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Section 1 
Introduction 

 

Implied Volatility Indices have received an increasing attention since 1993, when VIX 

was first introduced at the Chicago Board of Options Exchange (CBOE). In the years that 

followed, all the major Exchanges introduced Implied Volatility Indices for their most 

representative Stock Indices, constantly renewing the methodologies of their calculation and 

at cases also introducing derivatives on them. We focus on the eight most important implied 

volatility indices currently trading at the CBOE, at EUREX and at EURONEXT, namely the 

American VIX, VXO, VXN and VXD, the German VDAX, the French VX1 and VX6 and the 

European VSTOXX. The purpose of this study is to examine their properties from the 

econometric aspect and for risk management purposes.  

We begin by the definition of implied volatility to continue with a review of the 

evolution of implied volatility indices. Implied volatility is the volatility of an underlying asset 

implied by the market prices of options written on it. Implied volatility indices are indices 

disseminated by Option Exchanges that express the market consensus of the near term 

volatility of traded stock indices. Since volatility often signifies financial turmoil, the implied 

volatility indices are often referred to as the "investor fear gauge". This means that they reach 

their highest levels during times of financial turmoil and investor fear. As markets recover and 

investor fear subsides, implied volatility index levels tend to drop. Implied volatility indices are 

used as possible trading signals to identify buying/selling opportunities in the market, as a 

forecast tool of the future return volatility over the remaining life of the relevant option, for risk 

management purposes in the calculation of VaR and most recently as the underlying to 

volatility derivatives1.  

The idea of developing a volatility index was first suggested by Brenner and Galai in 

1989. Fleming, Ostdiek and Whaley in 1993 describe the construction of an implied volatility 

index (the VIX) originally based on S&P100 options. The French VX1 and VX6 were 

developed according to Brenner and Galai. In 2004 Skiadopoulos developed a methodology 

for the construction of GVIX, the Greek market volatility index based on FTSE/ASE-20 option 

series.  

After the introduction in 1993 of VIX with S&P100 as underlying, in 2003 the CBOE 

revised the methodology of its calculation to incorporate a broader range of expiries and 

make it independent of an option pricing model, unlike the old VIX which used Black and 

Scholes.2  The new VIX was based on the primary US stock market benchmark, S&P500. 

                                                
1 On volatility derivatives see Whaley (1993). The idea of trading volatility is also developed in Carr 
and Madan (2002), and in Brenner et al. (2001).  
2 Daily asset returns violate the B-S model assumption of normal distribution, with implied volatility 
varying across strike prices and maturities. As a result, options of different strike prices yield different 
volatilities for the underlying. It has been observed that OTM options minimize the effect of 
measurement errors on the calculation of implied volatilities. See Panigirzoglou and Skiadopoulos 
(2004).  
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The old VIX continued to be disseminated under a new ticker name, VXO, based on S&P100. 

At the same time, the CBOE applied the same calculation methodology to VXN which was 

introduced in 1997 and was based on the Nasdaq-100 options. It decided, though, not to 

back-calculate VXN3, making available to the public a VXN price history beginning as late as 

2001. VX1 and VX6 were created by the Marché des Options Négociables de Paris (MONEP) 

in 1997 and were based on implied volatilities of around at-the-money CAC40 Index call 

option of 1 month and 6 months respectively. Euronext – LIFFE (London International 

Financial Futures and Options Exchange) issued another four implied volatility indices based 

on CAC 40 options:  V1X (V6X) based on CAC40 put 1 month (6 months) and MX1 (MX6) 

based on CAC40 average call/put 1 month (6 months). VDAX, was introduced by Deutsche 

Börse, in 1994, to measure the expected price fluctuation of the DAX-30 Index, based on 

around at-the-money DAX options. In April 2005, the CBOE introduced VXD, the Implied 

Volatility Index of the Dow Jones Industrial Average Index (DJIA), calculated with the 2003 

methodology. One month later, in May 2005, EUREX began dissemination of VSTOXX, the 

Implied Volatility Index of DJEUROSTOXX50, VSMI, the Implied Volatility Index of the Swiss 

Market Index SMI, and VDAX NEW, the revisited VDAX, applying a calculation method similar 

to that implemented by CBOE in 2003. The basic principles of the construction of the eight 

implied volatility indices under study are presented in Table 1.  

 
1.1. Literature  

 

Implied Volatility measures have been the focus of analysis in a wide range of studies 

over the last years. These include for example Whaley (1993, 2000), Aboura and Villa (1999), 

Gemmill and Kamiyama (2000), Giot (2005a), Skiadopoulos (2004), Wagner and Szimayer 

(2004). Giot (2005a) reports a negative and statistically significant relationship for the period 

1995-2002 between the levels of S&P100 and NASDAQ100 and their implied volatility 

indices: positive stock index returns lead to decreased implied volatility levels, while negative 

returns lead to higher implied volatility levels. He also finds that this relationship is asymmetric 

in the sense that negative stock index returns yield bigger proportional changes in implied 

volatility measures than do positive returns. Whaley (2000) observes an asymmetric negative 

relationship between weekly changes of the old VIX and weekly returns of S&P100 over the 

period 1995-2000. Skiadopoulos (2004) also reports the existence of an asymmetric leverage 

effect4 between returns of GVIX and changes of it’s underlying FTSE/ASE-20 and finds a 

contemporaneous spillover of implied volatility change between GVIX and VXO/ VXN. 

Gemmill and Kamiyama (2000) examine whether there are spillovers of implied volatility and 

implied skewness across time zones, using daily data of the index-option markets of the US, 

Japan and UK. They find that the level of implied volatility spills across markets but the 

                                                
3 Information provided after communication with CBOE officials.  
4 The "leverage effect" refers to the negative relationship between stock returns and volatility: volatility 
increases when the stock prices fall. It is attributed to the effect that a change in the market valuation of 
a firm’s equity has on the degree of leverage in its capital structure.  
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skewness of the volatility smile is a local phenomenon. Aboura and Villa (1999) report on the 

volatility transmission between VX1, VDAX and VIX that the intra-regional correlation is not 

stronger that the multi-national correlation contrary to the returns process. They also 

observed that US market volatility index is the most influential.  

Several papers have been written on the information content and the predictive power 

of implied volatility index prices as a forecast of future realized volatility. Fleming-Ostdiek-

Whaley (1995) found that implied volatilities contained substantial information for future 

volatility. Moraux, Navatte and Villa (1999) showed that VX1 can be used to generate volatility 

forecasts over different horizons and that these forecasts are reasonably accurate predictors 

of future realized volatility. Giot (2005a) found that VIX and VXN provide accurate and 

meaningful information as to future volatility forecasts. Fleming et al. (1995) concluded that 

implied volatility (VIX 1986-1992) is an upwardly biased estimator of future volatility even if 

the magnitude of the bias is not economically significant. They also concluded that implied 

volatility dominates past volatility as a forecast of future volatility. Jorion (1995) found that 

implied volatility is an efficient indicator of future return volatility for foreign currency futures. In 

line with the above, Aboura and Villa (1999) showed for VIX, VDAX and VX1 that past implied 

volatility informs more about future implied volatility than past realized volatility. Malz (2000) 

found that implied volatility contains information regarding future large-magnitude returns, 

which is not contained in other risk measures, and this fact can help risk managers posture 

themselves for stress events. On the other hand, Canina and Figlewski (1993), reported for 

S&P100 (1983-1987) that implied volatilities have little predictive power for future volatility – in 

fact implied volatility has no correlation with future return volatility- and therefore they are 

significantly biased forecasts. Figlewski (2004) concluded that even though implied volatility 

contains significant information about future volatility, it does not pass the test of forecast 

rationality and is not necessarily a more accurate forecast of future volatility than historical 

volatility. He also showed that the historic volatility forecasts more accurately for large 

samples and long rather than short forecasting horizons. On a more general framework, 

Christoffersen and Diebold (2000) find that volatility forecastability, although clearly of 

relevance for risk management at the very short horizons, may not be important for risk 

management more generally, since it decays quickly across horizons.  

