
iOS Forensics & Data Leakage

UNIVERSITY OF PIRAEUS
Department of Digital Systems

Postgraduate Program Digital Systems Security

by

Menesidis Michail

Piraeus, October 2016

2

Supervisor

Christos Xenakis
Associate Professor, University of Piraeus

Approved by the Examining Committee

Christos Xenakis, Supervisor
Associate Professor, University of Piraeus

Konstantinos Lambrinoudakis
Associate Professor, University of Piraeus

Christoforos Ntantogian
Adjunct Lecturer, University of Piraeus

3

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Associate Professor

Christos Xenakis who tirelessly helped me to prepare my master thesis. I would like to thank him

for his encouragement in my research, his guidance, patience, help and support and for giving me

enough space for exploring my ideas. His guidance helped me during the time of research and

writing of this thesis. His enthusiasm and inspiring ideas have improved this work

immeasurably.

Besides my supervisor, I would like to thank the rest of my thesis committee: Konstantinos

Lambrinoudakis and Christoforos Ntantogian, for their encouragement, insightful comments, and

hard questions.

4

Contents
Approved by the Examining Committee .. 2

Acknowledgements .. 3

Abstract .. 6

List of Figure ... 7

List of Tables ... 9

Abbreviations ...10

Chapter 1 - Introduction ...11

1.1 Introduction ...11

1.2 Aims and Objectives ...12

1.3 Research Methodology ..12

1.4 Thesis Outline ..13

Chapter 2 - Literature Review ...14

Chapter 3 - Understanding iOS Security ...17

3.1 System Security ..17

3.2 Encryption and Data Protection ..18

3.2.1 Hardware Security Features ...18

3.2.2 Data Protection ..18

3.3 Network Security ..21

3.4 Application security ..22

Chapter 4 - Collect Information ...23

4.1 Data Leakage Tools ..23

4.1.1 Clutch Tool..23

4.1.2 ibtool Tool ...23

4.1.3 otool Tool ..24

4.1.4 Cycript Tool ..24

4.1.5 KeyChain Dumper Tool ..25

4.2 Information stored on device ..25

4.2.1 sqlite database ..25

4.2.2 Plist files ...27

4.2.3 Keychain mechanism ..27

4.2.4 NSUserDefaults ...27

Chapter 5 - Research Methodology ..29

5

5.1 Scenario 1 - 2048 App ...29

5.2 Scenario 2 - Yahoo Weather App..33

5.3 Scenario 3 - WhatsApp App ...40

5.4 Scenario 4 - Dump Keychain ...44

5.5 Scenario 5 - e-Banking Apps ..47

5.5.1 eurobank epistrofh App ...47

5.5.2 NBG App ..54

5.5.3 Alpha Bank Mobile Banking App ...57

5.5.4 winbank App ...58

Chapter 6 - Conclusion ...61

6.1 Contributions ...61

6.2 Limitations of the Research..61

Bibliography ...62

6

Abstract

During the last years the evolution of mobile devices was unprecedented. With this increasing

popularity of mobile devices and apps, security and privacy concerns have emerged as a salient

area of inquiry for researchers. In this thesis, we focus on iOS devices due to, not only the lack of

research in this area, but also by the Apple’s restrictions which is far more challenging to

investigate compared to Android. More specifically, we study the data leakage and privacy

issues posed to iPhone users. This research is aim to gain sensitive information from a mobile

device to point out that various iOS apps have data leakage issues. Using the latest forensic tools

we present methodologies to acquire data from many renown apps. Our objective is to improve

user’s privacy highlighted the missing security mechanisms in order to avoid data and privacy

leaks.

7

List of Figure

Figure 1 - Keychain Data Protection Classes [13]

Figure 2 - Find .db files

Figure 3 - Contacts of user

Figure 4 - Clutch choices

Figure 5 - Selected App

Figure 6 - Path of .ipa file

Figure 7 - Unzip .ipa file

Figure 8 - ibtool usage

Figure 9 (a) - otool command

Figure 9 (b) - otool results

Figure 10 - Objective-C runtime library

Figure 11 - Yahoo delegate viewcontroller name

Figure 12 - Hidden status bar

Figure 13 - Set status bar

Figure 14 - Unhidden status bar

Figure 15 - Set badge number

Figure 16 - Screen of Weather app after manipulation

Figure 17 - Windows in the app

Figure 18 - Current keyWindow

Figure 19 - root view controller

Figure 20 (a) - Command to inject Alert

Figure 20 (b) - View of injected alert

Figure 21 (a) - Command to force a phone call

Figure 21 (b) - View of forced call

Figure 22 - Command to open a URL

Figure 23 - IdentifierForVendor

Figure 24 - Bundle ID of app

Figure 25 - Release version of the app

Figure 26 - Build version number and default language

8

Figure 27 - Convert .plist file to xml

Figure 28 (a) - Info.plist WhatsApp

Figure 28 (b) - Info.plist WhatsApp

Figure 28 (c) - Info.plist WhatsApp

Figure 28 (d) - Info.plist WhatsApp

Figure 29 (a) - Keychain dumper

Figure 29 (b) - Keychain dumper

Figure 29 (c) - Keychain dumper

Figure 30 - gr.eurobank.epistrofi.plist

Figure 31 - cfurl_cache_response table

Figure 32 - Collect access token

Figure 33 - Collect amount of balance

Figure 34 - Balance of App

Figure 35 - Collect api key and web identifier

Figure 36 - cfurl_cache_receiver_data table

Figure 37 - Collect transactions information

Figure 38 - Settings.json

Figure 39 - Crashlytics plist

Figure 40 - Crashlytics json

Figure 41 (a) - plist file

Figure 41 (b) - plist file

Figure 41 (c) - plist file

Figure 42 - json files

Figure 43 - error codes

Figure 44 (a) - winbank plist file

Figure 44 (b) - winbank plist file

Figure 45 - winbank certificate

9

List of Tables

Table 1 - Privacy and data leak detection frameworks

10

Abbreviations

ACL Access Control List

API Application Program Interface

GID Group ID

GUI Graphical User Interface

IDE Integrated Development Environment

IDS Intrusion Detection System

IV Initialization Vector

JAR Java Archive

NBG National Bank of Greece

NIB NeXT Interface Builder

SSID Service Set Identifier

SSL Secure Socket Layer

TLS Transport Layer Security

UI User Interface

UID Unique Identifier

URL Uniform Resource Locator

WEP Wired Equivalent Privacy

Wi-Fi Wireless Fidelity

WPA Wi-Fi Protected Access

WPA2 Wi-Fi Protected Access 2

XIB XML Interface Builder

XML Extensible Markup Language

11

Chapter 1 - Introduction

This chapter provides an introduction to the context of this research, by providing an overview of

the main issues associated with the subject of the study. Then the aims and objectives of the

research are established, followed by the research methodology. Finally, a brief summary of each

chapter are also provided.

