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ABSTRACT 
 

In this dissertation, a work is presented using simulated annealing method in order to 

solve a train routing and scheduling problem. If these problems are solved separately 

the solution might not be optimum. In an attempt to overcome this obstacle both 

problems are solved simultaneously.  

This has as side effect that the problem becomes much more difficult. The objective is 

to minimize the cost of train formation, the cost of idle time of wagons in stations 

waiting for trains and the cost of wagon classifications in shunting stations. 
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ΠΕΡΙΛΗΨΗ 

 

΢τθ παροφςα εργαςία χρθςιμοποιείται θ μζκοδοσ τθσ προςομοιωμζνθσ ανόπτθςθσ με 

ςκοπό να λυκεί το πρόβλθμα του προγραμματιςμοφ και τθσ δρομολόγθςθσ τρζνων. 

Εάν επιχειριςουμε να λφςουμε τα δφο αυτά προβλιματα ξεχωριςτά, θ λφςθ που κα 

λάβουμε είναι πικανό να μθν είναι βζλτιςτθ. ΢ε μία προςπάκεια να υπερνικιςουμε 

αυτό το εμπόδιο προςπακοφμε να τα λφςουμε ταυτόχρονα, με αποτζλεςμα να 

αυξάνεται  θ δυςκολία του προβλιματοσ. 

Οι ςτόχοι που τίκενται είναι οι εξισ: Η ελαχιςτοποίθςθ του κόςτουσ ςχθματιςμοφ των 

τρζνων, του κόςτουσ που αντιςτοιχεί ςτο χρόνο αδράνειασ των βαγονιϊν ςτουσ 

ενδιάμεςουσ ςτακμοφσ αναμζνοντασ τθν ανταπόκριςθ με τα επόμενα τρζνα  και τζλοσ 

του κόςτουσ ταξινόμθςθσ ςτουσ ςτακμοφσ διαλογισ. 
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CHAPTER 1 
 

1.1 INTRODUCTION  
 

Despite the efforts of European policies to lead freight traffic to more green ways of 

transport, nothing seems to have changed. Between 2008 and 2013 as we can observe 

in figure 1, the share of railways in modal split remains the same at 12,3%. Although 

railways are one of the most environment friendly means of transportation, the 

problems seem to concentrate to economical issues. One of the most important factors 

for a customer when making a choice is price. Others that may follow are speed of 

service, frequency and reliability.  

 

Figure 1: Freight transport in the EU-28 modal split based on five transport modes (% of 

total tonne-kilometres)  
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In most cases, companies’ orders include a small number of wagons. In the direction 

that the cost will have to be as low as possible for the carriers to be competitive, these 

wagons must be pulled to a marshalling yard to be rearranged and consolidated with 

other wagons from different origins before being able to reach their destinations. On 

the other hand this action contains shunting costs that will have to be added to our 

objective function. 

 

1. 2. NETWORK ROUTING MODELS: BLOCKING PROBLEM 
 

A blocking policy is usually specified as follows: cars at yard i which are destined for 

yard j must be added to a block that will next be shipped to yard k. Cars in a block will 

not be reclassified until the block reaches its final destination. A blocking model thus 

places the emphasis on the movement of cars as opposed to the movement of trains. 

The solution of this model indicates the routing of freight through the network and the 

distribution of classification work among yards, but does not specify the trains to be run 

or the assignment of blocks to trains. Instead, an additional problem must then be 

solved to determine the routing of trains and their makeup. 

 

1.3. ROUTING AND MAKEUP MODELS 
 

Whereas blocking models indicate the routing of freight and the distribution of 

classification work among the yards of the network, routing and makeup models 
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determine the routing and frequency of trains and the assignment of blocks to trains. In 

routing and makeup models, the blocking policy may be either determined 

endogenously or given as an input. These models thus produce a complete train and 

freight routing plan. However, because they do not provide actual departure times for 

the trains to be run, an additional scheduling problem must be solved at a later stage. 

 

1.4. COMPOUND ROUTING AND SCHEDULING MODELS 
 

Routing and makeup models produce a transportation plan that completely describes 

the routing of freight, the set of trains to be operated and their respective frequency. 

But because these models do not take scheduling into consideration, it may be difficult 

to later find a timetable accommodating all scheduled trains and satisfying line and 

yard capacity. Hence compound models, which address both the routing and the 

scheduling aspects of freight transportation, can significantly help to improve service 

reliability and reduce costs. 

 

1.5 THE MAIN GOALS OF TRAIN FORMATION PROBLEM 
 

 The main goals of the train formation problems are: 

1. to minimize classifying operations in shunting stations 

2. to minimize train formation costs 

3. to minimize the idle time of wagons waiting for trains in shunting stations 

4. to maximize the railroad track capacity for train movements to share almost 

equal wagon classification operations in all shunting stations  
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5. to yield the optimum scheduling for each wagon 

 

Furthermore, the following strategic planning goals can be achieved: 

- to develop the critical shunting stations with the high wagon classification 

operations 

- to build new shunting stations if required 

- to procure more locomotives if needed 

 

1.6 PROBLEM DEFINITION 
 

In order to represent a railroad network we can use a graph, where its nodes will 

represent shunting stations and the existing paths between them, the arcs. A train can 

move to the next station by selecting only one of the available arcs each time. It has to 

be stated that the allowed movement on the graph is from left to right and once a train 

has been used it cannot return to its origin station.  

For example let us assume that we have a graph with four stations. If a train starts from 

station 1, it has the following paths available: (1-2),(1-3),(1-4). 

If it starts from station 2 then it has to make a choice between arcs: (2-3),(2-4). 

Last but not least our choices are limited when we begin from station 3. In this case the 

only arc left is (3-4). 

When a train traverses an arc, a cost occurs. This can be also viewed as a time slot 

usage cost. Costs for traversing an arc are given below, but it is worth to mention that 

the cost related for traversing arcs  (1,2) and (2,3) equals the cost passing arc (1,3). The 

difference lies at the idle time cost of wagons and locomotives at the intermediate 

station 2.  
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For the proposed model the following assumptions have been made: 

- The unit of each consignment is a wagon. 

- An upper limit exists on how many wagons a locomotive can pull for each arc 

depending on the gradient, the distance between signals, the train’s couplers and 

the internal length of stations.  

- The distances between stations are known and so the transit times of trains are 

pre-estimated. 

 

1.7 REVIEW 
 

Branch and price for a European variant of the railroad blocking problem, Robert Voll 

and Uwe Clausen 

 

The Railroad Blocking problem (RBP) can be modeled as a multi commodity capacitated 

network design problem (MCNDP). The underlying problem of determining a sequence 

of yards for each railcar is a routing problem. While finding an optimal routing for all 

railcars the goal is to find the blocking network which is a subset of the original 

network. Operating a train induces high fixed costs, which dominate the transport 

costs.  

So the cost function must focus on train costs rather than on costs per wagon. The 

decision problem can be proven to be NP- complete. 