Furthermore, Carr and Madan (2002) develop the idea of trading volatility, suggesting 

a strategy of combining static positions in options with dynamic trading in futures, in order to 

create payoffs related to realized volatility. In the same line, Brenner et al. (2001) introduce a 

new volatility instrument, an option on a straddle, which can be used to hedge volatility risk.  

There is also a growing literature on the use of implied volatilities as inputs in VaR 

models in a risk management context. Bluhm and Yu (2001), for example, compared two 

basic approaches, time series techniques and volatility implied in option prices, to forecast 

volatility in the German stock market and for VaR calculation purposes. They concluded that 

when option pricing is the primary interest implied volatility should be used, whereas when 

VaR is the concern, ARCH-type models are more useful. Giot (2005b) assessed the 
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information content of implied volatility indices in a Value-at-Risk framework for VIX and VXN 

for the period 1994-2000. He concluded that volatility forecasts based on the VIX/VXN indices 

are meaningful inputs in VaR models as the number of VaR violations is correctly modeled in 

most cases. He also showed that they perform equally well during “difficult” market conditions.  

In a more general framework, Christoffersen, Hahn and Inoue (2000) developed a 

methodology for the proper specification of a VaR measure. They calculated, tested and 

compared competing VaR measures from either historical or option-price based volatility 

measures in an application to daily returns on the S&P500 index. 

 

1.2. Contribution to existing literature  

 

We have seen that the informational content of implied volatility has become an 

important research topic in the academic literature. Although previous studies examined the 

properties of VDAX, VXN, VX1 and the old VIX (with S&P100 as underlying), there is a 

literature gap as far as the VX6 and the new VIX (with S&P500 as underlying) are concerned. 

International transmission of implied volatility has been studied for VX1-VIX-VDAX (Aboura 

and Villa, 1999), for GVIX-VXO/VXN (Skiadopoulos, 2004), and for S&P500-FTSE100-NK225 

options (Gemmill and Kamiyama, 2000) but not for VIX-VXO-VXN-VDAX-VX1-VX6. The 

efficiency of implied volatility as measure of the stock index volatility for VaR calculation has 

been previously studied for DAX (Bluhm and Yu, 2000), S&P100 and Nasdaq-100 (Giot, 

2005b).  Only Giot (2005b), however, uses directly an implied volatility index in a VaR context. 

We will test the efficiency of the VIX comparative with other measures as an input in a VaR 

model for S&P500. The present study provides for the first time a comparative analysis of the 

properties of implied volatility indices, based on an extended data set, incorporating the 

recently introduced VXD and VSTOXX.  

 

1.3. Structure of the present study  
 

The rest of the study is structured as follows. First we describe the data set and 

present the descriptive statistics. We proceed with the study of the informational content of 

Implied Volatility Indices daily changes for the daily returns of the underlying Stock Indices, 

investigating the existence of a leverage effect, its symmetry and stability over time. In the 

same section we apply Granger Causality tests to see whether the time series of the Implied 

Volatility Indices could help forecast Stock indices returns and vice versa. The international 

transmission of implied volatility movements will be examined in a Vector Autoregression 

framework. The second part of our research focuses on the construction and backtesting of 

Value-at-Risk models for a virtual long position on the S&P500. Results from the Delta 

Normal Variance-Covariance method are tested against results from the Historical Simulation 

method using established Backtesting criteria. We particularly concentrate on the 

performance of the VIX as variance input in the Delta Normal method.  
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  Table 1 
Calculation Methodologies  

Implied Volatility 
Index 

Option Pricing 
model 

Options used  Represents 

VXO  

 

Black-Scholes 
(1973) and Merton 

(1973) 

4 puts and calls of 2 
nearest to 30 days 

expiries, with 2 strikes 
around an ATM point.  

The implied volatility of an ATM 
option with constant 30 calendar 

days to expiry. 

, ,VIX VXN VXD  Independent of 
model 

OTM puts and calls of 2 
nearest to 30 days 

expiries, covering a wide 
range of strikes.   

The square root of implied 
variance across options of all 

strikes, with constant 30 
calendar days to expiry.   

VDAX  Black’s model 
(1976) 

8 pairs of puts and calls of 
2 nearest to 45 days 

expiries, with 4 strikes 
around an ATM point.   

The implied volatility of an ATM 
option with constant 45 calendar 

days to expiry. 

VDAX  NEW  Independent of 
model  

OTM puts and calls of 2 
nearest to 30 days 

expiries, covering a wide 
range of strikes.   

The square root of implied 
variance across options of all 

strikes, with constant 30 
calendar days to expiry.   

1, 6VX VX  Black-Scholes 
(1973) 

 

4 calls of 2 nearest to 31 
(185) days expiries, with 2 

strikes around an ATM 
point.  

The implied volatility of an ATM 
option with a constant 31 (VX1) 
and 185 (VX6) calendar days to 

expiry. 

VSTOXX  Independent of 
model 

OTM puts and calls of 2 
nearest to 30 days 

expiries, covering a wide 
range of strikes.  

The square root of implied 
variance across options of all 

strikes, with constant 30 
calendar days to expiry.   

Table 1: Outline of the methodologies used for the calculation of the Implied Volatility Indices.   
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Section 2 
The Dataset 

  
Our sample comprises of eight Implied Volatility Indices which are the American VIX, 

VXO, VXN and VXD, the German VDAX, the French VX1 and VX6, the European VSTOXX 

and their underlying stock indices. We provide a brief description of the indices and then 

continue to the technical details of the time series construction.  

The CBOE Volatility Index VIX is based on real-time S&P 500 (SPX) index option 

bid/ask quotes. The underlying S&P 500 Composite Stock Price Index is a market-value-

weighted index of 500 stocks that are traded on the New York Stock Exchange (NYSE), 

American Stock Exchange (AMEX), and the Nasdaq National Market System. The companies 

chosen for inclusion in the Index are leading companies in leading industries within the U.S. 

economy. The S&P 500 is used by 97% of U.S. money managers and pension plan sponsors. 

About $626 billion is indexed to the S&P 500. VXO is based on S&P100 (OEX) options also 

traded at the CBOE. The underlying Standard & Poor's 100 Stock Index measures large 

company U.S. stock market performance. This market capitalization-weighted index is made 

up of 100 major, blue chip stocks across diverse industry groups.  