1.1 Introduction

Over the last years, there is no doubt that mobile phones have been rapidly evolved. The latest

generations of smartphones are essentially small computers. These smartphones not only they

offer the possibility to make phone calls and to send messages, but also they are a

communication and entertainment platform for users to surf the web, send emails, and play

games. Mobile phones are also ubiquitous, and allow anywhere, anytime access to information

[1]. According to market research [2], the iPhone is one of the most common smartphones on the

market today. As these devices grow in popularity, so does the interest in accessing all data these

devices contain. However, the reputation and sophistication of smartphones have also enlarge

concerns about data leakage and the privacy of users who operate these devices. These concerns

have been exacerbated by the fact that the massive increased use in mobile devices brings a

corresponding growth in mobile applications. For instance, mobile applications typically cache

data locally for performance and availability reasons compared to traditional applications where

data is stored on a tightly controlled server. Moreover, a common practice of developers is to use

third-party libraries. All the above could lead to a potential security risk. In addition, mobile

devices are by definition portable making them prone to theft and loss which opens up additional

avenues for compromising data stored on the device. Thus, mechanisms are required to properly

protect sensitive data against malicious applications. For that reason, Apple has introduced a

vetting process. This vetting process should ensure that all applications conform to Apple’s

policy before they can be offered via the App Store. Apple screens each uploaded application to

check whether it contains malicious code or violates Apple’s privacy policy. Despite of these

mechanisms there are plenty of apps that might leak personal data without the consent of the

users.

12

In this thesis, we study the data leakage and privacy issues posed to iPhone users. The aim of this

thesis is to present several methods that allow us to gain sensitive information from a mobile

device. For our research we used various forensic tools to leak information such as keychain

passwords, session ids etc. In addition, we provide various case studies and our evidence

suggests that many renown apps, missing the appropriate security mechanisms in order to avoid

data and privacy leaks. Our intention is to enhance the privacy and confidentiality of mobile

users and specifically iPhone users.

1.2 Aims and Objectives

The general aim of this thesis has been to address the challenging issue of data and privacy

leakage in iOS. Researchers until now tend to investigate the open-source Android instead of

iOS. In this thesis, we motivated by the Apple’s limitations and the closed-source iOS platform,

which makes more difficult to investigate compared to Android.

Two primary aims were set for this thesis:

1. To evaluate significant importance apps such as mobile banking apps regarding to data

and privacy leakage

2. To show various methodologies to collect sensitive data from apps

The aforementioned two aims were set due to the emerging security threats that mobile devices

are facing and have profoundly changed the security designs of modern operating systems (OS).

1.3 Research Methodology

The review of the current literature will contribute to identifying the current state of the art on

the field of data leaks in iOS apps. The current literature found in various research papers,

surveys and books. In order to conduct our research methodology we lead on the existing

techniques and evaluate various approaches for data and privacy leaks. From our experiments we

demonstrate that the data leakage is still a problem in iOS devices and various security

improvement needs to be done.

13

1.4 Thesis Outline

The structure of this research is the following.

● Chapter 2 explain the complex background of iOS forensics. This Chapter provides an

overview of state-of-the-art techniques and an extensive literature review on the relevant

aspects of the area. More specific, gives a thorough description of the related work and

background, and finally compares the currently existing contrasting technologies.

● Chapter 3 provides the basic knowledge about iOS security. More precisely, the chapter

gives a detailed description about the system security, the data protection, the network

security and the application security.

● Chapter 4 presents a plethora of forensic tools and practical methods to collect

information about iOS apps.

● Chapter 5 provides the methodology used for data leakage in iOS devices. More

specifically, five scenarios have been conducted with escalated significance to extract

information.

● This thesis ends with Chapter 6 which provides a summary of the main conclusions

drawn for the whole research effort. In addition this chapter lists the main observations

and contributions of our work and states research limitations.

14

Chapter 2 - Literature Review

This chapter introduces the state of the art and summarises the background relevant to this thesis

for understanding the subsequent chapters. More specifically, the goal is to provide the reader

with the relevant background information about iOS data and privacy leakage. Nowadays, the

research community has contributed a lot of work to analyze and track how application leaks

private data. A plethora of tools (see section 2.1) have been developed, which inspect

applications for potential privacy leaks. A first step towards protecting user privacy is detecting

apps that access sensitive data.

The two major contributions in this area are PiOS [1] and TaintDroid [3] for iOS and Android

respectively. Authors in [1] employs static analysis of the App binaries, whereas TaintDroid [3]

uses a dynamic taint analysis and is designed for the Android OS to monitor privacy leaks in real

time. More specifically, the authors of PiOS construct a control flow graph of downloaded and

decrypted iOS apps, to determine if there is a path from sources of sensitive data to destination

where the information can leave the device. Their analysis is based on over 1400 iOS apps. From

their results, they detected that many apps are sending the location and the address book, while

more than a hundred apps sending the UDID. In contrast, TaintDroid [3] proposes modifying the

Android OS such that ‘taint’ values can be assigned to sensitive data and their flow can be

continuously tracked through each app execution, raising alerts when they flow to the network

interface. The principal component of TaintDroid is variable level tracking, which is

implemented in the Dalvik interpreter. TaintDroid imposes a runtime overhead because it runs

continuously for all applications and hence the authors tested it on a set of thirty popular Android

apps reporting that many of them leak privacy sensitive data.

Another work is LeakMiner [4] which is a points-to based static analysis for Android. It models the

Android lifecycle to handle callback methods and the paper states that an app can be analyzed in 2.5

minutes on average. However, LeakMiner is context-insensitive which may lead to false positives. The

authors of AndroidLeaks [5], present an automatic tool for detecting potential privacy leaks on

Android system. AndroidLeaks adopts the existing analysis framework on java to the android

applications by translating them into a Java Archive (JAR) file. However, the translation from

Android application could lead to an incorrect analysis result.

15

More recently, authors in [6] compares and examines the difference in the usage of

security/privacy sensitive APIs for Android and iOS. Their analysis revealed that iOS Apps

access more privacy-sensitive APIs than Android Apps. Moreover, the authors in [7] study the

RATP app for Paris subway using a combination of static and dynamic analysis techniques. They

find that in addition to device identifiers, the RATP app transmits a list of apps running on the

smartphone to third parties targeting mobile audiences. Their system is able to capture to which

server the data is actually sent and thereby, is able to distinguish between first and third-party.

Their work detects the private data leakage even if TaintDroid is not able to detect it.

The ProtectMyPrivacy (PMP) project [8] shows that access to privacy sensitive information such

as the unique identifier, or user location or even the address book is ordinary in iOS apps. They

developed a crowdsourced recommendation engine, which provides app privacy

recommendations based on collected and analyzed user protection decisions. Apart from [1], the

[9] is one work of the limited research area on iOS platform. The [9] addresses the open problem

of preventing (not only detecting) privacy leaks and simultaneously strengthening security

against runtime attacks on iOS. They present the design and implementation of PSiOS, a tool

that features a novel policy enforcement framework for iOS. It provides fine-grained,

application-specific, and user/administrator defined sandboxing for each third-party application

without requiring access to the application source code. However, both the aforementioned

research works don’t provide any insight about the potential private data leakage over the

network: they just deal with mere access to private data.

