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Περίληψη 

Η  συστηματική αποτίμηση της αποδοτικότητας ενός οργανισμού και η οριοθέτηση 

επιτεύξιμων στόχων αποτελούν συμπληρωματικές θεμελιώδεις πτυχές για την 

εύρυθμη λειτουργία του και τη βιωσιμότητά του. Συνεπώς, είναι απαραίτητη η 

υιοθέτηση τεχνικών αξιολόγησης που λαμβάνουν υπόψη όλους τους παράγοντες από 

το περιβάλλον λειτουργίας του οργανισμού, ώστε να εντοπίζουν τις μη αποδοτικές 

παραγωγικές διαδικασίες και να προτείνουν επαρκείς τρόπους για την βελτίωσή τους. 

Μια τέτοια τεχνική είναι η Περιβάλλουσα Ανάλυση Δεδομένων – ΠΑΔ (Data 

Envelopment Analysis - DEA), η οποία αποτελεί πλέον τη δημοφιλέστερη μη 

παραμετρική τεχνική για την αποτίμηση της αποδοτικότητας ομοειδών μονάδων ενός 

συστήματος (μονάδες απόφασης) επί τη βάσει πολλαπλών εισροών και πολλαπλών 

εκροών.  

Οι κλασσικές μεθοδολογίες της ΠΑΔ θεωρούν τις μονάδες απόφασης ως «μαύρα 

κουτιά» (black boxes) που χρησιμοποιούν εισροές για την παραγωγή εκροών, 

αγνοώντας την εσωτερική τους δομή. Αυτό έχει ως συνέπεια τα κλασσικά μοντέλα 

της ΠΑΔ να μπορούν μερικώς μόνο να ανταποκριθούν στην αποτίμηση της 

αποδοτικότητας όταν η εσωτερική δομή είναι γνωστή και κρίσιμη για τη λειτουργία 

της μονάδας. Το κενό αυτό έρχεται να καλύψει η Περιβάλλουσα Ανάλυση 

Πολυσταδιακών Διεργασιών (Network DEA), η οποία αποτελεί πρόσφατη επέκταση 

της κλασσικής ΠΑΔ. Πρόκειται για μια μεθοδολογία  που μπορεί να εφαρμοστεί για 

την αξιολόγηση μονάδων απόφασης, οι οποίες απαρτίζονται από πολλά μέλη (γνωστά 

και ως διεργασίες, υπο-διαδικασίες, υπο-μονάδες παραγωγής ή στάδια), διότι 

λαμβάνει υπόψη την εσωτερική τους δομή και τις σχέσεις αλληλεπίδρασης που τη 

συνοδεύουν. Η κάθε μονάδα απόφασης (σύστημα) λειτουργεί ως ένα δίκτυο από 

διατεταγμένες διεργασίες οι οποίες συνδέονται και αλληλεπιδρούν μέσω εσωτερικών 

ροών υποπροϊόντων (ενδιάμεσων μεγεθών), τα οποία έχουν διττό ρόλο διότι 

αποτελούν ταυτόχρονα εκροές μιας υπο-διαδικασίας και εισροές μιας άλλης. 

Ενδεικτικό παράδειγμα αποτελεί η εφοδιαστική αλυσίδα που περιέχει πολλά μέλη και 

η εύρυθμη ή η μη αποδοτική λειτουργία του κάθε μέλους αντανακλάται στη συνολική 

λειτουργία της. Συνεπώς, η εκτίμηση της συνολικής αποδοτικότητας της 

εφοδιαστικής αλυσίδας (συστήματος) πρέπει να γίνεται συντονισμένα λαμβάνοντας 

υπόψη τις αποδοτικότητες των μελών της. 
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Στην παρούσα διδακτορική διατριβή διεξάγουμε μια λεπτομερή ανασκόπηση των 

μεθόδων που έχουν προταθεί στη βιβλιογραφία στο πλαίσιο της Περιβάλλουσας 

Ανάλυσης Πολυσταδιακών Διεργασιών. Μελετούμε τις ιδιότητες-χαρακτηριστικά 

τους, τις τεχνικές επίλυσης που χρησιμοποιούν καθώς και τις ομοιότητες και 

διαφορές τους ώστε να τις κατατάξουμε σε κατηγορίες. Αναδεικνύουμε τα 

μειονεκτήματα των πιο διαδεδομένων προσεγγίσεων, τα οποία αφορούν την κλίμακα 

αποδόσεων και την αδυναμία να αποδώσουν επαρκή πληροφορία ώστε να 

καταστήσουν αποδοτικές τις μη αποδοτικές μονάδες. Επίσης, οι προσεγγίσεις που 

προτείνονται στη βιβλιογραφία δεν διασφαλίζουν τη μοναδικότητα των τιμών 

αποδοτικότητας των υπο-διαδικασιών, συνεπώς θέτουν σε αμφισβήτηση την 

εγκυρότητα των παραγόμενων αποτελεσμάτων. Εμφανίζονται δηλαδή περιπτώσεις 

όπου το ίδιο επίπεδο συνολικής αποδοτικότητας του συστήματος μπορεί να 

προκύπτει από διαφορετικούς συνδυασμούς τιμών αποδοτικότητας των επιμέρους 

διαδικασιών. Επίσης, υπάρχουν προσεγγίσεις που συχνά μεροληπτούν κατά την 

αποτίμηση της συνολικής αποδοτικότητας του συστήματος. Αποδεικνύουμε ότι η 

αθροιστική μέθοδος μεροληπτεί κατά την αποτίμηση υπέρ κάποιων συγκεκριμένων 

σταδίων. Επιπροσθέτως, δείχνουμε ότι οι προτεινόμενες προσεγγίσεις δεν μπορούν 

να εφαρμοστούν σε γενικές δικτυακές δομές παραγωγικών μονάδων. 

Για την αντιμετώπιση των παραπάνω αδυναμιών, εισάγουμε νέες μεθοδολογίες 

που βασίζονται στην ενσωμάτωση τεχνικών πολυκριτήριου προγραμματισμού στην 

Περιβάλλουσα Ανάλυση Δεδομένων. Επικεντρώνουμε την έρευνά μας σε μονάδες 

απόφασης που περιλαμβάνουν δύο υπο-διαδικασίες διατεταγμένες σε σειρά και 

μοντελοποιούμε το πρόβλημα της μέτρησης της αποδοτικότητάς τους ως πρόβλημα 

πολυκριτήριου προγραμματισμού. Χρησιμοποιούμε πραγματικές συναρτήσεις 

επίτευξης (achievement scalarizing functions) ώστε να ενσωματώσουμε τις ιδέες μας 

αλλά και τις ιδιότητες της αμεροληψίας και της μοναδικότητας των αποτελεσμάτων 

που θα πρέπει να διέπουν οι μέθοδοι της Περιβάλλουσας Ανάλυσης Πολυσταδιακών 

Διεργασιών. Εισάγουμε τη συνθετική προσέγγιση (composition approach), 

αντιμετωπίζοντας με ουδετερότητα τις υπο-διαδικασίες και κατασκευάζουμε αρχικά 

ένα μοντέλο με μια προσθετική συνάρτηση επίτευξης βασιζόμενοι στην L1 μετρική. 

Αυτό το μοντέλο αποδίδει αμερόληπτα αποτελέσματα, τα οποία απεικονίζονται ως 

ακραία σημεία (κορυφές) στο σύνορο Pareto. Σχηματίζουμε επιπλέον μοντέλα 

χρησιμοποιώντας συναρτήσεις επίτευξης, για την κατασκευή των οποίων 
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εφαρμόζουμε μεθοδολογίες πολυκριτήριας βελτιστοποίησης που βασίζονται σε 

σημεία αναφοράς (reference points). Ειδικότερα, χρησιμοποιούμε την μετρική 

Tchebycheff (L∞) για τον εντοπισμό μιας μοναδικής Pareto βέλτιστης λύσης 

ελαχιστοποιώντας τη μέγιστη απόκλιση από το ιδεώδες σημείο (ideal point). Ήτοι 

στοχεύει στον υπολογισμό των επιμέρους αποδοτικοτήτων των υπο-διαδικασιών όσο 

δύναται πλησιέστερα στα υψηλότερα επίπεδα αποδοτικοτήτων που μπορούν να 

επιτύχουν οι υπο-διαδικασίες ξεχωριστά. Το μοντέλο αυτό αποδίδει αμερόληπτα 

αποτελέσματα και διασφαλίζει τη μοναδικότητά τους. Έπειτα, αναπτύσσουμε δύο 

μεθόδους που παρέχουν την απαραίτητη πληροφορία για τον σχηματισμό των 

προβολών των μη αποδοτικών μονάδων στο σύνορο αποδοτικότητας. Η πρώτη 

προκύπτει απ’ ευθείας από την συνθετική προσέγγιση ενώ η δεύτερη είναι 

προσανατολισμένη στο να καταστήσει αποδοτικές τη μη αποδοτικές μονάδες 

επιφέροντας όσο το δυνατόν ελάχιστες αλλαγές στα αρχικά επίπεδα των ενδιάμεσων 

μεγεθών. 

Στη συνέχεια, διατυπώνουμε έναν νέο ορισμό της συνολικής αποδοτικότητας των 

μονάδων απόφασης που περιέχουν δύο υπο-διαδικασίες διατεταγμένες σε σειρά, 

εμπνευσμένοι από τον ρόλο του αδύναμου κρίκου στις εφοδιαστικές αλυσίδες και 

από το θεώρημα της μέγιστης ροής-ελάχιστης κοπής (max flow-min cut) στα δίκτυα. 

Για την αξιολόγηση των μονάδων που περιέχουν δύο υπο-διαδικασίες με ποικίλη 

σειριακή διάταξη εισάγουμε την προσέγγιση του «αδύναμου κρίκου» (weak-link 

approach). Αναπτύσσουμε μια νέα μέθοδο βελτιστοποίησης max-min δύο φάσεων με 

την οποία διασφαλίζεται ότι η προκύπτουσα λύση θα είναι μοναδική και βέλτιστη 

κατά Pareto. Πρωτίστως, μεγιστοποιούμε την ελάχιστη αποδοτικότητα 

(αποδοτικότητα του αδύναμου κρίκου) μεταξύ των υπο-διαδικασιών και στη συνέχεια 

διασφαλίζουμε ότι η προκύπτουσα λύση είναι μοναδική και βέλτιστη κατά Pareto. 

Για την καθοδήγηση της διαδικασίας βελτιστοποίησης χρησιμοποιήσαμε τις ιδεώδεις 

αποδοτικότητες των υπο-διαδικασιών, ωστόσο, διαφορετικές προτιμήσεις δύναται να 

ενσωματωθούν για τον εντοπισμό εναλλακτικών βέλτιστων κατά Pareto λύσεων. 

Τέλος, επανεξετάζουμε τη μεθοδολογία των Aviles-Sacoto et al (2015) και 

αποδεικνύουμε ότι είναι προβληματική. Προτείνουμε μια εναλλακτική 

μοντελοποίηση η οποία διορθώνει τα μεθοδολογικά προβλήματα που παρατηρούμε. 
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Abstract 

The systematic performance evaluation of the organizations as well as the target 

setting are key aspects for its proper operation and viability. Thus, the adoption of 

evaluation methods is necessary, which are capable of taking into account all the 

environmental factors of the organization, identifying the inefficient production 

processes and suggesting adequate ways to improve them. Such a method is Data 

Envelopment Analysis (DEA), which is the most popular non-parametric technique 

for assessing the efficiency of homogeneous decision making units (DMUs) that use 

multiple inputs to produce multiple outputs. 

The DMUs may consist of several sub-processes (also known as stages, sub-units, 

divisions etc.) that interact and perform various operations. However, the classical 

DEA models treat the DMU as a “black box”, i.e. a single stage production process 

that transforms some external inputs to final outputs. In such a setting, the internal 

structure of the DMU is not taken into consideration. Thus, the conventional DEA 

models fail to mathematically represent the internal characteristics of the DMUs, as 

well as they fall short to provide precise results and useful information regarding the 

sources that cause inefficiency. In order to take into account for the internal structure 

of the DMUs, recent methodological advancements are developed, which extend the 

standard DEA and constitute a new field, namely the network DEA. The network 

DEA methods are capable of reflecting accurately the DMUs’ internal operations as 

well as to incorporate their relationships and interdependences. In network DEA, the 

DMU is considered as a network of interconnected sub-units, with the connections 

indicating the flow of intermediate products (commonly called intermediate measures 

or links). An indicative example of such a DMU is a supply chain, which has a 

network structure and is composed of several members whose performances affect the 

overall performance of the supply chain. Therefore, the overall efficiency of the 

supply chain (DMU) should be evaluated by taking into account the individual 

efficiencies of its members in a coordinated manner. 

In this thesis, we conduct a critical survey and categorization of the state-of-the art 

network DEA methods and we classify a great volume of network DEA studies based 

on the assessment method they follow. We unveil the relations and the differences of 
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the existing network DEA methods. Also, we uncover their defects concerning the 

returns to scale, the inconsistency between the multiplier and the envelopment models 

as well as the inadequate information that provide for the calculation of efficient 

projections. The most important network DEA methods do not secure the uniqueness 

of the efficiency scores, i.e. the same level of overall efficiency is obtained from 

different combinations of the efficiencies of the sub-processes. Also, we prove that 

the additive efficiency decomposition method unduly and implicitly assigns different 

priority to the sub-processes, hence provides biased efficiency assessments. Finally, 

we discuss about the inability of the existing approaches to be universally applied on 

every type of network structure. 

We develop two new approaches in network DEA that overcome effectively the 

deficiencies and provide unique and unbiased efficiency scores, based on a multiple 

objective framework. We focus our research to serial two-stage network structures 

and we formulate the problem of their efficiency assessment as a multi-objective 

mathematical programming problem. Initially, we introduce the composition 

approach to two-stage network DEA, which is based on a bi-objective mathematical 

program for the efficiency assessments. We employ two scalarization techniques, 

firstly based on the L1 norm we aggregate the two objective functions additively 

without giving any priority between them. The application of this scalarizing function 

yields an extreme (vertex) Pareto-optimal solution. Then, we employ a min-max 

scalarization technique, i.e. the Tchebycheff norm (L∞), which minimizes the distance 

between the ideal point and the feasible objective functions space so as to locate a 

point on the Pareto front not necessarily extreme. This model provides unique and 

unbiased efficiency scores. In the composition approach, we estimate first the stage 

efficiencies and then we aggregate them either additively or multiplicatively to obtain 

the overall efficiency. Next, we develop two methods to derive the efficient frontier in 

two-stage DEA and provide efficient projections. The first naturally stems from our 

composition approach, while the second seeks to provide efficient projections by 

altering the original levels of the intermediate measures at a minimum distortion.  

We build upon the composition approach and we introduce the “weak-link” 

approach to two-stage network DEA, which inherits the nice properties of the former, 

i.e. provides unique and unbiased efficiency scores. Also, the “weak-link” approach 

can be readily applied to various types of two-stage network structures. In this 
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approach, we introduce a novel definition about the overall efficiency of the DMU, 

inspired by the “weak link” notion in supply chains and the maximum-

flow/minimum-cut problem in networks. We incorporate this notion into the 

assessment by assuming that given the stage efficiencies, the system efficiency can be 

viewed as the maximum flow through the network and can be estimated as the min-

cut of the network, i.e. the system efficiency derives as the lowest of the stage 

efficiencies. We mathematically represent this concept by employing a two-phase 

max-min optimization method in a multi-objective programming framework, which 

seeks to maximize the minimum weighted achievement from zero-level efficiency, 

i.e. maximizing the lowest of the stage efficiencies (weak link). The proposed two-

phase procedure estimates the stage efficiencies and the overall efficiency 

simultaneously by providing a unique Pareto optimal solution. The search direction 

towards the Pareto front is driven by the assumption that the stage efficiencies are 

proportional to their independent counterparts. External priorities can be also 

introduced to our methodology so as to obtain alternative Pareto optimal solutions. 

We conduct a systematic investigation of the sensitivity of the weak link so as to 

identify the source of inefficiency in the two-stage processes. 

Finally, we revisit the work of Aviles-Sacoto et al (2015) who studied a peculiar 

situation of a two-stage process where some of the intermediate measures are inputs to 

the second stage and at the same time external outputs from that stage. We show that 

their modelling approach departs from the described setting and adapts a different 

situation, where the specific intermediate measure is viewed either as input to or as 

output from the second stage of the process. We alternatively propose a different 

modelling approach for the performance assessment of the two-stage process under 

examination, which rectifies the methodological problems that we observe. 

 

Keywords: Data Envelopment Analysis (DEA), Network DEA, composition 

approach, weak-link approach, multi-objective programming. 
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Chapter 1  

Introduction 

Performance measurement deals with ongoing monitoring and evaluation of the operations of 

the organizations so as to be able to improve their productivity and performance. Thus, the 

performance measurement is a subject of major importance. Improving organization’s 

performance requires accurate understanding as well as systematic assessment of its internal 

structure, which is often a tough task because of organization’s complexity. 

Two main approaches, the parametric and the non-parametric, are suggested in the 

literature for the performance measurement of production units. In the parametric approach, a 

production function is explicitly assumed so as to describe the relationships among the inputs 

and the outputs that participate in the production process. However, the production function 

can be hardly formulated or is completely unknown. On the contrary, the non-parametric 

approach does not require any a priori specification of the underlying functional form that 

relates the inputs with the outputs. Data Envelopment Analysis (DEA) is a powerful non-

parametric technique that is widely used for evaluating the performance of a set of 

comparable entities, called decision making units (DMUs), which use multiple inputs to 

produce multiple outputs. Charnes et al (1978) introduced DEA, based on Farrell’s (1957) 

work of estimating technical efficiency with respect to a production frontier. DEA 

circumvents the problem of specifying an explicit form of the production function by 

constructing an empirical best practice production frontier by enveloping the observed data of 

the DMUs. The linear programming is the underlying mathematical method that enables 

DEA to determine the efficient production frontier and calculate the efficiency score of each 

DMU. The efficiencies provided by DEA are relative rather than absolute, because each unit 

is evaluated relative to the production frontier, i.e. the best practice units. DEA is capable of 

uncovering the sources of inefficiency and providing prescriptions for improving the 

inefficient units. DEA takes into account the returns to scale and the orientation of the 

analysis in calculating efficiency. The CCR (Charnes et al, 1978) and the BCC (Banker et al, 

1984) models have established the foundation for further research in this field. A rapid and 

continuous growth has been reported since then, both in theoretical and application level. The 
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theoretical advances of DEA as well as procedural issues are sufficiently described in Dyson 

et al (2001), Thanassoulis et al (2008) and Cook and Seiford (2009). A remarkable body of 

literature has been developed with a wide range of applications to measure the efficiency in 

various sectors such as business and finance, public services, education, health care, 

transportation, agriculture, supply chains etc. (Gattoufi et al, 2004). 

The DMUs may have a complex structure that includes several interdependent operations 

(also known as stages, sub-processes, sub-units, divisions etc.) with a series, parallel or 

series-parallel arrangement. The conventional DEA models, however, regard the DMU as a 

black box, treating them as single stage production processes that transform some external 

inputs to final outputs. In such a setting, the internal structure and the interactions among the 

comprised operations of the DMUs are not taken into consideration. However, a significant 

number of studies has focused on assessing efficiency in multi-stage production processes, 

where outputs from some stages, characterized as intermediate products (measures), are used 

either as inputs to the other stages or as external outputs of the production process.  

Seiford and Zhu (1999) assessed the efficiency of commercial banks in US by 

considering the bank operations as a two-stage process. They assessed, however, the stage 

efficiencies and the overall system efficiency independently with distinct standard DEA 

models. The network DEA extends and complements the conventional DEA by considering 

not only the internal structure of the DMUs but also the interactions among the sub-

processes. When theses interactions are not taken into account, the results may be distorted 

and misleading. Hence, in contrast to traditional DEA models, the network DEA models 

provide more accurate results and further insights concerning the sources of inefficiency. 

Fare and Grosskopf (1996, 2000) were among the first to deal with efficiency assessments in 

network DEA. Thorough classifications of network DEA models and methods developed for 

various network configurations are given in Castelli et al (2010) and Kao (2014b). Moreover, 

a collection of network DEA models is given in Cook and Zhu (2014). In this thesis, we 

focus on two-stage series processes that are extensively studied in the literature. We show 

that basic network DEA methods proposed in the literature suffer from shortcomings that 

should be rectified before moving to more complex structures with many stages. Prominent 

approaches developed to deal with two-stage series processes are the multiplicative 

decomposition approach (Kao and Hwang, 2008), the additive decomposition approach 

(Chen et al, 2009b) and the slacks-based network DEA model (Tone and Tsutsui, 2009). 
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These are the first approaches to assess the stage efficiencies and the overall system 

efficiency jointly in one program. 

Kao and Hwang (2008) introduced an innovative approach by taking into account a series 

relationship of the two stages and developed a model to estimate the overall efficiency of the 

production process as the product of the efficiencies of the two individual stages. Their 

multiplicative decomposition approach is based on the reasonable assumption that the values 

of the intermediate measures (virtual intermediate measures) are the same, no matter if they 

are considered as outputs of the first stage or inputs to the second stage. As they noted, the 

decomposition of the overall efficiency to the stage efficiencies is not unique. In order to 

check the uniqueness, they proposed a post-optimality procedure, to obtain the largest first 

(or second) stage efficiency score while keeping the overall efficiency unchanged. Liang et al 

(2008) under the same framework view the efficiency assessments in two-stage process in 

terms of a game approach. 

Maintaining the series relationship between the two stages, Chen et al (2009b) introduced 

the additive efficiency decomposition in two-stage processes. They derive the overall 

efficiency of the production process as a weighted average of the efficiencies of the 

individual stages. Their modeling approach facilitates the linearization of a non-linear 

mathematical program by assuming that the weights of the two stages derive endogenously 

by the optimization process. However, we prove that this assumption leads to biased 

efficiency assessments. 

An issue investigated further in the literature is the derivation of the efficient frontier in 

two-stage DEA. Chen et al (2010a) pointed out that adjusting the inputs and the outputs by 

the efficiency scores is not sufficient to yield a frontier projection, when the additive 

decomposition model is assumed. They developed instead, a model for deriving the efficient 

frontier within the Kao and Hwang (2008) multiplicative framework. The inability of the 

two-stage DEA models to locate correctly the efficient frontier, as it is the case with standard 

DEA, is further examined in  Chen et al (2013). In this paper, it was demonstrated that under 

general network structures, the multiplier and the envelopment network DEA models are two 

different approaches, thus, alternative methods to overcome this deficiency were reviewed. 

In this thesis, we describe the advantages of the network DEA methods over the classical 

DEA ones. We present in detail the most important of them and we provide a survey of the 

network DEA studies across the literature. In addition, we carry out a critical review of the 
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fundamental approaches in two-stage network DEA, namely the additive and the 

multiplicative efficiency decomposition approaches and we discuss their inherent limitations 

and shortcomings. The decomposition approaches provide non-unique efficiency scores, 

while in the additive approach the assessment is biased. Based on a reverse perspective on 

how to obtain and aggregate the stage efficiencies, that of the composition as opposed to the 

decomposition, we introduce the composition approach to two-stage network DEA that 

effectively overcomes the deficiencies of the aforementioned decomposition methods. In 

other words, it provides unique and unbiased efficiency scores for the individual stages, 

which are then composed to obtain the overall efficiency, by selecting the aggregation 

method a posteriori. Also, we develop an envelopment model to derive the efficient 

projections and render efficient the inefficient units.  

Based on the composition approach we build the “weak-link” approach, which can be 

applied to two-stage network structures of varying complexity. Inspired by the “weak link” 

notion in supply chains and the maximum-flow/minimum-cut problem in networks we 

introduce a novel definition of the system efficiency in two-stage network DEA. We adapt 

this notion to the performance assessment of the two-stage processes by employing a two-

phase max-min optimization model in a multi-objective programming framework. We drive 

the quest towards the Pareto front by rationally assuming that the stage efficiencies are 

proportional to their independent counterparts. The proposed two-phase multi-objective 

procedure provides a unique Pareto optimal solution, i.e. unique stage efficiency scores, and 

the overall efficiency is derived as the lowest of the stage efficiencies. The properties of 

unique and unbiased efficiency scores enable us to identify sufficiently the source of 

inefficiency and demonstrate that the “weak-link” approach excels the decomposition 

approaches. 

Finally, in this thesis, we revisit the paper of Aviles-Sacoto et al (2015) who assessed 37 

undergraduate business programs in U.S. as two-stage processes within the peculiar situation 

of some of the intermediate measures, namely the internships, playing both an input and 

output role in regard to the second stage. We reveal that the proposed modelling approach 

deviates from the described scenario and depicts a different situation where the specific 

intermediate measure is viewed either as input to or as output from the second stage of the 

process. We develop instead an alternative modelling approach, within the context of network 

DEA, so as to amend this issue.  
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1.1 Motivation and objectives of the thesis 

Network DEA broadens the application field of standard DEA so as to allow for efficiency 

assessments when the DMUs have complex internal structure that consists of several sub-

processes. There is an increasing literature body on the field of network DEA and a variety of 

methods, however, there is only one critical review (Chen et al, 2013) and four surveys 

(Castelli et al, 2010, Agrell and Hatami-Marbini, 2013, Halkos et al, 2014 and Kao, 2014) 

with divergent views on the classification of the studies concerning the modelling approach 

and the network structure of the process. The most significant methods on the field of 

network DEA, namely the multiplicative and the additive decomposition, have inherent 

defects because they yield non-unique efficiency scores as reported in the literature. 

Moreover, we show that the latter provides biased efficiency scores. In addition, the slacks-

based measure (SBM) approach (Tone and Tsutsui, 2009), which has already received much 

attention from the research community, cannot be formulated and applied to production 

processes with specific structures. 

The above motivates us to define the objectives of this thesis as follows: 

• To unveil relations and differences among the existing network DEA methods and present 

the origin and evolution of the most important ones. 

• To offer a thorough categorization and critical survey of the state-of-the art network DEA 

methods. 

• To uncover the deficiencies of the existing network DEA methods. 

• To provide a deep examination of these defects so as to unveil their effects and give 

comprehensive interpretations. 

• To develop alternative network DEA methods that amend the reported defects. 
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1.2 Contribution of the thesis 

The contribution of the thesis to the network DEA literature is outlined below: 

 

• Provides a thorough survey of the network DEA literature and classifies the network 

DEA studies according to the modelling approach they follow. 

• Reveals the shortcomings of the network DEA methods concerning the returns to scale, 

the inconsistency between the multiplier and the envelopment models, the non-unique 

efficiency scores, the biased assessments and the inability to be universally applied. 

• Establishes the properties that the network DEA methods should meet. 

• Introduces the composition approach to two-stage network DEA, as opposed to the 

efficiency decomposition approach, by formulating the efficiency assessment of multi-

stage processes as multi-objective mathematical programming problem. The new 

approach provides unique and unbiased efficiency scores. 

• Provides methods to derive the efficient frontier in two-stage DEA. 

• Introduces a novel definition of the system efficiency in two-stage processes, inspired by 

the “weak link” notion in supply chains and the maximum-flow/minimum-cut problem in 

networks. 

• Develops the “weak-link” approach to network DEA for the performance assessment of 

two-stage processes of varying complexity, which identifies effectively the source of 

inefficiency in a multi-stage process. 

• Reveals that the modelling approach of Aviles-Sacoto et al (2015) is misleading and 

proposes enhancements by developing alternative modelling formulations for the 

performance assessment of the specific two-stage process under examination. 

  



Chapter 1: Introduction 

    | 7 

1.3 Organization of the thesis 

The thesis is organized as follows: 

 

Chapter 2: This chapter discusses the history and the origins of Data Envelopment Analysis 

(DEA). It also provides the basic DEA concepts and definitions and describes the 

properties that render DEA a powerful technique for performance measurement. 

We present the classical DEA models, namely the CCR, the BCC, the additive 

and the slacks based measure (SBM), and we discuss the relations and differences 

among them. 

 

Chapter 3: Demonstrates the advantages of network DEA over the standard DEA for the 

assessment of multi-stage processes. It also describes the evolution of network 

DEA, it provides a detailed survey of the network DEA literature and categorizes 

the existing studies based on the assessment approach that they follow. We 

discern two assessment paradigms, the independent assessment paradigm and the 

joint assessment paradigm. In the independent paradigm the performances of the 

DMUs and the sub-processes are assessed independently whereas in the joint 

paradigm the internal structure of the DMUs and the interdependencies among 

the sub-processes are taken into consideration. There are three general approaches 

that follow the joint assessment paradigm: the efficiency decomposition 

approach, the slacks-based measure approach and the system-centric approach. 

The most influential approaches are the efficiency decomposition and the slacks-

based measure. Thus, we discuss in detail the most important network DEA 

methods of those categories and their extensions. In particular, we present the 

additive and the multiplicative decomposition methods as well as the network 

slacks based measure (NSBM). Also, we report the limitations of the 

aforementioned methods, concerning the uniqueness of the stage efficiency 

scores, the returns to scale assumed, the inconsistency between the multiplier and 

the envelopment models as well as the insufficient information that provide for 

the calculation of efficient projections. 
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Chapter 4: In this chapter, we revisit the additive and the multiplicative efficiency 

decomposition methods to discuss their shortcomings. Then, based on a reverse 

perspective on how to obtain and aggregate the stage efficiencies, that of the 

composition as opposed to the decomposition, we develop the composition 

approach to two-stage network DEA that overcomes the deficiencies of the 

decomposition methods. Selecting an output orientation for the first stage and an 

input orientation for the second stage, we show that it is possible to obtain 

unbiased efficiency scores for the two stages in a bi-objective optimization 

framework. We propose two alternative models by employing different 

scalarizing functions in a multi-objective linear programming (MOLP) model. 

Firstly, we aggregate additively the two objectives in a single objective that 

locates an extreme (vertex) Pareto-optimal solution. Then, we develop a min-max 

model that provides unique efficiency scores by locating a point on the Pareto 

front, not necessarily extreme. In the latter case, the stage efficiencies obtained 

are more balanced. The individual efficiency scores are then used to calculate the 

overall efficiency of the production process, by selecting the aggregation 

(composition) method a posteriori. As the conflicting role of the intermediate 

measures gives a peculiar character to two-stage processes that obscures the 

standard DEA premises, we develop an envelopment model to locate the efficient 

frontier, whose derivation from our primal multiplier model is justified. 

 

Chapter 5: In this chapter, we introduce a novel definition of the system efficiency in two-

stage network DEA, inspired by the “weak link” notion in supply chains and the 

maximum-flow/minimum-cut problem in networks. We adapt this notion to fit 

the multi-stage processes dealt with in network DEA, by assuming that given the 

stage efficiencies, the system efficiency can be viewed as the maximum flow 

through the network and can be estimated as the min-cut of the network. Thus, 

our primary goal is to estimate the stage efficiency scores in a manner that the 

minimal stage efficiency (the weak link) and, thus, the overall system efficiency 

gets the maximum possible value. The mathematical representation of this 

concept is expressed by the weighted max-min formulation which seeks to 

maximize the minimum weighted achievement from zero-level efficiency. For 

this purpose, we develop a two-phase max-min optimization technique in a multi-
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objective programming setting to estimate the stage efficiencies and the overall 

efficiency simultaneously. The “weak-link” approach is an advancement of the 

composition approach, therefore it gains the nice properties of providing unique 

and unbiased efficiency scores unlike the decomposition methods. The “weak- 

link” approach can be applied to various types of two-stage network structures. 

The proposed two-phase procedure secures the Pareto optimality condition and 

provides a unique point on the Pareto front, i.e. unique stage efficiency scores, by 

maximizing the lowest of the stage efficiencies (weak link). We derive the stage 

efficiency scores based on the assumption that they are proportional to their 

independent counterparts, i.e. the independent stage efficiencies define the search 

direction towards the Pareto front. However, beyond this rational assumption, 

external priorities can be explicitly introduced to our models to obtain alternative 

Pareto optimal solutions, i.e. different stage and overall efficiencies. Also, we 

provide a systematic investigation of the sensitivity of the weak link in order to 

identify adequately the source of inefficiency. Finally, a detailed comparison with 

the multiplicative approach highlights the advantages of our method. 

 

Chapter 6: Revisits the work of Aviles-Sacoto et al (2015) who studied the efficiency 

assessment of 37 undergraduate business programs in U.S. as two-stage 

processes, where some of the intermediate measures are inputs to the second 

stage and at the same time external outputs from that stage. Under this peculiar 

situation they developed a network DEA assessment framework based on the 

additive decomposition method. However, as we demonstrate, the original 

modelling approach followed in Aviles-Sacoto (2015) arbitrarily, yet 

unnecessarily, departs from the described setting and adapts a different situation, 

where the specific intermediate measure is viewed either as input to or as output 

from the second stage of the process. Thus, we propose an alternative modelling 

approach for the performance assessment of the undergraduate business 

programs, in the context of network DEA. 

 

Chapter 7: Concluding remarks are drawn based on the research findings and directions for 

future research on the field of network DEA are provided. 
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Chapter 2  

Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a non-parametric and “data driven” technique that is 

based on linear programming. It was developed for measuring the relative efficiencies of a set 

of comparable entities, called Decision Making Units (DMUs), which convert multiple inputs 

into multiple outputs. The definition of a DMU is generic since the application field of DEA 

includes various forms of DMUs, such as hospitals, universities, banks, supply chains, 

countries and so forth. As noted in Cooper (2014), the term “DMU” is coined so as to 

emphasize the purpose of DEA “to be useful to managers and policy makers not only in 

measuring the efficiency of different organizations but also in guiding them how that could be 

accomplished”. The fundamental concept of DEA is to identify the best practice DMUs so as 

to form an efficient frontier and act as benchmark for the non-frontier units. Using this 

information, the non-frontier (inefficient) units can be compared with the benchmarks and 

their level of efficiency can be measured. 

DEA was developed as an alternative to the econometric (parametric) approach for the 

efficiency measurement of production units. In the econometric approach an explicit 

production function is assumed (e.g. Cobb-Douglas) and the parameters of this function are 

estimated so as to fit the observations. On the other hand, in DEA no assumptions are made 

for the underlying functional form that transforms inputs to outputs. DEA builds an empirical 

best practice production frontier based on the observed data and provides performance 

measures by comparing the observations by the best practice units. 

As noticed in Cooper et al (2007), Cooper and Lovell (2011) and Cooper (2014), the 

basic concepts of DEA were initiated by Farell (1957), who established a piecewise linear 

envelopment of the data as the most pessimistic specification of the production frontier by 

solving systems of linear equations. Farrell reported the inadequacies of the existing 

efficiency and productivity measures in the presence of multiple inputs, i.e. the average 

productivity for an individual input (ignoring all other inputs) and the efficiency index in 

which a weighted average of inputs is compared with output. Being inspired by the activity 
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analysis of Koopmans (1951) and Debreu (1951), he provided new efficiency measures 

which are based on radial equiproportionate reductions or expansions of the inefficient 

observations to the production frontier. That is to say, Farell (1957) introduced a measure of 

technical efficiency based on the relative notion of comparing the inputs and outputs of 

similar DMUs, i.e. he proposed a measure of relative technical efficiency. However, Farell 

(1957) failed to generalize his formulations to the multiple inputs-outputs case and confined 

to situations with many inputs but a single output. 

Charnes et al (1978) built upon Farrell’s work and the works of Charnes and Cooper 

(1961), (1962), on linear and fractional programming respectively, and made the connection 

between Farrell’s technical efficiency measure and the classic output to input ratio measure 

of efficiency. Actually, Charnes et al (1978) enabled the efficiency assessment to deal with 

multiple inputs and outputs by generalizing the single output-input ratio measure of 

efficiency in terms of a fractional linear program. In order to be aligned with the classic 

definition of efficiency, i.e. the ratio of output to input, they transformed the multiple inputs 

and outputs into single “virtual” input and “virtual” output. The virtual input and output are 

formed as weighted sums, where the weights are not given a priori but they derive from the 

optimization process. Also, they presented the conversion of the fractional linear program to 

an equivalent linear program, which as Cooper et al (2007) noticed is “dual to the problem 

formulated by Farrell”.  

It is worth to note that Farrell and Fieldhouse (1962) based on Hoffman’s comments 

about Farrell’s framework (cf. the discussion section for his work included in Farrell’s 

paper), provided sufficiently the linear programming formulation for the single-output case. 

However, they did not provide rigorous mathematical details and interpretations. Bringing 

them all together, A. Charnes, W.W. Cooper and E. Rhodes established the DEA for the 

performance measurement of DMUs and extended its power and computational convenience 

based on mathematical programming. They also provided a strict mathematical framework 

that eases the analysts and the decision makers to follow and comprehend.  

The origins and the historical evolution of DEA are succinctly outlined by Seiford (1996), 

Forsund and Sarafoglou (2002), Cooper and Lovell (2011) and Cooper (2014). 
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2.1 Basic concepts and definitions 

The DMUs are homogeneous production units that transform multiple inputs into multiple 

outputs, which are non-negative scalars. In real-world problems the identification of the 

inputs and the outputs for the performance assessment of DMUs may be a rough task. It is 

however of great importance, because the chosen inputs and outputs should effectively 

portray the DMUs’ operations. The inputs and the outputs of DMUs could be of different 

type and of unit of measurement. A schematic representation of a DMU is given in Figure 2.1 

below. 

 

Fig. 2.1: A typical representation of a DMU 

 

2.1.1 Production Possibility Set (PPS) 

As noticed, the primary purpose of DEA is to identify the best production practice among the 

DMUs so as to derive an empirical production frontier. The best production practice is 

derived from any DMU of the production possibility set (PPS) that produces the highest 

possible levels of output given its level of inputs. The PPS, also known as technology, is 

related to the production process operated by the DMUs. It is a convex set that contains all 

the feasible levels of outputs that can be produced from the available levels of inputs, no 

matter if they are not observed in practice. These feasible input-output correspondences are 

obtained using interpolations between the observed input-output bundles of the DMUs. 

Assuming n DMUs, each using m inputs  𝑋𝑗 = (𝑥𝑖𝑗, 𝑖 = 1, … , 𝑚), j = 1, … , n  to produce s 

outputs 𝑌𝑗 = (𝑦𝑟𝑗 , 𝑟 = 1, … , 𝑠), we denote the PPS as T: 

𝑇 = {(𝑋, 𝑌) ∈ ℜ+
𝑚+𝑠| 𝑋 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑌} 

In DEA, a certain assumption concerning the returns-to-scale (RTS) is required for the 

construction of the PPS. The RTS describe the environment in which the DMUs operate. In 

particular, the RTS indicate for each DMU the relation between a proportional change in 
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inputs and the resulting change in outputs. Under the constant returns to scale (CRS) 

assumption a proportional increase in input levels results in an equiproportionate increase in 

the output levels. If this assumption does not hold, then the DMUs operate under variable 

returns to scale (VRS). Specifically, when the output levels increase by a greater proportion 

than the proportional increase in the input levels, then increasing returns to scale (IRS) exist. 

On the other hand, when the output levels increase by a lower proportion than the 

proportional increase in the input levels, then decreasing returns to scale (DRS) exist. 

Conclusions about the RTS should be drawn from the specific characteristics of the DMUs 

and the environment in which they operate. 

Beyond the assumption of the RTS, the PPS (T) construction is based on the principle of 

minimal extrapolation, i.e. the PPS is the smallest convex set enveloping all the observations 

(DMUs). The PPS is build on the following axioms: 

 Inclusion of observations: 

Each observed DMU [
𝑋𝑗

𝑌𝑗
] ∈ 𝑇. 

 

 Monotonicity: 

If [
𝑋𝑗

𝑌𝑗
] ∈ 𝑇 and 𝑋0

+ ≥ 𝑋𝑗 then [
𝑋0

+

𝑌𝑗
] ∈ 𝑇. 

If [
𝑋𝑗

𝑌𝑗
] ∈ 𝑇 and 𝑌0

− ≤ 𝑌𝑗  then [
𝑋𝑗

𝑌0
−] ∈ 𝑇. 

 

 No output can be produced without some input: 

If Yj ≥0 and Yj ≠0 then [
0
𝑌𝑗

] ∉ 𝑇. 

 

 Ray unboundedness (CRS): 

If [
𝑋𝑗

𝑌𝑗
] ∈ 𝑇 ⟹ 𝑘 [

𝑋𝑗

𝑌𝑗
] ∈ 𝑇, ∀ 𝑘 ∈ ℜ0

+;   𝑗 = 1, … , 𝑛 . 

 

 Convexity: 

Any convex combination of DMUs that belong to T, belong to T, i.e. 

∑ 𝜆𝑗
𝑛
𝑗=1 [

𝑋𝑗

𝑌𝑗
] ∈ 𝑇, ∑ 𝜆𝑗

𝑛
𝑗=1 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛 . 
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The mathematical representation of the PPS for the n DMUs under constant returns to 

scale (CRS) assumption is as follows: 

𝑇𝐶𝑅𝑆 =  {(𝑋, 𝑌) | ∑ 𝜆𝑗

𝑛

𝑗=1

𝑋𝑗 ≤ 𝑋 , ∑ 𝜆𝑗

𝑛

𝑗=1

𝑌𝑗  ≥ 𝑌, 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛} (2.1) 

The corresponding PPS under variable returns to scale (VRS) is given below: 

𝑇𝑉𝑅𝑆 =  {(𝑋, 𝑌) |  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑋𝑗 ≤ 𝑋 , ∑ 𝜆𝑗

𝑛

𝑗=1

𝑌𝑗  ≥ 𝑌, ∑ 𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛} 

(2.2) 

The difference between TCRS and TVRS is the convexity constraint  ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 . The 

incorporation of this constraint allows for constant, increasing and decreasing returns to scale. 

Also, it leads to smaller PPS with tighter envelopment of the observations (DMUs). We 

provide in Figure 2.2 a schematic representation of TCRS and TVRS for a case of seven DMUs, 

labelled A to G, that use one input to produce one output, as presented in Table 2.1. 

Table 2.1: Single input-output case 

DMU A B C D E F G 

Input (X) 3 4 10 7 5 9 8 

Output (Y) 1 5 8 2 3 5 4 
 
 

 
Fig. 2.2: Production possibility sets and efficient frontiers under CRS and VRS assumption 
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Under CRS assumption, the PPS that envelops all the data points (DMUs) is defined by 

the horizontal axis and the ray from the origin through DMU B. This ray constitutes the CRS 

efficient frontier, i.e. the efficient subset of the PPS. Under VRS assumption, the efficient 

frontier is determined by the DMUs A, B and C. The piecewise PPS envelops all the DMUs 

within the region bounded by the efficient frontier ABC, the horizontal line passing through 

C and the vertical line passing through A. The returns to scale are increasing along AB, 

constant to point B and decreasing along BC. As can be deduced, the assumption of the 

returns to scale affects the shape of the PPS and therefore the performance of the DMUs. 

 

2.1.2 Efficiency measurement 

The technical efficiency is a radial distance measure that derives for each evaluated DMU by 

means of a maximal feasible radial contraction of its input levels given its levels of outputs 

(input orientation). With an output orientation the distance is measured by means of a 

maximal feasible radial expansion of its output levels given its levels of inputs. Koopmans 

(1951) extended the optimality concept of Pareto optimality and provided a definition of 

technical efficiency, which is adapted in DEA: 

 

Definition 2.1: A DMU is technically efficient if, and only if, an increase in any output or a 

decrease in any input is possible only by decreasing at least some other output or by 

increasing at least some other input. 

 

2.1.2.1 Illustrative example: the CRS case 

We revisit now the typical example of the seven DMUs (A to G) with the single input-output, 

as given in the previous section. 

 

Table 2.2: Single input-output case 

DMU A B C D E F G 

Input (X) 3 4 10 7 5 9 8 

Output (Y) 1 5 8 2 3 5 4 

Output/Input 0.333 1.25 0.8 0.286 0.6 0.556 0.5 

CRS efficiency 0.267 1 0.64 0.229 0.48 0.444 0.4 
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The output/input ratio of each DMU is the slope of the ray passing through the origin of the 

axes and the DMU. The ray with the highest slope that passes from the origin through point B 

is the CRS efficient frontier. Therefore DMU B is efficient and defines the CRS efficient 

frontier. The other DMUs, namely A, C, D, E, F and G are inefficient as they lie below the 

efficient frontier. The output per input ratio for each DMU is presented in the third row of 

Table 2.2. The CRS technical efficiency of the DMUs is a relative measure that can be 

calculated by taking the output/input ratio with that of output/input ratio of the efficient DMU 

(B): 

0 ≤
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝐷𝑀𝑈 𝑖 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝐷𝑀𝑈 𝐵
≤ 1, 𝑖 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 

 

The last row of Table 2.2 presents the technical efficiency for each DMU. When input 

orientation is selected, the technical efficiency of the DMU E is derived by the ratio 
E1E2

E1E
=

0.48 . When output orientation is selected, the technical efficiency is derived by the inverse of 

the ratio  
E3E4

E3E
= 2.083 , i.e. the technical efficiency is  

1

2.083
= 0.48 . Hence, under the CRS 

assumption the input and output oriented measures provide the same efficiency score. 

 

 

Fig. 2.3: CRS technical efficiency and projections of DMU E 
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The inefficient DMU E can be rendered efficient by a horizontal projection to the 

efficient frontier at point E2 (2.4, 3), when input orientation is selected. This is accomplished 

by reducing its input level to the extent that the technical efficiency indicates, i.e. 0.48·5 = 

2.4, while its output level is maintained. Alternatively, when output orientation is selected, 

the DMU E can be projected vertically to point E4 (5, 6.25) of the efficient frontier,. This is 

achieved by increasing its output levels using the inverse of technical efficiency, i.e. 2.0833·3 

= 6.25. 

 

2.1.2.2 Illustrative example: the VRS case 

When variable returns to scale are assumed the technical efficiency can be analyzed to two 

components, namely the VRS technical efficiency and the “scale” efficiency (SE). Banker et 

al (1984) showed that the CRS technical efficiency can be derived as the product of the VRS 

technical efficiency and the scale efficiency. The technical efficiency (TE) obtained under 

CRS and VRS assumptions, is called global and pure technical efficiency accordingly (cf. 

Cooper et al, 2007). The scale inefficiency is attributed to either decreasing or increasing 

returns to scale. A DMU is scale inefficient when it operates away from its most productive 

scale size (MPSS), see Banker (1984) and Banker et al (1984). The MPSS is a point on the 

CRS efficient frontier that maximizes the average productivity for its input-output bundle.  

In Figure 2.4 below we illustrate the example of single input-output case under VRS 

assumption. The VRS efficient frontier is constituted by the DMUs A,B and C. As we can 

see, the CRS efficient DMU B is also VRS and scale efficient, i.e. it operates at the MPSS. 

On the other hand, the VRS efficient DMU A is scale inefficient because it operates on the 

IRS part of the VRS frontier. Analogously, the VRS efficient DMU C is scale inefficient 

because it operates on the DRS part of the VRS frontier. The inefficient DMU E can be 

rendered VRS efficient by projecting it to the points E5 or E6 onto the VRS efficient frontier, 

depending the orientation selected. Assuming an input orientation, the VRS technical 

efficiency and the scale efficiency can be determined by the ratios 
𝐸1𝐸5

𝐸1𝐸
 and 

𝐸1𝐸2

𝐸1𝐸5
 respectively. 

The CRS technical efficiency for the DMU E is decomposed as: 

 

𝐶𝑅𝑆 𝑇𝐸 = 𝑉𝑅𝑆 𝑇𝐸 × 𝑆𝐸 =
E1E2

E1E
=

𝐸1𝐸5

𝐸1𝐸
×

𝐸1𝐸2

𝐸1𝐸5
 



Chapter 2: Data Envelopment Analysis 

    | 21 

 

Fig. 2.4: Technical and scale efficiency for DMU E 

 

Summing up, the technical inefficiency expresses for an inefficient DMU the failure to 

use the lowest possible level of input given its output or to produce the highest possible level 

of output volume given its input. The scale inefficiency is attributed to the size of operations 

of a DMU and represents deviation from the MPSS (CRS efficient frontier). We shall see in 

the next sections, how the aforementioned concepts can be accommodated in an operationally 

implementable form. 

 

2.2 Basic DEA models 

In this section we outline the four basic DEA models that originate from different 

assumptions on the way the inefficient units are projected on the efficient frontier (radial or 

non-radial). The radial efficiency measure assumes a proportional contraction (expansion) of 

inputs (outputs) towards the frontier. The radial measure is used in the two milestone DEA 

models, namely the CCR (Charnes et al, 1978) and the BCC (Banker et al, 1984) models. 

These models have become standards in the literature of performance measurement under the 

assumption of constant and variable returns to scale respectively. The non-radial efficiency 
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measure differs from the radial efficiency measure in that the projections on the efficient 

frontier are made by non-proportional reductions (increases) of the input (output) levels. 

2.2.1 The CCR model 

The CCR model was introduced by Charnes et al (1978) to measure the relative efficiency of 

decision making units under the constant returns to scale assumption. The efficiency of a 

DMU is defined as the ratio of the weighted sum of outputs (total virtual output) to the 

weighted sum of inputs (total virtual input), with the weights being obtained in favor of each 

evaluated unit by the optimization process. 

 

2.2.1.1 Multiplier form 

Assume n DMUs, each using m inputs to produce s outputs. We denote by yrj the level of the 

output r(r=1,…,s) produced by unit j (j=1,…,n)  and xij the level of the input i (i=1,…, m)  

used by unit j. The vector of inputs for DMU j is  𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇

 and the vector of 

outputs is 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑟𝑗)
𝑇
. The basic CCR model that provides the CCR efficiency for the 

DMUjo is given below: 

𝑚𝑎𝑥 𝑒𝑗0
=

𝜔𝑌𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗

𝜂𝑋𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜔 ≥ 0  

(2.3) 

The model (2.3) is formulated and solved for each DMU in order to obtain its efficiency 

score. The variables η=(η1,…,ηm) and ω=(ω1,…,ωs) are the weights associated with the inputs 

and the outputs respectively. These weights are calculated in a manner that they provide the 

highest possible efficiency score for the evaluated DMUjo. The constraints of model (2.3) 

limit the efficiency scores of the DMUs in the interval (0, 1]. 

The CCR model (2.3) can be transformed to a linear program by applying the Charnes 

and Cooper (1962) transformation (C-C transformation hereafter). The transformation is 

carried out by considering a scalar 𝑡 ∈ ℜ+  such as 𝑡𝜂𝑋𝑗0
= 1 and multiplying all terms of 
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model (2.3) with t>0 so that v = tη, u = tω. The linear equivalent of model (2.3) is expressed 

as: 

𝑚𝑎𝑥 𝑒𝑗0
= 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑢 ≥ 0   

(2.4) 

The decision variables (v,u) of model (2.4) often are constrained to positive values by 

replacing the non-negativity constraints v,u≥0 with v,u≥ε, where ε is a non-Archimedean 

infinitesimal. This is done in order to avoid giving a zero weight to some of the inputs and the 

outputs. Once an optimal solution v*,u* of model (2.4) is derived, the input oriented CCR-

efficiency 𝑒𝑗0

∗  for DMUjo under evaluation is obtained directly from the objective function. 

 

Definition 2.2 (CCR-Efficiency): The DMUjo is CCR-efficient if and only if 𝑒𝑗0

∗ = 1 and 

there exists at least one optimal solution (v*, u*), with u*>0 and v*>0. Otherwise, the DMUjo 

is CCR-inefficient. 

 

At the optimal solution of model (2.4) at least one constraint of the inequality constraints is 

binding (i.e. it holds as equality). The binding constraints that hold as equality (𝑢∗𝑌𝑗 − 𝑣∗𝑋𝑗 =

0) indicate the reference units for the evaluated unit. 

 

2.2.1.2 Envelopment form 

The envelopment form of the CCR model derives as the dual of the multiplier form (2.4) as 

follows: 

𝑚𝑖𝑛 𝜃 

𝑠. 𝑡. 