The Nasdaq Volatility Index is based on Nasdaq-100 index options (NDX). The 

underlying Nasdaq-100 index, disseminated by the Nasdaq Stock Market, includes 100 of the 

largest domestic and international non-financial companies listed on the NASDAQ Stock 

Market based on market capitalization. The Index reflects companies across major industry 

groups including computer hardware and software, telecommunications, retail/wholesale 

trade and biotechnology. It does not contain financial companies including investment 

companies. The CBOE DJIA Volatility Index (VXD) is based on the Dow Jones Industrial 

Average Index Options (DJX) traded at the CBOE. The Dow Jones Industrial Average a price-

weighted index composed of 30 of the largest, most liquid NYSE and NASDAQ listed stocks. 

These 30 stocks represent about a fifth of the $8 trillion-plus market value of all U.S. stocks 

and about a fourth of the value of stocks listed on the New York Stock Exchange.   

VDAX is based on the DAX option contract (ODAX), one of the products of EUREX 

Derivatives Exchange, with the highest trading volume. The underlying stock index DAX is a 

blue chip index that comprises the 30 largest German shares with the highest turnover, 

representing about 70% of the overall market capitalization of domestic listed companies. The 

trading in these shares accounts for more than 80% of Germany’s exchange-traded equity 

volumes. The French VX1 and VX6 are based on the CAC40 Index Options Contract PXL (to 

be gradually replaced by the CAC40 Index Options Contract PXA introduced on May 2005), 

traded at EURONEXT – LIFFE. The underlying CAC 40 index consists of the 40 stocks that 

are most representative of the economic sectors quoted on the Eurolist market operated by 

Euronext Paris. Dow Jones EURO STOXX 50 Volatility Index (VSTOXX), disseminated by 

STOXX Limited, is calculated by using the Dow Jones EURO STOXX 50 Index Options 

(OESX) traded in Eurex. The underlying Dow Jones EURO STOXX 50, disseminated by 
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STOXX Limited and Deutsche Boerse Group, is a European blue-chip index, representing the 

50 leading shares in Eurozone. It includes sector leaders in Austria, Belgium, Finland, France, 

Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. The DJ 

EUROSTOXX50 captures approximately 60% of the free-float market capitalization of the 

Dow Jones EURO STOXX Index, which in turn covers approximately 95% of the free-float 

market capitalization of the represented Eurozone countries. All options used for the 

calculation of the specific Implied Volatility Indices are European Style except the S&P100 

(OEX) options which are American Style.  

Sixteen time series of daily closing prices constitute our dataset. Holidays are 

discarded from the samples, taking into account only trading days. The sources for historical 

data are CBOE for the American Implied Volatility indices, EURONEXT for the French IV 

indices, BLOOMBERG for VDAX, and EUREX for VSTOXX and DJEUROSTOXX50.5 Time 

series of the American, the French and the German underlying Stock Indices have been 

downloaded from DATASTREAM. The Stock Indices samples have been adjusted to IV 

indices samples, so that data for each IV index and its underlyer are completely 

synchronized.  

Time series start from the date of available historical data for each implied volatility 

index and end at 3/17/2005 for all indices. In this way, the largest sample is that of VXO time 

series, starting at 1/2/1986 with 4841 observations. Of the rest American IV indices, VIX starts 

at 1/2/1990 with 3833 observations, VXN at 2/2/2001 with 1033 observations and VXD at 

10/6/1997 with 1872 observations. Of the European indices, VDAX starts at 1/2/1992 with 

3322 observations, VX1 and VX6 both start at 10/14/1997 with 1871 and 1866 observations 

respectively and VSTOXX starts at 1/4/1999 with 1579 observations. Although the French 

indices span exactly the same time period, the sample of VX6 consists of five observations 

less than VX1, due to the fact that EURONEXT did not provide data for certain dates.  

 

                                                
5 We have avoided DATASTREAM as a reference data source, since it fills in holidays with the 
previous day’s price quote, resulting in a sample bias when used for inference.  
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Figure 1  
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Figure 2   
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Figure 3  
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Figures 1-4: Daily Closing levels of the American Implied Volatility Indices against daily closing levels of 
their underlying stock indices.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 11 

Figure 5  
DAX - VDAX 
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Figure 6 
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Figure 7 

CAC40 - VX6
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Figure 8 
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Figures 5-8: Daily Closing levels of the European Implied Volatility Indices against daily closing levels of 
their underlying stock indices.  
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2.1. Descriptive Statistics     

 

Figures 1 to 8 plot the evolution of the implied volatility indices against the evolution 

of their underlying stock indices. In each figure we observe that when the stock index spikes 

upward the implied volatility index spikes downward and vice versa. There are cases when 

the implied volatility index overreacts to downward movements of the underlying stock index. 

This for example is evident during the October 1987 market crash when VXO reached the 

unprecedented level of 150.19 units. We will analyze, in the process, the observed negative 

relationship between implied volatility indices and stock indices, as well as its symmetry.  

Table 2 presents the descriptive statistics of the indices daily closing levels. Table 3 

presents the descriptive statistics for the daily returns of the Stock Indices and the daily 

changes of Implied Volatility Index Levels. We use continuously compounded returns, tR  

calculated as the log differences of the daily closing prices tS of the stock indices, and daily 

changes of the implied volatility indices, IV
t∆ , calculated as the first differences of their daily 

closing prices IVS .  

1
1

ln ln ln t
t t t

t

SR S S
S−

−

 
= − =  

 
 

1
IV IV

t t tIV S S −∆ = −  

For each time series we report the mean, median, maximum, minimum, the standard 

deviation, skewness, kurtosis and the Jarque-Bera statistic. We also report autocorrelations 

and partial autocorrelations up to the third lag, as well as the Ljung-Box Q-statistic for 12 lags.   

For the levels of Stock Indices, the mean varies from 350.21 for S&P100 to 9758.65 for the 

DJIA, with standard deviations varying from 98.36 for S&P100 to 7286.27 for DJIA. The 

average mean for the implied volatility indices is around the 25 level, with standard deviations 

varying between 6.21 for VX6 and 13.98 for VXN. Stock indices as well as IV indices are all 

positively skewed indicating a long right tail in their distributions, except for DJIA which is 

negatively skewed. The distributions of the IV indices are peaked (leptokurtic) relative to the 

normal distribution, since their kurtosis values exceed the value of 3. An exception seems to 

be VXN with a kurtosis of 1.90. On the contrary all distributions of the stock indices, except 

that of Nasdaq-100, are more flat relative to normal, with reported kurtosis less than 3. The 

Jarque-Bera statistics, all significant at the 1% significance level, indicate rejection of the null 

hypothesis of a normal distribution for the levels of both the IV and the Stock Indices.  

Autocorrelations up to the third lag are all significant at the 1% level and close to 1, 

with an average value of 0.98 for the Stock indices, and 0.94 for the IV indices. Partial 

autocorrelations, fall from an average of 0.98 (stock indices) and 0.94 (IV indices) at the first 

lag, to an average of 0.01 (stock indices) and 0.05 (IV indices) at the second and third lag. 