More recently, authors in [10] investigate the risk of privacy leakage through mobile analytics

services. They show how an external adversary can extract individual’s profile and mobile

applications usage information, through mobile analytics services such as Google Mobile App

Analytics and Flurry. In addition, they present a way to manipulate the user profiles to influence

the ads served to users’ devices by exploiting the vulnerability of analytics services. Last but not

least the authors in [11] developed IccTA tool which statically analyzes app sets to detect flows

of sensitive data. IccTA uses a single-phase approach that runs the full analysis monolithically.

16

Table 1 below summarises all the aforementioned related works for privacy and data leak

detection frameworks. Our table is based on [12].

Tools/Frameworks Platform Technique

No. of Tested

Apps Year

TaintDroid [3] Android Dynamic taint analysis 30 2010

PiOS [1] iOS Static Data Flow 1,407 2011

LeakMiner [4] Android Static Data Flow 1750 2012

AndroidLeaks [5] Android Static Data Flow 25,976 2012

Comparing Mobile Privacy

Protection [6] Android & iOS

Static analysis

techniques 2600 2013

RATP [7] Android & iOS

Static and dynamic

analysis techniques - 2013

PMP [8] iOS Crowdsourcing 685 2013

PSiOS [9] iOS

Static analysis & Binary

rewriting and runtime

enforcement techniques - 2013

Information Leakage

through Mobile Analytics

Services [10] Android & iOS

Static analysis

techniques - 2014

IccTA [11] Android

Static intra component

Analysis 3000 2014

Table 1 - Privacy and data leak detection frameworks

17

Chapter 3 - Understanding iOS Security

3.1 System Security

The foundation of the iOS platform relies on its System Security. This consists of the Secure

Boot Chain, System Software Authorization, Secure Enclave, and Touch ID [13].

● Secure Boot Chain is a chain, or a sequence of trusted events that occur during the boot

process to ensure integrity. Boot ROM is the read-only memory that used from the

application processor after the iOS devices is turned on. The Boot ROM contains Apple’s

Root public key, which is used to verify the authenticity of the Low-Level Bootloader.

After this first step in the chain of trust, each step ensures that the next is signed by

Apple. This process ensures that the lowest levels of software are not tampered and

allows iOS to run only on validated Apple devices. If the Secure Boot Chain is unable to

complete, where any element fails authenticity, the iOS device will display a message to

the user and then enter Device Firmware Upgrade mode.

● System Software Authorization prevents iOS devices from being downgraded to run

older, insecure code, which could lead on exploitation. In addition, verify that all code

executed on the device is signed by Apple Root CA public key. During an iOS upgrade

iTunes connects to Apple’s Authorization server to validate the upgrade process and the

device.

● Secure Enclave is a coprocessor and it used to provide all cryptographic operation for

Data Protection key management and maintains the integrity of Data Protection. Also, is

responsible for processing fingerprint data from the TouchID sensor, determining

whether there is a match or not against registered fingerprints to enable access on behalf

of the user.

● Touch ID is the fingerprint sensing system that makes secure access to the device. Apart

from the required passcode Touch ID is a complementary security mechanism to read

fingerprint data avoiding the inconvenience of a passcode-based lock. This additional

layer of security has a 1 in 50,000 chance of being matched to someone other than the

18

owner. However, Touch ID allows only five unsuccessful fingerprint match attempts

before the user is required to enter a passcode to obtain access.

3.2 Encryption and Data Protection

The secure boot chain, code signing, and runtime process security ensure that only trusted code

and apps can run on a device. iOS has encryption and data protection features to protect user’s

privacy even if third parties of the security infrastructure have been compromised.

3.2.1 Hardware Security Features

Every device, starting from iPhone 3GS, has a dedicated AES 256-bit crypto engine built in

between the flash storage and the main system memory. The purposes of this processor are to

accelerate the encryption and decryption operations and to protect user data so that they remain

encrypted on the device's flash memory. Additionally, every device’s unique ID (UID) and group

ID (GID) AES 256-bit keys are written directly into the application processor during

manufacturing and cannot be read directly.

3.2.2 Data Protection

3.2.2.1 File Data Protection

File Data Protection is a protection mechanism that iOS uses to protect files and data on the

device. More specifically, Apple uses this Data Protection technology to further protect data

stored in flash memory on the device. This technology allows the device to respond to common

events such as incoming phone calls, but also enables a high level of encryption for user data. All

the preinstalled apps, such as Messages, Mail, Calendar, Contacts, Photos, and Health data

values use Data Protection by default, and third-party apps installed on iOS 7 or later receive this

protection automatically. Data Protection is implemented by constructing and managing a

hierarchy of keys, and builds on the hardware encryption technologies built into each iOS device.

Data Protection is controlled on a per-file basis by assigning each file to a class; accessibility is

determined by whether the class keys have been unlocked [13].

19

3.2.2.2 Architecture Overview

Every time a file on the data partition is created, Data Protection creates a new 256-bit key and

gives it to the hardware AES engine, which uses the key to encrypt the file as it is written to flash

memory using AES CBC mode. The process of encryption use SHA-1 hash - with an

initialization vector (IV) - of the per-file key which is wrapped with one of several class keys.

The wrapped per-file key is stored in the file’s metadata. When a file is opened, its metadata is

decrypted with the file system key, revealing the wrapped per-file key and a notation on which

class protects it. The per-file key is unwrapped with the class key, then supplied to the hardware

AES engine, which decrypts the file as it is read from flash memory. All wrapped file key

handling occurs in the Secure Enclave; the file key is never directly exposed to the application

processor. At boot, the Secure Enclave negotiates an ephemeral key with the AES engine. When

the Secure Enclave unwraps a file’s keys, they are rewrapped with the ephemeral key and sent

back to the application processor. The metadata of all files in the file system is encrypted with a

random key, which is created when iOS is first installed or when the device is wiped by a user.

The file system key is stored in Effaceable Storage. Since it’s stored on the device, this key is not

used to maintain the confidentiality of data; instead, it’s designed to be quickly erased on

demand. Erasing the key in this manner renders all files cryptographically inaccessible. The

content of a file is encrypted with a per-file key, which is wrapped with a class key and stored in

a file’s metadata, which is in turn encrypted with the file system key. The class key is protected

with the hardware UID and, for some classes, the user’s passcode. This hierarchy provides both

flexibility and performance. [13].

3.2.2.3 Passcodes

By setting up a device passcode, the user automatically enables Data Protection. iOS supports

six-digit, four-digit, and arbitrary-length alphanumeric passcodes. In addition to unlocking the

device, a passcode provides entropy for certain encryption keys. The passcode is entangled with

the device’s UID, so brute-force attempts must be performed on the device under attack. The

stronger the user passcode is, the stronger the encryption key becomes. Touch ID can be used to

enhance this equation by enabling the user to establish a much stronger passcode than would

otherwise be practical. This increases the effective amount of entropy protecting the encryption

keys used for Data Protection, without adversely affecting the user experience of unlocking an

20

iOS device multiple times throughout the day. To further discourage brute-force passcode

attacks, there are escalating time delays after the entry of an invalid passcode at the Lock screen.

[13].

3.2.2.4 Data Protection Classes

When a new file is created on an iOS device, it’s assigned a class by the app that creates it. App

developers can use each class with different policies to determine when the data is accessible.