𝜃𝑋𝑗0
− 𝛸𝜆 ≥ 0 

𝑌𝜆 − 𝑌𝑗0
≥ 0  

𝜆 ≥ 0 

(2.5) 
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The envelopment form (2.5) represents explicitly the way that the evaluated units are 

projected on the efficient frontier. The correspondence of the constraints and the variables of 

models (2.4) and (2.5) is presented in Table 2.3. 

 

Table 2.3: Correspondence between models (2.4) and (2.5) 

Constraints of multiplier 

model (2.4) 

Variables of 

envelopment model 

(2.5) 

Variables of 

multiplier model 

(2.4) 

Constraints of envelopment 

model (2.5) 

𝑣𝑋𝑗0
= 1 θ 𝑣 ≥ 0 𝜃𝑋𝑗0

− 𝛸𝜆 ≥ 0 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛 𝜆 ≥ 0 𝑢 ≥ 0 𝑌𝜆 − 𝑌𝑗0
≥ 0 

 

The constraints of the envelopment model (2.5) make evident its relation with the CRS 

production possibility set TCRS(2.1). These constraints require the proposed activity (θΧjo, Yjo) 

to belong to the TCRS. The objective of the input oriented model (2.5) is to seek for the 

minimum θ that reduces radially the input levels (Χjo) to θΧjo onto the boundary of TCRS, 

maintaining the output levels (Yjo). In order to account for input excesses and output shortfalls 

the non-negative slack variables 𝑠− = (𝑠1
−, … , 𝑠𝑚

− )𝑇 and 𝑠+ = (𝑠1
−, … , 𝑠𝑠

+)𝑇  are introduced in 

model (2.5) to get its standard form as follows: 

𝑚𝑖𝑛 𝜃 

𝑠. 𝑡. 

𝜃𝑋𝑗0
− 𝛸𝜆 − 𝑠− = 0 

𝑌𝑗0
− 𝑌𝜆 + 𝑠+ = 0  

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.6) 

 

The model (2.6) is solved by the following two-phase LP procedure is solved: 

Phase I 

The model (2.6) is solved in order to derive the efficiency score θ* for the evaluated DMUjo. 

 

Phase II 

Using the optimal value θ* from Phase I, the following model is solved to find a solution that 

maximizes the sum of input excesses and output shortfalls, where e=(1,…,1) is a vector of 

ones. 
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𝑚𝑎𝑥 𝑒𝑠− + 𝑒𝑠+ 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝜃∗𝑋𝑗0
 

𝑌𝜆 − 𝑠+ = 𝑌𝑗0
  

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.7) 

 

Definition 2.3: Given an optimal solution (𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗) from Phases I and II, the evaluated 

DMUjo is CCR-inefficient if and only if θ*=1 and all slacks are zero (  𝑠−∗ = 0, 𝑠+∗ =0). 

Otherwise, the DMUjo is CCR-inefficient. 

 

The Definition 2.2 characterizes the efficient units in terms of the multiplier form whereas the 

Definition 2.3 characterizes the efficient units in terms of the envelopment form. These two 

definitions are equivalent according to complementary slackness theorem. Accordingly, the 

Definition 2.3 is equivalent to Pareto-Koopmans efficiency (Definition 2.1). 

Given the optimal solution (𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗) derived by Phases I and II (models (2.6) and 

(2.7)) the projections of the evaluated unit jo (𝑋̂𝑗0
, 𝑌̂𝑗0

) on the efficient frontier are obtained as 

follows: 

 

𝑋̂𝑗0
= 𝜃∗𝑋𝑗0

− 𝑠−∗ = 𝑋𝑗𝜆
∗
 

𝑌̂𝑗0
= 𝑌𝑗0

+𝑠+∗ = 𝑌𝑗𝜆∗
 

(2.8) 

 

 

2.2.1.3 Input-Output oriented models 

The technical efficiency of a DMU can be measured by adopting either an input or an output 

orientation. If the conservation of inputs is of greater importance an input orientation is 

selected. Alternatively, if the expansion of outputs is considered more important according to 

the analyst’s perspective an output orientation is selected. The two variants of the CCR model 

in multiplier and envelopment forms are presented in Table 2.4 below. 
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Table 2.4: Input and output oriented CCR models 
 

Multiplier form  Envelopment form  

In
p

u
t 

o
ri

en
te

d
 

𝑚𝑎𝑥 𝑒𝑗0
= 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑢 ≥ 0  

(2.4) 

𝑚𝑖𝑛 𝜃 

𝑠. 𝑡. 

𝜃𝑋𝑗0
− 𝛸𝜆 − 𝑠− = 0 

𝑌𝑗0
− 𝑌𝜆 + 𝑠+ = 0  

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.6) 

O
u

tp
u

t 
o

ri
en

te
d
 

𝑚𝑖𝑛
1

𝑒𝑗0

= 𝑣𝑋𝑗0
 

𝑠. 𝑡. 

𝑢𝑌𝑗0
= 1 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑢 ≥ 0 

(2.9) 

𝑚𝑎𝑥 𝜑 

𝑠. 𝑡. 

𝑋𝑗0
− 𝛸𝜇 − 𝜏− = 0 

𝜑𝑌𝑗0
− 𝑌𝜇 + 𝜏+ = 0  

𝜇 ≥ 0, 𝜏− ≥ 0, 𝜏+ ≥ 0 

(2.10) 

 

The optimal solutions of the input and output oriented models are related as follows: 

 𝜃∗ = 1/𝜑∗ 

 𝜆𝑗
∗ = 𝜇𝑗

∗ 𝜑∗⁄ , 𝑗 = 1, … , 𝑛  

  𝑠−∗ =  𝜏−∗ 𝜑∗⁄ , 𝑖 = 1, … , 𝑚  

  𝑠+∗ =  𝜏+∗ 𝜑∗⁄ , 𝑟 = 1, … , 𝑠  

(2.11) 

 
 

 

 
 

 

2.2.1.4 Illustrative example 

We illustrate the above models and concepts with an example of seven DMUs (A to G) that 

use a single input to produce two outputs as shown in Table 2.5 below:  

 

Table 2.5: Example of seven DMUs with single input and two outputs 

DMU A B C D E F G 

Input (X1) 2 2 10 4 4 1 1 

Output (Y1) 4 6 30 4 12 1 4 

Output (Y2) 14 6 10 20 24 7 2 

Output (Y1) / Input (X1) 2 3 3 1 3 1 4 

Output (Y1) / Input (X1) 7 3 1 5 6 7 2 
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To make the representation of the units in two dimensional space possible the outputs per 

unit of input are calculated. Table 2.6 exhibits the results obtained from the multiplier model 

(2.9) or its dual, the envelopment model (2.10), i.e. the inverse of the efficiency scores (φ*), 

the optimal weights  (𝑣
1
∗ , 𝑢1

∗ , 𝑢2
∗) in terms of the multiplier model, the reference set of the 

inefficient units with the intensities and the input excesses (𝜏1
−∗) and the output shortfalls  

𝜏1
+∗, 𝜏2

+∗ ) . 

 

Table 2.6: CCR output oriented results 

DMU φ* 𝑣1
∗ 𝑢1

∗ 𝑢2
∗  

Reference 

set 
Intensity variables 𝜏1

−∗ 𝜏1
+∗ 𝜏2

+∗ 

A 1 1 0.111 0.111 - 𝜇𝛢
∗ = 1 0 0 0 

B 1.2 1.2 0.267 0.067 E, G  𝜇𝐸
∗ = 0.4,  𝜇𝐺

∗ = 0.6 0 0 0 

C 1.333 1.333 0.333 0 G  𝜇𝐺
∗ =1 0 0 0.667 

D 1.4 1.4 0 0.2 A 𝜇𝛢
∗ = 1 0 0.6 0 

E 1 1 0.111 0.111 - 𝜇𝐸
∗ = 1 0 0 0 

F 1 1 0 0.143 A 𝜇𝛢
∗ = 1 0 1 0 

G 1 1 0.222 0.056 - 𝜇𝐺
∗ = 1 0 0 0 

 

The DMUs A, E and G are efficient, while the other DMUs are inefficient. Figure 2.5 

below depicts the production possibility set (shadowed region), the efficient frontier defined 

by the efficient units A, E, and G and the projections of the inefficient DMUs on the frontier. 

 
Fig. 2.5: Production possibility set, efficient frontier and projections 
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The output oriented projections of the inefficient units are obtained from the following 

relations: 

𝑋̂𝑗0
= 𝑋𝑗0

− 𝜏−∗ = 𝑋𝑗𝜇𝑗
∗ 

𝑌̂𝑗0
= 𝜑∗𝑌𝑗0

+𝜏+∗ = 𝑌𝑗𝜇𝑗
∗ 

(2.12) 

 

The DMU F is inefficient because although φ*=1 there is an output short fall (𝜏1
+∗ = 1) 

with respect with output Y1. Hence, DMU F can be rendered efficient by increasing the 

output 𝑌𝐹
1 indicated by the amount 𝜏1

+∗ = 1. Graphically, this is accomplished by moving from 

point F to point A. Using the formulations (2.12) we derive the improvements (𝑋̂𝐹
1, 𝑌̂𝐹

1, 𝑌̂𝐹
2) for 

the DMU F as follows: 

 

𝑋̂𝐹
1 = 𝑋𝐹

1 − 𝜏1
−∗ = 1 − 0 = 1  or  𝑋̂𝐹

1 = 𝜇
𝛢
∗ 𝑋𝛢

1 = 1 ∙ 1 = 1 

𝑌̂𝐹
1 = 𝜑∗𝑌𝐹

1 + 𝜏1
+∗ = 1 ∙ 1 + 1 = 2  or  𝑌̂𝐹

1 = 𝜇
𝛢
∗ 𝑌𝛢

1 = 1 ∙ 2 = 2 

𝑌̂𝐹
2 = 𝜑∗𝑌𝐹

2 + 𝜏2
+∗ = 1 ∙ 7 + 0 = 7  or  𝑌̂𝐹

2 = 𝜇
𝛢
∗ 𝑌𝛢

2 = 1 ∙ 7 = 7 

 

The DMU D is inefficient as φ*=1.4>1. Its projection D1 on the frontier can be derived by 

increasing proportionally the two outputs by φ*=1.4, however this radial improvement is not 

sufficient to restore the efficiency of unit D as there is an extra improvement (non-radial) of 

output 𝑌𝐷
1 by 𝜏1

+∗ = 0.6. Therefore, DMU D has to move first to point D1 and then on point A 

of the efficient frontier. The projections ( 𝑋̂𝐷
1 , 𝑌̂𝐷

1, 𝑌̂𝐷
2 ) for the DMU D are calculated as 

follows: 

 

𝑋̂𝐷
1 = 𝑋𝐷

1 − 𝜏1
−∗ = 1 − 0 = 1  or  𝑋̂𝐷

1 = 𝜇
𝛢
∗ 𝑋𝛢

1 = 1 ∙ 1 = 1 

𝑌̂𝐷
1 = 𝜑∗𝑌𝐷

1 + 𝜏1
+∗ = 1.4 ∙ 1 + 0.6 = 2   or 𝑌̂𝐷

1 = 𝜇
𝛢
∗ 𝑌𝛢

1 = 1 ∙ 2 = 2 

𝑌̂𝐷
2 = 𝜑∗𝑌𝐷

2 + 𝜏2
+∗ = 1.4 ∙ 5 + 0 = 7  or  𝑌̂𝐷

2 = 𝜇
𝛢
∗ 𝑌𝛢

2 = 1 ∙ 7 = 7 
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The projections of DMUs B and C are obtained accordingly: 

 

𝑋̂𝐵
1 = 𝑋𝐵

1 − 𝜏1
−∗ = 1 − 0 = 1   or  𝑋̂𝐵

1 = 𝜇
𝐸
∗ 𝑋𝐸

1 + 𝜇
𝐺
∗ 𝑋𝐺

1 = 0.4 ∙ 1 + 0.6 ∙ 1 = 1 

𝑌̂𝐵
1 = 𝜑∗𝑌𝐵

1 + 𝜏1
+∗ = 1.2 ∙ 3 + 0 = 3.6  or  𝑌̂𝐵

1 = 𝜇
𝐸
∗ 𝑌𝐸

1 + 𝜇
𝐺
∗ 𝑌𝐺

1 = 0.4 ∙ 3 + 0.6 ∙ 4 = 3.6 

𝑌̂𝐵
2 = 𝜑∗𝑌𝐵

2 + 𝜏2
+∗ = 1.2 ∙ 3 + 0 = 3.6  or  𝑌̂𝐵

2 = 𝜇
𝐸
∗ 𝑌𝐸

2 + 𝜇
𝐺

∗
𝑌𝐺

2 = 0.4 ∙ 6 + 0.6 ∙ 2 = 3.6 

 

𝑋̂𝐶
1 = 𝑋𝐶

1 − 𝜏1
−∗ = 1 − 0 =1  or  𝑋̂𝐶

1 = 𝜇
𝐺
∗ 𝑋𝐺

1 = 1 ∙ 1 = 1 

𝑌̂𝐶
1 = 𝜑∗𝑌𝐶

1 + 𝜏1
+∗ = 1.333 ∙ 3 + 0 = 4  or  𝑌̂𝐶

1 = 𝜇
𝐺
∗ 𝑌𝐺

1 = 1 ∙ 4 = 4 

𝑌̂𝐶
2 = 𝜑∗𝑌𝐶

2 + 𝜏2
+∗ = 1.333 ∙ 1 + 0.667 = 2  or  𝑌̂𝐶

2 = 𝜇
𝐺
∗ 𝑌𝐺

2 = 1 ∙ 2 = 2 

 

In Table 2.7 below, we provide the projections for the inefficient DMUs.  

 

Table 2.7: Projections 

DMU B C D F 

Input 𝑋̂1 1 1 1 1 

Output 𝑌̂1 3.6 4 2 2 

Output 𝑌̂2 3.6 2 7 7 

 

 

2.2.2 The BCC model 

The CCR model was extended to the BCC model by Banker et al (1984) so as to 

accommodate variable returns to scale (VRS). The incorporation of variable returns to scale 

in DEA allows for decomposing the overall efficiency to technical and the scale efficiency in 

contrast to the CCR model which aggregates them into a single measure. 

A structural difference of the CCR and the BCC models is the additional free of sign 

variable uo in the multiplier form of the latter, which is the dual variable associated with the 

additional convexity constraint (eλ=1) in the envelopment form. Table 2.8 exhibits the 
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multiplier and the envelopment forms of the input oriented and the output oriented BCC 

models. 

 

Table 2.8: Input and output oriented BCC models 

 Multiplier form  Envelopment form  

In
p

u
t 

o
ri

en
te

d
 

𝑚𝑎𝑥 𝑢𝑌𝑗0
− 𝑢0 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗 − 𝑢0 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑢 ≥ 0  

(2.13) 

𝑚𝑖𝑛 𝜃 

𝑠. 𝑡. 

𝜃𝑋𝑗0
− 𝛸𝜆 − 𝑠− = 0 

𝑌𝑗0
− 𝑌𝜆 + 𝑠+ = 0  

𝑒𝜆 = 1 

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.14) 

O
u
tp

u
t 

o
ri

en
te

d
 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝑢0 

𝑠. 𝑡. 

𝑢𝑌𝑗0
= 1 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 + 𝑢0 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑢 ≥ 0 

(2.15) 

𝑚𝑎𝑥 𝜑 

𝑠. 𝑡. 

𝑋𝑗0
− 𝛸𝜇 − 𝜏− = 0 

𝜑𝑌𝑗0
− 𝑌𝜇 + 𝜏+ = 0 

𝑒𝜆 = 1 

𝜆 ≥ 0, 𝜏− ≥ 0, 𝜏+ ≥ 0 

(2.16) 

 

We give in Table 2.9 the primal and dual correspondences of the constraints and the variables 

of the BCC input oriented models. 

 

Table 2.9: Correspondence between models (2.13) and (2.14) 

Constraints of multiplier model 

(2.4) 

Variables of 

envelopment 

model (2.5) 

Variables of 

multiplier model 

(2.4) 

Constraints of envelopment 

model (2.5) 

𝑣𝑋𝑗0
= 1 θ 𝑣 ≥ 0 𝜃𝑋𝑗0

− 𝛸𝜆 ≥ 0 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 − 𝑒𝑢𝑜 ≤ 0, 𝑗 = 1, … , 𝑛 𝜆 ≥ 0 𝑢 ≥ 0 𝑌𝜆 ≥ 𝑌𝑗0
 

  𝑢𝑜 eλ=1 
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The definition of efficiency is analogous to the Definitions 2.2 and 2.3. The efficiency 

scores obtained from the BCC model are not less than the corresponding ones obtained from 

the CCR model. The boundary of the VRS production possibility set is closer to the 

observations (DMUs) since, the convexity constraint imposed in the BCC envelopment 

model spans a subset of the CRS production possibility set (see Fig. 2.2).  

The prevailing returns to scale can be identified by the optimal solution of both multiplier 

and envelopment BCC models. Banker et al (1984) determined the returns to scale (RTS) 

using the optimal value of the free variable in the multiplier models. Banker (1984) and 

Banker and Thrall (1992) identified the RTS by the intensity variables (lambdas) of the 

envelopment models. 

 

Theorem: Given the point  0 0
,x y that lies on the efficient frontier, the returns to scale at this 

point are identified by the following conditions: 

 

1. Increasing returns to scale (IRS) prevail at  0 0
,x y  if and only if 𝑢𝑜

∗ < 0 for all 

optimal solutions. 

2. Decreasing returns to scale (DRS) prevail at  0 0
,x y  if and only if 𝑢𝑜

∗ > 0 for all 

optimal solutions. 

3. Constant returns to scale (CRS) prevail at  0 0
,x y  if and only if 𝑢𝑜

∗ = 0 in any 

optimal solutions. 

 

We point out that the input and output oriented BCC models may determine different 

returns to scale, i.e. the results may depend on the orientation adopted (cf. Banker et al, 

2004). For the same DMU, the BCC input oriented may identify IRS while the BCC output 

oriented may identify DRS. This is attributed to the nature of the VRS technology (see 

Figures 2.2 and 2.4) and the projections of the evaluated unit onto the VRS frontier. In the 

example portrayed in Figure 2.4, concerning the inefficient DMU E, IRS prevail at the 

frontier point E5, which is obtained by the input oriented projection, while DRS prevail at the 

frontier point E6, which is derived by its output oriented projection. 

 



PhD Thesis – G. Koronakos 

32 |   

2.2.3 The additive model 

A natural evolution of the CCR and the BCC models is the additive model proposed by 

Charnes et al (1985). The CCR and BCC models are based on input or output orientation and 

they provide efficiency scores via a radial measure. On the contrary, in the additive model 

both orientations are combined, thus it is non-oriented. The additive model deals directly with 

the input excesses and output shortfalls and, in contrast to the CCR and the BCC models, it 

does not provide a direct measure of efficiency, but it distinguishes only among efficient and 

inefficient units. Table 2.10 below exhibits the multiplier and the envelopment forms of the 

additive model under both CRS and VRS assumptions. 

 

Table 2.10: Additive DEA models 

 Multiplier form  Envelopment form  

C
R

S
 a

ss
u
m

p
ti

o
n
 𝑚𝑖𝑛 𝑣𝑋𝑗0

− 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑢𝑌𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 1, 𝑢 ≥ 1 

(2.17) 

𝑚𝑎𝑥 𝑒𝑠− + 𝑒𝑠+ 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝑋𝑗0
 

𝑌𝜆 − 𝑠+ = 𝑌𝑗0
 

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.18) 

V
R

S
 a

ss
u
m

p
ti

o
n
 𝑚𝑖𝑛 𝑣𝑋𝑗0

− 𝑢𝑌𝑗0
+ 𝑢𝑜 

𝑠. 𝑡. 

𝑢𝑌𝑗 − 𝑢𝑜 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 1, 𝑢 ≥ 1 

(2.19) 

𝑚𝑎𝑥 𝑒𝑠− + 𝑒𝑠+ 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝑋𝑗0
 

𝑌𝜆 − 𝑠+ = 𝑌𝑗0
 

𝑒𝜆 = 1 

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.20) 

 

A DMU is efficient according to the additive model if and only if at the optimal solution 

all slacks are zero (𝑠−∗ = 0, 𝑠+∗ = 0), i.e. there are not any input excesses or output shortfalls. 

Under the CRS assumption, a DMU is deemed efficient by the additive model if and only if is 

deemed efficient by the CCR model. Also, under VRS assumption, a DMU is deemed 

efficient by the additive model if and only if is deemed efficient by the BCC model. 
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2.2.4 The Slacks-Based Measure (SBM) 

A limitation of the additive model is that only discriminates the efficient from the inefficient 

DMUs without providing an efficiency measure for the evaluated units. Tone (2001) 

introduced the slacks based measure (SBM) which is a successor of the additive model that is 

capable of providing the efficiency scores of the evaluated units. Tone (2001) built upon the 

additive model and introduced a non-radial measure of efficiency that takes into account the 

input excesses and the output shortfalls. The fractional form of the SBM model is as follows: 

 

𝑚𝑖𝑛
1 −

1
𝑚

∑ 𝑠𝑖
−/𝑥𝑖𝑗𝑜

𝑚
𝑖=1

1 +
1
𝑠

∑ 𝑠𝑟
+/𝑦𝑟𝑗𝑜

𝑠
𝑟=1

 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝑋𝑗0
 

𝑌𝜆 − 𝑠+ = 𝑌𝑗0
 

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(2.21) 

The model (2.21) can be converted to the following non-linear program by multiplying 

both terms of the objective function by a positive scalar variable t such that 𝑡 + (
1

𝑠
∑ 𝑡𝑠𝑟

+/𝑠
𝑟=1

𝑦
𝑟𝑗𝑜

) = 1. 

𝑚𝑖𝑛 𝑡 −
1

𝑚
∑ 𝑡𝑠𝑖

−/𝑥𝑖𝑗𝑜

𝑚

𝑖=1

 

𝑠. 𝑡. 

𝑡 + (
1

𝑠
∑ 𝑡𝑠𝑟

+/𝑦𝑟𝑗𝑜

𝑠

𝑟=1

) = 1 

𝛸𝜆 + 𝑠− = 𝑋𝑗0
 

𝑌𝜆 − 𝑠+ = 𝑌𝑗0
 

𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0, 𝑡 > 0 

(2.22) 

 

Then model (2.22) can be transformed to a linear equivalent by applying the following 

variable transformation μ=tλ, σ-=s- and σ+=ts+. 
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𝑚𝑖𝑛 𝜌 = 𝑡 −
1

𝑚
∑ 𝜎𝑖

−/𝑥𝑖𝑗𝑜

𝑚

𝑖=1

 

𝑠. 𝑡. 

𝑡 + (
1

𝑠
∑ 𝜎𝑟

+/𝑦𝑟𝑗𝑜

𝑠

𝑟=1

) = 1 

𝛸𝜇 + 𝜎− = 𝑡𝑋𝑗0
 

𝑌𝜇 − 𝜎+ = 𝑡𝑌𝑗0
 

𝜇 ≥ 0, 𝜎− ≥ 0, 𝜎+ ≥ 0, 𝑡 > 0 

(2.23) 

Note that t>0 by virtue of the first constraint of model (2.23). A DMU is efficient if the 

optimal value of the objective function is one (ρ*=1), which indicates that there are no input 

excesses or output shortfalls (σ-*=0 and σ+*=0). 

 

Conclusion 

Data Envelopment Analysis enabled the efficiency assessment of units that use multiple 

inputs to produce multiple outputs, without the need of a priori knowledge of the production 

function. Also DEA requires very few assumptions, therefore it opened up the possibilities 

for use in a wide range of applications. Great attention has been paid to DEA from the 

research community as well as from operations analysts, because of its practical usefulness 

on providing performance measures and handling effectively the sources of inefficiency. 

However, the further development of DEA is needed so as to address the new real world 

problems and the emerging issues caused by the growing complexity of the production 

conditions. For instance the DMUs may consist of sub-processes with a complex internal 

structure. Despite the exquisite properties of the DEA models presented in this chapter, these 

models do not take into account the possible internal structures of the DMUs and they carry 

out the assessments of the DMUs as single stage processes. Thus, they cannot provide 

meaningful results when applied to multi-stage processes as we will see in the following 

chapters. 
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Chapter 3  

Review of  Network DEA methods 

Network DEA is an extension of conventional DEA developed to take account of the internal 

structure of DMUs. The DMUs often consist of sub-units that interact and perform various 

operations. The traditional DEA models treat the DMUs as single stage production processes 

that transform some external inputs to final outputs. In such a setting, the internal structure of 

the DMUs is not taken into consideration and the linking activities are neglected. Cook and 

Zhu (2014) stressed out that in conventional DEA the DMU is treated as a black box and its 

internal structure and operations are ignored. In addition, Kao (2017) pointed out that “when 

interactions among divisions are not taken into account, the results will be distorted and 

misleading”. Kao and Hwang (2008) showed that the standard DEA models may deem a 

DMU overall system efficient even though all their sub-units are inefficient. Conclusively, 

the standard DEA models fail to adequately capture and mathematically represent the 

aforementioned characteristics of the DMUs. Also, they fall short to shed light on the sources 

of inefficiency as well as to provide succinct guidance for the improvement of the inefficient 

DMUs and sub-units. On the other hand, in network DEA, the DMU is considered as a 

network of interconnected sub-units, with the connections indicating the flow of intermediate 

products (commonly called intermediate measures or links). In the literature, these sub-units 

are also known as stages, divisions, sub-DMUs, sub-systems, sub-processes, processes, 

procedures, components and functions. Albeit in this thesis we may use these terms 

interchangeably, we mainly adopt the term “stage” when we refer to the sub-units of the 

DMUs. The advantage of the network DEA models is their ability to reflect accurately the 

DMUs’ internal operations as well as to incorporate their relationships and interdependences. 

Therefore, they yield more representative and precise results than the conventional DEA 

models and provide more information regarding the sources that cause inefficiency. Cook and 

Seiford (2009) included the network DEA models to the methodological developments of 

DEA and mentioned that these models allow the detailed examination of the inner workings 

of a production process, which leads to a greater understanding of that process. Indeed, 

having a full picture of the internal structure of DMUs and examining their sub-units in a 
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coordinated manner will provide further insights for the performance assessment and will 

assist better the decision making. 

Fare and Primont (1984) and Charnes et al (1986) were the first studies, to the best of our 

knowledge, in the field later named network DEA by Fare and Grosskopf (2000). Fare and 

Primont (1984) distinguished the internal structure of multi-plant firms, i.e. firms that own 

many plants. They defined the firm’s technology by constructing first the technology of each 

plant. Their approach was applied to a selected sample of electric generating firms which 

consists of nineteen plants in Illinois. Later, Kao (1998) applied their approach for the 

efficiency assessment of eight Taiwanese forest districts with 34 working circles. The 

performance of each working circle was measured based on the technology constructed from 

all of them. Charnes et al (1986) assumed that the US army recruitment is comprised of two 

processes, namely the awareness creation and the contract establishment. Charnes et al (1994) 

characterized the two-stage process assumed in Charnes et al (1986) as a stratified production 

process where a hybrid modelling approach was used. The work of Fare and Grosskopf 

(2000) is considered pioneering in the field of network DEA. Although the terms “black box” 

and network technology had been earlier reported in the studies of Fare (1991), Fare and 

Whittaker (1995), Fare and Grosskopf (1996) and Fare et al (1997), it was Fare and 

Grosskopf (2000) who first coined the term network DEA and provided a consolidated 

framework of the aforementioned studies for multi-stage processes with various structures. 

Network DEA has already attracted the interest of researchers and a significant body of 

research is devoted to both theory and applications. Kao (2014b) noticed that the number of 

publications before 2000 was two or three per year, thereafter though it has rapidly grown. 

Liu et al (2013), in their citation-based literature survey for DEA for the period 1978–2010, 

considered the field of network DEA as a subarea which is relatively active in recent years. 

However, from 2010 onwards there has been a blast of publications on network DEA. Some 

of these studies explore the properties of the existing methods while others apply them to real 

world problems. The application field of network DEA as we will also see below is very 

wide, e.g. supply chains, banking, education, sports just to mention some. The network DEA 

methods can now be straightforwardly and effectively employed for the performance 

evaluation of a supply chain and its members which is undoubtedly a rough task. Agrell and 

Hatami-Marbini (2013) provided a thorough review for network DEA methods including 

studies devoted to supply chain performance analysis. They also remarked that the supply 

chains are complex multi-stage systems with interrelations, which use multiple inputs to 
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produce multiple outputs. Hence, the network DEA methods can be adequately employed for 

their performance assessment. Many prominent approaches are developed to deal with the 

variety of the structures, the interdependencies and the conflicting interests of the sub-units. 

Most of the network DEA studies are dedicated to the performance assessment of DMUs with 

a specific internal structure. A DMU may consist of sub-units arranged in series, in parallel or 

a mixture of these. Cook et al (2010a) and Chen et al (2013) provide insights and directions 

for further research for the two-stage network structures arranged in series. Castelli et al 

(2010) and Halkos et al (2014) provided comprehensive categorized overviews of models and 

methods developed for different multi-stage production architectures. Kao (2014b) provides 

an excellent review and classification of network DEA methods according to the model they 

use and the network structure that they examine. Moreover, a collection of network DEA 

methods is given in Cook and Zhu (2014). 

The aim of this chapter is to describe the underlying notions of network DEA, to present 

the state of the art in the field and to review the most significant network DEA methods. 

Also, our goal is to provide a comprehensive insight and categorization of the network DEA 

literature in a unified manner. In particular, we present the possible network structures that a 

DMU may be characterized of, we demonstrate the advantages of the network DEA over the 

standard DEA, we provide a critical review of the most influential approaches and we discuss 

their extensions, inherent limitations and shortcomings. In addition, we track the majority of 

multi-stage DEA applications and we classify them according to the method they utilize. 

Hence, this chapter presents a complete survey of the network DEA literature. 

 

3.1 Network structures and assessment paradigms 

The DMUs may have various types of internal structures. However, we discern that their 

production processes may be arranged either in series, in parallel or in series-parallel. The 

series and the parallel production processes are two distinctive network architectures studied 

extensively in the literature. In this section, we provide some illustrative examples of network 

structures which are used as the basis for the development of the most significant network 

DEA methods. The four types of series two-stage network processes depicted in Figure 3.1 

are the basis for the development of network DEA theory and applications. 
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Fig. 3.1: The four types of series two-stage processes 

 

In the Type I two-stage process (Fig. 3.1a) the first stage uses external inputs (X) to produce 

the intermediate measures (Z), which are subsequently used as inputs to the second stage 

which produces the final outputs (Y). In Type I structure, nothing but the external inputs to 

the first stage enters the system and nothing but the outputs of the second stage leaves the 

system. This is the elementary network structure that has drawn the attention of most of the 

research work. Wang et al (1997) and Seiford and Zhu (1999) are the first who studied 

processes of Type I structure. 

In the production process of Type II (Fig. 3.1b)  each DMU uses the external inputs (X) in 

the first stage to yield the intermediate measures (Z), which then are used along with the 

additional external inputs (L) to the second stage to yield the final outputs (Y), as depicted in 

Figure 3.1b. That is, the second stage uses except from the intermediate measures additional 

external inputs (L) for exclusive use. Liang et al (2006), under game theoretic concepts, 

studied a supply chain with two stages, the seller and the buyer, where the buyer (second 

stage) uses extra inputs. Notice that the Type II structure may be varied by assuming that the 

external inputs (X) can be freely shared between the stages in conjunction with or without the 

additional inputs (L). Such a variation is considered in Chen et al (2006), where the impact of 

the Information Technology (IT) on firm performance is examined. 
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In the production process of Type III (Fig. 3.1c), the first stage produces some final 

outputs (K) beyond the intermediate measures (Z).  

In the production process of Type IV (Fig. 3.1d) external inputs and final outputs appear 

in both stages. The first stage uses the inputs (X) to generate the final outputs (K) and the 

intermediate measures (Z). The second stage uses the intermediate measures (Z) and the 

additional external inputs (L) for the production of the final outputs (Y). This type of network 

structure was first studied in Charnes et al (1986), Fare (1991), Fare and Whittaker (1995) 

and Fare and Grosskopf (1996). 

The four types of network structures portrayed in Figure 3.1 can be generalized to series 

structures with more than two stages. Figure 3.2 exhibits a series network structure where 

each DMU is considered as a multi-stage process with ν stages. Actually, the general series 

multi-stage process depicted in Figure 3.2 is the multiple of Type IV. 

 

 

Fig. 3.2: A general multi-stage series process 

 

Another basic network structure of the DMUs is a production process whose sub-

processes are configured in parallel. Figure 3.3 below depicts the internal structure of a DMU 

with ν parallel processes without interdependencies. Each sub-process transforms the external 

inputs (X) to final outputs (Y). A characteristic example of units that can be considered as 

parallel production processes  are the academic departments, where teaching and research are 

two separate functions with specific resources and outputs. Analogously, a university can be 

viewed as a DMU and its departments can be regarded as the individual parallel sub-units. A 

modification of the parallel structure of Figure 3.3 may involve shared flows among the 

stages, i.e. the sub-processes, instead of consuming dedicated inputs, they share common 

resources (external inputs). Such a case was examined by Fare et al (1997) who assessed the 

performance of 57 grain farms with one shared input, namely the land. The land is allocated 
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among four different agricultural operations, specifically the crops of corn, soybeans, wheat 

and the double crop soybeans. Based on Fare et al (1997), Vaz et al (2010) studied 78 

Portuguese retail stores, each one comprised of five sections, namely groceries, perishables, 

light bazaar, heavy bazaar and textiles. These sections operate in parallel and share the floor 

area. In the educational sector, Beasley (1995) and Mar Molinero (1996) developed nonlinear 

models to measure teaching and research performance as parallel academic operations, in the 

presence of two shared inputs, namely general and equipment expenditures. 

 

 

Fig. 3.3: A production process with parallel sub-processes 

  

The basic series and parallel configurations are not always sufficient to describe real 

world situations. Therefore, more complex network structures, mixtures of aforementioned 

ones can be used to represent in detail the relationships among the sub-processes. Figure 3.4 

below portrays for example such a network structure composed of a combination of series 

and parallel structures. 
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Fig. 3.4: Mixed network structure with series and parallel sub-processes 

 

Such a structure was studied by Lewis and Sexton (2004) who assessed the performance of 

30 teams (DMUs) of the Major League Baseball in the US. They assumed that the operation 

of each team is represented by a network of five distinct sub-processes. The first and the 

second correspond to the team’s front office operations, while the other three correspond to 

the team’s on-field operations. 

The performance assessment of DMUs within the network DEA framework is carried out 

by a variety of approaches, which can be categorized into two assessment paradigms, namely, 

the independent assessment paradigm and the joint assessment paradigm. In the independent 

assessment paradigm the standard DEA models are used to assess the performance of the 

DMUs and the sub-processes independently. In the joint assessment paradigm the internal 

structure of the DMUs and the interdependencies among the sub-processes are taken into 

account, also the efficiency assessment of the sub-processes and the whole system is made 

simultaneously. There are three general approaches that follow the joint assessment 

paradigm: the efficiency decomposition approach, the slacks-based measure approach and 

the system-centric approach. The categorization is based on the perspective of each approach 

about the relationships between the system (DMU) and the stage efficiencies as well as on the 

kind of information provided for the performance of the individual stages and the system. 

The interaction between the sub-processes is taken into account by these approaches, 

however their difference lies on the way that the overall and the stage efficiencies are 

derived. In particular, the efficiency decomposition approach measures the system efficiency 

first and then the stage efficiencies are calculated ex post. In the slacks-based measure 
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approach the overall efficiency is obtained from the aggregation of the stage efficiencies with 

various ways as we will see further on. As system-centric we characterize the network DEA 

methods that take into account the internal structure of the DMUs and the interdependencies 

among the stages, but they provide only an overall performance measure without generating 

the stage efficiencies. In the system-centric methods there is no functional form that connects 

the overall and the stage efficiencies. 

We give below the notation that will be employed in the current chapter: 

𝑗 ∈ 𝐽 = {1, … , 𝑛}: The index set of the n DMUs. 

𝑗0 ∈ 𝐽: Denotes the evaluated DMU. 

𝛿 ∈ 𝛥 = {1, … , 𝜈}: The index set of the ν processes that each DMUj is composed. 

𝑋𝑗 = (𝑥𝑖𝑗, 𝑖 = 1, … , 𝑚): The vector of external inputs used by DMUj. 

𝑍𝑗 = (𝑧𝑝𝑗, 𝑝 = 1, … , 𝑞): The vector of intermediate measures for DMUj. 

𝑌𝑗 = (𝑦𝑠𝑗 , 𝑟 = 1, … , 𝑠): The vector of final outputs produced by DMUj. 

𝐿𝑗 = (𝑙𝑑𝑗, 𝑑 = 1, … , 𝑎): The vector of extra inputs in structures of Type I and IV. 

𝐾𝑗 = (𝑘𝑐𝑗 , 𝑐 = 1, … , 𝑏): The vector of extra outputs in structures of Types III and IV. 

𝜂 = (𝜂1, … , 𝜂𝑚): The vector of weights for the external inputs in the fractional model. 

𝑣 = (𝑣1, … , 𝑣𝑚): The vector of weights for the external inputs in the linear model. 

𝜑 = (𝜑1, … , 𝜑𝑞) : The vector of weights for the intermediate measures in the fractional 

model. 

𝑤 = (𝑤1, … , 𝑤𝑞): The vector of weights for the intermediate measures in the linear model. 

𝜔 = (𝜔1, … , 𝜔𝑠): The vector of weights for the outputs in the fractional model. 

𝑢 = (𝑢1, … , 𝑢𝑠): The vector of weights for the outputs in the linear model. 

𝑔 = (𝑔1, … , 𝑔𝑎): The vector of weights of extra inputs in the fractional model. 

𝛾 = (𝛾1, … , 𝛾𝑎) : The vector of weights for the extra inputs in the linear model. 

λ: The intensity vector for the first stage.  

μ: The intensity vector for the second stage. 

𝑒𝑗
𝑜: The overall efficiency of DMUj. 
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𝑒𝑗
1: The efficiency of the first stage for DMUj. 

𝑒𝑗
2: The efficiency of the second stage for DMUj. 

𝑒𝑗
𝜈: The efficiency of the ν stage for DMUj. 

𝐸𝑗
1: The independent efficiency score of the first stage for DMUj. 

𝐸𝑗
2: The independent efficiency score of the second stage for DMUj. 

 

3.2 Independent assessments 

The independent approach is an elementary method for the assessment of DMUs that consist 

of sub-processes. Although the internal structure of the DMUs is recognized, the stage 

efficiencies and the overall system efficiency are calculated independently. The standard 

DEA model is used separately in each stage without considering possible conflicts and 

connections among them. In this approach the stages are treated as operating independently 

of one another and are assessed as independent DMUs, hence the impact of each stage to the 

overall efficiency cannot be measured. 

Consider the basic input oriented CRS-DEA models that estimate independently the 

stage-1, the stage-2 and the overall efficiency for the evaluated unit j0 with the simple Type-I 

(see Fig. 3.1a): 

Stage 1: Stage 2: Overall: 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗

𝜂𝑋𝑗
≤ 1,   𝑗 =

1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0  

(3.1) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑̂𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗

𝜑̂𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜑̂ ≥ 0, 𝜔 ≥ 0  

(3.2) 

𝛦𝑗0

𝑜 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗

𝜂𝑋𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜔 ≥ 0  

(3.3) 

 

Notice that the output oriented variants of the above models can be also used, as well as 

different assumptions concerning the returns to scale (VRS etc.). The CRS input oriented 

models (3.1) and (3.2) yield the independent stage efficiencies while model (3.3) provides the 
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overall efficiency of the DMU j0. In model (3.3) only the external inputs (X) and the final 

outputs (Y) are used for the assessment of the evaluated unit j0, whereas in models (3.1) and 

(3.2) for stage-1 and stage-2 respectively, only their individual inputs and outputs are taken 

into account, i.e. (X)–(Z) for stage-1 and (Z)–(Y) for stage-2. As a result, the fact that the 

outputs of the first stage are the inputs to the second stage is ignored. Moreover, the overall 

efficiency is not connected to the individual efficiencies since they are evaluated 

independently. In effect, the efficiency scores derived by the independent approach are 

misleading. This has been reported by Kao and Hwang (2008, 2010), as a DMU may be 

overall efficient while the individual stages are not. Such irregular results are attributed to the 

fact that no coordination between the stages is assumed. Finally, the stage and the overall 

efficiency scores obtained by the independent approach serve as upper bounds of the stage 

and system efficiencies respectively. Because of its simplicity the independent approach can 

be applied to any network structure since the relationships among the stages are not taken 

into account. 

Significant studies that employed the independent approach and have attracted the 

scientific interest are, among others, that of  Charnes et al (1986), Chilingerian and Sherman 

(1990), Wang et al (1997), Seiford and Zhu (1999), Zhu (2000), Sexton and Lewis (2003) 

and Lewis and Sexton (2004). In Charnes et al (1986), the army recruitment was viewed as a 

two-stage process, namely the awareness creation and the contract establishment. 

Chilingerian and Sherman (1990) modeled the medical service as a two-stage process, where 

the first stage is under the control of the management and the second stage is controlled by 

the physician. In stage-1 the management handles the assets of the hospitals and provides 

with clinical outputs which are used as inputs to the stage-2. In the second stage, the 

physicians decide how to utilize these inputs so as to provide medical care to the patients. To 

be more specific, the inputs of stage-1 are nurses, management and support staff, medical 

supplies, various expenditures, capital and fixed costs. The intermediate measures generated 

by stage-1 and conveyed to stage-2 include hours of nursing care, counseling services and 

therapy, volume of diagnostic tests, drugs dispensed and other quantitative indicators about 

the medical treatment issued. The final outputs of stage-2 are research grants and quantitative 

indicators for the patients and the trained staff. Wang et al (1997) studied the impact of IT on 

the performance of 36 banks. They assumed a simple two-stage process of Type I (Fig. 3.1a) 

where the first stage represents the funds collection and the second the investment. Seiford 

and Zhu (1999) studied the performance of the top 55 commercial banks in USA by 
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considering both the operational and the market performance. They modelled the bank 

operations as a simple two-stage process of Type I, with the stage-1 representing profitability 

and the stage-2 marketability. Within a similar framework, Zhu (2000) evaluated the 

performance of profitability and marketability of the Fortune 500 companies. Sexton and 

Lewis (2003) evaluated the performance of 30 teams of the Major League Baseball in the 

USA, by modelling the whole team’s operations as a two-stage process of Type I, with stage-

1 representing front-office operation and stage-2 representing on-field operation. Lewis and 

Sexton (2004) extended their previous study by modelling the team’s operations with the 

network structure depicted in Figure 3.4. In particular, the first two stages correspond to the 

team’s front office operations, which use funds (player salaries) to acquire talent, whereas the 

rest three stages correspond to the team’s on-field operations, which utilize talent to win 

games. 

 

3.3 Joint assessments 

The independent approach neglects the conflicts or connections between the stages. 

Contrarily, according to the joint assessment paradigm the overall and the stage efficiencies 

are simultaneously estimated from one program. The efficiency decomposition approach and 

the slacks-based measure approach are two characteristic families that follow the joint 

assessment paradigm. 

 

3.3.1 Efficiency decomposition approach 

A major characteristic of the decomposition approach is that, apart from the definition of the 

efficiency of the individual stages (stage efficiencies), it premises the definition of the overall 

efficiency of the DMU together with a model to decompose the overall efficiency to the stage 

efficiencies. Then, the efficiency scores of the stages derive as offspring of the overall 

efficiency of the unit. The two basic decomposition methods dominating the literature on 

two-stage DEA, i.e. the multiplicative method of Kao and Hwang (2008) and the additive 

method of Chen et al (2009b) assume the same definitions of stage efficiencies but they differ 

substantially in the definition of the overall system efficiency as well as in the way they 

conceptualize the decomposition of the overall efficiency to the efficiencies of the individual 
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stages. In multiplicative efficiency decomposition, the overall efficiency is defined as a 

product of the stage efficiencies, whereas in the additive efficiency decomposition, the 

overall efficiency is defined as a weighted average of the stage efficiencies. 

 

3.3.1.1 Multiplicative efficiency decomposition 

The multiplicative efficiency decomposition method is introduced by Kao and Hwang (2008) 

and Liang et al (2008) for the simple two-stage network structure of Type I (Fig. 3.1a). 

Specifically, Liang et al (2008) studied the efficiency decomposition of the two-stage process 

using game theoretic concepts. Under the multiplicative decomposition method the efficiency 

of the entire process is decomposed into the product of the efficiencies of the two individual 

stages. The overall efficiency and the stage efficiencies of the DMUj, under the CRS 

assumption, are defined as follows: 

𝑒𝑗
𝑜 =

𝜔𝑌𝑗

𝜂𝑋𝑗
, 𝑒𝑗

1 =
𝜑𝑍𝑗

𝜂𝑋𝑗
, 𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑̂𝑍𝑗
 

    

(3.4) 

In order to link the efficiency assessments of the two stages, it is universally accepted that the 

values of the intermediate measures (virtual intermediate measures) should be same for both 

stages, i.e. the weights associated with the intermediate measures should be the same (𝜑̂ =

𝜑), no matter if these measures are considered as outputs of the first stage or inputs to the 

second stage. The decomposition model assumed is as follows: 

𝑒𝑗
𝑜 =

𝜔𝑌𝑗

𝜂𝑋𝑗
=

𝜑𝑍𝑗

𝜂𝑋𝑗
∙

𝜔𝑌𝑗

𝜑̂𝑍𝑗
 = 𝑒𝑗

1 ∙ 𝑒𝑗
2

    

(3.5) 

i.e. the overall efficiency is defined as the square geometric average of the stage efficiencies.  

Given the above definitions, the CRS input oriented model below assesses the overall 

efficiency and the stage efficiencies of the evaluated unit j0: 

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥 
𝜔𝑌𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗

𝜂𝑋𝑗
≤ 1,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0  

(3.6) 
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Notice that the constraints 𝜔𝑌𝑗 𝜂𝑋𝑗⁄ ≤ 1, 𝑗 = 1, … , 𝑛  are redundant and thus omitted. 

Model (3.6) is a fractional linear program that can be modeled and solved as a linear program 

(3.7) by applying the C-C transformation. The correspondence of variables is: v = tη, u =tω, 

w = tφ where t is a scalar variable such that: 𝑡𝜂𝑋𝑗0
= 1 . 

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0  

 

(3.7) 

Once an optimal solution (v*, w*, u*) of model (3.7) is obtained, the overall efficiency and the 

stage efficiencies are calculated as follows: 

𝑒𝑗0

𝑜 = 𝑢∗𝑌𝑗0
,  𝑒𝑗0

1 = 𝑤∗𝑍𝑗0
, 𝑒𝑗0

2 =
𝑒𝑗0

0

 𝑒𝑗0
1        (3.8) 

In parallel, Liang et al (2008) developed the multiplicative decomposition in the light of 

game theoretic concepts. They characterized the multiplicative decomposition method 

described above as a cooperative or a centralized game, i.e. they refer to model (3.7) as 

centralized. In addition, they presented the case of non-cooperative game between the stages, 

where preemptive priority is given to one stage like the leader-follower situations in 

decentralized control systems. Liang et al (2008) and Cook et al (2010a) investigated the 

relations among the cooperative, the non-cooperative and the conventional DEA approaches. 

Notice that the overall efficiency is obtained as the optimal value of the objective function 

of model (3.7), the stage-1 efficiency is given by the total virtual intermediate measure, 

whereas the stage-2 efficiency derives as offspring of the overall and stage-1 efficiencies. A 

major shortcoming of the multiplicative method is that the decomposition of the overall 

efficiency to the stage efficiencies is not unique. Indeed, as the term 𝑤𝑍𝑗0
does not appear in 

neither the objective function or in the normalization constraint, its value may vary and still 

maintain the optimal value of the objective function (i.e. the overall efficiency) and the 

inequality constraints of model (3.7). Also, as noted by Kao and Hwang (2008) the above 

deficiency renders the comparison of stage efficiencies among all DMUs lack a common 

basis. That is why Kao and Hwang (2008) and Liang et al (2008) propose solving a pair of 

linear programs, in a post-optimality phase, to obtain the largest scores for 𝑒𝑗0

1  and 𝑒𝑗0

2  while 
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maintaining the overall efficiency score obtained by model (3.7). In particular, they 

developed a procedure for testing the uniqueness of efficiency decomposition by maximizing 

the efficiency of one stage under the constraint that the optimal overall efficiency obtained by 

(3.7) is maintained. Then the efficiency of the other stage is calculated from (3.5). The 

highest efficiency for the first stage is obtained by the following model. 

 

𝑒𝑗0

1𝑈 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗0
= 𝑒𝑗0

𝑜  

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0  

(3.9) 

Once an optimal solution (v*, w*, u*) of model (3.9) is obtained then 𝑒𝑗0

1𝑈 = 𝑤∗𝑍𝑗0
 and the 

efficiency of the second stage is derived by 𝑒𝑗0

2𝐿 = 𝑒𝑗0

0  𝑒𝑗0

1𝑈⁄ . Alternatively, if priority is given 

to the second stage the corresponding model to find its highest efficiency level is the 

following: 

 

𝑒𝑗0

2𝑈 = 𝑚𝑎𝑥 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑢𝑌𝑗0
− 𝑒𝑗0

𝑜 𝑣𝑋𝑗0
= 0 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0  

(3.10) 

 

Given an optimal solution (v*, w*, u*) of model (3.10), the highest efficiency score of stage-2 

is 𝑒𝑗0

2𝑈 = 𝑢∗𝑌𝑗0
 and the resulting efficiency of the first stage is 𝑒𝑗0

1𝐿 = 𝑒𝑗0

0  𝑒𝑗0

2𝑈⁄ .  If  𝑒𝑗0

1𝑈 ≠  𝑒𝑗0

1𝐿 or 

 𝑒𝑗0

2𝑈 ≠  𝑒𝑗0

2𝐿  then the efficiency decomposition is not unique, in other words there are 

alternative optimal solutions that yield the same level of overall efficiency, i.e. 𝑒𝑗0

0 =  𝑒𝑗0

1 ∙

 𝑒𝑗0

2 =  𝑒𝑗0

1𝑈 ∙ 𝑒𝑗0

2𝐿 =  𝑒𝑗0

1𝐿 ∙ 𝑒𝑗0

2𝑈. 
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The purpose of models (3.9) and (3.10), beyond checking the uniqueness of the efficiency 

decomposition, is to provide also alternative solutions in case of non-uniqueness. The 

argument is that one might wish giving priority to the first or the second stage in the 

efficiency assessments. Although there is a rationale in this argument, the non-uniqueness of 

the decomposition is still a problem, especially in the case that no priority is conceived by the 

management. Notice that the above procedure can be also applied when output orientation is 

selected using the output oriented models accordingly. 

As mentioned above, Liang et al (2008) and Cook et al (2010a) viewed the efficiency 

assessment of the two-stage process as a non-cooperative game under the leader-follower 

assumption of a decentralized control system; this paradigm is also referred to as the 

Stackelberg game. A  DMU may be seen as a supply chain with two parts, consisting for 

example of a manufacturer and a retailer. In such a setting, the manufacturer acts as a leader 

whereas the retailer is treated as a follower. Assuming that the first stage is the leader then its 

performance is computed first by applying the conventional DEA model. The leader (first 

stage) seeks to maximize its performance without considering the follower (second stage). 

The performance of the follower (second stage) is calculated subject to the requirement that 

the leader’s efficiency is fixed at its optimal value. The following pair of LP models provides 

the leader-follower solution given that the stage-1 is the leader. 

