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ABSTRACT

In this dissertation, a work is presented using simulated annealing method in order to
solve a train routing and scheduling problem. If these problems are solved separately
the solution might not be optimum. In an attempt to overcome this obstacle both
problems are solved simultaneously.

This has as side effect that the problem becomes much more difficult. The objective is
to minimize the cost of train formation, the cost of idle time of wagons in stations

waiting for trains and the cost of wagon classifications in shunting stations.



MEPIAHWH

ITn mapouoa Epyacio Xpnolpomnoleital n HEBodog TG MPOCOUOLWHEVNE OVOTITNONG LE
okoTto va AuBel to MpOPANUA TOU TIPOYPOUUATIOMOU KoL TNG SPOUOAOYNoNG TPEVWV.
Edv emnuyepricoupe va AUooupe ta Vo autd mpoPAnuata Eexwplotd, n Avon mou Ba
AaBoupe sival mBavo va pnv sivol BEATLOTN. Z€ plol TPOOTIAOELD VA UTIEPVIKI|OOULE
auUTO To eumodlo mpoomabolpe va ta AUCOUUE TAUTOXPOVA, HE OTOTEAECUA VA
avéavetal n duokoAia Tou PoBARUATOC.

Ol otoxoL Ttou TiBevtal eival oL €€1¢: H eAaxLlotomnoinon Tou KOGTOUG OXNUOTIOHOU TWV
TPEVWVY, TOU KOOTOUC TIOU QVTLOTOLXEL OTO XpOvo adpAvelaC TwWV Payoviwv OTOUG
eVOLAPEOOUG OTABOUG AVAUEVOVTAG TNV AVTATIOKPLON UE TO EMOPEVA TPEVA KOL TEAOG

TOU KOOTOUG Taélvopnong otoug otaBpouc Staloync.
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CHAPTER 1

1.1 INTRODUCTION

Despite the efforts of European policies to lead freight traffic to more green ways of
transport, nothing seems to have changed. Between 2008 and 2013 as we can observe
in figure 1, the share of railways in modal split remains the same at 12,3%. Although

railways are one of the most environment friendly means of transportation, the

2008 2013

Air
0.1% Air
Inland 0.1%
waterways Inland
4 3% waterways

4.6%

(") Air and maritime cover anly intra-EU transport (transport toffrom countries ofthe EU) and exclude extra-EU transponrt.

problems seem to concentrate to economical issues. One of the most important factors
for a customer when making a choice is price. Others that may follow are speed of

service, frequency and reliability.

Figure 1: Freight transport in the EU-28 modal split based on five transport modes (% of

total tonne-kilometres)
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In most cases, companies’ orders include a small number of wagons. In the direction
that the cost will have to be as low as possible for the carriers to be competitive, these
wagons must be pulled to a marshalling yard to be rearranged and consolidated with
other wagons from different origins before being able to reach their destinations. On
the other hand this action contains shunting costs that will have to be added to our

objective function.

1. 2. NETWORK ROUTING MODELS: BLOCKING PROBLEM

A blocking policy is usually specified as follows: cars at yard i which are destined for
yard j must be added to a block that will next be shipped to yard k. Cars in a block will
not be reclassified until the block reaches its final destination. A blocking model thus
places the emphasis on the movement of cars as opposed to the movement of trains.
The solution of this model indicates the routing of freight through the network and the
distribution of classification work among yards, but does not specify the trains to be run
or the assignment of blocks to trains. Instead, an additional problem must then be

solved to determine the routing of trains and their makeup.

1.3. ROUTING AND MAKEUP MODELS

Whereas blocking models indicate the routing of freight and the distribution of

classification work among the yards of the network, routing and makeup models
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determine the routing and frequency of trains and the assignment of blocks to trains. In
routing and makeup models, the blocking policy may be either determined
endogenously or given as an input. These models thus produce a complete train and
freight routing plan. However, because they do not provide actual departure times for

the trains to be run, an additional scheduling problem must be solved at a later stage.

1.4. COMPOUND ROUTING AND SCHEDULING MODELS

Routing and makeup models produce a transportation plan that completely describes
the routing of freight, the set of trains to be operated and their respective frequency.
But because these models do not take scheduling into consideration, it may be difficult
to later find a timetable accommodating all scheduled trains and satisfying line and
yard capacity. Hence compound models, which address both the routing and the
scheduling aspects of freight transportation, can significantly help to improve service

reliability and reduce costs.

1.5 THE MAIN GOALS OF TRAIN FORMATION PROBLEM

The main goals of the train formation problems are:
1. to minimize classifying operations in shunting stations
2. to minimize train formation costs
3. to minimize the idle time of wagons waiting for trains in shunting stations
4. to maximize the railroad track capacity for train movements to share almost

equal wagon classification operations in all shunting stations

13



5. to yield the optimum scheduling for each wagon

Furthermore, the following strategic planning goals can be achieved:
- to develop the critical shunting stations with the high wagon classification
operations
- to build new shunting stations if required

- to procure more locomotives if needed

1.6 PROBLEM DEFINITION

In order to represent a railroad network we can use a graph, where its nodes will
represent shunting stations and the existing paths between them, the arcs. A train can
move to the next station by selecting only one of the available arcs each time. It has to
be stated that the allowed movement on the graph is from left to right and once a train
has been used it cannot return to its origin station.

For example let us assume that we have a graph with four stations. If a train starts from
station 1, it has the following paths available: (1-2),(1-3),(1-4).

If it starts from station 2 then it has to make a choice between arcs: (2-3),(2-4).

Last but not least our choices are limited when we begin from station 3. In this case the
only arc left is (3-4).

When a train traverses an arc, a cost occurs. This can be also viewed as a time slot
usage cost. Costs for traversing an arc are given below, but it is worth to mention that
the cost related for traversing arcs (1,2) and (2,3) equals the cost passing arc (1,3). The
difference lies at the idle time cost of wagons and locomotives at the intermediate

station 2.
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For the proposed model the following assumptions have been made:

- The unit of each consignment is a wagon.