This indicates that autocorrelations between two and three time lags are mostly attributed to 

the first order autocorrelation. VX1 and VX6 are an exception since they display partial 

second order autocorrelations as high as 0.34 and 0.35. The Ljung-Box statistic significant at 

1% significance level indicates the existence of autocorrelation up to the twelfth lag.  
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As presented in Table 3, stock index returns as well as the changes of IV indices are 

almost zero mean. Maximum values for the daily stock returns vary from 6% for S&P500 to 

10% for Nasdaq100, with minimums averaging around -8% with an exception of S&P100 

which has a minimum value of -24%, reported during the October 1987 market crash. 

Maximum values for the daily changes of IV indices vary from 8.43 for VXD to 30.31 for VX1. 

Only VXO displays a maximum of 113.82. Stock Index returns report a standard deviation of 

around 0.01 whereas changes of IV indices a standard deviation varying from 1.17 for VDAX 

to 3.77 for VX1. The Jarque-Bera statistic significant at the 1% indicates rejection of the null 

hypothesis of a normal distribution for both stock index returns and IV indices changes. With 

reported kurtosis over the value of 3, the distributions of stock index returns as well as IV 

changes are peaked (leptokurtic) relative to the normal. Distributions of IV changes are all 

positively skewed whereas distributions of stock index returns are negatively skewed except 

for the Nasdaq100 returns which display positive skewness.  

Stock index returns do not display significant autocorrelations up to the third lag 

except for the S&P100 returns with a first order autocorrelation of -0.025 significant at 1%. On 

the contrary, all IV indices, except VXN, display in their daily changes low but significantly 

different from zero autocorrelation up to the third lag. First order significant autocorrelations 

are all negative varying from -0.375 for VX6 to -0.036 for VIX daily changes. Finally, the null 

hypothesis of no autocorrelation up to the twelfth lag is not rejected by the Ljung-Box Q-

statistic either for the stock indices returns or the IV indices changes.  

 

 

2.2. Unit Root Tests  

 

The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests test the validity of 

the null hypothesis that a series is unit-root non-stationary (integrated of order one), against 

the alternative hypothesis that the series is (trend-) stationary. We perform ADF and PP tests 

for the IV indices and the underlying stock indices. T-statistics as well as the MacKinnon 

lower-tail critical values at 1%, 5% and 10% level are reported in Table 4. In the Phillips – 

Perron test, brandwidth is selected according to the Newey-West brandwidth parameter 

method, whereas in the ADF test, lag length is selected according to the Schwartz Information 

Criterion, so that the number of lags is sufficient to remove serial correlation in the residuals. 

Results from the tests show that all series of stock indices, except Nasdaq-100 series, are 

unit-root non-stationary at 1% significance level. VXO is stationary in all cases. The rest of the 

IV indices are unit-root non-stationary if no constant or trend is included in the test equation.  

Since most series are unit-root non-stationary, we will difference once to ensure that 

the series we will use for inference are stationary. In particular, we will take first differences of 

the implied volatility indices and log differences of the underlying stock indices.  ΠΑ
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Table 2  
Descriptive Statistics of Indices Levels  

Panel A: Levels of Stock Indices   

 & 500S P  & 100S P  100Nasdaq  DJIA  DAX  40CAC  50DJEUROSTOXX  

Mean 820.77 350.21 1381.77 9758.65 3742.91 4254.38 3513.25 
Median 845.13 265.11 1415.30 10022.16 3651.94 4010.36 3495.43 

Maximum 1527.46 832.65 2473.24 11722.98 8064.97 6922.33 5464.43 
Minimum 295.46 98.36 804.65 7286.27 1402.34 2403.04 1849.64 
Std. Dev. 365.04 207.50 273.96 1015.97 1674.77 1073.25 936.22 
Skewness 0.15 0.55 0.36 -0.50 0.51 0.72 0.46 
Kurtosis 1.60 1.95 3.79 2.12 2.26 2.53 2.04 
Jarque-

Bera 329.11* 466.09* 48.73* 138.12* 223.09* 177.19* 115.57* 

AC(1) 0.999* 0.999* 0.985* 0.993* 0.999* 0.998* 0.998* 
AC(2) 0.999* 0.999* 0.970* 0.986* 0.998* 0.996* 0.997* 
AC(3) 0.998* 0.998* 0.957* 0.979* 0.997* 0.994* 0.995* 
Partial 
AC(1) 0.999* 0.999* 0.985* 0.993* 0.999* 0.998* 0.998* 

Partial 
AC(2) 0.005* 0.014* -0.006* 0.004* 0.008* -0.011* 0.006* 

Partial 
AC(3) 0.012* 0.013* 0.037* 0.012* 0.010* 0.035* 0.036* 

Ljung-Box 
Q(12) 45680* 57805* 10546* 20663* 39495* 21983* 18695* 

 
Panel B: Levels of Implied Volatility Indices  

 VIX  VXO  VXN  VXD  VDAX  1VX  6VX  VSTOXX  

Mean 19.79 21.29 37.19 22.53 22.07 24.32 23.83 27.63 
Median 18.86 20.07 37.43 22.11 20.35 22.34 23.29 25.53 

Maximum 45.74 150.19 71.72 42.95 55.42 73.79 55.47 62.73 
Date of 
max. 10/8/98 10/19/87 9/20/01 9/10/98 9/24/02 10/8/98 10/8/98 7/24/02 

Minimum 9.31 9.04 16.80 9.94 9.36 1.22 7.02 11.60 
Std. Dev. 6.37 8.11 13.98 6.35 8.80 8.91 6.21 9.70 
Skewness 0.92 3.29 0.30 0.48 1.23 1.25 0.58 1.19 
Kurtosis 3.73 35.72 1.90 3.11 4.34 5.14 4.28 4.17 
Jarque-

Bera 623.77* 224701.50* 68.19* 72.53* 1080.84* 843.62* 232.52* 464.32* 

AC(1) 0.981* 0.954* 0.993* 0.981* 0.991* 0.910* 0.941* 0.984* 
AC(2) 0.964* 0.916* 0.985* 0.962* 0.983* 0.886* 0.926* 0.971* 
AC(3) 0.950* 0.901* 0.978* 0.945* 0.976* 0.884* 0.914* 0.958* 
Partial 
AC(1) 0.981* 0.954* 0.993* 0.981* 0.991* 0.910* 0.941* 0.984* 

Partial 
AC(2) 0.027* 0.053* -0.031* 0.014* 0.055* 0.337* 0.348* 0.063* 

Partial 
AC(3) 0.085* 0.251* 0.043* 0.026* 0.036* 0.279* 0.189* 0.037* 

Ljung-Box 
Q(12) 38874* 41213* 11450* 18559* 36378* 15723* 17662* 16192* 

 
Table 2: Descriptive statistics for the daily closing levels of the implied volatility indices and the 
underlying stock indices. We report autocorrelations (AC) and partial autocorrelations of 1, 2 and 3 lags. 
For the Jarque-Bera statistic, the Ljung-Box statistic and autocorrelation values, one asterisk denotes 
significance of the reported value at 1% level, two asterisks significance at 5% and three asterisks 
significance at 10%.  
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Table 3  
Descriptive Statistics of Indices Returns & Changes  

Panel A: Returns of Stock Indices  

 & 500S PR  & 100S PR  100NasdaqR  DJIAR  DAXR  40CACR  50DJEUROSTOXXR  
Mean 0.0003 0.0004 -0.0005 0.0001 0.0003 0.0002 -0.0001 