The basic classes and policies are the following four [13]:

● Complete Protection (NSFileProtectionComplete): The class key is protected with a key

derived from the user passcode and the device UID. Shortly after the user locks a device

the decrypted class key is discarded, rendering all data in this class inaccessible until the

user enters the passcode again or unlocks the device using Touch ID.

● (NSFileProtectionCompleteUnlessOpen): Some files may need to be written while the

device is locked. A good example of this is a mail attachment downloading in the

background.

● Protected Until First User Authentication

(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in the same

way as Complete Protection, except that the decrypted class key is not removed from

memory when the device is locked.

● No Protection (NSFileProtectionNone): This class key is protected only with the UID,

and is kept in Effaceable Storage. Since all the keys needed to decrypt files in this class

are stored on the device, the encryption only affords the benefit of fast remote wipe.

3.2.2.5 KeyChain Data Protection

The Keychain is Apple’s implementation of a secure storage for sensitive information such as

login tokens, passwords, cryptographic keys, and digital certificates.

The keychain is implemented as a SQLite database stored on the file system. Keychain data is

protected using a class structure similar to the one used in file Data Protection. These classes

have behaviors equivalent to file Data Protection classes, but use distinct keys and are part of

21

APIs that are named differently.

Figure 1 - Keychain Data Protection Classes [13]

In addition, Keychain can use access control lists (ACLs) to set policies for accessibility and

authentication requirements. Items can establish conditions that require user presence

authentication such as Touch ID or passcode. ACLs are evaluated inside the Secure Enclave and

are released to the kernel only if their specified constraints are met.

3.3 Network Security

Apple, in order to achieve secure communication adopted proven technologies and the latest

standards for both Wi-Fi and cellular data network connections. For instance, Apple has

incorporated many of the known solutions used in secure networking into iOS such as VPN,

SSL/TLS transport encryption, and WEP/WPA/WPA2 wireless encryption and authentication.

iOS achieves a reduced attack surface by limiting listening ports and removing unnecessary

network utilities such as telnet, shells, or a web server compared to other platforms that use

intrusion detection systems (IDS) to protect open communications. Many preinstalled apps such

as Safari, Calendar etc. are use Transport Layer Security (TLS) to enable an encrypted

communication channel between the device and network services.

22

3.4 Application security

On an application level, App Store applications are run in a sandbox. Sandboxing refers to an

environment where code is deemed untrusted and is therefore isolated from other processes and

resources available to the operating system. Apple’s sandbox limits the amount of memory and

CPU cycles an application can use, and also restricts it from accessing files from outside of its

dedicated home directory. Another way of restricting the resources of an application is via

signing to police the binary code allowed to run on the device. In order for an application to be

permitted to run must be signed by Apple, as already aforementioned, to ensure that application

has not been modified from the original binary.

23

Chapter 4 - Collect Information

In this section we present various tools and methods to gather information about iOS apps. More

specifically the first subsection present the most known data leakage detection tools. The aim of

this section is to give users an overview of the current and future research in data leakage

detection tools. Therefore, this section do not provide details about the implementation of these

frameworks. We focus on iOS forensic tools such as Clutch, Cycript, etc.. The following

subsection explain in detail all the selected tools, whereas in the next section a typical usage is

presented (see Chapter 5). The second subsection presents how to gather data stored on iPhone

such as databases, plist files etc.

4.1 Data Leakage Tools

4.1.1 Clutch Tool

Clutch is a high-speed iOS decryption tool and is supported on iPhone, iPod Touch, and iPad as

well as in all iOS versions, architecture types, and most binaries [14]. The clutch tool receives as

input the application name and then decrypt it and store the decrypted IPA file in the

/var/root/Documents/Cracked/ folder.

4.1.2 ibtool Tool

ibtool is a tool implemented in Python that attempts to reverse engineer the iOS Nib format (used

for storing compiled interface files) [15]. Currently, ibtool supports only compiling XIB and

storyboard files and printing NIB files in a readable way. For example, XIB is an XML Interface

Builder which is a software application that allows you to develop GUI (Graphical User

Interface) with the help of Cocoa and carbon APIs. The generated files are either stored as NIB

or XIB files. However, ibtool works only with Interface Builder documents for iOS and not for

OS X. In addition, the set of Interface Builder features supported by this tool is very limited, and

requires specific functionalities to be manually added, so certain usages of unimplemented

views, scenes, layout constraints, or size classes may fail to compile or result in NIBs that are

missing functionality.

24

4.1.3 otool Tool

Otool is a debugging and analysis tool. More specifically, the otool utility (object file displaying

tool), which also exists on the Mac OS X desktop, has been ported over to the ARM architecture,

providing a number of mechanisms to display information about object files and dynamic

libraries. This useful utility can be used to determine memory offsets and sizes of segments,

object encryption, list dynamic dependencies, and much more. It can be combined with a

debugger, such as gdb, to decrypt and analyze your application, and can even be used to

disassemble some or all of your application [16].

4.1.4 Cycript Tool

Cycript is an implementation of JavaScript that can interact with Objective-C classes and objects.

More precisely, we can write either Objective-C or javascript or even both in a particular

command. One of the most useful functions of Cycript is its ability to attach directly to a process,

much like gdb, and alter the state of the running application. With Cycript, you can manipulate

existing objects already in your application’s memory, or instantiate new objects, such as new

view controller classes or windows. Cycript can access and change instance variables directly,

send and intercept messages, access the run loop, override methods, and walk through an

object’s internal methods, properties, and instance variables. Cycript can be used to easily hijack

and manipulate poorly written applications to bypass authentication screens, circumvent sanity

checks, and perform a number of other hacking activities to make an application malfunction.

[16]. As far as the usage on iOS application is concerned, here are some of the advantages of

using Cycript:

1. We can hook into a running process and find the names of all classes being used, i.e

the view controllers, the internal and third party libraries being used and even the

name of the Application delegate.

2. For a particular class, i.e View Controller, App delegate or any other class, we can

also find the names of all the methods being used.

3. We can also find the names of all the instance variable and their values at any

particular time during the runtime of an application.

4. We can modify the values of the instance variable during runtime.

25

5. We can perform Method Swizzling, i.e replace the code of a particular method with

some other implementation.

6. We can call any method in the application during runtime without it being in the

actual code of the application.

4.1.5 KeyChain Dumper Tool

One of the most popular tools for dumping information from the keychain is Keychain dumper

[17]. This tool contains a keychain_dumper binary which is allowed to be accessed by an

application in the keychain if is specified in its entitlements. This binary is signed with a self-

signed certificate with wildcard entitlements and hence it is able to access all the keychain items.

There could also have been other ways to make sure all the keychain information is granted, like

having the entitlements file contain all the keychain access groups or using a specific keychain

access group that provides access to all the keychain data.

4.2 Information stored on device

4.2.1 sqlite database

Apple iOS devices make heavy use of database files to store information such as address book

contacts, SMS messages, email messages, and other data of a sensitive nature. This is done using

the SQLite database software, which is an open source, public domain database package. SQLite

databases typically have the file extension .sqlitedb, but some databases are given the .db

extension, or other extensions as well. It is important to note that the Core Data framework

internally uses Sql queries to store its data and hence all the files are stored as database files. In

Figure 24 we show how to find all the .db files.