- An upper limit exists on how many wagons a locomotive can pull for each arc
depending on the gradient, the distance between signals, the train’s couplers and
the internal length of stations.

- The distances between stations are known and so the transit times of trains are

pre-estimated.

1.7 REVIEW

Branch and price for a European variant of the railroad blocking problem, Robert Voll

and Uwe Clausen

The Railroad Blocking problem (RBP) can be modeled as a multi commodity capacitated
network design problem (MCNDP). The underlying problem of determining a sequence
of yards for each railcar is a routing problem. While finding an optimal routing for all
railcars the goal is to find the blocking network which is a subset of the original
network. Operating a train induces high fixed costs, which dominate the transport
costs.

So the cost function must focus on train costs rather than on costs per wagon. The
decision problem can be proven to be NP- complete.

In this paper a branch and price approach is introduced for the problem under
consideration, where specialized cuts are used, which are incorporated into the

branching scheme.
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A mathematical model for train routing and scheduling problem with fuzzy approach,

Amin Jamili

In classical linear programming the violation of any constraint renders the solution
infeasible. But in real world, applicable, cases the role of constraints can be different. In
real life problems the decision maker might accept small violations of constraints but
might also attach different degrees of importance to the violations of different
constraints. In this paper the parameter of the maximum allowable wagons hauled by a
locomotive in an arc, is supposed to be imprecise. As the objective function value
assumed to be crisp, the Werner’s approach can be applied. The specified problem is a
pure binary one and merges the scheduling problem with the routing problem, each of
which is known to be NP — hard. The proposed heuristic method is as follows: the
problem is divided in two individual sub-problems, one is routing, also known as train

formation problem and the other is train scheduling problem.
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CHAPTER 2

2.1 OPTIMIZATION

Several optimization methods exist and can be categorized into two main groups. Those
using analytic type of solutions, such as Lagrange or Newton’s methods and those
employing more algorithmic type of methods, such as Simplex, Dijkstra’s algorithm,
dynamic programming, particle swarm optimization etc. Among these methods is
simulated annealing.

At Los Alamos in 1953, Nicholas Metropolis (NwoAaog MntpomouAog), a Greek —

American physicist, developed a modified Monte Carlo scheme. His main idea was that:

instead of choosing configurations randomly, then weighting them with exp(;—E), we
T

choose configurations with probability exp(;—E) and then weight them evenly.
T

2.2. SIMULATED ANNEALING

In physics, the term annealing denotes a physical process where a solid is heated inside
a thermal reservoir, increasing the temperature to a maximum value (melting point) in
which all the particles of the solid are randomly distributed during the transition phase
to liquid form.

Subsequently it is cooled by slowly lowering the temperature of the thermal reservoir.
Thereby at the point where the energy takes its lowest value, all the particles are in
order forming lattice.

Under the precondition that the maximum temperature will be high enough and the
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cooling will be carried out enough slowly so as the solid wont revert to metastable
state.
Starting from the maximum value of the temperature, the cooling phase of the

annealing process can be described as follows.

At each temperature value T, the solid is allowed to reach at thermal equilibrium,
characterized by a probability of being in a state i with energy Ei given by the

Boltzmann distribution:

1

. —-E;
Pr(X=1i)= pro exp (kBT) (1.1)

(1) = 3 exp (2) (1.2)

Where Z(T) is the partition function, T is the thermodynamic temperature and kg is the
Boltzmann constant.

As the temperature is lowered Boltzmann distribution concentrates on the states with
lowest energy and finally when the temperature approaches zero only the minimum

energy states have a non-zero probability of occurrence.

2.3 METROPOLIS ALGORITHM

To simulate the evolution towards thermal equilibrium of a solid for a constant value of
temperature T, (Metropolis et al., 1953) used a Monte Carlo method, that can provide
us sequences between the previous and the following states of the solid in the

following manner.
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Given the current state of the solid, given by the positions of its particles, a random
change (perturbation) is made by transposing randomly a particle.

If the energy difference (Ej - El-) < 0 is less than or equal to zero, between the
current and the perturbed one, it is implied that the change had resulted to a lower

energy state, so state j is accepted as current state.

If (Ej —E; > O) then the probability to accept the perturbed state is given by the

-4
Boltzmann factor: exp (k—i)
B

This acceptance rule for new states is known as the Metropolis criterion.
Following that criterion the system eventually is transitioned to thermal equilibrium
after a large number of perturbations the probability distribution of the states,

approaches the Boltzmann distribution.

In statistical mechanics this Monte Carlo method is known as Metropolis algorithm and
can be used for generation of neighboring solutions for optimization problems.
In this occasion solutions correspond to states of the solid, cost function to energy and

the control parameter to the temperature.
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2.4 PSEUDO CODE OF SIMULATED ANNEALING ALGORITHM

1. begin

\!

2. s =create an initial solution;

3. k=set

counter equal to 1;

v

4. repeat

\A

5. generate ans’ € N(s)

(create a new solution s’);

6. if f(s’) < f(s)

7. else

thens=¢’

9.

k :=k+1;

8. ifexp (%Z(S,)) >

random[0,1) then s :=¢’

10. until stop criterion

11. end;

Figure 3
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2.5 MARKOV CHAINS AND THEIR CONNECTION WITH SIMULATED ANNEALING

A stochastic process is defined to be an indexed collection of random variables {Xt},
where the index t runs through a given set T. Often T is taken to be the set of non-
negative integers, and Xt represents a measurable characteristic of interest at time t.

Stochastic processes are of interest for describing the behavior of a system operating

over some period of time.

Markov chains:
a stochastic process {Xt} is said to have the Markovian property
if P{Xt+1=j | X0=kO, X1 =Kk1, ... Xt-1=kt-1, Xt=i}=P{Xt+1=j | Xt=i},

for t=0,1,... and every sequence i, j, kO, K1,..., kt-1.

The Markovian property applies when the conditional probability of any future event,
given any past event and the present state Xt =i, is independent of the past event and

depends only upon the present state.