In this paper a branch and price approach is introduced for the problem under 

consideration, where specialized cuts are used, which are incorporated into the 

branching scheme. 
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A mathematical model for train routing and scheduling problem with fuzzy approach, 

Amin Jamili 

 

In classical linear programming the violation of any constraint renders the solution 

infeasible. But in real world, applicable, cases the role of constraints can be different. In 

real life problems the decision maker might accept small violations of constraints but 

might also attach different degrees of importance to the violations of different 

constraints.  In this paper the parameter of the maximum allowable wagons hauled by a 

locomotive in an arc, is supposed to be imprecise. As the objective function value 

assumed to be crisp, the Werner’s approach can be applied. The specified problem is a 

pure binary one and merges the scheduling problem with the routing problem, each of 

which is known to be NP – hard. The proposed heuristic method is as follows: the 

problem is divided in two individual sub-problems, one is routing, also known as train 

formation problem and the other is train scheduling problem. 
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CHAPTER 2 
 

2.1 OPTIMIZATION 
 

Several optimization methods exist and can be categorized into two main groups. Those 

using analytic type of solutions, such as Lagrange or Newton’s methods and those 

employing more algorithmic type of methods, such as Simplex, Dijkstra’s algorithm, 

dynamic programming, particle swarm optimization etc. Among these methods is 

simulated annealing.  

At Los Alamos in 1953, Nicholas Metropolis (Νικόλαοσ Μθτρόπουλοσ), a Greek – 

American physicist, developed a modified Monte Carlo scheme. His main idea was that: 

instead of choosing configurations randomly, then weighting them with 𝒆𝒙𝒑(
−𝑬

𝒌𝑻
), we 

choose configurations with probability 𝒆𝒙𝒑(
−𝑬

𝒌𝑻
) and then weight them evenly. 

 

2.2. SIMULATED ANNEALING  
 

In physics, the term annealing denotes a physical process where a solid is heated inside 

a thermal reservoir, increasing the temperature to a maximum value (melting point) in 

which all the particles of the solid are randomly distributed during the transition phase 

to liquid form.  

Subsequently it is cooled by slowly lowering the temperature of the thermal reservoir.  

Thereby at the point where the energy takes its lowest value, all the particles are in 

order forming lattice.  

Under the precondition that the maximum temperature will be high enough and the 
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cooling will be carried out enough slowly so as the solid wont revert to metastable 

state.   

Starting from the maximum value of the temperature, the cooling phase of the 

annealing process can be described as follows.  

 

At each temperature value Σ, the solid is allowed to reach at thermal equilibrium, 

characterized by a probability of being in a state i with energy Ei  given by the 

Boltzmann distribution: 

𝑃𝑇(𝑋 = 𝑖) =
1

𝑍(𝑇)
exp (

−𝐸𝑖

𝑘𝐵𝑇
)                                                                                                   (1.1) 

 

𝑍(𝑇) = ∑ exp⁡(
−𝐸𝑗

𝑘𝐵𝑇
)𝑗                                                                                                               (1.2) 

 

Where Z(T) is the partition function, Σ is the thermodynamic temperature and kB is the 

Boltzmann constant. 

As the temperature is lowered Boltzmann distribution concentrates on the states with 

lowest energy and finally when the temperature approaches zero only the minimum 

energy states have a non-zero probability of occurrence. 

 

2.3 METROPOLIS ALGORITHM 
 

To simulate the evolution towards thermal equilibrium of a solid for a constant value of 

temperature T, (Metropolis et al., 1953) used a Monte Carlo method, that can provide 

us sequences between the previous and the following states of the solid in the 

following manner.  
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Given the current state of the solid, given by the positions of its particles, a random 

change (perturbation) is made by transposing randomly a particle. 

If the energy difference (𝐸𝑗 −⁡𝐸𝑖) ≤ 0 is less than or equal to zero, between the 

current and the perturbed one, it is implied that the change had resulted to a lower 

energy state, so state j is accepted as current state. 

 

If (𝐸𝑗 − 𝐸𝑖 > 0) then the probability to accept the perturbed state is given by the 

Boltzmann factor: 𝑒𝑥𝑝 (
−𝛥𝐸

𝑘𝐵𝑇
) 

 

This acceptance rule for new states is known as the Metropolis criterion. 

Following that criterion the system eventually is transitioned to thermal equilibrium 

after a large number of perturbations the probability distribution of the states, 

approaches the Boltzmann distribution. 

 

In statistical mechanics this Monte Carlo method is known as Metropolis algorithm and 

can be used for generation of neighboring solutions for optimization problems.  

In this occasion solutions correspond to states of the solid, cost function to energy and 

the control parameter to the temperature. 
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2.4 PSEUDO CODE OF SIMULATED ANNEALING ALGORITHM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 3 

1. begin 

  

2. s = create an initial solution; 

  

3. k = set counter equal to 1; 

  

4. repeat 

  

5. generate an s’ ∈ N(s)  

(create a new solution s’); 

  

7. else 

  

8. if 𝒆𝒙𝒑 (
𝒇(𝒔)−𝒇(𝒔′)

𝒄𝒌
) > 

random*0,1) then s := s’  

10. until stop criterion 

9. k := k+1; 

  

11. end;  

  

6. if f(s’) ≤ f(s)  

then s = s’ 
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2.5 MARKOV CHAINS AND THEIR CONNECTION WITH SIMULATED ANNEALING 
 

Α stochastic process is defined to be an indexed collection of random variables {Xt}, 

where the index t runs through a given set T. Often T is taken to be the set of non-

negative integers, and Xt represents a measurable characteristic of interest at time t. 

Stochastic processes are of interest for describing the behavior of a system operating 

over some period of time. 

 

Markov chains: 

a stochastic process {Xt} is said to have the Markovian property  

if P{Xt+1 = j | X0 = k0, X1 = k1, … ,Xt-1 = kt-1, Xt = i } = P{Xt+1 = j | Xt = i },  

for t=0,1,... and every sequence i, j, k0, K1,..., kt-1. 

 

The Markovian property applies when the conditional probability of any future event, 

given any past event and the present state Xt =i, is independent of the past event and 

depends only upon the present state.  

 

A stochastic process {Xt } (t = 0, 1,...,) is a Markov chain if it has the Markovian property. 

 

The conditional probabilities P{Xt+1 = j | Xt = i } for a Markov chain are called transition  

probabilities. If, for each i and j,P{Xt+1 = j | Xt = i } = P{X1 = j | X0 = i },  

for all t= 1, 2,..., then the transition probabilities are said to be stationary.  

Thus having stationary transition probabilities implies that the transition probabilities 

do not change over time. 
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If the transition probabilities in a Markov chain are independent of the time point t,  

if P(t) = P(t') for all t,t' ≥ 0, then the Markov chain is said to be homogeneous. Otherwise 

it is heterogeneous.  

 

A homogeneous Markov chain with transition matrix P is called irreducible if for each 

pair (i,j) of states, the state transition graph contains a path from i to j, which is 

equivalent to saying that an n ≥ 1 exists with (Pn)ij > 0  

 

A homogeneous Markov chain with transition matrix P is called aperiodic if for each 

state i the greatest common divisor gcd(Wi) = 1, where Wi is the set containing the 

lengths of all paths from i to itself in the state transition graph, n ∈ Wi if and only if 

(Pn)ii > 0 

 

2.6 MATHEMATICAL MODEL OF THE ALGORITHM  
 

The generation matrix G defines for each pair of solutions i, j ∈ S the probability of 

generating solution j from solution i.  An entry Gij is called the generation probability 

and satisfies Gij > 0 if and only if j  ∈ N(i). 

