10S Forensics & Data Leakage

UNIVERSITY OF PIRAEUS

Department of Digital Systems

Postgraduate Program Digital Systems Security

by
Menesidis Michail
Piraeus, October 2016

Supervisor

Christos Xenakis
Associate Professor, University of Piracus

Approved by the Examining Committee

Christos Xenakis, Supervisor
Associate Professor, University of Piracus

Konstantinos Lambrinoudakis
Associate Professor, University of Piraeus

Christoforos Ntantogian
Adjunct Lecturer, University of Piracus

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Associate Professor
Christos Xenakis who tirelessly helped me to prepare my master thesis. I would like to thank him
for his encouragement in my research, his guidance, patience, help and support and for giving me
enough space for exploring my ideas. His guidance helped me during the time of research and
writing of this thesis. His enthusiasm and inspiring ideas have improved this work

immeasurably.

Besides my supervisor, I would like to thank the rest of my thesis committee: Konstantinos
Lambrinoudakis and Christoforos Ntantogian, for their encouragement, insightful comments, and

hard questions.

Contents

Approved by the EXamining COMIMITEEEvvuuuiieeieeieieeie e eiiseeeeeee e eeareeeeaaeeeaeeeenseeeneeeeaeeenneeees 2
ACKNOWIEAZEIMEIIES ... eevetiti et ee ettt e ettt e e e e et e e et e e e e e et eetea e e e e e e e eeeenrenn e e e eeeeeeennnns 3
YN o T AT P PP P PP P PPPPPPPPPPI 6
5T Ao 2 . 7
LSt OF TADLES ettt ettt ettt e et et e e e e e e e 9
ADDICVIATIONS ...ttt eeeee ettt ettt e e ettt e e e e oo ettt e e e e e e et e e e e e e e et e e e e e e 10
Chapter 1 - INtTOAUCTIONeeveeeriiiii ettt e e e et e e e e et e eee b e e e e e e e eeeannnna s 11
L B U112 (e LTt o) PSPPSR 11
1.2 AIMS ANA ODJECTIVES ..vvuuiiiieeeieieitiitieee e e e eeee ettt ee e e e e e e e e ee it e e e aeeeeeeasaaa s eeeeaeeeeassasan e aaeeaaeeas 12
1.3 Research MethOAOIOZYceeiiiiieiiiii ettt et e e e e e e e e e e 12
1.4 TRESIS OULIINE ...t eeeeeit ettt e e e e et e e e e e e e et e et e e e e e e e e e e eesrenn e e eee s 13
Chapter 2 - Literatire REVIEWuuuiiiiiiieieiiiiicis e e e e e ee ettt e s e e e e e e e e ee e s e e e e e e e e ee et e e e e eeeeeeasansan e s 14
Chapter 3 - Understanding i0S SECUIILY ...c.vvuruuiiieeeiiieieiiiir e e e e e s 17
I B 115 1 B o101 5 L PR PTPRPP 17
3.2 Encryption and Data ProteCtionu....ieeeeeieeieiiiiiiieee e e eeeee ettt es eerann e eeeas 18
3.2.1 Hardware Security FEAtUIEScceeurruruiiei ettt e e e e e e e e e eenneas 18
3.2.2 Data PrOtECHIONuveieiiiieees ittt ettt e et e e e e e e et e e e e e e s e e r e e e e e e 18

3.3 NEEWOTK SECUIIEY ...eeevrittiiieeeeeeee ettt e e e e e e e et e e e e e e e e e e e aa it e e e eeeeeeess b e eeeaeseeaesasanneeaeeeeas 21
3.4 APPIICALION SECUTTEY trrrrrruuiseeeeeeeeettti e e e e e e ee ettt e s e e e e et e eee b s e e e e et e eee b r e e e e e e e eee b e e e eeeeas 22
Chapter 4 - Collect INTOIrMAtIONcceeeiieeeiiiiie ae b e e e e e e eeeeesannaas 23
4.1 Data Leakage TOOISuieieeiieeeeiiiias ettt e ettt r e et e e ee b e e e e e e e e nn e e e e e 23
4101 CTUECH TOOL 1ttt e e et e e e e e e e e e 23

o B 1110 To) B KT) E OO PP PP PP OPPPPPPPPPPP 23
4.1.3 0005 TOOL. ..ttt e e 24
4.1.4 CYCTIPE TOOL ..ottt e et e e e et e ee e e e e e e ee e e e nenen s 24
4.1.5 KeyChain DUMPETr TOOLiieiiiiiiiiiiii e e et e e e e e e et e e e e e e eeeaenaeaes 25

4.2 Information StOT€d ON AEVICEvuuuuniieeeiieieiiiit e e e e e ettt e e e e e e e e en e e e eeeeeees 25
4.2.1 SQLIte dAtADASEeiieieeiiri e e e e e e e e e e e a—— e e eeaaa 25
A.2.2 PLSE FILES ..vveeeeeeeeeee ittt ettt e e e e e e e e e e e e e e 27
4.2.3 Keychain MECRANISITIuieeeiieeeiiiiiis ettt e et e e et e e e e e e e ee e 27
4.2, 4 NSUSEIDETAUILS ...ttt e et e e e e e e e e e e e 27
Chapter 5 - Research MethodoIO@Ycouuuuuuiiiiiiiiiie e e e e e e e e e e e ns 29

5.1 SCENATIO 1 = 2048 A DD wttuuniiieeeieeeetti ettt e e et ettt e e e e e e e et e e et e e e e e eaeeeae e e aaeeeaae e aaaaaes 29

5.2 Scenario 2 - Yahoo Weather APD. i eeeeiieeeiiiiiiies e ee ettt e e e e e e ee e 33
5.3 ScENATIO 3 - WHAtSADPD ADD - eetreeerrunniieeeteeeeunittaaa e e eeeeeeerae e e e e e e eeaee b r e e e e e eeeeernnan e ees 40
5.4 Scenario 4 - DUump KeyChainiiieeiiiiiiiii e e e e e e e e e e e e eeenen 44
5.5 Scenario 5 - €-Banking APPS....cceeuuuuuiiieeeeiieeiii e 47
5.5.1 eurobank ePiStrOfh AP .. veeeueniereeiii e et e e 47

R T8\ T o T 54
5.5.3 Alpha Bank Mobile Banking ApPpD......ccuueuuuiiiiiiiiiiiiiiis et 57
5.5.4 WINDANK ADD tererrrunieieeee ittt e e e e ettt e s e e e e e e e e et e et e e e e e e e eeae e e aaeeeae b — i aaaaes 58
Chapter 6 - CONCIUSION.eiiiiriiitsie e e e eeee ettt ees e e e e e e e ee e aa e e e eeaeeeeeeta e eeaeseeeessaaan s eaeeeeeeessnnsanaanes 61
6.1 COMIIIDULIONS ... eeeteeetttit ettt e e e ettt ee e e e e e et et e ee s e e e e e e e e e ee e s e e e e e e e eeannnbaa e e e eees 61
6.2 Limitations of the ReSEArCH.coiiiiiiiiiiiii e 61
BIbDHOZIAPIY ettt e e e e e e 62

Abstract

During the last years the evolution of mobile devices was unprecedented. With this increasing
popularity of mobile devices and apps, security and privacy concerns have emerged as a salient
area of inquiry for researchers. In this thesis, we focus on 10S devices due to, not only the lack of
research in this area, but also by the Apple’s restrictions which is far more challenging to
investigate compared to Android. More specifically, we study the data leakage and privacy
issues posed to iPhone users. This research is aim to gain sensitive information from a mobile
device to point out that various iOS apps have data leakage issues. Using the latest forensic tools
we present methodologies to acquire data from many renown apps. Our objective is to improve
user’s privacy highlighted the missing security mechanisms in order to avoid data and privacy

leaks.

List of Figure

Figure 1 - Keychain Data Protection Classes [13]
Figure 2 - Find .db files

Figure 3 - Contacts of user

Figure 4 - Clutch choices

Figure 5 - Selected App

Figure 6 - Path of .ipa file

Figure 7 - Unzip .ipa file

Figure 8 - ibtool usage

Figure 9 (a) - otool command

Figure 9 (b) - otool results

Figure 10 - Objective-C runtime library

Figure 11 - Yahoo delegate viewcontroller name
Figure 12 - Hidden status bar

Figure 13 - Set status bar

Figure 14 - Unhidden status bar

Figure 15 - Set badge number

Figure 16 - Screen of Weather app after manipulation
Figure 17 - Windows in the app

Figure 18 - Current keyWindow

Figure 19 - root view controller

Figure 20 (a) - Command to inject Alert

Figure 20 (b) - View of injected alert

Figure 21 (a) - Command to force a phone call
Figure 21 (b) - View of forced call

Figure 22 - Command to open a URL

Figure 23 - IdentifierForVendor

Figure 24 - Bundle ID of app

Figure 25 - Release version of the app

Figure 26 - Build version number and default language

Figure 27 - Convert .plist file to xml
Figure 28 (a) - Info.plist WhatsApp

Figure 28 (b) - Info.plist WhatsApp

Figure 28 (¢) - Info.plist WhatsApp

Figure 28 (d) - Info.plist WhatsApp

Figure 29 (a) - Keychain dumper

Figure 29 (b) - Keychain dumper

Figure 29 (¢) - Keychain dumper

Figure 30 - gr.eurobank.epistrofi.plist
Figure 31 - cfurl cache response table
Figure 32 - Collect access token

Figure 33 - Collect amount of balance
Figure 34 - Balance of App

Figure 35 - Collect api key and web identifier
Figure 36 - cfurl cache receiver data table
Figure 37 - Collect transactions information
Figure 38 - Settings.json

Figure 39 - Crashlytics plist

Figure 40 - Crashlytics json

Figure 41 (a) - plist file

Figure 41 (b) - plist file

Figure 41 (c) - plist file

Figure 42 - json files

Figure 43 - error codes

Figure 44 (a) - winbank plist file

Figure 44 (b) - winbank plist file

Figure 45 - winbank certificate

List of Tables

Table 1 - Privacy and data leak detection frameworks

Abbreviations

ACL
API
GID
GUI
IDE
IDS
v
JAR
NBG
NIB
SSID
SSL
TLS
Ul
UID
URL
WEP
Wi-Fi
WPA
WPA2
XIB
XML

Access Control List
Application Program Interface
Group ID

Graphical User Interface
Integrated Development Environment
Intrusion Detection System
Initialization Vector

Java Archive

National Bank of Greece
NeXT Interface Builder
Service Set Identifier

Secure Socket Layer
Transport Layer Security
User Interface

Unique Identifier

Uniform Resource Locator
Wired Equivalent Privacy
Wireless Fidelity

Wi-Fi Protected Access
Wi-Fi Protected Access 2
XML Interface Builder
Extensible Markup Language

10

Chapter 1 - Introduction

This chapter provides an introduction to the context of this research, by providing an overview of
the main issues associated with the subject of the study. Then the aims and objectives of the
research are established, followed by the research methodology. Finally, a brief summary of each

chapter are also provided.

1.1 Introduction

Over the last years, there is no doubt that mobile phones have been rapidly evolved. The latest
generations of smartphones are essentially small computers. These smartphones not only they
offer the possibility to make phone calls and to send messages, but also they are a
communication and entertainment platform for users to surf the web, send emails, and play
games. Mobile phones are also ubiquitous, and allow anywhere, anytime access to information
[1]. According to market research [2], the iPhone is one of the most common smartphones on the
market today. As these devices grow in popularity, so does the interest in accessing all data these
devices contain. However, the reputation and sophistication of smartphones have also enlarge
concerns about data leakage and the privacy of users who operate these devices. These concerns
have been exacerbated by the fact that the massive increased use in mobile devices brings a
corresponding growth in mobile applications. For instance, mobile applications typically cache
data locally for performance and availability reasons compared to traditional applications where
data is stored on a tightly controlled server. Moreover, a common practice of developers is to use
third-party libraries. All the above could lead to a potential security risk. In addition, mobile
devices are by definition portable making them prone to theft and loss which opens up additional
avenues for compromising data stored on the device. Thus, mechanisms are required to properly
protect sensitive data against malicious applications. For that reason, Apple has introduced a
vetting process. This vetting process should ensure that all applications conform to Apple’s
policy before they can be offered via the App Store. Apple screens each uploaded application to
check whether it contains malicious code or violates Apple’s privacy policy. Despite of these
mechanisms there are plenty of apps that might leak personal data without the consent of the

users.

11

In this thesis, we study the data leakage and privacy issues posed to iPhone users. The aim of this
thesis is to present several methods that allow us to gain sensitive information from a mobile
device. For our research we used various forensic tools to leak information such as keychain
passwords, session ids etc. In addition, we provide various case studies and our evidence
suggests that many renown apps, missing the appropriate security mechanisms in order to avoid
data and privacy leaks. Our intention is to enhance the privacy and confidentiality of mobile

users and specifically iPhone users.

1.2 Aims and Objectives

The general aim of this thesis has been to address the challenging issue of data and privacy
leakage in 10S. Researchers until now tend to investigate the open-source Android instead of
10S. In this thesis, we motivated by the Apple’s limitations and the closed-source 10S platform,

which makes more difficult to investigate compared to Android.

Two primary aims were set for this thesis:
1. To evaluate significant importance apps such as mobile banking apps regarding to data
and privacy leakage

2. To show various methodologies to collect sensitive data from apps

The aforementioned two aims were set due to the emerging security threats that mobile devices

are facing and have profoundly changed the security designs of modern operating systems (OS).