A stochastic process {Xt } (t=0, 1,...,) is a Markov chain if it has the Markovian property.

The conditional probabilities P{Xt+1 = j | Xt =i } for a Markov chain are called transition
probabilities. If, for eachiand j,P{Xt+1=j | Xt=i}=P{X1=j | X0=i},

forallt=1, 2,..., then the transition probabilities are said to be stationary.

Thus having stationary transition probabilities implies that the transition probabilities

do not change over time.

21



If the transition probabilities in a Markov chain are independent of the time point t,
if P(t) = P(t') for all t,t' > 0, then the Markov chain is said to be homogeneous. Otherwise

it is heterogeneous.

A homogeneous Markov chain with transition matrix P is called irreducible if for each
pair (i,j) of states, the state transition graph contains a path from i to j, which is

equivalent to saying that an n > 1 exists with (Pn)ij >0

A homogeneous Markov chain with transition matrix P is called aperiodic if for each
state i the greatest common divisor gcd(Wi) = 1, where Wi is the set containing the
lengths of all paths from i to itself in the state transition graph, n € Wi if and only if
(Pn)ii>0

2.6 MATHEMATICAL MODEL OF THE ALGORITHM

The generation matrix G defines for each pair of solutions i, j € S the probability of
generating solution j from solution i. An entry Gij is called the generation probability

and satisfies Gij > 0 if and only if j € N(i).

1
——  ifj ES
Gij(ck):{ NG lf{ ,
0, ifj&S

(2.1)

The acceptance matrix A(ck) defines for each pair of solutions i, j € S the probability of
accepting solution j from solution i in the kth iteration of the simulated annealing

algorithm. The acceptance probability Ai,j(ck) is given by
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(L o if fG)<f(@)
Aij(ck)—{ exp (f(l);f(]))’ if F() > (D (2.2)

the transition matrix P(ck) defines for each pair of solutions i, j € S the probability of
moving from solution i to solution j in the kth iteration of the simulated annealing
algorithm.

The transition probability Pij(ck) is given by

GijA;j(cy), ifi#j

s (2.3)
1—Yes 1=iPulcy), ifi=]

P;;(cy) ={

If the generation matrix satisfies Gij = Gji for all i,j € S, then the finite homogeneous
Markov chain associated with a run of simulated annealing at a fixed value c of the
control parameter is strongly ergodic and the components of the unique stationary

distribution Q(c) to which its probability distribution converges are given by

P(X = i) = q;(c) = Nol@ exp (‘fc @) (2.4)

No(©) = Zjesexp (L) (2.5)
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CHAPTER 3

3.1 PROBLEM SETUP

This problem is a minimization problem and it consists of p consignments, with different
number of wagons each nl1, n2, n3 accordingly, with k number of trains in service. The

objective is to find the minimum cost.

Below notation is given:

Indices

p is defined as the index for consignments. In our problem we have three
consignments.

a is the index for each wagon. For the first consignment p = 1 let’s say we have a
demand from a shipper to move 30 wagons. When p = 2 we have a quantity of 18
wagons while when p = 3 we have 21 wagons as can be seen in the table below.

k is the index for trains. Specific to our problem, seven trains are available and each

one has a well-defined timetable.

i,j are the indices for stations. We have four stations, numbered from 1 to 4. These
stations are usually given into pairs of origin and destination depending on each
consignment. For example if p equals 1, origin is station 1 and destination is station 4. if
p equals 2, origin is station 1 and destination is station 3. Last but not least, if p equals
3, origin is station 2 and destination is station 4. It must be noted that trains can stop at

intermediate stations.
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Figure 2: Railroad sample

Variables

1, if wagon a of consignment p is transported
O(ijapk) = by train k in arc (i, )

0, otherwise

0 is a five dimensional matrix that contains all available data. Origin station, terminal

station, specific number of wagon, consignment number and train number.
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Parameters

0;; Required time for passing arc (i, j)

@i jx Departure time of train k in arc (i, j)

Ct; j Train formation cost for arc (i, j)

Cw, Cost of one hour being idle or in service related to each wagon of consignment p
Cc Shunting operation cost for each wagon

u; j Maximum number of wagons hauled by a locomotive in arc (i, j)

sp Origin station of consignment p

e, Destination station of consignment p

Consignment data

Consignment 1 Consignment 2 Consignment 3
Origin 1 1 2
Destination 4 3 4
Quantity of wagons | 30 18 21

The objective is to determine:

The number of required trains to transport consignments from their origin to their
destination, the timetable for each train containing the departure and arrival time in
each station and the timetable for each wagon containing the departure and arrival

time in addition to the idle time of wagons in each station.
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The wagon classification cost Cc for each wagon is 3 units. The cost Cw,, for one hour

idle or being in service for each wagon is 2 units. For all arcs the parameter u; ; is

considered to be equal to 36 wagons. The required time for connecting and

disconnecting wagons to/ from trains in stations is assumed to be 1 hour.

Departure time of trains

Train number 1 2 3 4 5 6 7
Starting time of trains from station 1 (hour) |1 2 3 4 5 6 7
Starting time of trains from station 2 (hour) | 6 8 9 10 |11 |12 |13
Starting time of trains from station 3 (hour) |14 |16 |17 |18 |19 |20 |21

Train formation costs

0 2000 5000 7000
Ct; j=(0 0 3000 5000
0 0 0 2000

Required time for traversing an arc (i,j)

0 5 13 20
6,;=[0 0 8 15

0O 0 0 7
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COSTS THAT OCCUR SPECIFIC TO THIS PROBLEM

Train formation costs include: train personnel wages, consumed oil, gasoline and the
amortization of the locomotive. The cost of using a wagon creates costs, i.e rental/
lease of a wagon. Lastly the cost derived from the shunting station for the classification
work of the wagons, this includes separation and connection from the inbound train to

the outbound train.