Median 0.0004 0.0006 0.0005 0.0003 0.0007 0.0004 0.0003 
Maximum 0.06 0.09 0.10 0.06 0.08 0.07 0.07 
Minimum -0.07 -0.24 -0.09 -0.07 -0.09 -0.08 -0.07 
Std. Dev. 0.01 0.01 0.02 0.01 0.01 0.02 0.02 
Skewness -0.10 -1.91 0.15 -0.11 -0.17 -0.09 -0.04 
Kurtosis 6.69 42.98 4.73 5.97 6.09 5.12 5.11 
Jarque-

Bera 2181.64* 325272.10* 132.78* 691.23* 1341.21* 352.90* 293.81* 

AC(1) 0.000 -0.025* -0.026 -0.005 -0.026 0.008 -0.015 
AC(2) -0.024 -0.050* -0.074** -0.026 -0.006 -0.034 -0.028 
AC(3) -0.033*** -0.029*** 0.003*** -0.010 -0.028 -0.051*** -0.061*** 
Partial 
AC(1) 0.000 -0.025* -0.026 -0.005 -0.026 0.008 -0.015 

Partial 
AC(2) -0.024 -0.050* -0.075** -0.026 -0.007 -0.034 -0.028 

Partial 
AC(3) -0.033*** -0.031*** -0.001*** -0.010 -0.028 -0.051*** -0.062*** 

Ljung-Box 
Q(12) 33.253* 30.956* 18.902*** 19.526*** 32.819* 19.166*** 40.192* 

 
Panel B: Changes of Implied Volatility Indices 

 VIX∆  VXO∆  VXN∆  VXD∆  VDAX∆  1VX∆  6VX∆  VSTOXX∆  

Mean -0.001 -0.001 -0.035 -0.005 0.000 -0.007 -0.007 -0.003 
Median -0.040 -0.030 -0.060 -0.040 -0.040 -0.110 -0.070 -0.090 

Maximum 9.92 113.82 10.58 8.43 9.22 30.31 21.36 19.18 
Minimum -7.80 -66.09 -7.60 -6.58 -5.64 -27.31 -14.70 -9.42 
Std. Dev. 1.23 2.44 1.49 1.22 1.17 3.77 2.11 1.67 
Skewness 0.56 17.09 0.20 0.58 0.77 0.61 0.69 1.43 
Kurtosis 9.03 1088.38 7.94 7.34 10.68 20.50 19.95 18.65 
Jarque-

Bera 6010.41* 238000000* 1055.11* 1571.90* 8493.61* 23968.91* 22480.43* 16634.44* 

AC(1) -0.036** -0.075* 0.031 -0.023 -0.060* -0.369* -0.375* -0.046*** 
AC(2) -0.093* -0.260* -0.046 -0.039 -0.042* -0.122* -0.040* -0.058** 
AC(3) -0.061* 0.033* 0.023 -0.084* -0.042* 0.091* -0.051* 0.003** 
Partial 
AC(1) -0.036** -0.075* 0.031 -0.023 -0.060* -0.369* -0.375* -0.046*** 

Partial 
AC(2) -0.094* -0.267* -0.047 -0.039 -0.045* -0.299* -0.211* -0.060** 

Partial 
AC(3) -0.069* -0.013* 0.026 -0.086* -0.048* -0.098* -0.180* -0.002** 

Ljung-Box 
Q(12) 116.98* 425.19* 41.003* 42.817* 47.445* 323.72* 294.72* 30.688* 

 
Table 3: Descriptive statistics for the daily changes of the implied volatility indices and the  daily returns 
of the underlying stock indices. We report autocorrelations (AC) and partial autocorrelations of 1, 2 and 
3 lags. For the Jarque-Bera statistic, the Ljung-Box statistic and autocorrelation values, one asterisk 
denotes significance of the reported value at 1% level, two asterisks significance at 5% and three 
asterisks significance at 10%.  
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Table 4  
Unit Root Tests   

Panel A: Stock Indices Levels  
 & 500S P  & 100S P  100Nasdaq

 
DJIA  DAX  40CAC

 
50DJESTOXX

 

ADF        
None  0.763 0.670 -1.691*** 0.246 0.100 -0.021 -0.506 
Constant  -1.039 -0.938 -3.992* -2.602*** -1.432 -1.552 -1.081 

Constant & 
trend  

-1.536 -1.624 -3.718** -2.593 -1.227 -1.884 -1.902 

Phillips – 
Perron  

       

None  0.980 0.856 -1.778*** 0.290 0.127 0.041 -0.500 
Constant  -0.948 -0.856 -4.021* -2.518 -1.413 -1.461 -0.939 
Constant & 
trend  

-1.323 -1.441 -3.723** -2.507 -1.187 -1.811 -1.761 

Panel B: Implied Volatility Indices Levels  
 VIX  VXO  VXN  VXD  VDAX  1VX  6VX  VSTOXX

 
ADF         
None  -1.333 -2.037** -1.305 -1.261 -1.333 -1.404 -0.967 -1.167 
Constant  -3.786* -5.915* -1.681 -4.034* -3.601* -3.702* -2.657*** -3.335** 
Constant & 
trend  

-3.965* -5.931* -4.214* -4.705* -3.818** -3.935** -3.328*** -3.464** 

Phillips – 
Perron  

        

None  -1.184 -2.270** -1.373 -1.017 -1.149 -1.770*** -1.097 -1.002 
Constant  -5.154* -8.977* -1.352 -3.493* -3.272** -9.628* -5.129* -3.034** 

Constant & 
trend  

-5.435* -9.039* -3.930** -4.235* -3.461** -10.238* -6.909* -3.186*** 

 
MacKinnon (1996) lower tail critical values 

ADF/ Phillips – Perron Test  
Exogenous included in test equation:  1% level 5% level 10% level 

None  -2.566 -1.941 -1.617 
Constant  -3.432 -2.862 -2.567 
Constant & Linear Trend  -3.960 -3.411 -3.127 
 
Table 4: Augmented Dickey – Fuller (ADF) and Philips – Perron Unit Root Tests for the daily closing 
levels of the Stock Indices and the Implied Volatility Indices. Reported values are t-statistics. We test 
against MacKinnon (1996) lower tail critical values. One asterisk denotes rejection of the null hypothesis 
of a unit root at 1% level, two asterisks rejection at 5% level, three asterisks rejection at 10% level.  
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2.3. ARCH Test  

 

Stock returns often display the phenomenon of volatility clustering. This means that 

returns have periods of low volatility and other periods of high volatility, that is volatility does 

not remain constant over time. This is also referred to as heteroscedasticity. We perform 

Engle’s test for the detection of Autoregressive Conditional Heteroscedasticity in the Stock 

indices returns. The test is implemented in Matlab with “archtest” function. The null hypothesis 

is that a time series of returns is a random sequence of Gaussian disturbances displaying no 

ARCH effects. The t-statistic under the null hypothesis is asymptotically Chi-Squared 

distributed.  