 

𝑒𝑗0

1 𝐿𝑒𝑎𝑑𝑒𝑟 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0 

(3.11) 

 

Once the leader’s efficiency (𝑒𝑗0

1 𝐿𝑒𝑎𝑑𝑒𝑟) is obtained the efficiency of the follower (second 

stage) is obtained by the following model: 

 



PhD Thesis – G. Koronakos 

50 |   

𝑒𝑗0

2 𝐹ollower = 𝑚𝑎𝑥 
𝑢𝑌𝑗0

𝑒𝑗0

1 𝐿𝑒𝑎𝑑𝑒𝑟  
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗0
= 𝑒𝑗0

1 𝐿𝑒𝑎𝑑𝑒𝑟 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0  

(3.12) 

 Alternatively, if the second stage is assumed to be the leader then its efficiency score is 

optimized first. The leader-follower modelling approach yields the maximum achievable 

efficiency score for each stage when it acts as a leader, i.e. it generates the independent 

efficiency scores (𝑒𝑗0

1 𝐿𝑒𝑎𝑑𝑒𝑟 = 𝐸𝑗0

1 , 𝑒𝑗0

2 𝐿𝑒𝑎𝑑𝑒𝑟 = 𝐸𝑗0

2 ). Liang et al (2008) remarked that contrary to 

the cooperative model (3.7), the non-cooperative one yields always unique efficiency 

decomposition.  

The envelopment form of the multiplicative decomposition model is studied by Chen et al 

(2010a) and Chen et al (2013). The dual to the CRS input oriented model (3.7) is formulated 

as follows: 

min 𝜃 

𝑠. 𝑡. 

𝛸𝜆 ≤ 𝜃𝑋𝑗0
 

𝑌𝜇 ≥ 𝑌𝑗0
 

Ζλ-Ζμ≥ 0 

𝜆 ≥ 0, 𝜇 ≥ 0 

(3.13) 

Contrary to the standard DEA context where the multiplier and envelopment DEA models are 

dual models and equivalent, as also remarked by Chen et al (2010a) and Chen et al (2013), 

such is not necessarily true for the two forms of network DEA models. As they further noted, 

the duals to the multiplier-based network DEA models may not provide the frontier 

projections without exerting appropriate modifications to them. The above are also observed 

for model (3.13), where the usual procedure of adjusting the inputs and outputs by the 

efficiency scores is not adequate to provide a frontier projection. Also, model (3.13) does not 

provide the stage efficiency scores. These irregularities may be attributed to the conflicting 

nature of the intermediate measures and to the fact that may none DMU be overall efficient, 
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i.e. may none DMU be efficient in both stages. Thus, new techniques are needed for the 

determination of the efficient frontier of a two-stage process. Chen et al (2010a) developed 

the alternative envelopment model (3.14), in order to overcome the reported inadequacies and 

generate the efficient frontier. They replaced the observed levels of intermediate measures by 

variables and separated the constraints associated with the intermediate measures.  

min 𝜃̃ 

𝑠. 𝑡. 

𝛸𝜆 ≤ 𝜃̃𝑋𝑗0
 

𝑌𝜇 ≥ 𝑌𝑗0
 

Ζλ≥ 𝑍̃𝑗0
 

Ζμ≤ 𝑍̃𝑗0
 

𝜆 ≥ 0, 𝜇 ≥ 0, 𝑍̃𝑗0
≥ 0 

(3.14) 

Chen et al (2010a) showed that model (3.14) and model (3.13) yield the same overall 

efficiency score i.e. 𝜃 = 𝜃̃, and model (3.14) provides additionally sufficient information on 

how to project inefficient DMUs onto the efficient frontier. The projection (𝑋̂𝑗0
, 𝑍̂𝑗0

, 𝑌̂𝑗0
) for 

DMUjo is derived by the optimal solution of model (3.14) as 𝜃̃∗𝑋𝑗0
, 𝑍̃𝑗0

∗ , 𝑌𝑗0
. The dual to model 

(3.14) is as follows: 

𝑚𝑎𝑥 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤1𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤2𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑤2 − 𝑤1 ≤ 0 

𝑣 ≥ 0, 𝑤1 ≥ 0, 𝑤2 ≥ 0, 𝑢 ≥ 0  

(3.15) 

In model (3.14) the constraints 𝑍̃𝑗0
≥ 0 are redundant thus can be omitted. This affects model 

(3.15) by converting the constraint 𝑤2 − 𝑤1 ≤ 0 to equality (𝑤2 − 𝑤1 = 0), i.e. the weights 

concerning the intermediate measures are the same and model (3.15) is identical to model 

(3.7). The findings discussed above are characterized as pitfalls of network DEA models by 

Chen et al (2013). They proposed that under network DEA the envelopment models should 

be used for deriving the frontier projection for inefficient DMUs and the multiplier ones for 

the determination of the efficiency scores. 
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Chen et al (2009a) and Cook et al (2010a) examined the relations and equivalences of the 

multiplicative decomposition approach with other existing network DEA methods. In 

particular, they established the equivalence between the studies of Fare and Grosskopf 

(1996), Chen and Zhu (2004), Kao and Hwang (2008) and Liang et al (2008). In particular, 

Chen et al (2009a) showed that the model of Chen and Zhu (2004) under CRS assumption is 

equivalent to the output oriented model of Kao and Hwang (2008) and the centralized output 

oriented model of Liang et al (2008). Also, Cook et al (2010a) illustrated that model (3.13), 

the dual of model (3.7), is equivalent to the models proposed by Fare and Grosskopf (1996). 

All these models, under CRS assumption, provide the same overall efficiency score for the 

two-stage process of Figure 3.1a. 

A major limitation of the multiplicative decomposition method is its inability to be 

straightforwardly applied under the VRS assumption. This is because the extra free-in-sign 

variables introduced in the VRS model will render the resulting model highly non-linear. 

Later, Kao and Hwang (2011) proposed an approach to decompose technical and scale 

efficiencies of the two-stage process. They derived the scale efficiencies for the two stages 

assuming an input oriented VRS model for the first stage and an output oriented VRS model 

for the second stage. Thus, the system efficiency is decomposed into the product of the 

technical and scale efficiencies of the stages. 

 

Extensions of the multiplicative efficiency decomposition 

The multiplicative decomposition method can be readily applied to series multi-stage 

processes of Type I but not to general network structures because the assumption that the 

overall efficiency is the product of the stage efficiencies renders the resulting models highly 

nonlinear. In Kao (2009a), (2009b), (2012), (2014a) and Kao and Hwang (2010) it is shown 

that the overall efficiency of a DMU with the parallel structure of Figure 3.3 is the weighted 

average of the stage efficiencies, where the weights are derived from the proportions of 

inputs utilized by each stage. In the above studies the multiplicative decomposition method of 

Kao and Hwang (2008) is modified so as to be applied to any type of series and series-

parallel multi-stage processes. Their modelling approach is based on the common assumption 

that the weights associated with the intermediate measures are the same. Also, they deal with 

general series and series-parallel multi-stage processes by transforming the multi-stage 

process under evaluation. In particular, dummy sub-processes are introduced in the original 
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multi-stage process, which operate in a parallel configuration with the actual sub-processes. 

By applying this transformation the overall efficiency of the system is derived as the product 

of the efficiencies of the sub-systems, where the efficiency of each modified process (sub-

system) is a weighted average of the efficiencies of the processes (real and dummies). 

Below we give an example of the aforementioned technique applied to the Electricity 

Service System (Fig. 3.5) originally discussed in Tone and Tsutsui (2009). The first process 

(Generation division) generates electric power (Z1), which then is used to the second process 

(Transmission division) in order to be sold to large customers as output (Y2) or to be sent as 

intermediate measure (Z2) to the third process (Distribution division) so as to provide 

electricity to small customers (Y3).  

 

 

Fig. 3.5: Electric power generation, transmission and distribution (Tone and Tsutsui, 2009). 

 

The overall efficiency of the DMUj and the stage efficiencies are defined as follows: 

 

𝑒𝑗
𝑜 =

𝑢2𝑌𝑗
2 + 𝑢3𝑌𝑗

3

𝑣1𝑋𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3 

(3.16) 

𝑒𝑗
1 =

𝑤1𝑍𝑗
1

𝑣1𝑋𝑗
1 , 𝑒𝑗

2 =
𝑤2𝑍𝑗

2 + 𝑢2𝑌𝑗
2

𝑤1𝑍𝑗
1 + 𝑣2𝑋𝑗

2  , 𝑒𝑗
3 =

𝑢3𝑌𝑗
3

𝑤2𝑍𝑗
2 + 𝑣3𝑋𝑗

3 

 

The series network structure described above can be transformed via the approach introduced 

in Kao (2009a) to the network structure of Figure 3.6 below. The squares and circles 

represent the actual and dummy processes respectively. 
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Fig. 3.6: The transformed network process of Fig. 3.5 

 

The modified network structure contains three subsystems arranged in series, where each of 

them consists of an actual process and a dummy process operating in parallel. The dummy 

processes are introduced so as to convey the inputs and the outputs dedicated to specific 

processes throughout the system. The efficiencies of the three sub-systems are computed by 

the ratio of their aggregate output to aggregate input. 

𝑒𝑗
𝐼 =

𝑤1𝑍𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3

𝑣1𝑋𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3 , 𝑒𝑗

𝐼𝐼 =
𝑤2𝑍𝑗

2 + 𝑢2𝑌𝑗
2 + 𝑣3𝑋𝑗

3

𝑤1𝑍𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3  , 𝑒𝑗

𝐼𝐼𝐼 =
𝑢2𝑌𝑗

2 + 𝑢3𝑌𝑗
3

𝑤2𝑍𝑗
2 + 𝑣3𝑋𝑗

3 + 𝑢2𝑌𝑗
2 

As mentioned above, the overall efficiency of a system, whose stages are in parallel, is the 

weighted average of the stage efficiencies. Thus, in the above transformed network (Fig. 3.6) 

the efficiency of each sub-system is obtained as the weighted average of the efficiencies of 

the actual and dummy process. The weights are derived endogenously from the optimization 

process as the proportions of inputs consumed by each process. Notice that the dummy 

processes have the same inputs and outputs, therefore their efficiency score is one.  

 𝑒𝑗
𝐼 = 𝑡𝑗

1𝑒𝑗
1 + 𝑡𝑗

4𝑒𝑗
4 = 𝑡𝑗

1𝑒𝑗
1 + (1 − 𝑡𝑗

1)  where 𝑡𝑗
1 =  (𝑣1𝑋𝑗

1) (𝑣1𝑋𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3)⁄  and 

𝑡𝑗
1 + 𝑡𝑗

4 = 1 

 

 𝑒𝑗
𝐼𝐼 = 𝑡𝑗

2𝑒𝑗
2 + 𝑡𝑗

5𝑒𝑗
5 = 𝑡𝑗

2𝑒𝑗
2 + (1 − 𝑡𝑗

2) where 𝑡𝑗
2 =

 (𝑤1𝑍𝑗
1 + 𝑣2𝑋𝑗

2) (𝑤1𝑍𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3)⁄  and 𝑡𝑗

2 + 𝑡𝑗
5 = 1 

 

 𝑒𝑗
𝐼𝐼𝐼 = 𝑡𝑗

3𝑒𝑗
3 + 𝑡𝑗

6𝑒𝑗
6 = 𝑡𝑗

3𝑒𝑗
3 + (1 − 𝑡𝑗

3)  where 𝑡𝑗
3 =  (𝑤2𝑍𝑗

2 + 𝑣3𝑋𝑗
3) (𝑤2𝑍𝑗

2 + 𝑣3𝑋𝑗
3 + 𝑢2𝑌𝑗

2)⁄  

and 𝑡𝑗
3 + 𝑡𝑗

6 = 1 
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From the above mathematical relationships it follows that the overall (system) efficiency of 

the DMUj can be calculated as the product of the three sub-systems efficiencies. 

𝑒𝑗
𝑜 = 𝑒𝑗

𝐼 ∙ 𝑒𝑗
𝐼𝐼 ∙ 𝑒𝑗

𝐼𝐼𝐼 = [𝑡𝑗
1𝑒𝑗

1 + (1 − 𝑡𝑗
1)] ∙ [𝑡𝑗

2𝑒𝑗
2 + (1 − 𝑡𝑗

2)] ∙ [𝑡𝑗
3𝑒𝑗

3 + (1 − 𝑡𝑗
3)] 

The resulting model for the performance assessment for DMU j0 with the above network 

structure is given as: 

 𝑒𝑗0

𝑜 = 𝑚𝑎𝑥 𝑢2𝑌𝑗0

2 + 𝑢3𝑌𝑗0

3 

𝑠. 𝑡. 

𝑣1𝑋𝑗0

1 + 𝑣2𝑋𝑗0

2 + 𝑣3𝑋𝑗0

3 = 1 

𝑢2𝑌𝑗
2 + 𝑢3𝑌𝑗

3 − 𝑣1𝑋𝑗
1 − 𝑣2𝑋𝑗

2 − 𝑣3𝑋𝑗
3 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑤1𝛧𝑗
1 − 𝑣1𝑋𝑗

1 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢2𝑌𝑗
2 + 𝑤2𝛧𝑗

2 − 𝑤1𝛧𝑗
1 − 𝑣2𝑋𝑗

2 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢3𝑌𝑗
3 − 𝑤2𝛧𝑗

2 − 𝑣3𝑋𝑗
3 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣1, 𝑣2, 𝑣3, 𝑤1, 𝑤2, 𝑢1, 𝑢2 ≥ 0  

(3.17) 

 

System  

1st process 

2nd process 

3rd process 

 

Once an optimal solution of model (3.17) is obtained, the overall and the actual stage 

efficiencies are calculated from the relationships (3.16). However, the decomposition of the 

overall efficiency to the stage efficiencies might be not unique (Fukuyama and Mirdehghan, 

2012). To summarize, the shortcoming of non-unique efficiency scores may occur in the 

assessment of any type of network structure when the multiplicative decomposition method is 

applied. 

 

Alternative multiplicative efficiency decomposition methods 

As shown above, a modified version of the multiplicative decomposition approach is 

proposed by Kao (2009a), (2014a) so as to be applicable to any type of series and series-

parallel multi-stage processes. Beyond that, alternative methods have been developed whose 

common characteristic is that the overall efficiency is defined as the product of the stage 

efficiencies. However, generalizing this assumption to multi-stage networks different to Type 

I leads to high non-linear models which are difficult to solve. A common solution practice is 

to use parametric techniques. 
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Zha and Liang (2010) studied a modified two-stage process of Type II (Fig. 3.1b) where 

the external inputs are freely allocated between the stages. In the study of Zha and Liang 

(2010), the overall efficiency of the system is derived as the product of the efficiencies of the 

two individual stages, as in Kao and Hwang (2008). Zha and Liang (2010) incorporated 

game-theory framework and a heuristic procedure so as to overcome the linearization issues 

raised by the adoption of the multiplicative format of the overall efficiency. In particular, 

using the concept of Stackelberg (non-cooperative) game, they first computed the lower and 

upper bounds of the stage efficiencies. Then, they incorporated this information into a non-

linear cooperative model and by treating the efficiency of one stage as a parameter they 

succeeded to transform it to a parametric linear program. Their method is illustrated by using 

the dataset of 30 top U.S. commercial banks which originally studied by Seiford and Zhu 

(1999). 

Li et al (2012) studied also a two-stage production process of Type II (Fig. 3.1b) in the 

view of cooperative (centralized control) and non-cooperative games (decentralized control). 

They developed a parametric approach in order to obtain the stage efficiency scores and then 

the overall efficiency is computed by the product of the stage efficiencies. Their approach is 

demonstrated by evaluating the research and development of 30 Chinese regions. The stage 

efficiencies as well as the overall efficiency are defined as follows: 

 

The extra inputs (L) which are utilized by the second stage render non-linear the function of 

the overall efficiency. As a result, the objective function of the evaluation model proposed by 

Li et al (2012) is non-linear:  

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

∙
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗

𝜂𝑋𝑗
≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗

𝜑𝑍𝑗 + 𝑔𝐿𝑗
≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0, 𝑔 ≥ 0 

(3.19) 

 𝑒𝑗
1 =

𝜑𝑍𝑗

𝜂𝑋𝑗
, 𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗+𝑔𝐿𝑗
, 𝑒𝑗

𝑜 =  𝑒𝑗
1 ∙ 𝑒𝑗

2 (3.18) 
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In order to deal with the non-linearity issues the authors resorted to a heuristic search 

procedure in order to estimate a global optimal solution. Firstly, they calculated the largest 

efficiency score for one stage and then they included it as a parameter to the evaluation model 

(3.19) so as to handle it as a parametric linear program. Assuming that in model (3.19) the 

efficiency score of stage-1 is chosen to be treated as a parameter, then its upper bound is 

obtained from the following linear model: 

 

𝐸𝑗0

1 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 + 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0, 𝛾 ≥ 0 

(3.20) 

 

The largest first stage efficiency score (𝐸𝑗0

1 − independent efficiency score) is derived from 

the optimal solution of model (3.20). Hence, the efficiency of the first stage (𝑒𝑗0

1 ) in model 

(3.19) can be treated as a parameter in the interval [0, 𝐸𝑗0

1 ] . Thus model (3.19), after applying 

the C-C transformation, can be rewritten as follows: 

 

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥 𝑒𝑗𝑜

1 ∙ 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 + 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑤𝑍𝑗0
− 𝑒𝑗𝑜

1 𝑣𝑋𝑗0
= 0  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0, 𝛾 ≥ 0  

 𝑒𝑗𝑜

1  ∈  [0, 𝐸𝑗0

1 ]  

 

(3.21) 

 

The parameter 𝑒𝑗0

1  is progressively increased by a small step until the upper bound 𝐸𝑗0

1  of the 

interval is reached. For any given value of parameter 𝑒𝑗0

1  the overall and the second stage 

efficiency are calculated unless the program (3.21) is infeasible. Once the heuristic procedure 

is finished then reasonably they select the stage efficiencies that yield the maximum 

achievable level of overall efficiency. 
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3.3.1.2 Additive efficiency decomposition 

The additive efficiency decomposition method is introduced by Chen et al (2009b) for the 

assessment of the two-stage process of Type I (Fig. 3.1a) and then is extended by Cook et al 

(2010b) for the evaluation of multi-stage processes of varying structures. Both studies have 

already received great attention from the research community. In contrast to the 

multiplicative efficiency decomposition method, the overall efficiency is obtained as a 

weighted average of the stage efficiencies, where the weights represent the portion of all 

inputs utilized by each stage. Notably, this aggregation method is used previously in some 

network DEA studies without, however, being part of a well-established efficiency 

decomposition framework. For instance, it is first appeared in Beasley (1995), who evaluated 

the efficiency of teaching and research of the UK chemistry and physics departments and 

viewed them as two processes that operate in parallel and share some resources. The 

aforementioned aggregation method was also adopted by Cook and Hababou (2001), Cook 

and Green (2004) and Jahanshahloo et al (2004), who similarly examined parallel production 

processes with shared inputs. Amirteimoori and Kordrostami (2005) and Amirteimoori and 

Shafiei (2006) aimed to measure the performance of series processes using the 

aforementioned aggregation method about the overall and the stage efficiencies, however 

they treated the stages in a non-coordinated manner. In particular, the weights associated with 

the intermediate measures were different for each stage. 

In the context of additive efficiency decomposition method, the overall efficiency and the 

stage efficiencies, under CRS assumption, of the DMU j are defined as follows: 

𝑒𝑗
𝑜 =

𝜔𝑌𝑗+𝜑𝑍𝑗

𝜂𝑋𝑗+𝜑𝑍𝑗
, 𝑒𝑗

1 =
𝜑𝑍𝑗

𝜂𝑋𝑗
, 𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗
 (3.22) 

The definition of the stage efficiencies are the same as in the multiplicative method, but the 

additive method differentiates in the definition of the overall efficiency. In (3.22) the 

intermediate measures appear in both terms of the fraction that defines the overall efficiency, 

meaning that they are considered as inputs and as outputs simultaneously. The decomposition 

model used is as follows: 

𝑒𝑗
𝑜 =

𝜔𝑌𝑗+𝜑𝑍𝑗

𝜂𝑋𝑗+𝜑𝑍𝑗
= 𝑡𝑗

1 𝜑𝑍𝑗

𝜂𝑋𝑗
+ 𝑡𝑗

2 𝜔𝑌𝑗

𝜑𝑍𝑗
,  𝑡𝑗

1 + 𝑡𝑗
2 = 1 (3.23) 
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i.e. the overall efficiency is expressed as a weighted arithmetic average of the stage 

efficiencies. The functional forms of the weights derive by solving the system (3.23) for 𝑡𝑗
1 

and 𝑡𝑗
2, as follows: 

𝑡𝑗
1 =

𝜂𝑋𝑗

𝜂𝑋𝑗+𝜑𝑍𝑗
 , 𝑡𝑗

2 =
𝜑𝑍𝑗

𝜂𝑋𝑗+𝜑𝑍𝑗
 (3.24) 

Chen et al (2009b) noticed that the weights 𝑡𝑗
1

 
and 𝑡𝑗

2  “are intended to represent the relative 

importance or contribution of the performance of stages 1 and 2, respectively, to the overall 

performance of the DMU” and argued that the “size” of a stage reflects its importance. They 

also noted that the size can be computed by the portion of total resources devoted to each 

stage. It is worth to note that as the weights are functions of the virtual intermediate 

measures, they depend on the unit being evaluated and, obviously, they generally 

differentiate from one unit to another. Given the above definitions, the input oriented CRS 

model below assesses the overall efficiency of the evaluated unit j0: 

𝑒𝑗𝑜 
𝑜 = 𝑚𝑎𝑥  

𝜔𝑌𝑗𝑜
+ 𝜑𝑍𝑗𝑜

𝜂𝑋𝑗𝑜
+ 𝜑𝑍𝑗𝑜

 

𝑠. 𝑡. 

𝜑𝑍𝑗

𝜂𝑋𝑗
≤ 1,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0 

(3.25) 

 

Applying the C-C transformation to the linear fractional model (3.25), the following linear 

program is modeled and solved:   

𝑒𝑗𝑜 
𝑜 = 𝑚𝑎𝑥 𝑢𝑌𝑗𝑜

+ 𝑤𝑍𝑗𝑜
 

𝑠. 𝑡. 

𝑣𝑋𝑗𝑜
+ 𝑤𝑍𝑗𝑜

= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(3.26) 
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Once an optimal solution (v*,w*,u*) of model (3.26) is obtained, the overall efficiency and the 

stage efficiencies are calculated as follows: 

𝑒𝑗𝑜 
𝑜 = 𝑢∗𝑌𝑗𝑜

+ 𝑤∗𝑍𝑗𝑜
 

𝑡𝑗𝑜 
1 = 𝑣∗𝑋𝑗𝑜

 ,  𝑡𝑗𝑜 
2 = 𝑤∗𝑍𝑗𝑜

 

 𝑒𝑗𝑜 
1 =

𝑤∗𝑍𝑗𝑜

𝑣∗𝑋𝑗𝑜

 

𝑒𝑗𝑜 
2 =

𝑒𝑗𝑜
0 −𝑡𝑗𝑜 

1 𝑒𝑗𝑜 
1

𝑡𝑗𝑜 
2  = 

𝑢∗𝑌𝑗𝑜

𝑤∗𝑍𝑗𝑜

 

(3.27) 

The overall efficiency 𝑒𝑗𝑜 
𝑜  is obtained as the optimal value of the objective function, the 

weight 𝑡𝑗𝑜 
1  is obtained as the optimal virtual input, the weight 𝑡𝑗𝑜 

1  is obtained as the optimal 

virtual intermediate measure and the efficiency of the first stage 𝑒𝑗𝑜  
1 is given by the ratio of 

the two weights whereas the efficiency of the second stage 𝑒𝑗𝑜  
2 is obtained as offspring 

of  𝑒𝑗𝑜 
𝑜 , 𝑒𝑗𝑜 

1 , 𝑡𝑗𝑜 
1 , 𝑡𝑗𝑜 

2 . 

In case an output orientation is selected, the “size” of each stage (weight) is measured by 

the portion of the total outputs produced from each stage: 

𝑡𝑗
1 =

𝑤𝑍𝑗

𝑢𝑌𝑗 + 𝑤𝑍𝑗
, 𝑡𝑗

2 =
𝑢𝑌𝑗

𝑢𝑌𝑗 + 𝑤𝑍𝑗
 (3.28) 

As above, the overall efficiency is expressed as a weighted arithmetic average of the stage 

efficiencies: 

𝑒𝑗
𝑜 =

𝑣𝑋𝑗+𝑤𝑍𝑗

𝑢𝑌𝑗+𝑤𝑍𝑗
 = 𝑡𝑗

1 𝑣𝑋𝑗

𝑤𝑍𝑗
+ 𝑡𝑗

2 𝑤𝑍𝑗

𝑢𝑌𝑗
  , 𝑡𝑗

1 +  𝑡𝑗
2 = 1 (3.29) 

The output oriented model under CRS assumption is formulated as: 

𝑒𝑗𝑜 
𝑜 = 𝑚𝑖𝑛 𝑣𝑋𝑗𝑜

+ 𝑤𝑍𝑗𝑜
 

𝑠. 𝑡. 

𝑢𝑌𝑗𝑜
+ 𝑤𝑍𝑗𝑜

= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(3.30) 
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Similarly to the case of the multiplicative efficiency decomposition, the additive 

decomposition of the overall efficiency to the stage efficiencies is non-unique. Chen et al 

(2009b) developed a procedure, similar to that of Kao and Hwang (2008) and Liang et al 

(2008), so as to derive extreme efficiency decompositions. Let 𝑡𝑗
1∗, 𝑡𝑗

2∗  and 𝑒𝑗𝑜 
𝑜∗  the optimal 

weights and the overall efficiency obtained from model (3.26). Then, if pre-emptive priority 

is given to the first stage, the efficiency of that stage is calculated first in a manner that the 

overall efficiency is maintained via the following model. 

𝑒𝑗0

1𝑈 = 𝑚𝑎𝑥 𝑤𝑍𝑗𝑜
 

𝑠. 𝑡. 

𝑣𝑋𝑗𝑜
= 1 

(1 − 𝑒𝑗𝑜 
𝑜∗)𝑤𝑍𝑗𝑜

+ 𝑢𝑌𝑗𝑜
= 𝑒𝑗𝑜 

𝑜∗ 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(3.31) 

The corresponding efficiency for the second stage is given by 𝑒𝑗𝑜 
2𝐿 = (𝑒𝑗𝑜

𝑜∗ − 𝑡𝑗𝑜 
1∗𝑒𝑗𝑜 

1𝑈)/𝑡𝑗𝑜 
2∗ . If 

pre-emptive priority is given to stage-2, then the second stage efficiency is first estimated 

with the constraint that the overall efficiency is preserved, by the following model: 

𝑒𝑗0

2𝑈 = 𝑚𝑎𝑥 𝑢𝑌𝑗𝑜
 

𝑠. 𝑡. 

𝑤𝑍𝑗𝑜
= 1 

𝑤𝑍𝑗𝑜
+ 𝑢𝑌𝑗𝑜

− 𝑒𝑗𝑜 
𝑜∗𝑣𝑋𝑗𝑜

= 𝑒𝑗𝑜 
𝑜∗ 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(3.32) 

The corresponding efficiency of the first stage is calculated by 𝑒𝑗𝑜 
1𝐿 = (𝑒𝑗𝑜

𝑜∗ − 𝑡𝑗𝑜 
2∗𝑒𝑗𝑜 

2𝑈)/𝑡𝑗𝑜 
1∗.  

The modelling approach adopted by Chen et al (2009b) for the additive efficiency 

decomposition, enables the straightforward assessment of the two-stage process of Type I 
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(Fig. 3.1a) under variable returns to scale. The overall efficiency of the DMU j as well as the 

stage efficiencies under VRS assumption are defined as follows: 

 

𝑒𝑗
𝑜_𝑣𝑟𝑠 =

𝑤𝑍𝑗+𝜉1+𝑢𝑌𝑗+𝜉2

𝑤𝑍𝑗+𝑣𝑋𝑗
, 𝑒𝑗

1_𝑣𝑟𝑠 =
𝑤𝑍𝑗+𝜉1

𝑣𝑋𝑗
, 𝑒𝑗

2_𝑣𝑟𝑠 =
𝑢𝑌𝑗+𝜉2

𝑤𝑍𝑗
 (3.33) 

When input orientation is chosen, the weights that reflect the “size” of each stage are defined 

as follows: 

𝑡𝑗
1 =

𝑣𝑋𝑗

𝑣𝑋𝑗 + 𝑤𝑍𝑗
, 𝑡𝑗

2 =
𝑤𝑍𝑗

𝑣𝑋𝑗 + 𝑤𝑍𝑗
  (3.34) 

The overall efficiency is defined as a weighted arithmetic average of the stage efficiencies: 

𝑒𝑗
𝑜_𝑣𝑟𝑠 =

𝑤𝑍𝑗+𝜉1+𝑢𝑌𝑗+𝜉2

𝑤𝑍𝑗+𝑣𝑋𝑗
= 𝑡𝑗

1 𝑤𝑍𝑗+𝜉1

𝑣𝑋𝑗
, + 𝑡𝑗

2 𝑢𝑌𝑗+𝜉2

𝑤𝑍𝑗
,  𝑡𝑗

1 + 𝑡𝑗
2 = 1 (3.35) 

The resulting VRS input oriented model that provides the overall efficiency of DMU j0 is: 

 

𝑒𝑗𝑜 
𝑜_𝑣𝑟𝑠 = 𝑚𝑎𝑥 𝑤𝑍𝑗𝑜

+ 𝜉1 + 𝑢𝑌𝑗𝑜
+ 𝜉2 

𝑠. 𝑡. 

𝑣𝑋𝑗𝑜
+ 𝑤𝑍𝑗𝑜

= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 + 𝜉1 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 + 𝜉2 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(3.36) 

Once an optimal solution of model (3.36) is derived, the stage efficiencies can be computed 

from (3.33). Although the additive efficiency decomposition can be straightforwardly applied 

to variable returns to scale, the standard property that the VRS efficiency scores are not less 

than the CRS efficiency scores does not hold. 
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Extensions of the Additive Efficiency Decomposition 

Cook et al (2010b) extended the additive decomposition method of Chen et al (2009b) to 

series, parallel and series-parallel multi-stage processes. For instance, we provide below the 

additive modelling approach for a netwok stucture which consists of four sub-processes 

arranged in a series-parallel (mixed) configuration. 

 

 

Fig. 3.7: Multi-stage process (DMU) with series-parallel (mixed) internal structure 

 

Following Chen et al (2009b), the overall efficiency is defined as a weighted arithmetic 

average of the stage efficiencies: 

𝑒𝑗
𝑜 = 𝑡𝑗

1𝑒𝑗
1 + 𝑡𝑗

2𝑒𝑗
2 + 𝑡𝑗

3𝑒𝑗
3 + 𝑡𝑗

4𝑒𝑗
4,  𝑡𝑗

1 + 𝑡𝑗
2 + 𝑡𝑗

3 + 𝑡𝑗
4 = 1 

(3.37) 𝑒𝑗
1 =

𝑢1𝑌𝑗
1 + 𝑤1

2𝑍1𝑗

2 + 𝑤1
3𝑍1𝑗

3

𝑣1𝑋𝑗
1 , 𝑒𝑗

2 =
𝑤2

4𝑍2𝑗

4

𝑣2𝑋𝑗
2 + 𝑤1

2𝑍1𝑗

2 , 

 𝑒𝑗
3 =

𝑤3
4𝑍3𝑗

4

𝑣3𝑋𝑗
3 + 𝑤1

3𝑍1𝑗

3 , 𝑒𝑗
4 =

𝑢4𝑌𝑗
4

𝑤2
4𝑍2𝑗

4 + 𝑤3
4𝑍3𝑗

4  

The weight associated with each stage is obtained from the proportion of inputs that used by 

this stage as follows:  

𝑡𝑗
1 =

𝑣1𝑋𝑗
1

𝑇𝑉𝐼
, 𝑡𝑗

2 =
𝑣2𝑋𝑗

2 + 𝑤1
2𝑍1𝑗

2

𝑇𝑉𝐼
, 𝑡𝑗

3 =
𝑣3𝑋𝑗

3 + 𝑤1
3𝑍1𝑗

3

𝑇𝑉𝐼
, 𝑡𝑗

4 =
𝑤2

4𝑍2𝑗

4 + 𝑤3
4𝑍3𝑗

4

𝑇𝑉𝐼
 

(3.38) 
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where  𝑇𝑉𝐼 = 𝑣1𝑋𝑗
1 + 𝑣2𝑋𝑗

2 + 𝑣3𝑋𝑗
3 + 𝑤1

2𝑍1𝑗

2 + 𝑤1
3𝑍1𝑗

3 + 𝑤2
4𝑍2𝑗

4 + 𝑤3
4𝑍3𝑗

4 . The efficiency 

assessment of the multi-stage process depicted in Figure 3.7 is carried out by the following 

model: 

 

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥 𝑢1𝑌𝑗0

1 + 𝑢2𝑌𝑗0

2 + 𝑤1
2𝑍1𝑗0

2 + 𝑤1
3𝑍1𝑗0

3 + 𝑤2
4𝑍2𝑗0

4 + 𝑤3
4𝑍3𝑗0

4  

𝑠. 𝑡. 

𝑣1𝑋𝑗0

1 + 𝑣2𝑋𝑗0

2 + 𝑣3𝑋𝑗0

3 + 𝑤1
2𝑍1𝑗0

2 + 𝑤1
3𝑍1𝑗0

3 + 𝑤2
4𝑍2𝑗0

4 + 𝑤3
4𝑍3𝑗0

4 = 1 

𝑢1𝑌𝑗
1 + 𝑤1

2𝑍1𝑗

2 + 𝑤1
3𝑍1𝑗

3 − 𝑣1𝑋𝑗
1 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑤2
4𝑍2𝑗

4 − 𝑣2𝑋𝑗
2 − 𝑤1

2𝑍1𝑗

2 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑤3
4𝑍3𝑗

4 −  𝑣3𝑋𝑗
3 − 𝑤1

3𝑍1𝑗

3 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢4𝑌𝑗
4 − 𝑤2

4𝑍2𝑗

4 − 𝑤3
4𝑍3𝑗

4 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣1, 𝑣2, 𝑣3, 𝑤1
2, 𝑤1

3, 𝑤2
4, 𝑤3

4, 𝑢1, 𝑢4 ≥ 0 

(3.39) 

 

Once an optimal solution of model (3.39) is obtained the overall and the stage efficiencies for 

DMUjo as well as the weights are calculated from the relationships (3.37) and (3.38) 

respectively. Notably, model (3.39) inherits the defects of additive decomposition method in 

the sense that the overall efficiency decomposition to stage efficiencies is not unique. 

However, model (3.39) can be adapted to meet the VRS assumption.  

Chen et al (2010b) extended the work of Chen et al (2009b) for the efficiency assessment 

of two-stage production processes with shared resources. Particularly, they assumed a two-

stage process as in Figure 3.8 where the second stage uses, beyond the intermediate measures 

(Z), a portion of the external inputs (X). They applied their models to the assessment of the 

benefits of information technology in banking industry, originally studied by Wang et al 

(1997).  
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Fig. 3.8: Two-stage production process with shared resources 

 

Alternative additive efficiency decomposition methods 

As alternative additive decomposition methods are considered those in which, the overall 

efficiency is defined as a weighted arithmetic average of the stage efficiencies and the 

weights are predetermined and given as parameters instead of being endogenously estimated 

by the optimization process. However, notice that using this aggregation method for the 

efficiency assessment of network structures of any form, leads to non-linear models. 

Parametric techniques are commonly used to handle the non-linearity issues.  

Liang et al (2006) proposed that the operations of a seller-buyer supply chain can be 

modelled, under both cooperative and non-cooperative concepts, as a two-stage process of 

Type II (Fig. 3.1b). They unified the performance assessment models of the two stages, based 

on the common assumption that the weights of the intermediate measures are the same in 

both stages. The overall efficiency is defined as the simple arithmetic average of the stage 

efficiencies. When a leader-follower (non-cooperative game) situation is assumed, then 

similar models to (3.11) and (3.12) are employed, which are adapted to Type II structure. 

Under the cooperative concept, the efficiencies of the seller and the buyer are jointly 

maximized, thus the following non-linear model is derived: 
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𝑒𝑗0

𝑜 = 𝑚𝑎𝑥
1

2
[
𝜑𝑍𝑗0

𝜂𝑋𝑗0

+
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿𝑗0

] 

𝑠. 𝑡. 

𝜑𝑍𝑗

𝜂𝑋𝑗
≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗

𝜑𝑍𝑗 + 𝑔𝐿𝑗
≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0, 𝑔 ≥ 0 

(3.40) 

 

Liang et al (2006) assumed the following transformation in order to transform the above 

model to a parametric linear program. 

 

𝜏1 = 1/ 𝜂𝑋𝑗0
, 𝜏2 = 1/( 𝜑𝑍𝑗0

+ 𝑔𝐿𝑗0
) 

𝑣 = 𝜂𝜏1, 𝑤1 = 𝜑𝜏1 

 𝑢 = 𝜔𝜏2, 𝑤2 = 𝜑𝜏2, 𝛾 = 𝑔𝜏2 

 

 

From the above transformation, a linear relationship is implied between w1 and w2, i.e. 

w2=ζw1, with ζ ≥ 0 and  𝜁 = (1 − 𝛾𝐿𝑗0
) 𝑤1𝑍𝑗0

⁄ < (1 𝑤1𝑍𝑗0
⁄ )  since  𝛾𝐿𝑗0

+ 𝜁𝑤1𝑍𝑗0
= 1 

and 𝑤1𝑍𝑗0
≤ 1 , 𝛾𝐿𝑗0

> 0. 

𝑒𝑗0

𝑜 = 𝑚𝑎𝑥
1

2
(𝑤1𝑍𝑗0

+ 𝑢𝑌𝑗0
) 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝛾𝐿𝑗0
+ 𝜁𝑤1𝑍𝑗0

=1 

𝑤1𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝜁𝑤1𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤1 ≥ 0, 𝑢 ≥ 0, 𝛾 ≥ 0, 𝜁 ≥ 0 

(3.41) 

 

Notice that the first stage efficiency (𝑤1𝑍𝑗0
) in model (3.41) will not be less than the lowest 

efficiency score (𝑒𝑗0

1 𝐹ollower) obtained when the stage-1 is treated as a follower. Therefore, 

the variable ζ in model (3.41) can be treated as a parameter in the interval [0, 1 𝑒𝑗0

1 𝐹ollower)⁄ .  

The model (3.41) is solved for different values of the parameter ζ and the pair of efficiency 

scores that provides the maximum overall efficiency is selected. 
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Chen et al (2006) examined the IT impact on banking industry previously studied by 

Wang et al (1997) and Chen and Zhu (2004), they remarked though that these studies do not 

fully characterize the IT impact on firm performance. Therefore, they proposed that the 

external IT-related inputs of stage-1 should be shared with stage-2 (Fig. 3.8). Similar to Liang 

et al (2006), they treat the resulting non-linear assessment model using the aforementioned 

procedure and they calculate the overall efficiency from the simple arithmetic average of the 

stage efficiencies. 

Liang et al (2011) studied a serial two-stage production process with feedback, as 

depicted in Figure 3.9. In this system, some outputs from the second process are fed back as 

inputs to the first process, i.e. they have a double role serving both as inputs and outputs. 

 

 

Fig. 3.9: Two-stage process with feedback 

 

Similarly to the aforementioned studies the overall efficiency is derived as the arithmetic 

average of the stage efficiencies. Again, the resulting non-linear model is transformed to a 

parametric LP and a global optimal solution is obtained as in Liang et al (2006). Liang et al 

(2011) illustrated their approach by measuring the performance of 50 Chinese universities. In 

particular, they assumed as inputs to the first stage the fixed assets, the researchers, the 

graduate students and the size of each university, while they assumed as outputs the numbers 

of SCI papers, SCI citations and national awards. These outputs serve as inputs to the second 

stage, i.e. they are the intermediate measures of the system, in order to attract research funds 

from the granting agency. The research funding, which is the only output of the second stage, 

is fed back to the first stage i.e. it serves also as input. 

 



PhD Thesis – G. Koronakos 

68 |   

3.3.2 Slacks-Based Measure approach 

Tone and Tsutsui (2009) introduced the network slacks-based measure (NSBM) based on the 

SBM and the weighted SBM proposed by Tone (2001) and Tsutsui and Goto (2009) 

respectively. Their approach assesses simultaneously the overall and the stage efficiencies of 

the evaluated units. They built their method in the envelopment form based on a generalized 

production possibility set that describes the relationships of the multi-stage processes. In 

particular, they assumed that a DMU consists of ν sub-processes (δ=1,…,ν), where each sub-

process consumes external inputs Xδ to produce some outputs Yδ (the superscript δ denotes 

the sub-process). The sub-processes are connected and interact via the intermediate measures 

Ζ(δ,ψ), where the superscripts  δ and ψ (δ≠ψ) represent the source sub-process and the recipient 

sub-process respectively. The generalized production possibility set {Xδ, Ζ(δ,ψ) ,Yδ } under 

VRS assumption is defined as: 

𝛸𝛿ℎ𝛿 ≤ 𝛸𝛿 ,    𝛿 = 1, … , 𝜈 

𝛧(𝛿,𝜓)ℎ𝛿 = 𝛧(𝛿,𝜓),    ∀ (𝛿, 𝜓)(𝑎𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝛿) 

𝛧(𝛿,𝜓)ℎ𝜓 = 𝛧(𝛿,𝜓),    ∀ (𝛿, 𝜓)(𝑎𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝜓) 

𝑌𝛿ℎ𝛿 ≥ 𝑌𝛿 ,    𝛿 = 1, … , 𝜈 

ℎ𝛿 ≥ 0 , ∀ (𝛿) 

𝑒ℎ𝛿 = 1 , ∀ (𝛿) 

(3.42) 

Notice that the intensity vector hδ is specific to each sub-process δ (δ=1,…,ν). The above 

VRS production possibility set can be also used under CRS assumption by removing the last 

set of convexity constraints (hδ=1). Tone and Tsutsui (2009) proposed two options for 

representing the constraints corresponding to the intermediate measures: 

 

a) The “free” link case, where the linking flows are freely determined, i.e.  

𝛧(𝛿,𝜓)ℎ𝛿 = 𝛧(𝛿,𝜓)ℎ𝜓, ∀(𝛿, 𝜓). In this case, the intermediate measures that link the 

stages are tested in the light of the other DMUs. Hence, the intermediate measures 

may increase or decrease in order to preserve the continuity of being 

simultaneously outputs of one stage and inputs to some other. 

 

b) The “fixed” link case, where the intermediate measures are kept unchanged on 

their initial levels, i.e. 𝛧(𝛿,𝜓)ℎ𝛿 =  𝛧𝑗𝑜

(𝛿,𝜓)
, 𝛧(𝛿,𝜓)ℎ𝜓 =  𝛧𝑗𝑜

(𝛿,𝜓)
, ∀(𝛿, 𝜓). Notice that 
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the subscript jo denotes the DMU under evaluation. Tone and Tsutsui (2009) 

remarked that if all the intermediate measures are fixed to their original levels 

then the analysis to follow will treat the stages separately similar to the 

independent assessment. 

 

By incorporating the input and output slacks and one of the above options for the constraints 

of the intermediate measures, the DMUjo under evaluation is expressed as follows: 

𝛸𝛿ℎ𝛿 + 𝑠𝛿− = 𝑋𝑗𝑜 
𝛿 , 𝛿 = 1, … , 𝜈 

𝑌𝛿ℎ𝛿 − 𝑠𝛿+ = 𝑌𝑗𝑜

𝛿 ,         𝛿 = 1, … , 𝜈 

𝑒ℎ𝛿 = 1 ,                           𝛿 = 1, … , 𝜈 

ℎ𝛿 ≥ 0, 𝑠𝛿− ≥ 0, 𝑠𝛿+ ≥ 0 , 𝛿 = 1, … , 𝜈 

𝛧(𝛿,𝜓)ℎ𝛿 − 𝛧(𝛿,𝜓)ℎ𝜓 = 0,   ∀ (𝛿, 𝜓) 

or 

𝛧(𝛿,𝜓)ℎ𝛿 = 𝛧𝑗𝑜

(𝛿,𝜓)
,   ∀ (𝛿, 𝜓)                   

𝛧(𝛿,𝜓)ℎ𝜓 = 𝛧𝑗𝑜

(𝛿,𝜓)
,   ∀ (𝛿, 𝜓) 

 

(3.43a) 
 

 

 

(free link) (3.43b) 

  

(fixed link) (3.43c) 

  

Tone and Tsutsui (2009), similar to the conventional SBM, proposed three different 

efficiency measures based on the orientation, they formed the input, the output and the non-

oriented situation. When input orientation is selected then the overall efficiency of the DMUjo 

is derived as a weighted arithmetic mean of the slacks-based measures of the individual 

stages, i.e.  𝑒𝑗0

𝑜 = ∑ 𝑤𝛿 ∙ 𝑒𝑗0

𝛿𝜈
𝛿=1 , with ∑ 𝑤𝛿𝜈

𝛿=1 = 1 and 𝑤𝛿 ≥ 0. The weights wδ are predefined 

by the analyst and represent the importance of each stage. The input oriented NSBM model 

for the efficiency assessment of the DMUjo is as follows: 

𝑒𝑗0

𝑜 = 𝑚𝑖𝑛 ∑ 𝑤𝛿

𝜈

𝛿=1

[1 −
1

𝑚𝛿
(∑

𝑠𝑖
𝛿−

𝑥𝑖𝑗𝑜

𝛿

𝑚𝛿

𝑖=1

)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.43a), (3.43b) or (3.43c) 

(3.44) 

In model (3.44), the number of inputs consumed by each stage δ is denoted by mδ, also the 

free or the fixed link case can be used to represent the constraints corresponding to the 

intermediate measures. When an optimal solution of model (3.44) is obtained then the overall 

efficiency can be directly obtained from its objective function and the stage efficiencies are 

calculated using the optimal input slacks sδ-* as follows: 
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𝑒𝑗0

𝛿 = 1 −
1

𝑚𝛿
(∑

𝑠𝑖
𝛿−∗

𝑥𝑖𝑗𝑜

𝛿

𝑚𝛿

𝑖=1

) , 𝛿 = 1, … , 𝜈 (3.45) 

 When output orientation is selected, then the following NSBM model is used for the 

performance assessment of the DMUjo: 

1

𝜃𝑗0

𝑜 = 𝑚𝑎𝑥 ∑ 𝑤𝛿

𝜈

𝛿=1

[1 +
1

𝑠𝛿
(∑

𝑠𝑟
𝛿+

𝑦𝑟𝑗𝑜

𝛿

𝑠𝛿

𝑟=1

)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.43a), (3.43b) or (3.43c) 

(3.46) 

The output oriented overall efficiency for DMUjo is derived from the optimal value of the 

objective function of model (3.46). The authors in order to confine the efficiency scores into 

the range [0, 1], they expressed the output oriented stage efficiency scores using the optimal 

output slacks sδ+* as: 

𝜃𝑗0

𝛿 =
1

1+
1

𝑠𝛿
(∑

𝑠𝑟
𝛿+∗

𝑦𝑟𝑗𝑜
𝛿

𝑠𝛿
𝑟=1 )

 , 𝛿 = 1, … , 𝜈  
(3.47) 

As can be deduced the NSBM output oriented overall efficiency is the weighted harmonic 

mean of the stage efficiency scores: 

1

𝜃𝑗0

𝑜 = ∑
𝑤𝛿

𝜃𝑗0

𝛿

𝜈

𝛿=1

 (3.48) 

In case non-orientation is selected, i.e. when both input and output slacks are taken into 

consideration in the assessment, then the non-oriented NSBM model is expressed as: 

 

𝜁𝑗0

𝑜 = 𝑚𝑖𝑛 

∑ 𝑤𝛿𝜈
𝛿=1 [1 −

1
𝑚𝛿

(∑
𝑠𝑖

𝛿−

𝑥𝑖𝑗𝑜

𝛿
𝑚𝛿
𝑖=1 )]

∑ 𝑤𝛿𝜈
𝛿=1 [1 +

1
𝑠𝛿

(∑
𝑠𝑟

𝛿+

𝑦𝑟𝑗𝑜

𝛿
𝑠𝛿
𝑟=1 )]

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.43a), (3.43b) or (3.43c) 

(3.49) 
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Given the optimal solution of model (3.49), then the non-oriented overall efficiency is 

straightforwadly derived from the objective function while the non-oriented stage efficiency 

scores are calculated as follows: 

𝜁𝑗0

𝛿 = 𝑚𝑖𝑛 

1 −
1

𝑚𝛿
(∑

𝑠𝑖
𝛿−∗

𝑥𝑖𝑗𝑜

𝛿
𝑚𝛿
𝑖=1 )

1 +
1
𝑠𝛿

(∑
𝑠𝑟

𝛿+∗

𝑦𝑟𝑗𝑜

𝛿
𝑠𝛿
𝑟=1 )

, 𝛿 = 1, … , 𝜈 (3.50) 

Once an optimal solution (ℎ𝛿∗, 𝑠𝛿−∗, 𝑠𝛿+∗) of models (3.44), (3.46) or (3.49) is obtained, 

then the projections onto the efficient frontier can be calsulated as follows: 

 

𝑋𝑗𝑜 
𝛿∗ = 𝑋𝑗𝑜 

𝛿 − 𝑠𝛿−∗ = 𝛸𝛿ℎ𝛿∗, 𝛿 = 1, … , 𝜈 

𝑌𝑗𝑜

𝛿∗ = 𝑌𝑗𝑜

𝛿   + 𝑠𝛿+∗ = 𝛶𝛿ℎ𝛿∗,         𝛿 = 1, … , 𝜈 

(3.51) 

If the fixed link case is used in the assessment, then the intermediate measures will remain 

unchanged to their intial levels. Otherwise, if the  free link case is selected, then the 

projections of the intermediate measures are computed as follows: 

𝛧𝑗𝑜

(𝛿,𝜓)∗
= 𝛧(𝛿,𝜓)ℎ𝛿∗,   ∀ (𝛿, 𝜓)                  (3.52) 

From the above we conclude that in the non-oriented case the relationship between the 

overall efficiency and the stage efficiencies cannot be defined explicitly. Tone and Tsutsui 

(2009) noticed that alternative forms of the overall efficiency could be used in the non-

oriented case. For instance, Lu et al (2014) modified the non-oriented NSBM (3.49) by 

deriving the the non-oriented overall efficiency as the simple arithmetic mean of the non-

oriented stage efficiencies. 

 Notice that the above models are given under VRS assumption, however the CRS models 

can be also formed regardless the orientation by removing the corresponding convexity 

constraints. The experimentation of Tone and Tsutsui (2009) revealed that under CRS 

assumption and employing the free link case the NSBM may deem inefficient all the DMUs 

under evalution in each individual stage. This finding contradicts with the characteristics of 

traditional DEA models where at least one DMU is deemed efficient so as to construct the 

efficient frontier. On the other hand, the authors proved that under VRS assumption there is 
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always at least an efficient DMU in each sub-process. As they further pointed out, this also 

holds when the fixed link case is utilized under CRS assumption. 

Fukuyama and Mirdehghan (2012) showed, by providing adequate examples, that the 

NSBM of Tone and Tsutsui (2009) fails to identify the efficiency status of DMUs because the 

slacks concerning the intermediate measures are not considered in the definitions of the 

efficiencies. They proposed a revised PPS and a two-phase approach which identifies 

sufficiently the efficiency status under the fixed link case only. Mirdehghan and Fukuyama 

(2016) developed another two-phase approach by incorporating the notions of mathematical 

dominance, which deals effectively with the free link case also.  

Chen et al (2013) noticed that the network DEA methods that are developed on the basis 

of the production possibility set, such as Tone and Tsutsui’s (2009) slacks-based method 

should be re-examined with respect to the definition of the stage efficiencies. Especially, they 

discovered that the NSBM of Tone and Tsutsui (2009) provides only the overall efficiency 

when it is applied for the performance assessment of the two-stage processes of Type I (Fig. 