26

Figure 2 - Find .db files

As we can see we identify a list of all the databases files stored within the device. The contacts

database would be of paramount importance because it contains sensitive data of the user. In this

scenario we obtain the contacts of the user.

Figure 3 - Contacts of user

27

4.2.2 Plist files

Plist files are structured text files that are used for storing various settings and configuration for a

particular app. Since the information is stored in a structured way in a plist file in key-value

pairs, it is very easy to change this information and hence developers sometimes end up storing

more information in these files than it should actually be used for. Even on a non-jailbroken

device, plist files can be extracted by using the tool iExplorer. This tool gives access to the

iPhone in disk mode and allows to browse the folders on the iPhone directly. In general every

application stores the plist files inside library preferences folder.

4.2.3 Keychain mechanism

As already mentioned, the apps are isolated from other processes, known as sandbox

environment. That doesn't mean we don’t have access to some security-critical services. The

most common example is Apple’s keychain. Keychain is Apple’s credential management service, via

which an app can store the user’s passwords, secret keys and certificates there. These keys will be

automatically used after the user unlock the keychain through her password (single-sign on

authentication). When the keychain is locked, all the credentials are encrypted and no one can access their

content. Essentially, a default keychain is created for each user account and serves most system services

and many popular apps. It is automatically unlocked whenever the user logs in, if its password is identical

to that for login. Even though, keychain is not included in the Apple’s sandbox, can be considered as a

secure storage system that provides a strong isolation between apps. Unless is permitted by the app’s

creator in the access control list (ACL), each app does not have access to another’s keychain item [18].

4.2.4 NSUserDefaults

One of the most popular ways of saving data like user preferences or properties in an application,

is by using NSUserDefaults. The information stored in NSUserDefaults persists even if you close

the application and start it again. One typical example of saving information in NSUserDefaults

is the logged in state of the user. We can save the logged in state of the user with BOOL values

(YES or NO) in NSUserDefaults so that when the user closes the application and starts it again,

the application can fetch data from NSUserDefaults and display different UI to the user

depending on whether he is logged in or not. Other applications also use this feature to save

28

confidential information like the user’s access token so that the next time the application

launches, they can just use that access token to authenticate the user again. What most people do

not realize is that the data saved by NSUserDefaults is not encrypted and can be easily viewed

from the application bundle. It is stored in a plist file with the name as the bundle Id of the

application.

29

Chapter 5 - Research Methodology

This chapter introduces the used methodology. In previous chapter we presented various forensic

tools, now we use them to conduct various research scenarios. More precisely, we conducted five

data leakage scenarios in different applications with escalated importance on iOS 9.0. But before

we start our scenarios, there are two important things that we have to mention.

● The apps that come preinstalled with the device are located in:

○ /Applications

● The apps that we download from the Appstore are located in :

○ /var/mobile/Containers/Data/Application

5.1 Scenario 1 - 2048 App

In this scenario, we aim to collect information from the 2048 app, using the aforementioned

Clutch tool (see Chapter 4.1.1). Firstly, we will try to gather information related to the app

source code, such as libraries used and UI information etc. Figures below presents a typical

usage of this tool. For instance, Figure 4 depicts all the possible apps choices to crack, while

Figure 5 shows the selected app for our case is 2048 app.

30

Figure 4 - Clutch choices Figure 5 - Selected App

After cracking is finished, Clutch shows the location of the saved .ipa file. The .ipa file is an iOS

application archive file which stores an iOS app [19]. Each .ipa file includes a binary for the

ARM architecture (e.g. little-endian like x86) and can only be installed on an iOS device. Figure

6 presents the aforementioned procedure, while Figure 7 shows the leaked images of the app.

Figure 6 - Path of .ipa file

31

Figure 7 - Unzip .ipa file

After we successfully dump the application file we may observe some .nib files which typical

used in older version of iOS. A nib file is a special type of resource file that you use to store the

user interfaces of iOS and Mac apps [20]. A nib file is an Interface Builder document. In our case

the view controller (set of views) is called “ZTMT4DashboardViewController”. To investigate it

further, we can use the ibtool. Figure 8 show a usage example of this tool, where we can see that

there are several leaks related to UI such as the dimensions of view, the autoresizingMask

property which controls how a view responds to changes in its parent view’s bounds etc.

Figure 8 - ibtool usage

32

The next step to collect information is to find which libraries have been used in the app. We can

succeed it using the otool.

Figure 9 (a) - otool command

Figure 9 (b) - otool results

33

As we can see in Figure 9 (b) this app is using quite a lot of known frameworks and libraries. For

instance we observe that this app is using the Security.framework which contains interfaces for

managing certificates, public or private keys and trust policies. In addition, in Figure 10 we

observe the objc-runtime library which makes runtime manipulation possible in Objective-C. By

default, it is included in all iOS apps.

Figure 10 - Objective-C runtime library

5.2 Scenario 2 - Yahoo Weather App

In this scenario, we will try to perform runtime manipulation on the Yahoo Weather app. In order

to achieve the manipulation we must first find information related to the source code of the app,

such as classes’ names, delegate files etc. For the manipulation part, we will try to inject our own

code to modify the flow of the app. Code injection could be very useful to discover sensitive data

of the app. The Yahoo Weather app provides information about the weather of different places.

The first step is to make sure that the app is in foreground mode. This is because once the app is

in the background state it paused and could not perform runtime analysis manipulation. Once the

app is running, we can directly hook into the running process by finding the PID of the app and

then using the cycript to hook into the process.

Figure 11 - Yahoo delegate viewcontroller name

34

First of all, we get the instance of the yahoo app and after we identify the delegate class name

which in our case is YWAppDelegate, so we conclude that the delegate files are defined as

YWAppDelegate.h and YWAppDelegate.m. In Figure 12 we can see the initial screen of the app

Figure 12 - Hidden status bar

As we can see, the status bar of the app is hidden. We can call a method in the application that

shows the battery status bar.

Figure 13 - Set status bar

35

Figure 14 - Unhidden status bar

As we can see, the status bar is now visible. Secondly, we will try to modify the badge count of

this particular application. A badge count is the number shown on the top-right of an application

icon image. It usually refers to the amount of push notification received from the application. For

instance, in mail apps, it can also refer to the amount of unread mails. In this app, there is no

concept of push notifications and hence there is no count shown on the top-right of its app icon.

The thing is that the application badge number can be set locally in the app through a simple

function call as well as remotely through a push notification from the server. In this scenario we

will modify the badge count number from 0 to 799. Figure 15 depicts the method that we should

call to succeed it.

Figure 15 - Set badge number

36

Figure 16 - Screen of Weather app after manipulation

Another attempt would be to find out the current view controller of the app. In order to succeed it

we must first find out the keyWindow property. A keyWindow is the window which is currently

accepting user interaction (touch events) from the user. For instance to find out the windows in

an app we should run the following command (Figure 17).