The cost of train formation
The objective of this model consists of three parts: the model minimizes the cost of
each train formation. This cost consists of train personnel wages, consumed oil and

gasoline and amortization of the locomotive. This cost is equal to

z z z Y@jh X Ctij
i j K

The cost of wagons usage:

The cost of using a wagon creates costs and is proportional to time. This cost is equal to

Z Z z z Z(S(i,j,a,p,k) X (@i +0;;) X Cwy)
i j a p k

The cost of wagon classification in shunting stations
This cost includes wagon separation works from arrived trains and wagon connection to
leaving trains. This cost contains the oil and gasoline of shunting locomotives, plus the

train personnel wages and shunting operators

ZZZA(MLP)XCC
i p a
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If we sum up all the three above parts, we have a single objective function. It must be
noted that our problem is a minimization problem and our objective is to find the
minimum cost. This function is:
Min Z=
i Xk Vo X Ctij + XX YaXp X8 japi X (i +6ij) X Cwp) +

i 2p 2atiap X Cc (3.1)

Constraints

In order to ensure that all consignments leave their origins, Eq.2 is applied to the model

Z] Zk 5(sp,j,a,p,k) =1V p,a & Sp <] < ep (32)

Inequality 3 prevents from assigning wagons more than the maximum capacity of

trains. In this problem the maximum capacity that a train can carry is 36 wagons.
Zp Za 6(i,j,a,p,k) < Ui i Y(i,jk) \4 i,j,k & Sp <i< €y, Sp <j < €y (33)

Inequality 4 ensures that all wagons travel from their origins to their destinations
successively

L Pijie O(s,japk) = 2 Lh Oniapi) X (Onik + Oni)

V a,pij &s,<i<ey,, s5<j<e, (3.4)
Inequality 5 specifies that if a wagon stops in a station, the necessary classification

works should be done, and therefore the relevant costs are added to the objective

function
Ajap) = ZiZi(Sjapi = 26 Lapi)
Vapj & s,<i<e,, sp,<j=<e, (3.5)



3.2 DESCRIPTION OF THE PROCEDURE

Initial temperature is defined, as well as the available number of trains, the number of
starting stations, the number of terminal stations, the number of consignments and the
maximum number of wagons that a train can haul. By using all these values we create
three matrices that we will use later, in order to store our data.

The number of iterations is set to zero. While the temperature is not zero and while the
number of iterations are below a specific threshold, the algorithm begins by using
simulated annealing procedure as will be explained shortly. Objective (old) is made up
of three parts that are summed altogether.

The first part contains the evaluation of matrix y;j x in terms of costs, the second part
contains the evaluation of matrix 445 and the third and last part contains the costs
derived from matrix &; j a p k)-

Having evaluated the costs of each matrix we can now begin to alter the situation of
each state — matrix. This is done again in three separate functions each one for each
matrix. Beginning with the change of matrix delta we use a 'flag' as a point of reference
in order to cut off solutions that do not satisfy our constraints. 'flag' is updated when
each of our constraint is being examined.

While flag>0 meaning that at least one constraint is not satisfied, so we keep producing
solutions. Then we initialize matrix 8;jqp k) €ach time the loop is executed by placing
zeros to all variables contained in matrix 8 ; j 4 p,k)-

For each consignment (p), the number of wagons that has to be carried ,the starting
station and the terminal station are given. Since the main focus is the cost to be based
on each wagon, we continue using a random number generator in order to create the

routing for each one of the wagons by giving two options for the routing, either to be
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direct (straight to the terminal station) or by stopping at an intermediate station, where
consequently changes to each train may occur.

Also a train is chosen randomly in order to carry out the specific routing. Since we have
completed the routing we must now examine if constraints are met. Because we had a
very large number of trains used, we had to figure out how we could suppress the costs
formed, which means we had to reduce their number.

The solution proposed is to build a constraint that first will find all the train movements
on each arc (it has to be noted that it is assumed that trains travel from left to right)
and secondly if there are trains in common that use the same arc we will try to
consolidate not all but at least some of them.

In our second constraint we check the total capacity that is being pulled from each train
not only in one arc but also in a sequence of them. Previously where we referred to
sequence we implied that if a train starts from station 1 it has all the possible routes
available as stated here [(1,2),(1,3),(1,4)] so in each one of these stations, although a
train might stop, it is not necessary that all wagons will be unloaded. Let’s assume that
a train can stop in a station not to deliver but to make a pickup and then continue so as
to unload all of the wagons at another station. So we will have to assess each previous
route until we arrive at a terminal station or where the route of our train ends. For the
intermediate stations the assessment has to be done in arcs [(1,3),(1,4),(2,3),(2,4)] and
for the terminal stations [(1,4),(2,4),(3,4)].

If a sum of arcs exceeds the maximum value of 36 that a train can pull then the rest of
the wagons have to be added to a new train that will continue the routing which is
given from the wagon’s consignment data until they reach their final destination.

Last but not least it has to be stated that when we randomly choose a new train to

carry on the existed routing, an additional check of the capacity of the new train has to
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be executed.

In the third constraint the validity of a routing is checked. For example if a wagon is
scheduled to stop at a station with train (k1) and then it must proceed to a next station
with another train (k2), then the time of departure of successor train k2 must be >
(bigger than) the time of arrival of the predecessor train (k1).

In the fourth constraint we have to check if exists the available margin of one hour
between trains that exchange wagons in order to ensure that the necessary
classification work has been done and the classification yard has the time to set the
wagons in the track of departure.

Since all the above constraints hold we have a solution formed inside the neighborhood
that we created from the limitations of our constraints. That means that a new matrix
6 _new is set up at least for now, until the next evaluation begins.

From 6 new we can derive y_new and A_new so as to help us with the evaluation of
our solution.

The next step now is to evaluate objective_new, which, as mentioned before, it consists
of three parts, the evaluation of each new matrix. If we sum up these three partial
objectives we have the total of the objective_new.

Next, the most important part of the simulated annealing algorithm is presented. If
objective_new <= (smaller than or equal to) objective_old accept the changes, else give
a random number (p0) in the interval (0,1) and if that number (p0) < (smaller than)
exp(-AE/T) where AE = (equals the difference) (objective_new — objective_old) then
accept the changes.

number of iterations = number of iterations + 1. Reduce the temperature based on a

cooling schedule (T=T/log (number of iterations)).
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Microstate

Change fromstos’

Microstate change is divided in two phases.