 

𝐺𝑖𝑗(𝑐𝑘) = {

1

|𝑁(𝑖)|
, 𝑖𝑓⁡𝑗⁡ ∈ 𝑆⁡

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑗 ∉ 𝑆
                                                                                              (2.1) 

 

The acceptance matrix A(ck) defines for each pair of solutions i, j ∈ S the probability of 

accepting solution j from solution i in the kth iteration of the simulated annealing 

algorithm.  The acceptance probability Ai,j(ck) is given by 
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𝐴𝑖𝑗(𝑐𝑘) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑓(𝑗) ≤ 𝑓(𝑖)

exp (
𝑓(𝑖)−𝑓(𝑗)

𝑐
) ,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑓(𝑗) > 𝑓(𝑖)

                                                             (2.2) 

 

the transition matrix P(ck) defines for each pair of solutions  i, j ∈ S the probability of 

moving from solution i to solution j in the kth iteration of the simulated annealing 

algorithm. 

 The transition probability Pij(ck) is given by 

 

𝑃𝑖𝑗(𝑐𝑘) = {
𝐺𝑖𝑗𝐴𝑖𝑗(𝑐𝑘),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑖 ≠ 𝑗

1 − ∑ 𝑃𝑖𝑙(𝑐𝑘), 𝑖𝑓⁡𝑖 = 𝑗𝑙⁡∈⁡𝑆,⁡⁡⁡𝑙⁡≠⁡𝑖
                                                                     (2.3) 

 

 

If the generation matrix satisfies Gij = Gji for all i,j ∈ S, then the finite homogeneous 

Markov chain associated with a run of simulated annealing at a fixed value c of the 

control parameter is strongly ergodic and the components of the unique stationary 

distribution Q(c) to which its probability distribution converges are given by 

 

𝑃(𝑋 = 𝑖) = 𝑞𝑖(𝑐) =
1

𝑁0(𝑐)
𝑒𝑥𝑝 (

−𝑓(𝑖)

𝑐
)                                                                                  (2.4) 

 

     

𝑁0(𝑐) = ∑ 𝑒𝑥𝑝 (
−𝑓(𝑗)

𝑐
)𝑗⁡∈⁡𝑆                                                                                                      (2.5) 
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CHAPTER 3 
 

3.1 PROBLEM SETUP 
 

 

This problem is a minimization problem and it consists of p consignments, with different 

number of wagons each n1, n2, n3 accordingly, with k number of trains in service. The 

objective is to find the minimum cost. 

 

Below notation is given: 

 

Indices 

 

𝒑 is defined as the index for consignments. In our problem we have three 

consignments. 

𝒂 is the index for each wagon. For the first consignment p = 1 let’s say we have a 

demand from a shipper to move 30 wagons. When p = 2 we have a quantity of 18 

wagons while when p = 3 we have 21 wagons as can be seen in the table below. 

𝒌 is the index for trains. Specific to our problem, seven trains are available and each 

one has a well-defined timetable. 

𝒊, 𝒋 are the indices for stations. We have four stations, numbered from 1 to 4. These 

stations are usually given into pairs of origin and destination depending on each 

consignment. For example if p equals 1, origin is station 1 and destination is station 4. if 

p equals 2, origin is station 1 and destination is station 3.  Last but not least, if p equals 

3, origin is station 2 and destination is station 4.  It must be noted that trains can stop at 

intermediate stations. 
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Figure 2: Railroad sample 

 

Variables 

     

𝛿(𝑖,𝑗,𝑎,𝑝,𝑘) =⁡ {
1, 𝑖𝑓⁡𝑤𝑎𝑔𝑜𝑛⁡𝑎⁡𝑜𝑓⁡𝑐𝑜𝑛𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡⁡𝑝⁡𝑖𝑠⁡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑⁡

𝑏𝑦⁡𝑡𝑟𝑎𝑖𝑛⁡𝑘⁡𝑖𝑛⁡𝑎𝑟𝑐⁡(𝑖, 𝑗)
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡ 

 

δ is a five dimensional matrix that contains all available data. Origin station, terminal 

station, specific number of wagon, consignment number and train number. 
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Parameters 

 

𝜃𝑖,𝑗 Required time for passing arc (i, j) 

𝜑𝑖,𝑗,𝑘 Departure time of train k in arc (i, j)  

𝐶𝑡𝑖,𝑗  Train formation cost for arc (i, j) 

𝐶𝑤𝑝 Cost of one hour being idle or in service related to each wagon of consignment p 

𝐶𝑐 Shunting operation cost for each wagon 

𝑢𝑖,𝑗  Maximum number of wagons hauled by a locomotive in arc (i, j) 

𝑠𝑝 Origin station of consignment p 

𝑒𝑝 Destination station of consignment p 

 

Consignment data 

 

 Consignment 1 Consignment 2 Consignment 3 

Origin 1 1 2 

Destination 4 3 4 

Quantity of wagons 30 18 21 

 

The objective is to determine: 

The number of required trains to transport consignments from their origin to their 

destination, the timetable for each train containing the departure and arrival time in 

each station and the timetable for each wagon containing the departure and arrival 

time in addition to the idle time of wagons in each station. 
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The wagon classification cost 𝐶𝑐 for each wagon is 3 units. The cost 𝐶𝑤𝑝⁡for one hour 

idle or being in service for each wagon is 2 units. For all arcs the parameter 𝑢𝑖,𝑗  is 

considered to be equal to 36 wagons. The required time for connecting and 

disconnecting wagons to/ from trains in stations is assumed to be 1 hour. 

 

Departure time of trains 

 

Train number 1 2 3 4 5 6 7 

Starting time of trains from station 1 (hour) 1 2 3 4 5 6 7 

Starting time of trains from station 2 (hour) 6 8 9 10 11 12 13 

Starting time of trains from station 3 (hour) 14 16 17 18 19 20 21 

 

Train formation costs 

 

𝐶𝑡𝑖,𝑗=[
0 2000 5000 7000
0 0 3000 5000
0 0 0 2000

] 

 

 

Required time for traversing an arc (i,j) 

 

𝜃𝑖,𝑗 =[
0 5 13 20
0 0 8 15
0 0 0 7

] 
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COSTS THAT OCCUR SPECIFIC TO THIS PROBLEM 

Train formation costs include: train personnel wages, consumed oil, gasoline and the 

amortization of the locomotive. The cost of using a wagon creates costs, i.e rental/ 

lease of a wagon. Lastly the cost derived from the shunting station for the classification 

work of the wagons, this includes separation and connection from the inbound train to 

the outbound train. 