1.3 Research Methodology

The review of the current literature will contribute to identifying the current state of the art on
the field of data leaks in iOS apps. The current literature found in various research papers,
surveys and books. In order to conduct our research methodology we lead on the existing
techniques and evaluate various approaches for data and privacy leaks. From our experiments we
demonstrate that the data leakage is still a problem in iOS devices and various security

improvement needs to be done.

12

1.4 Thesis Outline

The structure of this research is the following.

Chapter 2 explain the complex background of iOS forensics. This Chapter provides an
overview of state-of-the-art techniques and an extensive literature review on the relevant
aspects of the area. More specific, gives a thorough description of the related work and
background, and finally compares the currently existing contrasting technologies.

Chapter 3 provides the basic knowledge about iOS security. More precisely, the chapter
gives a detailed description about the system security, the data protection, the network
security and the application security.

Chapter 4 presents a plethora of forensic tools and practical methods to collect
information about i10S apps.

Chapter 5 provides the methodology used for data leakage in iOS devices. More
specifically, five scenarios have been conducted with escalated significance to extract
information.

This thesis ends with Chapter 6 which provides a summary of the main conclusions
drawn for the whole research effort. In addition this chapter lists the main observations

and contributions of our work and states research limitations.

13

Chapter 2 - Literature Review

This chapter introduces the state of the art and summarises the background relevant to this thesis
for understanding the subsequent chapters. More specifically, the goal is to provide the reader
with the relevant background information about iOS data and privacy leakage. Nowadays, the
research community has contributed a lot of work to analyze and track how application leaks
private data. A plethora of tools (see section 2.1) have been developed, which inspect
applications for potential privacy leaks. A first step towards protecting user privacy is detecting

apps that access sensitive data.

The two major contributions in this area are PiOS [1] and TaintDroid [3] for iOS and Android
respectively. Authors in [1] employs static analysis of the App binaries, whereas TaintDroid [3]
uses a dynamic taint analysis and is designed for the Android OS to monitor privacy leaks in real
time. More specifically, the authors of PiOS construct a control flow graph of downloaded and
decrypted i0S apps, to determine if there is a path from sources of sensitive data to destination
where the information can leave the device. Their analysis is based on over 1400 iOS apps. From
their results, they detected that many apps are sending the location and the address book, while
more than a hundred apps sending the UDID. In contrast, TaintDroid [3] proposes modifying the
Android OS such that ‘taint’ values can be assigned to sensitive data and their flow can be
continuously tracked through each app execution, raising alerts when they flow to the network
interface. The principal component of TaintDroid is variable level tracking, which is
implemented in the Dalvik interpreter. TaintDroid imposes a runtime overhead because it runs
continuously for all applications and hence the authors tested it on a set of thirty popular Android

apps reporting that many of them leak privacy sensitive data.

Another work is LeakMiner [4] which is a points-to based static analysis for Android. It models the
Android lifecycle to handle callback methods and the paper states that an app can be analyzed in 2.5
minutes on average. However, LeakMiner is context-insensitive which may lead to false positives. The
authors of AndroidLeaks [5], present an automatic tool for detecting potential privacy leaks on
Android system. AndroidLeaks adopts the existing analysis framework on java to the android
applications by translating them into a Java Archive (JAR) file. However, the translation from

Android application could lead to an incorrect analysis result.

14

More recently, authors in [6] compares and examines the difference in the usage of
security/privacy sensitive APIs for Android and iOS. Their analysis revealed that iOS Apps
access more privacy-sensitive APIs than Android Apps. Moreover, the authors in [7] study the
RATP app for Paris subway using a combination of static and dynamic analysis techniques. They
find that in addition to device identifiers, the RATP app transmits a list of apps running on the
smartphone to third parties targeting mobile audiences. Their system is able to capture to which
server the data is actually sent and thereby, is able to distinguish between first and third-party.

Their work detects the private data leakage even if TaintDroid is not able to detect it.

The ProtectMyPrivacy (PMP) project [8] shows that access to privacy sensitive information such
as the unique identifier, or user location or even the address book is ordinary in iOS apps. They
developed a crowdsourced recommendation engine, which provides app privacy
recommendations based on collected and analyzed user protection decisions. Apart from [1], the
[9] is one work of the limited research area on 10S platform. The [9] addresses the open problem
of preventing (not only detecting) privacy leaks and simultaneously strengthening security
against runtime attacks on iOS. They present the design and implementation of PSiOS, a tool
that features a novel policy enforcement framework for i10S. It provides fine-grained,
application-specific, and user/administrator defined sandboxing for each third-party application
without requiring access to the application source code. However, both the aforementioned
research works don’t provide any insight about the potential private data leakage over the

network: they just deal with mere access to private data.

More recently, authors in [10] investigate the risk of privacy leakage through mobile analytics
services. They show how an external adversary can extract individual’s profile and mobile
applications usage information, through mobile analytics services such as Google Mobile App
Analytics and Flurry. In addition, they present a way to manipulate the user profiles to influence
the ads served to users’ devices by exploiting the vulnerability of analytics services. Last but not
least the authors in [11] developed IccTA tool which statically analyzes app sets to detect flows

of sensitive data. IccTA uses a single-phase approach that runs the full analysis monolithically.

15

Table 1 below summarises all the aforementioned related works for privacy and data leak

detection frameworks. Our table is based on [12].

No. of Tested

Tools/Frameworks Platform Technique Apps Year

TaintDroid [3] Android Dynamic taint analysis 30 2010

PiOS [1] i0S Static Data Flow 1,407 2011

LeakMiner [4] Android Static Data Flow 1750 2012

AndroidLeaks [5] Android Static Data Flow 25,976 2012
Comparing Mobile Privacy Static analysis

Protection [6] Android & i0S techniques 2600 2013

Static and dynamic

RATP [7] Android & iOS =~ analysis techniques - 2013
PMP [8] 10S Crowdsourcing 685 2013

Static analysis & Binary
rewriting and runtime

PSiOS [9] 10S enforcement techniques - 2013

Information Leakage
through Mobile Analytics Static analysis
Services [10] Android & i0S techniques - 2014

Static intra component

IccTA [11] Android Analysis 3000 2014

Table 1 - Privacy and data leak detection frameworks

16

Chapter 3 - Understanding 10S Security

3.1 System Security

The foundation of the iOS platform relies on its System Security. This consists of the Secure

Boot Chain, System Software Authorization, Secure Enclave, and Touch ID [13].

e Secure Boot Chain is a chain, or a sequence of trusted events that occur during the boot
process to ensure integrity. Boot ROM is the read-only memory that used from the
application processor after the i0OS devices is turned on. The Boot ROM contains Apple’s
Root public key, which is used to verify the authenticity of the Low-Level Bootloader.
After this first step in the chain of trust, each step ensures that the next is signed by
Apple. This process ensures that the lowest levels of software are not tampered and
allows iOS to run only on validated Apple devices. If the Secure Boot Chain is unable to
complete, where any element fails authenticity, the 10S device will display a message to
the user and then enter Device Firmware Upgrade mode.

o System Software Authorization prevents i0OS devices from being downgraded to run
older, insecure code, which could lead on exploitation. In addition, verify that all code
executed on the device is signed by Apple Root CA public key. During an iOS upgrade
iTunes connects to Apple’s Authorization server to validate the upgrade process and the
device.

e Secure Enclave is a coprocessor and it used to provide all cryptographic operation for
Data Protection key management and maintains the integrity of Data Protection. Also, is
responsible for processing fingerprint data from the TouchID sensor, determining
whether there is a match or not against registered fingerprints to enable access on behalf
of the user.

e Touch ID is the fingerprint sensing system that makes secure access to the device. Apart
from the required passcode Touch ID is a complementary security mechanism to read
fingerprint data avoiding the inconvenience of a passcode-based lock. This additional

layer of security has a 1 in 50,000 chance of being matched to someone other than the

17

owner. However, Touch ID allows only five unsuccessful fingerprint match attempts

before the user is required to enter a passcode to obtain access.

3.2 Encryption and Data Protection

The secure boot chain, code signing, and runtime process security ensure that only trusted code
and apps can run on a device. i0OS has encryption and data protection features to protect user’s

privacy even if third parties of the security infrastructure have been compromised.
3.2.1 Hardware Security Features

Every device, starting from iPhone 3GS, has a dedicated AES 256-bit crypto engine built in
between the flash storage and the main system memory. The purposes of this processor are to
accelerate the encryption and decryption operations and to protect user data so that they remain
encrypted on the device's flash memory. Additionally, every device’s unique ID (UID) and group
ID (GID) AES 256-bit keys are written directly into the application processor during

manufacturing and cannot be read directly.

3.2.2 Data Protection

3.2.2.1 File Data Protection

File Data Protection is a protection mechanism that iOS uses to protect files and data on the
device. More specifically, Apple uses this Data Protection technology to further protect data
stored in flash memory on the device. This technology allows the device to respond to common
events such as incoming phone calls, but also enables a high level of encryption for user data. All
the preinstalled apps, such as Messages, Mail, Calendar, Contacts, Photos, and Health data
values use Data Protection by default, and third-party apps installed on iOS 7 or later receive this
protection automatically. Data Protection is implemented by constructing and managing a
hierarchy of keys, and builds on the hardware encryption technologies built into each iOS device.
Data Protection is controlled on a per-file basis by assigning each file to a class; accessibility is

determined by whether the class keys have been unlocked [13].

18

3.2.2.2 Architecture Overview

Every time a file on the data partition is created, Data Protection creates a new 256-bit key and
gives it to the hardware AES engine, which uses the key to encrypt the file as it is written to flash
memory using AES CBC mode. The process of encryption use SHA-1 hash - with an
initialization vector (IV) - of the per-file key which is wrapped with one of several class keys.
The wrapped per-file key is stored in the file’s metadata. When a file is opened, its metadata is
decrypted with the file system key, revealing the wrapped per-file key and a notation on which
class protects it. The per-file key is unwrapped with the class key, then supplied to the hardware
AES engine, which decrypts the file as it is read from flash memory. All wrapped file key
handling occurs in the Secure Enclave; the file key is never directly exposed to the application
processor. At boot, the Secure Enclave negotiates an ephemeral key with the AES engine. When
the Secure Enclave unwraps a file’s keys, they are rewrapped with the ephemeral key and sent
back to the application processor. The metadata of all files in the file system is encrypted with a
random key, which is created when 10S is first installed or when the device is wiped by a user.
The file system key is stored in Effaceable Storage. Since it’s stored on the device, this key is not
used to maintain the confidentiality of data; instead, it’s designed to be quickly erased on
demand. Erasing the key in this manner renders all files cryptographically inaccessible. The
content of a file is encrypted with a per-file key, which is wrapped with a class key and stored in
a file’s metadata, which is in turn encrypted with the file system key. The class key is protected
with the hardware UID and, for some classes, the user’s passcode. This hierarchy provides both

flexibility and performance. [13].

3.2.2.3 Passcodes

By setting up a device passcode, the user automatically enables Data Protection. iOS supports
six-digit, four-digit, and arbitrary-length alphanumeric passcodes. In addition to unlocking the
device, a passcode provides entropy for certain encryption keys. The passcode is entangled with
the device’s UID, so brute-force attempts must be performed on the device under attack. The
stronger the user passcode is, the stronger the encryption key becomes. Touch ID can be used to
enhance this equation by enabling the user to establish a much stronger passcode than would
otherwise be practical. This increases the effective amount of entropy protecting the encryption

keys used for Data Protection, without adversely affecting the user experience of unlocking an

19

10S device multiple times throughout the day. To further discourage brute-force passcode
attacks, there are escalating time delays after the entry of an invalid passcode at the Lock screen.

[13].

3.2.2.4 Data Protection Classes

When a new file is created on an i0S device, it’s assigned a class by the app that creates it. App
developers can use each class with different policies to determine when the data is accessible.

The basic classes and policies are the following four [13]:

e Complete Protection (NSFileProtectionComplete): The class key is protected with a key
derived from the user passcode and the device UID. Shortly after the user locks a device
the decrypted class key is discarded, rendering all data in this class inaccessible until the
user enters the passcode again or unlocks the device using Touch ID.

e (NSFileProtectionCompleteUnlessOpen): Some files may need to be written while the
device is locked. A good example of this is a mail attachment downloading in the
background.

e Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in the same
way as Complete Protection, except that the decrypted class key is not removed from
memory when the device is locked.

e No Protection (NSFileProtectionNone): This class key is protected only with the UID,
and is kept in Effaceable Storage. Since all the keys needed to decrypt files in this class

are stored on the device, the encryption only affords the benefit of fast remote wipe.

3.2.2.5 KeyChain Data Protection

The Keychain is Apple’s implementation of a secure storage for sensitive information such as

login tokens, passwords, cryptographic keys, and digital certificates.

The keychain is implemented as a SQLite database stored on the file system. Keychain data is
protected using a class structure similar to the one used in file Data Protection. These classes

have behaviors equivalent to file Data Protection classes, but use distinct keys and are part of

20

APIs that are named differently.