Performing the ARCH test we extract the sample mean from the actual returns. This 

is consistent with the definition of the conditional mean equation for returns, in which the 

innovations process is t tR cε = − , and c  is the mean of tR . We test for heteroscedasticity up 

to 10, 15 and 20 lags at the 5% significance level. The critical values are 18.3070, 24.9958 

and 31.4104 for 10, 15 and 20 lags.  Results from the ARCH test for the Stock Indices returns 

as displayed in Table 5, show that all test statistics values are significant at the 5% level, 

providing evidence in support of ARCH effects.  

 

2.4. Concurrent Correlations   

 

Concurrent Correlations between the returns of the Stock Indices and correlations 

between the IV indices daily changes are presented in Table 6. Values have been estimated 

from a sample of synchronized data of the period 2/2/2001 – 3/17/2005. Results for the stock 

indices returns provide evidence in support of regional correlation. We observe that markets 

which are geographically close and also happen to be integrated are more correlated. We can 

see that returns of the DAX, CAC40 and DJEUROSTOXX50, which is a Eurozone blue-chip 

Index, are more correlated with one another than with the American indices.  

This is not exactly true for the correlation of daily movements of Implied Volatility 

Indices across markets. Although there is a higher correlation between the IV indices changes 

in integrated markets, this is not so pronounced as with the stock index returns. Furthermore 

VDAX seems to be more correlated with the American IV indices than with the French IV 

indices. Yet it is with VSTOXX that VDAX displays the highest correlation. The international 

transmission of Implied Volatility movements will be the focus of section 2.5 where we 

examine the existence of spillover effects.  
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Table 5  
ARCH Tests   

Stock Indices Returns  

 Critical 
Values 

& 500S P
tR  & 100S P

tR  100Nasdaq
tR  DJIA

tR  DAX
tR  40CAC

tR  50DJEUROSTOXX
tR  

10 
lags 18.3070 426.794* 274.178* 177.407* 206.297* 708.227* 296.508* 345.264* 

15 
lags 24.9958 441.458* 275.524* 189.499* 213.464* 718.078* 326.838* 366.449* 

20 
lags 31.4104 468.854* 278.103* 192.172* 222.987* 721.871* 335.637* 370.552* 

 
Table 5: Engle’s ARCH test for the Stock Indices daily returns. We perform the test for 10, 15 and 20 
lags. One asterisk denotes rejection of the null hypothesis of no heteroscedasticity at the 5% 
significance level.  
 

              Table 6 
               Concurrent Correlations  

Panel A: Stock Indices Returns  

 & 500S P
tR  & 100S P

tR  100Nasdaq
tR  DJIA

tR  DAX
tR  40CAC

tR  50DJEUROSTOXX
tR  

& 500S P
tR  1 0.99 0.84 0.97 0.66 0.57 0.60 

& 100S P
tR  0.99 1 0.84 0.97 0.65 0.56 0.59 

100Nasdaq
tR  0.84 0.84 1 0.76 0.53 0.43 0.46 

DJIA
tR  0.97 0.97 0.76 1 0.65 0.57 0.60 
DAX
tR  0.66 0.65 0.53 0.65 1 0.88 0.92 

40CAC
tR  0.57 0.56 0.43 0.57 0.88 1 0.98 

50DJEUROSTOXX
tR  0.60 0.59 0.46 0.60 0.92 0.98 1 

 

Panel B: Implied Volatility Changes 

 tVIX∆  tVXO∆  tVXN∆  tVXD∆  tVDAX∆  1tVX∆  6tVX∆  tVSTOXX∆  

tVIX∆  1 0.92 0.67 0.86 0.62 0.28 0.28 0.58 

tVXO∆  0.92 1 0.65 0.82 0.61 0.26 0.31 0.57 

tVXN∆  0.67 0.65 1 0.65 0.52 0.30 0.24 0.50 

tVXD∆  0.86 0.82 0.65 1 0.60 0.25 0.25 0.58 

tVDAX∆  0.62 0.61 0.52 0.60 1 0.48 0.46 0.87 

1tVX∆  0.28 0.26 0.30 0.25 0.48 1 0.60 0.45 

6tVX∆  0.28 0.31 0.24 0.25 0.46 0.60 1 0.46 

tVSTOXX∆  0.58 0.57 0.50 0.58 0.87 0.45 0.46 1 

 
Table 6: Pairwise correlations between the contemporaneous changes of the Implied Volatility Indices 
and correlations between the contemporaneous returns of the underlying Stock Indices. Values are 
estimated from the sample of synchronized data of the period 2/2/2001 – 3/17/2005.  
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Section 3 
Leverage Effect 

 

The negative correlation between stock index movements and implied volatility 

movements is often attributed to the leverage effect. When the stock price of a company falls, 

with dept remaining at the same levels, the company becomes more levered and more risk is 

associated with stock holding. This explanation of the phenomenon of volatility increasing as 

the stock prices fall, applied to individual stocks, is theoretically extended to Stock Indexes.  

The “leverage effect” explanation has been called into question since several 

anomalies have been associated with it. For example the effect is different for implied and 

historical volatilities. It is also different for falling versus rising markets, in that it is much 

weaker or nonexistent when positive stock returns reduce leverage. As Figlewski observes, 

“A fall in the market price for the stock should increase its subsequent volatility, and a price 

rise of the same magnitude should reduce volatility by a comparable amount. However, the 

existence of a "leverage effect" is most commonly associated with falling, rather than rising, 

stock prices. This raises the question of whether it may be an asymmetrical phenomenon 

more closely related to negative returns than to leverage per se.”6 Figlewski concludes that 

the “leverage effect" is really a "down market effect" that may have little direct connection to 

firm leverage.”  

 

3.1. Testing the leverage effect  

 

Giot (2005a) examines the existence of a leverage effect for the Nasdaq100 index 

and VXN and the S&P100 and (the old) VIX, by regressing the stock index log differences on 

log differences of the relative implied volatility index. We follow Whaley’s (2000) and 

Skiadopoulos (2004) methodology in that we regress the log returns of the stock indices on 

the changes of the volatility indices. We test the asymmetry of the leverage effect by adding 

the positive changes of the IV index as a second regressor.  

1 2t t t tR a IV a IV ε+= ∆ + ∆ +  (1) 

In the above equation, tR  denotes the stock index daily returns, tIV∆ the daily changes of the 

relevant implied volatility index and tIV +∆ the positive changes of the IV index. This means 

that IV IV+∆ = ∆  if IV∆ >0 and 0IV +∆ = , otherwise.  

Results from Least Squares regressions are presented in Table 7. For all 

regressions, we have tested the existence of serial correlation and heteroscedasticity of some 

unknown form in the residuals, using the Breusch-Godfrey LM test and White’s test 

respectively. We found significant t-statistics for both tests. For this reason, the significance of 

the estimated coefficients has been tested using Newey-West autocorrelation and 

                                                
6 See Figlewski and Wang (2000). 
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heteroscedasticity consistent standard errors. As shown in Table 7, the adjusted R-squared 

are quite high varying from 26% for the VX1 regression to 55% for the VSTOXX regression. 