3.1a). Chen et al (2013) argued that since the intermediate measures are the only outputs from 

stage-1 and the only inputs to stage-2, then neither the input oriented NSBM for stage-2 nor 

the output oriented NSBM for stage-1 can be formed. This relates, as noted above, with the 

absence of the slacks associated with the intermediate measures in the definitions of the 

efficiencies. They regarded this finding as a pitfall and they concluded that the NSBM 

models can only yield the overall efficiency of the Type I two-stage process. In Table 3.1 

below we demonstrate the applicability of the NSBM on various types of network structures. 

 

Table 3.1: Applicability of NSBM 

Network Structure Input Oriented Output Oriented Non-Oriented 

Series - Type I - - - 

Series - Type II  - - 

Series - Type III -  - 

Series - Type IV    

Generalized Series    

Parallel    

Series-Parallel (Mixed)    
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3.3.3 System-centric approach  

The network DEA methods that are characterized as system-centric, they do not provide the 

stage efficiencies but only the overall efficiency of the DMU under evaluation. Most of these 

methods are modelled in the envelopment form which is based on the unification of the 

production possibility sets of the individual stages. Kao (2014b) referred to such methods as 

“system distance measure” methods, where an input or output oriented distance measure 

model is employed to measure the overall efficiency of each DMU. 

Notice that most system-centric methods originate from the pioneer work of Fare (1991). 

Fare (1991) studied DMUs with the structure of Type IV (Fig. 3.1d) and combined the 

production technology of the two stages to derive the entire-expanded technology of the 

DMU. Their proposed model however yields only the overall efficiency of the DMU. Fare 

and Whittaker (1995) employed the approach of Fare (1991) for the performance assessment 

of 137 dairy farms in USA. Fare and Grosskopf (1996) studied the same network structure 

and they followed the same practice to formulate the system technology. They built upon 

Fare (1991) to construct Malmquist productivity indices (cf. Caves et al, 1982; Fare and 

Grosskopf, 1992a) to draw efficiency comparisons between periods.  Fare and Grosskopf 

(2000), as mentioned above, unified the methods introduced by Fare (1991), Fare and 

Whittaker (1995), Fare and Grosskopf (1996) and Fare et al (1997) to a generalized 

framework for modelling various types of network structures. 

 

3.4 Classification of network DEA studies  

In this section we provide a thorough classification of network DEA studies involving 

theoretical developments and applications. They are basically categorized according to the 

assessment paradigm they follow i.e. independent, decomposition, slacks-based measure and 

system-centric. 

Table 3.2 below presents the studies that are based on independent assessments. For each 

study we provide the reference, the network structure of the DMUs, the number of stages and 

the returns to scale assumed to form the production possibility set (PPS). We also indicate the 

studies that provide theoretical developments or these that consists of applications and we 

give a short description of the application field. 
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Table 3.2: Studies based on independent assessments 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Theoretic Application Application Field 

Fare and Primont 

(1984) 
Parallel  ν≥2 VRS   

US coal-fired 

steam electric generating 

plants 

Charnes et al (1986) 
Series-Type 

IV 
2 CRS   US Military 

Chilingerian and 

Sherman (1990) 
Series-Type I 2 CRS   Medical services 

Fare et al (1992b) Parallel ν≥2 CRS   - 

Fare and Primont 

(1993) 
Parallel  ν≥2 VRS   - 

Wang et al (1997) Series-Type I 2 VRS   IT on banks 

Kao (1998) Parallel ν≥2 VRS   Taiwanese forests 

Seiford and Zhu 

(1999) 
Series-Type I 2 CRS/VRS   US commercial banks 

Soteriou and 

Zenios (1999) 
Mixed 3 VRS   Branches of a Cyprus bank 

Zhu (2000) Series-Type I 2 CRS/VRS   Fortune 500 companies 

Keh and Chu (2003) Series-Type I 2 VRS   Grocery stores 

Sexton and Lewis 

(2003) 
Series-Type I 2 VRS   

Teams of  USA Major 

League Baseball 

Luo (2003) Series-Type I 2 CRS / VRS   US large banks 

Lewis and Sexton 

(2004) 
Mixed 5 VRS   

Teams of  USA Major 

League Baseball 

Abad et al (2004) 
Series-Type 

II 
2 VRS   

Stocks in the Spanish 

manufacturing industry 

Keh et al (2006) Series-Type I 2 VRS   Asia–Pacific hotels 

Lu (2009) Series-Type I 2 CRS / VRS   Taiwanese IC-design firms 

Lo and Lu (2009) Series-Type I 2 VRS   
Taiwanese financial 

holding companies 

Lo (2010) Series-Type I 2 VRS   US S&P 500 firms 

Tsolas (2011) Series-Type I 2 VRS   Greek commercial banks 

Tsolas (2013) Series-Type I 2 VRS   Greek construction firms 

Adler et al (2013) Mixed 3 VRS   European airports 
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In Table 3.3 below the fifth column (Model) indicates whether the study is seminal or 

modification and extension of an existing one. 

 

Table 3.3: Seminal efficiency decomposition approaches, modifications and extensions 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Beasley (1995) Parallel 2 CRS Seminal Study 
UK Chemistry and 

Physics departments 

Mar Molinero 

(1996) 
Parallel 2 CRS Modification of Beasley (1995) 

UK Chemistry and 

Physics departments 

Tsai and Mar 

Molinero (2002) 
Parallel 5 VRS Extension of Mar Molinero (1996) 

National Health 

Service  trusts in 

England 

Cook et al (2000) Parallel 2 CRS Modification of Beasley (1995) 
Branches of a 

Canadian bank 

Cook and 

Hababou (2001) 
Parallel 2 VRS Extension of Cook et al (2000) 

Branches of a 

Canadian bank 

Cook and Green 

(2004) 
Parallel 4 CRS 

Extension of Cook et al (2000), 

Cook et al (2001) 

Manufacturing 

plants in steel 

industry 

Jahanshahloo et 

al (2004) 
Parallel 3 CRS Extension of Cook et al (2000) 

Branches of an 

Iranian bank 

Amirteimoori 

and Kordrostami 

(2005) 

Generalized 

Series 
ν≥2 CRS 

Extension of Beasley (1995) and 

Cook et al (2000) 
Illustrative data 

Amirteimoori 

and  Shafiei 

(2006) 

Generalized 

Series / Series –

Type IV 

ν≥2 CRS 
Extension of Beasley (1995) and 

Cook et al (2000) 
Illustrative data 

Chen et al (2006) Series –Type II 2 CRS 
Extension of Tsai and Mar 

Molinero (2002) 
IT on banks 

Liang et al 

(2006) 
Series –Type II 2 CRS 

Extension of Tsai and Mar 

Molinero (2002) 

Illustrative data on 

Supply Chains 

Kao and Hwang 

(2008) 
Series –Type I 2 CRS Seminal Study 

Non-life Insurance 

Companies in 

Taiwan 

Liang et al 

(2008) 
Series –Type I 2 CRS Seminal Study 

IT on banks / US 

commercial banks 

Chen et al 

(2009b) 
Series –Type I 2 CRS/VRS 

Extension of Beasley (1995),  

Amirteimoori and Kordrostami 

(2005) and  Amirteimoori and  

Shafiei (2006) 

 

Non-life Insurance 

Companies in 

Taiwan 

Kao (2009a) 

Generalized 

Series / Parallel 

/ Mixed 

ν≥2 CRS 

Extension of Beasley (1995), Cook 

et al (2000), Amirteimoori and 

Kordrostami (2005),  Amirteimoori 

and  Shafiei (2006) and Kao and 

Hwang (2008)  

Non-life Insurance 

Companies in 

Taiwan / Illustrative 

data 

Kao (2009b) Parallel ν≥2 CRS 
Extension of Beasley (1995) and 

Cook et al (2000) 
Taiwanese forests 

Chen et al 

(2010a) 
Series –Type I 2 CRS 

Extension of Kao and Hwang 

(2008) 

Non-life Insurance 

Companies in 

Taiwan 

Cook et al 

(2010b) 

Generalized 

Series /  Mixed 
ν>2 CRS Extension of Chen et al (2009b) 

Electric power 

companies / 

Illustrative data 
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Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Chen et al 

(2010b) 
Series –Type II 2 VRS Extension of Chen et al (2009b) IT on banks 

Zha and Liang 

(2010) 
Series –Type II 2 CRS 

Extension of Kao and Hwang 

(2008) 

US commercial 

banks 

Kao and Hwang 

(2010) 

Generalized 

Series / Parallel 

/ Mixed 

ν≥2 CRS 
Unification of Kao (2009a) and Kao 

(2009b) 

IT on banks / 

Illustrative data 

Kao and Hwang 

(2011) 
Series –Type I 2 VRS 

Modification of Kao and Hwang 

(2008) 
- 

Liang et al 

(2011) 

Series with 

feedback 
2 CRS 

Extension of Chen et al (2006) and 

Liang et al (2006) 
Chinese universities 

Li et al (2012) Series –Type II 2 CRS 
Extension of Kao and Hwang 

(2008) 

Regional R&D 

in China 

Kao (2014a) 

Generalized 

Series / Parallel 

/ Mixed 

ν≥2 CRS 
Extension of Kao (2009a), Kao 

(2009b) and Kao and Hwang (2010) 

Electric power 

companies / 

Illustrative data 

Li et al (2015) Series –Type I 2 VRS 
Extension of Kao and Hwang 

(2008) 

Nations in 2012 

London summer 

Olympic Games 

An et al (2016) Series –Type I 2 CRS 
Extension of Kao and Hwang 

(2008) 

Non-life Insurance 

Companies in 

Taiwan 

 

The following directed graphs depict the starting points and the advancements of the 

multiplicative and the additive efficiency decomposition methods. Each node represents one 

or more studies that constitute a milestone on each efficiency decomposition approach. The 

edges indicate relationship between studies, i.e. the direction of each edge points from the 

study used as theoretical basis to the study that extend this basis. By employing this 

representation method we highlight the development of the efficiency decomposition 

approaches and the knowledge flow paths. Notice that the colors on each node indicate the 

type of network structures that examined in each study. 

 



Chapter 3: Review of Network DEA methods 

    | 77 

 

Fig. 3.10: Evolution of the multiplicative efficiency decomposition method 

 

Below we provide the schematic representation of the evolution of the additive efficiency 

decomposition method. 
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Fig. 3.11: Evolution of the additive efficiency decomposition method 

 

The applications of the multiplicative efficiency decomposition method are presented in 

Table 3.4. The fifth column (Model) of Table 3.4 provides the model used in each study. 

 

Table 3.4: Applications of the multiplicative efficiency decomposition method 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Liu and Wang (2009) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 

Printed circuit board 

industry in Taiwan 

Guan and Chen 

(2010) 

Series –Type 

II 
2 CRS Kao (2009a) 

High-tech innovations in 

Chinese provinces 

Hsieh and Lin (2010) Mixed 4 CRS Kao (2009a) 
International hotels in 

Taiwan 

Cao and Yang (2011) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Internet companies 

Zhu (2011) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Airlines 

Lee and Johnson 

(2011) 
Series –Type I 3 CRS Kao (2009a) 

Firms of semiconductor 

manufacturing industry 

Lee and Johnson 

(2012) 
Mixed 4 VRS Kao (2009a) US airlines 
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Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Chen et al (2012) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Automotive industry 

Limaei (2013) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Iranian forests 

Wanke (2013) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Brazilian ports 

Wanke and Barros 

(2014) 
Series –Type I 2 CRS 

Kao and Hwang 

(2008) 
Brazilian banks 

Wanke et al (2016) Series –Type I 2 CRS 
Kao and Hwang 

(2008) 
Australian public schools 

 

Table 3.5 presents the applications of the additive efficiency decomposition method. Similar 

to Table 3.4, in Table 3.5 the fifth column (Model) reports the model used in each study. 

 

Table 3.5: Applications of additive efficiency decomposition method 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Diez-Ticio and 

Mancebon (2002) 
Parallel 2 VRS 

Tsai and Mar 

Molinero (2002) 
Spanish police service 

Yu (2008) Parallel 2 VRS 
Tsai and Mar 

Molinero (2002) 
Taiwan’s bus transit system 

Yu and Fan (2009) Mixed 3 CRS 
Mar Molinero 

(1996) 
Taiwan’s bus transit system 

Liu (2011) Series –Type I 2 CRS Chen et al (2009b) 
Taiwanese financial holding 

companies 

Guan and Chen 

(2012) 

Series –Type 

IV 
2 

CRS / 

VRS 
Chen et al (2009b) 

Innovation activities of OECD 

countries 

Premachandra et al 

(2012) 

Series –Type 

II 
2 VRS Chen et al (2009b) US mutual funds 

Lu et al (2012) Series –Type I 2 VRS Chen et al (2009b) US airlines 

Kao (2012) Parallel 2 
CRS / 

VRS 

Beasley (1995), 

Kao (2009b) and 

Kao (2010) 

UK Chemistry and Physics 

departments 

Rogge and Jaeger 

(2012) 
Parallel 6 CRS 

Mar Molinero 

(1996) 
Solid waste in municipalities 

Da Cruz et al (2013)  Parallel 2 CRS 
Rogge and Jaeger 

(2012) 
Water utilities 

Amirteimoori 

(2013) 

Series –Type 

IV 
2 VRS Chen et al (2009b) Car distribution and service 

Wang et al (2014) Series –Type I 2 VRS Chen et al (2009b) Chinese commercial banks 

Yang et al (2014) Series –Type I 2 VRS Chen et al (2009b) 
National Basketball Association 

(NBA) teams 

Toloo et al (2015) 
Series –Type 

II 
2 CRS Chen et al (2006) 

IT on banks / UK Chemistry and 

Physics departments 
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Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Halkos et al (2015a) Series –Type I 2 VRS Chen et al (2009b) 
Secondary 

education in 65 countries 

Halkos et al (2015b) Series –Type I 2 VRS Chen et al (2009b) Sustainability of European regions 

Halkos et al (2016) Series –Type I 2 VRS Chen et al (2009b) 
Sustainable development of 

countries with advanced economies 

Guo et al (2017) 
Series –Type I 

/ Type II 
2 CRS Liang et al (2006) 

Non-life Insurance Companies in 

Taiwan / Regional R&D in China 

 

The following table reports the studies that are based on the slacks-based measure approach. 

The fifth column (Model) of Table 3.6 below indicates whether the study is seminal, 

extension or application of an existing one. 

 

Table 3.6: Studies based on the slacks-based measure approach 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns to 

Scale 

Model Application Field 

Tone and Tsutsui 

(2009)  

Generalized 

Series / Mixed 
ν>2 CRS / VRS Seminal Study Electric power companies 

Avkiran (2009) Mixed 3 VRS 
Tone and Tsutsui 

(2009) 

UAE domestic 

commercial 

banks 

Yu (2010) Mixed 3 CRS 
Tone and Tsutsui 

(2009) 

Domestic airports of 

Taiwan 

Fukuyama and 

Weber (2010) 
Series –Type I 2 CRS 

Extension of Tone and 

Tsutsui (2009) 
Japanese banks 

Matthews  (2013) 
Generalized 

Series 
3 VRS 

Tone and Tsutsui 

(2009) 
Chinese banks 

Lin and Chiu 

(2013) 
Mixed 4 VRS 

Tone and Tsutsui 

(2009) 
Taiwanese domestic banks 

Akther et al 

(2013) 
Series –Type I 2 CRS 

Fukuyama and Weber 

(2010) 
Bangladeshi banks 

Lu et al (2014) Series –Type I 2 VRS 
Tone and Tsutsui 

(2009) 

National innovation 

system among countries 

 

Chang et al (2017) Series –Type IV 2 VRS 
Tone and Tsutsui 

(2009) 
International cruise lines 

 

Table 3.7 summarizes the studies that are characterized as system-centric. The fifth column 

(Model) of Table 3.7 indicates whether the study is seminal, extension or application of an 

existing one. 
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Table 3.7: Studies based on the system-centric approach 

Reference 
Network 

Structure 

No of 

Stages 

PPS - 

Returns 

to Scale 

Model Application Field 

Fare (1991) Series –Type IV 2 CRS Seminal Study - 

Fare and 

Whittaker 

(1995) 

Series –Type IV 2 VRS Fare (1991) US dairy farms 

Fare and 

Grosskopf 

(1996) 

Series –Type IV 2 CRS Extension of Fare (1991) - 

Fare et al 

(1997) 
Parallel 4 CRS Seminal Study 

US 

grain farms 

Lothgren and 

Tambour 

(1999) 

Series –Type IV 2 CRS Fare and Grosskopf (1996) Swedish pharmacies 

Fare and 

Grosskopf 

(2000) 

Generalized 

Series / Parallel / 

Mixed  

ν ≥ 2 CRS 

Unification of Fare (1991), Fare 

and Whittaker (1995), Fare and 

Grosskopf (1996) and Fare et al 

(1997) 

- 

Prieto and 

Zofio (2007) 
Mixed 4 CRS Fare and Grosskopf (2000) OECD countries 

Sheth et al 

(2007) 
Series –Type I 2 VRS Fare and Grosskopf (2000) 

Bus routes in Virginia 

State of USA 

Vaz et al 

(2010) 
Parallel 5 VRS Fare et al (1997) Portuguese retail stores 

Yang et al 

(2011) 
Series 2 CRS Seminal Study 

Supply Chains / 

Branches of China 

Construction Bank 

Chen and Yan 

(2011) 
Series / Mixed 2 / 3 CRS Seminal Study 

Illustrative data on 

Supply Chains 

Lozano et al 

(2013) 
Series –Type IV 2 VRS Fare and Grosskopf (2000) Spanish airports 

Wu et al 

(2016) 
Series –Type IV 2 CRS Seminal Study 

Industrial production and 

pollution treatment of 

Chinese regions  
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Conclusion 

The current chapter provides a detailed survey of the network DEA studies and reveals that a 

great volume of network DEA literature exists. We demonstrated the usefulness of network 

DEA and its advantages over the standard DEA for the assessment of multi-stage processes. 

The most influential network DEA approaches are the efficiency decomposition approach and 

the slacks-based measure approach. Thus, we presented in detail the most important network 

DEA methods of those categories and we discussed their extensions and modifications. We 

also reported their limitations concerning the returns to scale, the inconsistency between the 

multiplier and the envelopment models as well as the inadequate information that provide for 

the calculation of efficient projections. In addition, we reported most of the studies that apply 

the existing network DEA methods to real word problems. The network DEA studies were 

classified according to the model developed or used. We will revisit in the following chapters 

the additive and the multiplicative decomposition methods to show that the former yields 

biased efficiency results whereas they both provide non-unique stage efficiency scores. Then 

we will develop novel methods capable of overcoming these drawbacks. 
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Chapter 4  

Composition versus decomposition in two-stage 

Network DEA: a reverse approach 

Based on a reverse perspective on how to obtain and aggregate the stage efficiencies, we 

develop in this chapter the composition approach as opposed to the decomposition approach 

discussed in the previous chapter. Our novel approach overcomes the deficiencies of the 

decomposition methods, i.e. non-uniqueness of efficiency decomposition and bias. It is 

developed for the elementary two-stage process of Type I (Fig. 3.1a), whereas extensions of 

our concepts to more complex two-stage network processes will be presented in the next 

chapter.  

 Estimating the stage efficiencies of multi-stage processes simultaneously can be 

considered as a multi-objective optimization problem where the efficiency of each stage is 

treated as a separate objective function with their contradictory nature being taken into 

account. In section 4.1, we provide the basic concepts of multi-objective programming. In 

section 4.2, we discuss the major shortcoming of the multiplicative (Kao and Hwang, 2008) 

and the additive (Chen et al, 2009b) decomposition methods of providing non-unique 

efficiency scores. Also, we revisit the latter to show that the efficiency estimates are biased 

by unduly favoring one stage against the other. In section 4.3 we develop in detail our novel 

approach and we show that it effectively overcomes the shortcomings of the decomposition 

methods, i.e. it provides unique and unbiased stage efficiency scores. In section 4.4, we 

provide the results derived from our approach and we draw extensive comparisons with those 

obtained by the well-known methods on the literature. We apply our approach to 

experimental data as well as to test data drawn from the literature. We give also rigorous 

justifications for the similarities and the differentiations observed in the results. 

As the conflicting role of the intermediate measures gives a peculiar character to two-

stage processes that obscures the standard DEA premises, we introduce, in section 4.5, an 

envelopment model to derive the efficient frontier in two-stage DEA. It is linked to - and 
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developed on the basis of - our primal multiplier efficiency assessment model. Furthermore, 

we propose an alternative two-phase method that projects the inefficient units on the frontier 

at a minimum distortion of the observed intermediate measures. The rationale for such a 

treatment is that the intermediate measures, conceived as a hidden layer in the production 

process, are the less controlled dimensions that should undergo changes at a minimum 

deviation from their observed values. Finally, concluding remarks are drawn in the last 

section of the chapter. 

 

4.1 Basic concepts of multi-objective linear 

programming 

Multi-objective programming problems are concerned with the optimization of multiple 

conflicting objectives (criteria). When both the objective functions to be optimized and the 

constraints are linear then the multi-objective programming problem is called linear, MOLP 

in brief. MOLP and DEA are similar in structure, the relationships between them are 

explored, among others, by Golany (1988), Charnes et al (1989), Kornbluth (1991), Stewart 

(1996), Joro et al (1998) and Cooper (2005). The base of combining MOLP and DEA is the 

concept of Pareto efficiency which is present in both methods. Let the MOLP problem be 

given as follows: 

𝑚𝑖𝑛 𝑓(𝑎) = [𝑓1(𝑎), … , 𝑓𝑘(𝑎)] 

𝑠. 𝑡. 

𝑎 ∈ 𝐴 

(4.1) 

where fh(a), h=1,..,k, are linear objective functions to be minimized and A≠∅ is a convex 

polyhedron that denotes the set of all feasible solutions in decision (variables) space. Let C ⊂ 

Rn, the image of A, denote the feasible region in objective functions (criterion) space, where c 

∈ C if and only if there exists a ∈ A such that c=(f1(a),…,fk(a)). Single objective 

programming is studied in decision space, whereas in MOLP the attention is mostly focused 

in objective functions space. This is because the objective functions space usually is 

considerably smaller than the dimension of the decision space and the decision makers are 

mainly interested in the objective values. A MOLP problem rarely has a single optimal 

solution that simultaneously minimizes all objectives but possibly there exist an infinite 

https://en.wikipedia.org/wiki/Mathematical_optimization
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number of optimal solutions called efficient, non-dominated or Pareto optimal. A solution of 

a MOLP problem is called efficient, non-dominated or Pareto optimal if there does not exist 

another feasible solution that improves the value of at least one objective function without 

deteriorating any other objective. In particular, a solution a'∈ A is Pareto optimal if and only 

if there does not exist another a ∈ A

 

such that fh(a) ≤ fh(a') for all h=1,..,k and fj(a) < fj(a') for 

at least one objective j. Otherwise, if and only if there does not exist another a ∈ A

 

such that 

fh(a) < fh(a') for all h=1,..,k, then the solution a'∈ A is weakly Pareto optimal. 

 

4.1.1 Solution methods 

Multi-objective programming methods are categorized according to the participation of the 

decision maker in the solution process (cf. Hwang and Masud, 1979). The methods that 

articulate preference information from the decision maker are classified as a priori, a 

posteriori and interactive. Also, there are methods that do not articulate preference 

information called no preference methods, whereby a neutral solution is generated. Most of 

them however, are simplifications of the a priori methods by typically excluding the 

parameters imposed by the articulation of preferences. A large variety of methods have been 

developed within the aforementioned classes of methods for solving multi-objective 

programming problems, see Steuer (1986) and Kaliszewski (2004). In our context though, we 

selected the scalarization method to solve MOLP problems. Scalarization means to convert 

the MOLP problem to a single objective LP, whose single objective function is termed 

scalarizing function (cf. Miettinen and Makela, 2002). The aim is to establish relations 

between the set of optimal solutions of the scalarized problem and the set of Pareto solutions 

of the MOLP. The most widely used scalarization methods are the additive aggregation of the 

objective functions (weighted sum method) and the weighted Tchebycheff or weighted min-

max method. In the weighted Tchebycheff method the distance between some reference point 

and the feasible objective functions (criterion) space is minimized using the L∞ norm. 

 

Weighted Sum method 

The MOLP (4.1) can be transformed to the following single objective LP (4.2) via the 

weighted sum methodology which is introduced by Gass and Saaty (1955). The single 

objective function of model (4.2) is constructed by the sum of the objective functions fh(a), 
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h=1,..,k, multiplied by the weighting factor th, h=1,..,k, that reflects the relative importance of 

each objective. The theory of the weighted sum method is covered in detail by Ehrgott 

(2005). 

𝑚𝑖𝑛 ∑ 𝑡ℎ𝑓ℎ(𝑎)
𝑘

ℎ=1
 

𝑠. 𝑡. 

𝑎 ∈ 𝐴 

(4.2) 

An optimal solution α' of the scalar LP model (4.2) is a Pareto optimal (non-dominated) 

solution to MOLP (4.1), if and only if there are {𝑡ℎ > 0, ℎ = 1, … , 𝑘 / ∑ 𝑡ℎ
𝑘
ℎ=1 }, setting one or 

more of the weights to zero may result in weak Pareto optimal solution. The relations 

between nonnegative weights and Pareto optimality are examined by Lin (1976). Alternative 

Pareto optimal solutions can be obtained by changing the weights systematically. However, 

varying the weights will not necessarily change the solution since altering the weights will 

only provide extreme points (vertices) on the Pareto front, i.e. the solution jumps from one 

extreme point to another. The means to generate the whole Pareto optimal set are explored 

comprehensively by Censor (1977) and Chankong and Haimes (1983). 

A special case of the weighted sum method results when equal importance is given to the 

objective functions or equivalently no preference among them exists, i.e. th=1, h=1,..,k. In 

this case, the preference-free scalarizing function is simply built by the sum of the objective 

functions. 

 

Weighted Tchebycheff method 

The weighted Tchebycheff or weighted min-max scalarization method belongs to the class of 

compromise programming methods (cf. Zeleny, 1973), it can be originally found in Bowman 

(1976) and it is also utilized in the milestone methods of Choo and Atkins (1980) and Steuer 

and Choo (1983). The weighted Tchebycheff method is based on the concept of minimizing 

the distance to a given reference point utilizing the L∞ norm. In particular, the Tchebycheff 

norm minimization chooses the corner closest to the given reference point and still in contact 

with the feasible region. A reference point (cf. Wierzbicki, 1980) consists of aspiration levels 

(objective function values) that are desirable for the decision maker or can be any reasonable 

point in the objective space. These points can be reservation points that must be attained or 
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exceeded so as to be considered acceptable (cf. Reeves and MacLeod, 1999) or worst 

outcome points that should be avoided (cf. Michalowski and Szapiro, 1992). In the frame of 

our approach, we use the ideal point as a reference point which represents, in the objective 

functions space, the ideal solution that simultaneously optimizes each objective separately. 

The ideal solution (best possible attainment) is obtained by optimizing each of the objective 

functions individually subject to the feasible region. In principle, it is reasonable when 

forming a measure of distance to seek for a point that is as close as possible to the ideal one. 

The MOLP (4.1) is scalarized via the weighted min-max methodology using the ideal point as 

follows: 

 

𝑚𝑖𝑛  𝑚𝑎𝑥   [𝑡ℎ(|𝑓ℎ(𝑎) − 𝑓ℎ
∗|)] 

                ℎ = 1, … , 𝑘 

𝑠. 𝑡. 

𝑎 ∈ 𝐴 

(4.3) 

 

where th, h=1,…,k, is the vector of the weights that reflect the relative importance of each 

objective and 𝑓ℎ
∗, h=1,…,k, are the components of the ideal objective vector that constitutes 

the ideal point in the objective functions space. Model (4.3) yields at least one solution that is 

Pareto optimal for the MOLP (4.1). If the optimal solution of model (4.3) is unique then it is 

a Pareto optimal solution to MOLP (4.1). In general, every optimal solution of model (4.3), 

with positive weights (th>0, h=1,...,k), is weakly Pareto optimal to MOLP (4.1) (cf. Yu, 1973 

and Kaliszewski, 1994). However, in the case of two objectives (k=2), given a set of positive 

weights (th>0, h=1,…,k), the optimal solution of model (4.3) is unique and thus a Pareto 

optimal (non-dominated) solution to MOLP (4.1) (cf. Ballestero and Romero, 1991). The 

weighted Tchebycheff method, contrary to the weighted sum method, can generate the entire 

Pareto optimal set of the MOLP (4.1) with variation of the weights th, i.e. it also provides the 

non-extreme points on the non-dominated surface (cf. Olson, 1993). 

When all the objective functions are thought to be equally important or equivalently no 

preference among them exists, i.e. th=1, h=1,…,k,  then a special case of the weighted 

Tchebycheff method occurs, namely the unweighted Tchebycheff method. Under this 

assumption, problem (4.3) is also called method of the global criterion. 
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4.2 Criticism of the efficiency decomposition 

methods 

In order to discuss and reveal the deficiencies of the decomposition methods it is sufficient to 

refer to the elementary two-stage process of Type I. In this two-stage process some external 

inputs X are transformed to final outputs Y via the intermediate measures Z. 

 

 

Fig. 4.1: The two-stage process of Type I 

 

Assume n DMUs (j=1,...,n), each using m external inputs xij, i=1,…,m in the first stage to 

produce q outputs zpj, p=1,...,q from that stage. The outputs obtained from the first stage are 

then used as inputs to the second stage to produce s final outputs yrj, r=1,…,s. In this basic 

setting, nothing but the external inputs to the first stage enters the system and nothing but the 

outputs of the second stage leaves the system. 

Throughout this chapter we use the following notation: 

𝑗 ∈ 𝐽 = {1, … , 𝑛}: The index set of the n DMUs. 

𝑗0 ∈ 𝐽: Denotes the evaluated DMU. 

𝑋𝑗 = (𝑥𝑖𝑗, 𝑖 = 1, … , 𝑚): The vector of stage-1 external inputs used by DMUj. 

𝑍𝑗 = (𝑧𝑝𝑗, 𝑝 = 1, … , 𝑞): The vector of intermediate measures for DMUj. 

𝑌𝑗 = (𝑦𝑟𝑗, 𝑟 = 1, … , 𝑠): The vector of stage-2 final outputs produced by DMUj. 

𝜂 = (𝜂1, … , 𝜂𝑚): The vector of weights for the stage-1 external inputs in the fractional model. 

𝑣 = (𝑣1, … , 𝑣𝑚): The vector of weights for the stage-1 external inputs in the linear model. 

𝜑 = (𝜑1, … , 𝜑𝑞) : The vector of weights for the intermediate measures in the fractional 

model. 
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𝑤 = (𝑤1, … , 𝑤𝑞): The vector of weights for the intermediate measures in the linear model. 

𝜔 = (𝜔1, … , 𝜔𝑠): The vector of weights for the stage-2 outputs in the fractional model. 

𝑢 = (𝑢1, … , 𝑢𝑠): The vector of weights for the stage-2 outputs in the linear model. 

𝑒𝑗
𝑜: The overall efficiency of DMUj. 

𝑒𝑗
1: The efficiency of the first stage for DMUj. 

𝑒𝑗
2: The efficiency of the second stage for DMUj. 

𝐸𝑗
1: The independent efficiency score of the first stage for DMUj. 

𝐸𝑗
2: The independent efficiency score of the first stage for DMUj. 

λ: The intensity vector for the first stage.  

μ: The intensity vector for the second stage. 

s -: The vector of the input excesses. 

s+: The vector of the output shortfalls. 

4.2.1 Non-unique efficiency scores 

Both the multiplicative (Kao and Hwang, 2008) and the additive (Chen et al, 2009b) 

decomposition methods are developed on the basis of the two-stage process of Type I. As 

noticed in Chapter 3, in both methods the decomposition of the overall efficiency to the stage 

efficiencies is non-unique. Thus in both studies, similar post-optimality procedures were 

developed to derive extreme stage efficiency scores, maintaining the overall efficiency 

obtained from the decomposition models. Kao (2016) noticed that is critical to “identify the 

most influential divisions that have decisive effects on the overall efficiency of the system” 

because by improving these stages the system efficiency will be improved. However, this 

cannot be exercised safely due to the non-uniqueness of the efficiency scores, i.e. alternative 

efficiency decompositions deem different stage as influential. The shortcoming of non-unique 

efficiency scores of the decomposition methods may occur in the assessment of any type of 

network structure. 
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4.2.2 Biased efficiency scores 

The additive efficiency decomposition method also suffers from biased efficiency results as 

we show below. We recall that the modelling approach of Chen et al (2009b) facilitates the 

linearization of a non-linear mathematical program by assuming that the weights of the two 

stages derive endogenously by the optimization process. We provide again the definitions of 

the overall and stage efficiencies of the two-stage process of Type I (Fig. 4.1). 

𝑒𝑗
𝑜 =

𝑢𝑌𝑗+𝑤𝑍𝑗

𝑣𝑋𝑗+𝑤𝑍𝑗
, 𝑒𝑗

1 =
𝑤𝑍𝑗

𝑣𝑋𝑗
, 𝑒𝑗

2 =
𝑢𝑌𝑗

𝑤𝑍𝑗
 (4.4) 

In additive efficiency decomposition method the overall efficiency is estimated as a weighted 

average of the stage efficiencies. The additive decomposition model and the definitions of the 

weights of the stages are expressed as follows: 

𝑒𝑗
𝑜 =

𝑢𝑌𝑗+𝑤𝑍𝑗

𝑣𝑋𝑗+𝑤𝑍𝑗
= 𝑡𝑗

1 𝑤𝑍𝑗

𝑣𝑋𝑗
+ 𝑡𝑗

2 𝑢𝑌𝑗

𝑤𝑍𝑗
,  𝑡𝑗

1 + 𝑡𝑗
2 = 1  

𝑡𝑗
1 =

𝑣𝑋𝑗

𝑣𝑋𝑗+𝑤𝑍𝑗
 , 𝑡𝑗

2 =
𝑤𝑍𝑗

𝑣𝑋𝑗+𝑤𝑍𝑗
  

Given the above definitions, the model below assesses the overall efficiency of the evaluated 

unit j0: 

𝑒𝑗𝑜 
𝑜 = 𝑚𝑎𝑥 𝑢𝑌𝑗𝑜

+ 𝑤𝑍𝑗𝑜
 

𝑠. 𝑡. 

𝑣𝑋𝑗𝑜
+ 𝑤𝑍𝑗𝑜

= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(4.5) 

 

Once an optimal solution ( , , )v w u
  

 of model (4.5) is obtained, the overall efficiency and the 

stage efficiencies are calculated by the following relationships: 

 



Chapter 4: Composition versus decomposition in two-stage Network DEA: a reverse approach 

    | 91 

𝑒𝑗𝑜 
𝑜 = 𝑢∗𝑌𝑗𝑜

+ 𝑤∗𝑍𝑗𝑜
 

𝑡𝑗𝑜 
1 = 𝑣∗𝑋𝑗𝑜

 ,  𝑡𝑗𝑜 
2 = 𝑤∗𝑍𝑗𝑜

 

 𝑒𝑗𝑜 
1 =

𝑤∗𝑍𝑗𝑜

𝑣∗𝑋𝑗𝑜

 , 𝑒𝑗𝑜 
2 =

𝑒𝑗𝑜
0 −𝑡𝑗𝑜 

1 𝑒𝑗𝑜 
1

𝑡𝑗𝑜 
2 =

𝑢∗𝑌𝑗𝑜

𝑤∗𝑍𝑗𝑜

 

(4.6) 

The argument given in Chen et al (2009b) for the weights 𝑡𝑗
1

 
and 𝑡𝑗

2 is that they represent the 

relative contribution of the two stages to the overall performance of the DMU. The “size” of 

each stage, as measured by the portion of total resources devoted to each stage, is assumed to 

reflect their relative contribution to the overall efficiency of the DMU. However, as long as 

the weights derive from the optimization process, they depend on the DMU being evaluated 

and, generally, they are different for different DMUs. Thus, the “size” of a stage is not an 

objective reality, as it is viewed differently from each DMU. But this is not the only 

peculiarity emerging from the definition of the weights. Indeed, from the above relationships 

and the definition of the weights we derive that the additive decomposition method biases the 

efficiency assessments in favor of the second stage: 

𝑡𝑗
2

𝑡𝑗
1 =

𝑢𝑌𝑗

𝑤𝑍𝑗
= 𝑒𝑗

1 ≤ 1 

i.e. 𝑡𝑗
2 ≤ 𝑡𝑗

1, which is a major a shortcoming. Indeed, the maximum value that 𝑡𝑗
2 can attain is 

0.5 and 𝑒𝑗
2

 
increases (𝑒𝑗

1  decreases) as  𝑡𝑗
2

 
decreases. As long as the individual efficiency 

scores are biased, the overall efficiency score is biased as well. In conclusion, the endogenous 

weights assumed in Chen et al (2009b) for the individual stages favor the second stage 

against the first one.  

Notice, that the above finding is based upon an input oriented framework, though it is still 

valid in the output oriented case. Also, this conclusion can be easily drawn for other types of 

series multi-stage processes, regardless of the number of stages. Specifically, when the 

additive decomposition method is applied to multi-stage processes of Type I, under both 

input and output orientations, then it suffers from biased efficiency assessments. Also, when 

it is applied to multi-stage processes of Type III (Fig. 3.1c), then the aforementioned 

shortcoming is reported only if input orientation is chosen. When the additive method is 

applied to parallel network structures (Fig. 3.3) or under the VRS assumption of any type of 

network structures, then we cannot predetermine the relationship of the weights of the stages. 
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4.3 The composition approach to two-stage network 

DEA 

Unlike the decomposition methods presented in the previous chapter, our method does not 

require an a priori definition of the overall efficiency. This grants our approach the flexibility 

to select the aggregation method a posteriori. Thus, we call our method the “composition 

approach” as opposed to the “decomposition approach”. Similarly to the other methods, we 

assume that the weights associated with the intermediate measures are the same and we 

define the efficiency of the two stages as follows: 

𝑒̂𝑗
1 =

𝜑𝑍𝑗

𝜂𝑋𝑗
, 𝑒̂𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗
  

 

4.3.1 Constant returns to scale 

Consider the reciprocal of model (3.1) that is the output-oriented CRS-DEA model for the 

first-stage and the input-oriented CRS-DEA model (3.2) for the second-stage, where the same 

intermediate weights are assumed for both stages: 

 

Stage I: Output-oriented  Stage II: Input-oriented  

𝑚𝑖𝑛
𝜂𝑋𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0  

(4.7) 

𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜑 ≥ 0, 𝜔 ≥ 0  

(4.8) 

 

As mentioned earlier, models (4.7) and (4.8) provide the independent efficiency scores 

1/𝐸𝑗𝑜 
1 , 𝐸𝑗𝑜 

2  for the first and the second stage respectively. Appending the constraints of model 

(4.7) to model (4.8) and vice versa we get the following augmented models (4.9) and (4.10) 

for the first and the second stage respectively: 
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Stage I: Output-oriented  Stage II: Input-oriented  

𝑚𝑖𝑛
𝜂𝑋𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0  

(4.9) 

𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂𝑋𝑗

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0  

(4.10) 

 

Notice that an optimal solution of model (4.7) is also optimal in model (4.9). Indeed, one can 

always choose small enough values for ω in model (4.9) to make any optimal solution of 

model (4.7) feasible, yet optimal, in model (4.9).  Analogously, an optimal solution of model 

(4.8) is also optimal in model (4.10), as one can choose large enough values for η in model 

(4.10) to make any optimal solution of model (4.8) feasible, yet optimal, in model (4.10).  

 

 

Theorem 4.1: An optimal solution of model (4.7) is also optimal in model (4.9). 

Proof: 

Let η* and φ* be an optimal solution of (4.7). First we will show that this solution is feasible 

in (4.9). Indeed, it satisfies the first set of constraints of (4.9), as it is identical to the 

constraints in (4.7). Notice that the first set of constraints of (4.9) is independent of the 

variables ω, which appear only in the second set of constraints. Then, 

 

(a) If  the number of outputs (Υ) is lower or equal to the number of intermediate measures 

(Z), i.e. s ≤ q, then the second set of constraints of (4.9) is satisfied for  

𝜔𝑟 =
𝜑𝑟

∗𝑧𝑟
𝑚𝑖𝑛

𝑦𝑟
𝑚𝑎𝑥 ≥ 0, 𝑟 = 1, … , 𝑠 

where min
min{ }r rj

j
z z is the smallest observed value of the intermediate measure zr and 

max
max{ }r rj

j
y y is the largest observed value of output yr.  
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(b) If the number of outputs (Υ) is greater than the number of intermediate measures (Z), i.e. 

s>q, the second set of constraints of (4.9) is satisfied for 

 

𝜔𝑝 =
𝜑𝑝

∗𝑧𝑝
𝑚𝑖𝑛

𝑦𝑝
𝑚𝑎𝑥 ≥ 0, 𝑝 = 1, … , 𝑞, 𝜔𝑟=0, 𝑟 = 𝑞 + 1, … , 𝑠  

 

Thus, the optimal solution η* and φ* of (4.7) is a feasible solution of (4.9). Moreover, as the 

objective functions in both the (4.7) and (4.9) are independent of ω, the above solution is 

optimal in (4.9) as well.  

 

Theorem 4.2: An optimal solution of model (4.8) is also optimal in model (4.10). 

Proof: 

Let ω* and φ* be an optimal solution of (4.8). First we will show that this solution is feasible 

in (4.10). Indeed, it satisfies the first set of constraints of (4.10), as it is identical to the 

constraints in (4.8). Notice that the first set of constraints of (4.10) are independent of the 

variables η, which appear only in the second set of constraints. Then,  

 

(a) If the number of intermediate measures (Z) is lower or equal to the number of inputs (X), 

i.e. q≤m, the second set of constraints of (4.10) is satisfied for 

𝜂𝑝 =
𝜑𝑝

∗𝑧𝑝
𝑚𝑎𝑥

𝑥𝑝
𝑚𝑖𝑛

≥ 0, 𝑝 = 1, … , 𝑞, 𝜂𝑖≥0, 𝑖 = 𝑞 + 1, … , 𝑚  

where max
max{ }p pj

j
z z is the largest observed value of the intermediate measure zp and 

min
min{ }p pj

j
x x is the smallest observed value of the input xp. 

 

(b) If the number of intermediate measures (Z) is greater than the number of inputs (X), i.e. 

q>m, the second set of constraints of (4.10) is satisfied for 

 

𝜂𝑖 =
𝜑𝑖

∗𝑧𝑖
𝑚𝑎𝑥

𝑥𝑖
𝑚𝑖𝑛

, 𝑖 = 1, … , 𝑚 − 1 

𝜂𝑚 =
𝜑𝑚

∗ 𝑧𝑚
𝑚𝑎𝑥

𝑥𝑚
𝑚𝑖𝑛

+ ∑
𝜑𝑚

∗ 𝑧𝑚
𝑚𝑎𝑥

𝑥𝑚
𝑚𝑖𝑛

𝑞

𝑝=𝑚+1
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Thus, the optimal solution ω* and φ* of (4.8) is a feasible solution of (4.10). Moreover, as the 

objective functions in both the (4.8) and (4.10) are independent of η, the above solution is 

optimal in (4.10) as well.  

 

Models (4.9) and (4.10) have common constraints and, thus, can be jointly considered as a bi-

objective program: 

𝑚𝑖𝑛
𝜂𝑋𝑗0

𝜑𝑍𝑗0

 

𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0 

(4.11) 

 

Applying the C-C transformation, model (4.11) can be formulated and solved as a MOLP. 

The correspondence of variables is v=τη, u=τω, w=τφ where τ is a scalar variable such 

that 𝜏𝜑𝑍𝑗0
= 1. 

𝐸𝑗𝑜 
1 = 𝑚𝑖𝑛 𝑣𝑋𝑗0

 

𝐸𝑗𝑜 
2 = 𝑚𝑎𝑥 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(4.12) 

Optimizing the first and the second objective function separately one gets the independent 

efficiency scores of the two stages (1/𝐸𝑗𝑜 
1 ≤ 1, 𝐸𝑗𝑜 

2 ≤ 1) . In terms of MOLP, the 

vector (𝐸𝑗𝑜 
1 ≥ 1, 𝐸𝑗𝑜 

2 ≤ 1) constitutes the ideal point of the bi-objective program (4.12) in the 

objective functions space. Thus, the efficiencies of the two stages can be obtained by solving 

the MOLP (4.12). However, as the ideal point is not generally attainable, solving a MOLP 

means finding non-dominated feasible solutions in the variable space that are mapped on the 
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Pareto front in the objective functions space, i.e. solutions that they cannot be altered to 

increase the value of one objective function without decreasing the value of at least one other 

objective function. As already noticed, a usual approach in solving a MOLP is the scalarizing 

approach, which transforms the MOLP in a single objective LP, whose optimal solution is a 

Pareto optimal (non-dominated) solution of the MOLP. Aggregating additively the objective 

functions and introducing a distance function are two alternative methods to build the 

scalarizing function. We present both cases in the following, as they possess different 

properties. 

Firstly, by aggregating the two objective functions of MOLP (4.12) additively without 

giving any priority (no preference) to the objectives we derive the following single objective 

LP. In particular, we employ the special case of the weighted sum scalarizing method with all 

weights equal to one, i.e. th=1, h=1,...,k. 

 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(4.13) 

 

Once an optimal solution (v*, w*, u*) of model (4.13) is obtained, the efficiency scores for 

unit j0 in the first and the second stage are respectively: 

𝑒̂𝑗0

1 =
𝑤∗𝑍𝑗0

𝑣∗𝑋𝑗0

=
1

𝑣∗𝑋𝑗0

, 𝑒̂𝑗0

2 =
𝑢∗𝑌𝑗0

𝑤∗𝑍𝑗0

= 𝑢∗𝑌𝑗0
 (4.14) 

 

The optimal value of the objective function in (4.13) is 𝑣∗𝑋𝑗0
− 𝑢∗𝑌𝑗0

≥ 0. The unit j0 is 

efficient in both stages and, thus, overall efficient, if and only if the optimal value of the 

objective function is zero. Otherwise it is overall inefficient. Indeed, if 𝑣∗𝑋𝑗0
− 𝑢∗𝑌𝑗0

= 0 then, 

as 𝑤∗𝑍𝑗0
= 1 and 𝑢𝑌𝑗 ≤ 𝑤𝑍𝑗 ≤ 𝑣𝑋𝑗 for every j, it holds that 𝑣∗𝑋𝑗0

= 𝑤∗𝑍𝑗0
= 𝑢∗𝑌𝑗0

= 1, i.e. 𝑒̂𝑗0

1 =

1, 𝑒̂𝑗0

2 = 1. Model (4.13) does not provide a direct measure of the overall efficiency, as it is the 

case in the multiplicative model (3.7) and the additive model (4.5), but it does discriminate 

among overall efficient and inefficient units, a property that is closely related to the standard 
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additive DEA model. However, it is the normalization constraint  𝑤𝑍𝑗0
= 1 , on the 

intermediate measures in (4.13), that allows us to infer on the efficiency scores of the 

individual stages, as given in (4.14). This is the key that enables us to assess the efficiencies 

of the two stages simultaneously without the need to assume weights for the two stages.  

The optimal solution (v*, w*, u*) of model (4.13) is a Pareto optimal solution of the 

MOLP (4.12) and the optimal vector (𝑣∗𝑋𝑗𝑜
, 𝑢∗𝑌𝑗𝑜

) is a non-dominated point on the Pareto 

front in the objective functions space of (4.12). This is a direct implication of the Geoffrion’s 

(1968) theorem, which states that: given a multi-objective LP model  {𝑚𝑖𝑛 𝑓ℎ(𝑎), ℎ =

1, … , 𝑘 /  𝑎 ∈ 𝐴, 𝑎 ≥ 0}, a* is a Pareto-optimal (efficient) solution for this model if and only if 

there are  {𝑡ℎ > 0, ℎ = 1, … , 𝑘 / ∑ 𝑡ℎ = 1𝑘
ℎ=1 }  such that a* is optimal for the scalar LP 

model {𝑚𝑖𝑛 ∑ 𝑡ℎ
𝑘
ℎ=1 𝑓ℎ(𝑎) /  𝑎 ∈ 𝐴, 𝑎 ≥ 0}. Getting advantage of this property, one can scan the 

Pareto front and get alternative Pareto optimal solutions by solving model (4.15), i.e. the 

weighted counterpart of model (4.13), for different values of the parameter t with 0 < t < 1: 

 

𝑚𝑖𝑛 𝑡𝑣𝑋𝑗0
− (1 − 𝑡)𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(4.15) 

 

We note that model (4.15) provides only extreme points on the Pareto front i.e. the optimal 

solutions are confined to vertices of the efficient region only. Notice also that the same Pareto 

optimal point can be obtained for a range of values of t, the so called indifference range. 

Thus, the solution obtained from model (4.13) by way of its unweighted scalar objective 

function can be obtained as well by giving different priorities (weights) to the two terms of 

the objective function within their indifference range (Steuer, 1986). Figure 4.2 below, is a 

general representation of the objective functions space of the MOLP (4.12) for an evaluated 

unit (Xo, Zo, Yo). Actually, it is the plane in the three-dimensional space (vX, wZ, uY) that is 

vertical to the axis wZ at wZo=1. The point (E1, E2) represents the ideal point, whereas the 

points A, B, C and D are the alternative Pareto optimal extreme points derived by the 

parametric model (4.15) for different values of the parameter t. The crooked line ABCD 
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represents the Pareto front in the objective functions space. The dotted line passing from the 

point B has slope 1 and depicts the objective function of model (4.13), which, when 

minimized for the optimal solution (v*, w*, u*), takes the non-negative value 𝑣∗𝑋𝑗𝑜
− 𝑢∗𝑌𝑗𝑜

=

b > 0 and locates the point B on the Pareto front. 

 

Fig. 4.2: The Pareto front of MOLP (4.12) and the optimal solution of model (4.13) 
 

Although it is not very likely to occur in practice, the Pareto optimal point derived by 

model (4.13) and, thus, the efficiency scores of the two stages might be non-unique. This is 

the case where a segment of the Pareto front has slope 1, i.e. when it is parallel to the 

objective function line. For example, if the segment BC defined by the two successive Pareto 

optimal points B and C was parallel to the objective function line, then B, C and any convex 

combination of them would be optimal in terms of model (4.13). The uniqueness of the 

Pareto optimal point (𝑣∗𝑋𝑗𝑜
, 𝑢∗𝑌𝑗𝑜

) and, thus, the uniqueness of the optimal efficiency scores 

of the two stages derived by model (4.13), can be tested by minimizing 𝑣𝑋0 and maximizing 

𝑢𝑌0 subject to the constraints of (4.13) plus the constraint 𝑣𝑋𝑗𝑜
−  𝑢𝑌𝑗𝑜

≤ 𝑣∗𝑋𝑗𝑜
− 𝑢∗𝑌𝑗𝑜

.  

Model (4.13) is equivalent to finding an optimal solution that locates a point on the Pareto 

front at a minimum sum of the deviations 𝑣𝑋𝑗𝑜
− 1 and 1 − 𝑢𝑌𝑗𝑜

 (L1 norm) of (𝑣𝑋𝑗𝑜
, 𝑢𝑌𝑗𝑜

) from 

the boundary point (1,1) in the objective functions space. Next, we employ the unweighted 

Tchebycheff norm (L norm) to locate a unique solution on the Pareto front by minimizing 

the maximum of the deviations 𝑣𝑋𝑗𝑜
− 𝐸𝑗𝑜

1  and  𝐸𝑗𝑜

2 − 𝑢𝑌𝑗𝑜
 of ( 𝑣𝑋𝑗𝑜

, 𝑢𝑌𝑗𝑜
) from the ideal 
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point (𝐸𝑗𝑜

1 , 𝐸𝑗𝑜

2 ). This is accomplished by the following min-max model, where δ denotes the 

largest deviation: 

 

𝑚𝑖𝑛 𝛿 

𝑠. 𝑡. 