Availability File Data Protection Keychain Data Protection
When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked
While locked NSFileProtectionCompleteUnlessOpen N/A

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock

Always NSFileProtectionNone kSecAttrAccessibleAlways
Passcode N/A kSecAttrAccessible-
enabled WhenPasscodeSetThisDeviceOnly

Figure 1 - Keychain Data Protection Classes [13]

In addition, Keychain can use access control lists (ACLs) to set policies for accessibility and
authentication requirements. Items can establish conditions that require user presence
authentication such as Touch ID or passcode. ACLs are evaluated inside the Secure Enclave and

are released to the kernel only if their specified constraints are met.
3.3 Network Security

Apple, in order to achieve secure communication adopted proven technologies and the latest
standards for both Wi-Fi and cellular data network connections. For instance, Apple has
incorporated many of the known solutions used in secure networking into iOS such as VPN,
SSL/TLS transport encryption, and WEP/WPA/WPA2 wireless encryption and authentication.
10S achieves a reduced attack surface by limiting listening ports and removing unnecessary
network utilities such as telnet, shells, or a web server compared to other platforms that use
intrusion detection systems (IDS) to protect open communications. Many preinstalled apps such
as Safari, Calendar etc. are use Transport Layer Security (TLS) to enable an encrypted

communication channel between the device and network services.

21

3.4 Application security

On an application level, App Store applications are run in a sandbox. Sandboxing refers to an
environment where code is deemed untrusted and is therefore isolated from other processes and
resources available to the operating system. Apple’s sandbox limits the amount of memory and
CPU cycles an application can use, and also restricts it from accessing files from outside of its
dedicated home directory. Another way of restricting the resources of an application is via
signing to police the binary code allowed to run on the device. In order for an application to be
permitted to run must be signed by Apple, as already aforementioned, to ensure that application

has not been modified from the original binary.

22

Chapter 4 - Collect Information

In this section we present various tools and methods to gather information about iOS apps. More
specifically the first subsection present the most known data leakage detection tools. The aim of
this section is to give users an overview of the current and future research in data leakage
detection tools. Therefore, this section do not provide details about the implementation of these
frameworks. We focus on iOS forensic tools such as Clutch, Cycript, etc.. The following
subsection explain in detail all the selected tools, whereas in the next section a typical usage is
presented (see Chapter 5). The second subsection presents how to gather data stored on iPhone

such as databases, plist files etc.

4.1 Data Leakage Tools

4.1.1 Clutch Tool

Clutch is a high-speed iOS decryption tool and is supported on iPhone, iPod Touch, and iPad as
well as in all 10S versions, architecture types, and most binaries [14]. The clutch tool receives as
input the application name and then decrypt it and store the decrypted IPA file in the

/var/root/Documents/Cracked/ folder.

4.1.2 ibtool Tool

ibtool is a tool implemented in Python that attempts to reverse engineer the iOS Nib format (used
for storing compiled interface files) [15]. Currently, ibtool supports only compiling XIB and
storyboard files and printing NIB files in a readable way. For example, XIB is an XML Interface
Builder which is a software application that allows you to develop GUI (Graphical User
Interface) with the help of Cocoa and carbon APIs. The generated files are either stored as NIB
or XIB files. However, ibtool works only with Interface Builder documents for iOS and not for
OS X. In addition, the set of Interface Builder features supported by this tool is very limited, and
requires specific functionalities to be manually added, so certain usages of unimplemented
views, scenes, layout constraints, or size classes may fail to compile or result in NIBs that are

missing functionality.

23

4.1.3 otool Tool

Otool is a debugging and analysis tool. More specifically, the otool utility (object file displaying
tool), which also exists on the Mac OS X desktop, has been ported over to the ARM architecture,
providing a number of mechanisms to display information about object files and dynamic
libraries. This useful utility can be used to determine memory offsets and sizes of segments,
object encryption, list dynamic dependencies, and much more. It can be combined with a
debugger, such as gdb, to decrypt and analyze your application, and can even be used to

disassemble some or all of your application [16].

4.1.4 Cycript Tool

Cycript is an implementation of JavaScript that can interact with Objective-C classes and objects.
More precisely, we can write either Objective-C or javascript or even both in a particular
command. One of the most useful functions of Cycript is its ability to attach directly to a process,
much like gdb, and alter the state of the running application. With Cycript, you can manipulate
existing objects already in your application’s memory, or instantiate new objects, such as new
view controller classes or windows. Cycript can access and change instance variables directly,
send and intercept messages, access the run loop, override methods, and walk through an
object’s internal methods, properties, and instance variables. Cycript can be used to easily hijack
and manipulate poorly written applications to bypass authentication screens, circumvent sanity
checks, and perform a number of other hacking activities to make an application malfunction.
[16]. As far as the usage on iOS application is concerned, here are some of the advantages of

using Cyecript:

1. We can hook into a running process and find the names of all classes being used, i.e
the view controllers, the internal and third party libraries being used and even the

name of the Application delegate.

2. For a particular class, i.e View Controller, App delegate or any other class, we can

also find the names of all the methods being used.

3. We can also find the names of all the instance variable and their values at any

particular time during the runtime of an application.

4. We can modify the values of the instance variable during runtime.

24

5. We can perform Method Swizzling, i.e replace the code of a particular method with
some other implementation.
6. We can call any method in the application during runtime without it being in the

actual code of the application.

4.1.5 KeyChain Dumper Tool

One of the most popular tools for dumping information from the keychain is Keychain dumper
[17]. This tool contains a keychain dumper binary which is allowed to be accessed by an
application in the keychain if is specified in its entitlements. This binary is signed with a self-
signed certificate with wildcard entitlements and hence it is able to access all the keychain items.
There could also have been other ways to make sure all the keychain information is granted, like
having the entitlements file contain all the keychain access groups or using a specific keychain

access group that provides access to all the keychain data.

4.2 Information stored on device

4.2.1 sqlite database

Apple 10S devices make heavy use of database files to store information such as address book
contacts, SMS messages, email messages, and other data of a sensitive nature. This is done using
the SQLite database software, which is an open source, public domain database package. SQLite
databases typically have the file extension .sqlitedb, but some databases are given the .db
extension, or other extensions as well. It is important to note that the Core Data framework
internally uses Sql queries to store its data and hence all the files are stored as database files. In

Figure 24 we show how to find all the .db files.

25

e0e menesidis — ssh root@192.168.1.6 — 157x53

Michael:/ root# find . —name *.db
./Library/Application Support/BTServer/pincode_defaults.db
./Systen/Library/Frameworks/CoreLocation. framework/Support/factory.db
./Systen/Library/Franeworks/CoreLocation. framework/Support/tinezone. db
./Systen/Library/Frameworks/CoreTelephony. framework/Support/lasdcdma. db
./System/Library/Frameworks/CoreTelephony. framework/Support/lasdgsn. db
./Systen/Library/Frameworks/CoreTelephony. f ramework/Support/lasdlte.db
./Systen/Library/Frameworks/CoreTelephony. framework/Support/lasdscdma.db
./Systen/Library/Frameworks/CoreTelephony. framework/Support/lasdumts.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/CityInfo.db
./Systen/Library/Privateframeworks/AppSupport. framework/Dutch. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/English. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/French. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/German. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/Italian. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/Japanese. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/Spanish. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/ar. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/ca. lproj/Localizable_Places.db
./System/Library/PrivateFrameworks/AppSupport. framework/calldata.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/cs. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/da. lproj/Localizable_Places.db
./System/Library/PrivateFraneworks/AppSupport. framework/el. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/en_AU. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/en_GB. lproj/Localizable_Places.db
./System/Library/PrivateFrameworks/AppSupport. framework/es_MX. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/fi. lproj/Localizable_Places.db
./System/Library/PrivateFrameworks/AppSupport. framework/fr_CA.1proj/Localizable_Places.db
./System/Library/Privateframeworks/AppSupport. framework/he. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/hi. lproj/Localizable_Places.db
./System/Library/PrivateFrameworks/AppSupport. framework/hr. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/hu. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/id. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/ko. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/ms. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/no. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/pl. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/pt.lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/pt_PT.lproj/Localizable_Places.db
./Systen/Library/PrivateFraneworks/AppSupport. framework/ro. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/ru. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/sk. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/sv. lproj/Localizable_Places.db
./Systen/Library/PrivateF rameworks/AppSupport. framework/th. proj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/tr. lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/uk. proj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/vi.lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/zh_CN. Lproj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/AppSupport. framework/zh_HK. lproj/Localizable_Places.db
./System/Library/PrivateFraneworks/AppSupport. framework/zh_TW. 1proj/Localizable_Places.db
./Systen/Library/PrivateFrameworks/CoreSuggestionsInternals. framework/Assets. suggestionsassets/airports.db
./private/var/Keychains/keychain-2.db

./private/var/keybags/backup/backup_keys_cache.db

Figure 2 - Find .db files
As we can see we identify a list of all the databases files stored within the device. The contacts
database would be of paramount importance because it contains sensitive data of the user. In this

scenario we obtain the contacts of the user.

[ON) Database Browser for SQLite - /U idi qlitedb
£ New Database 1 Open Database | Write Changes . Revert Changes
Database Structure [JIEIIEEIPEEIIN Edit Pragmas Execute SQL Q06 DB Schema
Table: | | | ABPerson B 2] New Record Delete Record Name
v || Tables (29)
» || ABAccount
ROWID First Last Middle FirstPhonetic Mic »] ABGroup
Filter Filter Filter Filter Filter Filter > ABGroupChanges
> ABGroupMembers
1 1 Michael Menesidis » || ABMultiValue
» | ABMultivalueEntry
2 344 Anunteng Zxohn » | ABMultiValueEntryKey
5 I | [» || ABMultiValueLabel
» || ABPerson
4 346 MNaoxaAidng » | ABPersonBasicChanges
» || ABPersonChanges
5 | %47 Nikog Adnva2 | ABPersonFullTextSearch
6 348 Nova » | ABPersonFullTextSearch_content
» | ABPersonFullTextSearch_docsize
7 349 KeAepevng » | ABPersonFullTextSearch_segdir
Nikog » | ABPersonFullTextSearch_segments
8 350 Mamaxpnotou » || ABPersonFullTextSearch_stat
9 351 Merm > ABPersonLink
MutiAnvn > ABPersonMultiValueDeletes
10 352 Kakapoukag2 » | ABPersonSearchKey
» | ABPhoneLastFour
1 353 Toounavidng » || ABRecent
12 354 lwavva-Mapia | Xavravn ERESIABSton .
» || FirstSortSectionCount
13 355 Maua » | FirstSortSectionCountTotal
» | LastSortSectionCount
14 366 Towrong Anpnteng » || LastSortSectionCountTotal
15 357 Mwpyog » || _SqliteDatabaseProperties
» | sqlite_sequence
16 358 Snupog A8nva v Indices (35)
ABFirstSortindex
17 359 Euayyehia Fepakorou... ABFirstSortStorelndex
: : ABLastSortindex
ABLastSortStorelndex
< 1-180f129 | > Go to: 1 ABMultiValueEntryKeyIndex
SQL Log Plot
UTF-8

Figure 3 - Contacts of user

26

4.2.2 Plist files

Plist files are structured text files that are used for storing various settings and configuration for a
particular app. Since the information is stored in a structured way in a plist file in key-value
pairs, it is very easy to change this information and hence developers sometimes end up storing
more information in these files than it should actually be used for. Even on a non-jailbroken
device, plist files can be extracted by using the tool iExplorer. This tool gives access to the
iPhone in disk mode and allows to browse the folders on the iPhone directly. In general every

application stores the plist files inside library preferences folder.

4.2.3 Keychain mechanism

As already mentioned, the apps are isolated from other processes, known as sandbox
environment. That doesn't mean we don’t have access to some security-critical services. The
most common example is Apple’s keychain. Keychain is Apple’s credential management service, via
which an app can store the user’s passwords, secret keys and certificates there. These keys will be
automatically used after the user unlock the keychain through her password (single-sign on
authentication). When the keychain is locked, all the credentials are encrypted and no one can access their
content. Essentially, a default keychain is created for each user account and serves most system services
and many popular apps. It is automatically unlocked whenever the user logs in, if its password is identical
to that for login. Even though, keychain is not included in the Apple’s sandbox, can be considered as a
secure storage system that provides a strong isolation between apps. Unless is permitted by the app’s

creator in the access control list (ACL), each app does not have access to another’s keychain item [18].

4.2.4 NSUserDefaults

One of the most popular ways of saving data like user preferences or properties in an application,
is by using NSUserDefaults. The information stored in NSUserDefaults persists even if you close
the application and start it again. One typical example of saving information in NSUserDefaults
is the logged in state of the user. We can save the logged in state of the user with BOOL values
(YES or NO) in NSUserDefaults so that when the user closes the application and starts it again,
the application can fetch data from NSUserDefaults and display different Ul to the user

depending on whether he is logged in or not. Other applications also use this feature to save

27

confidential information like the user’s access token so that the next time the application
launches, they can just use that access token to authenticate the user again. What most people do
not realize is that the data saved by NSUserDefaults is not encrypted and can be easily viewed
from the application bundle. It is stored in a plist file with the name as the bundle Id of the

application.

28

Chapter 5 - Research Methodology

This chapter introduces the used methodology. In previous chapter we presented various forensic
tools, now we use them to conduct various research scenarios. More precisely, we conducted five
data leakage scenarios in different applications with escalated importance on 10S 9.0. But before
we start our scenarios, there are two important things that we have to mention.
e The apps that come preinstalled with the device are located in:
o /Applications
e The apps that we download from the Appstore are located in :

o /var/mobile/Containers/Data/Application

5.1 Scenario 1 - 2048 App

In this scenario, we aim to collect information from the 2048 app, using the aforementioned
Clutch tool (see Chapter 4.1.1). Firstly, we will try to gather information related to the app
source code, such as libraries used and UI information etc. Figures below presents a typical
usage of this tool. For instance, Figure 4 depicts all the possible apps choices to crack, while

Figure 5 shows the selected app for our case is 2048 app.

