightforwardly applied to real
word problems. For instance, the natural representation of the supply chain operations as a
multi-stage process is indicative of the synergy of supply chain management with network
DEA, as they benefit mutually from the development of methodological tools for
performance measurement. A subject for future research is the extension of the composition
and the “weak-link” approaches to general network structures involving series and parallel
processes. A universal network DEA method that could be applied to every type of network
structure would be advantageous. Also, future studies could be focused on the revision of the
system-centric methods, so as to yield the stage efficiency scores except from the overall
efficiency. Moreover, a topic that should be revisited is the returns to scale in network DEA
models. Another issue that is worth investigating in network DEA is the perfect mapping
between the multiplier and the envelopment models of each approach, in order to provide

efficient projections. Finally, it is anticipated that the conclusions drawn from this thesis will
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assist the analyst to be accustomed with the network DEA, will be inspirational for exploring
new ideas and will serve to advance and disseminate both the theoretical and the problem-
driven research. Undoubtedly, further development of the network DEA methods is needed
so as to widen the application field, to aid the decision makers to address the increasing
complexity of the organizations and improve their performance and to extend the frontiers of

research in DEA.

Implementation comment: All models presented in this thesis are developed and tested in
MATLAB (MATLAB 8.0, The MathWorks Inc., Natick, MA, US, 2012) in combination with an

open source mixed integer linear programming (MILP) solver (Ip_solve 5.5.2.5).
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The case of a two-stage process with a single

intermediate measure

As noticed in Chapter 4 (see Theorems 4.5 and 4.6), in a two-stage production process of
Type | (Fig. 4.1) with a single intermediate measure, the stage efficiency scores derived by
our composition approach are identical to the independent efficiency scores. We provide an
illustrative example by applying our approach, under CRS and VRS assumption, to the data
set used by Chen and Zhu (2004) for measuring information technology’s indirect impact on
firm performance in the banking industry in the years 1987-1989. The original data set
studied in Wang et al (1997) consists of 36 observations with negative profits, however, as
long as the current study have different goals from Wang et al (1997) we follow Chen and
Zhu (2004) who chose to remove the observations with negative profits. Twenty seven firms
in the banking industry use, in the first stage, as inputs the fixed assets (X1), the number of
employees (X2) and the IT investment (X3) to generate the single intermediate measure
Deposits (Z1). In the second stage the single intermediate measure Deposits (Z1) is converted
into the profit (Y1) and the fraction of loans recovered (Y2). The data set is presented in
Table A.1.

Bank
YT IS
Fixed asseis —E—- Dieposits ; Profit
Employess —  Stage | Stage ? '
IT investment —I'—i —:-P- Loans Recoversd

Fig. A.1: Bank operations as a two-stage process
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Table A.1: IT data set (source: Chen and Zhu, 2004)

. Number of . . Fraction of
DMU Fixed assets IT budget employees Deposits Profit loans
(X1) (X2) (X3) (21) (Y1) recovered

(Y2)

1 0.713 0.15 13.3 14.478 0.232 0.986
2 1.071 0.17 16.9 19.502 0.34 0.986
3 1.224 0.235 24 20.952 0.363 0.986
4 0.363 0.211 15.6 13.902 0.211 0.982
5 0.409 0.133 18.485 15.206 0.237 0.984
6 5.846 0.497 56.42 81.186 1.103 0.955
7 0.918 0.06 56.42 81.186 1.103 0.986
8 1.235 0.071 12 11.441 0.199 0.985
9 18.12 15 89.51 124.072 1.858 0.972
10 1.821 0.12 19.8 17.425 0.274 0.983
11 1.915 0.12 19.8 17.425 0.274 0.983
12 0.874 0.05 13.1 14.342 0.177 0.985
13 6.918 0.37 12.5 32.491 0.648 0.945
14 4.432 0.44 41.9 47.653 0.639 0.979
15 4.504 0.431 41.1 52.63 0.741 0.981
16 1.241 0.11 144 17.493 0.243 0.988
17 0.45 0.053 7.6 9.512 0.067 0.98
18 5.892 0.345 155 42.469 1.002 0.948
19 0.973 0.128 12.6 18.987 0.243 0.985
20 0.444 0.055 5.9 7.546 0.153 0.987
21 0.508 0.057 5.7 7.595 0.123 0.987
22 0.37 0.098 14.1 16.906 0.233 0.981
23 0.395 0.104 14.6 17.264 0.263 0.983
24 2.68 0.206 19.6 36.43 0.601 0.982