𝑣𝑋𝑗0
− 𝛿 ≤ 𝐸𝑗𝑜 

1  

𝑢𝑌𝑗0
+ 𝛿 ≥ 𝐸𝑗𝑜 

2  

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0, 𝛿 ≥ 0 

(4.16) 

 

Solving model (4.16) means searching for a solution where the deviations from the ideal 

point are equal and minimized. As depicted in Fig.4.3, the min-max solution is point D, being 

the intersection of the Pareto front and a ray from the ideal point (E1,E2) with slope (-1). The 

main advantage of model (4.16) over model (4.13) and the decomposition models (3.7) and 

(4.5) is that it provides a unique point, not necessarily extreme (vertex), on the Pareto front, 

i.e. unique efficiency scores for the two stages. Once an optimal solution (v*, w*, u*) of model 

(4.16) is obtained, the stage efficiency scores for unit j0 are as in (4.14). 

 

Fig. 4.3: The Pareto front of MOLP (4.12) and the optimal solution of model (4.16) 
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Considering the weighted Tchebycheff distance, the following parametric min-max model 

searches for a solution where the weighted deviations 𝑡(𝑣𝑋𝑗𝑜
− 𝐸𝑗𝑜

1 )  and (1 − 𝑡)(𝐸𝑗𝑜

2 −

𝑢𝑌𝑗𝑜
)with 0 < t < 1, are equal and minimized. 

 

𝑚𝑖𝑛 𝛿 

𝑠. 𝑡. 

𝑡𝑣𝑋𝑗0
− 𝛿 ≤ 𝑡𝐸𝑗𝑜 

1  

(1 − 𝑡)𝑢𝑌𝑗0
+ 𝛿 ≥ (1 − 𝑡)𝐸𝑗𝑜 

2  

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0, 𝛿 ≥ 0 

(4.17) 

 

Unlike the parametric model (4.15), the above min-max formulation (4.17) gives continuous 

changes on the location of the Pareto optimal point for continuous changes of the parameter t. 

Thus, the optimal solution of (4.17) responds accurately to any given set of weights that gives 

priority to one stage over the other. In this sense, the unweighted min-max model (4.16) 

aligns more effectively with the notion of “neutrality” in the efficiency assessments than 

model (4.13) does and provides, thus, more balanced efficiency scores for the two stages. 

 

Aggregation of the individual efficiencies 

As noticed in Cook et al (2010a), it is reasonable to define the overall efficiency of the two-

stage process either as the average (arithmetic mean) of the efficiencies of the two individual 

stages or as their product. Liang et al (2006) and Chen et al (2006) propose the use of the 

arithmetic mean, in this line of thought, the overall efficiency of unit j0 is defined as:  

    𝑒̂𝑗𝑜

𝑜 =
1

2
(𝑒̂𝑗𝑜

1 + 𝑒̂𝑗𝑜

2 ) 

 

As the stage efficiencies are assumption-free, i.e. their assessment does not depend on any a 

priori definition of the overall efficiency, alternatively, they can be aggregated 

multiplicatively to get the overall efficiency as follows: 
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𝑒̂𝑗𝑜

𝑜 = 𝑒̂𝑗𝑜

1 ∙ 𝑒̂𝑗𝑜

2 =
1

𝑣∗𝑋𝑗𝑜

∙ 𝑢∗𝑌𝑗𝑜
=

𝑢∗𝑌𝑗𝑜

𝑣∗𝑋𝑗𝑜

 

 

In the following, we compare the overall and the stage efficiencies obtained from our 

approach with those obtained from the additive and the multiplicative decomposition 

methods. Although the overall efficiency scores 𝑒̂𝑜  and eo obtained respectively by our 

aggregation method (simple arithmetic average) and the additive decomposition model (4.5) 

are not comparable, because of the endogenous weights assumed for the two stages in the 

latter, in the case of the multiplicative decomposition model (3.7) the following hold: 

 

Theorem 4.3: If 𝑒̂𝑗𝑜

𝑜 = 𝑒̂𝑗𝑜

1 ∙ 𝑒̂𝑗𝑜

2  is the overall efficiency score of the evaluated unit j0, with 𝑒̂𝑗𝑜

1 ,

𝑒̂𝑗𝑜

2  as derived by model (4.13), and 𝑒𝑗𝑜

𝑜  is its overall efficiency score obtained from model 

(3.7) then  𝑒̂𝑗𝑜

𝑜
≤ 𝑒𝑗𝑜

𝑜 . 

 

Proof: 

Let (v’, w’, u’) be an optimal solution of model (3.7) with 𝑒𝑗𝑜

𝑜 = 𝑢′𝑌𝑗𝑜
 and (v*, w*, u*) an 

optimal solution of model (4.13) with 𝑒̂𝑗𝑜

𝑜
= 𝑢∗𝑌𝑗𝑜

/𝑣∗𝑋𝑗𝑜
. The following hold: 

 

(a) (v’, w’, u’) is an optimal solution in model (3.6). This is a direct implication of the C-C 

transformation. 

(b) (v*, w*, u*) is a feasible solution in (3.6). Indeed, (v*, w*, u*)  is optimal in the following 

ratio model: 

𝑚𝑖𝑛
𝜂𝑋𝑗0

− 𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 −  𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0 

 

 

which derives from (4.13) by applying the inverse C-C transformation: η=v/τ, φ=w/τ, ω=u/τ 

with τ>0 such that 𝜏𝜑𝑍𝜊 = 1. As the above model and model (3.6) have the same feasible 
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regions, (v*, w*, u*) is feasible in (3.6). From a) and b) derives that  𝑒̂𝑗𝑜

𝑜 = 𝑢∗𝑌𝑗𝑜
𝑣∗𝑋𝑗𝑜

⁄ ≤

𝑢′𝑌𝑗𝑜
= 𝑒𝑗𝑜

𝑜 , which completes the proof.  

 

Theorem 4.4: If 𝑒̂𝑗𝑜

𝑜 = 𝑒̂𝑗𝑜

1 ∙ 𝑒̂𝑗𝑜

2  is the overall efficiency score of the evaluated unit j0, with 𝑒̂𝑗𝑜

1 ,

𝑒̂𝑗𝑜

2  as derived by model (4.16), and 𝑒𝑗𝑜

𝑜  is its overall efficiency score obtained from model 

(3.7) then  𝑒̂𝑗𝑜

𝑜
≤ 𝑒𝑗𝑜

𝑜 . 

 

Proof: 

Let (v’, w’, u’) be an optimal solution of model (3.7) with 𝑒𝑗𝑜

𝑜 = 𝑢′𝑌𝑗𝑜
and (v*, w*, u*, δ*) an 

optimal solution of model (4.16) with 𝑒̂𝑗𝑜

𝑜
= 𝑢∗𝑌𝑗𝑜

/𝑣∗𝑋𝑗𝑜
. The following hold: 

 

(a) The sub-vector (v*, w*, u*) is a feasible solution of model (4.13). Indeed, given the 

optimal δ*, the optimal sub-vector (v*, w*, u*) satisfies the three last constraints of (4.16), 

which define the feasible region of (4.13).  

(b) (v*, w*, u*) is a feasible solution in (3.6) as well. The proof is as in Theorem 4.3(b). 

 

Given (a) and (b), 𝑒̂𝑗𝑜

𝑜 ≤ 𝑒𝑗𝑜

𝑜  is direct implication of Theorem 4.3.  
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The case of a single intermediate measure 

The following theorems complement the findings of Liang et al (2008), where it is shown that 

the multiplicative approach provides the independent stage efficiencies when a single 

intermediate measure is assumed in the two-stage process of Type I. In the Appendix, we 

provide an illustrative example of this two-stage process with a single intermediate measure, 

originally studied by Wang et al (1997). 

 

Theorem 4.5: In a two-stage production process of Type I with a single intermediate 

measure, the efficiency scores derived for the two stages by model (4.13) are identical to the 

independent efficiency scores. 

Proof: 

Assuming different weights for the intermediate measures in each stage, model (4.13) can be 

written as follows: 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤̂𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤̂𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑤̂ ≥ 0, 𝑢 ≥ 0 

(4.18) 

 

where 𝑤 and 𝑤̂ are the weight variables associated to the intermediate measures for the first 

and the second stage respectively. It derives straightforwardly that if (u*, v*, w*, 𝑤̂*) is an 

optimal solution of model (4.18), then (v*, w*) is optimal in the linear equivalent of model 

(4.7) and (u*, 𝑤̂*) is optimal in the linear equivalent of model (4.8). Thus, model (4.18) can 

be used to estimate the independent efficiency scores of the two stages in one run for each 

evaluated unit. Obviously, models (4.13) and (4.18) are equivalent if  𝑤 = 𝑤̂ , with 𝑤 =

(𝑤1, … , 𝑤𝑞), 𝑤̂ = (𝑤̂1, … , 𝑤̂𝑞) .This naturally holds in the case of a two-stage production 

process with a single intermediate measure. Indeed, from model (4.18) derives that the 

weights (𝑤, 𝑤̂), associated with the single intermediate measure z, coincide and for each 

evaluated unit j0 can be obtained as 𝑤∗ = 𝑤̂∗ = 1/𝑧𝑗0
.  
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Theorem 4.6: In a two-stage production process with a single intermediate measure, the 

efficiency scores derived for the two stages by model (4.16) are identical to the independent 

efficiency scores. 

Proof: 

Similar to the proof of Theorem 4.5, assuming different weights for the intermediate 

measures in each stage, the model (4.16) can be written as follows: 

𝑚𝑖𝑛 𝛿 

𝑠. 𝑡. 

𝑣𝑋𝑗0
− 𝛿 ≤ 𝐸𝑗𝑜 

1  

𝑢𝑌𝑗0
+ 𝛿 ≥ 𝐸𝑗𝑜 

2  

𝑤𝑍𝑗0
= 1 

𝑤̂𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤̂𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑤̂ ≥ 0, 𝑢 ≥ 0, 𝛿 ≥ 0 

(4.19) 

 

In model (4.19) the weights  𝑤 and 𝑤̂  are the variables associated to the intermediate 

measures for the first and the second stage respectively. Models (4.16) and (4.19) are 

equivalent if 𝑤 = 𝑤̂, with 𝑤 = (𝑤1, … , 𝑤𝑞), 𝑤̂ = (𝑤̂1, … , 𝑤̂𝑞). As occurs in model (4.18), in 

model (4.19) as well, the weights (𝑤, 𝑤̂), associated with the single intermediate measure z, 

coincide and for each evaluated unit j0 are calculated as  𝑤∗ = 𝑤̂∗ = 1/𝑧𝑗0
. To put it 

differently, the competition between the stages over the intermediate measures is cancelled 

and their single value is derived directly from the normalization constraints. The purpose of 

model (4.19) is to minimize the deviations of the two objectives from their ideal values. If at 

the given optimal solution (𝑣∗, 𝑢∗, 𝑤∗, 𝑤̂∗, 𝛿∗) of (4.19) the optimal value of δ is zero (δ*=0), 

then the two objectives achieve their ideal values. This happens because the first two 

constraints of model (4.19) are always binding (cf. Ballestero and Romero, 1991, Tamiz et al, 

1998 and Ogryczak, 2001). As a result, it straightforwardly derives that (𝑣∗, 𝑤∗)  are optimal 

in the linear equivalent of model (4.7) and (𝑢∗, 𝑤̂∗) are optimal in the linear equivalent of 

model (4.8). From the above, we conclude that model (4.19) can be used to estimate the 

independent efficiency scores of the two stages in one run for each evaluated unit.  
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4.3.2 Variable returns to scale 

Our approach enables us to extend our developments under the variable returns-to-scale 

(VRS) assumption by considering the VRS variants of models (4.7) and (4.8). 

 

Stage Ι - VRS variant of (4.7)   Stage ΙΙ - VRS variant of (4.8)  

𝑚𝑖𝑛
𝜂𝑋𝑗0

− 𝜓1

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗−𝜓1

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0 

(4.20) 

𝑚𝑎𝑥
𝜔𝑌𝑗0

− 𝜓2

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗−𝜓2

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜑 ≥ 0, 𝜔 ≥ 0  

(4.21) 

 

Models (4.20) and (4.21) yield the independent VRS efficiency scores for the two stages. 

Working similarly to the CRS case, we formulate the augmented models (4.22) and (4.23), 

for the first and the second stage respectively, by appending the constraints of model (4.20) to 

model (4.21) and vice versa. 

 

Stage Ι   Stage ΙΙ  

𝑚𝑖𝑛
𝜂𝑋𝑗0

− 𝜓1

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗−𝜓1

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗−𝜓2

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0  

(4.22) 

𝑚𝑎𝑥
𝜔𝑌𝑗0

− 𝜓2

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗−𝜓2

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂𝑋𝑗−𝜓1

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0  

(4.23) 

 

Since models (4.22) and (4.23) have common constraints can be jointly considered as a bi-

objective program: 
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𝑚𝑖𝑛
𝜂𝑋𝑗0

− 𝜓1

𝜑𝑍𝑗0

 

𝑚𝑎𝑥
𝜔𝑌𝑗0

− 𝜓2

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜂𝑋𝑗−𝜓1

𝜑𝑍𝑗
≥ 1,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗−𝜓2

𝜑𝑍𝑗
≤ 1,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 0, 𝜑 ≥ 0, 𝜔 ≥ 0 

(4.24) 

 

Applying the C-C transformation to model (4.24) can be formulated and solved as a MOLP. 

The correspondence of variables is v=τη, u=τω, w= τφ, ξ1=τψ1, ξ2=τψ2 where τ is a scalar 

variable such that 𝜏𝜑𝑍𝜊 = 1. Below we give the VRS variant of the weighted sum model 

(4.13): 

 

 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝜉1 − 𝑢𝑌𝑗0

+ 𝜉2 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 + 𝜉1 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝜉2 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0 

(4.25) 

 

As noticed in previous chapter the additive decomposition approach of Chen et al (2009b) 

is extendable to VRS situations as well. Notably however, the principle that the VRS 

efficiency scores are not less than their CRS counterparts does not generally hold in neither 

the additive model or in our model (4.25) above. This irregularity can be attributed to the 

conflicting nature of the intermediate measures, which have different interpretations in the 

two stages. Adding however, the constraints 𝑣𝑋𝑗0
− 𝜉1 ≤ 1/𝑒̂𝐶𝑅𝑆

1  and 𝑢𝑌𝑗0
− 𝜉2 ≥ 𝑒̂𝐶𝑅𝑆

2  in model 

(4.25), where 𝑒̂𝐶𝑅𝑆
1  and 𝑒̂𝐶𝑅𝑆 

2 are the CRS efficiency scores obtained by model (4.13), rectifies 

this irregularity for the units where it is observed, without affecting the efficiency scores of 

the other units. 
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The VRS variant of the min-max model (4.16) is given below: 

 

𝑚𝑖𝑛 𝛿 

𝑠. 𝑡. 

𝑣𝑋𝑗0
− 𝜉1 − 𝛿 ≤ 𝐸𝑗𝑜 

1  

𝑢𝑌𝑗0
− 𝜉2 + 𝛿 ≥ 𝐸𝑗𝑜 

2  

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 + 𝜉1 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝜉2 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑢 ≥ 0, 𝛿 ≥ 0 

(4.26) 

 

Once an optimal solution of models (4.25) or (4.26) is obtained, the VRS efficiency 

scores for unit j0 in the first and the second stage are respectively: 

 

𝑒̂𝑗0

1 =
𝑤∗𝑍𝑗0

𝑣∗𝑋𝑗0
− 𝜉1

∗ =
1

𝑣∗𝑋𝑗0
− 𝜉1

∗ , 𝑒̂𝑗0

2 =
𝑢∗𝑌𝑗0

− 𝜉2
∗

𝑤∗𝑍𝑗0

= 𝑢∗𝑌𝑗0
− 𝜉2

∗ 

We note that in a two-stage production process with the structure of Figure 4.1, in case of 

a single intermediate measure, the VRS efficiency scores derived for the two stages by 

models (4.25) and (4.26) are identical to the VRS independent efficiency scores. The proofs 

are similar to the proofs in Theorems 4.5 and 4.6. 

 

4.4 Illustration and experimentation 

We apply our approach to the 24 Taiwanese non-life insurance companies originally studied 

in Kao and Hwang (2008). The authors noted that the production process of the non-life 

insurance companies in Taiwan resembles the two-stage process that illustrated in Figure 4.1. 

In the first stage (marketing of the insurance) were utilized two inputs (Operation expenses-

X1 and Insurance expenses-X2) in order to produce two intermediate measures (Direct 

written premiums-Z1 and Reinsurance premiums-Z2). The direct written premiums are 

obtained from the payments of the clients while the reinsurance premiums are received from 

other insurance companies. Subsequently, in the second stage (investment) the intermediate 

measures are used for the production of the two final outputs (Underwriting profit-Y1 and 
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Investment profit-Y2). The collected premiums are invested in a portfolio, in accordance with 

the Insurance Law of Taiwan, that includes bank deposits, marketable securities, real estate 

and mortgage loans. Table 4.1 exhibits the data set. 

 

Table 4.1: Taiwanese non-life insurance companies (source: Kao and Hwang, 2008) 

DMU  X1 X2 Z1 Z2 Y1 Y2 

1 Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687 

2 Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754 

3 Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428 

4 China Mariners 601,320 594,259 3,174,851 371,863 248,709 177,331 

5 Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272 

6 Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058 

7 Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039 

8 Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868 

9 Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098 

10 The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806 

11 Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259 

12 Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295 

13 Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047 

14 South China 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283 

15 Cathay Century 2,184,944 651,063 10,422,297 749,893 3,355,197 555,482 

16 Allianz President 1,211,716 415,071 5,606,013 402,881 854,054 197,947 

17 Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984 

18 AIU 757,515 547,997 3,631,484 995,620 692,731 163,927 

19 North America 159,422 182,338 1,141,950 483,291 519,121 46,857 

20 Federal 145,442 53,518 316,829 131,920 355,624 26,537 

21 Royal & Sunalliance 84,171 26,224 225,888 40,542 51,950 6,491 

22 Aisa 15,993 10,502 52,063 14,574 82,141 4,181 

23 AXA 54,693 28,408 245,910 49,864 0.1 18,980 

24 Mitsui Sumitomo 163,297 235,094 476,419 644,816 142,370 16,976 

 

CRS Case 

Table 4.2 displays the independent CRS efficiency scores (columns 2-3) of the two stages, as 

obtained from models (4.7) and (4.8), and the efficiency scores (columns 4-7) obtained by 

applying our model (4.13) on the data of Table 4.1. Also, Table 4.3 presents the ideal values 

(columns 2-3) of 𝑣𝑋𝑗0
 and 𝑢𝑌𝑗0

 in the bi-objective LP (4.12) and the results (columns 4-8) 

obtained by applying our model (4.16) on the data of Table 4.1. 
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Table 4.2: Independent efficiencies and results from our model (4.13) 

DMU 1
1/ E  

2
E

  ê1 ê2 êo=(ê1+ê2)/2 êo=ê1.ê2 

1 0.9926 0.7134 0.9926 0.7045 0.8485 0.6992 

2 0.9985 0.6275 0.9985 0.6257 0.8121 0.6248 

3 0.6900 1 0.6900 1 0.8450 0.6900 

4 0.7244 0.4323 0.7243 0.4200 0.5722 0.3042 

5 0.8375 1 0.8307 0.9233 0.8770 0.7670 

6 0.9637 0.4057 0.9606 0.4057 0.6831 0.3897 

7 0.7521 0.5378 0.7521 0.3522 0.5521 0.2649 

8 0.7256 0.5113 0.7256 0.3780 0.5518 0.2743 

9 1 0.2920 1 0.2233 0.6116 0.2233 

10 0.8615 0.6736 0.8615 0.5408 0.7012 0.4660 

11 0.7405 0.3267 0.7292 0.2066 0.4679 0.1507 

12 1 0.7596 1 0.7596 0.8798 0.7596 

13 0.8107 0.5435 0.8107 0.2431 0.5269 0.1970 

14 0.7246 0.5178 0.7246 0.3740 0.5493 0.2710 

15 1 0.7047 1 0.6138 0.8069 0.6138 

16 0.9072 0.3847 0.9072 0.3356 0.6214 0.3044 

17 0.7233 1 0.7232 0.4597 0.5914 0.3325 

18 0.7935 0.3737 0.7935 0.3262 0.5599 0.2588 

19 1 0.4158 1 0.4112 0.7056 0.4112 

20 0.9332 0.9014 0.9332 0.5857 0.7594 0.5465 

21 0.7505 0.2795 0.7505 0.2623 0.5064 0.1969 

22 0.5895 1 0.5895 1 0.7948 0.5895 

23 0.8501 0.5599 0.8426 0.4989 0.6707 0.4203 

24 1 0.3351 1 0.0870 0.5435 0.0870 

 

 

Table 4.3: Ideal values and results from our model (4.16) 

DMU 1
E

 2
E

 δ ê1 ê2 êo=(ê1+ê2)/2 êo=ê1.ê2 

1 1.0075 0.7134 0.0079 0.9848 0.7054 0.8451 0.6947 

2 1.0015 0.6275 0.0014 0.9971 0.6260 0.8116 0.6242 

3 1.4492 1 0 0.6900 1 0.8450 0.6900 

4 1.3805 0.4323 0.0121 0.7181 0.4202 0.5692 0.3018 

5 1.1940 1 0.0543 0.8011 0.9457 0.8734 0.7577 

6 1.0377 0.4057 0.0019 0.9619 0.4037 0.6828 0.3883 

7 1.3296 0.5378 0.1352 0.6827 0.4026 0.5426 0.2748 

8 1.3782 0.5113 0.1038 0.6748 0.4076 0.5412 0.2750 

9 1 0.2920 0.0597 0.9437 0.2323 0.5880 0.2192 

10 1.1607 0.6736 0.1139 0.7845 0.5597 0.6721 0.4391 

11 1.3504 0.3267 0.0991 0.6899 0.2276 0.4587 0.1570 

12 1 0.7596 0 1 0.7596 0.8798 0.7596 

13 1.2335 0.5435 0.2383 0.6794 0.3052 0.4923 0.2073 

14 1.3800 0.5178 0.0956 0.6777 0.4222 0.5500 0.2861 

15 1 0.7047 0.0671 0.9371 0.6376 0.7874 0.5976 

16 1.1023 0.3847 0.0250 0.8871 0.3597 0.6234 0.3191 

17 1.3825 1 0.3817 0.5668 0.6183 0.5925 0.3504 

18 1.2602 0.3737 0.0401 0.7691 0.3335 0.5513 0.2565 

19 1 0.4158 0.0038 0.9962 0.4120 0.7041 0.4104 

20 1.0716 0.9014 0.2251 0.7712 0.6763 0.7238 0.5216 

21 1.3324 0.2795 0.0127 0.7434 0.2668 0.5051 0.1984 

22 1.6963 1 0 0.5895 1 0.7948 0.5895 

23 1.1764 0.5599 0.0520 0.8141 0.5079 0.6610 0.4135 

24 1 0.3351 0.2096 0.8267 0.1255 0.4761 0.1037 

 



PhD Thesis – G. Koronakos 

110 |   

For comparison purposes, we give in Table 4.4 the results obtained from the additive 

decomposition model (4.5) of Chen et al (2009b) along with the weights (columns 2-6) and 

the corresponding results obtained from the multiplicative decomposition model (3.7) of Kao 

and Hwang (2008) (columns 7-9). 

 

Table 4.4: Results from models (4.5) and (3.7) 

 Chen et al (2009b) Kao and Hwang (2008) 

DMU e1 e2 eο t1 t2 e1 e2 eο 

1 0.9926 0.7045 0.8491 0.502 0.498 0.9926 0.7045 0.6992 

2 0.9985 0.6257 0.8122 0.500 0.500 0.9985 0.6257 0.6248 

3 0.6900 1 0.8166 0.592 0.408 0.6900 1 0.6900 

4 0.7243 0.4200 0.5965 0.580 0.420 0.7243 0.4200 0.3042 

5 0.8307 0.9233 0.8727 0.546 0.454 0.8307 0.9233 0.7670 

6 0.9606 0.4057 0.6887 0.510 0.490 0.9606 0.4057 0.3897 

7 0.7521 0.3522 0.5804 0.571 0.429 0.6706 0.4124 0.2766 

8 0.7256 0.3780 0.5795 0.580 0.420 0.6630 0.4150 0.2752 

9 1 0.2233 0.6116 0.500 0.500 1 0.2233 0.2233 

10 0.8615 0.5408 0.7131 0.537 0.463 0.8615 0.5408 0.4660 

11 0.7291 0.2068 0.5088 0.578 0.422 0.6468 0.2534 0.1639 

12 1 0.7596 0.8798 0.500 0.500 1 0.7596 0.7596 

13 0.8107 0.2431 0.5565 0.552 0.448 0.6720 0.3093 0.2078 

14 0.7246 0.3740 0.5773 0.580 0.420 0.6699 0.4309 0.2886 

15 1 0.6138 0.8069 0.500 0.500 1 0.6138 0.6138 

16 0.8856 0.3615 0.6395 0.530 0.470 0.8856 0.3615 0.3202 

17 0.7232 0.4597 0.6126 0.580 0.420 0.6276 0.5736 0.3600 

18 0.7935 0.3262 0.5868 0.558 0.442 0.7935 0.3262 0.2588 

19 1 0.4112 0.7056 0.500 0.500 1 0.4112 0.4112 

20 0.9332 0.5857 0.7654 0.517 0.483 0.9332 0.5857 0.5465 

21 0.7505 0.2623 0.5412 0.571 0.429 0.7321 0.2743 0.2008 

22 0.5895 1 0.7418 0.629 0.371 0.5895 1 0.5895 

23 0.8426 0.4989 0.6854 0.543 0.457 0.8426 0.4989 0.4203 

24 1 0.0870 0.5435 0.500 0.500 0.4287 0.3145 0.1348 

 

Although one can spot only a few differences among the individual efficiency scores 

obtained by model (4.13) and those obtained by models (4.5) and (3.7), in general, our 

approach does not yield the same efficiency scores for the individual stages with the other 

two methods. For instance, the stage-1 and stage-2 efficiency scores for DMU 16 (Allianz 

President) differ substantially from those obtained from the additive decomposition method. 

As regards the results obtained from the multiplicative decomposition method, the individual 

efficiency scores are different for 9 of the 24 units. Our experiments with different randomly 

generated data sets (100 data sets drawn from a uniform distribution, with 50 DMUs, 2 

external inputs, 3 intermediate measures and 2 final outputs) revealed significant 

differentiation in the efficiency results between the three methods. 
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Figure 4.4 depicts the percentage of units in each run that showed different stage 

efficiency scores, with respect to model (4.13) and the additive model (4.5). The range of 

differences varies from 0% to 82%. In only one case the efficiency scores were identical for 

all the units. 

 

 

Fig. 4.4: Percentage of units showing different stage efficiencies: model (4.13) vs. model 

(4.5) 

 

Analogously, Figure 4.5 depicts the percentage of units in each run that showed different 

individual efficiency scores, with respect to model (4.13) and the multiplicative model (3.7). 

The range of differences varies from 23% to 97%. None case was spotted with identical 

efficiency scores for all the units. 

 

 

Fig. 4.5: Percentage of units showing different stage efficiencies: model (4.13) vs. model 

(3.7) 

 

For the scores obtained from model (4.13), one can see that 𝑒̂1 ≥ 𝑒1 and 𝑒̂2 ≤ 𝑒2 where e1 

and e2 are the stage-1 and stage-2 efficiency scores derived by either the additive or the 

multiplicative models. These relations are completely verified throughout our experiments 

mentioned above. As concerns the additive decomposition model (4.5), it is empirical 
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evidence that the efficiency assessments are biased in favor of the second stage. As noted 

earlier, in reference to the results obtained by models (4.13) and (4.5), all the units but one 

(DMU 16) show identical individual scores for the two stages. A rigorous justification of 

both the similarities and the dissimilarities in the results can be given by solving model (4.15) 

for different values of the parameter t; 0<t<1.Table 4.5 exhibits, for a limited number of 

DMUs, the different efficiency scores with the indifference ranges of the parameter t. Due to 

space limitations, we have omitted most of the DMUs that show identical results for all the 

models. Column two shows the indifference ranges of the parameter t, within which the 

efficiency scores remain the same. Columns four and five present the efficiency scores for the 

two stages supported by the corresponding t-range in line. These scores correspond to 

successive extreme points (vertices) on the Pareto front generated by model (4.15). The 

asterisks in the last three columns indicate, among the alternative efficiency scores, those 

derived by the additive decomposition model (4.5) of Chen et al (2009b), our model (4.13) 

and the multiplicative model (3.7) of Kao and Hwang (2008), respectively. Column three 

depicts the endogenous weight t2 assumed for the second stage in model (4.5). As illustrated 

above, the additive decomposition model (4.5) biases the efficiency assessments in favor of 

the second stage, since the maximum value that t2 can attain is 0.5 and e2 increases (e1 

decreases) as t2 decreases. Also, because the parametric model (4.15) is a composition rather 

than a decomposition model, the effect of changing the parameter t is strictly interpreted in 

relation to the weight t2. The coinciding efficiency scores derived by models (4.5) and (4.13), 

for all the units but one (DMU 16) can now be rigorously justified by the fact that the 

supporting t-ranges contain both the weight values for t2 assumed by model (4.5) as well as 

t=0.5, which reflects the neutral (unweighted) character of model (4.13). As concerns the 

DMU 16, the t-range supporting the efficiency scores obtained by model (4.5) does not 

include the parameter value t=0.5. This is exactly the source of differentiation in the results 

for DMU 16. In addition, Table 4.5 shows that the parametric version of our model (4.13) can 

effectively locate the individual efficiency scores obtained from both the additive and the 

multiplicative decomposition methods. 
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Table 4.5: Efficiency scores obtained by model (4.15) for different values of t 

DMU t (indifference ranges) t2 e1 e2 
Model 

(4.5) 

Model 

(4.13) 

Model  

(3.7) 

3 (0,1) 0.408 0.690 1    

5 

(0, 0.3355)  0.738 1    

[0.3355, 0.9228) 0.454 0.831 0.923    
[0.9228, 1)  0.837 0.806    

7 

(0, 0.048)  0.300 0.538    

[0.048, 0.0528)  0.382 0.502    

[0.0528, 0.0575)  0.514 0.464    

[0.0575, 0.1368)  0.575 0.452    

[0.1368, 0.2718)  0.671 0.412    

[0.2718, 1) 0.429 0.752 0.352    

8 

(0, 0.0702)  0.390 0.511    

[0.0702, 0.0907)  0.491 0.472    

[0.0907, 0.1192)  0.619 0.430    

[0.1192, 0.2215)  0.663 0.415    

[0.2215, 1) 0.420 0.726 0.378    

11 

(0, 0.1133)  0.472 0.327    

[0.1133, 0.2114)  0.647 0.253    

[0.2114, 0.651) 0.422 0.729 0.207    

[0.651, 1)  0.741 0.168    

13 

(0, 0.1148)  0.338 0.543    

[0.1148, 0.1355)  0.405 0.480    

[0.1355, 0.1647)  0.519 0.395    

[0.1647, 0.2007)  0.672 0.309    

[0.2007, 0.211)  0.729 0.280    

[0.211, 1) 0.448 0.811 0.243    

14 

(0, 0.0298)  0.310 0.518    

[0.0298, 0.0334)  0.392 0.497    

[0.0334, 0.0371)  0.521 0.475    

[0.0371, 0.1367)  0.579 0.468    

[0.1367, 0.3356)  0.670 0.431    

[0.3356, 1)  0.725 0.374    

16 

(0, 0.0281)  0.599 0.385    

[0.0281, 0.0504)  0.744 0.375    

[0.0504, 0.1406)  0.869 0.365    

[0.1406, 0.491) 0.470 0.886 0.362    

[0.491, 1)  0.907 0.336    

17 

(0, 0.1358)  0.251 1    

[0.1358, 0.1461)  0.333 0.845    

[0.1461, 0.1564)  0.466 0.698    

[0.1564, 0.2071)  0.529 0.651    

[0.2071, 0.3511)  0.628 0.574    

[0.3511, 0.9451) 0.420 0.723 0.460    

[0.9451, 1)  0.723 0.455    

21 

(0, 0.0619)  0.692 0.280    

[0.0619, 0.2625)  0.732 0.274    

[0.2625, 1) 0.429 0.751 0.262    

24 

(0, 0.1051)  0.399 0.335    

[0.1051, 0.1441)  0.429 0.314    

[0.1441, 0.1663)  0.908 0.107    

[0.1663, 1) 0.500 1.000 0.087    
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Concerning the model (4.5) of Chen et al (2009b), the fact that the weight given to the 

second stage is always at least as much as the weight given to the first stage, i.e. 𝑡𝑗
2 ≤ 𝑡𝑗

1, the 

additive decomposition method biases the efficiency assessments for the individual stages. 

Thus, the overall efficiency score is biased as well. Indeed, although each DMU is free to 

choose its own multipliers so as to maximize its efficiency score, the freedom in selecting the 

weights t1 and t2 is structurally limited by 𝑡𝑗
2 ≤ 𝑡𝑗

1. The case of unit #3 in Tables 4.2, 4.3 and 

4.4 is indicative. By selecting the weights t1=0.592 and t2=0.408 for the two stages, the stage 

efficiencies and the overall efficiency score obtained by the additive decomposition method 

are respectively e1=0.690, e2=1 and eo=0.817 (=0.592×0.690+0.408×1). We get the same 

stage efficiencies by our model (4.13). This is due to the fact that these scores are maintained 

for any value of the parameter t(0,1) in model (4.15) (see Table 4.5). However, taking the 

simple (unweighted) average of the same individual scores gives an overall efficiency score 

0.845, which is greater than the optimal overall efficiency obtained by the additive 

decomposition method. The same holds for units #5 and #22.  

As concerns the results obtained by the min-max model (4.16), one can see that the 

efficiency scores of the individual stages are more balanced than those obtained by all the 

other models. The fact that three units, namely units 3, 12 and 22, show identical efficiency 

scores for the two stages across all models is justified by the fact that, for these units, the 

ideal point is attainable and thus the Pareto front degenerates in this single point. Figure 4.6 

depicts the Pareto front ABDE for unit 11, the Pareto optimal point B(1.3713,0.2066) derived 

from model (4.13) that gives the optimal stage efficiency scores (0.7292,0.2066) as well as 

the Pareto optimal point C(1.4495,0.2276) derived by the model (4.16) that gives the unique 

optimal stage efficiencies (0.6899, 0.2276).  

 
Fig. 4.6:The Pareto front of unit 11 and the Pareto points derived by models (4.13) and (4.16) 

0

1

0 1 2

(E1, E2)

(1,1)

A DC

EB

vX11

v*X11-u*Y11=1.1647

uY11



Chapter 4: Composition versus decomposition in two-stage Network DEA: a reverse approach 

    | 115 

VRS Case 

Table 4.6 summarizes the results obtained from our VRS model (4.25) and the corresponding 

results given in Chen et al (2009b) under the VRS assumption. The free of sign variables ξ1 

and ξ2 which are related to the first and the second stage respectively, verify that variable 

returns to scale exist in each stage. 

 

Table 4.6: Results from our VRS model (4.25) compared to VRS model (3.36) of Chen et al 

(2009b) 

 Our VRS model (4.25) Chen et al (2009b) – VRS model(3.36) 

DMU ξ1 ξ2 ê1 ê2 
êo = 

(ê1+ê2)/2 
e1 e2 e0 t1 t2 

1 -0.012 0.004 1 0.736 0.868 0.990 0.743 0.867 0.503 0.497 

2 -0.001 0.029 1 0.711 0.856 1 0.711 0.856 0.500 0.500 

3 -0.164 -0.010 0.700 1 0.850 0.690 1 0.818 0.587 0.413 

4 -0.002 0.003 0.724 0.425 0.575 0.726 0.424 0.599 0.581 0.419 

5 -0.065 0.008 1 1 1 1 1 1 0.483 0.517 

6 -0.466 0.018 0.975 0.490 0.733 0.964 0.490 0.732 0.511 0.489 

7 -0.331 0.044 0.803 0.592 0.698 0.752 0.593 0.684 0.571 0.429 

8 -0.146 0.676 0.838 0.687 0.762 0.783 0.722 0.754 0.523 0.477 

9 -0.145 0.014 1 0.285 0.643 1 0.276 0.639 0.501 0.499 

10 -0.001 0.062 0.862 0.727 0.794 0.862 0.727 0.780 0.538 0.462 

11 -0.207 0.033 0.750 0.432 0.591 0.741 0.443 0.614 0.576 0.424 

12 0.010 0.004 0.968 0.803 0.885 0.968 0.803 0.887 0.511 0.489 

13 -0.176 0.872 0.869 0.763 0.816 0.846 0.763 0.804 0.494 0.506 

14 -0.001 0.069 0.725 0.555 0.640 0.725 0.555 0.654 0.581 0.419 

15 0.011 0.050 1 0.880 0.940 1 0.880 0.940 0.503 0.497 

16 0.009 0.055 0.910 0.417 0.663 0.911 0.417 0.676 0.526 0.474 

17 0.004 0.081 0.723 1 0.862 0.724 1 0.840 0.581 0.419 

18 -0.161 0.007 0.974 0.278 0.626 0.850 0.369 0.618 0.517 0.483 

19 0.058 0.457 1 0.657 0.828 1 0.657 0.833 0.515 0.485 

20 0.095 0.133 0.894 1 0.947 0.902 1 0.946 0.548 0.452 

21 0.233 -0.209 0.895 0.362 0.628 0.913 0.362 0.679 0.575 0.425 

22 1.022 -1.000 1 1 1 1 1 1 0.634 0.366 

23 0.177 -0.122 0.972 0.620 0.796 0.976 0.620 0.815 0.547 0.453 

24 -0.407 0.026 1 0.101 0.551 1 0.098 0.564 0.517 0.483 

 

 

In the standard DEA approach, the efficiency scores obtained under the VRS assumption 

are not less than their counterparts under the CRS assumption (columns 2-3 in Table 4.2). 

Although this is true in our additive two-stage DEA models for the overall efficiency scores, 

the results reveal that the efficiency scores of some units, for the individual stages, do not 

comply with this conventional principle. This is the case for the DMUs 12 and 20, with 

respect to their first stage efficiency scores e1, and for DMU 18 with respect to the second 

stage efficiency e2. A similar irregularity has been spotted in Chen et al (2009b), where 

experimentation with the same date set indicated that the stage-1 VRS-efficiency scores of 
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DMUs 1, 12 and 20 are less than their CRS counterparts, hence, not complying with the 

standard DEA principles.   

This irregularity is also observed in the results obtained from the VRS min-max model 

(4.26). As it can be seen from Table 4.7, in the first stage the VRS efficiency scores of DMUs 

1, 2, 4, 6 and 12 are lower than their CRS counterparts. 

 

Table 4.7: Results from min-max model (4.26) under VRS assumption 

DMU ξ1 ξ2 ê1 ê2 êo=(ê1+ê2)/2 

1 0.007 0.011 0.973 0.749 0.861 

2 0.001 0.030 0.997 0.713 0.855 

3 -0.164 0 0.700 1 0.850 

4 -0.011 0.004 0.716 0.426 0.571 

5 -0.095 0.008 1 1 1.000 

6 -0.457 0.033 0.952 0.507 0.730 

7 -0.332 0.045 0.802 0.592 0.697 

8 -0.144 0.687 0.826 0.701 0.763 

9 -0.143 0.013 0.991 0.286 0.639 

10 -0.001 0.062 0.862 0.727 0.794 

11 -0.101 0.042 0.746 0.437 0.591 

12 0.011 0.009 0.955 0.814 0.885 

13 -0.180 0.863 0.878 0.752 0.815 

14 -0.007 0.066 0.722 0.556 0.639 

15 0 0.050 1 0.880 0.940 

16 0.010 0.046 0.902 0.420 0.661 

17 0.004 0.081 0.723 1 0.862 

18 -0.107 0.029 0.884 0.354 0.619 

19 0.024 0.457 1 0.657 0.828 

20 0.094 0.113 0.927 0.922 0.925 

21 0.241 -0.217 0.878 0.363 0.621 

22 0.759 0 1 1 1.000 

23 0.185 -0.120 0.962 0.622 0.792 

24 -0.344 0.027 0.829 0.143 0.486 

 

 

However, as noted above, the aforementioned irregularities can be rectified by adding the 

constraints 𝑣𝑋𝑗𝑜
− 𝜉1 ≤ 1/ 𝑒̂𝐶𝑅𝑆

1  and 𝑢𝑌𝑗𝑜
− 𝜉2 ≥  𝑒̂𝐶𝑅𝑆

2  in our VRS models (4.25) and (4.26), 

where  𝑒̂𝐶𝑅𝑆
1  and 𝑒̂𝐶𝑅𝑆

2  are the CRS efficiency scores obtained by model (4.13) and (4.16) 

accordingly. Table 4.8 presents the results for the problematic units that derived after 

appending the aforementioned constraints to models (4.25) and (4.26). We point out that the 

efficiency scores for the rest units remained unchanged. 
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Table 4.8: VRS results for the problematic DMUs after appending the additional constraints 

to models (4.25) and (4.26) 

Model DMU ξ1 ξ2 ê1 ê2 êo=(ê1+ê2)/2 

(4.25) 

12 0.009 0.001 1.000 0.769 0.885 

18 -0.131 0.011 0.922 0.326 0.624 

20 0.094 0.109 0.933 0.908 0.921 

(4.26) 

1 0.007 0.007 0.985 0.745 0.865 

2 0.001 0.029 0.997 0.713 0.855 

4 -0.008 0.004 0.718 0.426 0.572 

6 -0.460 0.027 0.962 0.500 0.731 

12 0.009 0.001 1 0.769 0.885 

 

4.5 Deriving the efficient frontier  

A peculiarity of the two-stage DEA models, resulting from the conflicting nature of the 

intermediate measures, is that they are not capable of providing sufficient information to 

derive the efficient frontier, as it is with the standard DEA models. Chen et al (2010a) 

observed that the usual procedure of adjusting the inputs and outputs by the efficiency scores 

is not sufficient to yield a frontier projection neither in the additive nor in the multiplicative 

decomposition models. To overcome this inability, they proposed an envelopment model to 

locate the efficient frontier in the Kao and Hwang’s (2008) multiplicative framework, by 

setting the intermediate measures as variables to be estimated. This approach enabled them to 

compute new levels for the inputs, the outputs and the intermediate measures that constitute 

efficient projections. These projections depend on the orientation selected. Actually, if an 

input orientation is assumed, new levels of inputs and intermediate measures are computed, 

while the original levels of outputs are maintained. Accordingly, assuming an output 

orientation, new levels of outputs and intermediate measures are obtained that maintain the 

original input levels. However, the levels of intermediate measures in these two cases differ 

substantially. Unfortunately, this technique cannot be applied in the additive decomposition 

framework. Chen et al (2013) pointed out that the envelopment and the multiplier forms are 

two types of network DEA models, which use different concepts of efficiency; the former is 

developed explicitly on the basis of the production possibility set whereas the latter under the 

standard DEA ratio efficiency. Unlike the standard DEA, network DEA duality may not lead 

to a particular pair of network multiplier and envelopment models. Hence, Chen et al (2010a, 

2013) proposed that the multiplier models should be used only for estimating the efficiency 
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scores, while modified envelopment forms should be used for determining the frontier 

projections of the inefficient DMUs.  

In the following, we formulate the envelopment form of model (4.13) and we use it as the 

basis to derive the efficient frontier of the two-stage process. To this end, consider the 

following model: 

g𝑗0
= 𝑚𝑖𝑛 𝑣𝑋𝑗0

− 𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

−𝑤̂𝑍𝑗0
= −1 

−𝑤𝑍𝑗 + 𝑣𝑋𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

−𝑢𝑌𝑗 + 𝑤̂𝑍𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

𝑤 − 𝑤̂ = 0 

𝑣 ≥ 0, 𝑤 ≥ 0, 𝑤̂ ≥ 0, 𝑢 ≥ 0 

(4.27) 

Model (4.27) is strictly equivalent to model (4.13). The difference in the formulation is 

that, in (4.27), different weight variables are used for the intermediate measures in the first 

and the second stage, which then are explicitly equalized in the last constraint. The dual of 

(4.27) is given below: 

𝑚𝑎𝑥 𝜃1 − 𝜃2 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝑋𝑜 

𝑌𝜇 − 𝑠+ = 𝑌𝑜 

𝛧𝜆 ≥ 𝜃1𝛧𝑜 + 𝑑 

𝛧𝜇 ≤ 𝜃2𝛧𝑜 + 𝑑  

𝜆 ≥ 0, 𝜇 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(4.28) 

where θ1 and θ2 are free in sign scalar variables and 𝑑 = (𝑑1, … , 𝑑𝑞) is a vector of free in sign 

variables. We note that in case the variables d were omitted from model (4.28), i.e. if the 

constraint 𝑤 − 𝑤̂ = 0 in model (4.27) was eliminated, then the optimal values of θ1 and θ2 in 

model (4.28) are the independent efficiency scores of stage-1 and stage-2 respectively 

(𝜃1 = 1/𝛦𝑗𝑜

1 ≥ 1, 𝜃2 = 𝛦𝑗𝑜

2 ≤ 1). However, in the optimal solution of (4.28), it is 𝜃1
∗ − 𝜃2

∗ =

g𝑗𝑜

∗ ≥ 0, where g𝑗𝑜

∗  denotes the optimal objective value in (4.27), or equivalently, in model 

(4.13). If 𝜃1
∗ − 𝜃2

∗ = g𝑗𝑜

∗ = 0, then the evaluated unit is overall efficient. If 𝜃1
∗ − 𝜃2

∗ = g𝑗𝑜

∗ > 0, 

the unit it is overall inefficient. The interpretation of model (4.28) is straightforward if we 
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take into account the double and conflicting role of the intermediate measures and the way 

that the primal model (4.13) was derived. With respect to the overall efficiency, whose 

components of 𝑣𝑋𝑗0
, 𝑢𝑌𝑗0

 appear in the objective function of (4.13) and (4.27), the model is of 

the non-oriented additive form and is capable of discriminating among overall efficient and 

overall inefficient units. With respect to the individual stages, the model simultaneously 

encompasses an output orientation for stage-1, expressed by the constraint 𝛧𝜆 ≥ 𝜃1𝛧𝛰 + 𝑑, 

and an input orientation for the stage-2, expressed by the constraint 𝛧𝜇 ≤ 𝜃2𝛧𝛰 + 𝑑. Model 

(4.28) provides a dichotomic characterization of overall efficiency of the evaluated unit but 

not the individual efficiency scores. This limitation, however, is in analogy with the relevant 

limitation of Chen’s et al (2010a) oriented envelopment model developed for the 

multiplicative decomposition method. Indeed, both the Chen’s et al (2010a) model and our 

model (4.28) they provide the overall efficiency characterization they are structurally 

designed for, i.e. the former provides the overall efficiency score, as it is based on an oriented 

formulation, whereas the latter provides the overall efficiency status (efficient or inefficient) 

of the units being evaluated, as it is based on an non-oriented additive formulation with 

respect to external inputs and the final outputs. The analogy is completed by the fact that 

none of the above provides the efficiency scores for the individual stages. Although 𝜃1
∗ =

1/𝑒̂1 , 𝜃2
∗ = 𝑒̂2 are feasible, yet optimal values of the variables θ1 and θ2, it is unlikely that they 

will be obtained by solving (4.28). In fact, in the optimal solution (𝜆∗, 𝜇∗, 𝜃1
∗, 𝜃2

∗, 𝑑∗) of (4.28), 

𝜃1
∗ and 𝜃2

∗ can take any values by adjusting accordingly the values of d*, such that 𝜃1
∗ − 𝜃2

∗ =

g𝑗𝑜

∗ , which prohibits the model (4.28) from providing the individual efficiency scores. This is 

because the variables θ1, θ2 and d are free in sign and unbounded. Thus, the optimal λ* and μ* 

as well as the optimal value of the objective function are not affected if we require θ1 ≥ 1
 
and 

θ2 ≤ 1, which reflect the output and the input orientation assumed for stage-1 and stage-2 

respectively. Similar remarks were made by Chen et al (2013), where they demonstrated that, 

under network DEA, the envelopment models do not yield the stage efficiencies but the 

overall efficiency.  

Another issue with model (4.28) is that the divergent orientations imposed by the 

constraints 𝛧𝜆 ≥ 𝜃1𝛧𝑜 + 𝑑 and 𝛧𝜇 ≤ 𝜃2𝛧𝑜 + 𝑑
 
on the intermediate measures do not allow it to 

provide correct projections of the inefficient units on the efficient frontier. Chen et al (2010a) 

overcame an analogous issue in their developments by solving a modified model, where the 

observed values of the intermediate measures 𝛧𝛰 in the constraints 𝛧𝜆 ≥ 𝛧𝑜 and 𝛧𝜇 ≤ 𝛧𝑜 are 

replaced with variables 𝑍̃𝑜that represent the projections for the intermediate measures. The 
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transition of our basic envelopment model (4.28), in a form capable to derive the efficient 

frontier, has exactly the same rationale: to make the right hand sides of the above two 

constraints coincide. Setting θ1 = θ2 =1, i.e. at the value where θ1 ≥ 1
 
and θ2 ≤ 1 meet, the right 

hand sides of the last two constraints in (4.28) become 𝑍𝑜 + 𝑑 = 𝑍̃𝑜, where the variables 𝑍̃𝑜 

represent, as in Chen et al (2010a), the targets for the intermediate measures. Hence, the 

following model is solved to obtain the projections of the inefficient units on the frontier: 

 

𝑚𝑎𝑥 𝑒𝑠− + 𝑒𝑠+ 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝑋𝑜 

𝑌𝜇 − 𝑠+ = 𝑌𝑜 

𝛧𝜆 ≥ 𝛧̃𝑜 

𝛧𝜇 ≤ 𝛧̃𝑜  

𝜆 ≥ 0, 𝜇 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0 

(4.29) 

where the variables 𝑍̃𝑜 are left free in sign. Actually, as 𝑍̃𝑜 will never take negative values 

because of the last constraint, the natural restrictions 𝑍̃𝑜 ≥ 0 are redundant and, thus, omitted. 

Once an optimal solution (𝜆∗, 𝜇∗, 𝑍̃𝑜
∗, 𝑠−∗, 𝑠+∗) of model (4.29) is obtained, the evaluated unit is 

overall efficient if 𝑠−∗ = 𝑠+∗ = 0 . The efficient projections of the inefficient units are 

calculated by the following relationships: 

𝑋̂𝑜 = 𝑋𝑜 − 𝑠−∗ 𝑌̂𝑜 = 𝑌𝑜 + 𝑠+∗ 𝑍̂𝑜 = 𝑍̃𝑜
∗ 

Thus, an inefficient DMU (𝑋𝑜, 𝑍𝑜 , 𝑌𝑜)  is projected onto the efficient frontier at the point 

(𝑋̂𝑜, 𝑍̂𝑜, 𝑌̂𝑜). Model (4.29) is now in a pure additive form. Indeed, the dual of (4.29) is as 

follows: 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

−𝑤𝑍𝑗 + 𝑣𝑋𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

−𝑢𝑌𝑗 + 𝑤̂𝑍𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 𝑒 

𝑢 ≥ 𝑒 

𝑤 − 𝑤̂ = 0 

𝑤 ≥ 0, 𝑤̂ ≥ 0 

(4.30) 
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or 

𝑚𝑖𝑛 𝑣𝑋𝑗0
− 𝑢𝑌𝑗0

 

𝑠. 𝑡. 

−𝑤𝑍𝑗 + 𝑣𝑋𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

−𝑢𝑌𝑗 + 𝑤𝑍𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 𝑒 

𝑢 ≥ 𝑒 

𝑤 ≥ 0 

(4.31) 

Table 4.9 below exhibits the projections obtained by applying model (4.29) to the data of 

Table 4.1. 