Figure 17 - Windows in the app

In Figure 18 we can see how to get the current keyWindow of application.

Figure 18 - Current keyWindow

37

In addition, we would try to find the root view controller for this window by using the property

of the keyWindow. The root view controller provides the content view of the window. Assigning

a view controller to this property (either programmatically or using Interface Builder) installs the

view controller’s view as the content view of the window. The new content view is configured to

track the window size, changing as the window size changes [21].

Figure 19 - root view controller

Another usage would be to perform runtime manipulation and to modify the flow of the app. In

Figure 20 we can see an example of this modification, where we injected an alert message in

weather app. Similarly in Figure 21 we force the app to make a phone call in a specific number

and in Figure 22 we force the app to go at specific URL. This is a typical scenario to lure the user

by visiting a phishing website.

Figure 20 (a) - Command to inject Alert

Figure 20 (b) - View of injected alert

Figure 21 (a) - Command to force a phone call

38

Figure 21 (b) - View of forced call

=

Figure 22 - Command to open a URL

Our next attempt would be to find unique details about the application. Firstly, we would try to

get the identifierForVendor. This is an alphanumeric string that uniquely identifies a device to

the app’s vendor. The value of this property is the same for apps that come from the same vendor

running on the same device. Normally, the vendor is determined by data provided by the App

Store [22]. In Figure 23 we get the identifierForVendor of the app.

Figure 23 - IdentifierForVendor

 Secondly, we would try to discover the bundle ID of the app (Figure 24). A bundle ID precisely

identifies a single app. A bundle ID is used during the development process to provision devices

39

and by the operating system when the app is distributed to customers. For example, Game Center

and In-App Purchase use a bundle ID to identify your app when using these app services. The

preferences system uses this string to identify the app for which a given preference applies.

Similarly, Launch Services uses the bundle ID to locate an app capable of opening a particular

file, using the first app it finds with the given identifier. The bundle ID is also used to validate an

app’s signature. The bundle ID string must be a uniform type identifier (UTI) that contains only

alphanumeric characters (A-Z,a-z,0-9), hyphen (-), and period (.). The string should be in

reverse-DNS format [23].

Figure 24 - Bundle ID of app

Figure 25 - Release version of the app

● The CFBundleShortVersionString specifies the release version number of the bundle,

which identifies a released iteration of the app (see Figure 25).

● The CFBundleVersion specifies the build version number of the bundle, which identifies

an iteration (released or unreleased) of the bundle (see Figure 26).

● The CFBundleDevelopmentRegion is the default language and region for the bundle, as a

language ID (see Figure 26).

Figure 26 - Build version number and default language

40

5.3 Scenario 3 - WhatsApp App

In this scenario we will investigate the famous whatsApp app which be used from over a billion

users. After we locate the .plist file we can open it via Xcode or convert it in xml format to be in

a readable form. Because many users don’t have Mac OS we selected the second option (see

Figure 27). There are many OS-X-native, source utilities that interact with .plist files including

the basic command line utility called plutil. Pete M. Wilson has developed this utility in a perl

script that can convert binary plist files to their plain text equivalent [24]. His script plutil.pl

basicaly parses the file and outputs a plain text version in the same directory.

Figure 27 - Convert .plist file to xml

Figure 28 (a) - Info.plist WhatsApp

41

As we can see there is plenty of information within the .plist file. Some of the information is

summarized below:

● BuildMachineOSBuild - Refers to the OS that the app has been compiled which in our

case is the OS X Yosemite 10.10.5 (14F1021).

● CFBundleDevelopmentRegion - specifies the default language and region for the bundle,

as a language ID.

● CFBundleDisplayName - specifies the display name of the bundle. Furthermore, we have

access to the app icon image weather it is retina or not.

● LSItemContentTypes - contains an array of strings with the uniform type identifier (UTI)

types that represent the supported file types in this group. In other words, the

LSItemContentTypes key identifies the UTI associated with the file, which in our case

are audio and video files.

Figure 28 (b) - Info.plist WhatsApp

42

In Figure 28 (b) we can see some basic information of app as the bundle identifier, the version of

the app the supported platform version etc. Apart from these, some important parameters are:

● CFBundleURLName - is a string containing the abstract name of the URL scheme. This

string you specify is also used as a key in your app’s InfoPlist.strings file. The value of

the key is the human-readable scheme name.

● CFBundleURLSchemes - is an array of strings containing the URL scheme names - for

example, http, mailto, tel, and sms. More specific, the URL Schemes is the start of the

URL e.g 'appname'. When you call this as a URL it targets the bundle identifier which

launches the app.

Figure 28 (c) - Info.plist WhatsApp

In addition, from Figure 28 (c) and (d) we can collect information about the development

environment and various services.

43

● DTSDKName - shows that the app has been built on iOS 9.2 .

● DTXcode - shows that the version of IDE Xcode is 7.2.

● LSApplicationQueriesSchemes - specifies the URL schemes you want the app to be able

to use with the canOpenURL: method, which in our case google gmail, google chrome,

waze etc. The LSMinimumSystemVersion indicates the minimum version of iOS

required for this app to run which in our case is iOS 6.0.

● UIBackgroundModes - provides specific background services and must be allowed to

continue running while in the background which in our case are audio, voip, remote

notifications and fetch.

● UISupportedInterfaceOrientations - specifies the interface orientations your app supports

which in our example are both portrait and landscape.

● UTTypeTagSpecification - is a dictionary defining one or more equivalent type

identifiers. The key-value pairs listed in this dictionary identify the filename extensions,

MIME types, OSType codes, and pasteboard types that correspond to this type.

Figure 28 (d) - Info.plist WhatsApp

44

5.4 Scenario 4 - Dump Keychain

As we already mentioned in 4.1.5 subsection, the aim of keychain dumper is to check which

keychain items are available to an attacker.

Figure 29 (a) - Keychain dumper

As we can see, this tool dumps all the keychain information. For instance in BluetoothGlobal

service we observe the key that might be plain text or obfuscated. The entitlements of this

service are owned by Apple. Similarly, we dump another three keys from SOSDataSource-ak

service which also owned from a group of Apple.

45

Figure 29 (b) - Keychain dumper

Figure 29 (b) shows various keychain data in plain text form. This can be verified because of the

knowledge of actual passwords from some wi-fi networks. The service AirPort is a Utility built

by Apple to manage Wi-Fi networks and AirPort base stations [25]. In our case, the account

‘GRAMMESTONORIZONTON’ is the SSID of the Wi-Fi network and the keychain data is the

corresponding password in plain text form. Similarly, the account “AAAFXGUEST2” is the

SSID and the corresponding password is in plain text form too.

46

Figure 29 (c) - Keychain dumper

In figure 29 (c) we dump information from a banking application. More precisely, the account

‘gr.eurobank.epistrofi.NBAPIKey’ is probably an API to communicate with the bank and in the

keychain is the credential to authenticate in this service. Another assumption would be that the

account “gr.eurobank.epistrofi.NBWebID” is a service to authenticate the ID of the user and the

credential is located in keychain data. We can verify that the account

“gr.eurobank.epistrofi.EpistrofiEmail” store the email of the user. This app will be examined

thoroughly later in this chapter.