The coefficients of the IV changes are all negative and significant at the 1% significance level, 

verifying, in line with the related literature, the existence of the leverage effect. The leverage 

effect however seems to be asymmetric only for the French indices. In particular the 

coefficient of the VX1 positive changes is found significant at the 1%, whereas that of VX6 

positive changes is significant at the 10% level. They are both negative indicating an 

intensification of the negative relationship between stock returns and IV changes, in the case 

of an upward movement of the implied volatility index. The general non-verification of 

asymmetry in the leverage effect is in contrast to Whaley (2000) who reports a stronger 

reaction of VIX changes to a negative return of S&P100 than to positive one. Our results do 

not support the characterization neither of the American IV indices nor of VDAX and VSTOXX 

as investor’s fear gauges.  

 

3.2. Stability of the Leverage effect  

 

3.2.1. Testing for a structural break at the 11th September 2001 
 

First we test the stability of the leverage effect assuming a possible structural break at 

the time of the 11th September 2001 attack. For this purpose, we add a dummy variable D  in 

the regression we used to test the leverage effect. The dummy variable takes the value of one 

if 9 /11/ 2001t > and the value of zero otherwise.  

1 2 1 2t t t t t tR a IV a IV b D IV b D IV ε+ += ∆ + ∆ + ∆ + ∆ +  (2) 

Table 8 presents the estimated coefficients, the t-statistics, and adjusted R-squared and the 

Durbin-Watson statistics for each stock index regression. T-statistics have been computed 

with Newey-West autocorrelation and heteroscedasticity consistent standard errors. Although 

the Durbin Watson statistic does not indicate first order autocorrelation in the residuals, we 

take into account autocorrelations of higher order.  

The adjusted R-squared statistics indicate a fit similar to that found in the regressions 

of the leverage effect alone. Only for the S&P100 returns, there is a notable increase from 

45% to 49%. The coefficients of the IV changes after 9/11/2001 are found significant at the 

1% level for the S&P500, the S&P100 and the DJIA returns and at 5% for the DAX returns. 

The negative sign of these coefficients indicates an intensification of the leverage effect after 

the 11th September attack, for the three American indices and the German index. This means 

that 1% raise of the implied volatility index after the 11th September, is associated with a 

larger drop of the underlying stock index, than it did before. On the contrary, the risk-return 

relationship for the French indices, for DJEUROSTOXX and for Nasdaq-100 has not been 

affected. All coefficients of positive IV changes after 9/11/2001 have been found insignificant, 

indicating that asymmetric features in the leverage effect have not been developed or 

intensified after 9/11/2001.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 21 

Table 7  
Leverage Effect  

  
Dependent Variable 

↓ tIV∆  tIV +∆  Adj. 2R  D-W 

& 500S P
tR  -0.0062* 0.0003 0.53 2.08 

 (-29.45) (1.10)   
& 100S P

tR  -0.0034* 0.0003 0.45 2.02 

 (-3.41) (0.45)   
100Nasdaq

tR  -0.0087* -0.0011 0.36 2.11 

 (-12.54) (-1.20)   
DJIA
tR  -0.0073* 0.0007 0.51 2.15 

 (-24.82) (1.41)   
DAX
tR  -0.0082* 0.0004 0.41 2.16 

 (-16.77) (0.66)   
40 ( 1)CAC

tR VX  -0.0017* -0.0008* 0.26 2.03 

 (-6.03) (-3.23)   
40 ( 6)CAC

tR VX  -0.0037* -0.0009*** 0.32 1.97 

 (-8.71) (-1.954)   
STOXX
tR  -0.0076* 0.0010 0.55 1.92 

 (-19.15) (1.59)   
 
 
Table 7: Test for the existence of an asymmetric leverage effect. Reported values are the estimated 
coefficients from the regression 1 2t t t tR a IV a IV ε+= ∆ + ∆ + , where tIV∆ and tIV +∆ denote the 

changes and the positive changes respectively of the Implied Volatility Index and tR  the returns of the 
underlying Stock Index at time t . Values in parentheses are t-statistics computed with Newey-West 

autocorrelation and heteroscedasticity consistent standard errors. The Adjusted R-squared (Adj. 2R ) 
and the Durbin-Watson statistics are also reported. One asterisk denotes rejection of the null hypothesis 
of a zero coefficient at the 1% significance level, two asterisks rejection of the null at the 5% level and 
three asterisks rejection of the null at the 10% level.  
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Table 8 
Impact of the September 11th, 2001, on the leverage effect  

 
Dependent 

Variable  
↓ 

tIV∆  tIV +∆  tD IV∆  tD IV +∆  Adj. 2R  D-W 

& 500S P
tR  -0.0058* 0.0002 -0.0019* 0.0002 0.54 2.07 

 (-25.15) (0.73) (-4.21) (0.44)   
& 100S P

tR  -0.0030* 0.0001 -0.0042* 0.0003 0.49 2.01 

 (-3.41) (0.22) (-4.33) (0.49)   
100Nasdaq

tR  -0.0081* -0.0037*** -0.0007 0.0035 0.36 2.11 

 (-5.72) (-1.648) (-0.43) (1.42)   
DJIA
tR  -0.0068* 0.0006 -0.0014** 0.00003 0.51 2.14 

 (-21.40) (1.22) (-2.26) (0.03)   
DAX
tR  -0.0066* 0.0002 -0.0040* 0.0003 0.43 2.12 

 (-12.88) (0.31) (-4.75) (0.18)   
40 ( 1)CAC

tR VX  -0.0015* -0.0008* -0.0006 -0.0003 0.27 2.03 

 (-5.77) (-3.00) (-0.78) (-0.46)   
40 ( 6)CAC

tR VX  -0.0039* -0.0009 0.0003 0.0001 0.32 1.98 

 (-5.49) (-1.31) (0.33) (0.12)   
50DJESTOXX

tR  -0.0083* 0.0031* 0.0009 -0.0035 0.56 1.93 

 (-18.24) (2.93) (1.27) (-2.61)   
 

 
Table 8: Test for the impact of the September 11th, 2001 attack on the leverage effect. Reported values 
are the estimated coefficients from the regression 

1 2 1 2t t t t t tR a IV a IV b D IV b D IV ε+ += ∆ + ∆ + ∆ + ∆ + , where tIV∆ and tIV +∆ denote the changes 

and the positive changes respectively of the Implied Volatility Index and tR  the returns of the underlying 

Stock Index at time t . D is a dummy variable which takes the value of one if  9 /11/ 2001t > and the 
value of zero otherwise. Values in parentheses are t-statistics computed with Newey-West 
autocorrelation and heteroscedasticity consistent standard errors. The Adjusted R-squared (Adj. 2R ) 
and the Durbin-Watson (D-W) statistics are also reported. One asterisk denotes rejection of the null 
hypothesis of a zero coefficient at the 1% significance level, two asterisks rejection of the null at the 5% 
level and three asterisks rejection of the null at the 10% level.  
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3.2.2. CUSUM Test  

 

We also test the stability of the leverage effect applying the CUSUM test, at the 5% 

significance level, for the coefficients of both regression (1) and regression (2). The CUSUM 

test is based on the cumulative sum of the recursive residuals, and is appropriate when there 

is uncertainty about when a structural change might have taken place. The t recursive 

residual is the scaled one step ahead forecast error for the dependent variable in period t , 

using the vector of coefficients estimated by the first t-1 observations. The one step ahead 

forecast error is defined as:  
'