 

Table 4.9: Projections for Taiwanese non-life insurance companies by model (4.29) 

DMU X1 X2 Z1 Z2 Y1 Y2 

1 1,178,744.00 673,512.00 6,574,261.72 1,405,802.31 6,321,322.37 681,687.00 

2 1,381,822.00 1,282,484.97 9,984,108.87 2,701,675.41 14,883,490.16 834,754.00 

3 1,177,494.00 592,790.00 6,301,206.75 1,173,093.25 5,222,222.92 658,428.00 

4 601,320.00 566,085.63 4,342,422.69 1,215,574.75 6,851,140.78 348,724.99 

5 6,699,063.00 3,531,614.00 36,299,271.58 7,179,671.93 30,095,254.05 3,925,272.00 

6 1,160,508.24 668,363.00 5,711,178.98 1,598,730.82 9,010,659.25 458,645.09 

7 1,942,833.00 1,443,100.00 11,869,185.17 3,322,542.01 18,726,288.14 953,173.33 

8 3,253,093.02 1,873,530.00 16,009,361.92 4,481,502.04 25,258,340.80 1,285,656.65 

9 1,567,746.00 950,432.00 8,068,966.39 2,258,746.45 12,730,595.02 647,990.87 

10 1,303,249.00 1,226,885.07 9,411,391.65 2,634,531.66 14,848,570.42 755,796.41 

11 1,167,542.17 672,414.00 5,745,794.88 1,608,420.85 9,065,273.56 461,424.97 

12 2,563,321.18 650,952.00 9,356,387.29 1,127,326.43 6,005,636.18 909,295.00 

13 2,376,711.46 1,368,802.00 11,696,448.21 3,274,187.74 18,453,757.03 939,301.42 

14 1,396,002.00 988,888.00 8,245,849.34 2,308,261.30 13,009,667.34 662,195.73 

15 1,467,228.98 651,063.00 6,454,920.94 1,456,357.91 8,126,418.64 555,482.00 

16 720,706.14 415,071.00 3,546,792.34 992,853.88 5,595,856.36 284,830.66 

17 1,453,797.00 1,085,019.00 8,910,486.74 2,494,313.31 14,058,281.15 715,570.46 

18 757,515.00 547,997.00 4,545,666.61 1,272,468.84 7,171,803.41 365,046.81 

19 159,422.00 150,080.66 1,151,263.40 322,273.26 1,816,374.92 92,453.99 

20 92,925.67 53,518.00 457,312.68 128,015.58 721,512.80 36,725.20 

21 45,533.89 26,224.00 224,084.75 62,728.06 353,543.70 17,995.47 

22 15,993.00 10,502.00 88,313.63 24,721.64 139,334.46 7,092.16 

23 49,326.07 28,408.00 242,747.09 67,952.21 382,987.70 19,494.18 

24 163,297.00 153,728.61 1,179,246.65 330,106.62 1,860,524.74 94,701.23 

 

The efficiency status of these projections is verified by applying models (4.13) and (4.16) 

to an expanded data set that contains both the original DMUs (Table 4.1) and their 

projections (Table 4.9). Indeed, the results showed that all the projected units are rendered 

efficient in both stages as well as in the overall sense, while the efficiency scores of the 

original units remained unchanged. This confirms that our approach accurately determines 
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the improvement targets on the efficient frontier. We extended our calculations by adding in 

the expanded data set the projections derived by the other approaches. Particularly, we 

incorporated the projections of Chen et al (2010a) and those obtained by the non-oriented 

envelopment network DEA model (Chen et al, 2013), which is a modification of the slacks 

based measure (SBM) model of Tone and Tsutsui (2009). The results showed that all the 

projections, no matter the method that they derive from, are efficient. This verifies that our 

models (4.13) and (4.16) maintain the efficiency status of alternative projections obtained by 

the other methods. Notably, our projections were deemed efficient as well, when tested with 

the decomposition models (3.7) and (4.5). 

Minimizing the distortion of intermediate measures 

The fact that the intermediate measures are outputs of the first stage and, simultaneously, 

inputs to the second stage imposes that higher levels are desirable with respect to the first 

stage, whereas lower levels are desirable with respect to the second stage. In addition, the 

intermediate measures are conceived somehow as a “hidden layer” in the production process 

and they are or should be the less controlled dimensions. Thus, we argue that improvement 

suggestions with target setting should mainly involve the external inputs and the final 

outputs, with the changes on the observed status of the intermediate measures being kept at a 

minimum distortion of their original values. Based on this rationale we develop another two-

phase method that provides targets on the efficient frontier at a minimum distortion of the 

observed status of the intermediate measures. Such an issue is not taken into account in other 

projection methods (Chen et al, 2010a and Chen et al, 2013), where the projected levels of 

the intermediate measures differ substantially from their original values and, moreover, 

depend on the orientation assumed. 

To develop our two-phase procedure, we select an input orientation for the first stage and 

an output orientation for the second stage as follows:  

Stage I: Input-oriented  Stage II: Output-oriented  

min 𝜃1 

𝑠. 𝑡. 

𝛸𝜆 ≤ 𝜃1𝑋𝑜 

𝛧𝜆 ≥ 𝛧𝑜 

𝜆 ≥ 0 

(4.32) 

max 𝜃2 

𝑠. 𝑡. 

𝑌𝜇 ≥ 𝜃2𝑌𝑜 

𝛧𝜇 ≤ 𝛧𝑜  

𝜇 ≥ 0  

(4.33) 
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Appending the constraints of model (4.32) to model (4.33), and vice versa, we derive the 

following two augmented models for the first and the second stage respectively:  

Stage I: Input-oriented  Stage II: Output-oriented  

min 𝜃1 

𝑠. 𝑡. 

𝛸𝜆 ≤ 𝜃1𝑋𝑜 

𝛧𝜆 ≥ 𝛧𝑜 

𝑌𝜇 ≥ 𝜃2𝑌𝑜 

𝛧𝜇 ≤ 𝛧𝑜  

𝜆 ≥ 0 , 𝜇 ≥ 0 

(4.34) 

max 𝜃2 

𝑠. 𝑡. 

𝑌𝜇 ≥ 𝜃2𝑌𝑜 

𝛧𝜇 ≤ 𝛧𝑜  

𝛸𝜆 ≤ 𝜃1𝑋𝑜 

𝛧𝜆 ≥ 𝛧𝑜 

𝜆 ≥ 0 , 𝜇 ≥ 0  

(4.35) 

Since models (4.34) and (4.35) have common constraints, they enable us to jointly consider 

them as a bi-objective linear program. By aggregating the two objective functions, we derive 

a single-objective linear program, which is solved in the first phase. Actually, in phase-I we 

obtain the independent efficiency scores 𝜃1
∗, 𝜃2

∗  of stage-1 and stage-2 respectively, which 

then are passed in phase-II. The optimal solution obtained by solving the phase-II linear 

program provides all necessary information to derive the efficient frontier. 

 

Phase-I  Phase-II  

min 𝜃1 − 𝜃2 

𝑠. 𝑡. 

𝛸𝜆 ≤ 𝜃1𝑋𝑜 

𝑌𝜇 ≥ 𝜃2𝑌𝑜 

𝛧𝜆 ≥ 𝛧𝑜 

𝛧𝜇 ≤ 𝛧𝑜 

𝜆 ≥ 0 , 𝜇 ≥ 0 

𝜃1 ≤ 1, 𝜃2 ≥ 1 

(4.36) 

max 𝑀(𝑒𝑠− + 𝑒𝑠+) − (𝑒𝛼̃ + 𝑒𝛽) 

𝑠. 𝑡. 

𝛸𝜆 + 𝑠− = 𝜃1
∗

𝑋𝑜 

𝑌𝜇 − 𝑠+ = 𝜃2
∗

𝑌𝑜 

𝛧𝜆 + 𝛼̃ − 𝛽 ≥ 𝛧𝑜 

𝛧𝜇 + 𝛼̃ − 𝛽̃ ≤ 𝛧𝑜 

𝜆 ≥ 0 , 𝜇 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0, 𝛼̃ ≥ 0, 𝛽 ≥ 0 

(4.37) 

Notably, model (4.37) encompasses both orientations (i.e. an input orientation for the first 

stage and an output orientation for the second stage). Introducing the slacks with respect to 

the external inputs and the final outputs in phase-II, we grant priority in the first term of the 

objective function for defining the max-slack solution through a large positive number M. 

The vectors of variables 𝛼̃  and 𝛽  express the deviations of the projected intermediate 

measures from their original values and are minimized in the second term of the objective 
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function. Once an optimal solution (λ*, μ*, 𝛼̃*, 𝛽*, s-*, s+*) of model (4.37) is obtained, the 

efficient projections are as follows: 

𝑋̂𝑗𝑜
= ∑ 𝑋𝑗𝜆𝑗

∗

𝑗∈𝐽

 𝑌̂𝑗𝑜
= ∑ 𝑌𝑗𝜇𝑗

∗

𝑗∈𝐽

 𝑍̂𝑗𝑜
= 𝑍𝑗𝑜

− 𝛼̃*+ 𝛽* 

 

The non-zero λ’s (𝜆𝑗
∗ > 0) and μ’s (𝜇𝑗

∗ > 0) define the reference sets of the evaluated unit j0 

with respect to the first and the second stage respectively. Hence, an inefficient DMU j0 is 

projected onto the efficient frontier at the point  (𝑋̂𝑗𝑜
, 𝑍̂𝑗𝑜

, 𝑌̂𝑗𝑜
) . Table 4.10 shows the 

projections obtained by applying our two-phase approach. We verified the efficiency status of 

these projections by applying models (4.13) and (4.16) to an expanded data set that contains 

both the original DMUs (Table 4.1) and their projections (Table 4.10). The results showed 

that the projected DMUs are deemed efficient in each stage, as well as in overall sense. The 

efficiency scores of the original DMUs remained unaffected. Hence, we conclude that our 

method sufficiently determines the improvement targets on the efficient frontier. 

 

Table 4.10: Projections for Taiwanese non-life insurance companies’ data set 

DMU X1 X2 Z1 Z2 Y1 Y2 

1 1,169,991.48 668,510.98 7,249,893.91 974,113.79 1,599,526.87 955,580.96 

2 1,379,744.88 1,007,235.23 10,048,015.08 1,333,283.51 2,060,313.97 1,330,331.72 

3 812,494.68 409,037.09 4,776,548 560,244 293,613 658,428 

4 435,565.74 323,350.63 3,170,461.17 447,758.03 902,420.22 410,185.60 

5 5,610,572.87 2,957,783.46 31,960,484.12 5,106,415.77 14,622,638.43 3,925,272 

6 2,394,561.62 644,095.31 9,747,908 952,326 4,224,257.62 1,023,175.75 

7 1,461,171.13 1,085,330.57 9,184,851.39 2,348,664.39 12,417,281.80 816,303.89 

8 2,749,308.73 1,359,438.12 13,828,017.05 2,854,279.04 15,849,864.27 1,218,092.77 

9 1,567,746 950,432 8,980,647.15 1,995,677.64 9,337,201.67 904,563.02 

10 1,122,800.66 962,118.19 8,135,684.23 1,796,085.06 8,348,448.83 823,638.86 

11 864,619.42 497,953.92 4,255,029.05 1,191,110.64 6,713,257.80 341,706.71 

12 2,592,790 650,952 9,434,406 1,118,489 2,072,447.87 1,197,101.55 

13 1,926,762.67 1,109,666.29 9,482,126.92 2,654,332.59 14,960,171.08 761,476.92 

14 1,011,570.85 716,567.94 6,403,267.63 1,432,154.48 6,743,464.76 641,697.63 

15 2,184,944 651,063 8,362,846.66 1,239,274.13 6,727,614.13 788,216.23 

16 1,099,271.91 376,553.49 5,228,225.16 569,607.31 3,001,776.66 514,488 

17 1,051,543.44 784,803.25 6,445,029.02 1,804,157.52 10,168,471.44 517,578.06 

18 601,119.25 434,858.11 3,994,189.62 784,714.94 3,193,705.33 438,704.08 

19 159,422 138,944.61 1,154,478.63 266,685.84 1,294,827.15 112,696.62 

20 86,719.86 49,943.93 426,772.20 119,466.38 673,328.37 34,272.60 

21 63,172.11 19,681.67 247,590.63 37,755.61 205,432.59 23,223.15 

22 9,428.26 6,191.18 52,063 14,574 82,141 4,181 

23 46,491.97 24,148.32 266,799.30 39,432.18 92,279.54 33,897.71 

24 163,297 153,728.61 1,179,246.65 330,106.62 1,860,524.74 94,701.23 
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As above, we extended our calculations by incorporating into the expanded data set the 

projections derived by the other approaches. We used again the projections of Chen et al 

(2010a) and those obtained by the modified version of the non-oriented SBM model used by 

Chen et al (2013). The results of applying the models (4.13) and (4.16) to the expanded data, 

revealed that all the projected DMUs were deemed as efficient. Also, our projections were 

tested using the decomposition models (3.7) and (4.5) and they were deemed as efficient. 

Consequently, all the projections, no matter the method that they derive from, are efficient. 

However, unlike the other methods, our two-phase approach minimizes the deviation of the 

projected intermediate measures from their original counterparts. We examined this 

diversifying issue further by conducting experiments with 100 randomly generated data sets 

drawn by the normal distribution (mean 0.5 and standard deviation 0.1). In each data set, 100 

DMUs were considered with 2 external inputs, 2 intermediate measures and 2 external 

outputs. We calculate the mean square distance (MSD) between the original intermediate 

measures and the projected ones derived by our two-phase approach, the Chen’s et al (2010a) 

input and output oriented models and the modified SBM model presented in Chen et al 

(2013). The descriptive statistics that facilitate the comparisons are exhibited in Table 4.11 

and Figure 4.7. 

 

Table 4.11: MSD between the original and the projected intermediate measures 

 2 Phase 
Chen  et al (2010a) -

Input Oriented 

Chen et al (2010a) -

Output Oriented 

Chen et al (2013) -

modified SBM 

 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 

Min 0.0008 0.0018 0.0218 0.0201 0.0210 0.0422 0.0177 0.0400 

Max 0.0251 0.0396 0.0672 0.0668 0.3615 0.4873 0.3586 0.4873 

Average 0.0092 0.0105 0.0417 0.0415 0.1263 0.1283 0.1230 0.1272 

St. Dev. 0.0059 0.0076 0.0095 0.0124 0.0751 0.0950 0.0759 0.0873 

 
 

 
Fig. 4.7: MSD between the original and the projected intermediate measures (Z1, Z2) 
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The results obtained from another experiment with 100 data sets generated by the same 

distribution and parameters, but with 3 intermediate measures, are shown in Table 4.12 and 

Figure 4.8.  

 

Table 4.12: MSD between the original and the projected intermediate measures 

 2 Phase 
Chen  et al (2010a)-Input 

Oriented 

Chen et al (2010a)-Output 

Oriented 
SBM 

 Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3 

Min , 0.0014 0.0044 0.0197 0.0203 0.0210 0.0289 0.0403 0.0343 0.0288 0.0209 0.0404 

Max 0.0531 0.0325 0.0469 0.0647 0.0646 0.0563 0.5840 0.4903 0.6087 0.5870 0.4875 0.6128 

Average 0.0141 0.0120 0.0127 0.0344 0.0361 0.0355 0.1087 0.0964 0.1016 0.1064 0.0953 0.0997 

St. Dev. 0.0082 0.0070 0.0083 0.0096 0.0094 0.0090 0.0876 0.0728 0.0853 0.0889 0.0750 0.0853 

 

 

 

Fig. 4.8: MSD between the original and the projected intermediate measures (Z1, Z2, Z3) 

 

 

It is clear from the above results that our two-phase approach outperforms the other 

relative approaches reported in the literature, with respect to the deviations of the projected 

from the original intermediate measures. 
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Conclusion 

In this chapter, we introduced a novel composition approach to assess the individual and the 

overall efficiencies for series two-stage processes of Type I. Our approach effectively 

overcomes the shortcomings highlighted for the additive and the multiplicative 

decomposition methods, by providing unique and unbiased efficiency scores for the two 

stages. Based on a reverse perspective in aggregating the individual efficiency scores, i.e. the 

composition as opposed to the decomposition approach, we estimate first the individual 

efficiencies for the two stages, which then can be aggregated in either an additive or a 

multiplicative form to obtain the overall efficiency. Our modelling approach is based on 

MOLP techniques and on the selection of an output orientation for the first stage and an input 

orientation for the second stage, with respect to the standard DEA ratio models. In this 

manner, the intermediate measures are used as the basis to link the efficiency assessment 

models for the two stages in a single linear program. The proposed approach is 

straightforwardly extended to fit VRS situations. Acknowledging the inadequacies observed 

for the envelopment network DEA models, we presented two methods to derive the efficient 

frontier in two-stage DEA. The first stems from the envelopment form of our basic multiplier 

model while the second aims to adjust the levels for the intermediate measures at a minimum 

distortion of their original levels. 
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Chapter 5  

The “weak-link” approach to network DEA for 

two-stage processes 

In the previous chapter we introduced the composition approach in two-stage network 

DEA. We used bi-objective linear programming to derive the efficiency scores for the 

individual stages, which they were aggregated ex post to obtain the overall system 

efficiency. Our approach provides unique and unbiased efficiency scores, in contrast 

to the additive and the multiplicative decomposition methods. A limitation of this 

approach is that it is restricted to the simple two-stage process of Type I, portrayed in 

Figure 3.1a. This is an effect of the different orientations selected for the first and the 

second stage, which in fact was made to simplify the models and keep them within the 

field of linear programming (simplicity at the expense of generality). 

In this chapter, we extend the composition paradigm to two-stage processes of 

varying complexity and we introduce a novel definition of the system efficiency in 

two-stage processes, inspired by the “weak link” notion in supply chains and the 

maximum-flow/minimum-cut problem in networks (cf. Bazaraa et al, 2011). The 

natural representation of the supply chain operations as a multi-stage process is 

indicative of the synergy of supply chain management with network DEA, as they 

benefit mutually from the development of methodological tools for performance 

measurement. Adapting the “weak link” notion to fit the multi-stage processes dealt 

with in network DEA, we develop a max-min optimization model to estimate the 

stage efficiencies and the overall efficiency simultaneously in a multi-objective 

programming framework. This is accomplished by a two-phase procedure that 

provides Pareto optimal solutions and secures the uniqueness of the efficiency scores 

for the two-stages. We also bring into light the advantages of our method by drawing 

comparisons with the multiplicative method of Kao and Hwang (2008) and by 

identifying effectively the source of inefficiency for the DMUs. 
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5.1 The “weak-link” approach 

We extend our composition approach presented in Chapter 4 by revisiting initially the 

two-stage process of Type I, where each DMU transforms some external inputs X to 

final outputs Y via the intermediate measures Z with a two-stage process, as depicted 

in Figure 5.1. 

 

Fig. 5.1: The two-stage process of Type I 

 

We introduce at this point some notation that will be used henceforth: 

𝑗 ∈ 𝐽 = {1, … , 𝑛}: The index set of the n DMUs. 

𝑗0 ∈ 𝐽: Denotes the evaluated DMU. 

𝑋𝑗 = (𝑥𝑖𝑗, 𝑖 = 1, … , 𝑚): The vector of stage-1 external inputs used by DMUj. 

𝑍𝑗 = (𝑧𝑝𝑗, 𝑝 = 1, … , 𝑞): The vector of intermediate measures for DMUj. 

𝑌𝑗 = (𝑦𝑟𝑗, 𝑟 = 1, … , 𝑠): The vector of stage-2 final outputs produced by DMUj. 

𝐿𝑗 = (𝑙𝑑𝑗, 𝑑 = 1, … , 𝑎): The vector of stage-2 extra in structures of Type I and IV. 

𝐾𝑗 = (𝑘𝑐𝑗 , 𝑐 = 1, … , 𝑏): The vector of stage-1 extra outputs in structures of Types III 

and IV. 

𝜂 = (𝜂1, … , 𝜂𝑚): The vector of weights for the stage-1 external inputs in the fractional 

model. 

𝑣 = (𝑣1, … , 𝑣𝑚): The vector of weights for the stage-1 external inputs in the linear 

model. 

𝜑 = (𝜑1, … , 𝜑𝑞) : The vector of weights for the intermediate measures in the 

fractional model. 

𝑤 = (𝑤1, … , 𝑤𝑞): The vector of weights for the intermediate measures in the linear 

model. 
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𝜔 = (𝜔1, … , 𝜔𝑠) : The vector of weights for the stage-2 outputs in the fractional 

model. 

𝑢 = (𝑢1, … , 𝑢𝑠): The vector of weights for the stage-2 outputs in the linear model. 

𝑔 = (𝑔1, … , 𝑔𝑎): The vector of weights for the stage-2 extra inputs in the fractional 

model. 

𝛾 = (𝛾1, … , 𝛾𝑎)  : The vector of weights for the stage-2 extra inputs in the linear 

model. 

ℎ = (ℎ1, … , ℎ𝑏): The vector of weights for the stage-1 extra outputs in the fractional 

model. 

𝜇 = (𝜇1, … , 𝜇𝑏) : The vector of weights for the stage-1 extra outputs in the linear 

model. 

𝑒𝑗
𝑜: The overall efficiency of DMUj. 

𝑒𝑗
1: The efficiency of the first stage for DMUj. 

𝑒𝑗
2: The efficiency of the second stage for DMUj. 

𝐸𝑗
1: The independent efficiency score of the first stage for DMUj. 

𝐸𝑗
2: The independent efficiency score of the first stage for DMUj. 

Typically, the efficiencies of the first and the second stage of a DMU j are defined 

as follows: 

𝑒𝑗
1 =

𝜑𝑍𝑗

𝜂𝑋𝑗
 , 𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗
 (5.1) 

The basic input-oriented CRS-DEA models that estimate the stage-1 and the stage-2 

efficiencies for the evaluated unit j0 independently are as follows: 

 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀  

(5.2) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀  

(5.3) 
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Appending the constraints of model (5.2) to model (5.3), and vice versa, does not 

affect the optimal efficiency scores attained by the models (5.2) and (5.3), see 

Theorems 4.1 and 4.2. Thus, the models (5.2) and (5.3) can be written as follows:  

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀  

(5.4) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀 

(5.5) 

 

The optimal efficiency scores 𝛦𝑗0

1  and 𝛦𝑗0

2  for the two stages are obtained by solving 

the linear equivalents of models (5.4) and (5.5), derived by applying the C-C 

transformation. 

The following bi-objective mathematical program, is used for the performance 

assessment of the elementary two-stage process of Type I (Fig. 5.1): 

 

𝑚𝑎𝑥 𝑒1 =
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀  

(5.6) 

or, equivalently: 

𝑚𝑎𝑥 𝑒1 = 𝑤𝑍𝑗0
 

𝑚𝑎𝑥 𝑒2 =
𝑢𝑌𝑗0

𝑤𝑍𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀  

(5.7) 
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Model (5.7) derives from (5.6) by applying the C-C transformation with respect to the 

first objective function, i.e. multiplying all the terms of the fractional objective 

functions and the constraints by t>0, such that 𝑡𝜂𝑋𝑗0
= 1  and setting tη=v, tω=u, 

tφ=w. Notice that in model (5.7) the second objective function is still in fractional 

form.  

The multiplicative decomposition method estimates the overall system efficiency 

of the evaluated unit as the squared geometric average of the stage efficiencies. Given 

that 𝑒𝑗𝑜

1 ≤ 1 and 𝑒𝑗𝑜

2 ≤ 1 it is 𝑒𝑗𝑜

𝑜 ≤ 𝑚𝑖𝑛 {𝑒𝑗𝑜

1 , 𝑒𝑗𝑜

2 }. The latter holds as equality if and 

only if at least one of the two stages is efficient, i.e. if 𝑒𝑗𝑜

1 = 1 and/or 𝑒𝑗𝑜

2 = 1. This 

property declares that the less efficient stage is determinant of the overall system 

efficiency. This is a natural property that can be easily identified in multi-stage 

processes, such as in supply chains. In such a context, the less efficient stage is called 

the “weak link” of the supply chain. In this line of thought, Kao (2014a) states that 

“Efficiency decomposition enables decision makers to identify the stages that cause 

the inefficiency of the system, and to effectively improve the performance of the 

system”. However, in order to draw safe conclusions about the system efficiency, the 

identification of the weak link should meet two properties: a) uniqueness and b) being 

supported by a reasonable and meaningful search orientation. As mentioned in Kao 

and Hwang (2008), the stage efficiency scores obtained by the multiplicative method 

are not unique in general, i.e. different efficiency scores can be obtained for the two 

stages that maintain the same overall efficiency. Consequently, the weak link might 

be interchanged between the two stages, depending on the decomposition selected. 

Thus, as already remarked, the uniqueness property is not met by the model (3.7). We 

will give such an example below to illustrate our approach in comparison with the 

multiplicative method.  

We define the system efficiency as the minimum of the stage efficiencies, i.e. 

 

𝑒𝑜 = 𝑚𝑖𝑛{𝑒1, 𝑒2} (5.8) 

To conceptualize our argument, let us resort to a max flow-min cut analogue. Figure 

5.2 provides an alternative representation of the basic two-stage process, where the 

role of nodes and links is interchanged. The link that connects the nodes X and Z 
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represents the first stage of the process, with the nodes X and Z representing the inputs 

to and the outputs from the first stage. The second link represents the second stage, 

whose inputs and outputs are Z and Y respectively. At the DMU level, X and Y are the 

external inputs and outputs respectively and Z represents the intermediate measures 

linking the two-stages. The labels 𝑒1  and 𝑒2  assigned to the links represent their 

capacity, that is the efficiencies of the stages. Given the stage efficiencies 𝑒1 and 𝑒2, 

the system efficiency 𝑒𝑜 can be viewed as the maximum flow through the two-stage 

network and can be estimated as the min-cut of the network, which, in the case of the 

simple network of Figure 5.2, is given by the minimal of the capacities of the two 

links, i.e.  𝑒𝑜 = 𝑚𝑖𝑛{𝑒1, 𝑒2}. 

 

 

Fig. 5.2: An alternative representation of the two-stage process of Figure 5.1. 

 

We focus on estimating the capacities (individual efficiency scores) of the two 

stages in a manner that the minimal capacity (the weak link) and, thus, the overall 

system efficiency gets the maximum possible value. The mathematical representation 

of this notion is expressed by the weighted max-min formulation which seeks to 

maximize the minimum weighted achievement from zero-level efficiency: 

 

𝑒𝑗𝑜

𝑜 = 𝑚𝑎𝑥𝑣,𝑤,𝑢 [𝑚𝑖𝑛{𝑞1𝑒𝑗𝑜

1 , 𝑞2𝑒𝑗𝑜

2 }] (5.9) 

 

where q1>0 and q2>0 are strictly positive parameters (weights). A reasonable pair of 

values for these parameters is 𝑞1 = 1 𝛦𝑗0

1⁄  and 𝑞2 = 1 𝛦𝑗0

2⁄  (cf. Lightner and Director, 

1981 and Buchanan and Gardiner, 2003). This implies that the estimated stage 

efficiency scores will be proportional to their independent counterparts.  

   

e1 e2 

X Z Y 

Stage 1 Stage 2 

DMU 

(D
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5.1.1 Elementary two-stage process (Type I) 

In this section we develop our approach for the elementary two-stage process of Type 

I. With respect to the bi-objective mathematical program (5.7), the search for the 

individual scores of the two stages is made in two phases: Phase I locates a point on 

the upper-right boundary of the feasible region in the objective functions space of 

(5.7) by means of the following max-min model (5.10), which maximizes the minimal 

efficiency score, whereas Phase II provides a Pareto optimal solution. 

 

Phase I: 

 

𝑚𝑎𝑥 𝜃 

𝑠. 𝑡. 

𝑤𝑍𝑗0
≥ 𝜃𝛦𝑗0

1  

𝑢𝑌𝑗0

𝑤𝑍𝑗0

≥ 𝜃𝛦𝑗0

2  

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜃 ≥ 0  

(5.10) 

 

Model (5.10) is the canonical form of the max-min model (5.9). The solution of a 

weighted max-min problem, such as model (5.10), is weakly Pareto optimal (see, e.g. 

theorem 5.7.1 in Miettinen, 1999, pp.171). At optimality, at least one of the first two 

constraints in (5.10) will be binding. Although model (5.10) is non-linear, it can be 

solved by bisection search (known also as dichotomy method) in terms of θ in the 

bounded interval [0,1], since 0 ≤ 𝜃 ≤ 1 (cf. Despotis, 1996). Let 𝜃 be a lower bound 

of θ for which the constraints of (5.10) are consistent (initially 𝜃 = 0) and 𝜃 an upper 

bound of θ for which the constraints are not consistent (initially 𝜃 = 1 + 𝜀), where ε 

is a very small positive number. Then the consistency of the constraints is tested for 

𝜃′ = (𝜃 + 𝜃) 2⁄ . If they are consistent, θ΄ will replace 𝜃; if they are not it will replace 

𝜃. The bisection search continues until both bounds come sufficiently close to each 

other. Below we provide the bisection method in algorithmic form. 
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Initialization 

tolerance 𝜀 > 0,  lower bound 𝜃 = 0,  upper bound 𝜃 = 1 + 𝜀,   𝜃 ≤ 𝜃 ≤ 𝜃 . 

Loop 

Step 1: = (𝜃 + 𝜃) 2⁄  . 

Step 2: find a feasible solution for model (5.10) for the given value of θ. 

Step 3: if there is a feasible solution for model (5.10) then 𝜃 = 𝜃 else 𝜃 = 𝜃 . 

Until |𝜃 −  𝜃| < 𝜀 

 

Let (θ*, v*, w*, u*) be an optimal solution of (5.10) the stage efficiencies are 

calculated as follows: 

 

𝑒𝑗0

1∗ =
𝑤∗𝑍𝑗0

𝑣∗𝑋𝑗0

= 𝑤∗𝑍𝑗0
 , 𝑒𝑗0

2∗ =
𝑢∗𝑌𝑗0

𝑤∗𝑍𝑗0

 

 

The underlying idea in model (5.10) is to locate a point on the upper-right boundary 

of the feasible region in the objective functions space of (5.7), which is formed by the 

intersection of the boundary with a ray from the origin (0,0) to the ideal point 

(𝛦𝑗0

1 , 𝛦𝑗0

2 ). However, as the weak Pareto optimality is a weaker property than Pareto 

optimality, it is not unlikely that the solution of (5.10) is Pareto optimal. This depends 

on the shape of the boundary of the objective functions space where the Pareto front is 

located, on the position of the ideal point relatively to that boundary and on the 

weights used to drive the search, which in our case are related to the components of 

the ideal point. This radial search approach for obtaining the individual efficiency 

scores will be visualized in the illustration given below. The Phase II model below 

provides a Pareto optimal solution to (5.7). The model (5.11) is equivalent to 

employing lexicographically the L1 norm on the set of optimal solutions of (5.10) (for 

example Steuer and Choo, 1983). 
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Phase II: 
𝑚𝑎𝑥 𝑠1 + 𝑠2 

𝑠. 𝑡. 

𝑤𝑍𝑗0
− 𝑠1 = 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0
− 𝑠2𝑤∗𝑍𝑗0

− 𝑒𝑗0

2∗𝑤𝑍𝑗0
= 0 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

0 ≤ 𝑠1 ≤ 𝛦𝑗0

1 , 0 ≤ 𝑠2 ≤ 𝛦𝑗0

2  

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀 

(5.11) 

 

In fact, the phase II seeks for non-radial improvements of the efficiency scores on 

the boundary of the objective functions space. As long as the solution obtained in 

Phase I is weakly Pareto, in Phase II at most one of the two optimal values of the 

variables 𝑠̂1 and 𝑠̂2 will be strictly positive (i.e. 𝑠̂1𝑠̂2 = 0). If 𝑠̂1 = 0 and 𝑠̂2 = 0, then 

the Phase I solution is Pareto optimal. 

In (5.11), the second constraint originates from its original non-linear form 

(𝑢𝑌𝑗0
𝑤𝑍𝑗0

⁄ ) − 𝑠2 = 𝑒𝑗0

2∗ or 𝑢𝑌𝑗0
− 𝑠2𝑤𝑍𝑗0

− 𝑒𝑗0

2∗𝑤𝑍𝑗0
= 0, where the virtual measure 𝑤𝑍𝑗0

 

in the second term is replaced by 𝑠1+𝑒𝑗0

1∗ = 𝑠1 + 𝑤∗𝑍𝑗0
, as per the first constraint, to 

get 𝑢𝑌𝑗0
− 𝑠1𝑠2 − 𝑠2𝑤∗𝑍𝑗0

− 𝑒𝑗0

2∗𝑤𝑍𝑗0
= 0. At optimality, it is 𝑠1𝑠2 = 0, because at least 

one of the two variables will be zero (see above). So the non-linear term 𝑠1𝑠2 can be 

omitted without altering the optimal solution, to get the linear form 𝑢𝑌𝑗0
− 𝑠2𝑤∗𝑍𝑗0

−

𝑒𝑗0

2∗𝑤𝑍𝑗0
= 0. Once the optimal solution (𝑣, 𝑤̂, 𝑢̂) of (5.11) is obtained, the individual 

stage efficiency scores for unit j0 as well as the overall efficiency of the system, 

according to the definition (5.8), are respectively: 

 

𝑒̂𝑗0

1 =
𝑤̂𝑍𝑗0

𝑣̂𝑋𝑗0

= 𝑤̂𝑍𝑗0
, 𝑒̂𝑗0

2 =
𝑢𝑌𝑗0

𝑤̂𝑍𝑗0

, 𝑒̂𝑗0

𝑜 = 𝑚𝑖𝑛{𝑒̂𝑗0

1 , 𝑒̂𝑗0

2 } 
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Illustration 

To illustrate our approach we use a synthetic case with 30 DMUs, two inputs (X1, 

X2), two intermediate measures (Z1, Z2) and two outputs (Y1, Y2). The data are 

drawn from a uniform distribution in the interval [10,100] and are presented in Table 

5.1. 

 

Table 5.1: Synthetic data 

DMU X1 X2 Z1 Z2 Y1 Y2 

1 69.5 68.6 56.6 84.4 48.7 62.8 

2 40.2 66.2 88 47.2 85.8 28.3 

3 81.3 89.8 44.4 18.4 38.3 20.7 

4 55 97.9 28.7 41.6 38.2 10.3 

5 56.2 59.1 26.5 52.7 44.2 17.4 

6 64.8 64.4 14.7 70.5 86.6 22.9 

7 79.2 68.1 63.5 39.3 47.6 35 

8 36 74.3 66.6 57.4 40.3 94.8 

9 10.8 10.3 46.5 47.9 57.5 95.2 

10 17.7 93.6 35.9 58.7 45.9 12 

11 38.8 97.5 55.2 41.7 60.5 82.7 

12 60.9 96.4 86 28.9 93.1 72.3 

13 70.3 45.8 65.3 35.3 34.3 98.8 

14 20.5 75.6 13.1 60 53.3 18.3 

15 17.9 74.8 54.2 66.7 52.1 15.8 

16 51.8 19.8 52.3 74.2 73.6 84.7 

17 11.3 27.3 42.7 72.3 68.9 37.4 

18 58.7 42.1 95.9 26.6 51.6 96.4 

19 41.4 51.6 83 75.4 20.5 72 

20 99.7 87.1 87.5 96.9 58.6 39 

21 25.6 14.6 52 19.1 44.3 51.3 

22 65.1 97.3 79.4 68 53.8 55.5 

23 40.4 33 74.5 21.7 13.9 55.7 

24 19.4 20.1 77.5 74.1 60.9 71 

25 54.2 99.3 20.8 69.9 47.8 12.2 

26 80.1 27.5 51.3 95.8 21.7 12.6 

27 82.9 38.1 43.3 75.3 16.8 26.6 

28 98.6 81.8 93.8 15.9 40.3 35.8 

29 77.3 40.3 95.6 52.5 96.1 44.2 

30 38.6 58.3 37.8 66.1 16 69.9 

 

Tables 5.2 exhibits the results obtained from the multiplicative approach. The 

figures in columns 2-4 are the overall and the stage efficiency scores obtained by the 

multiplicative model (3.7). Columns 5-6 provide the maximal and the minimal 

efficiencies for the first stage that maintain the overall efficiency score, whereas 

columns 7-8 present the corresponding efficiencies for the second stage. They are all 
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calculated by applying the uniqueness test proposed in Kao and Hwang (2008). The 

results show that the efficiency decompositions for the units 8, 13, 18, 19, 23 and 30 

are not unique. 

 

Table 5.2: Results obtained from the multiplicative approach (Kao and Hwang, 2008) 

DMU e1 e2 eo emax
1  e−

1  emax
2  e−

2  

1 0.2316 0.5070 0.1174 0.2316 0.2316 0.5070 0.5070 

2 0.3265 0.7508 0.2451 0.3265 0.3265 0.7508 0.7508 

3 0.0866 0.6844 0.0593 0.0866 0.0866 0.6844 0.6844 

4 0.1344 0.5830 0.0784 0.1344 0.1344 0.5830 0.5830 

5 0.1688 0.5823 0.0983 0.1688 0.1688 0.5823 0.5823 

6 0.1685 1 0.1685 0.1685 0.1685 1 1 

7 0.1644 0.5613 0.0923 0.1644 0.1644 0.5613 0.5613 

8 0.4297 0.6953 0.2987 0.4297 0.4145 0.7208 0.6953 

9 1 1 1 1 1 1 1 

10 0.5235 0.5149 0.2696 0.5235 0.5235 0.5149 0.5149 

11 0.3113 0.8189 0.2550 0.3113 0.3113 0.8189 0.8189 

12 0.2006 1 0.2006 0.2006 0.2006 1 1 

13 0.3158 0.7390 0.2334 0.3158 0.2334 1 0.7390 

14 0.3759 0.7190 0.2703 0.3759 0.3759 0.7190 0.7190 

15 0.6443 0.4696 0.3026 0.6443 0.6443 0.4696 0.4696 

16 0.6980 0.8163 0.5698 0.6980 0.6980 0.8163 0.8163 

17 1 0.6694 0.6694 1 1 0.6694 0.6694 

18 0.5046 0.4910 0.2477 0.5046 0.3021 0.8201 0.4910 

19 0.4656 0.4237 0.1973 0.4656 0.4537 0.4348 0.4237 

20 0.2311 0.3739 0.0864 0.2311 0.2311 0.3739 0.3739 

21 0.5293 0.8807 0.4662 0.5293 0.5293 0.8807 0.8807 

22 0.2438 0.4927 0.1201 0.2438 0.2438 0.4927 0.4927 

23 0.5001 0.3652 0.1826 0.5001 0.3031 0.6025 0.3652 

24 0.8855 0.5673 0.5023 0.8855 0.8855 0.5673 0.5673 

25 0.1867 0.5291 0.0988 0.1867 0.1867 0.5291 0.5291 

26 0.5850 0.1674 0.0979 0.5850 0.5850 0.1674 0.1674 

27 0.3403 0.2273 0.0774 0.3403 0.3403 0.2273 0.2273 

28 0.1455 0.4735 0.0689 0.1455 0.1455 0.4735 0.4735 

29 0.3766 0.7660 0.2885 0.3766 0.3766 0.7660 0.7660 

30 0.2274 0.9032 0.2054 0.2618 0.2274 0.9032 0.7847 

 

The unit 18, for example, is characterized by two extreme efficiency 

decompositions (𝑒𝑚𝑎𝑥
1 = 0.5046, 𝑒−

2 = 0.4910)  and (𝑒−
1 = 0.3021, 𝑒𝑚𝑎𝑥

2 = 0.8201)  that 

maintain the optimal overall efficiency 𝑒𝑂 = 0.2477  obtained by model (3.7). 

Consequently, the identification of the weak link for unit 18 is not unique. Indeed, 

according to the first decomposition, the second stage is identified as the weak link, 
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whereas the second decomposition identifies the first stage as the weak link of the 

process. Table 5.3 presents the results obtained by applying our proposed two–phase 

approach. Columns 2-3 present the independent efficiency scores of the two stages 

obtained from models (5.4) and (5.5). Columns 4-7 present the optimal value of θ, the 

efficiency scores of the two stages obtained by model (5.11) and the overall system 

efficiency, in line with the definition (5.8). Notice that the phase II did not alter the 

efficiency scores obtained in phase I, for any of the DMUs. That is, the phase I 

solutions are Pareto optimal. 

 

Table 5.3: Results obtained from models (5.10) and (5.11) 

DMU E1 E2 θ ê1 ê2 êo = min{ê1, ê2} 

1 0.2711 0.5511 0.8750 0.2372 0.4822 0.2372 

2 0.5084 0.7508 0.7484 0.3805 0.5619 0.3805 

3 0.1268 0.7391 0.7551 0.0958 0.5581 0.0958 

4 0.1364 0.5830 0.9856 0.1345 0.5746 0.1345 

5 0.2053 0.5842 0.8601 0.1766 0.5025 0.1766 

6 0.2424 1 0.7799 0.1890 0.7799 0.1890 

7 0.2065 0.5613 0.8497 0.1755 0.4769 0.1755 

8 0.4297 0.7638 0.9483 0.4075 0.7243 0.4075 

9 1 1 1 1 1 1 

10 0.5310 0.5149 0.9865 0.5238 0.5079 0.5079 

11 0.3304 0.9481 0.8910 0.2944 0.8448 0.2944 

12 0.3280 1 0.7515 0.2465 0.7515 0.2465 

13 0.3158 1 0.8597 0.2715 0.8597 0.2715 

14 0.4574 0.8381 0.8296 0.3795 0.6953 0.3795 

15 0.7329 0.4696 0.9087 0.6660 0.4267 0.4267 

16 0.8058 0.8163 0.9003 0.7254 0.7349 0.7254 

17 1 0.6694 1 1 0.6694 0.6694 

18 0.5046 1 0.7007 0.3536 0.7007 0.3536 

19 0.4656 0.4531 0.9647 0.4492 0.4371 0.4371 

20 0.2392 0.3739 0.9691 0.2318 0.3624 0.2318 

21 0.7889 0.9788 0.7597 0.5993 0.7436 0.5993 

22 0.2833 0.4927 0.9117 0.2582 0.4492 0.2582 

23 0.5001 0.7244 0.7100 0.3550 0.5144 0.3550 

24 0.9278 0.5673 0.9638 0.8943 0.5468 0.5468 

25 0.2297 0.5291 0.8523 0.1958 0.4509 0.1958 

26 0.7491 0.1674 0.8467 0.6342 0.1417 0.1417 

27 0.4250 0.3009 0.7769 0.3301 0.2337 0.2337 

28 0.2540 0.8400 0.5664 0.1439 0.4757 0.1439 

29 0.5255 0.7660 0.8001 0.4204 0.6129 0.4204 

30 0.3304 0.9032 0.8213 0.2714 0.7418 0.2714 

 

The curve AE in Figure 5.3 depicts the Pareto front for unit 18. The coordinates of the 

point E(0.5046, 1) are the independent efficiency scores of the two stages. This is the 

ideal point in the multi-objective programming terminology. The points A(0.2378,1) 

and D(0.5046, 0.4910) are the extreme points on the upper-right boundary of the 

feasible set in the objective functions space. The LP models that provide these two 
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points are given below, details about the bounds on the efficient set and the range of 

the values of the efficient points can be found in Ehrgott (2000). The points B(0.3021, 

0.8201) and D represent the two extreme decompositions mentioned above. The 

segment BD of the Pareto front depicts alternative decompositions, all maintaining the 

same optimal overall efficiency 𝑒𝑂 = 0.2477, as shown in Table 5.2. Among them, D 

is located as an optimal solution by the multiplicative decomposition model (3.7). 

 

 

Fig. 5.3: The Pareto front for unit 18 
 

 

The point C(0.3536, 0.7007), which is formed by the intersection of the dotted line 

OE with the Pareto front, depicts the unique Pareto optimal point obtained by model 

(5.11)-same as from model (5.10). Thus, the overall system efficiency of unit 18 is 

𝑒̂18
𝑜 = min{0.3536, 0.7007}=0.3536. 

 

Sensitivity Analysis of the weak link 

The optimal value of the objective function in model (5.10) is the ratio 𝜃∗ = 𝑂𝐶 𝑂𝐸⁄ . 

That is, the search direction employed for locating the point C on the Pareto front 

assumes that the stage efficiency scores 𝑒̂𝑗0

1  and 𝑒̂𝑗0

2  are proportional to their 

independent counterparts 𝛦𝑗0

1  and 𝛦𝑗0

2 . This is a reasonable assumption but not 

necessarily restrictive. For instance, one might weight differently the two stages in 
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model (5.10), if it is to give some other priority to one stage over the other. In such a 

case any other point on the Pareto front could be located. In a real-world application, 

the management might be interested to investigate the range of weights, in which the 

status of the stage, characterized as weak link, is preserved. Table 5.4 provides such 

information concerning the sensitivity of the weak link when the weights given to the 

two stages vary. For each unit it is sufficient to calculate the coordinates of the two 

extreme points 𝐴(𝑁1, 𝐸2)  and 𝐷(𝐸1, 𝑁2)  on the Pareto front (columns 2-3 and 6-7 

respectively) and the weights that drive the ray from the origin to these points 

(columns 4-5 and 8-9 respectively). Columns 10-11 show the ranges of the weight q2, 

in which the status of the identified weak link for each unit is preserved. 

 

Table 5.4: Sensitivity of the weak link 

 
Coordinates of 

𝐴(𝑁1, 𝐸2) 

Weights pointing 

𝐴(𝑁1, 𝐸2) 

Coordinates of 

𝐷(𝐸1, 𝑁2) 

Weights pointing 

𝐷(𝐸1, 𝑁2) 
Ranges of normalized weight q2 

DMU 𝑁1 𝐸2 𝑞1
𝐴 𝑞2

𝐴 𝐸1 𝑁2 𝑞1
𝐷 𝑞2

𝐷 

 

Weak link 

Stage-1 Stage-2 

1 0.1891 0.5511 0.7445 0.2555 0.2711 0.2347 0.4641 0.5359 [0.2555-0.5) (0.5-0.5359] 

2 0.3265 0.7508 0.6969 0.3031 0.5084 0.1948 0.2770 0.7230 [0.3031-0.5) (0.5-0.723] 

3 0.0791 0.7391 0.9034 0.0966 0.1268 0.2558 0.6685 0.3315 [0.0966-0.3315] 
 

4 0.1344 0.5830 0.8127 0.1873 0.1364 0.2850 0.6763 0.3237 [0.1873-0.3237] 
 

5 0.1598 0.5842 0.7852 0.2148 0.2053 0.2604 0.5591 0.4409 [0.2148-0.4409] 
 

6 0.1685 1 0.8558 0.1442 0.2424 0.3813 0.6114 0.3886 [0.1442-0.3886] 
 

7 0.1644 0.5613 0.7735 0.2265 0.2065 0.2893 0.5835 0.4165 [0.2265-0.4165] 
 

8 0.3423 0.7638 0.6905 0.3095 0.4297 0.6953 0.6180 0.3820 [0.3095-0.382] 
 

9 1 1 0.5000 0.5000 1 1 0.5000 0.5000 
  

10 0.5235 0.5149 0.4958 0.5042 0.5310 0.3450 0.3938 0.6062 
 

[0.5042-0.6062] 

11 0.2097 0.9481 0.8189 0.1811 0.3304 0.7410 0.6916 0.3084 [0.1811-0.3084] 
 

12 0.2006 1 0.8329 0.1671 0.3280 0.4384 0.5720 0.4280 [0.1671-0.428] 
 

13 0.2334 1 0.8108 0.1892 0.3158 0.7390 0.7006 0.2994 [0.1892-0.2994] 
 

14 0.1484 0.8381 0.8496 0.1504 0.4574 0.2758 0.3761 0.6239 [0.1504-0.5) (0.5-0.6239] 

15 0.6443 0.4696 0.4216 0.5784 0.7329 0.2935 0.2860 0.7140 
 

[0.5784-0.714] 

16 0.6980 0.8163 0.5391 0.4609 0.8058 0.3776 0.3191 0.6809 [0.4609-0.5) (0.5-0.6808] 

17 1 0.6694 0.4010 0.5990 1 0.6694 0.4010 0.5990 
 

0.5990 

18 0.2378 1 0.8079 0.1921 0.5046 0.4910 0.4932 0.5068 [0.1921-0.5) (0.5-0.5068] 

19 0.4197 0.4531 0.5192 0.4808 0.4656 0.4237 0.4764 0.5236 [0.4808-0.5) (0.5-0.5236] 

20 0.2311 0.3739 0.6181 0.3819 0.2392 0.1877 0.4397 0.5603 [0.3819-0.5) (0.5-0.5603] 

21 0.4217 0.9788 0.6989 0.3011 0.7889 0.4942 0.3852 0.6148 [0.3011-0.5) (0.5-0.6148] 

22 0.2438 0.4927 0.6689 0.3311 0.2833 0.3538 0.5553 0.4447 [0.3311-0.4447] 
 

23 0.2100 0.7244 0.7753 0.2247 0.5001 0.3652 0.4221 0.5779 [0.2247-0.5) (0.5-0.5779] 

24 0.8855 0.5673 0.3905 0.6095 0.9278 0.4587 0.3308 0.6692 
 

[0.6095-0.6692] 

25 0.1867 0.5291 0.7391 0.2609 0.2297 0.2123 0.4803 0.5197 [0.2609-0.5) (0.5-0.5197] 

26 0.5850 0.1674 0.2225 0.7775 0.7491 0.0703 0.0858 0.9142 
 

[0.7775-0.9142] 

27 0.2517 0.3009 0.5445 0.4555 0.4250 0.1031 0.1952 0.8048 [0.4555-0.5) (0.5-0.8048] 

28 0.0418 0.8400 0.9526 0.0474 0.2540 0.1960 0.4356 0.5644 [0.047-0.5) (0.5-0.5644] 

29 0.3766 0.7660 0.6704 0.3296 0.5255 0.2609 0.3318 0.6682 [0.3296-0.5) (0.5-0.6682] 

30 0.2274 0.9032 0.7988 0.2012 0.3304 0.2918 0.4690 0.5310 [0.2012-0.5) (0.5-0.531] 

 

Given the ideal point (𝛦𝑗0

1 , 𝛦𝑗0

2 ) defined by the independent stage efficiency scores 

of the evaluated unit j0, the extreme points 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ) and 𝐷(𝛦𝑗0

1 , 𝑁𝑗0

2) on the upper-
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right boundary of the feasible set in the objective functions space of (5.7), as depicted 

in Figure 5.3, are obtained as follows: 

 

For the point 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ), get 𝑁𝑗0

1  as the optimal value of the objective 

function in the following linear program: 

 

𝑁𝑗0

1 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗0

𝑤𝑍𝑗0

≥ 𝛦𝑗0

2  

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀  

(5.12) 

For the point 𝐷(𝛦𝑗0

1 , 𝑁𝑗0

2), get 𝑁𝑗0

2  as the optimal value of the objective 

function in the following linear program: 

 

𝑁𝑗0

2 = 𝑚𝑎𝑥  𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗0

𝑣𝑋𝑗0

≥ 𝛦𝑗0

1  

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀  

(5.13) 

 

Then, the normalized weights are as follows: 

For the point 𝐴(𝑁1, 𝐸2): 𝑞1
𝐴 =

𝐸2

𝑁1+𝐸2 , 𝑞2
𝐴 =

𝑁1

𝑁1+𝐸2 

For the point 𝐷(𝐸1, 𝑁2): 𝑞1
𝐷 =

𝑁2

𝑁2+𝐸1 , 𝑞2
𝐷 =

𝐸1

𝑁2+𝐸1 



PhD Thesis – G. Koronakos 

144 |   

 

 (a) Unit 15 

 

 (b) Unit 12 

 

(c) Unit 2 

Fig. 5.4: The location of the Pareto front 
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Figure 5.4 exhibits the three possible positions of the Pareto front AD with respect 

to the bisection line OB. The units depicted are No 15, 12 and 2 (Table 5.4). If  𝑁1 >

𝐸2, then the line AD lies on the right of OB and the second stage will be steadily the 

weak link (Fig. 5.4a). This is the case for units 10, 15, 24 and 26. If  𝑁2 > 𝐸1, then the 

line AD lies on the left of OB and the first stage will be steadily the weak link (Fig. 