47

5.5 Scenario 5 - e-Banking Apps

In this Scenario we examine various known e-Banking apps. More specifically, we focus on the

fourth largest banks in Greece.

5.5.1 eurobank epistrofh App

Eurobank epistrofh App app is a known bank application, which returns money after specific

purchases with cooperating companies. After a detailed examination of the app we manage to

obtain several data. In Figure 30, we observe essential information about the app such as:

● Last_update - when was the latest update

● EpistrofiPoints - how much was the returning amount

● IOS_GEOFENCING_ENABLED - whether geofence (virtual perimeter) is enabled or not

● uuidsAlreadySent - whether uuid is already sent or not

● EpistrofiUserSession - whether a user has session or not

48

Figure 30 - gr.eurobank.epistrofi.plist

Apart from the plist file we locate a database called ‘Cache.db’. Using sqlite browser we open

the database and we investigate all the tables to discover sensitive information. The first table

called “cfurl_cache_response”,which contains sensitive data in “request_key” field.

49

Figure 31 - cfurl_cache_response table

More specific, in Figure 31 we observe some links that may have access to sensitive data like

card number, mobile_id etc. The first attempt was to check the link on the browser. As we can

see in Figure 32, the action of the service, the card number and mobile_id are in a plaintext form.

The response of this service was the access token (AccessToken) which is used to authenticate

the user. AccessToken is in paramount importance because a hacker could use it to get access to

user’s account.

Figure 32 - Collect access token

Secondly, we check another link related to balance information.

Figure 33 - Collect amount of balance

As we can see in Figure 33, the type of service is “balance” and it uses the already leaked

accessToken to get the current balance. The response of this service returns the scheme name and

the balance of returning amount of current user. This can be verified in Figure 34.

50

Figure 34 - Balance of App

In addition, we investigate further another “request_key” which give us whether the device was

registered or not and also the api_key and web_id. Such information could used to get access to

company api in order to leak further information.

Figure 35 - Collect api key and web identifier

The second investigated table called “cfurl_cache_receiver_data” and probably stores the

receiving data of various services (see Figure 36). As we can see, there is plenty of information

which is unknown and further investigation is needed. We select to investigate the data that used

the card number because it is sensitive.

51

Figure 36 - cfurl_cache_receiver_data table

After further investigation we manage to access in all purchases that have been made with this

card number. Figure 37 shows some of transactions that have been made with the specific card

number. More specifically we observe :

● custfintrxntotalant - The amount of transaction

● custfintrxntypename - The type of transaction

● custacccardpoints - The returning points of transaction

● partnername - The partner name company that the transaction has been made

● custacccardnum - The card number

● custaccardpointexpdate - The date of points expiration

● Custfintrxndate - The date of transaction

● Custacccardremainingpoints - The card remaining points

52

Figure 37 - Collect transactions information

53

All this information is sensitive because we can violate the privacy of the owner. Furthermore,

we discovered another file called “settings”. A part of this file is depicted in Figure 38. This file

stores information of a well known service called “crashlytics “ which is used to provide reports

to developers about app’s crashes.

Figure 38 - Settings.json

In addition, we also found a plist file called “CLSUserDefaults.plist”.

Figure 39 - Crashlytics plist

Various information is presented in such file in both plaintext and encoded form. For instance,

the (universally unique identifier) UUID is in plain text. We can also collect information such as the

latest session identifier and weather the current view controller is being tracking or not. Apart

from the aforementioned plain text information, we observed raw data. The first thought was to

54

investigate whether these data are in a HEX form, which is proved true so we converted the hex

string to the following json.

Figure 40 - Crashlytics json

This json contains various data such as session_id, installation_id, instance_id, advertising_id,

api_key as well as much information related to the hardware specifications (see Figure 40). As

already mentioned session_id and api_key could lead to user’s sensitive data.

5.5.2 NBG App

In this sub-scenario we tried to collect information from NBG (National Bank of Greece) App.

Our first attempt, to gather information from the app, was to locate the plist files that contains

data in a cleartext form. Figures 41 (a) and (b) present the plist configuration files that have been

found. For instance, we locate:

● Bundle identifier

● Localized Strings in both languages

55

● Images

● Build Version, Xcode Version

● Nib files

● Location usage

● URL scheme

Figure 41 (a) - plist file

56

Figure 41 (b) - plist file

In Figure 41 (c) we can see the date and time of the last user’s login and whether the password

was saved or not (see the key “rememberme”). In addition, we observe the identifier for Push

Notifications (see the key “apnRegId”) and the current language of app (see the key

“NbgMobileLanguage”). Also, a path with various cached data is presented and after further

investigation of the path we found that it contains obfuscated data. In general, we found many

obfuscated files in different paths in the app but we didn’t manage to deobfuscate any of them.

Figure 41 (c) - plist file

Moreover, we found several json files that have been used by the app for server calls.

Figure 42 - json files

For example we found the server’s response error codes in the Errors.el.json file. This could be

important information for a malicious user to manipulate the returning codes.

57

Figure 43 - error codes

5.5.3 Alpha Bank Mobile Banking App

In this sub-scenario we tried to gather information from Alpha Bank Mobile Banking App.

However, we didn’t manage to obtain any data including not so sensitive data related to the UI.

Moreover, the Clutch tool was not able to decrypt the app.

58

5.5.4 winbank App

At first glance, the winbank app (Piraeus Bank) was better protected compared to the rest of the

m-banking apps, due to not be usable at jailbroken mobile devices. As a result, it was unable to

login, so we didn’t expect to get sensitive data related to the card. However, after further

investigation we collected several data. In Figure 44 (a) apart from the data related to the UI we

observe data such as:

● Minimum iOS version

● Location usage

● WiFi usage

● URL scheme

● Xcode version

Figure 44 (a) - winbank plist file

59

In Figure 44 (b) we can see the Bundle version of the app and a lot of information in itunes store

such as:

● Purchase date

● User’s name (first and last)

● Apple Id

● Vendor ID

Figure 44 (b) - winbank plist file

Even though we didn’t manage to login, the app knows who we are through the itunes store. Last

but not least, Figure 45 depicts the non-verified certificate of winbank app which is signed from

an unknown authority and such a practice is not suggested.

60

Figure 45 - winbank certificate

According to the aforementioned leaked information, the most secure mobile e-banking app was

Alpha Bank Mobile Banking App, because we didn’t manage to collect any information.

Moreover, the mechanism to forbid jailbroken users to run the app (e.g. winbank app) adds

another layer of security in the app and it would be a good practice to be used by all the e-

banking apps.

61

Chapter 6 - Conclusion

This chapter concludes the thesis, while summarises the evaluations and observations of the

research. Specifically, the contributions of this thesis are concluded, followed by the limitations

of the research.

6.1 Contributions

In this thesis, we address the issues of data and privacy leakage on iOS devices. The goal of the

research was to highlight possible ways of gaining sensitive information from a mobile device.

By using various forensic tools we achieve to leak information exposure user’s privacy. Our

main contribution was to feature data leakage through various case studies and evidence. In

addition, in terms of future research activities, we plan to develop a tool for automatic leak

discovery regardless of iOS version.