Before all it has to be noted that during the entrance in every repetition to the part
where we change microstate and by that we mean the attempt to tweak the routing of
a wagon, matrix 6 is zeroed. In first phase for every consignment p given that initial
station is known and for every wagon a, the algorithm gives a random intermediate or
final station j and a random train k in order to formulate an initial solution. In the
second phase in an attempt to optimize the running time of the procedure we are
locating which trains have their routes in common and we try to consolidate their
wagons. When a consolidation occurs we choose randomly the next train to carry on
the routing from the already pre-selected trains that existed at the previous step.
Secondly as a consequence of the consolidations we ought to check the capacity in
every routing from its beginning to its end so as to avoid violation on constraint given
by our problem. Moreover we will have to check if a wagon has wrongly been to a next
station with a previous train. That would lead to a wrong solution according to
programming and would have given wrong timetable. Also we check if there is enough
time margin for the wagons classification operations between the time of arrival and
the time of departure for each connection. Finally a total check runs through all these
changes that occurred to the specific solution to decide if there exists a constraint

violation and gives us a flag meaning that only then we can approve that solution.
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CHAPTER 4

4.1 COMPUTATIONAL RESULTS

In the above presented numerical problem we have 7 trains, 3 consignments consisting
of 69 wagons and a complete graph of four stations. As a next step we will describe a
solution as given from our algorithm.

Train k=3 starts from station 1 for station 2 at 3:00 and arrives after 5 hours at 8:00,
loaded with cargo, 7 wagons of consignment 1 and 10 wagons of consignment 2. At
station 2 unloads 7 wagons of consignment 1, (3,8,11,16,21,25,27) and loads 10 wagons
of consignment 3. It then departs from station 2 for station 3 at 9:00. At station 3
unloads 10 wagons of consignment 2 (terminal station for consignment 2) and 10
wagons of consignment 3. (1,3,4,6,7,10,13,17,20,21). The specific train is put out of

service.

train k=5 starts from station 1 at 5:00 with destination station 3 where it arrives after 13
hours at 18:00 loaded with 23 wagons of consignment 1 and 8 wagons of consignment

2.

at station 3 unloads 8 wagons of consignment 2 and loads 10 wagons of consignment 3
(1,3,4,6,7,10,13,17,20,21) which train k=3 had delivered. It departs from station 3 for
station 4 at 19:00.

train k=7 starts from station 2 at 13:00 with destination station 4 where arrives after 15
hours at 4:00. at station 2 loads 7 wagons of consignment 1, (3,8,11,16,21,25,27) and

11 wagons of consignment 3 (which has as start station 2).
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Solution with total cost: 19883

the trains formed:

v(1,2,3) =v(2,3,3) =v(1,3,5) = v(3,4,5) =v(2,4,7) =1

the wagons should stop in stations:

A(3,1,2) =A(8,1,2) = M(11,1,2) =A(16,1,2) =A(21,1,2) = 1
A(25,1,2) =A(27,1,2) = \(1,3,3) = A(3,3,3) =A(4,3,3) = 1

180
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A(6,3,3) =A(7,3,3) =A(10,3,3) = A(13,3,3) =A(17,3,3) =1
A(20,3,3) =A(21,3,3)=1

the assigned trains and arcs to wagons:

5(1,2,3,1,3) = 6(1,2,8,1,3) = 6(1,2,11,1,3) = §(1,2,16,1,3) = §(1,2,21,1,3) = 1
8(1,2,25,1,3) = 6(1,2,27,1,3) = §(1,2,2,2,3) = §(2,3,2,2,3) = 6(1,2,3,2,3) = 1
5(2,3,3,2,3) = 6(1,2,4,2,3) = 6(2,3,4,2,3) = 6(1,2,8,2,3) = 6(2,3,8,2,3) = 1
5(1,2,9,2,3) = 6(2,3,9,2,3) = 6(1,2,14,2,3) = §(2,3,14,2,3) = §(1,2,15,2,3) = 1
5(2,3,15,2,3) = 6(1,2,16,2,3) = §(2,3,16,2,3) = 6(1,2,17,2,3) = 6(2,3,17,2,3) = 1
5(1,2,18,2,3) = 6(2,3,18,2,3) = 6(2,3,1,3,3) = 5(2,3,3,3,3) = 6(2,3,4,3,3) = 1
5(2,3,6,3,3) = 6(2,3,7,3,3) = 6(2,3,10,3,3) = 6(2,3,13,3,3) = §(2,3,17,3,3) = 1
5(2,3,20,3,3) = 6(2,3,21,3,3) = 5(1,4,1,1,5) = §(1,4,2,1,5) = §(1,3,4,1,5) = 1
5(3,4,4,1,5) = 6(1,4,5,1,5) = 6(1,4,6,1,5) = 6(1,4,7,1,5) = 6(1,4,9,1,5) = 1
8(1,3,10,1,5) = §(3,4,10,1,5
(
(
(
(
(
(
(
(
(
(

6(1,4,12,1,5)=6(1,4,13,1,5) =6(1,4,14,1,5)=1

6(1,4,15,1,5) = 6(1,3,17,1,5) = 6(3,4,17,1,5) = 6(1,4,18,1,5) = 6(1,3,19,1,5) =1

5(1,3,24,1,5) = 5(3,4,24,1,5) = 5(1,4,26,1,5) = §(1,3,28,1,5

)= )= )=
) = ) = ) =

5(3,4,19,1,5) = 6(1,4,20,1,5) = 5(1,4,22,1,5) = 6(1,3,23,1,5) = §(3,4,23,1,5) = 1
) = ) = )=5(3,4,28,1,5) = 1
) = ) =