29

.. ® menesidis — il) 2048
Michael:/YES root# Clutch
DEBUESJ‘_IG.gsalization.m:7a | preferred lang: (2) aa
y R 3) Airbnb
2015-12-31 14:46:09.676 Clutch[3459:682128] checking localization cache
You're using a Clutch development build, checking for updates.. 4) DVIA
Your version of Clutch is up to date! 3
Clutch 1.4.7 (git-3) 5) Drlve
is i0S 8 application listing method brah 6) D ropbox
is i0S 8 application listing method brah z
DEBUG | Preferences.m:42 | preferences_location: /etc/clutch.conf 7) Enlcrpo(ﬂ]
DEBUG | Preferences.m:43 | {
AddMin0S = YES; 8) Facebook
CheckMetadata = NO; .
CompressionLevel = "-1"; g) F 1ng
CrackerName = Michalis;
CreditFile = YES; 10) Hangouts
IPADirectory = YES;
ListWithDisplayName = YES; 11) IMDb
MetadataEmail = NO;
NumberBasedMenu = YES; 12) I ns tag ram
RemoveMetadata = NO; a
UseNativeZip = YES; 13) nghtBlue
UseOverdrive = YES; 14) M
¥ essenger
5 g 15) TfA tickets
21,86 16) MNpwto OEMA
5) Drive
o 17) Shazam
7) Emiotpoer
B Facenor 18) Skroutz
9) Fing
10) ;angouts 19) SlaCK
11) IMDb :
12) Instagram 2@) Vlber
13) LightBlue :
14) Messenger 21) LIHKEdIn
15) TfA tickets
16) Mpéto BEMA 22) What's Up
17) sh
m;nﬁﬂz 23) WhatsApp
19) Slack
20) Viber 24) YOUTube
21) LinkedIn
22) what's Up 25) ZuluTrade
23) WhatsApp
24) YouTube
25) ZuluTrade 3
.
richaets €S raots I Michael:/YES root# Clutch 1§

Figure 4 - Clutch choices Figure 5 - Selected App

After cracking is finished, Clutch shows the location of the saved .ipa file. The .ipa file is an i0S
application archive file which stores an 10S app [19]. Each .ipa file includes a binary for the
ARM architecture (e.g. little-endian like x86) and can only be installed on an iOS device. Figure

6 presents the aforementioned procedure, while Figure 7 shows the leaked images of the app.

DEBUG | ApplicationLister.m:336 | cracked app ok

DEBUG | ApplicationLister.m:337 | this crack lol 207

DEBUG | Cracker.m:336 | Saved cracked app info!
YES/2048-v2.0.7-Michalis-i0S6.0-(Clutch-1.4.7).1ipa

elapsed time: 4.67s

Applications cracked:

2048

Total success: 1 Total failed: ©
Michael:/YES root# [

Figure 6 - Path of .ipa file

30

Michael:/YES/YES root# unzip 2048-v2.0.7-Michalis-i056.0-\(Clutch-1.4.7\).ipa -d GameOf2048Folder
Archive: 2048-v2.0.7-Michalis-i0S6.0-(Clutch-1.4.7).ipa

inflating: Game0f2048Folder/Payload/.com.apple.mobile_container_manager.metadata.plist

inflating: Game0f2048Folder/Payload/2048.app/AppIcon57x57.png

inflating: Game0f2048Folder/Payload/2048.app/AppIlcon57x57@2x.png

inflating: Game0f2048Folder/Payload/2048.app/AppIcon60x60@2x.png

inflating: Game0f2048Folder/Payload/2048.app/AppIlcon60x60@3x.png

inflating: Game0f2048Folder/Payload/2048.app/Applcon72x72@2x~ipad.png

inflating: Game0f2048Folder/Payload/2048.app/AppIcon72x72~ipad.png

Figure 7 - Unzip .ipa file

After we successfully dump the application file we may observe some .nib files which typical
used in older version of 10S. A nib file is a special type of resource file that you use to store the
user interfaces of 10S and Mac apps [20]. A nib file is an Interface Builder document. In our case
the view controller (set of views) is called “ZTMT4DashboardViewController”. To investigate it
further, we can use the ibtool. Figure 8 show a usage example of this tool, where we can see that
there are several leaks related to UI such as the dimensions of view, the autoresizingMask

property which controls how a view responds to changes in its parent view’s bounds etc.

e e ibtool-master — -bash — 157x59

MacBook-Pro-toutes-Menesidis:ibtool-master menesidis$ sudo python ibtool.py --dump /Users/menesidis/Desktop/Zulutrade/Payload/ZuluTrade.app/ZTMT4DashboardVie

wController.nib

Prefix: NIBArchive

Headers: 1

readClasses: Mystery value: 7 (UIColor)

0: NSObject

UINibTopLevelObjectsKey = @7
UINibObjectsKey = @9
UINibConnectionsKey = @4
UINibVisibleWindowsKey = @6
UINibAccessibilityConfigurationsKey = @6
UINibTraitStoragelListsKey = @6
UINibKeyValuePairsKey = @6

: UIRuntimeOutletConnection
UILabel = @11
UISource = @5
UIDestination = @12

: NSString
NS.bytes = IBFilesOwner

: UIProxyObject
UIProxiedObjectIdentifier = @8

: NSArray
NSInlinedValue = True
UINibEncoderEmptyKey = @1

-

N

w

»

5: UIProxyObject
UIProxiedObjectIdentifier = @
6: NSArray
NSInlinedValue = True
7: NSArray

NSInlinedValue = True
UINibEncoderEmptyKey = @5
UINibEncoderEmptyKey = @3
UINibEncoderEmptyKey = @12
: NSString
NS.bytes = IBFirstResponder
: NSArray
NSInlinedValue = True
UINibEncoderEmptyKey = @5
UINibEncoderEmptyKey = @3
UINibEncoderEmptyKey = @12
10: UIColor
UIColorComponentCount = 4
UIRed = 1.0
UIGreen = 1.0
UIBlue = 1.0
UIAlpha = 1.0
NSRGB = 1 1 1
NSColorSpace = 2
11: NSString
NS.bytes = view
12: UIView
UIBounds = (0.0, 0.0, 320.0, 548.0)
UICenter = (160.0, 274.0)
UIBackgroundColor = @10
UIOpaque = True
UIAutoresizeSubviews = True
UIAutoresizingMask = 18
UIViewSemanticContentAttribute = @
MacBook-Pro-toutes-Menesidis:ibtool-master menesidiss J

@

©

Figure 8 - ibtool usage

31

The next step to collect information is to find which libraries have been used in the app. We can

succeed it using the otool.

[Michael:/var/mobile/Containers/Bundle/Application/338F432D-2BFA-4147-BDBB-4519247A2DDC/2048.app root# otool -1 2048
2048:
Load command @
cmd LC_SEGMENT_64
cmdsize 72
segname __PAGEZERO
vmaddr 0x0000000000000000

Figure 9 (a) - otool command

@® ® ibtool-master — ssh root@192.168.1.50 — 157x59

cmdsize 88
name /System/Library/Frameworks/CoreMedia.framework/CoreMedia (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 1.0.0
compatibility version 1.0.0
Load command 15
cmd LC_LOAD_DYLIB
cmdsize 88
name /System/Library/Frameworks/CoreImage.framework/CoreImage (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 4.0.0
compatibility version 1.0.0
Load command 16
cmd LC_LOAD_DYLIB
cmdsize 104
name /System/Library/Frameworks/SystemConfiguration.framework/SystemConfiguration (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 700.20.6
compatibility version 1.0.0
Load command 17
cmd LC_LOAD_DYLIB
cmdsize 88
name /System/Library/Frameworks/MessageUI. framework/MessageUI (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 1.0.0
compatibility version 1.0.0
Load command 18
cmd LC_LOAD_DYLIB
cmdsize 80
name /System/Library/Frameworks/CoreData.framework/CoreData (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 519.15.0
compatibility version 1.0.0
Load command 19
cmd LC_LOAD_DYLIB
cmdsize 88
name /System/Library/Frameworks/CoreMotion.framework/CoreMotion (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 1756.1.14
compatibility version 1.0.0
Load command 20
cmd LC_LOAD_DYLIB
cmdsize 80
name /System/Library/Frameworks/StoreKit.framework/StoreKit (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 1.0.0
compatibility version 1.0.0
Load command 21
cmd LC_LOAD_WEAK_DYLIB
cmdsize 88
name /System/Library/Frameworks/AdSupport.framework/AdSupport (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 1.0.0
compatibility version 1.0.0
Load command 22
cmd LC_LOAD_DYLIB
cmdsize 80
name /System/Library/Frameworks/Security.framework/Security (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970

Figure 9 (b) - otool results

32

As we can see in Figure 9 (b) this app is using quite a lot of known frameworks and libraries. For
instance we observe that this app is using the Security.framework which contains interfaces for
managing certificates, public or private keys and trust policies. In addition, in Figure 10 we
observe the objc-runtime library which makes runtime manipulation possible in Objective-C. By

default, it is included in all 10S apps.

cmd LC_LOAD_DYLIB
cmdsize 56
name /usr/lib/libobjc.A.dylib (offset 24)
time stamp 2 Thu Jan 1 02:00:02 1970
current version 228.0.0
compatibility version 1.0.0
Load command 41
cmd LC_LOAD_DYLIB
cmdsize 56

Figure 10 - Objective-C runtime library

5.2 Scenario 2 - Yahoo Weather App

In this scenario, we will try to perform runtime manipulation on the Yahoo Weather app. In order
to achieve the manipulation we must first find information related to the source code of the app,
such as classes’ names, delegate files etc. For the manipulation part, we will try to inject our own
code to modify the flow of the app. Code injection could be very useful to discover sensitive data
of the app. The Yahoo Weather app provides information about the weather of different places.
The first step is to make sure that the app is in foreground mode. This is because once the app is
in the background state it paused and could not perform runtime analysis manipulation. Once the
app is running, we can directly hook into the running process by finding the PID of the app and

then using the cycript to hook into the process.

Michael:~ root# ps aux | grep "weather"

mobile 4991 0.0 3.1 912112 63232 ?? Us 8:23PM 0:05.55 /var/mobile/Containers/Bundle/Application/B369FA6C-6AD8-4F4C-8C11-909D8B37FF23/com.yahoo.weather-3

root 4997 0.0 0.1 546624 1216 s@@0 S+ 8:25PM 0:00.01 grep weather
Michael:~ root# cycript -p 4991

cy# [UIApplication sharedApplication]

#'<UIApplication: @x137d26700>"

cy# var a = [UIApplication sharedApplication]

#"<UIApplication: @x137d26700>"

cy# a

#"<UIApplication: @x137d26700>"

cy# a.delegate

#"<YWAppDe legate: Bx137e24640>"

Figure 11 - Yahoo delegate viewcontroller name

33

First of all, we get the instance of the yahoo app and after we identify the delegate class name
which in our case is YWAppDelegate, so we conclude that the delegate files are defined as

YWAppDelegate.h and YWAppDelegate.m. In Figure 12 we can see the initial screen of the app

— 7 Athens
- 20:35 EET

Forecast

21:00 22:00 23:00 00:00 01:00 02:00 03:00

50 @~\8 5

=
58° 58° 59° 56° 56° 55° 55

Saturday 61°
Sunday
Monday

Tuesday

Wednesday

5d

Details
Feels like
D Humidity
e) Visibility

UV Index

Figure 12 - Hidden status bar

As we can see, the status bar of the app is hidden. We can call a method in the application that

shows the battery status bar.

Michael:~ root# ps aux | grep "weather"

mobile 5018 .9 5.0 851360 102976 77 Ss 8:33PM
root 5023 0.0 0.1 538432 1280 s000 S+ 8:34PM
Michael:~ root# cycript -p 5018

cy# [[UIApplication sharedApplication] setStatusBarHidden:NO animated:NO]
cy# [[UIApplication sharedApplication] setStatusBarHidden:YES animated:NO]

104,23 /var/mobile/Containers/Bundle/Application/B369FAS(-6ADB-4F4C-BC11-909D8B37FF23/con. yahoo.weather-35245-distribution.app/yweather
100,01 grep weather

> o

Figure 13 - Set status bar

34

— v Athens

20:35 EET

Forecast

21:00 22:00 23:00 00:00 01:00 02:00 03:00
) N, N, 0 a~85 70 35
58° 58° 59° 56° 56° 556° 55°

Saturday 61°
Sunday
Monday

Tuesday

Wednesday

5d

Details

Feels like

!)o Humidity
Visibility
O

UV Index

Figure 14 - Unhidden status bar

As we can see, the status bar is now visible. Secondly, we will try to modify the badge count of
this particular application. A badge count is the number shown on the top-right of an application
icon image. It usually refers to the amount of push notification received from the application. For
instance, in mail apps, it can also refer to the amount of unread mails. In this app, there is no
concept of push notifications and hence there is no count shown on the top-right of its app icon.
The thing is that the application badge number can be set locally in the app through a simple
function call as well as remotely through a push notification from the server. In this scenario we
will modify the badge count number from 0 to 799. Figure 15 depicts the method that we should

call to succeed it.

c&# [[UIApplication sharédApplication] setApplicationIconBadgeNumber:799];
cy# |

Figure 15 - Set badge number

35

eeec0 COSMOTE & 2 10 79% 4

FaceTime Calculator Podcasts

8 - a2
Ve

Game Center Extras Games Facebook

0 & (%) in

Instagram a’

Shazam Linkedin

af |-

TfA tickets Cloud Mpwto OEMA Random

YAHOO!

ZuluTrade - Weather!