 

The cost of train formation 

The objective of this model consists of three parts: the model minimizes the cost of 

each train formation. This cost consists of train personnel wages, consumed oil and 

gasoline and amortization of the locomotive. This cost is equal to 

∑∑∑𝛾(𝑖,𝑗,𝑘) × 𝐶𝑡𝑖,𝑗
𝑘𝑗𝑖

 

 

The cost of wagons usage: 

The cost of using a wagon creates costs and is proportional to time. This cost is equal to  

∑∑∑∑∑(𝛿(𝑖,𝑗,𝑎,𝑝,𝑘) × (𝜑𝑖,𝑘 + 𝜃𝑖,𝑗) × 𝐶𝑤𝑝)

𝑘𝑝𝑎𝑗𝑖

 

 

The cost of wagon classification in shunting stations  

This cost includes wagon separation works from arrived trains and wagon connection to 

leaving trains. This cost contains the oil and gasoline of shunting locomotives, plus the 

train personnel wages and shunting operators  

∑∑∑𝜆(𝑖,𝑎,𝑝) × 𝐶𝑐

𝑎𝑝𝑖
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If we sum up all the three above parts, we have a single objective function. It must be 

noted that our problem is a minimization problem and our objective is to find the 

minimum cost. This function is: 

Min Z= 

∑ ∑ ∑ 𝛾(𝑖,𝑗,𝑘) × 𝐶𝑡𝑖,𝑗𝑘𝑗 ⁡𝑖 +⁡∑ ∑ ∑ ∑ ∑ (𝛿(𝑖,𝑗,𝑎,𝑝,𝑘) × (𝜑𝑖,𝑘 + 𝜃𝑖,𝑗) × 𝐶𝑤𝑝)⁡𝑘 +𝑝𝑎𝑗𝑖

⁡⁡ ∑ ∑ ∑ 𝜆(𝑖,𝑎,𝑝) × 𝐶𝑐𝑎𝑝𝑖                                                                                                             (3.1) 

 

Constraints 

In order to ensure that all consignments leave their origins, Eq.2 is applied to the model 

∑ ∑ 𝛿(𝑠𝑝,𝑗,𝑎,𝑝,𝑘) = 1⁡⁡⁡∀⁡⁡⁡𝑝, 𝑎⁡⁡⁡&⁡⁡⁡⁡𝑠𝑝 < 𝑗 < 𝑒𝑝𝑘𝑗                                                                 (3.2) 

 

Inequality 3 prevents from assigning wagons more than the maximum capacity of 

trains. In this problem the maximum capacity that a train can carry is 36 wagons. 

 

∑ ∑ 𝛿(𝑖,𝑗,𝑎,𝑝,𝑘) ⁡≤ ⁡𝑢𝑖,𝑗∙𝛾(𝑖,𝑗,𝑘)⁡⁡⁡∀⁡⁡⁡𝑖, 𝑗, 𝑘⁡⁡⁡&⁡⁡⁡⁡𝑠𝑝 ≤ 𝑖 < 𝑒𝑝⁡,⁡⁡⁡𝑠𝑝 < 𝑗 ≤ 𝑒𝑝𝑎𝑝                    (3.3) 

 

Inequality 4 ensures that all wagons travel from their origins to their destinations 

successively 

∑ 𝜑𝑖,𝑗,𝑘 ∙ 𝛿(𝑠𝑝,𝑗,𝑎,𝑝,𝑘)𝑘 ≥ ∑ ∑ 𝛿(ℎ,𝑖,𝑎,𝑝,𝑘)ℎ𝑘 × (𝜑ℎ,𝑖,𝑘 + 𝜃ℎ,𝑖)⁡⁡  

∀⁡⁡⁡𝑎, 𝑝, 𝑖, 𝑗⁡⁡⁡&⁡⁡𝑠𝑝 ≤ 𝑖 < 𝑒𝑝⁡,⁡⁡⁡𝑠𝑝 < 𝑗 ≤ 𝑒𝑝⁡                                                                         (3.4) 

Inequality 5 specifies that if a wagon stops in a station, the necessary classification 

works should be done, and therefore the relevant costs are added to the objective 

function 

𝜆(𝑗,𝑎,𝑝) ≥⁡∑ ∑ (𝛿(𝑖,𝑗,𝑎,𝑝,𝑘) − ∑ 𝛿(𝑗,𝑙,𝑎,𝑝,𝑘)𝑙 )𝑘𝑖 ⁡⁡⁡  

∀⁡𝑎, 𝑝, 𝑗⁡⁡⁡⁡&⁡⁡⁡⁡𝑠𝑝 ≤ 𝑖 < 𝑒𝑝⁡,⁡⁡⁡𝑠𝑝 < 𝑗 ≤ 𝑒𝑝                                                                             (3.5) 
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3.2 DESCRIPTION OF THE PROCEDURE 
 
 

Initial temperature is defined, as well as the available number of trains, the number of 

starting stations, the number of terminal stations, the number of consignments and the 

maximum number of wagons that a train can haul. By using all these values we create 

three matrices that we will use later, in order to store our data.  

The number of iterations is set to zero. While the temperature is not zero and while the 

number of iterations are below a specific threshold, the algorithm begins by using 

simulated annealing procedure as will be explained shortly.  Objective (old) is made up 

of three parts that are summed altogether. 

The first part contains the evaluation of matrix 𝜸(𝒊,𝒋,𝒌) in terms of costs, the second part 

contains the evaluation of matrix 𝝀(𝒂,𝒑,𝒊) and the third and last part contains the costs 

derived from matrix 𝜹(𝒊,𝒋,𝒂,𝒑,𝒌).  

Having evaluated the costs of each matrix we can now begin to alter the situation of 

each state – matrix. This is done again in three separate functions each one for each 

matrix. Beginning with the change of matrix delta we use a 'flag' as a point of reference 

in order to cut off solutions that do not satisfy our constraints. 'flag' is updated when 

each of our constraint is being examined.  

While flag>0 meaning that at least one constraint is not satisfied, so we keep producing 

solutions. Then we initialize matrix 𝜹(𝒊,𝒋,𝒂,𝒑,𝒌) each time the loop is executed by placing 

zeros to all variables contained in matrix 𝜹(𝒊,𝒋,𝒂,𝒑,𝒌).  

For each consignment (p), the number of wagons that has to be carried ,the starting 

station and the terminal station are given. Since the main focus is the cost to be based 

on each wagon, we continue using a random number generator in order to create the 

routing for each one of the wagons by giving two options for the routing, either to be 



31 

direct (straight to the terminal station) or by stopping at an intermediate station, where 

consequently changes to each train may occur.  

Also a train is chosen randomly in order to carry out the specific routing. Since we have 

completed the routing we must now examine if constraints are met. Because we had a 

very large number of trains used, we had to figure out how we could suppress the costs 

formed, which means we had to reduce their number.  

The solution proposed is to build a constraint that first will find all the train movements 

on each arc (it has to be noted that it is assumed that trains travel from left to right) 

and secondly if there are trains in common that use the same arc we will try to 

consolidate not all but at least some of them.  