6(1,3,29,1,5) = 8(3,4,29,1,5) = §(1,3,30,1,5) = 6(3,4,30,1,5) = 6(1,3,1,2,5) = 1
8(1,3,5,2,5) = 6(1,3,6,2,5) = 6(1,3,7,2,5) = §(1,3,10,2,5) = §(1,3,11,2,5) = 1
6(1,3,12,2,5) = §(1,3,13,2,5) = 8(3,4,1,3,5) = 8(3,4,3,3,5) = 6(3,4,4,3,5) = 1
8(3,4,6,3,5) = 6(3,4,7,3,5) = 6(3,4,10,3,5) = 6(3,4,13,3,5) = §(3,4,17,3,5) = 1
5(3,4,20,3,5) = 5(3,4,21,3,5) = 5(2,4,3,1,7) = 6(2,4,8,1,7) = 6(2,4,11,1,7) = 1
5(2,4,16,1,7) = 6(2,4,21,1,7) = 5(2,4,25,1,7) = 5(2,4,27,1,7) = 6(2,4,2,3,7) = 1

6(2,4,5,3,7) =6(2,4,8,3,7) = 6(2,4,9,3,7) = 6(2,4,11,3,7) =6(2,4,12,3,7) =1



6(2,4,14,3,7) = 6(2,4,15,3,7) = 6(2,4,16,3,7) = 6(2,4,18,3,7) = 6(2,4,19,3,7) = 1

A MATHEMATICAL MODEL FOR TRAIN ROUTING AND SCHEDULING PROBLEM WITH
FUZZY APPROACH.

SOLUTION:

In the paper presented by Jamili (2012) the batch of wagons are presented specifically

in triplets which do not split during their whole routing from the start until the terminal

station.

The final optimum value for objective function: 18615

The trains formed are :

v(1,2,4) =v(1,3,5) =v(2,3,6) =v(3,4,5) =v(3,4,7) =1

The wagons should stop in stations:

AN1,2,2) =A(2,2,2) =A(3,2,2) =N(4,2,2) =A(5,2,2) =1

A(6,2,2) =A(1,3,3) =A(2,3,3) =A(3,3,3) =A(4,3,3)=1
A(5,3,3) =A(6,3,3)=A(7,3,3) =1
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The assigned trains and arcs to wagons:

6(1,3,1,1,5) =6(1,3,2,1,5
6(1,3,6,1,5) = 6(1,3,7,1,5
6(1,2,3,2,4)=6(1,2,4,2,4

6(2,3,6,3,6) =6(2,3,7,3,6
6(3,4,4,1,5)=6(3,4,5,1,5

) =
) =
) =
6(1,3,2,2,5)=6(2,3,3,2,6) =
)=
)=
)=

6(1,3,3,1,5)=6(1,3,4,1,5
6(1,3,8,1,5) =6(1,3,9,1,5
6(1,2,5,2,4) = 6(1,2,6,2,4

5(2,3,3,3,6) = 6(2,3,4,3,6
5(3,4,1,1,5) = 6(3,4,2,1,5
5(3,4,6,1,5) = 5(3,4,7,1,5

)=
)=
)=
6(2,3,4,2,6) = 6(2,3,5,2,6) =
)=
)=
)=

5(1,3,5,1,5)= 1
5(1,3,10,1,5) = 1
5(1,3,1,2,5) = 1
5(2,3,6,2,6) = 1
5(2,3,5,3,6) = 1
5(3,4,3,1,5)=1
5(3,4,8,1,5) =1

6(3,49,1,5) = 6(3,4,10,1,5) = 6(3,4,1,3,7) = 6(3,4,2,3,7) = 6(3,4,3,3,7) =1

( (
( (
( (
( (
5(2,3,1,3,6) = 6(2,3,2,3,6
( (
( (
( (
( (

6(3,4,4,3,7) = 6(3,4,5,3,7) = 6(3,4,6,3,7) =6(3,4,7,3,7) =1
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APPENDIX MATLAB CODE

clear

clc

tic

T=500;

%N1 number of trains

%N2 number of stations

%N3 number of destinations

%N4 number of consignment

%N5 maximum allowed number of wagons

N1=7;

N2=3;

N3=4;

N4=3;

N5=36;

kiter=1;

kiterinner=0;

[gamma delta lamda]=arxikes_times(N1,N2,N3,N4,N5) ;

kiter2=0;

while T>10

while kiter<100

obj10=0bjGam1(gamma);

obj30=partobj3(lamda);

obj20=objdelta2(delta);

o0bj0=0bj10+0bj20+0bj30;

% %% % %% % %% % %% % %% % %% %

deltal=allaghdelta2(delta);

gammal=elgxosgamma(deltal);

lamdal=elgxoslambda(deltal);

%% %% %% % %% % %% %% % %% %

objl1=objGaml(gammal);

obj31=partobj3(lamdal);

obj21=objdelta2(deltal);

objl=0bjl1l+obj21+0bj31;

if objl<=0bjO
gamma=gammal;
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delta=deltal;
lamda=lamdal;
else
pO=rand(1);
if pO<exp(-(obj1-0bj0)/T);
gamma=gammal;
delta=deltal;
lamda=lamdal;
end
end
kiter=kiter+1;
kiter2=kiter2+1;
y(kiter2)=obj1;
z(kiter2)=0bjo;
[obj0,0bj1,kiter2]
end
kiter=0;
T=T/log(kiter2);
% T=0.7*T,
end
toc
figure(1)
plot(z)
gamma

function delta=allaghdelta2(~)

shm=1;
while shm>0

% initialize turn delta matrix into zeros

delta=zeros(3,4,36,3,7);
for p=1:3
if p==1
NN=30;
init=1;
term=4;
elseif p==2
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NN=18;
init=1;
term=3;
elseif p==
NN=21;
init=2;
term=4;
end
for a=1:NN
% creation of routing
j=ceil(rand*term);
k=ceil(rand*7);
while j<=init
j=ceil(rand*term);
end
if j==term
delta(init,j,a,p,k)=1;
else
delta(init,j,a,p,k)=1;
% give a next train
k2=ceil(rand*7);
while k2<k
k2=ceil(rand*7);
end
delta(j,term,a,p,k2)=1;
end
end
end
% % % % % % % % % % % % % % %%
% reduce and converge number of trains used
delta=siglisi(delta);
% % % % % % % % % % % % % % %
% check train’s total capacity
delta=capacity(delta);
% % % % % % % % % % % % % % %
% check if a wagon has been at the next station with a previous train
delta=pred(delta);
% check for late arrival



delta=arrival(delta);