<O

Phone Safari Google Maps

Figure 16 - Screen of Weather app after manipulation

Another attempt would be to find out the current view controller of the app. In order to succeed it
we must first find out the keyWindow property. A keyWindow is the window which is currently
accepting user interaction (touch events) from the user. For instance to find out the windows in
an app we should run the following command (Figure 17).

[cy# UIApp.windows

@[#"<UIWindow: @x13c592500; frame = (@ @; 375 667); gestureRecognizers = <NSArray: @0x13c593b90>; layer = <UIWindowLayer: @x13c592b80>>",#"<UITextEffectsWindow:
e = NO; autoresize = W+H; layer = <UIWindowLayer: @x13dba6660>>"]
cy# [l

Figure 17 - Windows in the app

In Figure 18 we can see how to get the current keyWindow of application.

[cy# UIApp.keyWindow
#"'<UIWindow: 0x13c592500; frame = (@ @; 375 667); gestureRecognizers = <NSArray: 0x13c593b90>; layer = <UIWindowLayer: 0x13c592b80>>"
cy# I

Figure 18 - Current keyWindow

36

In addition, we would try to find the root view controller for this window by using the property
of the keyWindow. The root view controller provides the content view of the window. Assigning
a view controller to this property (either programmatically or using Interface Builder) installs the
view controller’s view as the content view of the window. The new content view is configured to

track the window size, changing as the window size changes [21].

cy# UIApp.keyWindow.rootViewController
#"<YMNMenuPresentationViewController: 0x13c696f10>"
cy# [

Figure 19 - root view controller

Another usage would be to perform runtime manipulation and to modify the flow of the app. In
Figure 20 we can see an example of this modification, where we injected an alert message in
weather app. Similarly in Figure 21 we force the app to make a phone call in a specific number
and in Figure 22 we force the app to go at specific URL. This is a typical scenario to lure the user

by visiting a phishing website.

ci/# mUIAlertView alloci initWithTitle:@"Hello its me Michalis :).”Jmessage:ni{ delegate:nil cancelButtonTitle:@"Nice job!" otherButionTiﬁes:nil]show];

Figure 20 (a) - Command to inject Alert

Figure 20 (b) - View of injected alert

cy# [[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"tel:3069111111115"]11];
true
cy# |

Figure 21 (a) - Command to force a phone call

37

Figure 21 (b) - View of forced call

lcy# var app = [UIApplication sharedApplication' ']
#"<UIApplication: ©@x13c62acd@>"
lcy# [app openURL: [NSURL URLWithString: @"http://www.unipi.gr™ 1 1]

Figure 22 - Command to open a URL

Our next attempt would be to find unique details about the application. Firstly, we would try to
get the identifierForVendor. This is an alphanumeric string that uniquely identifies a device to
the app’s vendor. The value of this property is the same for apps that come from the same vendor
running on the same device. Normally, the vendor is determined by data provided by the App

Store [22]. In Figure 23 we get the identifierForVendor of the app.

cy# ['[UIDevice chrrentbevice] ideniifier?oNendor];
#"<__NSConcreteUUID 0x13dbfa460> 4D8F1C75-1322-48D1-B19F-988C5BB811D4"

cy# [i
Figure 23 - IdentifierForVendor

Secondly, we would try to discover the bundle ID of the app (Figure 24). A bundle ID precisely

identifies a single app. A bundle ID is used during the development process to provision devices

38

and by the operating system when the app is distributed to customers. For example, Game Center
and In-App Purchase use a bundle ID to identify your app when using these app services. The
preferences system uses this string to identify the app for which a given preference applies.
Similarly, Launch Services uses the bundle ID to locate an app capable of opening a particular
file, using the first app it finds with the given identifier. The bundle ID is also used to validate an
app’s signature. The bundle ID string must be a uniform type identifier (UTI) that contains only
alphanumeric characters (A-Z,a-z,0-9), hyphen (-), and period (.). The string should be in
reverse-DNS format [23].

cy#_f[NSBundle mainBundle] bundleldentifier];
@"com.yahoo.weather"

cy#
Figure 24 - Bundle ID of app
cy# [[[NSBundle mainBundle] infoDictionary] objectForKey:@"CFBundleShortVersionString"];
@'1.9.0"
cy# i

Figure 25 - Release version of the app

o The CFBundleShortVersionString specifies the release version number of the bundle,
which identifies a released iteration of the app (see Figure 25).

o The CFBundleVersion specifies the build version number of the bundle, which identifies
an iteration (released or unreleased) of the bundle (see Figure 26).

o The CFBundleDevelopmentRegion is the default language and region for the bundle, as a
language ID (see Figure 26).

cy# [[[NSBundle mainBundle] infoDictionary] objectForKey:@"CFBundleVersion"];

@"35245"

cy# [[[NSBundle mainBundle] infoDictionary] objectForKey:@"CFBundleDevelopmentRegion"];
g\jllenll

cy# [

Figure 26 - Build version number and default language

39

5.3 Scenario 3 - WhatsApp App

In this scenario we will investigate the famous whatsApp app which be used from over a billion
users. After we locate the .plist file we can open it via Xcode or convert it in xml format to be in
a readable form. Because many users don’t have Mac OS we selected the second option (see
Figure 27). There are many OS-X-native, source utilities that interact with .plist files including
the basic command line utility called plutil. Pete M. Wilson has developed this utility in a perl
script that can convert binary plist files to their plain text equivalent [24]. His script plutil.pl
basicaly parses the file and outputs a plain text version in the same directory.

Converted 1 files to XML format
Michael:/var/mobile root# i

Figure 27 - Convert .plist file to xml

(0] @ menesidis — ssh root@192.168.1.6 — 164x58

Michael:/var/mobile/Containers/Bundle/Application/BC302F79-8129-4B8D-ACD9-18CO@OFA4EEC/WhatsApp.app root# plutil Info.plist

BuildMachineOSBuild = 14F1021;
CFBundleDevelopmentRegion = en;
CFBundleDisplayName = WhatsApp;

CFBundleDocumentTypes = (
{
CFBundleTypeIconFiles = (
Icon,
"Icon@2x"

)i

CFBundleTypeName = "WhatsApp Image";

LSHandlerRank = Alternate;

LSItemContentTypes = (
“public.image"

)i

{
CFBundleTypeIconFiles = (
Icon,
"Icon@2x"
)i
CFBundleTypeName = "WhatsApp Image Exclusive";
LSHandlerRank = Owner;
LSItemContentTypes = (
"net.whatsapp.image"
)i

{

CFBundleTypeIconFiles = (
Icon,
"Icon@2x"

)i

CFBundleTypeName = "WhatsApp Audio";

LSHandlerRank = Alternate;

LSItemContentTypes = (
“public.mp3",
"public.mpeg-4-audio",
"public.aif-audio",
"public.aifc-audio",
"com.apple.coreaudio-format"

)i

{

CFBundleTypeIconFiles = (
Icon,
"Icon@2x"

)i

CFBundleTypeName = "WhatsApp Audio Exclusive";

LSHandlerRank = Owner;

LSItemContentTypes = (
“net.whatsapp.audio"

);

h

Figure 28 (a) - Info.plist WhatsApp

40

As we can see there is plenty of information within the .plist file. Some of the information is
summarized below:
® BuildMachineOSBuild - Refers to the OS that the app has been compiled which in our
case is the OS X Yosemite 10.10.5 (14F1021).
o CFBundleDevelopmentRegion - specifies the default language and region for the bundle,
as a language ID.
e CFBundleDisplayName - specifies the display name of the bundle. Furthermore, we have
access to the app icon image weather it is retina or not.
o [SltemContentTypes - contains an array of strings with the uniform type identifier (UTI)
types that represent the supported file types in this group. In other words, the
LSItemContentTypes key identifies the UTI associated with the file, which in our case

are audio and video files.

{

CFBundleTypeIconFiles = (
Icon,
"Icon@2x"

CFBundleTypeName = "WhatsApp Movie";

LSHandlerRank = Alternate;

LSItemContentTypes = (
"public.movie"

)i

+
{
CFBundleTypeIconFiles = (
Icon,
"Icon@2x"
)i
CFBundleTypeName = "WhatsApp Movie Exclusive";
LSHandlerRank = Owner;
LSItemContentTypes = (
"net.whatsapp.movie"
)i
}
)i
CFBundleExecutable = WhatsApp;
CFBundleIcons = {
CFBundlePrimaryIcon = {
CFBundleIconFiles = (
AppIcon29x29,
AppIcon40x40,
AppIcon57x57,
AppIcon60x60
)i
b
h
CFBundleIdentifier = "net.whatsapp.WhatsApp";
CFBundleInfoDictionaryVersion = "6.0";

CFBundleName = WhatsApp;

CFBundlePackageType = APPL;

CFBundleShortVersionString = "2.12.13";

CFBundleSignature = "?72??7";

CFBundleSupportedPlatforms = (
iPhone0S

);
CFBundleURLTypes = (

{

CFBundleURLName = "net.whatsapp.WhatsApp";

CFBundleURLSchemes = (
whatsapp

);

}

)i

CFBundleVersion = "2.12.13.20";

DTCompiler = "com.apple.compilers.llvm.clang.1_0";
DTPlatformBuild = 13C75;

DTPlatformName = iphoneos;

DTPlatformversion = "9.2";

DTSDKBuild = 13C75;

Figure 28 (b) - Info.plist WhatsApp

41

In Figure 28 (b) we can see some basic information of app as the bundle identifier, the version of
the app the supported platform version etc. Apart from these, some important parameters are:

o (CFBundleURLName - is a string containing the abstract name of the URL scheme. This
string you specify is also used as a key in your app’s InfoPlist.strings file. The value of
the key is the human-readable scheme name.

e CFBundleURLSchemes - is an array of strings containing the URL scheme names - for
example, http, mailto, tel, and sms. More specific, the URL Schemes is the start of the
URL e.g 'appname'. When you call this as a URL it targets the bundle identifier which
launches the app.

® @ menesidis — ssh root@192.168.1.6 — 164x58

DTSDKBuild = 13C75;
DTSDKName = "iphoneos9.2";
DTXcode = 0720;
DTXcodeBuild = 7C68;
LSApplicationQueriesSchemes = (
googlegmail,
sparrow,
comgooglemaps,
yandexmaps,
waze,
googlechrome,
googlechromes,
"'googlechrome-x-callback",
yandexnavi
)i
LSRequiresIPhone0S = 1;
MinimumOSVersion = "6.0";
NSAppTransportSecurity = {
NSAllowsArbitraryLoads = 1;

;

UIBackgroundModes = (
audio,
fetch,
"remote-notification",
voip

)i

UIDeviceFamily = (
1

)i
UILaunchImageFile = LaunchImage;
UILaunchImages =

UILaunchImageMinimumOSVersion = "7.0";
UILaunchImageName = "LaunchImage-700";
UILaunchImageOrientation = Portrait;
UILaunchImageSize = "{320, 480}";

},
{
UILaunchImageMinimumOSVersion = "7.0";
UILaunchImageName = "LaunchImage-700-568h";
UILaunchImageOrientation = Portrait;
UILaunchImageSize = "{320, 568}";
}

)i

UILaunchStoryboardName = LaunchScreen;

UIRequiredDeviceCapabilities = {
telephony = 1;

i
UIRequiresPersistentWiFi = 1;
UIStatusBarTintParameters = {
UINavigationBar = {
Style = UIBarStyleDefault;
Translucent = 0;
i

UISupportedInterfaceOrientations = (
UIInterfaceOrientationPortrait,
UIInterfaceOrientationLandscapeLeft,

Figure 28 (¢) - Info.plist WhatsApp

In addition, from Figure 28 (c¢) and (d) we can collect information about the development

environment and various services.

42

o DTSDKName - shows that the app has been built on i10S 9.2 .

® DTXcode - shows that the version of IDE Xcode 1s 7.2.

e [SApplicationQueriesSchemes - specifies the URL schemes you want the app to be able
to use with the canOpenURL: method, which in our case google gmail, google chrome,
waze etc. The LSMinimumSystemVersion indicates the minimum version of 1O0S
required for this app to run which in our case is 10S 6.0.

e UlBackgroundModes - provides specific background services and must be allowed to
continue running while in the background which in our case are audio, voip, remote
notifications and fetch.

o UlSupportediInterfaceOrientations - specifies the interface orientations your app supports
which in our example are both portrait and landscape.

o UTTypeTagSpecification - is a dictionary defining one or more equivalent type
identifiers. The key-value pairs listed in this dictionary identify the filename extensions,

MIME types, OSType codes, and pasteboard types that correspond to this type.

UISupportedInterfaceOrientations = (
UIInterfaceOrientationPortrait,
UIInterfaceOrientationLandscapelLeft,
UIInterfaceOrientationLandscapeRight

);

UIViewGroupOpacity = 0;

UTExportedTypeDeclarations = (

UTTypeDescription = "WhatsApp Image Exclusive";
UTTypeldentifier = "net.whatsapp.image";
UTTypeTagSpecification = {
"public.filename-extension" = wai;
"public.mime-type" = "image/x";
};
}I
{
UTTypeDescription = "WhatsApp Audio Exclusive";
UTTypeldentifier = "net.whatsapp.audio";
UTTypeTagSpecification =
"public.filename-extension" = waa;
"public.mime-type" = "audio/x";
}
}I

UTTypeDescription = "WhatsApp Movie Exclusive";

UTTypeldentifier = "net.whatsapp.movie";

UTTypeTagSpecification =
"public.filename-extension" = wam;
"public.mime-type" = "video/x";

I H

);
}
Michael:/var/mobile/Containers/Bundle/Application/BC302F79-8129-4B8D-ACD9-18COQQFA4EEC/WhatsApp.app root# [

Figure 28 (d) - Info.plist WhatsApp

43

5.4 Scenario 4 - Dump Keychain

As we already mentioned in 4.1.5 subsection, the aim of keychain dumper is to check which

keychain items are available to an attacker.