In our second constraint we check the total capacity that is being pulled from each train 

not only in one arc but also in a sequence of them. Previously where we referred to 

sequence we implied that if a train starts from station 1 it has all the possible routes 

available as stated here [(1,2),(1,3),(1,4)] so in each one of these stations, although a 

train might stop, it is not necessary that all wagons will be unloaded. Let’s assume that 

a train can stop in a station not to deliver but to make a pickup and then continue so as 

to unload all of the wagons at another station. So we will have to assess each previous 

route until we arrive at a terminal station or where the route of our train ends. For the 

intermediate stations the assessment has to be done in arcs [(1,3),(1,4),(2,3),(2,4)] and 

for the terminal stations [(1,4),(2,4),(3,4)].  

If a sum of arcs exceeds the maximum value of 36 that a train can pull then the rest of 

the wagons have to be added to a new train that will continue the routing which is 

given from the wagon’s consignment data until they reach their final destination.  

Last but not least it has to be stated that when we randomly choose a new train to 

carry on the existed routing, an additional check of the capacity of the new train has to 
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be executed.  

In the third constraint the validity of a routing is checked. For example if a wagon is 

scheduled to stop at a station with train (k1) and then it must proceed to a next station 

with another train (k2), then the time of departure of successor train k2 must be  > 

(bigger than) the time of arrival of the predecessor train (k1).  

In the fourth constraint we have to check if exists the available margin of one hour 

between trains that exchange wagons in order to ensure that the necessary 

classification work has been done and the classification yard has the time to set the 

wagons in the track of departure.  

Since all the above constraints hold we have a solution formed inside the neighborhood 

that we created from the limitations of our constraints. That means that a new matrix 

δ_new is set up at least for now, until the next evaluation begins.   

From δ_new we can derive γ_new and λ_new so as to help us with the evaluation of 

our solution.  

The next step now is to evaluate objective_new, which, as mentioned before, it consists 

of three parts, the evaluation of each new matrix. If we sum up these three partial 

objectives we have the total of the objective_new.  

Next, the most important part of the simulated annealing algorithm is presented. If 

objective_new <= (smaller than or equal to) objective_old accept the changes, else give 

a random number (p0) in the interval (0,1) and if that number (p0) < (smaller than)  

exp(-ΔΕ/T) where ΔΕ = (equals the difference) (objective_new – objective_old) then 

accept the changes.  

number of iterations = number of iterations + 1. Reduce the temperature based on a 

cooling schedule (T=T/log (number of iterations)). 
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Microstate  

Change from s to s’ 

 

Microstate change is divided in two phases. 

Before all it has to be noted that during the entrance in every repetition to the part 

where we change microstate and by that we mean the attempt to tweak the routing of 

a wagon, matrix δ is zeroed.  In first phase for every consignment p given that initial 

station is known and for every wagon a, the algorithm gives a random intermediate or 

final station j and a random train k in order to formulate an initial solution. In the 

second phase in an attempt to optimize the running time of the procedure we are 

locating which trains have their routes in common and we try to consolidate their 

wagons. When a consolidation occurs we choose randomly the next train to carry on 

the routing from the already pre-selected trains that existed at the previous step. 

Secondly as a consequence of the consolidations we ought to check the capacity in 

every routing from its beginning to its end so as to avoid violation on constraint given 

by our problem. Moreover we will have to check if a wagon has wrongly been to a next 

station with a previous train. That would lead to a wrong solution according to 

programming and would have given wrong timetable.  Also we check if there is enough 

time margin for the wagons classification operations between the time of arrival and 

the time of departure for each connection. Finally a total check runs through all these 

changes that occurred to the specific solution to decide if there exists a constraint 

violation and gives us a flag meaning that only then we can approve that solution.  
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CHAPTER 4  

4.1 COMPUTATIONAL RESULTS 
 

In the above presented numerical problem we have 7 trains, 3 consignments consisting 

of 69 wagons and a complete graph of four stations. As a next step we will describe a 

solution as given from our algorithm.  

Train k=3 starts from station 1 for station 2 at 3:00 and arrives after 5 hours at 8:00, 

loaded with cargo, 7 wagons of consignment 1 and 10 wagons of consignment 2. At 

station 2 unloads 7 wagons of consignment 1, (3,8,11,16,21,25,27) and loads 10 wagons 

of consignment 3. It then departs from station 2 for station 3 at 9:00. At station 3 

unloads 10 wagons of consignment 2 (terminal station for consignment 2) and 10 

wagons of consignment 3.  (1,3,4,6,7,10,13,17,20,21). The specific train is put out of 

service. 

 

train k=5 starts from station 1 at 5:00 with destination station 3 where it arrives after 13 

hours  at 18:00 loaded with 23 wagons of consignment 1 and 8 wagons of consignment 

2. 

 

at station 3 unloads 8 wagons of consignment 2 and loads 10 wagons of consignment 3 

(1,3,4,6,7,10,13,17,20,21) which train k=3 had delivered. It departs from station 3 for 

station 4 at 19:00.  

 

train k=7 starts from station 2 at 13:00 with destination station 4 where arrives after 15 

hours at 4:00. at station 2 loads 7 wagons of consignment 1, (3,8,11,16,21,25,27)  and 

11 wagons of  consignment 3 (which has as start station 2).  



35 

 

 

Figure 4 
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Figure 5 

 

Solution with total cost: 19883 

 

the trains formed: 

 

γ(1,2,3) = γ(2,3,3) = γ(1,3,5) = γ(3,4,5) = γ(2,4,7) = 1 

  

the wagons should stop in stations: 

 

λ(3,1,2) = λ(8,1,2) = λ(11,1,2) = λ(16,1,2) = λ(21,1,2) = 1 

λ(25,1,2) = λ(27,1,2) = λ(1,3,3) = λ(3,3,3) = λ(4,3,3) = 1 
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λ(6,3,3) = λ(7,3,3) = λ(10,3,3) = λ(13,3,3) = λ(17,3,3) = 1 

λ(20,3,3) = λ(21,3,3) = 1 

 

the assigned trains and arcs to wagons: 

 

δ(1,2,3,1,3) = δ(1,2,8,1,3) = δ(1,2,11,1,3) = δ(1,2,16,1,3) = δ(1,2,21,1,3) = 1 

δ(1,2,25,1,3) = δ(1,2,27,1,3) = δ(1,2,2,2,3) = δ(2,3,2,2,3) = δ(1,2,3,2,3) = 1 

δ(2,3,3,2,3) = δ(1,2,4,2,3) = δ(2,3,4,2,3) = δ(1,2,8,2,3) = δ(2,3,8,2,3) = 1 

δ(1,2,9,2,3) = δ(2,3,9,2,3) = δ(1,2,14,2,3) = δ(2,3,14,2,3) = δ(1,2,15,2,3) = 1 

δ(2,3,15,2,3) = δ(1,2,16,2,3) = δ(2,3,16,2,3) = δ(1,2,17,2,3) = δ(2,3,17,2,3) = 1 

δ(1,2,18,2,3) = δ(2,3,18,2,3) = δ(2,3,1,3,3) = δ(2,3,3,3,3) = δ(2,3,4,3,3) = 1 

δ(2,3,6,3,3) = δ(2,3,7,3,3) = δ(2,3,10,3,3) = δ(2,3,13,3,3) = δ(2,3,17,3,3) = 1 

δ(2,3,20,3,3) = δ(2,3,21,3,3) = δ(1,4,1,1,5) = δ(1,4,2,1,5) = δ(1,3,4,1,5) = 1 

δ(3,4,4,1,5) = δ(1,4,5,1,5) = δ(1,4,6,1,5) = δ(1,4,7,1,5) = δ(1,4,9,1,5) = 1 

δ(1,3,10,1,5) = δ(3,4,10,1,5) = δ(1,4,12,1,5) = δ(1,4,13,1,5) = δ(1,4,14,1,5) = 1 