Table A.2 exhibits the CRS and VRS efficiency scores that derived from our composition

approach presented in Chapter 4. Table A.2 exhibits the CRS and VRS efficiency scores that

derived from our composition approach presented in Chapter 4. As it was expected, the

efficiency scores are identical to their independent counterparts under both assumptions. In

addition, we remark that under CRS assumption, the stage efficiency scores obtained from

the additive and the multiplicative approaches are equal to the ones derived from our

approach; also the same observation holds for the additive approach under VRS situation.
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Table A.2: CRS and VRS efficiencies from models (4.13), (4.16), (4.25) and (4.26)

DMU gt CRS 82 CRS é°:(é1+é2)/2 gt VRS @2 VRS é°:(é1+é2)/2
1 0.6388 0.7459 0.6923 0.6776 0.8458 0.7617
2 0.6507 0.7819 0.7163 0.6678 0.9960 0.8319
3 0.5179 0.7730 0.6454 0.5357 1 0.7679
4 0.5986 0.7142 0.6564 1 0.7144 0.8572
5 0.5556 0.7236 0.6396 0.7079 0.7546 0.7313
6 0.7599 0.5758 0.6679 0.9680 0.6779 0.8229
7 1 0.5758 0.7879 1 1 1
8 0.5352 0.8250 0.6801 0.5400 0.8304 0.6852
9 0.6249 0.6347 0.6298 1 1 1

10 0.4961 0.7188 0.6075 0.5029 0.7680 0.6354
11 0.4945 0.7188 0.6067 0.5012 0.7680 0.6346
12 0.6685 0.5949 0.6317 0.7329 0.5950 0.6639
13 0.9487 0.8582 0.9034 1 0.8589 0.9295
14 0.5880 0.5782 0.5831 0.6967 0.7739 0.7353
15 0.6582 0.6034 0.6308 0.7782 0.8740 0.8261
16 0.6646 0.6434 0.6540 0.6681 1 0.8340
17 0.7177 0.7877 0.7527 1 0.7933 0.8967
18 1 1 1 1 1 1

19 0.8144 0.5926 0.7035 0.8188 0.6544 0.7366
20 0.6933 1 0.8467 1 1 1

21 0.7067 0.9935 0.8501 1 0.9935 0.9968
22 0.7942 0.6408 0.7175 1 0.6410 0.8205
23 0.7802 0.6993 0.7397 0.9600 0.7328 0.8464
24 0.9300 0.7135 0.8218 0.9629 0.9915 0.9772

Estimation of the extreme Pareto points

In the following, we provide the models that yield the independent (ideal) stage efficiencies

as well as the ones that produce the extreme boundary points of the feasible set in the

objective functions space, for the two-stage processes of Type 11, 1ll and 1V.

Two-stage process with extra inputs in the stage-2 (Type II)

Concerning the two-stage process with extra inputs to the second stage of Type Il (Fig. 5.5),

the input-oriented CRS-DEA models that independently estimate the stage-1 and the stage-2

efficiencies for the evaluated unit jo are as follows:
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pZ; wY;
1 _ 0 2 0
Ejo = maxT Ejo = maxZ—H
nAa; PLj, T g Jo
S.t.
_ @Ay St (A2)
n=&¢@=¢

p=Ew=2¢E9g=2¢

The following augmented models derive from models (A.1) and (A.2) by appending the
constraints of model (A.1) to model (A.2) and vice versa without affecting their optimal
efficiency scores, see Theorems 4.1 and 4.2.

E;, =max(p—Zj° E} =maxw—yjo

nX;, Zj0+ngO
s.t. s.t.
9Z —1X; <0, j=1,..,n (A3 oz —nX, <0, j=1,..n (A4)
Yy —@Z;—gL; <0, j=1..,n WY = @Zj— gL, <0, j=1,..,n
N2&QP2ew=2¢e,g2¢ n=&Qgw=¢e,g=¢

Given the ideal point (Ej{),Ej%) defined by the independent stage efficiency scores of the
evaluated unit jo, we derive the extreme points A(N;}, E? ) and B(E}., N>) on the upper-right

boundary of the feasible set in the objective functions space of (5.15) as follows:

For the point A(N}, E7 ), get N} as the optimal value of the objective function in

the following linear program:

1 frd .
Njo = max WZJO
S.t.