[JOX menesidis — ssh root@192.168.1.6 — 164x48
Application\ Support/ LICENSE Media/ YES/ iphone_armv6/ linux_x86/ win_x86/
Documents/ Library/ README class-dump-z_0.2a.tar.gz keychain_dumperx mac_x86/

Michael:/private/var/root root# chmod 777 keychain_dumper
Michael:/private/var/root root# ./keychain_dumper
Generic Password
Service: BluetoothGlobal
Account: Identity Root
Entitlement Group: apple
Label: (null)
Generic Field: (null)
Keychain Data: <?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>KEY</key>
<data>
WZPwWL1r5kFUeOgazRFWvQ==
</data>
</dict>
</plist>

Generic Password

Service: SOSDataSource-ak

Account: engine-state

Entitlement Group: com.apple.security.sos
Label: (null)

Generic Field: (null)

Keychain Data: 1/0

peerIDs00
peerStatel@
manifestCachel

Generic Password
Service: BluetoothGlobal
Account: Encryption Root
Entitlement Group: apple
Label: (null)
Generic Field: (null)
Keychain Data: <?xml version="1.0" encoding="UTF-8"?7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>KEY</key>

Figure 29 (a) - Keychain dumper

As we can see, this tool dumps all the keychain information. For instance in BluetoothGlobal
service we observe the key that might be plain text or obfuscated. The entitlements of this
service are owned by Apple. Similarly, we dump another three keys from SOSDataSource-ak

service which also owned from a group of Apple.

44

Service: AirPort

Account: GRAMMESTONORIZONTON
Entitlement Group: apple
Label: (null)

Generic Field: (null)
Keychain Data: 2107775050#

Generic Password

Service: AirPort

Account: AAAFXGUEST2

Entitlement Group: apple

Label: (null)

Generic Field: (null)

Keychain Data: AAAFXWIFIGUESTPASS2012

Generic Password

Service: com.apple.assistant

Account: 191F217D-DOF4-42E7-A1AF-CBDC18A42D04 - Server Certificate Data
Entitlement Group: com.apple.assistant

Label: (null)

Generic Field: (null)

Keychain Data: (null)

Generic Password

Service: com.google.sso.GetAppIdentifierPrefix
Account: GetAppIdentifierPrefix

Entitlement Group: EQHXZ8M8AV.com.google.Maps
Label: (null)

Generic Field: (null)

Keychain Data:

Generic Password

Service: com.apple.assistant

Account: 191F217D-DOF4-42E7-A1AF-CBDC18A42D04 - Validation Data
Entitlement Group: com.apple.assistant

Label: (null)

Generic Field: (null)

Keychain Data: (null)

Figure 29 (b) - Keychain dumper

Figure 29 (b) shows various keychain data in plain text form. This can be verified because of the
knowledge of actual passwords from some wi-fi networks. The service AirPort is a Utility built
by Apple to manage Wi-Fi networks and AirPort base stations [25]. In our case, the account
‘GRAMMESTONORIZONTON’ is the SSID of the Wi-Fi network and the keychain data is the
corresponding password in plain text form. Similarly, the account “AAAFXGUEST?2” is the

SSID and the corresponding password is in plain text form too.

45

Service: gr.eurobank.epistroficom.flurry.analytics

Account: <466c7572 72795365 7373696 6e54696d 65737461 6d704b65 79>
Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi

Label: (null)

Generic Field: <466c7572 72795365 7373696f 6e54696d 65737461 6d704b65 79>
Keychain Data: (null)

Generic Password

Service: service

Account: gr.eurobank.epistrofi.NBAPIKey

Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi
Label: (null)

Generic Field: (null)

Keychain Data: bdbae4d4acd@lle5aca30003ff436ff8

Generic Password

Service: service

Account: gr.eurobank.epistrofi.NBWebID

Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi
Label: (null)

Generic Field: (null)

Keychain Data: bdbaed3aacd@lle5aca30003ff436ff8

Generic Password

Service: service

Account: gr.eurobank.epistrofi.EpistrofiUserName
Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi
Label: (null)

Generic Field: (null)

Generic Password

Service: service

Account: gr.eurobank.epistrofi.EpistrofiEmail
Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi
Label: (null)

Generic Field: (null)

Keychain Data: menesidis@gmail.com

Generic Password

Service: service

Account: gr.eurobank.epistrofi.EpistrofiCardNumber
Entitlement Group: 37L692QAGF.gr.eurobank.epistrofi
Label: (null)

Generic Field: (null)

Figure 29 (c¢) - Keychain dumper

In figure 29 (¢) we dump information from a banking application. More precisely, the account
‘gr.eurobank.epistrofi. NBAPIKey’ is probably an API to communicate with the bank and in the
keychain is the credential to authenticate in this service. Another assumption would be that the
account “gr.eurobank.epistrofi. NBWebID” is a service to authenticate the ID of the user and the
credential is located in keychain data. We can verify that the account
“gr.eurobank.epistrofi.EpistrofiEmail” store the email of the user. This app will be examined

thoroughly later in this chapter.

46

5.5 Scenario 5 - e-Banking Apps

In this Scenario we examine various known e-Banking apps. More specifically, we focus on the

fourth largest banks in Greece.

5.5.1 eurobank epistroth App

Eurobank epistrofh App app is a known bank application, which returns money after specific

purchases with cooperating companies. After a detailed examination of the app we manage to

obtain several data. In Figure 30, we observe essential information about the app such as:

Last_update - when was the latest update

EpistrofiPoints - how much was the returning amount

10S GEOFENCING ENABLED - whether geofence (virtual perimeter) is enabled or not
uuidsAlreadySent - whether uuid is already sent or not

EpistrofiUserSession - whether a user has session or not

47

BB gr.eurobank.epistrofi.plist) No Selection

Key Type Value
¥ Root Dictionary (44 items)
hasAlreadyDisplayedTutorial Boolean YES
kAppiraterDeclinedToRate Boolean NO
» main_menu Array (9 items)

WARPLY_ENABLED Boolean YES
last_update Date 26 Feb 2016 9:52:36 PM
kAppiraterRatedCurrentVersion Boolean NO
Health Number 2
I0S_LOCATION_BACKGROUND_MODE Number 1
USER_TAGGING_ENABLED Boolean YES
WebKitShrinksStandalonelmagesToFit Boolean YES
EpistrofiPoints @ © Number 2,84
kAppiraterFirstUseDate Number 1.456.314.048,50215
CONSUMER_DATA_ENABLED Boolean YES
I0S_FOREGROUND_DISTANCE_FILTER ~ Number 50
WebKitLocalStorageDatabasePathPref... String /var/mobile/Containers/Data/Application/6E4DCCCA-ED7E-487E-B429-43C94B45308F/Library/Caches
I0S_GEOFENCING_ENABLED Boolean YES
uuidsAlreadySent Boolean YES
USER_SESSION_ENABLED Boolean YES
I0S_LOCATION_FOREGROUND_MODE Number 1
NBAppUninstalled Boolean YES
automoto Number 1
Travel-Hotels Number 3
CUSTOM_ANALYTICS_ENABLED Boolean YES
EpistrofiFirstTime Boolean NO
NBAPPUuidChanged Boolean NO
APPLICATION_DATA_ENABLED Boolean YES
EpistrofiLoggedin Boolean YES
OFFERS_ENABLED Boolean YES
Malls Number 3
kAppiraterUseCount Number 5
kAppiraterCurrentVersion String 6701
FEATURES_CHECK_INTERVAL Number 259.200
EpistrofiUserSession Boolean YES
GEOUsageSessionID Data <08d8cdcc adade0d3 a615108a f7eecfc6 e68f91bc 01>
kAppiraterReminderRequestDate Number 0
kAppiraterSignificantEventCount Number 0
WebDatabaseDirectory String /var/mobile/Containers/Data/Application/6E4DCCCA-ED7E-487E-B429-43C94B45308F/Library/Caches
lastFeaturesUpdateTimestamp Date 27 Feb 2016 3:11:07 AM
WebKitOfflineWebApplicationCacheEn... Boolean YES
I0S_BACKGROUND_DISTANCE_FILTER ~ Number 100
GEOUsageSessionIDGenerationTime Number 475.856.993,15698
DEVICE_INFO_ENABLED Boolean YES
LIFECYCLE_ANALYTICS_ENABLED Boolean YES

Figure 30 - gr.eurobank.epistrofi.plist

Apart from the plist file we locate a database called ‘Cache.db’. Using sqlite browser we open
the database and we investigate all the tables to discover sensitive information. The first table

called “cfurl cache response” ,which contains sensitive data in “request key” field.

48

Table: cfurl_cache_response E & o New Record Delete Record

entry_ID version hash_value cage_pol request_key
2 0 1414833403 0 https-//engage.warp. ly/apl/mobileA2/391101d9-413a-1101-b5e9-bedBlcBiSba/context/
: E .
4 0 1351491830 0 https/Awww.epistrofi-ourobank.gr/mobile/EpistrofiMobile. ashx 7action=balance8accessT
5 0 -661073787 ' 0 htps//cdnjs. cloudfiare com/ajax/ibs/jquery-mobile/1.2.0/jquery.moblle. min.css
6 . 0 603052120 0 hitps//cdnjs.cloudfiare.com/ajax/ibs/jquery/1.8.3query.min js
i 0 -94865896 | 0 https //cdnjs. cloudfiare . com/ajax/ibs/jquery-mobile/1.2.0/jquery.mobile.min js
8 ‘ 0 7 1860965208 ' 0 » https //cdnjs.cloudfiare.com/ajax/ibs/jquery-mobile/1 2 0/images/ajax-loader. gif
9 0 1829117206 0 https//warplydata biob.core. windows.net/campaigns/873946 16dc34 11e4acal300034436
Z

Figure 31 - cfurl cache response table
More specific, in Figure 31 we observe some links that may have access to sensitive data like
card number, mobile id etc. The first attempt was to check the link on the browser. As we can
see in Figure 32, the action of the service, the card number and mobile id are in a plaintext form.
The response of this service was the access token (AccessToken) which is used to authenticate
the user. AccessToken is in paramount importance because a hacker could use it to get access to

user’s account.

® ® Elthesiss x [reporty x | [Ni0SApr x | (QGitHub x [reporty x [BResearc x « Ehreporty x | [Jreporty X B Taxalia| X Minbox- x @ Mobiler x | [0BBrov x / [Jr

“« C' i | & https://www.epistrofi-eurobank.gr/mobile/EpistrofiMobile.ashx?action=registration&cardnum=51673 *****#swauans Lmobne id=bdbaed3aacd011e5aca30003ff43¢
i Apps [news [iOsExample [(MtT) [LJiOS Animation [iADs [l Push Notification [App Distribution [L] Thesis

{"status":0,"error":null, "response”: {"accesstoken":"887F976AC2FPBI3FAEC7TA1D34EB88FDED" } }

Figure 32 - Collect access token

Secondly, we check another link related to balance information.

& C M (O https://www.epistrofi-eurobank.gr/mobile/EpistrofiMobile.ashx?action=balance&accessToken=887F976AC2FB93FAEC7A1D34E888FDED
% Apps [l news | |iOsExample [] [MtT]1 [] iOS Animation [.l iADs [] Push Notification [. App Distribution [Thesis

{"status":0,"error":null, "response": [{"schemename": "Eurobank Loyalty","schemenum":"000001","balance":4.5}]}

Figure 33 - Collect amount of balance
As we can see in Figure 33, the type of service is “balance” and it uses the already leaked
accessToken to get the current balance. The response of this service returns the scheme name and

the balance of returning amount of current user. This can be verified in Figure 34.

49

Tpéxouaeg MNpoodopeg

MAnotéotepa Kataotipata

Emotpodn Health

Emotpodn leboeis

Emotpodr Hotels

Emotpodi Wuxaywyia by JKM

Figure 34 - Balance of App

In addition, we investigate further another “request_key” which give us whether the device was
registered or not and also the api_key and web_id. Such information could used to get access to

company api in order to leak further information.

€« C A (O https://engage.warp.ly/api/mobile/v2/3911efd9-413a-11e1-b5e9-fbed80c8f6ba/register/

i Apps [l news [l iOsExample [[MtT] [L]i0S Animation (L] iADs [Push Notification [L.] App Distribution [] Thesis

{"status": "1", "context": {"message": "Device Registered", "api_key": "eb394£12115d11e69577000d3a22428d", "web_id": "eb3953b8115d11e69577000d3a22428d"}}
Figure 35 - Collect api key and web identifier

The second investigated table called “cfurl cache receiver data” and probably stores the

receiving data of various services (see Figure 36). As we can see, there is plenty of information

which is unknown and further investigation is needed. We select to investigate the data that used

the card number because it is sensitive.