6.2 Limitations of the Research

Despite having met the objectives of this thesis, some decisions had to be taken that resulted in

limitations imposed on the work. The decisions were caused by practical reasons, or to limit the

effort spent in areas where no new insights could be expected. For instance we collected plenty

of obfuscated files that we didn’t manage to deobfuscated them. Apart from the obvious

limitation which is the time of research, a significant restriction is the lack of research works in

iOS comparing to android OS due to closed-source iOS platform. Another limitation is the

access of an iPhone with one of the latest limitations imposed on the work. More precisely, the

iOS version is of paramount importance because different versions could have different

restrictions and bugs. These possible differences make necessary distinct research in every iOS

version. In addition, in order to install the new iOS version a new jailbreak to our iPhone is

needed. Moreover, iOS updates might conclude to security updates that could add extra

limitations in our research. For instance, many popular forensic tools don't work at specific iOS

version. For that reason, either we have to develop a new tool or patch the existing.

62

Bibliography

[1] Egele, M., Kruegel, C., Kirda. E. and Vigna, G., (2011),“PiOS: Detecting Privacy Leaks in iOS

Applications”, In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011,

San Diego, California, USA, http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf

[2] ABI Research, (2016), “45 Million Windows Phone and 20 Million BlackBerry 10 Smartphones in

Active Use at year end.”, http://www.abiresearch.com/press/45-million-windows-phone-and-20-million-

blackberry (accessed 11 September 2016)

[3] Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J, McDaniel, P. and Sheth, A.N., (2010),

”TaintDroid: an information-flow tracking system for real time privacy monitoring on

smartphones.” In Proceedings of the 9th USENIX conference on Operating systems design and

implementation (OSDI'10). USENIX Association, Berkeley, CA, USA, 393-407,

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf

[4] Yang, Z., and Yang, M., (2012), “LeakMiner: Detect Information Leakage on Android with

Static Taint Analysis.” In Proceedings of the 2012 Third World Congress on Software

Engineering (WCSE '12). IEEE Computer Society, Washington, DC, USA, 101-104.

DOI:http://dx.doi.org/10.1109/WCSE.2012.26

[5] Gibler, C., Crussell, J., Erickson, J., and Chen, H., (2012), “AndroidLeaks: Automatically Detecting

Potential Privacy Leaks In Android Applications on a Large Scale”, In Proceedings of the 5th

international conference on Trust and Trustworthy Computing (TRUST’12). Springer-Verlag

Berlin, Heidelberg, 291-307. DOI=http://dx.doi.org/10.1007/978-3-642-30921-2_17

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.5095&rep=rep1&type=pdf

[6] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng., (2013), “Comparing Mobile Privacy Protection

through Cross-Platform Applications.”, In Proceedings of the Network and Distributed System Security

Symposium (NDSS), San Diego, CA, USA, February 2013,

http://www.internetsociety.org/sites/default/files/06_2_0.pdf

63

[7] Achara, J.P., Lefruit, J.D., Roca, V. and Castelluccia, C., (2014), Detecting Privacy Leaks in the

RATP App: how we proceeded and what we found, Journal of Computer Virology and Hacking

Techniques, 10 (4), 229-238, https://hal.inria.fr/hal-00872967/file/ratp_app_analysis.pdf

[8] Y. Agarwal and M. Hall., (2013), “ProtectMyPrivacy: Detecting and Mitigating Privacy Leaks on iOS

Devices Using Crowdsourcing.”, In Proceedings of the ACM International Conference on Mobile

Systems, Applications and Services (MobiSys), Taipei, June 2013,

http://www.synergylabs.org/yuvraj/docs/Agarwal_MobiSys2013_ProtectMyPrivacy.pdf

[9] Werthmann, T., Hund, R., Davi, L., Sadeghi, A.-R. and Holz, T., (2013), “PSiOS: Bring Your Own

Privacy & Security to iOS Devices.” In 8th ACM Symposium on Information, Computer and

Communications Security (ASIACCS), May, 2013, https://www.informatik.tu-

darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/PSiOS.pdf

[10] Chen, Τ., Ullah, Ι., Kaafar, Μ.Α., and Boreli, R., (2014), “Information leakage through

mobile analytics services.” In Proceedings of the 15th Workshop on Mobile Computing Systems

and Applications (HotMobile '14). ACM, New York, NY, USA, , Article 15, 6 pages.

DOI:http://dx.doi.org/10.1145/2565585.2565593

[11] Li, L., Bartel, A., Klein, J., Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D.,

McDaniel, P., (2014), ”I know what leaked in your pocket: uncovering privacy leaks on Android

Apps with Static Taint Analysis”, ISBN: 978-2-87971-129-4, 2014, https://hal.archives-

ouvertes.fr/hal-00985490/document

[12] Haris, M., Haddadi, H., and Hui, P., (2014), “Privacy leakage in mobile computing: Tools,

methods, and characteristics,” arXiv.org e-Print archive, arXiv:1410.4978v1, 2014,

http://arxiv.org/pdf/1410.4978.pdf

[13] Apple, (2016), “iOS Security”, White Paper,

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

[14] Clutch, (2016), https://github.com/KJCracks/Clutch (accessed 11 September 2016).

[15] ibtool, (2014), https://github.com/davidquesada/ibtool (accessed 11 September 2016).

[16] Zdziarski, J., (2012), “Hacking and Securing iOS Applications”, O’Reilly Media, Inc., http://www.it-

docs.net/ddata/779.pdf

64

[17] Keychain Dumper, (2015), https://github.com/ptoomey3/Keychain-Dumper (accessed 11 September

2016)

[18] Xing, L., Bai, X., Li, T., Wang, X., Chen, K. and Liao, X., (2015), “Unauthorized Cross-App

Resource Access on MAC OS X and iOS”, arXiv.org e-Print archive, arXiv:1505.06836,

https://reverse.put.as/wp-content/uploads/2015/11/report_unauthorized_app.pdf

[19] Wikipedia, (2016), https://en.wikipedia.org/wiki/.ipa_(file_extension) (accessed 11 September 2016)

[20] Apple, (2015),

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-

CocoaCore/NibFile.html (accessed 11 September 2016)

[21] Apple, (2016),

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWindow_Class/#//apple_ref/oc

c/instp/UIWindow/rootViewController (accessed 11 September 2016)

[22] Apple, (2016),

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/#//apple_ref/occ/

instp/UIDevice/identifierForVendor (accessed 11 September 2016)

[23] Apple, (2016),

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Configuri

ngYourApp/ConfiguringYourApp.html (accessed 11 September 2016)

[24] Apple, (2016),

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/plutil.1.html

(accessed 11 September 2016)

[25] Apple, (2014), https://itunes.apple.com/us/app/airport-utility/id427276530?mt=8 (accessed 11

September 2016)

[26] Mayer, D.A., (2015), “Blackbox iOS App Assessments Using idb”, Whitepaper,

https://www.blackhat.com/docs/ldn-15/materials/london-15-Mayer-Blackbox-iOS-Application-

Assessments-Using-IDB-wp.pdf