o =
uY;
Jo 2
— 0 > F:
WZ]o + yL]O Jo (AS)

ij —vX]- <0, j=1,..,n
uY; —wZ; —yL; <0, j=1,..,n

VZ2EWZEUZEY =E
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For the point B(E}, N7), get N7 as the optimal value of the objective function in

Jo’ " Jo

the following linear program:

2 - .
Nfo = max uY]o

s.t.
WZ]'O +]/L]0 =1

WZjo E1

. — Jo
vXJO

WZj —vXj <0, j=1,..,n

uY; —wzZ; —yL; <0, j=1,..,n

VZ2EWZEUZEY ZE

(A.6)

Two-stage process with extra outputs from stage-1 (Type III)

Concerning the two-stage process with extra outputs flowing out from the first stage of Type

Il (Fig. 5.10), we obtain the independent (ideal) efficiency scores using the input-oriented

CRS-DEA maodels for the evaluated unit jo as follows:

Ejl = max
0

s.t.

('OZ]'o + hKfo
n&X;

0Z; +th -nX;<0, j=1,..,n

n=&g@=gh=>c¢

(A7)

p=&w=¢€

(A.8)

By appending the constraints of one model to the other, as already described, we derive the

following augmented models:

Ejl = max
0

s.t.

n

(ijo + hKfo

X;

wY;—@Z; <0, j=1,..,n

N=&QP=2ew=¢&h>c¢

(A.9)

s.t.
0Z; +th -nX;<0,j=1,..,n
wY; —@Z; < 0, j=1,..,n

N=eg@=2¢&w=gh=>c

(A.10)
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Given the ideal point (E}, E? ) obtained from the above models for the evaluated unit jo, we

obtain the extreme boundary points A(N;!, E? ) and B(E}, N?) on the upper-right boundary

Jo

of the feasible set in the objective functions space of (5.22) as follows:

For the point A(N}, E? ), get N} as the optimal value of the objective function in

the following linear program:

1_

N =max wZ; + ukj
S.t.

UX]'O =1

w o,
. — o
WZJo

uV; —wZzZ; <0, j=1,..,n

V2EWZ2EU2EUZE

(A.11)

o

For the point B(Ej., N7), get N7 as the optimal value of the objective function in

the following linear program:
2 _
Nj, = max uYj
s.t.

>ElL
UX]

= "Jo
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General two-stage process (Type IV)

As regards the general two-stage process of Type IV (Fig. 5.14), the input-oriented CRS-
DEA models that estimate the stage-1 and the stage-2 efficiencies for the evaluated unit jo

independently are as follows:

Z; + hK; wY;
E. = max 2t~ 2T E? = max—2—
n¥X; ©Zj, + gL,
s.t.
a13) St (A.14)
¢Zj +hK; —nX; < 0,j=1,..,n WY —@Z— gL, <0,j=1,.,n

n=&p=gh=>c¢ P weg>e

By appending the constraints of one model to the other we derive the following augmented

models:
@Z; + hK; wY;
1 _ Jo Jo 2 _ Jo
Ejo = maxT Ejo = max—Z. T oL
n Jo PLj, 9 o
S.t. S.t.

@ZjthK;—nX; <0, j=1,.,n AL o7 +hK;—nX; <0, j=1,..,n (A0
wY; —@Z;—gL, <0, j=1,..,n WY = @Zj— gL, <0, j=1,..,n

nze&gp=2gw=2¢ghz2gg=¢ N=egQP=ew=eh>eg=c¢

Given the ideal point (E}, E? ) obtained from the above models for the evaluated unit jo, we
obtain the extreme boundary points A(Njf),E]f)) and B(E]-](-),N]%) on the upper-right boundary
of the feasible set in the objective functions space of (5.29) as follows:
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For the point A(N}, E? ), get N} as the optimal value of the objective function in

the following linear program:

1_

N; = max wZ; + ukj
S.t.

'UX]'O =1

quO > EZ
wZ; +yLj, — 7° (A.17)

wZ; +qu -vX; <0, j=1,..,n
uY; —wZ; —yL; <0, j=1,..,n

VZ2EWZEUZEUZEY ZE

For the point B(Ej., N7), get N7 as the optimal value of the objective function in

the following linear program:

2 —_ .
Njo = max uY]0

S.t.

Z: + uK;
Wij, T H, > Ejl (A.18)
UX] 0

wZj+puK; —vX; <0, j=1,..,n
uY; —wZ; —yL; <0, j=1,..,n

VZEWZEUZEUZEY ZE
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