% % % % % % % % % % % % % % % % % % % % %
[delta,shm]=check2(delta);

% shm

end

function delta=siglisi(delta)
s5=diadromes(delta);
fori=1:3
for j=i+1:4
x1=(s5(:,1)==i & s5(:,2)==j);
y1=s5(x1,:);
length(y1(:,1));
if ~isempty(y1(:,1))
% choose from the existing trains
y2=unique(y1(:,5));
y3=length(y2);
yad=randi(y3);
knew=y2(y4);
x2=(s5(:,1)==i & s5(:,2)==j & s5(:,5)==knew);
x3=s5(x2,:);
x4=setdiff(y1,x3,'rows');
for vi=1:length(x4(:,1))
delta(x4(v1,1),x4(v1,2),x4(v1,3),x4(v1,4),x4(v1,5))=0;
end
x4(:,5)=knew;
for v2=1:length(x4(:,1)
delta(x4(v2,1),x4(v2,2),x4(v2,3),x4(v2,4),x4(v2,5))=1;
end
end
end
end

function delta=capacity(delta)
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s5=diadromes(delta);
for k=1:7
% (1,2)+(1,3)+(1,4)
a=s5(s5(:,1)==1 & s5(:,5)==k,:);
% (1,3)+(1,4)+(2,3)+(2,4)
b=s5(s5(:,1)==1 & s5(:,2)==3 & s5(:
c=s5(s5(:,1)==1 & s5(:,2)==4 & s5(:
d=s5(s5(:,1)==2 & s5(:,2)==3 & s5(:
e=s5(s5(:,1)==2 & s5(:,2)==4 & s5(:
b2=[b;c;d;e];
% (1,4)+(2,4)+(3,4)
f=s5(s5(:,2)==4 & s5(:,5)==k,:);
if length(a)>36
a2=a(37:end,:);
for v3=1:length(a2(:,1))
delta(a2(v3,1),a2(v3,2),a2(v3,3),a2(v3,4),a2(v3,5))=0;
end
kover=randi(7);
a2(:,5)=kover;
for v4=1:length(a2(:,1))
delta(a2(v4,1),a2(v4,2),a2(v4,3),a2(v4,4),a2(v4,5))=1;
end
end
if length(b2)>36
b6=[];
while length(b2)>36
const=length(b2)-36;
b4=randi(length(b2),const,1);
% pause
b3=unique(b4);
length(b3);
b5=b2(b3,:);
length(b5);
b6=[b6;b5]; % change specific delta into another train
length(b6);
b2=setdiff(b2,b5,'rows'); % continue the routing
length(b2);
% pause
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end
for v3=1:length(b6(:,1))
delta(b6(v3,1),b6(v3,2),b6(v3,3),b6(v3,4),b6(v3,5))=0;
end
% gives rand k
%  check the capacity of the available train
kover=randi(7);
b6(:,5)=kover;
for v4=1:length(b6(:,1))
delta(b6(v4,1),b6(v4,2),b6(v4,3),b6(v4,4),b6(v4,5))=1;
end
end
if length(f)>36
f1=f(37:end,:);
for v3=1:length(f1(:,1))
delta(f1(v3,1),f1(v3,2),f1(v3,3),f1(v3,4),f1(v3,5))=0;
end
kover=randi(7);
f1(:,5)=kover;
for v4=1:length(f1(:,1))
delta(f1(v4,1),f1(v4,2),f1(v4,3),f1(v4,4),f1(v4,5))=1;
end
end
end

function delta=pred(delta)
s5=diadromes(delta);
for p=1:3
for a=1:36
a3=s5(s5(:,3)==a & s5(:,4)==p,:);
% check if a wagon has been at the next station with a previous train
if length(a3(:,1))>1 && a3(1,2)>a3(2,2) && a3(1,5)<a3(2,5)
k2=a3(2,5);
kl=randi(7);
while k1<k2
kl=randi(7);
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end
delta(a3(1,1),a3(1,2),a3(1,3),a3(1,4),a3(1,5))=0;
a3(1,5)=k1;
delta(a3(1,1),a3(1,2),a3(1,3),a3(1,4),a3(1,5))=1;
end

end
end

function delta=arrival(delta)
s5=diadromes(delta);
gamma=elgxosgamma(delta);
phi=[1:7;6,8:13;14,16:21];
theta=[0,5,13,20;0,0,8,15;0,0,0,7];
s=[1;
for k=1:7
fori=1:3
for j=i+1:4
if gammali,j,k)>0
s=[s;i,j,kl;
end
end
end
if ~isempty(s)
a=s(s(:,3)==k,:);
for c=1:length(a(:,1))-1
arr=phi(a(c,1),k)+theta(a(c,1),a(c,2));
ip=a(c,1);
jp=a(c,2);
c=c+1;
dep=phi(a(c,1),k);
% the time of arrival must not occur with the time of departure
% in order to be sufficient time for wagons classification
if arr>=dep
[ip.ip.KI;
pin=s5(s5(:,1)==ip & s5(:,2)==jp & s5(:,5)==k,:);
for c1=1:length(pin(:,1))
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delta(pin(c1,1),pin(c1,2),pin(c1,3),pin(c1,4),pin(c1,5))=0;
end
kf=randi(7);
pin(:,5)=kf;
for c1=1:length(pin(:,1))
delta(pin(c1,1),pin(c1,2),pin(c1,3),pin(c1,4),pin(c1,5))=1;
end
end
end
end
end

function s5=diadromes(delta)
it5=0;
for k=1:7
for p=1:3
for a=1:36
forj=1:4
fori=1:3
if delta(i,j,a,p,k)>0
it5=it5+1;
s5(it5,:)=[i,j,a,p,k];
end
end
end
end
end
end
s5;

function [delta,shm]=check2(delta)
gamma=elgxosgamma(delta);
s5=diadromes(delta);

shm=0;



for k=1:7

% (1,2)+(1,3)+(1,4)

if sum(sum(sum(delta(l,:,:,:,k)==1)))>36

% a=s5(s5(:,1)==1 & s5(:,5)==k,:);