50

Database Structure Edit Pragmas Execute SQL

Table: cfurl_cache_receiver_data H =R New Record Delete Record

receiver_data

tus"0,

12 wslﬂl'rn;rmﬂn:‘,:.& hasﬂ.';rwvypsrwm'.‘%yopd'. “custacccardpolnts*:0.46, ‘partnemame”:"AEGEAN", 'wslacwaldnnn':'swm “custacccardpointexpdate"...
Figure 36 - cfurl cache receiver data table

After further investigation we manage to access in all purchases that have been made with this
card number. Figure 37 shows some of transactions that have been made with the specific card

number. More specifically we observe :

e custfintrxntotalant - The amount of transaction

e custfintrxntypename - The type of transaction

® custacccardpoints - The returning points of transaction

e partnername - The partner name company that the transaction has been made
® custacccardnum - The card number

® custaccardpointexpdate - The date of points expiration

e Custfintrxndate - The date of transaction

o Custacccardremainingpoints - The card remaining points

51

1O
"custfintrxntotalamt":11.9,
"custfintrxntypename": "Ayopd",
"custacccardpoints":0.12,
"partnername": "BEPOMNOYAOZ SUPER MARKET",
"custacccardnun®™; " 516732 kit
"custacccardpointexpdate":"2017-02-14T19:06:10+02:00",
"custfintrxndate":"2016-02-15T719:06:10+02:00",
"custacccardremainingpoints":0.12

1

{B
"custfintrxntotalamt":26.95,
"custfintrxntypename": "Ayopd",
"custacccardpoints":0.27,
"partnername": "IKAABENITHZ",
"custacccardnun”: "S516732 RS
"custacccardpointexpdate":"2017-02-04T719:43:49+02:00",
"custfintrxndate":"2016-02-05T719:43:49+02:00",
"custacccardremainingpoints":0.27

}, 1

{B
"custfintrxntotalamt":23.68,
"custfintrxntypename": "EEapylpuon",
"custacccardpoints":-23.68,
"partnername":"AEGEAN",
“custacccardnun”: " 516732 AR kit
"custfintrxndate”:"2016-01-25T18:49:37+02:00",
"custacccardremainingpoints":0

}s

{B
"custfintrxntotalamt":0,
"custfintrxntypename":"AQPO EYPQ EMIZTPOOH",
"custacccardpoints":10,
"partnername": "EUROBANK",
"custacccardnum":"516732 *¥*kkkkkkkkkkk
"custacccardpointexpdate":"2017-01-19T11:27:37+02:00",
"custfintrxndate”:"2016-01-20T11:27:37+02:00",

"custacccardremainingpoints":1.99
1 =

Figure 37 - Collect transactions information

52

All this information is sensitive because we can violate the privacy of the owner. Furthermore,
we discovered another file called “settings”. A part of this file is depicted in Figure 38. This file
stores information of a well known service called “crashlytics “ which is used to provide reports

to developers about app’s crashes.

anaiyiies i1 o
"url":"https://e.crashlytics.com/spi/v2/events",
"flush_interval_secs":600,
"max_file_count_per_send":1,
"track_custom_events":true,
"track_predefined_events":true,
"track_view_controllers":false,
"flush_on_background":true,
"max_byte_size_per_file":8000,
"max_pending_send_file_count":100,
"sampling_rate":1

b

"beta":{ @

"update_suspend_duration":1800,
"update_endpoint":"https://api.crashlytics.com/spi/v2/platforms/ios/apps/gr.eurobank.epistrofi/beta_update_check"

1

"app":{ B
"identifier":"gr.eurobank.epistrofi",

"status":"activated",
"url":"https://api.crashlytics.com/spi/vi/platforms/ios/apps/gr.eurobank.epistrofi”,

"reports_url": "https://reports.crashlytics.com/spi/vi/platforms/ios/apps/gr.eurobank.epistrofi/reports"”,
"update_required":false

1

"session":{ &
"log_buffer_size":64000,
"max_chained_exception_depth":16,
"max_custom_exception_events":8,
"max_custom_key_value_pairs":64,
"identifier_mask":255

1

"prompt":{ &

"title":"Send Crash Report?",

"message":"Looks like we crashed! Please help us fix the problem by sending a crash report.",
"send_button_title":"Send",

"show_cancel_button":true,

"cancel_button_title":"Don't Send",

"show_always_send_button":true,

"always_send_button_title":"Always Send"

Figure 38 - Settings.json

In addition, we also found a plist file called “CLSUserDefaults.plist”.

| ®© @ CLSUserDefaults.plist
B8 CLSUserDefaults.plist) No Selection
Key Type Value
¥ Root Dictionary (5 items)
com. ytics.insight i llertracking Boolean NO
com. ics.insight: ioni ifi String 94208bde75da47caaf498d4725ad0384
I com. ics.insight: i ©© Data £ <7b226275 6e646c65 5696422 3a226772 26657572 6f62616e 6b2e6570 69737472 6f666922 2c227365 7373696f 6e5f6964 22322239 343230
com. ytics.insight: fonti Number 1.456.516.354.310
com.crashlytics.iuuid String 188D155E-C208-4498-8B31-BB4B369FA41E

Figure 39 - Crashlytics plist
Various information is presented in such file in both plaintext and encoded form. For instance,
the (universally unique identifier) UUID is in plain text. We can also collect information such as the
latest session identifier and weather the current view controller is being tracking or not. Apart

from the aforementioned plain text information, we observed raw data. The first thought was to

53

investigate whether these data are in a HEX form, which is proved true so we converted the hex

string to the following json.

{B
"bundle_id":"gr.eurobank.epistrofi”,
"session_id":"94208bde75da47caaf498d4725ad0384",
"advertising_tracking_enabled":true,
"vendor_id":"1839A193-AB26-4056-B222-03FA3B285B03",
"locale":"en_GR",
"os_build":"13A342",
"links_ad_support":true,
"platform":"10S",
"install_id":"188D155E-C208-4498-8B31-BB4B369FA41E",
"platform_code":1,
"cores":2,
"generator":"Answers 10S SDK\/1.1.0",
"instance_id":"019bb2f7115d9f1166b3d90bf12fbof0d0012e9d",
"advertising_id":"E1E37777-A55D-4223-BE79-73084723BE4A",
"os_version":"9.0.0",
"jailbroken":true,
"started_at":1456516354,
"model":"iPhone8,1",
"bundle_version":"6701",
"api_key":"cec9993f32a3782c456b7ad024144c515bd4248e",
"machine":"1Phone8,1",
"bundle_short_version":"3.3.1"

}

Figure 40 - Crashlytics json

This json contains various data such as session_id, installation id, instance id, advertising_id,
api_key as well as much information related to the hardware specifications (see Figure 40). As

already mentioned session_id and api_key could lead to user’s sensitive data.

5.5.2 NBG App

In this sub-scenario we tried to collect information from NBG (National Bank of Greece) App.
Our first attempt, to gather information from the app, was to locate the plist files that contains
data in a cleartext form. Figures 41 (a) and (b) present the plist configuration files that have been
found. For instance, we locate:

® Bundle identifier

® Localized Strings in both languages

54

® [mages
[J
e Nib files
® Location usage
o URL scheme
Key
¥ Root

MCMMetadataldentifier

v MCMMetadatalnfo

com.apple.Mobilelnstallation.Conte...

MCMMetadataContentClass

Build Version, Xcode Version

Type
Dictionary
String
Dictionary
Number
Number

Value

(4 items)
gr.nbg.mobile.mbanking
(1 item)

0

2

MCMMetadataUUID

©© String

A
v

3B69F7ED-F1C6-41AE-BCBD-57223E07F326

Figure 41 (a) - plist file

Key Type Value
v Information Property List Dictionary (35 items)
¥ URL types { Array (1item)
vitemO Dictionary (4 items)
Document Icon File Name { String Images.xcassets/Applcons.appiconset/i-bank_58x58
v URL Schemes { Array (1item)
Item O ©© String £ nbgibank
CFBundleURLTypes { String None
URL identifier { String gr.nbg.mobile.mbanking
UIRequiresFullScreen { String YES
InfoDictionary version { String 6.0
» Supported interface orientations (i.. { Array (3 items)
DTPlatformVersion { String 9.3
DTCompiler { String com.apple.compilers.llvm.clang.1_0
Bundle name { String NBG
DTSDKName { String iphoneos9.3
» Icon files (i0S 5) { Dictionary (1item)
Status bar style { String UlStatusBarStyleLightContent 2
Bundle display name { String NBG
Application requires iPhone enviro... £ Boolean YES 3
Privacy - Location When In Use Us... { String See our branches and ATMs around you
DTSDKBuild o] String 13E230
Bundle versions string, short { String 6.0.1
» CFBundleSupportedPlatforms 2 Array (1 item)
» Supported interface orientations { Array (3 items)
Privacy - Location Always Usage D... { String See our branches and ATMs around you
BuildMachineOSBuild { String 15F34
DTPlatformBuild £ String 13E230
Bundle OS Type code { String APPL
DTXcodeBuild { String 7D1014
Localization native development re... £ String en %
v Fonts provided by application { Array (1 item)
Item O String Fonts/FontAwesome.ttf
Bundle version { String 16080201
MinimumOSVersion £ String 7.0
» UlDeviceFamily £ Array (2 items)
Bundle identifier { String gr.nbg.mobile.mbanking
DTXcode { String 0731
Privacy - Location Usage Descripti... { String See our branches and ATMs around you
Executable file { String NBGios
Bundle creator OS Type code { String ??27?
» CFBundlelcons~ipad £ Dictionary (1 item)
DTPlatformName { String iphoneos
» com.xamarin.ios { Dictionary (1item)

55

Figure 41 (b) - plist file
In Figure 41 (c¢) we can see the date and time of the last user’s login and whether the password
was saved or not (see the key “rememberme”). In addition, we observe the identifier for Push
Notifications (see the key “apnRegld”) and the current language of app (see the key
“NbgMobileLanguage™). Also, a path with various cached data is presented and after further
investigation of the path we found that it contains obfuscated data. In general, we found many

obfuscated files in different paths in the app but we didn’t manage to deobfuscate any of them.

= gr.nbg.mobile.mbanking.plist) No Selection
Key Type Value

¥ Root Dictionary (10 items)
4288377-lastlogin String 27/09/2016 20:25
rememberme Boolean NO
apnregld String 43aa637706be99d4393c606100a80611894a2cb564c2b16cf5426e633490957d
NbgMobileLanguage String el
WebKitLocalStorageDatabasePathPref... String /var/mobile/Containers/Data/Application/40F3F0A3-B021-4F35-8195-D75A587EF14F/Library/Caches
WebDatabaseDirectory String /var/mobile/Containers/Data/Application/40F3F0A3-B021-4F35-8195-D75A587EF14F/Library/Caches
apnappVersion String 6.0.1 (16080201)
WebKitShrinksStandalonelmagesToFit Boolean YES
WebKitOfflineWebApplicationCacheEn... Boolean YES
nbg_hasapnregistered Boolean YES

Figure 41 (c) - plist file

Moreover, we found several json files that have been used by the app for server calls.

AccountTypes.json
Errors.el.json
Errors.en.json
JournalResources.el.json
JournalResources.en.json
LoanReasons.json
Payments.el.json
Payments.en.json
Transld.el.json
Transld.en.json

Q000000000

Figure 42 - json files
For example we found the server’s response error codes in the Errors.el.json file. This could be

important information for a malicious user to manipulate the returning codes.

56

-

<4 » [3 Errorseljson ¥ (nosymbol selected) =+

{
"code": "HOST.9",
"message": "AvOnapktn ovvaAAayn"
},
{
"code'": "HOST.005",
"message": "EpgpaviTovral pévo 494 titAor."
Y,
{
"code": "HOST.006",
"message": "To XoPTOPUAdKIO oag E€XEl neproodTepeg and Ti¢ 265 napandvw eyypogéq.
},
{
"code": "HOST.011",
"message": "Avenapké¢ 61a8féorpo unbAorno."
},
{
"code'": "HOST.020",
"message": "Aev undpxel aftnon ZAT."
},
{
"code": "HOST.024",
"message": "Aev vndpxel oxéon meAdtn Aoyapraopov."
},
{
"code": "HOST.026",
"message": "Mn emitpentd nood"
},
{
"code'": "HOST.046",
"message": "AdBo¢ kwbikO¢ BeopikoV enevbuth."
},
{
"code": "HOST.047",
"message": "AvUnapktn aftnon."
)
{
"code": "HOST.048",
"message": "AvOnapkto¢ oto neAatoAdyro."
Y,
{

"code": "HOST.049",
"message": "Ynapkté¢ ap18uég aftnong."

Figure 43 - error codes

5.5.3 Alpha Bank Mobile Banking App

In this sub-scenario we tried to gather information from Alpha Bank Mobile Banking App.
However, we didn’t manage to obtain any data including not so sensitive data related to the UL

Moreover, the Clutch tool was not able to decrypt the app.