5.4b). This is the case for the units 3-8, 11-13 and 22. If none of the above holds, the 

line AD intersects with the bisection line OB and the weak link is differentiated on the 

left and on the right of the intersection point (Fig. 5.4c). This is the case for the units 

1, 2, 14, 16, 18-21, 23, 25, 27-30. The units 9 and 17 are differentiated from the 

others, as they achieve their ideal efficiency scores and the Pareto front degenerates to 

a single point. 

5.1.2 Two-stage process with extra inputs in the stage-
2 (Type II) 

In the structure of Type II, the second stage uses some extra external inputs L beyond 

the intermediate measures as depicted in Figure 5.5. 

 

Fig. 5.5: The two-stage process of Type II 
 

In view of the “weak-link” approach, the Fig. 5.5 can be alternatively represented by 

the Fig. 5.6 below. 

 
Fig. 5.6: An alternative representation of the two-stage process of Figure 5.5 
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In this case, the efficiency of the first and the second stage of DMU j are defined as 

follows: 

 𝑒𝑗
1 =

𝜑𝑍𝑗

𝜂𝑋𝑗
 , 𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗+𝑔𝐿𝑗
 

 

Analogously to the simple process elaborated in the previous section, the two-phase 

procedure for estimating the stage efficiencies as well as the overall system 

efficiency, in line with model (5.9), is as follows: 

 

𝑚𝑎𝑥 𝑒1 =
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, 𝑔 ≥ 𝜀  

(5.14) 

 

After applying the C-C transformation with respect to the first objective function we 

derive the following model: 

 

𝑚𝑎𝑥 𝑒1 = 𝑤𝑍𝑗0
 

𝑚𝑎𝑥 𝑒2 =
𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀 

(5.15) 
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Phase I: 

𝑚𝑎𝑥 𝜃 

𝑠. 𝑡. 

𝑤𝑍𝑗0
≥ 𝜃𝐸𝑗0

1  

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

≥ 𝜃𝐸𝑗0

2  

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀, 𝜃 ≥ 0 

(5.16) 

 

Let (θ*, v*, w*, u*, γ*) be an optimal solution of model (5.16) and the stage 

efficiencies as follows: 

𝑒𝑗𝑜

1∗ =
𝑤∗𝑍𝑗𝑜

𝑣∗𝑋𝑗𝑜

= 𝑤∗𝑍𝑗0
 ,  𝑒𝑗𝑜

2∗ =
𝑢∗𝑌𝑗𝑜

𝑤∗𝑍𝑗0+𝛾∗𝐿𝑗𝑜

 

 

The phase I solution is weakly Pareto optimal to the bi-objective program (5.15). 

Phase II: 

Solve the following linear program: 

𝑚𝑎𝑥  𝑠1 

𝑠. 𝑡. 

𝑤𝑍𝑗0
− 𝑠1 = 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0
− 𝑒𝑗0

2∗(𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

) ≥ 0 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀 

0 ≤ 𝑠1 ≤ 𝐸𝑗0

1 −𝑒𝑗0

1∗ 

(5.17) 

Let (𝑠̂1, 𝑣, 𝑤̂, 𝑢̂, 𝛾) be the optimal solution of (5.17). If 𝑠̂1 > 0, then the solution is 

Pareto optimal and the stage efficiency scores are: 

 

𝑒̂𝑗𝑜

1 =
𝑤̂𝑍𝑗𝑜

𝑣̂𝑋𝑗𝑜

 , 𝑒̂𝑗0

2 =
𝑢̂𝑌𝑗𝑜

𝑤̂𝑍𝑗𝑜+𝛾̂𝐿𝑗𝑜
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Otherwise, solve the following program to get a Pareto optimal solution 

(𝑠′
2, 𝑣′, 𝑤′, 𝑢′, 𝛾′) and the stage efficiency scores: 

𝑒′𝑗𝑜

1 =
𝑤′𝑍𝑗𝑜

𝑣′𝑋𝑗𝑜

 , 𝑒𝑗0

′2 =
𝑢′𝑌𝑗𝑜

𝑤′𝑍𝑗𝑜
+𝛾′𝐿𝑗𝑜

 

 

𝑚𝑎𝑥  𝑠2 

𝑠. 𝑡. 

𝑤𝑍𝑗0
≥ 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

− 𝑠2 = 𝑒𝑗0

2∗ 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀 

0 ≤ 𝑠2 ≤ 𝐸𝑗0

2 − 𝑒𝑗0

2∗ 

(5.18) 

 

Model (5.18) is non-linear but it can be solved by bisection search in terms of s2 in 

the bounded interval [0, 𝐸𝑗0

2 − 𝑒𝑗0

2∗]. Obviously, in the case that the stage efficiency 

scores, derived from the phase I, they are both equal to the corresponding independent 

efficiency scores, there is no need to run the phase II, since the Pareto front 

degenerates to the point (𝛦𝑗0

1 , 𝛦𝑗0

2 ).  

Notice that in the two-stage process of Figure 5.5, choosing the minimum of e1, e2 

as the system overall efficiency might underestimate it. To be more specific, if the 

extra inputs L in the second stage are partly a substitute for the intermediate measures 

Z to produce the final outputs Y, the weak link between the two stages can be 

remedied by L. For instance, if  e1< e2 and this difference is mainly attributed to the 

economical input on L, taking e1 as the overall efficiency may be deceptive since the 

economical low level of input L may be a relative advantage for the stage under 

consideration among its competing peer on L and probably underestimates the overall 

system efficiency. In a two-stage process with extra inputs to the second stage, the 

aforementioned effect must be taken into account in order to transfer the advantages 

of stage-2, caused by the extra inputs L, to stage-1. An effective way to absorb these 

effects in favor of the system efficiency is proposed below. Given the optimal solution 
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(𝑣, 𝑤̂, 𝑢̂, 𝛾) , as derived by the two-phase procedure above, we modify the stage 

efficiencies as follows: 

𝑒𝑗𝑜

𝐼 =
𝑤̂𝑍𝑗𝑜+𝛾̂𝐿𝑗𝑜

𝑣̂𝑋𝑗𝑜+𝛾̂𝐿𝑗𝑜

, 𝑒𝑗𝑜

𝐼𝐼 =
𝑢̂𝑌𝑗𝑜

𝑤̂𝑍𝑗𝑜+𝛾̂𝐿𝑗𝑜

 (5.19) 

 

In (5.19), the adjusted stage efficiencies originate from the network structure depicted 

in Figure 5.7a, which is a modification of the two-stage process of Figure 5.5. The 

valued input 𝛾𝐿 to the second stage is used as an input and, at the same time, as an 

output from the first stage. So, the term 𝛾𝐿 is added to the numerator and to the 

denominator of the original efficiency ratio to obtain the modified efficiency score 𝑒𝑗0

𝐼 . 

A similar but equivalent representation to the modified structure of Figure 5.7a is the 

network structure depicted in Figure 5.7b. This representation technique is coined by 

Kao (2014a) to deal with general multi-stage systems. In the latter, the motivation was 

to adjust the conventional stage efficiency scores, so as they meet the property that the 

system efficiency is the product of the stage efficiencies. This is accomplished by 

introducing the dummy process labelled 3, in a parallel configuration with the original 

stage-1. 

 
(a) 

 
 (b) 

Fig. 5.7: The modified process of Figure 5.5 
 

http://www.collinsdictionary.com/dictionary/english/technique
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The adjusted efficiency scores 𝑒𝑗0

𝐼  and 𝑒𝑗0

𝐼𝐼  are related to their original 

counterparts 𝑒̂𝑗0

1  and 𝑒̂𝑗0

2  as follows: 

𝑒𝑗0

𝐼 =
𝑣𝑋𝑗0

𝑣𝑋𝑗0
+ 𝛾𝐿𝑗0

× 𝑒̂𝑗0

1 +
𝛾𝐿𝑗0

𝑣𝑋𝑗0
+ 𝛾𝐿𝑗0

× 1 

 
𝑒𝑗0

𝐼𝐼 = 𝑒̂𝑗0

2  

(5.20) 

That is, the adjusted efficiency 𝑒𝑗0

𝐼  is a weighted average of the original efficiency 

score 𝑒̂𝑗0

1  and the efficiency score of the dummy process 3 associated to the first stage, 

which is 1. Concerning the second stage, the corresponding efficiency 𝑒𝑗0

𝐼𝐼 is not being 

adjusted and remains 𝑒̂𝑗0

2 . Once the adjusted efficiency scores are obtained, the overall 

efficiency of the evaluated unit is 𝑒𝑗0

𝑜 = 𝑚𝑖𝑛{𝑒𝑗0

𝐼 , 𝑒𝑗0

𝐼𝐼}. Kao (2014a) employed a similar 

concept so as to decompose the overall system efficiency as the product of the 

subsystems efficiencies, where the efficiency of each subsystem is a weighted average 

of the efficiency of the corresponding process (stage) and the dummy process. 

However, our methodology differs substantially in the optimality criterion used. 

Indeed, our optimality criterion is to maximize the lowest of the stage efficiencies, 

whereas the optimality criterion in Kao (2014a) is to maximize the overall efficiency. 

Illustration 

We illustrate our two–phase procedure on a two-stage process of Type II with a real 

example about regional R&D process of 30 Provincial Level Regions in China, drawn 

from Li et al (2012). The first stage represents the technology development whereas 

the second one represents the economic application. The inputs of the first stage are 

three indices from science and technology activities and government’s support, 

namely the R&D personnel (X1), the R&D expenditure (X2) and the proportion of 

regional science and technology funds in regional total financial expenditure (X3). 

The intermediate measures (outputs of stage-1 and inputs to stage-2) are the number 

of patents (Z1) and the number of papers (Z2). The extra input to stage-2 is the 

contract value in technology market (L). The final outputs are four economic 

indicators, namely the GDP (Y1), the total exports (Y2), the urban per capita annual 

income (Y3) and the gross output of high-tech industry (Y4). The data are originally 

obtained from “China statistical yearbook, 2009” and “China science and technology 

statistical yearbook, 2009”. Table 5.5 below exhibits the dataset. 
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Table 5.5: Data of 30 Provincial Level Regions in China from Li et al (2012) 

DMU X1 X2 X3 Z1 Z2 L Y1 Y2 Y3 Y4 

1 10.34786 668.63510 5.44577 9157 65951 1236.245 12153.03 483.7932 26738.48 2757.14 

2 2.00665 79.45994 1.20381 834 13737 38.31581 6530.01 42.80071 15748.67 352.84 

3 6.46163 423.37740 7.20187 5997 32733 435.4108 15046.45 1417.96027 28837.78 5557.45 

4 2.87830 178.46610 3.02375 1889 12472 105.4611 7521.85 298.92719 21402.01 1901.07 

5 3.01654 135.95350 1.70264 795 13699 35.61736 10062.82 88.86487 14085.74 460.31 

6 2.27886 135.38190 1.97549 824 9075 23.25944 12236.53 533.1911 19576.83 1972.01 

7 1.27445 37.26124 0.81710 227 7856 35.62869 3387.56 7.35512 11929.78 67.39 

8 12.97681 652.98200 3.88757 11355 35773 170.985 39482.56 3589.54893 21574.72 17161.94 

9 0.77328 26.41343 1.04000 322 4946 1.78061 3912.68 13.56612 12862.53 293.64 

10 0.17583 5.78060 1.24906 84 2726 0.55563 1654.21 13.08632 13750.85 54.75 

11 3.88080 134.84460 1.12576 691 17970 17.21118 17235.48 156.88902 14718.25 629.17 

12 3.70197 109.17040 1.06286 1142 14553 48.855 8587.00 100.82127 12565.98 311.40 

13 4.79963 174.75990 1.22226 1129 21188 26.30461 19480.46 73.45376 14371.56 953.23 

14 5.12124 213.44900 1.21147 1478 25268 77.03287 12961.1 99.78796 14367.48 1039.52 

15 3.49591 153.49950 1.33984 1752 21042 44.04324 13059.69 54.92034 15084.31 648.75 

16 10.67826 701.95290 2.91286 5322 47441 108.2184 34457.3 1991.9919 20551.72 13015.35 

17 1.83522 75.89360 0.85780 386 6811 9.78927 7655.18 73.68488 14021.54 755.65 

18 2.60875 81.36019 1.28305 719 8987 19.75983 7278.75 31.24935 14006.27 537.66 

19 5.43947 232.36870 2.14308 1993 20801 119.7095 15212.49 334.14928 15761.38 1313.84 

20 0.30013 7.59379 0.98211 35 1240 8.49672 1081.27 2.51876 12691.85 19.22 

21 8.33303 519.59200 1.92425 2865 26941 71.9391 33896.65 794.90706 17811.04 4555.71 

22 2.52624 80.85633 1.12742 603 6757 16.20675 7358.31 28.37455 13996.55 196.47 

23 4.23465 189.50630 1.13144 1342 26403 69.80741 8169.80 39.88149 14128.76 717.04 

24 4.87863 214.45900 0.79759 1596 22568 54.59769 14151.28 141.69447 13839.40 1766.76 

25 1.22051 37.23044 0.97287 476 7101 10.24687 6169.75 45.13252 14423.93 147.17 

26 5.90844 398.83670 3.74258 4818 25638 56.45805 22990.35 1330.12954 24610.81 2672.09 

27 1.56993 47.20277 1.11443 326 9982 1.76618 7759.16 83.7537 15451.48 273.67 

28 1.27057 52.07259 0.93756 178 3214 14.76515 9740.25 23.15476 15849.19 236.61 

29 0.33954 10.44221 1.01806 52 1365 0.89823 1353.31 7.4293 14024.70 32.89 

30 0.82683 21.80426 1.19830 120 5688 1.20777 4277.05 109.34563 12257.52 23.74 

 

 

As already noticed in Chapter 3, Li et al (2012) employed a parametric technique 

for the assessment of DMUs with extra inputs in the second stage. They first derive 

parametrically the stage efficiency scores and then they calculate the overall 

efficiency as the product of the stage efficiencies. For comparison purposes we give in 

columns (4-6) of Table 5.6 the results of Li et al (2012). Table 5.6 contains also the 

independent (ideal) stage efficiency scores that derive from analogous models with 

models (5.4) and (5.5); these models are given in the Appendix. 
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Table 5.6: Ideal scores and results from Li et al (2012) 

DMU E1 E2 e1 e2 eo = e1 ∙ e2 

1 1 0.1598 1 0.1598 0.1598 

2 1 0.2489 1 0.2489 0.2489 

3 1 0.5728 0.8950 0.5365 0.4802 

4 0.7426 0.5704 0.6774 0.5704 0.3864 

5 0.6697 0.3895 0.6697 0.3895 0.2608 

6 0.5668 1 0.5668 1 0.5668 

7 1 0.3121 1 0.2207 0.2207 

8 1 1 1 1 1 

9 0.9398 1 0.9398 1 0.9398 

10 1 1 1 1 1 

11 0.8885 0.8351 0.8885 0.8351 0.7420 

12 0.9328 0.2703 0.9328 0.2648 0.2470 

13 0.8504 0.7373 0.8493 0.7373 0.6262 

14 0.9060 0.3360 0.9060 0.2816 0.2551 

15 1 0.3780 1 0.3685 0.3685 

16 0.9225 1 0.9225 1 0.9225 

17 0.5647 1 0.5644 0.9914 0.5595 

18 0.7158 0.5184 0.7152 0.4947 0.3538 

19 0.6969 0.3742 0.6671 0.3668 0.2447 

20 0.4573 1 0.4573 1 0.4573 

21 0.7101 0.8498 0.7101 0.8176 0.5806 

22 0.5864 0.5709 0.5708 0.5156 0.2943 

23 1 0.2509 1 0.1941 0.1941 

24 1 0.4817 1 0.4566 0.4566 

25 1 0.6159 1 0.5846 0.5846 

26 0.9111 0.9541 0.7293 0.9171 0.6688 

27 1 1 1 1 1 

28 0.3599 1 0.3599 1 0.3599 

29 0.4300 1 0.4300 1 0.4300 

30 1 1 1 1 1 

 

In Table 5.7 we present the results obtained from phase I and II, we remark that 

the stage efficiencies are not improved by phase II, in other words, models (5.16), 

(5.17) and (5.18) produce the same stage efficiency scores. The adjusted efficiency 

scores as well as the overall system efficiency are given in columns 5-7. The 

advantages caused by the extra input L to the second stage are transferred to the 

system efficiency for 6 of the 30 units. The observed level of extra input L for these 

units is below the average level of input L for the current technology. For example, 

for DMUs 6 and 9 the improvement on their adjusted efficiency scores (eI) led also to 

improvement on their overall efficiency. Theirs levels of input L are L6=23.25944 and 

L9=1.78061 respectively whereas the average level of input L is 95.3524. 
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Table 5.7: Results obtained from phases I and II 

DMU θ ê1 ê2 e𝐼  e𝐼𝐼 = ê2 𝑒o 

1 1 1 0.1598 1 0.1598 0.1598 

2 1 1 0.2489 1 0.2489 0.2489 

3 0.9111 0.9111 0.5219 0.9111 0.5219 0.5219 

4 0.9402 0.6982 0.5363 0.6982 0.5363 0.5363 

5 1 0.6697 0.3895 0.8497 0.3895 0.3895 

6 1 0.5668 1 0.6137 1 0.6137 

7 0.7830 0.7830 0.2444 0.7919 0.2444 0.2444 

8 1 1 1 1 1 1 

9 1 0.9398 1 0.9534 1 0.9534 

10 1 1 1 1 1 1 

11 1 0.8885 0.8351 0.9288 0.8351 0.8351 

12 0.9848 0.9186 0.2662 0.9640 0.2662 0.2662 

13 0.9989 0.8495 0.7365 0.9108 0.7365 0.7365 

14 0.8614 0.7804 0.2894 0.7804 0.2894 0.2894 

15 0.9839 0.9839 0.3719 0.9929 0.3719 0.3719 

16 1 0.9225 1 0.9225 1 0.9225 

17 0.9920 0.5602 0.9920 0.7049 0.9920 0.7049 

18 0.9699 0.6943 0.5028 0.8285 0.5028 0.5028 

19 0.9679 0.6746 0.3622 0.6746 0.3622 0.3622 

20 1 0.4573 1 0.4573 1 0.4573 

21 0.9701 0.6888 0.8244 0.8370 0.8244 0.8244 

22 0.9362 0.5490 0.5345 0.7444 0.5345 0.5345 

23 0.7984 0.7984 0.2003 0.7999 0.2003 0.2003 

24 0.9515 0.9515 0.4583 0.9742 0.4583 0.4583 

25 0.9652 0.9652 0.5944 0.9818 0.5944 0.5944 

26 0.8659 0.7889 0.8261 0.8804 0.8261 0.8261 

27 1 1 1 1 1 1 

28 1 0.3599 1 0.3599 1 0.3599 

29 1 0.4300 1 0.4308 1 0.4308 

30 1 1 1 1 1 1 

 

As shown in Tables 5.6 and 5.7 although the two approaches deem efficient the 

same units in the second stage and in overall, they yield different stage efficiency 

scores for 16 of the 30 units. In particular, for the first stage, Li et al (2012) estimate 

eleven DMUs as efficient whereas only six of them are deemed efficient from our 

approach. In Li et al (2012) the main goal is the detection of the pair of stage 

efficiencies that provides the maximal squared geometric average, i.e. the maximal 

overall efficiency, which is in compliance with the optimality criterion in the 

multiplicative approach of Kao and Hwang (2008). As a result, when there is a large 

discrepancy between the independent (ideal) efficiency scores, then the pair of stage 

efficiencies that maximizes the overall efficiency would tend to lie on the extreme 

points of the Pareto front. For instance for DMUs 7 and 23, the corresponding 

solutions obtained from Li et al (2012) are located on the extreme points B of the 

Pareto fronts as portrayed by Figures 5.8a and 5.8b respectively. As noted, this 
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phenomenon can be associated with the large discrepancy between the independent 

efficiency scores, i.e. for unit 7 the independent scores are E1 =1, E2 =0.3121 and for 

unit 23 the corresponding scores are E1 =1, E2 =0.2509. On the contrary, DMUs 7 and 

23 are not deemed efficient in stage-1 by our approach, the corresponding Pareto 

optimal points obtained by our two-phase procedure are depicted by points C on 

Figures 5.8a and 5.8b. The independent (ideal) stage efficiencies are represented by 

points E while the extreme Pareto optimal solutions by points A and B. Notice that the 

points C are formed by the intersection of the ray from the origin to the point E with 

the Pareto front. 

 

(a) Unit 7 

 

(a) Unit 23 

Fig. 5.8: Pareto fronts and Pareto optimal solutions of units 7 and 23 

 



Chapter 5: The “weak-link”approach to Network DEA for two-stage processes 

    | 155 

The Fig. 5.9 depicts the Pareto fronts (curves AB) of four indicative units (namely, 

units 3, 4, 14 and 26) shown in Table 5.7. The independent (ideal) stage efficiency 

scores are portrayed by points E. The stage efficiencies derived by our two-phase 

procedure are represented by points C, while the extreme points A and B on the 

Pareto fronts are obtained by solving analogous LPs with programs (5.12) and (5.13), 

see the Appendix for details. 

 

 

Fig. 5.9: Pareto fronts and Pareto optimal solutions for 4 indicative units 
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5.1.3 Two-stage process with extra outputs from stage-
1 (Type III) 

In the structure of Type III, the first stage produces some final outputs K that exit the 

system, beyond the intermediate measures Z as depicted in Figure 5.10.  

 

 

Fig. 5.10: The two-stage process of Type III 

 

An alternative portrayal of the conventional illustration of Fig. 5.10 is given below in 

Fig. 5.11. 

 
Fig. 5.11: An alternative representation of the two-stage process of Figure 5.10 

 

In this case, the efficiency of the first and the second stage of DMU j are typically 

defined as follows:  

𝑒𝑗
1 =

𝜑𝑍𝑗+ℎ𝐾𝑗

𝜂𝑋𝑗
  ,  𝑒𝑗

2 =
𝜔𝑌𝑗

𝜑𝑍𝑗
 

 

Working like in the previous sections, we provide below the bi-objective program 

and the two-phase procedure for estimating the stage efficiencies and the overall 

efficiency of the two stage process of Figure 5.10. 
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𝑚𝑎𝑥 𝑒1 =
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀  

(5.21) 

Applying the C-C transformation with respect to the first objective function we 

derive the following model: 

𝑚𝑎𝑥 𝑒1 = 𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝑢𝑌𝑗0

𝑤𝑍𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀 

(5.22) 

Phase I: 

𝑚𝑎𝑥 𝜃 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

≥ 𝜃𝐸𝑗0

1  

𝑢𝑌𝑗0

𝑤𝑍𝑗0

≥ 𝜃𝐸𝑗0

2  

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀, 𝜃 ≥ 0 

(5.23) 

 

Let (θ*, v*, w*, u*, μ*) be an optimal solution of model (5.23) and the stage 

efficiencies as follows: 

𝑒𝑗𝑜

1∗ =
𝑤∗𝑍𝑗𝑜

+𝜇∗𝛫𝑗𝑜
𝑣∗𝑋𝑗𝑜

= 𝑤∗𝑍𝑗0
+ 𝜇∗𝛫𝑗0

 ,  𝑒𝑗𝑜

2∗ =
𝑢∗𝑌𝑗𝑜
𝑤∗𝑍𝑗𝑜
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The phase I solution is weakly Pareto optimal to the bi-objective program (5.22): 

Phase II: 

Solve the following linear program: 

max  𝑠1 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

− 𝑠1 = 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0
− 𝑒𝑗0

2∗𝑤𝑍𝑗0
≥ 0 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀 

0 ≤ 𝑠1 ≤ 𝐸𝑗0

1 −𝑒𝑗0

1∗ 

(5.24) 

Let (𝑠̂1, 𝑣, 𝑤̂, 𝑢̂, 𝜇̂) be the optimal solution of (5.24). If 𝑠̂1 > 0, then the solution is 

Pareto optimal and the stage efficiency scores are: 

𝑒̂𝑗𝑜

1 =
𝑤̂𝑍𝑗𝑜+𝜇̂𝐾𝑗𝑜

𝑣̂𝑋𝑗𝑜

 , 𝑒̂𝑗𝑜

2 =
𝑢̂𝑌𝑗𝑜

𝑤̂𝑍𝑗𝑜

 

Otherwise (when 𝑠̂1 = 0), solve the following program to get a Pareto optimal 

solution (𝑠′
2, 𝑣′, 𝑤′, 𝑢′, 𝜇′) and the stage efficiency scores: 

𝑒′𝑗𝑜

1 =
𝑤′𝑍𝑗𝑜+𝜇′𝐾𝑗𝑜

𝑣′𝑋𝑗𝑜

 , 𝑒𝑗𝑜

′2 =
𝑢′𝑌𝑗𝑜

𝑤′𝑍𝑗𝑜

 

max  𝑠2 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

≥ 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0

𝑤𝑍𝑗0

− 𝑠2 = 𝑒𝑗0

2∗ 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀 

0 ≤ 𝑠2 ≤ 𝐸𝑗0

2 − 𝑒𝑗0

2∗ 

(5.25) 
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As noticed in the previous section, using the minimum of e1, e2 as the system 

overall efficiency might underestimate it because the potential advantages caused by 

the economical low level of the extra inputs to stage-2 may not be reflected to the 

overall efficiency. Therefore, we adjusted the stage efficiency scores in order to 

capture and transfer the potential improvements to the overall efficiency. To be more 

specific, in the two stage process of Figure 5.10 because the first stage has an extra 

output K, flowing directly out of the system, the overall efficiency of the system 

should be contributed by K without being stuck by the “weak link”. For example, 

suppose that e1 is greater than e2 and this difference is mainly caused by the 

prominent high output on K. Obviously, still assuming the minimum of these two 

scores, i.e. e2, as the overall efficiency for the system does not suffice and the 

potential high level of output K should be valued by the system. Given the optimal 

solution (𝑣̂, 𝑤̂, 𝑢̂, 𝛾̂, 𝜇̂), as derived by the two-phase procedure above, we modify the 

stage efficiencies as follows in order to absorb the aforementioned effects in favor of 

the system: 

 

𝑒𝑗0

𝐼 =
𝑤̂𝑍𝑗𝑜

+𝜇̂𝐾𝑗𝑜

𝑣̂𝑋𝑗𝑜

, 𝑒𝑗0

𝐼𝐼 =
𝑢̂𝑌𝑗𝑜

+𝜇̂𝐾𝑗𝑜

𝑤̂𝑍𝑗𝑜
+𝜇̂𝐾𝑗𝑜

 (5.26) 

 

The adjusted stage efficiencies in (5.26) originate from the network structure in 

Figure 5.12a which is a recast of the two stage process depicted in Figure 5.10. The 

valued external output 𝜇̂𝐾 of the first stage is used as an input and, at the same time, 

as an output from the second stage. The term 𝜇̂𝐾 is added to the numerator and to the 

denominator of the original efficiency ratio to obtain the modified efficiency score 𝑒𝑗0

𝐼𝐼 

of the second stage. As already noted, in Kao (2014a) dummy processes were used in 

a parallel configuration with the original stages for the representation of the modified 

network structure. Figure 5.12b depicts the modified two stage process in accordance 

with Kao (2014a). 
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(a) 

 
(b) 

Fig. 5.12: The modified process of Figure 5.10 

 

The adjusted efficiency scores 𝑒𝑗0

𝐼  and 𝑒𝑗0

𝐼𝐼  are related to their original 

counterparts 𝑒̂𝑗0

1  and 𝑒̂𝑗0

2  as follows:  

𝑒𝑗0

𝐼 = 𝑒̂𝑗0

1  

𝑒𝑗0

𝐼𝐼 =
𝑤̂𝑍𝑗0

𝑤̂𝑍𝑗0
+ 𝜇̂𝐾𝑗0

× 𝑒̂𝑗0

2 +
𝜇̂𝐾𝑗0

𝑤̂𝑍𝑗0
+ 𝜇̂𝐾𝑗0

× 1 
(5.27) 

 

The efficiency of the first stage remains unchanged, whereas for the second stage the 

adjusted efficiency 𝑒𝑗0

𝐼𝐼 is a weighted average of the original efficiency score 𝑒̂𝑗0

2  and 

the efficiency score of the dummy process 3 associated with the second stage, which 

is 1. Having derived the adjusted efficiency scores, then the overall efficiency of the 

evaluated unit is 𝑒𝑗0

𝑜 = 𝑚𝑖𝑛{𝑒𝑗0

𝐼 , 𝑒𝑗0

𝐼𝐼}. 
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Illustration 

In the following, we apply the “weak-link” approach to a real example taken from 

Aviles-Sacoto et al (2015) who studied 37 schools of business. Aviles-Sacoto et al 

(2015) viewed the undergraduate business programmes as two stage processes and 

they developed a network DEA approach to deal with a peculiar setting where some 

of the intermediate measures are inputs to the second stage and at the same time 

external outputs from that stage. At the first stage the assessment is focused on the 

outcomes which the students achieve before graduation while the second stage 

captures the accomplishments after graduation. However, for illustration purposes we 

examine only the scenario where the measures with the controversial role are operate 

only as external outputs of the first stage. As inputs to stage-1 are used the percentage 

of applicants rejected (X1), the academic rating (X2) and the percentage of students in 

top 25% of their classes (X3). The external output of stage-1 is the percentage of 

students receiving internships (K) while the intermediate measures, outputs of stage-1 

and inputs to stage-2, are the percentage of accepted applicants enrolled (Z1) and the 

percentage of students receiving institutional scholarships (Z2). The external outputs 

of the second stage are the percentage of students who get jobs (Y1). Table 5.8 

exhibits the data set as well as the independent stage efficiencies (last two columns). 

 

 

Table 5.8:  Data from Aviles-Sacoto et al (2015) and independent stage efficiencies 

DMU X1 X2 X3 Z1 Z2 K Y1 E1 E2 

1 95 73 90 99 37 79 95 0.8923 0.5603 

2 97 68 93 96 20 86.3 78 0.9073 0.7410 

3 100 89 97 65 58 90.9 94 0.8861 0.5447 

4 100 83 91 75 43 85.2 93 0.8846 0.5898 

5 98 81 92 80 42 85.3 93 0.8884 0.5789 

6 98 70 92 99 37 86.2 84 0.9238 0.4954 

7 99 50 83 82 38 89.7 81 1 0.5233 

8 95 70 89 28 30 84.1 83 0.8410 1 

9 95 56 74 64 19 84.2 100 1 1 

10 92 62 81 36 53 92.3 93 1 0.7216 

11 96 68 83 100 48 77.3 97 0.9870 0.5052 

12 87 61 94 26 61 77.7 100 0.7826 0.7813 

13 74 21 77 20 65 70.8 71 1 0.5625 

14 87 60 85 28 46 85.1 64 0.8992 0.5949 

15 91 62 89 90 42 78.8 93 0.8915 0.5456 

16 71 27 76 46 60 73.8 90 1 0.5889 

17 88 54 88 30 50 89 82 0.9129 0.7047 

18 79 57 80 33 60 86.2 90 0.9903 0.6633 

19 93 64 99 21 50 97 85 0.8958 0.8134 

20 98 66 94 95 31 61.7 97 0.7262 0.6303 
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DMU X1 X2 X3 Z1 Z2 K Y1 E1 E2 

21 89 29 72 45 31 74.9 72 1 0.6947 

22 86 48 77 45 26 73.7 95 0.8619 1 

23 73 47 76 52 79 74.9 80 1 0.4212 

24 13 42 75 74 15 63.6 55 1 0.6967 

25 90 57 84 25 90 56.4 62 1 0.3621 

26 91 58 72 35 42 82.1 76 1 0.6868 

27 87 30 81 10 50 73.5 90 0.9075 1 

28 76 41 83 23 68 68.8 82 0.8612 0.6083 

29 29 26 75 33 63 62.9 66 1 0.4705 

30 91 43 77 99 46 68.3 63 0.9835 0.3367 

31 70 27 71 99 26 67.8 92 1 0.6723 

32 89 33 71 53 38 58.1 74 0.81781 0.5937 

33 73 40 80 38 59 87 68 1 0.4832 

34 73 51 84 19 70 87.6 80 1 0.6034 

35 89 46 72 99 71 53.2 75 1 0.3221 

36 95 41 72 61 22 61.2 78 0.80158 0.7579 

37 35 18 84.25 68 23 47.1 69 1 0.6175 

 

 

Table 5.9 presents the stage efficiency scores obtained by our two-phase 

procedure as well as the adjusted efficiencies that take into account the potential 

improvements to the overall efficiency. The results show that the phase II discovers 

for some units, namely 2, 22, 27, 31 and 34, that their second stage efficiencies could 

be improved. More specifically, for these DMUs model (5.25) reveals that the optimal 

solutions derived by model (5.23) are weak Pareto and provides new solutions which 

are Pareto optimal. 
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Table 5.9: Results obtained from phases I and II 

DMU θ e1 e2 ê1 ê2 e𝐼 = ê1 e𝐼𝐼  𝑒o 

1 0.9584 0.8551 0.5370 0.8551 0.5370 0.8551 0.8745 0.8551 

2 0.9149 0.8301 0.6780 0.8301 0.6782 0.8301 1 0.8301 

3 0.9931 0.8800 0.5410 0.8800 0.5410 0.8800 0.9007 0.8800 

4 0.9862 0.8724 0.5817 0.8724 0.5817 0.8724 0.9004 0.8724 

5 0.9785 0.8693 0.5665 0.8693 0.5665 0.8693 0.8948 0.8693 

6 0.9639 0.8904 0.4775 0.8904 0.4775 0.8904 0.8680 0.8680 

7 0.9918 0.9918 0.5190 0.9918 0.5190 0.9918 0.9021 0.9021 

8 1 0.8410 1 0.8410 1 0.8410 1 0.8410 

9 1 1 1 1 1 1 1 1 

10 1 1 0.7216 1 0.7216 1 1 1 

11 0.9608 0.9483 0.4854 0.9483 0.4854 0.9483 0.7638 0.7638 

12 0.9758 0.7637 0.7624 0.7637 0.7624 0.7637 0.9535 0.7637 

13 1 1 0.5625 1 0.5625 1 0.9833 0.9833 

14 1 0.8992 0.5949 0.8992 0.5949 0.8992 1 0.8992 

15 0.9678 0.8628 0.5280 0.8628 0.5280 0.8628 0.8719 0.8628 

16 1 1 0.5889 1 0.5889 1 0.9198 0.9198 

17 1 0.9129 0.7047 0.9129 0.7047 0.9129 1 0.9129 

18 0.9892 0.9796 0.6562 0.9796 0.6562 0.9796 0.9356 0.9356 

19 1 0.8958 0.8134 0.8958 0.8134 0.8958 1 0.8958 

20 0.9337 0.6781 0.5885 0.6781 0.5885 0.6781 0.8060 0.6781 

21 1 1 0.6947 1 0.6947 1 1 1 

22 0.9989 0.8610 0.9989 0.8610 1 0.8610 1 0.8610 

23 1 1 0.4212 1 0.4212 1 0.6578 0.6578 

24 1 1 0.6967 1 0.6967 1 0.8913 0.8913 

25 0.8154 0.8154 0.2952 0.8154 0.2952 0.8154 0.4122 0.4122 

26 1 1 0.6868 1 0.6868 1 1 1 

27 0.9974 0.9051 0.9974 0.9051 1 0.9051 1 0.9051 

28 0.9470 0.8156 0.5761 0.8156 0.5761 0.8156 0.8643 0.8156 

29 1 1 0.4705 1 0.4705 1 0.4705 0.4705 

30 0.9736 0.9575 0.3278 0.9575 0.3278 0.9575 0.6595 0.6595 

31 0.9522 0.9522 0.6402 0.9522 0.6427 0.9522 1 0.9522 

32 0.9999 0.8177 0.5936 0.8177 0.5936 0.8177 0.8753 0.8177 

33 1 1 0.4832 1 0.4832 1.0000 0.8932 0.8932 

34 0.9715 0.9715 0.5862 0.9715 0.5913 0.9715 1 0.9715 

35 1 1 0.3221 1 0.3221 1 0.3221 0.3221 

36 0.9761 0.7825 0.7398 0.7825 0.7398 0.7825 0.9469 0.7825 

37 0.9956 0.9956 0.6147 0.9956 0.6147 0.9956 0.6147 0.6147 

 

 

Figure 5.13 depicts the Pareto fronts (curves AB) of four indicative units (namely 

units 6, 28, 11 and 15). The independent (ideal) stage efficiency scores are portrayed 

by points E. The stage efficiencies derived by our two-phase procedure are 

represented by points C, while the extreme points A and B on the Pareto fronts are 

obtained by solving analogous LPs with programs (5.12) and (5.13), see the Appendix 

for details. 
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Fig. 5.13: Pareto fronts and Pareto optimal solutions for 4 indicative units 

 

 

5.1.4 General two-stage process (Type IV) 

The general two-stage process depicted in Figure 5.14 differentiates from the other 

types, in that the first stage produces some final outputs K that exit the system, 

beyond the intermediate measures Z, and the second stage uses some extra external 

inputs L.  
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Fig. 5.14: The two-stage process of Type IV 
 

 
Fig. 5.15: An alternative representation of the two-stage process of Type IV 

 

In this case, the efficiencies of the first and the second stage of DMU j are defined 

as follows: 

𝑒𝑗
1 =

𝑤𝑍𝑗+𝜇𝐾𝑗

𝑣𝑋𝑗
  , 𝑒𝑗

2 =
𝑢𝑌𝑗

𝑤𝑍𝑗+𝛾𝐿𝑗
 

Analogously to the other types of processes elaborated in previous sections, the 

two-phase procedure for estimating the stage efficiencies as well as the overall system 

efficiency is as follows:  

𝑚𝑎𝑥 𝑒1 =
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀, 𝑔 ≥ 𝜀  

(5.28) 



PhD Thesis – G. Koronakos 

166 |   

By applying the C-C transformation with respect the first objective function we derive 

the following program: 

 

𝑚𝑎𝑥 𝑒1 = 𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

 

𝑚𝑎𝑥 𝑒2 =
𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀, 𝜇 ≥ 𝜀 

(5.29) 

 

Phase I: 

𝑚𝑎𝑥 𝜃 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

≥ 𝜃𝐸𝑗0

1  

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

≥ 𝜃𝐸𝑗0

2  

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀, 𝜇 ≥ 𝜀, 𝜃 ≥ 0 

(5.30) 

 

Let (θ*, v*, w*, u*, γ*, μ*) be an optimal solution of model (5.30), then the stage 

efficiencies are calculated as follows: 

 

𝑒𝑗0

1∗ =
𝑤∗𝑍𝑗0+𝜇∗𝛫𝑗0

𝑣∗𝑋𝑗0

= 𝑤∗𝑍𝑗0
+ 𝜇∗𝛫𝑗0

,  𝑒𝑗0

2∗ =
𝑢∗𝑌𝑗0

𝑤∗𝑍𝑗0
+𝛾∗𝐿𝑗0

 

 

The phase I solution is weakly Pareto optimal to the bi-objective program (5.29): 
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Phase II: 

Solve the following linear program: 

𝑚𝑎𝑥  𝑠1 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

− 𝑠1 = 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0
− 𝑒𝑗0

2∗(𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

) ≥ 0 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀, 𝜇 ≥ 𝜀 

0 ≤ 𝑠1 ≤ 𝐸𝑗0

1 −𝑒𝑗0

1∗ 

(5.31) 

 

Let (𝑠̂1, 𝑣, 𝑤̂, 𝑢̂, 𝛾, 𝜇̂) be the optimal solution of (5.31). If 𝑠̂1 > 0, then the solution is 

Pareto optimal and the stage efficiency scores are:  

𝑒̂𝑗0

1 =
𝑤̂𝑍𝑗𝑜

+𝜇̂𝐾𝑗𝑜

𝑣̂𝑋𝑗𝑜

 , 𝑒̂𝑗0

2 =
𝑢̂𝑌𝑗𝑜

𝑤̂𝑍𝑗𝑜
+𝛾̂𝐿𝑗𝑜

 

Otherwise, solve the following program to get a Pareto optimal solution 

(𝑠′
2, 𝑣′, 𝑤′, 𝑢′, 𝛾′, 𝜇′) and the stage efficiency scores: 

𝑚𝑎𝑥  𝑠2 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

≥ 𝑒𝑗0

1∗ 

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

− 𝑠2 = 𝑒𝑗0

2∗ 

𝑣𝑋𝑗0
= 1 

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀, 𝜇 ≥ 𝜀 

0 ≤ 𝑠2 ≤ 𝐸𝑗0

2 − 𝑒𝑗0

2∗ 

 

(5.32) 

𝑒′𝑗0

1 =
𝑤′𝑍𝑗𝑜

+𝜇′𝐾𝑗𝑜

𝑣′𝑋𝑗𝑜

 , 𝑒𝑗0

′2 =
𝑢′𝑌𝑗𝑜

𝑤′𝑍𝑗𝑜
+𝛾′𝐿𝑗𝑜
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Model (5.32) is non-linear but it can be solved by bisection search in terms of s2 in 

the bounded interval [0, 𝐸𝑗0

2 − 𝑒𝑗0

2∗]. Obviously, if the stage efficiency scores, derived 

from the phase I, are both equal to the corresponding independent efficiency scores, 

then there is no need to run the phase II since the Pareto front degenerates to the 

point (𝛦𝑗0

1 , 𝛦𝑗0

2 ).  

As we already remarked when extra inputs or outputs exist then using the 

minimum of e1, e2 the system efficiency might underestimate it. Indeed, when K is 

missing, as in Fig 5.5, the system should benefit from a potential economical level of 

L. Analogously when the external input L to the second stage is missing, as in Fig 

5.10, the overall efficiency of the system should be contributed by a potential 

prominent high output on K. However these relative advantages of the unit against its 

peers on L and K may be ignored when taking the overall efficiency as the minimum 

of the stage efficiencies. In a general two-stage process, these effects must be 

considered jointly, in a manner that the potential advantages-disadvantages of one 

stage, caused by the extra inputs L and outputs K, are transferred to the other stage. 

Given the optimal solution (𝑣, 𝑤̂, 𝑢̂, 𝛾, 𝜇̂), as obtained from the two-phase procedure 

above, the stage efficiencies are adjusted to bring into play these in favor of the 

system efficiency as follows: 

𝑒𝑗0

𝐼 =
𝑤̂𝑍𝑗𝑜

+𝜇̂𝐾𝑗𝑜
+𝛾̂𝐿𝑗𝑜

𝑣̂𝑋𝑗𝑜
+𝛾̂𝐿𝑗𝑜

, 𝑒𝑗0

𝐼𝐼 =
𝑢̂𝑌𝑗𝑜

+𝜇̂𝐾𝑗𝑜

𝑤̂𝑍𝑗𝑜
+𝜇̂𝐾𝑗𝑜

+𝛾̂𝐿𝑗𝑜

 (5.33) 

Figure 5.16a depicts a modification of the network structure of Figure 5.14, the 

adjusted stage efficiencies that correspond to the modified efficiencies are given in 

(5.33). The valued input 𝛾𝐿 to the second stage is used as an input and, at the same 

time, as an output from the first stage. So, the term 𝛾𝐿 is added to the numerator and 

to the denominator of the original efficiency ratio of stage-1 to obtain the modified 

efficiency score 𝑒𝑗0

𝐼 . Analogous is the treatment of the valued external output 𝜇̂𝐾 of 

the first stage in order to obtain the modified efficiency score 𝑒𝑗0

𝐼𝐼 of the second stage. 

The modified structure in Figure 5.16b is an alternative, yet equivalent representation 

of the structure in Figure 5.16a, introduced by Kao (2014a) to deal with general multi-

stage systems. In particular, two dummy processes, labelled 3 and 4, were added in a 

parallel configuration with the original stages 1 and 2 respectively. As it is noticed, 

each subsystem has a parallel structure composed of one real and one dummy process. 
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(a) 

 
(b) 

Fig. 5.16: The modified process of Figure 5.14 

 

The adjusted efficiency scores 𝑒𝑗0

𝐼  and 𝑒𝑗0

𝐼𝐼  are related to their original 

counterparts 𝑒̂𝑗0

1  and 𝑒̂𝑗0

2  as follows:  

𝑒𝑗0

𝐼 =
𝑣𝑋𝑗0

𝑣𝑋𝑗0
+ 𝛾𝐿𝑗0

× 𝑒̂𝑗0

1 +
𝛾𝐿𝑗0

𝑣𝑋𝑗0
+ 𝛾𝐿𝑗0

× 1 

𝑒𝑗0

𝐼𝐼 =
𝑤̂𝑍𝑗0

+ 𝛾𝐿𝑗0

𝑤̂𝑍𝑗0
+ 𝜇̂𝐾𝑗0

+ 𝛾𝐿𝑗0

× 𝑒̂𝑗0

2 +
𝜇̂𝐾𝑗0

𝑤̂𝑍𝑗0
+ 𝜇̂𝐾𝑗0

+ 𝛾𝐿𝑗0

× 1 

(5.34) 

That is, 𝑒𝑗0

𝐼  is a weighted average of the original efficiency score 𝑒̂𝑗0

1  and the efficiency 

score of the dummy process 3 associated to the first stage, which is 1. Analogous is 

the derivation of 𝑒𝑗0

𝐼𝐼  as a function of  𝑒̂𝑗𝑜

2
. Once the adjusted efficiency scores are 

obtained, the overall efficiency of the evaluated unit is 𝑒𝑗0

𝑜 = 𝑚𝑖𝑛 {𝑒𝑗𝑜

𝐼 , 𝑒𝑗𝑜

𝐼𝐼 }. As long as 

the calculation of the adjusted efficiency scores are based on concepts introduced by 

Kao (2014a), our results are comparable to those obtained by applying his 

methodology (see illustration below). As already noted though, in essence our 

methodology differs in the optimality criterion used. The optimality criterion in the 

“weak-link” approach is to maximize the lowest of the stage efficiencies, following a 

max-min modelling technique, whilst the optimality criterion in Kao (2014a) is to 

v 

1 2 

3 4 

Subsystem I Subsystem II 

X 

L 

L L 

X 
Z, K Z, L Y 

Y 

K 

K K 
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maximize the overall efficiency. The notions in Kao (2014a) are consistent with the 

multiplicative decomposition approach (Kao and Hwang, 2008), where the overall 

efficiency is defined as the ratio of the total virtual external output (𝑢𝑌 + 𝜇𝛫) to the 

total virtual external input (𝑣𝑋 + 𝛾𝐿). 

Illustration 

As an illustrative example we use a synthetic case with 30 DMUs, three inputs to 

stage-1 (X1–X3), two intermediate measures (Z1, Z2), two final outputs from stage-1 

(K1, K2), two extra inputs to stage-2 (L1, L2) and two final outputs from stage-2 (Y1, 

Y2). Table 5.10 exhibits the data, which are drawn column-wise from a uniform 

distribution in the intervals given in the last row of Table 5.10. 

 

Table 5.10: Synthetic data for the general two-stage process 

DMU X1 X2 X3 Z1 Z2 K1 K2 L1 L2 Y1 Y2 

1 22.3 13.2 54.6 110.1 66.1 21.8 44.6 18 31 13.3 12.5 

2 68.3 8.3 15.8 75.4 116.4 19.8 12 19.6 25.8 2.4 18.2 

3 52 19.2 31.2 94.3 59.9 47.3 47.4 11.5 22.5 2.3 36 

4 31.8 12 40.3 66.4 127.2 10.5 35.8 16.8 37.1 3 19.5 

5 95.3 12 29 108.9 52.3 15 22.5 14 27.2 15.8 16.7 

6 52.8 6.1 22.6 102.4 78.8 69.6 27 14.8 44.9 12.6 20.4 

7 50.5 9.3 48.7 124.6 120.6 52.2 49.8 5.9 38.5 9.5 20.5 

8 80.1 17.4 58.4 64.5 131.2 37.7 14.6 10.3 65.6 16.7 39.9 

9 53.9 14 36.9 129.8 122.1 60.9 24.1 11.9 49.5 16.8 15 

10 20.9 9.5 48.8 66.4 132.5 12.2 68.7 10.1 54.5 10 28.3 

11 82.5 7.1 16.8 71.9 138.9 47.7 60.7 5.6 19.1 19.7 33.6 

12 27 10.6 25.6 51.9 84.4 47.3 63.3 11 39.6 12.2 43.7 

13 49.6 10.7 20.6 125.5 97.3 15.3 32.6 17.7 38.9 18.9 44.7 

14 55.7 19.4 46.6 91.5 117.3 79 60.3 11.8 26.4 7.5 38.7 

15 55.1 18.2 52.5 90.1 61 12.2 24.9 17 33.5 17.2 43.9 

16 66.3 8 34.9 131.1 63.7 57 30.7 10.7 52.5 11.2 15.5 

17 93.3 6.3 43.5 53.5 133.9 38.6 32.1 13.4 45 19.7 15.4 

18 10.8 11.9 31.5 118.7 89.4 34.9 23.6 11 67.3 8 20.5 

19 98.5 6.8 21.3 75.4 133 28 28.9 16.1 26.7 9.5 20.3 

20 27.8 17.1 24.9 81 52.2 30.6 14.3 16.9 35.3 17.4 15.4 

21 42 7.2 59.7 98.4 147.5 29.2 39.4 14.8 42.3 10.7 44.5 

22 98.7 8.5 51 132.8 60.6 27.3 69.3 19.8 61.9 19.9 33.3 

23 53.5 15.6 25.7 93.5 121.6 31.3 34.6 19.7 56.5 13 47.6 

24 25.1 16.7 56.8 81.6 145.6 62.1 74.8 11.7 17.4 7.6 29.9 

25 96.3 15.3 45.1 120.5 133.6 25.7 56.8 19.7 16.9 14.9 38.5 

26 97.9 6.8 53.1 103.8 89.8 45.7 49.6 17.7 56.3 4.9 12.5 

27 37.4 15 15.5 63.1 128.2 53.1 22 5.5 57.7 5.8 11.8 

28 70 12.8 21.5 126.1 97.2 28.3 44.3 11.4 56.7 4.9 47.2 

29 24 5.8 33.8 91.2 82.6 73.7 76.2 19.4 42.4 7.8 10.3 

30 48.6 18.6 55.9 126 73.8 15.4 57.6 17.1 76.2 13.2 25.6 

 [10,100] [5,20] [10,60] [50,150] [50,150] [10,80] [10,80] [5,20] [10,80] [2,20] [10,50] 
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Table 5.11 below exhibits the independent stage efficiency scores as well as the 

results obtained by applying the proposed max-min approach. 