% k;

% sum(sum(sum(delta(1,:,:,:,k)==1)));
shm=shm+1;

end

% (1,3)+(1,4)+(2,3)+(2,4)

if sum(sum(sum(sum(delta(1:2,3:4,:,:,k)))))>36
% b=s5(s5(:,1)==1 & s5(:,2)==3 & s5(:,5)==
% c=s5(s5(:,1)==1 & s5(:,2)==4 & s5(:,5)
% d=s5(s5(:,1)==2 & s5(:,2)==3 & s5(:,5)
% e=s5(s5(:,1)==2 & s5(:,2)==4 & s5(:,5)
% b2=[b;c;d;e];

% k;

% sum(sum(sum(sum(delta(1:2,3:4,:,:,k)))));
shm=shm+1;

end

% (1,4)+(2,4)+(3,4)

if sum(sum(sum(delta(:,4,:,:,k)==1)))>36

% f=s5(s5(:,2)==4 & s5(:,5)==k,:);

% k;

%

% sum(sum(sum(delta(:,4,:,:,k)==1)));
shm=shm+1;

end

end

% % % % % % % % % % % % % % % % % % %
phi=[1:7;6,8:13;14,16:21];
theta=[0,5,13,20;0,0,8,15;0,0,0,7];

o).
217

~ =~

7

)
)
)

)

’

~ X

Y
N

s=I[1;
for k=1:7
fori=1:3
for j=i+1:4
if gamma(i,j,k)>0
s=[s;i,j,kl;
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end
end
end
if ~isempty(s)
a=s(s(:,3)==k,:);
for c=1:length(a(:,1))-1
arr=phi(a(c,1),k)+theta(a(c,1),a(c,2));

% ip=a(c,1);
% jp=a(c,2);
c=c+1;

dep=phi(a(c,1),k);
% the time of arrival must not occur with the time of departure
% in order to be sufficient time for wagons classification
if arr>=dep
% [ip.ip,K];
% pin=s5(s5(:,1)==ip & s5(:,2)==jp & s5(:,5)==Kk,:);
shm=shm+1;
end
end
end
end
% % % % % % % % % % % % % % % % % % % % %
for p=1:3
fora=1:36
a3=s5(s5(:,3)==a & s5(:,4)==p,:);
% check if a wagon has been at the next station with a previous train
if length(a3(:,1))>1 && a3(1,2)>a3(2,2) && a3(1,5)<a3(2,5)
% a3;
shm=shm+1;
end
end
end
% shm;

o

function [gamma delta lamda]=arxikes_times(N1,N2,N3,N4,N5)
% gamma=round(rand(N2,N3,N1));
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gamma=ones(N2,N3,N1);
for k=1:N1
for i=1:N2
for j=1:N3
if i>=]
gamma(i,j,k)=0;
end
end
end
end
lamda=zeros(N5,N4,N2);% (a,p,i)
delta=zeros(N2,N3,N5,N4,N1);

function gamma=elgxosgamma(delta)
s=zeros(3,4,7);
gamma=zeros(3,4,7);
for i=1:3 % initial station
for j=i+1:4 % intermediate / terminal
for k=1:7 % train
sl=sum(sum(delta(i,j,:,:,k)));
s(i,j,k)=s1;
end
end
end
% S;
for k=1:7
[row,col]=find(s(:,:,k)>0);
table=[row,col];
tab2=unique(table);
if ~“isempty(tab2)
x=1;
toksa=[];
for n=1:length(tab2)-1
k;
toksa(x,:)=[tab2(n);tab2(n+1)];
X=x+1;

o1



% pause
end
for n2=1:length(toksa(:,1))
gamma(toksa(n2,1),toksa(n2,2),k)=1;
end
end
end

function lamda=elgxoslambda(delta)
s=zeros(36,3,3);
lamda=zeros(36,3,3);
fori=1:3
for p=1:3
if p==1 || p==2
init=1;
else
init=2;
end
for a=1:36
sl=sum(sum(delta(i,:,a,p,:)));
s(a,p,i)=s1;
if s(a,p,i)>0 && i~=init
lamda(a,p,i)=1;
end
end
end
end

function y=objdelta2(delta)
phi=[1:7;6,8:13;14,16:21];
theta=[0,5,13,20,0,0,8,15,0,0,0,7];
cw=2;

s=0;

fori=1:3

52



for j=i+1:4;
for p=1:3
if p==1
NN=30;
elseif p==2
NN=18;
else
NN=21;
end
for a=1:NN
for k=1:7
s=s+delta(i,j,a,p,k)*(theta(i,j)+phi(i,k))*cw;
end
end
end
end
end

y=s;

function y=objGaml(gamma)

N1=7;%number of train
Ct=[0 2000 5000 7000;0 0 3000 5000;0 0 0 2000;0 0 0 0];
N2=3;
N3=4;
s=0;
for k=1:N1
for i=1:N2
for j=i+1:N3
s=s+gamma(i,j, k) *Ct(i,j);
end
end
end

y=s;
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function obj3=partobj3(lamda)
cc=3;
s=0;
fori=1:3
for p=1:3
for a=1:36
s=s+lamda(a,p,i)*cc;
end
end
end
obj3=s;

%% % % %% % %% %% % %% % %% % %%

clc

fort=[];

% find which wagons transferred to another train
for c=1:length(s5(:,1))

a=s5(s5(:,3)==s5(c,3) & s5(:,4)==s5(c,4) & s5(:,5)~=s5(c,5) ,:);

if ~“isempty(a)
fort=[fort;a];
end
end
fort
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