δ(1,4,15,1,5) = δ(1,3,17,1,5) = δ(3,4,17,1,5) = δ(1,4,18,1,5) = δ(1,3,19,1,5) = 1 

δ(3,4,19,1,5) = δ(1,4,20,1,5) = δ(1,4,22,1,5) = δ(1,3,23,1,5) = δ(3,4,23,1,5) = 1 

δ(1,3,24,1,5) = δ(3,4,24,1,5) = δ(1,4,26,1,5) = δ(1,3,28,1,5) = δ(3,4,28,1,5) = 1 

δ(1,3,29,1,5) = δ(3,4,29,1,5) = δ(1,3,30,1,5) = δ(3,4,30,1,5) = δ(1,3,1,2,5) = 1 

δ(1,3,5,2,5) = δ(1,3,6,2,5) = δ(1,3,7,2,5) = δ(1,3,10,2,5) = δ(1,3,11,2,5) = 1 

δ(1,3,12,2,5) = δ(1,3,13,2,5) = δ(3,4,1,3,5) = δ(3,4,3,3,5) = δ(3,4,4,3,5) = 1 

δ(3,4,6,3,5) = δ(3,4,7,3,5) = δ(3,4,10,3,5) = δ(3,4,13,3,5) = δ(3,4,17,3,5) = 1 

δ(3,4,20,3,5) = δ(3,4,21,3,5) = δ(2,4,3,1,7) = δ(2,4,8,1,7) = δ(2,4,11,1,7) = 1 

δ(2,4,16,1,7) = δ(2,4,21,1,7) = δ(2,4,25,1,7) = δ(2,4,27,1,7) = δ(2,4,2,3,7) = 1 

δ(2,4,5,3,7) = δ(2,4,8,3,7) = δ(2,4,9,3,7) = δ(2,4,11,3,7) = δ(2,4,12,3,7) = 1 
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δ(2,4,14,3,7) = δ(2,4,15,3,7) = δ(2,4,16,3,7) = δ(2,4,18,3,7) = δ(2,4,19,3,7) = 1 

 

A MATHEMATICAL MODEL FOR TRAIN ROUTING AND SCHEDULING PROBLEM WITH 

FUZZY APPROACH.   

 

SOLUTION: 

 

In the paper presented by Jamili (2012) the batch of wagons are presented specifically 

in triplets which do not split during their whole routing from the start until the terminal 

station. 

 

The final optimum value for objective function: 18615 

 

The trains formed are : 

 

γ(1,2,4) = γ(1,3,5) = γ(2,3,6) = γ(3,4,5) = γ(3,4,7) = 1 

 

The wagons should stop in stations: 

 

λ(1,2,2) = λ(2,2,2) = λ(3,2,2) = λ(4,2,2) = λ(5,2,2) = 1 

λ(6,2,2) = λ(1,3,3) = λ(2,3,3) = λ(3,3,3) = λ(4,3,3) = 1 

λ(5,3,3) = λ(6,3,3) = λ(7,3,3) = 1 
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The assigned trains and arcs to wagons: 

 

δ(1,3,1,1,5) = δ(1,3,2,1,5) = δ(1,3,3,1,5) = δ(1,3,4,1,5) = δ(1,3,5,1,5) = 1 

δ(1,3,6,1,5) = δ(1,3,7,1,5) = δ(1,3,8,1,5) = δ(1,3,9,1,5) = δ(1,3,10,1,5) = 1 

δ(1,2,3,2,4) = δ(1,2,4,2,4) = δ(1,2,5,2,4) = δ(1,2,6,2,4) = δ(1,3,1,2,5) = 1 

δ(1,3,2,2,5) = δ(2,3,3,2,6) = δ(2,3,4,2,6) = δ(2,3,5,2,6) = δ(2,3,6,2,6) = 1 

δ(2,3,1,3,6) = δ(2,3,2,3,6) = δ(2,3,3,3,6) = δ(2,3,4,3,6) = δ(2,3,5,3,6) = 1 

δ(2,3,6,3,6) = δ(2,3,7,3,6) = δ(3,4,1,1,5) = δ(3,4,2,1,5) = δ(3,4,3,1,5) = 1 

δ(3,4,4,1,5) = δ(3,4,5,1,5) = δ(3,4,6,1,5) = δ(3,4,7,1,5) = δ(3,4,8,1,5) = 1 

δ(3,4,9,1,5) = δ(3,4,10,1,5) = δ(3,4,1,3,7) = δ(3,4,2,3,7) = δ(3,4,3,3,7) = 1 

δ(3,4,4,3,7) = δ(3,4,5,3,7) = δ(3,4,6,3,7) = δ(3,4,7,3,7) = 1 
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APPENDIX MATLAB CODE 
 

clear 
clc 
tic 
T=500; 
%N1 number of trains 
%N2 number of stations 
%N3 number of destinations 
%N4 number of consignment 
%N5 maximum allowed number of wagons 
N1=7; 
N2=3; 
N3=4; 
N4=3; 
N5=36; 
kiter=1; 
kiterinner=0; 
[gamma delta lamda]=arxikes_times(N1,N2,N3,N4,N5) ;            
kiter2=0; 
while T>10  
while kiter<100 
obj10=objGam1(gamma); 
obj30=partobj3(lamda); 
obj20=objdelta2(delta); 
obj0=obj10+obj20+obj30; 
%%%%%%%%%%%%%%%%%%% 
delta1=allaghdelta2(delta); 
gamma1=elgxosgamma(delta1); 
lamda1=elgxoslambda(delta1); 
%%%%%%%%%%%%%%%%%% 
obj11=objGam1(gamma1); 
obj31=partobj3(lamda1); 
obj21=objdelta2(delta1); 
obj1=obj11+obj21+obj31; 
if obj1<=obj0 
    gamma=gamma1; 
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    delta=delta1; 
     lamda=lamda1; 
else 
    p0=rand(1); 
    if p0<exp(-(obj1-obj0)/T); 
        gamma=gamma1; 
        delta=delta1; 
         lamda=lamda1; 
    end 
end 
    kiter=kiter+1; 
     kiter2=kiter2+1; 
    y(kiter2)=obj1; 
    z(kiter2)=obj0; 
 [obj0,obj1,kiter2] 
end  
kiter=0; 
   T=T/log(kiter2); 
%    T=0.7*T; 
end 
toc 
figure(1) 
plot(z) 
gamma 
 