57

5.5.4 winbank App

At first glance, the winbank app (Piraeus Bank) was better protected compared to the rest of the
m-banking apps, due to not be usable at jailbroken mobile devices. As a result, it was unable to
login, so we didn’t expect to get sensitive data related to the card. However, after further
investigation we collected several data. In Figure 44 (a) apart from the data related to the UI we

observe data such as:

® Minimum iOS version
® Location usage

e WiFiusage

o URL scheme

e Xcode version

Key Type Value
¥ Information Property List Dictionary (39 items)
DTCompiler 20@ String ¢ org.llvm.7.5.2.clang.wrapper
UIRequiresFullScreen { Boolean YES
InfoDictionary version { String 6.0
» Supported interface orientations (i... { Array (1 item)
DTPlatformVersion { String 9.3
DTSDKName { String iphoneos9.3
Bundle name { String winbank Mobile
» Icon files (i0S 5) { Dictionary (1 item)
Status bar style { String Gray style (default)
Application requires iPhone enviro... { Boolean YES
Application uses Wi-Fi { Boolean NO
» LSApplicationQueriesSchemes { Array (3 items)
Bundle display name { String winbank Mobile
Privacy - Location When In Use Us... { String In order to automatically locate your nearest service points, we suggest that you turn on the "Location Services" option for the winbank mobile application.
DTSDKBuild £ String 13E230
Bundle versions string, short { String 1.6.3
» CFBundleSupportedPlatforms { Array (1item)
BuildMachineOSBuild L ©© String 15G31
DTPIatformBuild { String 13E230
Bundle OS Type code 2 String APPL
DTXcodeBuild { String 7D175
Localization native development re... String English
Icon already includes gloss effects ¢ Boolean NO
Bundle version { String 1.6.3
MinimumOSVersion { String 71
Status bar is initially hidden { Boolean NO
» UlLaunchimages { Array (2 items)
» UlDeviceFamily { Array (1item)
» Localizations { Array (2 items)
Bundle identifier { String gr.winbank.mobile
DTXcode { String 0730
» App Transport Security Settings { Dictionary (1item)
» Supported interface orientations (i... Array (1item)
Executable file { String winbank Mobile
» CFBundlelcons~ipad e Dictionary (1 item)
Bundle creator OS Type code { String 27?2
DTPlatformName { String iphoneos
App Uses Non-Exempt Encryption { Boolean NO
¥ URL types { Array (1 item)
vlitem O Dictionary (2 items)
URL identifier { String gr.winbank.mobile
¥ URL Schemes $ Array (1item)

Figure 44 (a) - winbank plist file

58

In Figure 44 (b) we can see the Bundle version of the app and a lot of information in itunes store

such as:

® Purchase date

e User’s name (first and last)
e Apple Id

e Vendor ID

Key Type Value
gameCenterEverEnabled Boolean NO
gameCenterEnabled Boolean NO
bundleDisplayName String winbank Mobile
artistld Number 436.776.671
product-type String ios-app
kind String software
genreld Number 6.015
artistName String Piraeus Bank S.A.
itemName String winbank Mobile
softwarelcon57x57URL ©© String http://a894.phobos.apple.com/us/r30/Purple62/v4/81/b1/96/81b196c3-163c-628e-b9e2-ff483bd11c8e/icon114x114.jpeg
bundleVersion String 1.6.3

p softwareVersionExternalldentifiers Array (12 items)
versionRestrictions Number 16.843.008
» UIRequiredDeviceCapabilities Dictionary (0 items)
» asset-info Dictionary (2 items)
v com.apple.iTunesStore.downloadinfo Dictionary (2 items)
purchaseDate String 2016-09-05T18:31:31Z
¥ accountinfo Dictionary (20 items)
CreditDisplayString String
AccountlsNewCustomer Boolean NO
AltDSID ©© String { 000774-10-991aae32-4c21-4f22-a86b-e6e79c09118¢c
AccountSocialEnabled Boolean NO
AccountPaidPurchasesPasswordSetting Number 2
DownloaderiD Number 0
FamilylD Number 0
DidFallbackToPassword Boolean NO
LastName String Menesidis
AccountKind Number 0
AccountURLBagType String production
FirstName String Michael
ApplelD String menesidis@gmail.com
AccountAvailableServiceTypes Number 0
AccountFreeDownloadsPasswordSetting ~ Number 3
PurchaserlD Number 8.021.156.197
DSPersoniD Number 8.021.156.197
AccountServiceTypes Number 0
AccountSource String device
AccountStoreFront String 143448-23,29 ab:WJ6jMoo2
fileExtension String .app
softwareVersionExternalldentifier Number 818.646.135
vendorld Number 318.972
genre String XPMHATOOLKOVOUIKA
softwarelconNeedsShine Boolean YES

Figure 44 (b) - winbank plist file

Even though we didn’t manage to login, the app knows who we are through the itunes store. Last
but not least, Figure 45 depicts the non-verified certificate of winbank app which is signed from

an unknown authority and such a practice is not suggested.

59

[NON Keychain Access

Click to lock the login keychain. Q
Keychains
s Cortfoute ebanking.winbank.gr
- ;) Issued by: Symantec Class 3 EV SSL CA - G3
@ Local ltems Expires: Monday, 25 September 2017 at 2:59:59 AM Eastern European Summer Time
(1 System @ This certificate was signed by an unknown authority
=] System Roots
Name ~ Kind Expires Keychain
[=] Apple Application Integration Certification Authority certificate 26 Jul 2017, 10:16:09 PM login
» [com.apple.idms.appleid.prd.72614731307065392b70452f535a6a5a5654537067673d3d certificate 26 Jul 2017, 10:16:09 PM login
v [Z] com.apple.idms.appleid.prd.72614731307065392b70452f535a6a5a5654537067673d3d certificate 26 Jul 2017, 10:16:09 PM login
i Apple ID menesidis@gmail.com key private key -- login
B ebanking.winbank.gr certificate 25 Sep 2017, 2:59:59 AM
=] GE Enterprise SMIME CA 1 certificate 29 May 2018, 2:59:59 AM login
Category » [] iPhone Developer: menesidis@gmail.com (FEA5345PSP) certificate 24 Dec 2016, 9:41:57 PM login
;"(All ltems » [Z] iPhone Developer: sOfianna.menesidou@gmail.com (BJ2M8QSBKN) certificate 24 Dec 2016, 10:26:12 PM login
/.. passierds =] MICHELLE LANGFORD certificate 4 Sep 2017, 2:59:59 AM login
] MICHELLE LANGFORD certificate 4 Sep 2017, 2:59:59 AM login
Secure Notes e ro= o
. . [Parallels Panel certificate 11 Nov 2014, 8:51:06 PM login
[My Certificates » [=] securitylearn.net certificate 27 Feb 2017, 11:36:13 PM login
I Keys [=] VeriSign Class 2 Public Primary Certification Authority - G3 certificate 17 Jul 2036, 2:59:59 AM login
2 certificates

Figure 45 - winbank certificate

According to the aforementioned leaked information, the most secure mobile e-banking app was
Alpha Bank Mobile Banking App, because we didn’t manage to collect any information.
Moreover, the mechanism to forbid jailbroken users to run the app (e.g. winbank app) adds
another layer of security in the app and it would be a good practice to be used by all the e-

banking apps.

60

Chapter 6 - Conclusion

This chapter concludes the thesis, while summarises the evaluations and observations of the
research. Specifically, the contributions of this thesis are concluded, followed by the limitations

of the research.

6.1 Contributions

In this thesis, we address the issues of data and privacy leakage on 10S devices. The goal of the
research was to highlight possible ways of gaining sensitive information from a mobile device.
By using various forensic tools we achieve to leak information exposure user’s privacy. Our
main contribution was to feature data leakage through various case studies and evidence. In
addition, in terms of future research activities, we plan to develop a tool for automatic leak

discovery regardless of iOS version.

6.2 Limitations of the Research

Despite having met the objectives of this thesis, some decisions had to be taken that resulted in
limitations imposed on the work. The decisions were caused by practical reasons, or to limit the
effort spent in areas where no new insights could be expected. For instance we collected plenty
of obfuscated files that we didn’t manage to deobfuscated them. Apart from the obvious
limitation which is the time of research, a significant restriction is the lack of research works in
10S comparing to android OS due to closed-source iOS platform. Another limitation is the
access of an iPhone with one of the latest limitations imposed on the work. More precisely, the
10S version is of paramount importance because different versions could have different
restrictions and bugs. These possible differences make necessary distinct research in every iOS
version. In addition, in order to install the new i1OS version a new jailbreak to our iPhone is
needed. Moreover, i1OS updates might conclude to security updates that could add extra
limitations in our research. For instance, many popular forensic tools don't work at specific 10S

version. For that reason, either we have to develop a new tool or patch the existing.

61

Bibliography

[1] Egele, M., Kruegel, C., Kirda. E. and Vigna, G., (2011),“PiOS: Detecting Privacy Leaks in iOS
Applications”, In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011,

San Diego, California, USA, http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf

[2] ABI Research, (2016), “45 Million Windows Phone and 20 Million BlackBerry 10 Smartphones in
Active Use at year end.”, http://www.abiresearch.com/press/45-million-windows-phone-and-20-million-

blackberry (accessed 11 September 2016)

[3] Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J, McDaniel, P. and Sheth, A.N., (2010),
”TaintDroid: an information-flow tracking system for real time privacy monitoring on
smartphones.” In Proceedings of the 9th USENIX conference on Operating systems design and
implementation (OSDI'10). USENIX Association, Berkeley, CA, USA, 393-407,

https://www.usenix.org/legacy/event/osdil 0/tech/full papers/Enck.pdf

[4] Yang, Z., and Yang, M., (2012), “LeakMiner: Detect Information Leakage on Android with
Static Taint Analysis.” In Proceedings of the 2012 Third World Congress on Software
Engineering (WCSE '12). IEEE Computer Society, Washington, DC, USA, 101-104.
DOTI:http://dx.doi.org/10.1109/WCSE.2012.26

[5] Gibler, C., Crussell, J., Erickson, J., and Chen, H., (2012), “AndroidLeaks: Automatically Detecting
Potential Privacy Leaks In Android Applications on a Large Scale”, In Proceedings of the 5th
international conference on Trust and Trustworthy Computing (TRUST’12). Springer-Verlag
Berlin, Heidelberg, 291-307. DOI=http://dx.doi.org/10.1007/978-3-642-30921-2 17

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.5095&rep=rep 1 &type=pdf

[6] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng., (2013), “Comparing Mobile Privacy Protection
through Cross-Platform Applications.”, In Proceedings of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, USA, February 2013,
http://www.internetsociety.org/sites/default/files/06_2_0.pdf

62

[7] Achara, J.P., Lefruit, J.D., Roca, V. and Castelluccia, C., (2014), Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found, Journal of Computer Virology and Hacking
Techniques, 10 (4), 229-238, https://hal.inria.fr/hal-00872967/file/ratp_app_analysis.pdf

[8] Y. Agarwal and M. Hall., (2013), “ProtectMyPrivacy: Detecting and Mitigating Privacy Leaks on iOS
Devices Using Crowdsourcing.”, In Proceedings of the ACM International Conference on Mobile
Systems, Applications and Services (MobiSys), Taipei, June 2013,
http://www.synergylabs.org/yuvraj/docs/Agarwal MobiSys2013 ProtectMyPrivacy.pdf

[9] Werthmann, T., Hund, R., Davi, L., Sadeghi, A.-R. and Holz, T., (2013), “PSiOS: Bring Your Own
Privacy & Security to iOS Devices.” In 8th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), May, 2013, https://www.informatik.tu-
darmstadt.de/fileadmin/user_upload/Group TRUST/PubsPDF/PSiOS.pdf

[10] Chen, T., Ullah, I., Kaafar, M.A., and Boreli, R., (2014), “Information leakage through
mobile analytics services.” In Proceedings of the 15th Workshop on Mobile Computing Systems
and Applications (HotMobile '14). ACM, New York, NY, USA, , Article 15, 6 pages.
DOLI:http://dx.doi.org/10.1145/2565585.2565593

[11] Li, L., Bartel, A., Klein, J., Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D.,
McDaniel, P., (2014), "I know what leaked in your pocket: uncovering privacy leaks on Android
Apps with Static Taint Analysis”, ISBN: 978-2-87971-129-4, 2014, https://hal.archives-
ouvertes.fr/hal-00985490/document

[12] Haris, M., Haddadi, H., and Hui, P., (2014), “Privacy leakage in mobile computing: Tools,
methods, and characteristics,” arXiv.org e-Print archive, arXiv:1410.4978v1, 2014,
http://arxiv.org/pdf/1410.4978.pdf

[13] Apple, (2016), “10S Security”, White Paper,
https://www.apple.com/business/docs/iOS Security Guide.pdf

[14] Clutch, (2016), https://github.com/KJCracks/Clutch (accessed 11 September 2016).

[15] ibtool, (2014), https://github.com/davidquesada/ibtool (accessed 11 September 2016).

[16] Zdziarski, J., (2012), “Hacking and Securing iOS Applications”, O’Reilly Media, Inc., http://www.it-
docs.net/ddata/779.pdf

63

[17] Keychain Dumper, (2015), https://github.com/ptoomey3/Keychain-Dumper (accessed 11 September
2016)
[18] Xing, L., Bai, X., Li, T., Wang, X., Chen, K. and Liao, X., (2015), “Unauthorized Cross-App

Resource Access on MAC OS X and i0S”, arXiv.org e-Print archive, arXiv:1505.06836,

https://reverse.put.as/wp-content/uploads/2015/11/report unauthorized app.pdf

[19] Wikipedia, (2016), https://en.wikipedia.org/wiki/.ipa_(file_extension) (accessed 11 September 2016)

[20] Apple, (2015),
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-
CocoaCore/NibFile.html (accessed 11 September 2016)

[21] Apple, (2010),
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWindow_Class/#//apple_ref/oc

c/instp/UIWindow/rootViewController (accessed 11 September 2016)
[22] Apple, (2016),
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice Class/#//apple_ref/occ/

instp/UlDevice/identifierForVendor (accessed 11 September 2016)

[23] Apple, (2016),
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Configuri

ngYourApp/ConfiguringY ourApp.html (accessed 11 September 2016)

[24] Apple, (2016),
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/plutil.1.html
(accessed 11 September 2016)

[25] Apple, (2014), https://itunes.apple.com/us/app/airport-utility/id427276530?mt=8 (accessed 11
September 2016)

[26] Mayer, D.A., (2015), “Blackbox iOS App Assessments Using idb”, Whitepaper,
https://www.blackhat.com/docs/ldn-15/materials/london-15-Mayer-Blackbox-10S-Application-

Assessments-Using-IDB-wp.pdf

64