 

 

Table 5.11: Results obtained from phase II (same as from phase I) 

DMU E1 E2 θ ê1 ê2 eI eII eo 

1 0.7338 0.7327 0.9199 0.6750 0.6740 0.7326 0.7607 0.7326 

2 1 0.4751 0.9792 0.9792 0.4652 0.9895 0.4732 0.4732 

3 0.7608 1 0.9608 0.7310 0.9608 0.7987 0.9735 0.7987 

4 0.8938 0.4268 0.8715 0.7789 0.3719 0.8790 0.3719 0.3719 

5 0.6914 1 0.8272 0.5719 0.8272 0.6309 0.8272 0.6309 

6 1 0.6708 1 1 0.6708 1 0.9507 0.9507 

7 0.8812 0.6316 0.9609 0.8467 0.6069 0.9207 0.6117 0.6117 

8 0.5496 0.9796 0.9120 0.5012 0.8934 0.5780 0.8934 0.5780 

9 0.8656 0.7555 0.9554 0.8270 0.7218 0.8700 0.7253 0.7253 

10 1 0.6316 1 1 0.6316 1 0.9089 0.9089 

11 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 

13 1 0.8690 0.9677 0.9677 0.8409 0.9888 0.8409 0.8409 

14 0.6687 0.9337 0.9999 0.6686 0.9336 0.6690 0.9997 0.6690 

15 0.4215 1 0.9804 0.4132 0.9804 0.6281 0.9804 0.6281 

16 0.9813 0.7660 0.7669 0.7525 0.5874 0.7897 0.6318 0.6318 

17 1 1 0.9344 0.9344 0.9344 0.9496 0.9383 0.9383 

18 1 0.5189 1 1 0.5189 1 0.5538 0.5538 

19 1 0.5096 0.9757 0.9757 0.4972 0.9890 0.4972 0.4972 

20 0.7676 1 0.9261 0.7109 0.9261 0.7549 0.9317 0.7549 

21 1 0.7871 0.9969 0.9969 0.7846 0.9987 0.7846 0.7846 

22 0.9591 1 0.8374 0.8031 0.8374 0.8264 0.8437 0.8264 

23 0.8255 0.7260 0.9899 0.8171 0.7186 0.9100 0.7367 0.7367 

24 1 0.9035 0.9597 0.9597 0.8671 0.9668 0.9571 0.9571 

25 0.6613 1 1 0.6613 1 0.7661 1 0.7661 

26 0.9447 0.2427 0.9727 0.9189 0.2361 0.9299 0.2688 0.2688 

27 1 0.3791 1 1 0.3791 1 0.7900 0.7900 

28 1 1 0.9030 0.9030 0.9030 0.9561 0.9143 0.9143 

29 1 0.3762 1 1 0.3762 1 0.9807 0.9807 

30 0.6246 0.6813 0.8876 0.5544 0.6047 0.6022 0.7161 0.6022 
 

 

The results obtained by applying the methodology proposed in Kao (2014a) are 

presented in Table 5.12. The two approaches deem the same DMUs as overall 

efficient, namely DMUs 11 and 12. As regards the individual stage efficiencies our 

approach reckons as efficient seven units in stage-1 (i.e. 6, 10, 11, 12, 18, 27 and 29) 

and three in stage-2 (i.e. 11, 12, and 25), while the approach of Kao (2014a) deems 
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efficient nine units  in stage-1 (i.e. 6, 10, 11, 12, 13, 18, 21, 27 and 29) and five in 

stage-2 (i.e. 5, 11, 12, 20, 25). 

 

Table 5.12: Results obtained from applying the methodology of Kao (2014a) 

DMU e1 e2 EI EII e0 

1 0.6883 0.6161 0.6971 0.8960 0.6246 

2 0.9565 0.4751 0.9783 0.4902 0.4796 

3 0.6375 0.8472 0.9998 0.8472 0.8471 

4 0.3856 0.3971 0.3858 0.9990 0.3855 

5 0.3873 1 0.5770 1 0.5770 

6 1 0.5642 1 0.9999 0.9999 

7 0.8020 0.6315 0.9007 0.6455 0.5814 

8 0.5419 0.8522 0.7791 0.8527 0.6643 

9 0.7223 0.7498 0.7701 0.8361 0.6439 

10 1 0.4816 1 0.9999 0.9999 

11 1 1 1 1 1 

12 1 1 1 1 1 

13 1 0.8183 1 0.8425 0.8425 

14 0.6137 0.7925 0.9994 0.7925 0.7921 

15 0.3624 0.8614 0.8470 0.8614 0.7296 

16 0.6033 0.4926 0.6033 0.9998 0.6032 

17 0.9395 0.9300 0.9538 0.9342 0.8910 

18 1 0.3284 1 0.9998 0.9998 

19 0.8792 0.5096 0.9350 0.5378 0.5028 

20 0.6679 1 0.7371 1 0.7371 

21 1 0.7842 1 0.7842 0.7842 

22 0.6347 0.9516 0.7349 0.9612 0.7064 

23 0.8094 0.7190 0.9148 0.7527 0.6886 

24 0.9331 0.8448 0.9331 0.9999 0.9330 

25 0.5644 1 0.9997 1 0.9997 

26 0.5552 0.2146 0.5553 0.9996 0.5551 

27 1 0.2806 1 0.9998 0.9998 

28 0.7393 0.9714 0.9075 0.9714 0.8815 

29 1 0.3473 1 0.9998 0.9998 

30 0.4752 0.6728 0.5892 0.7602 0.4479 

 

Figure 5.17 exhibits the Pareto fronts (curves AB) of four indicative units 

(namely, units 1, 5, 16 and 30) shown in Table 5.11. The points E represent the ideal 

points whose coordinates are the independent efficiency scores of the two stages, 

whereas the points C correspond to the assessed stage efficiency scores. The points A 

and B, which represent the extreme points on the Pareto fronts, are obtained by 

solving analogous LPs to models (5.12) and (5.13), these models are given in the 
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Appendix. Notice that the points C are formed by the intersection of the ray from the 

origin to the point E with the Pareto front. 

 

 
Fig. 5.17: Pareto fronts and Pareto optimal solutions for four indicative units 

 

Before concluding remarks are drawn, it is worth having a more detailed portrayal 

about the usefulness of the phase II of our approach. For this purpose we create a 

hypothetical scenario by employing the unit 24. The solution obtained by model 

(5.30) for the unit 24 is depicted, in Figure 5.18, on the point B(0.9597, 0.8671) which 

lies on the Pareto front. Therefore, the phase II did not alter this solution. However, in 

case different weights than the ideal efficiency scores will be used in the max-min 

model (5.30) then a different solution will derive. For instance, the two extreme points 

A and F are obtained by using the following weights: 

 

 



PhD Thesis – G. Koronakos 

174 |   

For the point 𝐴(𝑁1, 𝐸2):  𝑞1
𝐴 =

𝐸2

𝑁1+𝐸2
 , 𝑞2

𝐴 =
𝑁1

𝑁1+𝐸2
    

For the point 𝐹(𝐸1, 𝑁2): 𝑞1
𝐹 =

𝑁2

𝑁2+𝐸1 , 𝑞2
𝐹 =

𝐸1

𝑁2+𝐸1 

Bringing into play any weighting scheme between (𝑞1, 𝑞2)  where 𝑞1 ∈ [𝑞1
𝐴, 𝑞1

𝐹]  and 

𝑞2 ∈ [𝑞2
𝐴, 𝑞2

𝐹], will yield a solution that is located on the boundary AF.  Notice, that the 

weak efficient solutions lie along the boundary line segment [C F), where the 

parenthesis signifies that F is an open endpoint. The point F depicts a Pareto optimal 

solution. Assuming for unit 24, the weights 𝑞1 = 1 and 𝑞2 = 0.8997 instead of  𝑞
1

=

𝐸24 
1  and 𝑞2 =  𝐸24

2  in model (5.30), then the phase I yields the stage efficiencies 𝑒24
1 =

0.9623 and 𝑒24
2 = 0.8658, which in Figure 5.18 are represented by point D(0.9623, 

0.8658). Point D lies on the segment CD of the boundary which is parallel to the 

horizontal axis, thus point D is weak Pareto. This issue is treated by the phase II of 

our method. Indeed, by employing model (5.31) of phase II we derive the Pareto 

optimal point F(1, 0.8658), which indicates that the efficiency of the first stage is 

improved. This example demonstrates the potential issues that our phase II can deal 

with. 

 
Fig. 5.18: Pareto front and optimal solution for unit 24 
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Conclusion 

We introduced in this chapter a novel approach to two-stage network DEA based on 

our composition approach presented in Chapter 4. We used a multi-objective 

formulation and a max-min programming technique to assess the individual stage 

efficiencies and the overall system efficiency, by maximizing the lowest of the stage 

efficiencies (weak link). The two-phase procedure that we proposed provides Pareto 

optimal solutions and a unique point on the Pareto front in the objective functions 

space, i.e. unique efficiency scores for the two-stages. The search direction is driven 

by the assumption that the efficiency scores of the two stages are proportional to their 

independent counterparts. Thus, a point is located on the Pareto front along this 

direction by maximizing the minimum of the stage efficiency scores. Then the system 

efficiency is given as the minimum of the stage efficiencies. Although the above 

assumption is rational, it is not restrictive in our models. External priorities for the 

two-stages might be assumed to locate a different point on the Pareto front, i.e. 

different stage and overall efficiencies. A systematic investigation of the sensitivity of 

the weak link was also provided in order to identify adequately the source of 

inefficiency. An issue that needs further investigation is the derivation of efficient 

projections for the inefficient units directly from the proposed models. Our approach 

is developed to deal with the four types of two-stage processes (as those categorized 

in Chapter 3). A subject for future research is the extension of the weak-link approach 

to general network structures involving series and parallel processes. 
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Chapter 6  

Two-stage Network DEA when intermediate 

measures can be treated as outputs from the second 

stage 

In this chapter we revisit the work of Aviles-Sacoto et al (2015) to provide an alternative 

modeling approach to the assessment of the efficiencies of undergraduate business programs, 

in the context of network DEA, in a peculiar situation where one of the intermediate 

measures must be considered as input to the second stage and, at the same time, as output of 

the second stage. The motivating situation in Aviles-Sacoto et al (2015) refers to the 

assessment of the efficiency of undergraduate business programs viewed as two-stage 

processes, as depicted schematically in Figure 6.1. At the first stage the assessment is focused 

on the outcomes which the students achieve before graduation while the second stage 

captures the accomplishments after graduation.  

 

Fig. 6.1: The output Z3 from stage-1 is considered simultaneously as input and output of 

stage-2 
 

Aviles-Sacoto et al (2015) viewed the undergraduate business programmes as two stage 

processes and they studied 37 business schools. Table 6.1 exhibits the variables that are taken 

into account with correspondence to Figure 6.1. A special case of their setup is already 

examined in section 5.1.3 of previous chapter, where we applied the “weak-link” approach 

and the complete data set of studied 37 schools of business is also given (Table 5.8). 

 

X1 

Stage 1 Stage 2 
Z2 

Y1 

 DMU 

X2 

X3 

Z3 

Z3 

Z1 
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Table 6.1: Variables of the undergraduate business programs 

External Inputs (X) Intermediate Measures (Z) External Outputs (Y) 

Percentage of applicants 

rejected (X1) 

Percentage of accepted 

applicants enrolled (Z1) 

Percentage of students who get 

jobs (Y1) 

Academic rating (X2) 
Percentage of students receiving 

institutional scholarships (Z2) 

Percentage of students receiving 

internships (Z3) 

Percentage of students in top 

25% of their classes (X3) 

Percentage of students receiving 

internships (Z3) 
 

 

Aviles-Sacoto et al (2015) describe convincingly that the output Z3 of the first stage 

should be considered both as an input to the second stage and as an output from the second 

stage (external output). Their modeling approach is based on the additive decomposition 

method of Chen et al (2009b), according to which the overall efficiency of the unit is defined 

as a weighted arithmetic average of the stage efficiencies. However, asserting that the 

conventional additive decomposition methodology is not applicable to such a peculiar 

situation (we will comment on this issue in the next section), they define the efficiencies of 

the two stages in an output-oriented VRS setting, in compliance of the modified network 

structure exhibited in Figure 6.2, as follows: 

 

𝑒1 =
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1

∑ 𝜂𝑑𝑧𝑑𝑜 + 𝜂3𝑧3𝑜
2
𝑑=1

, 𝑒2 =
∑ 𝜂𝑑𝑧𝑑𝑜 + 𝑢22

𝑑=1

𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜 − ℎ𝑧3𝑜
 (6.1) 

and the overall efficiency of the unit as a weighted arithmetic average of the stage 

efficiencies: 

𝑒0 = 𝑤1𝑒1 + 𝑤2𝑒2 =
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1 + ∑ 𝜂𝑑𝑧𝑑𝑜 + 𝑢22
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜 + 𝜂3𝑧3𝑜
2
𝑑=1 + 𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜 − ℎ𝑧3𝑜

 (6.2) 

with appropriate weights: 

𝑤1 =
∑ 𝜂𝑑𝑧𝑑𝑜 + 𝜂3𝑧3𝑜

2
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜 + 𝜂3𝑧3𝑜
2
𝑑=1 + 𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜 − ℎ𝑧3𝑜

 

𝑤2 =
𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜 − ℎ𝑧3𝑜

∑ 𝜂𝑑𝑧𝑑𝑜 + 𝜂3𝑧3𝑜
2
𝑑=1 + 𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜 − ℎ𝑧3𝑜

 

(6.3) 



Chapter 6: Two-stage Network DEA when intermediate measures can be treated as outputs from the 2nd stage 

    | 179 

 
Fig. 6.2: The modified network structure 

 

On the basis of the above definitions, the following mixed-integer linear program with binary 

variables is proposed to assess the overall and the stage efficiencies: 

 

𝑒𝑜 = 𝑚𝑖𝑛 ∑ 𝜐𝑖𝑥𝑖𝑜 + 𝜇1 + ∑ 𝜋𝑑𝑧𝑑𝑜 + 𝜇22
𝑑=1

3
𝑖=1  

(6.4) 

s.t. 

∑ 𝜋𝑑𝑧𝑑𝑜 + 𝛿𝑧3𝑜 + 𝜇𝑦1𝑜 + 𝛾𝑧3𝑜 − 𝛽𝑧3𝑜 = 1

2

𝑑=1

 

∑ 𝜐𝑖𝑥𝑖𝑗 + 𝜇1 − ∑ 𝜋𝑑𝑧𝑑𝑗 −

2

𝑑=1

3

𝑖=1

𝛿𝑧3𝑗 ≥ 0,    ∀𝑗    

∑ 𝜋𝑑𝑧𝑑𝑗 + 𝜇2

2

𝑑=1

−  𝜇𝑦1𝑗 − 𝛾𝑧3𝑗 + 𝛽𝑧3𝑗 ≥ 0,     ∀𝑗 

𝛿 − 𝛾 − 𝛽 = 0 

𝛾 − 𝛭𝑒 ≤ 0 

𝛽 − 𝛭𝑓 ≤ 0 

𝑒 + 𝑓 = 1 

𝜐𝑖, 𝜋𝑑 , 𝜇, 𝛿, 𝛾, 𝛽 ≥ 0; 𝑒, 𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 

𝜇1, 𝜇2 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

 

Model (6.4) is based on the output oriented VRS variant of the additive decomposition model 

of Chen et al (2009b). The variables 𝑣𝑖 , 𝜂𝑑 , 𝜂3, 𝑢1, 𝑔, ℎ, 𝑢1, 𝑢2 in the above ratio forms (6.1) 

and (6.2) of the individual and the overall stage efficiencies are in correspondence with the 

v1X1 

Stage 1 Stage 2 η2Z2 

u1Y1 

 DMU 

v2X2 

v3X3 

η3Z3 

gZ3 

-hZ3 

η1Z1 
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variables 𝜐𝑖, 𝜋𝑑 , 𝛿, 𝜇, 𝛾, 𝛽, 𝜇1, 𝜇2  in the linear model (6.4), obtained after applying the 

transformation of Charnes and Cooper (1962). 

 

6.1 Comments 

While the definition of the efficiency of stage-1 in (6.1) is obvious, in the second stage the 

intermediate measure Z3 is moved from the input to the output side with a negative sign (-

hZ3). So, in the denominator of the efficiency ratio of stage-2, which in fact represents the 

total virtual output of the second stage, the Z3 is counted twice, once with a positive and once 

with a negative sign. This was deemed necessary by the authors after their observation that 

putting Z3 in both the numerator and the denominator of the efficiency ratio of the second 

stage, as in the following model (6.5), leads to erroneous results, in the sense that the second 

stage will be always efficient. This argument is supported by assuming a feasible solution 

where all the variables but g and h are set to zero and g=h. Although such a solution is 

optimal when the second stage is assessed independently, in a joint assessment, as that 

imposed by the additive decomposition method, this is not necessarily true. This is validated 

in the next section. Moreover, forcing the free variable u2 to take a zero value does not allow 

the unit to freely exhibit increasing or decreasing returns-to-scale. 

 

𝑚𝑖𝑛 𝑒2 =
∑ 𝜂𝑑𝑧𝑑𝑜 + ℎ𝑧3𝑜 + 𝑢22

𝑑=1

𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜
 

𝑠. 𝑡. 

∑ 𝜂𝑑𝑧𝑑𝑗 + ℎ𝑧3𝑗 + 𝑢22
𝑑=1

𝑢1𝑦1𝑗 + 𝑔𝑧3𝑗
≥ 1  ∀𝑗 

 𝑢1, 𝜂𝑑 , 𝑔, ℎ ≥ 0, 𝑢2 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

(6.5) 

 

The last four constraints in (6.4) designate the role of intermediate measure Z3. In 

particular, when in the optimal solution the binary variables take the values 𝑒 = 0, 𝑓 = 1, 

then 𝛾 = 0, 𝛽 = 𝛿  and the intermediate measure Z3 is considered as input to stage-2, as 

depicted in Figure 6.3(a). Notice again, that Z3 is moved to the output side but with a negative 

sign (-βZ3). In the case that the binary variables take the values 𝑒 = 1, 𝑓 = 0, then 𝛽 = 0, 𝛾 =
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𝛿 and the intermediate measure Z3 is considered as output from stage-2, as depicted in Figure 

6.3(b). In every case, the weights assigned to Z3 are the same, no matter if it is considered as 

input or as output. 

 

 

(a) Z3 is input to stage-2 

 

 
(b) Z3 is output from stage-2 

Fig. 6.3: The network structures designated by the role of Z3 
 

 

Our main concern is that the assessments made by model (6.4) differentiate and diverge 

from the initial argument that the intermediate measure Z3 should be an input to the second 

stage and at the same time an output from that stage. Actually, the modelling approach 

followed leads to a different situation where Z3 is either an input to or an output from the 

second stage. In the next section, we present the appropriate model that complies with the 

original situation set in Aviles-Scoto et al (2015). 

 

υ1X1 

Stage 1 Stage 2 π2Z2 

µY1 

 DMU 

υ2X2 

υ3X3 

δZ3 
-βZ3 

π1Z1 

υ1X1 

Stage 1 Stage 2 π2Z2 

µY1 

 DMU 

υ2X2 

υ3X3 

δZ3 

γZ3 

π1Z1 
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6.2 Modelling the situation where some outputs of 

the first stage are inputs to the second stage and 

outputs from that stage 

Assuming an output orientation in both stages, we define the efficiencies of stage-1 and 

stage-2 as follows: 

 

𝑒1 =
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1

∑ 𝜂𝑑𝑧𝑑𝑜
3
𝑑=1

, 𝑒2 =
∑ 𝜂𝑑𝑧𝑑𝑜 + 𝑢23

𝑑=1

𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜
 (6.6) 

Then the overall efficiency, as per the additive model, is  

𝑒0 = 𝑤1𝑒1 + 𝑤2𝑒2 =
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1 + ∑ 𝜂𝑑𝑧𝑑𝑜 + 𝑢23
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜
3
𝑑=1 + 𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜

 

(6.7) 

with weights: 

𝑤1 =
∑ 𝜂𝑑𝑧𝑑𝑜

3
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜 +3
𝑑=1 𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜

 

𝑤2 =
𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜

∑ 𝜂𝑑𝑧𝑑𝑜
3
𝑑=1 + 𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜

 

(6.8) 

The following fractional program provides the overall efficiency of the evaluated DMU: 

𝑒0 = 𝑚𝑖𝑛
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1 + ∑ 𝜂𝑑𝑧𝑑𝑜 + 𝑢23
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜
3
𝑑=1 + 𝑢1𝑦1𝑜 + 𝜂3𝑧3𝑜

 

𝑠. 𝑡. 

∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑢13
𝑖=1

∑ 𝜂𝑑𝑧𝑑𝑗
3
𝑑=1

≥ 1  ∀𝑗 

∑ 𝜂𝑑𝑧𝑑𝑗 + 𝑢23
𝑑=1

𝑢1𝑦1𝑗 + 𝜂3𝑧3𝑗
≥ 1  ∀𝑗 

𝑢1, 𝜂𝑑 , 𝑣𝑖 ≥ 0, 𝑢1, 𝑢2 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛

 

(6.9) 
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The linear model below, as derived by the Charnes-Cooper transformation, estimates the 

overall efficiency of the DMU in compliance with the original network structure depicted in 

Figure 6.1. 

 

𝑒0 = 𝑚𝑖𝑛 ∑ 𝜐𝑖𝑥𝑖𝑜 + 𝜇1 + ∑ 𝜋𝑑𝑧𝑑𝑜+𝜇2

3

𝑑=1

3

𝑖=1

 

s.t. 

∑ 𝜋𝑑𝑧𝑑𝑜 + 𝜇𝑦1𝑜 + 𝜋3𝑧3𝑜 = 1

3

𝑑=1

 

∑ 𝜐𝑖𝑥𝑖𝑗 + 𝜇1 − ∑ 𝜋𝑑𝑧𝑑𝑗

3

𝑑=1

3

𝑖=1

≥ 0,    ∀𝑗 

∑ 𝜋𝑑𝑧𝑑𝑗 + 𝜇2

3

𝑑=1

−  𝜇𝑦1𝑗 − 𝜋3𝑧3𝑗 ≥ 0,     ∀𝑗 

𝜐𝑖, 𝜋𝑑 , 𝜇 ≥ 0; 𝜇1, 𝜇2 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

(6.10) 

 

Table 6.2 exhibits the results obtained from model (6.10). Columns 2-4 show the overall 

efficiency and the weights w1 and w2 that were assumed, whereas columns 5-6 show the 

efficiencies of the two stages. Notice here that applying the leader/follower notion as 

introduced in Chen et al (2009b), as a means to estimate extreme values for the stage 

efficiencies, we have got identical efficiency scores for the two stages, which means that the 

decomposition of the overall efficiency to the stage efficiencies is unique. Notice also that, as 

advised in the original paper of Aviles-Sacoto et al (2015), we have carried out the analysis 

by assuming that each one of the weights w1 and w2, which are used to aggregate the stage 

efficiencies, will take at least a value of  0.1. 
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Table 6.2: Results obtained from model (6.10) 

DMU 𝑒0 𝑤1 𝑤2 𝑒1 𝑒2 

1 105.89 0.10 0.90 108.04 105.65 

2 105.29 0.50 0.50 110.58 100.00 

3 102.68 0.47 0.53 100.00 105.03 

4 105.29 0.47 0.53 106.38 104.31 

5 105.31 0.47 0.53 106.04 104.65 

6 105.20 0.50 0.50 110.41 100.00 

7 100.17 0.50 0.50 100.34 100.00 

8 106.12 0.50 0.50 112.23 100.00 

9 100.00 0.10 0.90 100.00 100.00 

10 100.00 0.50 0.50 100.00 100.00 

11 104.24 0.10 0.90 108.37 103.78 

12 101.66 0.10 0.90 116.62 100.00 

13 100.00 0.50 0.50 100.00 100.00 

14 104.03 0.50 0.50 108.06 100.00 

15 107.67 0.10 0.90 107.94 107.64 

16 100.00 0.50 0.50 100.00 100.00 

17 101.75 0.50 0.50 103.49 100.00 

18 101.23 0.50 0.50 102.46 100.00 

19 100.00 0.50 0.50 100.00 100.00 

20 106.59 0.10 0.90 129.38 104.06 

21 100.00 0.50 0.50 100.00 100.00 

22 105.79 0.10 0.90 117.28 104.51 

23 104.60 0.50 0.50 109.20 100.00 

24 100.00 0.50 0.50 100.00 100.00 

25 130.22 0.62 0.38 126.30 136.57 

26 100.00 0.50 0.50 100.00 100.00 

27 103.38 0.50 0.50 106.77 100.00 

28 113.53 0.50 0.50 127.06 100.00 

29 100.00 0.50 0.50 100.00 100.00 

30 111.72 0.50 0.50 123.44 100.00 

31 100.00 0.50 0.50 100.00 100.00 

32 108.35 0.50 0.50 116.70 100.00 

33 100.00 0.50 0.50 100.00 100.00 

34 100.00 0.50 0.50 100.00 100.00 

35 120.67 0.63 0.37 100.00 155.50 

36 113.63 0.50 0.50 127.25 100.00 

37 100.00 0.50 0.50 100.00 100.00 

 

In the next section we provide a model to assess the efficiency of the units under the 

assumption that the intermediate measure Z3 is either input to the second stage or output 

from that stage. 
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6.3 Modelling the situation where some outputs of 

the first stage are either inputs to the second 

stage or outputs from that stage 

In a manner analogous to that introduced in Aviles-Sacoto et al (2015), we define the stage 

and the overall efficiencies, on the basis of the modified network structure depicted in Figure 

6.4, as follows: 

𝑒1 =
∑ 𝑣𝑖𝑥𝑖𝑜 + 𝑢13

𝑖=1

∑ 𝜂𝑑𝑧𝑑𝑜
2
𝑑=1 + 𝜂3𝑧3𝑜 + ℎ𝑧3𝑜

, 𝑒2 =
∑ 𝜂𝑑𝑧𝑑𝑜 + ℎ𝑧3𝑜 + 𝑢22

𝑑=1

𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜
 (6.11) 

 

and the overall efficiency of the unit as a weighted average of the above stage efficiencies: 

 

𝑒0 = 𝑤1𝑒1 + 𝑤2𝑒2 =
∑ 𝑣𝑖𝑥𝑖𝑜+𝑢13

𝑖=1 +∑ 𝜂𝑑𝑧𝑑𝑜+ℎ𝑧3𝑜+𝑢22
𝑑=1

∑ 𝜂𝑑𝑧𝑑𝑜
2
𝑑=1 +𝜂3𝑧3𝑜+ℎ𝑧3𝑜+𝑢1𝑦1𝑜+𝑔𝑧3𝑜

 

  

(6.12) 

where the weights are selected appropriately as follows (cf. Chen et al, 2009b): 

 

𝑤1 =
∑ 𝜂𝑑𝑧𝑑𝑜

2
𝑑=1 + 𝜂3𝑧3𝑜 + ℎ𝑧3𝑜

∑ 𝜂𝑑𝑧𝑑𝑜
2
𝑑=1 + 𝜂3𝑧3𝑜 + ℎ𝑧3𝑜 + 𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜

 

 

𝑤2 =
𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜

∑ 𝜂𝑑𝑧𝑑𝑜
2
𝑑=1 + 𝜂3𝑧3𝑜 + ℎ𝑧3𝑜 + 𝑢1𝑦1𝑜 + 𝑔𝑧3𝑜

 

 

(6.13) 
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Fig. 6.4: An alternative modified network structure 

 

According to the above definitions and applying the Charnes-Cooper transformation we 

propose the following linear program with binary variables to assess the overall and the stage 

efficiencies: 

𝑒𝑜 = 𝑚𝑖𝑛 ∑ 𝜐𝑖𝑥𝑖𝑜 + 𝜇1 + ∑ 𝜋𝑑𝑧𝑑𝑜 + 𝛽𝑧3𝑜 + 𝜇2

2

𝑑=1

3

𝑖=1

 

(6.14) 

s.t. 

∑ 𝜋𝑑𝑧𝑑𝑜 + 𝛿𝑧3𝑜 + 𝜇𝑦1𝑜 + 𝛾𝑧3𝑜 + 𝛽𝑧3𝑜 = 1

2

𝑑=1

 

∑ 𝜐𝑖𝑥𝑖𝑗 + 𝜇1 − ∑ 𝜋𝑑𝑧𝑑𝑗 −

2

𝑑=1

3

𝑖=1

𝛿𝑧3𝑗 − 𝛽𝑧3𝑜 ≥ 0,    ∀𝑗    

∑ 𝜋𝑑𝑧𝑑𝑗 + 𝜇2

2

𝑑=1

−  𝜇𝑦1𝑗 − 𝛾𝑧3𝑗 + 𝛽𝑧3𝑗 ≥ 0,     ∀𝑗 

𝛿 − 𝛾 = 0 

𝛾 − 𝛭𝑒 ≤ 0 

𝛽 − 𝛭𝑓 ≤ 0 

𝑒 + 𝑓 = 1 

𝜐𝑖, 𝜋𝑑 , 𝜇, 𝛿, 𝛾, 𝛽 ≥ 0; 𝑒, 𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 

𝜇1, 𝜇2 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

 

Analogously to (6.4), the last four constraints in (6.14) designate the role of intermediate 

measure Z3. In particular, when in the optimal solution the binary variables take the 

v1X1 

Stage 1 Stage 2 
η2Z2 

u1Y1 

 DMU 

v2X2 

v3X3 

η3Z3 

hZ3 

η1Z1 

gZ3 
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values 𝑒 = 0, 𝑓 = 1, then 𝛾 = 𝛿 = 0 and the intermediate measure Z3 is considered as input 

to stage-2, as depicted in Figure 6.5(a). When the binary variables take the values 𝑒 = 1, 𝑓 =

0, then 𝛽 = 0, 𝛾 = 𝛿 and the intermediate measure Z3 is considered as output from stage-2, as 

depicted in Figure 6.5(b). Notice that the latter network structure is identical to that assumed 

in Aviles-Sacoto et al (2015). The differentiation is in the structure of Figure 6.5(a), where Z3 

is conventionally treated, similarly to the other intermediate measures. 

 

 
 

(a) Z3 is input to stage-2 

 

 
(b) Z3 is output from stage-2 

Fig. 6.5: The two network structures designated by the role of Z3 

 

If it is to avoid solving LPs with binary variables, one could equivalently apply the 

conventional additive decomposition models with respect to the network structures in Figure 

6.5 (a) and (b) and then choose the minimum of the two estimated overall efficiencies as the 

final result. Table 6.3 exhibits the results obtained from model (6.14). Columns 2-4 show the 

overall efficiency and the weights assumed, column 5 shows the input/output characterization 

of the intermediate measure Z3 as decided by the binary variables e and f, whereas columns 6-

7 show the efficiencies of the two stages. Applying the leader/follower notion, we have got 

identical efficiency scores for the two stages, which means that the decomposition of the 

overall efficiency to the stage efficiencies is unique. 

 

υ1X1 

Stage 1 Stage 2 
π2Z2 

µY1 

 DMU 

υ2X2 

υ3X3 βZ3 

π1Z1 

υ1X1 

Stage 1 Stage 2 π2Z2 

µY1 

 DMU 

υ2X2 

υ3X3 

δZ3 

γZ3 

π1Z1 
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Table 6.3: Results obtained from model (6.14) 

DMU 𝑒0 𝑤1 𝑤2 Output/Input 𝑒1 𝑒2 

1 106.14 0.10 0.90 Output  107.31 106.01 

2 110.51 0.40 0.60 Output 106.56 113.09 

3 101.19 0.29 0.71 Output 100.85 101.32 

4 105.16 0.28 0.72 Output 105.67 104.96 

5 105.09 0.29 0.71 Output 104.89 105.17 

6 108.26 0.39 0.61 Output 103.18 111.57 

7 104.24 0.50 0.50 Output 100.34 108.14 

8 110.59 0.37 0.63 Output 114.97 107.99 

9 100.00 0.26 0.74 Output 100.00 100.00 

10 100.00 0.29 0.71 Output 100.00 100.00 

11 104.11 0.10 0.90 Input 105.68 103.93 

12 101.42 0.10 0.90 Input 114.24 100.00 

13 106.98 0.90 0.10 Input 100.00 169.79 

14 111.00 0.50 0.50 Output 108.22 113.83 

15 107.92 0.10 0.90 Output 107.74 107.93 

16 106.84 0.57 0.43 Input 100.00 115.89 

17 105.69 0.39 0.61 Output 103.49 107.12 

18 104.14 0.28 0.72 Output 103.07 104.55 

19 100.00 0.51 0.49 Output 100.00 100.00 

20 104.61 0.10 0.90 Input 135.17 101.22 

21 108.25 0.56 0.44 Output 100.00 118.76 

22 105.51 0.10 0.90 Input 120.50 103.85 

23 114.78 0.39 0.61 Output 100.00 124.30 

24 100.00 0.82 0.18 Output 100.00 100.00 

25 137.46 0.66 0.34 Input 119.34 173.39 

26 106.14 0.58 0.42 Output 100.00 114.70 

27 108.51 0.39 0.61 Input 117.32 102.81 

28 118.55 0.51 0.49 Input 124.95 112.01 

29 105.83 0.90 0.10 Input 100.00 158.32 

30 128.37 0.68 0.32 Input 104.15 178.87 

31 101.44 0.55 0.45 Input 100.00 103.19 

32 112.41 0.60 0.40 Input 100.00 131.26 

33 105.75 0.50 0.50 Output 100.00 111.49 

34 105.36 0.50 0.50 Output 100.00 110.72 

35 116.58 0.61 0.39 Input 104.46 135.87 

36 116.15 0.56 0.44 Input 123.35 107.08 

37 100.00 0.90 0.10 Input 100.00 100.00 
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Conclusion 

We presented in this chapter an alternative two-stage network DEA approach to the 

assessment of the efficiencies of undergraduate programs in a peculiar situation where one of 

the intermediate measures must be considered as input to the second stage and, at the same 

time, as output of the second stage. Our contribution to this issue is motivated by an 

observation we made that the original modeling approach followed in Aviles-Sacoto (2015) 

arbitrarily, yet unnecessarily, deviates from that setting and designates a different situation 

where the specific intermediate measure is viewed either as input to or as output from the 

second stage of the process. 
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Chapter 7  

Conclusion 

The field of study of this thesis is the network Data Envelopment Analysis, which is an 

important extension of the Data Envelopment Analysis. We conducted a critical survey of the 

network DEA literature as well as we introduced novel network DEA methods for the 

performance assessment of the DMUs that consist of several sub-processes. 

Initially, we emphasized the advantages of the network DEA over the conventional DEA 

and the new insights and possibilities that offers the former in the area of performance 

measurement. When the internal structure of the DMU is known and the interrelations among 

its sub-processes can be accurately depicted, then it is strongly recommended to avoid the 

traditional perception of standard DEA that regards the DMU as a “black box”. Instead, it is 

proposed that network DEA methods should be employed for the performance evaluation. 

However, cautions should be taken because as we discussed and proved, there are some 

deficiencies in the recent developments of network DEA. Hence, we carried out a thorough 

categorization and critical survey of the state-of-the art network DEA methods, we unveiled 

their relations and differences, we uncovered their defects and we revealed the effects of 

these shortcomings in the efficiency assessments. We classified a great volume of network 

DEA studies based on the assessment approach they follow. In particular, we defined two 

assessment paradigms, the independent and the joint. In the independent assessment 

paradigm the standard DEA models are employed to assess the performance of the DMUs 

and the sub-processes separately. On the contrary, in the joint assessment paradigm the DMU 

and its sub-processes are jointly evaluated. We specified three approaches as representatives 

of the joint assessment paradigm, namely the efficiency decomposition approach, the slacks-

based measure approach and the system-centric approach. The categorization of the 

approaches was based on the way they conceptualize the relationship between the system 

(DMU) and the stage efficiencies as well as on the kind of information that they provide for 

the performance of the individual stages and the system. We revealed the drawbacks of the 

existing network DEA methods concerning the returns to scale, the inconsistency between 
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their multiplier and envelopment models, the non-unique efficiency scores and the inability to 

be universally applied on every type of network structure. Also, we proved that the additive 

efficiency decomposition method provides biased efficiency assessments and we established 

the properties that the network DEA methods should meet. 

Then, we introduced the composition approach to two-stage network DEA, as opposed to 

the efficiency decomposition approach. Our novel approach overwhelms the shortcomings 

spotted for the additive and the multiplicative decomposition methods, i.e. it provides unique 

and unbiased efficiency scores. Contrary to the decomposition approach, in composition 

approach we first estimate the stage efficiencies and then we aggregate them either additively 

or multiplicatively to obtain the overall efficiency. In the frame of our composition approach, 

the efficiency assessment of the two-stage process is formulated as a multi-objective 

mathematical programming problem. In particular, we formulated a bi-objective 

mathematical program by assuming an output orientation for the first stage and an input 

orientation for the second stage, where the intermediate measures were used as the basis to 

link the efficiency assessments of the two stages. We employed two scalarization techniques 

so as to convert the bi-objective problem to a single objective LP. Firstly, based on the L1 

norm we aggregated the two objective functions of the bi-objective program additively, 

without giving any priority between them; the application of this scalarizing function yields 

an extreme (vertex) Pareto-optimal solution. Then, we employed a min-max scalarization 

technique, i.e. the Tchebycheff norm (L∞), which provides a point on the Pareto front not 

necessarily extreme. Also, we developed two methods to derive the efficient frontier in two-

stage DEA and provide efficient projections. The first naturally stems from our composition 

approach, while the second seeks to provide efficient projections by causing the less change 

on the original levels of the intermediate measures. 

Next, we built upon the composition approach and we introduced the “weak-link” 

approach to two-stage network DEA, which inherits the nice properties of the former, i.e. 

provides unique and unbiased efficiency scores. Also, the “weak-link” approach can be 

readily applied to various types of two-stage network structures. In this approach, we 

introduced a novel definition about the overall efficiency of the DMU, inspired by the “weak 

link” notion in supply chains and the maximum-flow/minimum-cut problem in networks. We 

incorporated this notion into the assessment by assuming that given the stage efficiencies, the 

system efficiency can be viewed as the maximum flow through the network and can be 

estimated as the min-cut of the network, i.e. the system efficiency derives as the lowest of the 
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stage efficiencies. We mathematically represented this concept by employing a two-phase 

max-min optimization method in a multi-objective programming framework, which seeks to 

maximize the minimum weighted achievement from zero-level efficiency, i.e. maximizing 

the lowest of the stage efficiencies (weak link). The proposed two-phase procedure estimates 

the stage efficiencies and the overall efficiency simultaneously by providing a unique Pareto 

optimal solution. The search direction towards the Pareto front is driven by the assumption 

that the stage efficiencies are proportional to their independent counterparts. External 

priorities can be also introduced explicitly to our methodology so as to obtain alternative 

Pareto optimal solutions. We conducted a systematic investigation of the sensitivity of the 

weak link so as to identify the source of inefficiency in the two-stage processes. A thorough 

comparison with the multiplicative decomposition method illustrates the advantages of the 

“weak-link” approach. 

Finally, we revisited the work of Aviles-Sacoto et al (2015) who evaluated a peculiar 

situation of 37 undergraduate business programs in U.S. as two-stage processes, where some 

of the intermediate measures are inputs to the second stage and at the same time external 

outputs from that stage. We revealed that their modelling approach departs from the 

described setting and adapts a different situation, where the specific intermediate measure is 

viewed either as input to or as output from the second stage of the process. We alternatively 

proposed a different modelling approach for the performance assessment of the specific two-

stage process under examination. 

Closing this thesis, we remark that out methods can be straightforwardly applied to real 

word problems. For instance, the natural representation of the supply chain operations as a 

multi-stage process is indicative of the synergy of supply chain management with network 

DEA, as they benefit mutually from the development of methodological tools for 

performance measurement. A subject for future research is the extension of the composition 

and the “weak-link” approaches to general network structures involving series and parallel 

processes. A universal network DEA method that could be applied to every type of network 

structure would be advantageous. Also, future studies could be focused on the revision of the 

system-centric methods, so as to yield the stage efficiency scores except from the overall 

efficiency. Moreover, a topic that should be revisited is the returns to scale in network DEA 

models. Another issue that is worth investigating in network DEA is the perfect mapping 

between the multiplier and the envelopment models of each approach, in order to provide 

efficient projections. Finally, it is anticipated that the conclusions drawn from this thesis will 
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assist the analyst to be accustomed with the network DEA, will be inspirational for exploring 

new ideas and will serve to advance and disseminate both the theoretical and the problem-

driven research. Undoubtedly, further development of the network DEA methods is needed 

so as to widen the application field, to aid the decision makers to address the increasing 

complexity of the organizations and improve their performance and to extend the frontiers of 

research in DEA. 

 

Implementation comment: All models presented in this thesis are developed and tested in 

MATLAB (MATLAB 8.0, The MathWorks Inc., Natick, MA, US, 2012) in combination with an 

open source mixed integer linear programming (MILP) solver (lp_solve 5.5.2.5). 
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Appendix 

The case of a two-stage process with a single 

intermediate measure 

As noticed in Chapter 4 (see Theorems 4.5 and 4.6), in a two-stage production process of 

Type I (Fig. 4.1) with a single intermediate measure, the stage efficiency scores derived by 

our composition approach are identical to the independent efficiency scores. We provide an 

illustrative example by applying our approach, under CRS and VRS assumption, to the data 

set used by Chen and Zhu (2004) for measuring information technology’s indirect impact on 

firm performance in the banking industry in the years 1987-1989. The original data set 

studied in Wang et al (1997) consists of 36 observations with negative profits, however, as 

long as the current study have different goals from Wang et al (1997) we follow Chen and 

Zhu (2004) who chose to remove the observations with negative profits. Twenty seven firms 

in the banking industry use, in the first stage, as inputs the fixed assets (X1), the number of 

employees (X2) and the IT investment (X3) to generate the single intermediate measure 

Deposits (Z1). In the second stage the single intermediate measure Deposits (Z1) is converted 

into the profit (Y1) and the fraction of loans recovered (Y2). The data set is presented in 

Table A.1. 

 

 
Fig. A.1: Bank operations as a two-stage process 
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Table A.1: IT data set (source: Chen and Zhu, 2004) 

DMU 
Fixed assets 

(X1) 

IT budget 

(X2) 

Number of 

employees 

(X3) 

Deposits 

(Z1) 

Profit 

 (Y1) 

Fraction of 

loans 

recovered 

(Y2) 

1 0.713 0.15 13.3 14.478 0.232 0.986 

2 1.071 0.17 16.9 19.502 0.34 0.986 

3 1.224 0.235 24 20.952 0.363 0.986 

4 0.363 0.211 15.6 13.902 0.211 0.982 

5 0.409 0.133 18.485 15.206 0.237 0.984 

6 5.846 0.497 56.42 81.186 1.103 0.955 

7 0.918 0.06 56.42 81.186 1.103 0.986 

8 1.235 0.071 12 11.441 0.199 0.985 

9 18.12 1.5 89.51 124.072 1.858 0.972 

10 1.821 0.12 19.8 17.425 0.274 0.983 

11 1.915 0.12 19.8 17.425 0.274 0.983 

12 0.874 0.05 13.1 14.342 0.177 0.985 

13 6.918 0.37 12.5 32.491 0.648 0.945 

14 4.432 0.44 41.9 47.653 0.639 0.979 

15 4.504 0.431 41.1 52.63 0.741 0.981 

16 1.241 0.11 14.4 17.493 0.243 0.988 

17 0.45 0.053 7.6 9.512 0.067 0.98 

18 5.892 0.345 15.5 42.469 1.002 0.948 

19 0.973 0.128 12.6 18.987 0.243 0.985 

20 0.444 0.055 5.9 7.546 0.153 0.987 

21 0.508 0.057 5.7 7.595 0.123 0.987 

22 0.37 0.098 14.1 16.906 0.233 0.981 

23 0.395 0.104 14.6 17.264 0.263 0.983 

24 2.68 0.206 19.6 36.43 0.601 0.982 

 

 

Table A.2 exhibits the CRS and VRS efficiency scores that derived from our composition 

approach presented in Chapter 4. Table A.2 exhibits the CRS and VRS efficiency scores that 

derived from our composition approach presented in Chapter 4. As it was expected, the 

efficiency scores are identical to their independent counterparts under both assumptions. In 

addition, we remark that under CRS assumption, the stage efficiency scores obtained from 

the additive and the multiplicative approaches are equal to the ones derived from our 

approach; also the same observation holds for the additive approach under VRS situation. 
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Table A.2: CRS and VRS efficiencies from models (4.13), (4.16), (4.25) and (4.26) 

DMU ê1
 CRS ê2 

CRS êo=(ê1+ê2)/2 ê1 
VRS ê2 

VRS êo=(ê1+ê2)/2 

1 0.6388 0.7459 0.6923 0.6776 0.8458 0.7617 

2 0.6507 0.7819 0.7163 0.6678 0.9960 0.8319 

3 0.5179 0.7730 0.6454 0.5357 1 0.7679 

4 0.5986 0.7142 0.6564 1 0.7144 0.8572 

5 0.5556 0.7236 0.6396 0.7079 0.7546 0.7313 

6 0.7599 0.5758 0.6679 0.9680 0.6779 0.8229 

7 1 0.5758 0.7879 1 1 1 

8 0.5352 0.8250 0.6801 0.5400 0.8304 0.6852 

9 0.6249 0.6347 0.6298 1 1 1 

10 0.4961 0.7188 0.6075 0.5029 0.7680 0.6354 

11 0.4945 0.7188 0.6067 0.5012 0.7680 0.6346 

12 0.6685 0.5949 0.6317 0.7329 0.5950 0.6639 

13 0.9487 0.8582 0.9034 1 0.8589 0.9295 

14 0.5880 0.5782 0.5831 0.6967 0.7739 0.7353 

15 0.6582 0.6034 0.6308 0.7782 0.8740 0.8261 

16 0.6646 0.6434 0.6540 0.6681 1 0.8340 

17 0.7177 0.7877 0.7527 1 0.7933 0.8967 

18 1 1 1 1 1 1 

19 0.8144 0.5926 0.7035 0.8188 0.6544 0.7366 

20 0.6933 1 0.8467 1 1 1 

21 0.7067 0.9935 0.8501 1 0.9935 0.9968 

22 0.7942 0.6408 0.7175 1 0.6410 0.8205 

23 0.7802 0.6993 0.7397 0.9600 0.7328 0.8464 

24 0.9300 0.7135 0.8218 0.9629 0.9915 0.9772 

 
 
 

Estimation of the extreme Pareto points 

In the following, we provide the models that yield the independent (ideal) stage efficiencies 

as well as the ones that produce the extreme boundary points of the feasible set in the 

objective functions space, for the two-stage processes of Type II, III and IV. 

Two-stage process with extra inputs in the stage-2 (Type II) 

Concerning the two-stage process with extra inputs to the second stage of Type II (Fig. 5.5), 

the input-oriented CRS-DEA models that independently estimate the stage-1 and the stage-2 

efficiencies for the evaluated unit j0 are as follows: 
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𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀  

(A.1) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿

𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0,   𝑗 = 1, … , 𝑛 

𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, 𝑔 ≥ 𝜀  

(A.2) 

The following augmented models derive from models (A.1) and (A.2) by appending the 

constraints of model (A.1) to model (A.2) and vice versa without affecting their optimal 

efficiency scores, see Theorems 4.1 and 4.2. 

 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀 , 𝑔 ≥ 𝜀 

(A.3) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿

𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀 , 𝑔 ≥ 𝜀 

(A.4) 

Given the ideal point (𝛦𝑗0

1 , 𝛦𝑗0

2 ) defined by the independent stage efficiency scores of the 

evaluated unit j0, we derive the extreme points 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ) and 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2 ) on the upper-right 

boundary of the feasible set in the objective functions space of (5.15) as follows: 

 

For the point 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ), get 𝑁𝑗0

1  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

1 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

≥ 𝛦𝑗0

2  

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀  

(A.5) 
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For the point 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2), get 𝑁𝑗0

2  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

2 = 𝑚𝑎𝑥  𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

= 1 

𝑤𝑍𝑗0

𝑣𝑋𝑗0

≥ 𝛦𝑗0

1  

𝑤𝑍𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝛾 ≥ 𝜀  

(A.6) 

 

Two-stage process with extra outputs from stage-1 (Type III) 

Concerning the two-stage process with extra outputs flowing out from the first stage of Type 

III (Fig. 5.10), we obtain the independent (ideal) efficiency scores using the input-oriented 

CRS-DEA models for the evaluated unit j0 as follows: 

 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, ℎ ≥ 𝜀  

(Α.7) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀  

(Α.8) 

 

By appending the constraints of one model to the other, as already described, we derive the 

following augmented models: 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀    

(A.9) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀 

(A.10) 
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Given the ideal point (𝛦𝑗0

1 , 𝛦𝑗0

2 ) obtained from the above models for the evaluated unit j0, we 

obtain the extreme boundary points 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ) and 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2 ) on the upper-right boundary 

of the feasible set in the objective functions space of (5.22) as follows: 

 

For the point 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ), get 𝑁𝑗0

1  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

1 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗0

𝑤𝑍𝑗0

≥ 𝛦𝑗0

2  

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀   

(A.11) 

 

For the point 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2), get 𝑁𝑗0

2  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

2 = 𝑚𝑎𝑥  𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
= 1 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

𝑣𝑋𝑗0

≥ 𝛦𝑗0

1  

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀  

(A.12) 
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General two-stage process (Type IV) 

As regards the general two-stage process of Type IV (Fig. 5.14), the input-oriented CRS-

DEA models that estimate the stage-1 and the stage-2 efficiencies for the evaluated unit j0 

independently are as follows: 

 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛  

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, ℎ ≥ 𝜀  

(Α.13) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿

𝑗0

 

𝑠. 𝑡. 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0, 𝑗 = 1, … , 𝑛  

𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, 𝑔 ≥ 𝜀  

(Α.14) 

By appending the constraints of one model to the other we derive the following augmented 

models: 

 

𝛦𝑗0

1 = 𝑚𝑎𝑥
𝜑𝑍𝑗0

+ ℎ𝐾𝑗0

𝜂𝑋𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛 

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀, 𝑔 ≥ 𝜀    

(A.15) 

𝛦𝑗0

2 = 𝑚𝑎𝑥
𝜔𝑌𝑗0

𝜑𝑍𝑗0
+ 𝑔𝐿

𝑗0

 

𝑠. 𝑡. 

𝜑𝑍𝑗 + ℎ𝐾𝑗 − 𝜂𝑋𝑗 ≤ 0, 𝑗 = 1, … , 𝑛  

𝜔𝑌𝑗 − 𝜑𝑍𝑗 − 𝑔𝐿
𝑗

≤ 0,   𝑗 = 1, … , 𝑛 

𝜂 ≥ 𝜀, 𝜑 ≥ 𝜀, 𝜔 ≥ 𝜀, ℎ ≥ 𝜀, 𝑔 ≥ 𝜀 

(A.16) 

 

Given the ideal point (𝛦𝑗0

1 , 𝛦𝑗0

2 ) obtained from the above models for the evaluated unit j0, we 

obtain the extreme boundary points 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ) and 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2 ) on the upper-right boundary 

of the feasible set in the objective functions space of (5.29) as follows: 
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For the point 𝐴(𝑁𝑗0

1 , 𝛦𝑗0

2 ), get 𝑁𝑗0

1  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

1 = 𝑚𝑎𝑥 𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

 

𝑠. 𝑡. 

𝑣𝑋𝑗0
= 1 

𝑢𝑌𝑗0

𝑤𝑍𝑗0
+𝛾𝐿𝑗0

≥ 𝛦𝑗0

2  

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀, 𝛾 ≥ 𝜀     

(A.17) 

 

For the point 𝐵(𝛦𝑗0

1 , 𝑁𝑗0

2), get 𝑁𝑗0

2  as the optimal value of the objective function in 

the following linear program: 

 

𝑁𝑗0

2 = 𝑚𝑎𝑥  𝑢𝑌𝑗0
 

𝑠. 𝑡. 

𝑤𝑍𝑗0
+ 𝛾𝐿𝑗0

= 1 

𝑤𝑍𝑗0
+ 𝜇𝐾𝑗0

𝑣𝑋𝑗0

≥ 𝛦𝑗0

1  

𝑤𝑍𝑗 + 𝜇𝐾𝑗 − 𝑣𝑋𝑗 ≤ 0,   𝑗 = 1, … , 𝑛  

𝑢𝑌𝑗 − 𝑤𝑍𝑗 − 𝛾𝐿𝑗 ≤ 0,   𝑗 = 1, … , 𝑛 

𝑣 ≥ 𝜀, 𝑤 ≥ 𝜀, 𝑢 ≥ 𝜀, 𝜇 ≥ 𝜀, 𝛾 ≥ 𝜀   

(A.18) 
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