 
 
function delta=allaghdelta2(~) 
shm=1; 
while shm>0 
% initialize turn delta matrix into zeros 
delta=zeros(3,4,36,3,7); 
for p=1:3 
    if p==1 
        NN=30; 
        init=1; 
         term=4; 
    elseif p==2 
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        NN=18; 
        init=1; 
        term=3; 
    elseif p==3 
        NN=21; 
         init=2; 
         term=4; 
    end 
      for a=1:NN 
 % creation of routing          
j=ceil(rand*term);        
k=ceil(rand*7); 
while j<=init 
      j=ceil(rand*term); 
end 
if j==term 
    delta(init,j,a,p,k)=1; 
else 
delta(init,j,a,p,k)=1; 
    % give a next train 
    k2=ceil(rand*7); 
    while k2<k 
      k2=ceil(rand*7); 
    end 
    delta(j,term,a,p,k2)=1;     
end 
      end 
end 
% % % % % % % % % % % % % % %%  
% reduce and converge number of trains used 
delta=siglisi(delta); 
% % % % % % % % % % % % % % %  
% check train’s total capacity 
delta=capacity(delta); 
% % % % % % % % % % % % % % %  
% check if a wagon has been at the next station with a previous train  
delta=pred(delta); 
% check for late arrival 
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delta=arrival(delta); 
% % % % % % % % % % % % % % % % % % % % %  
 [delta,shm]=check2(delta); 
% shm 
end 
  
  
     
function delta=siglisi(delta) 
 s5=diadromes(delta); 
for i=1:3 
 for j=i+1:4 
x1= (s5(:,1)==i & s5(:,2)==j); 
y1=s5(x1,:); 
length(y1(:,1)); 
if  ~isempty(y1(:,1)) 
% choose from the existing trains 
y2=unique(y1(:,5)); 
y3=length(y2); 
y4=randi(y3); 
knew=y2(y4); 
x2= (s5(:,1)==i & s5(:,2)==j & s5(:,5)==knew); 
x3=s5(x2,:); 
x4=setdiff(y1,x3,'rows'); 
     for v1=1:length(x4(:,1)) 
delta(x4(v1,1),x4(v1,2),x4(v1,3),x4(v1,4),x4(v1,5))=0;  
     end 
x4(:,5)=knew; 
for v2=1:length(x4(:,1) 
delta(x4(v2,1),x4(v2,2),x4(v2,3),x4(v2,4),x4(v2,5))=1; 
end 
end 
end 
 end 
 
 
 
function delta=capacity(delta) 
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s5=diadromes(delta); 
for k=1:7 
%     (1,2)+(1,3)+(1,4) 
a=s5(s5(:,1)==1 & s5(:,5)==k,:); 
%  (1,3)+(1,4)+(2,3)+(2,4) 
b=s5(s5(:,1)==1 & s5(:,2)==3 & s5(:,5)==k,:); 
c=s5(s5(:,1)==1 & s5(:,2)==4 & s5(:,5)==k,:); 
d=s5(s5(:,1)==2 & s5(:,2)==3 & s5(:,5)==k,:); 
e=s5(s5(:,1)==2 & s5(:,2)==4 & s5(:,5)==k,:); 
b2=[b;c;d;e]; 
% (1,4)+(2,4)+(3,4) 
f=s5(s5(:,2)==4 & s5(:,5)==k,:); 
if length(a)>36 
    a2=a(37:end,:); 
    for v3=1:length(a2(:,1))  
delta(a2(v3,1),a2(v3,2),a2(v3,3),a2(v3,4),a2(v3,5))=0; 
    end   
kover=randi(7); 
a2(:,5)=kover; 
for v4=1:length(a2(:,1)) 
delta(a2(v4,1),a2(v4,2),a2(v4,3),a2(v4,4),a2(v4,5))=1; 
end   
end 
if length(b2)>36 
    b6=[]; 
    while length(b2)>36 
    const=length(b2)-36;  
    b4=randi(length(b2),const,1); 
%     pause 
    b3=unique(b4); 
    length(b3); 
    b5=b2(b3,:); 
    length(b5); 
    b6=[b6;b5]; % change  specific delta into another train 
    length(b6); 
    b2=setdiff(b2,b5,'rows'); % continue the routing 
    length(b2); 
%     pause 
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    end 
  for v3=1:length(b6(:,1)) 
delta(b6(v3,1),b6(v3,2),b6(v3,3),b6(v3,4),b6(v3,5))=0; 
  end   
%  gives rand k 
%      check the capacity of the available train 
kover=randi(7); 
b6(:,5)=kover; 
for v4=1:length(b6(:,1)) 
delta(b6(v4,1),b6(v4,2),b6(v4,3),b6(v4,4),b6(v4,5))=1; 
end   
end 
if length(f)>36 
    f1=f(37:end,:); 
    for v3=1:length(f1(:,1)) 
    delta(f1(v3,1),f1(v3,2),f1(v3,3),f1(v3,4),f1(v3,5))=0; 
    end   
kover=randi(7); 
f1(:,5)=kover; 
for v4=1:length(f1(:,1)) 
delta(f1(v4,1),f1(v4,2),f1(v4,3),f1(v4,4),f1(v4,5))=1; 
end   
end 
end     
 
 
 
function delta=pred(delta) 
s5=diadromes(delta); 
for p=1:3 
    for a=1:36 
a3=s5(s5(:,3)==a & s5(:,4)==p,:); 
% check if a wagon has been at the next station with a previous train 
if length(a3(:,1))>1 && a3(1,2)>a3(2,2) && a3(1,5)<a3(2,5) 
    k2=a3(2,5); 
    k1=randi(7); 
    while k1<k2   
      k1=randi(7); 
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    end 
delta(a3(1,1),a3(1,2),a3(1,3),a3(1,4),a3(1,5))=0;  
a3(1,5)=k1; 
delta(a3(1,1),a3(1,2),a3(1,3),a3(1,4),a3(1,5))=1;  
end 
    end 
end 
 
 
 
function delta=arrival(delta) 
s5=diadromes(delta); 
gamma=elgxosgamma(delta); 
phi=[1:7;6,8:13;14,16:21]; 
theta=[0,5,13,20;0,0,8,15;0,0,0,7]; 
s=[]; 
for k=1:7 
    for i=1:3 
        for j=i+1:4 
            if gamma(i,j,k)>0 
                s=[s;i,j,k]; 
            end 
        end 
    end 
    if ~isempty(s) 
        a=s(s(:,3)==k,:); 
        for c=1:length(a(:,1))-1 
            arr=phi(a(c,1),k)+theta(a(c,1),a(c,2)); 
            ip=a(c,1); 
            jp=a(c,2); 
            c=c+1; 
            dep=phi(a(c,1),k); 
            % the time of arrival must not occur with the time of departure  
            % in order to be sufficient time for wagons classification  
            if arr>=dep 
            [ip,jp,k]; 
               pin=s5(s5(:,1)==ip & s5(:,2)==jp & s5(:,5)==k,:); 
               for c1=1:length(pin(:,1))  
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              delta(pin(c1,1),pin(c1,2),pin(c1,3),pin(c1,4),pin(c1,5))=0; 
               end 
               kf=randi(7); 
               pin(:,5)=kf; 
               for c1=1:length(pin(:,1))  
              delta(pin(c1,1),pin(c1,2),pin(c1,3),pin(c1,4),pin(c1,5))=1; 
               end 
            end 
        end 
    end 
end 
  
  
 
function s5=diadromes(delta) 
it5=0; 
for k=1:7     
    for p=1:3 
        for a=1:36 
            for j=1:4 
                for i=1:3 
                    if delta(i,j,a,p,k)>0 
                       it5=it5+1; 
                        s5(it5,:)=[i,j,a,p,k]; 
                    end 
                end 
            end 
        end 
    end 
end 
s5; 
 
 
 
function [delta,shm]=check2(delta) 
gamma=elgxosgamma(delta); 
s5=diadromes(delta); 
shm=0; 
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for k=1:7 
%     (1,2)+(1,3)+(1,4) 
if sum(sum(sum(delta(1,:,:,:,k)==1)))>36 
%     a=s5(s5(:,1)==1 & s5(:,5)==k,:); 
%     k; 
% sum(sum(sum(delta(1,:,:,:,k)==1))); 
shm=shm+1; 
end 
%  (1,3)+(1,4)+(2,3)+(2,4) 
if sum(sum(sum(sum(delta(1:2,3:4,:,:,k)))))>36 
% b=s5(s5(:,1)==1 & s5(:,2)==3 & s5(:,5)==k,:); 
% c=s5(s5(:,1)==1 & s5(:,2)==4 & s5(:,5)==k,:); 
% d=s5(s5(:,1)==2 & s5(:,2)==3 & s5(:,5)==k,:); 
% e=s5(s5(:,1)==2 & s5(:,2)==4 & s5(:,5)==k,:); 
% b2=[b;c;d;e]; 
%     k; 
% sum(sum(sum(sum(delta(1:2,3:4,:,:,k))))); 
shm=shm+1; 
end 
% (1,4)+(2,4)+(3,4) 
if sum(sum(sum(delta(:,4,:,:,k)==1)))>36  
%     f=s5(s5(:,2)==4 & s5(:,5)==k,:); 
%     k; 
%      
% sum(sum(sum(delta(:,4,:,:,k)==1))); 
shm=shm+1; 
end 
end 
% % % % % % % % % % % % % % % % % % %  
phi=[1:7;6,8:13;14,16:21]; 
 theta=[0,5,13,20;0,0,8,15;0,0,0,7]; 
  
s=[]; 
for k=1:7 
    for i=1:3 
        for j=i+1:4 
            if gamma(i,j,k)>0 
                s=[s;i,j,k]; 
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            end 
        end 
    end 
    if ~isempty(s) 
        a=s(s(:,3)==k,:); 
        for c=1:length(a(:,1))-1 
            arr=phi(a(c,1),k)+theta(a(c,1),a(c,2)); 
%             ip=a(c,1); 
%             jp=a(c,2); 
            c=c+1; 
            dep=phi(a(c,1),k); 
            % the time of arrival must not occur with the time of departure  
            % in order to be sufficient time for wagons classification  
            if arr>=dep 
%             [ip,jp,k]; 
%                pin=s5(s5(:,1)==ip & s5(:,2)==jp & s5(:,5)==k,:); 
               shm=shm+1; 
            end 
        end 
    end 
end 
% % % % % % % % % % % % % % % % % % % % %  
for p=1:3 
    for a=1:36 
a3=s5(s5(:,3)==a & s5(:,4)==p,:); 
% check if a wagon has been at the next station with a previous train  
if length(a3(:,1))>1 && a3(1,2)>a3(2,2) && a3(1,5)<a3(2,5) 
%   a3; 
shm=shm+1; 
end 
    end 
end 
% shm; 
 
 
 
function [gamma delta lamda]=arxikes_times(N1,N2,N3,N4,N5) 
% gamma=round(rand(N2,N3,N1)); 
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gamma=ones(N2,N3,N1); 
for k=1:N1 
    for i=1:N2 
        for j=1:N3 
            if i>=j 
                gamma(i,j,k)=0; 
            end 
        end 
    end 
end 
lamda=zeros(N5,N4,N2);% (a,p,i) 
delta=zeros(N2,N3,N5,N4,N1); 
 
 
 
function gamma=elgxosgamma(delta) 
s=zeros(3,4,7); 
gamma=zeros(3,4,7); 
for i=1:3 % initial station 
    for j=i+1:4 % intermediate / terminal 
         for k=1:7 % train 
                  s1=sum(sum(delta(i,j,:,:,k))); 
                      s(i,j,k)=s1; 
         end 
    end            
end 
%         s; 
    for k=1:7 
             [row,col]=find(s(:,:,k)>0); 
             table=[row,col]; 
             tab2=unique(table); 
  if ~isempty(tab2)  
x=1; 
toksa=[]; 
    for n=1:length(tab2)-1 
    k; 
    toksa(x,:)=[tab2(n);tab2(n+1)]; 
    x=x+1; 
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%     pause 
    end 
for n2=1:length(toksa(:,1)) 
    gamma(toksa(n2,1),toksa(n2,2),k)=1; 
    end 
  end 
    end 
  
  
           
 function lamda=elgxoslambda(delta) 
s=zeros(36,3,3); 
lamda=zeros(36,3,3); 
for i=1:3  
    for p=1:3  
        if p==1 || p==2 
            init=1; 
        else 
        init=2; 
        end 
        for a=1:36  
                 s1=sum(sum(delta(i,:,a,p,:))); 
                      s(a,p,i)=s1;  
                      if s(a,p,i)>0 && i~=init 
                lamda(a,p,i)=1; 
                      end 
        end 
    end 
end 
 
 
 
function y=objdelta2(delta) 
phi=[1:7;6,8:13;14,16:21]; 
theta=[0,5,13,20;0,0,8,15;0,0,0,7]; 
cw=2; 
s=0; 
for i=1:3 
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   for j=i+1:4; 
      for p=1:3 
if p==1 
NN=30; 
elseif p==2 
NN=18; 
else 
NN=21; 
end 
          for a=1:NN 
              for k=1:7 
s=s+delta(i,j,a,p,k)*(theta(i,j)+phi(i,k))*cw;  
              end 
           end 
      end 
   end 
end 
y=s; 
 
 
 
function  y=objGam1(gamma) 
  
N1=7;%number of train 
Ct=[0 2000 5000 7000;0 0 3000 5000;0 0 0 2000;0 0 0 0]; 
N2=3; 
N3=4; 
s=0; 
for k=1:N1 
    for i=1:N2  
        for j=i+1:N3 
            s=s+gamma(i,j,k)*Ct(i,j); 
        end 
    end 
end 
y=s; 
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function obj3=partobj3(lamda) 
cc=3; 
s=0; 
 for i=1:3 
   for p=1:3 
       for a=1:36 
   s=s+lamda(a,p,i)*cc; 
       end 
   end 
 end 
obj3=s; 
 
 
 
%%%%%%%%%%%%%%%%%%%% 
clc 
fort=[]; 
%  find which wagons transferred to another train 
for c=1:length(s5(:,1)) 
    a=s5(s5(:,3)==s5(c,3) & s5(:,4)==s5(c,4) & s5(:,5)~=s5(c,5) ,:); 
    if ~isempty(a) 
        fort=[fort;a]; 
    end 
end 
fort 
 
 
 
 