1t t t te y x b −= −  

where ty is the observation for the dependent variable in period t , tx the vector of 

observations for the regressors in period t , and 1tb − the estimated coefficient vector using the 

1t − observations. Its forecast variance is given by:  

( ) 12 2 ' '
1 11ft t t t tx X X xσ σ

−

− −
 = +  

 

where 1tX − is the matrix of regressors from period 1 to period t-1. The recursive residual tw is 

defined as:  

( ) 1' '
1 11

t
t

t t t t

ew
x X X x

−

− −

=
+

 

Under the null hypothesis that the coefficients of the regression remain constant over the 

sample period, the recursive residuals will be independently and normally distributed with 

zero mean and constant variance, ( )2~ 0,tw N σ . We could test the stability of coefficients if 

we plot ˆ/tw σ , where 

( )2

2 1ˆ
1

T

t
t k

w w

T k
σ = +

−
=

− −

∑
  

T is the total number of observations and k the number of regressors, which is also the 

number of observations used to form the first estimate of the coefficient vector. Under the null 

hypothesis, ( ) ( )ˆ/ ~ 0,1tw Nσ .The CUSUM test is based on the statistic:  

1

ˆ/
t

t t
t k

W w σ
= +

= ∑  

Under the null hypothesis that the vector of coefficients remains stable over time, 

~ (0, )tW N T k− . That is, its variance is approximately equal to the number of residuals 

being summed since each has variance 1 and they are independent. The test plots 

tW against t . For stability of coefficients, tW should not significantly depart from the zero line. 
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Confidence bounds are obtained by a pair of 5% significance lines, which are found by 

connecting the points , 0.948k T k ± − −   and , 3 0.948T T k ± × −  . If tW strays 

outside these boundaries, then the null is rejected at the 5% level.  

According to CUSUM test results, presented in Figures 9-24, the coefficients for the 

Nasdaq-100 – VXN, the DJIA – VXD and the CAC40 – VX1 and VX6 relationships remain 

stable over the entire sample period. On the contrary, the coefficients for S&P500 – VIX, the 

S&P100 – VXO and the DJEUROSTOXX50 – VSTOXX relationship are stabilized after the 

11th September 2001.  
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Figures 9 - 16 
Stability of the Leverage Effect for the American Indices   

 
Fig. 9: S&P500 – VIX 
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Fig. 10: S&P500 – VIX  
(9/11/2001 - 3/17/2005) 
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Fig. 11: S&P100 – VXO  
(1/2/1986 – 3/17/2005) 
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Fig. 12: S&P100 – VXO  
(9/11/2001 - 3/17/2005) 
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Fig. 13: Nasdaq100 – VXN  

(2/2/2001 – 3/17/2005) 

-100

-50

0

50

100

250 500 750 1000

CUSUM 5% Significance

 
 

Fig. 14: Nasdaq100 – VXN  
(9/11/2001 - 3/17/2005) 
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Fig. 15: DJIA – VXD  
(10/6/1997 – 3/17/2005) 
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Fig. 16: DJIA – VXD  
(9/11/2001 - 3/17/2005) 
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Figures 6 – 16: CUSUM Test of the stability of the leverage effect  over time for the American Indices.
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Figures 17 - 24 
Stability of the Leverage Effect for the European Indices  

 
Fig. 17: DAX – VDAX  
(1/2/1992 – 3/17/2005) 
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Fig. 18: DAX – VDAX  
(9/11/2001 - 3/17/2005) 
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Fig. 19: CAC40 – VX1  
(10/14/1997 – 3/17/2005)  
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Fig. 20: CAC40 – VX1  
(9/11/2001 - 3/17/2005) 
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Fig. 21: CAC40 – VX6  
(10/14/1997 – 3/17/2005)  
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Fig. 22: CAC40 – VX6  
(9/11/2001 - 3/17/2005) 
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Fig. 23: DJ EUROSTOXX 50 – VSTOXX  
(1/4/1999 – 3/17/2005) 
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Fig. 24: DJ EUROSTOXX 50 – VSTOXX  
(9/11/2001 - 3/17/2005) 
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Figures 17-24: CUSUM Test of the stability of the leverage effect over time, for the European Indices. 
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Section 4  
Granger Causality 

 

In this section we examine whether the movements of implied volatility indices could 

be used to forecast the future movements of the underlying stock indices, and vice versa. A 

proper tool to test this, are Granger Causality (GC) tests. Causality in the sense defined by 

Granger (1969) and Sims (1972) is inferred when lagged values of a variable, tx , have 

explanatory power in a regression of a variable ty on lagged values of ty and tx . Granger 

Causality implies precedence and information content and not causation in the common use 

of the term. Granger non-causality is another name for strong exogeneity. That is, lagged 

values of x do not provide information about the conditional mean of y once lagged values of 

y itself are accounted for:  

1 1 2 1, , ,...t t t t t tE y y x x E y y− − − −  =       

The null hypothesis that is tested is that “ x does not Granger cause y ”. We run Pairwise 

Granger Causality tests for the Implied Volatility indices daily changes, IV∆ , and the stock 

indices returns, R . This means we test two hypotheses, namely that “ IV∆ do not Granger 

cause R ” and that “ R do not Granger cause IV∆ ”. The Pairwise test is based on bivariate 

regressions of the form:  

1
1 1

l l

t i t i i t i t
i i

R c a R b IV ε− −
= =

= + + ∆ +∑ ∑  

2
1 1

l l

t i t i i t i t
i i

IV c a IV b R ε− −
= =

∆ = + ∆ + +∑ ∑  

An F-statistic is reported for each equation. It is Wald statistic for the joint hypothesis:  

1 2 ... 0lb b b= = = =  

l is the lag length that corresponds to reasonable beliefs about the longest time over which 

the variables could help predict one another.  

The methodology we use is to split the sample in two. The first part will be used for 

testing the existence of granger causality, and for in-sample fitting of the parameters, and the 

second part will be used for out-of-sample forecasting evaluation. We choose to leave the last 

year of daily observations (3/18/2004 – 3/17/2005) for out-of-sample forecasting. That way we 

have at least three years (around 1000 daily observations) for in-sample fitting. The in-sample 

period varies from approximately 3 years (2/2/2001 – 3/17/2004) for VXN, to 18 years 

(1/2/1986 – 3/17/2004) for VXO.  
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4.1. Pairwise Granger Causality Tests  

 

First we run the Pairwise Granger causality tests using various lag orders from 2 to 

100 lags and test the null at the 1% and 5% significance level. Table 9 presents the F-

statistics as well as the corresponding probabilities from the tests. First we focus on the power 

of lagged values of stock returns to predict the next day’s change of the relevant IV index. A 

general observation is that lagged values of the returns of the European stock indices and the 

returns of S&P100 are informative of next day’s IV index change at all lag orders. On the 

contrary, the returns of Nasdaq100 do not Granger cause VXN changes, at least up to the 

12th lag. The same applies for the returns of S&P500 and DJIA up to the 4th lag.  

 Turning to the predictive power of IV changes for next day’s stock index returns, we 

observe that VXN and VXD changes do not Granger cause the underlying index returns at no 

lag order.  The same almost applies to VX6 changes for which Granger non-causality is 

rejected only at the 8th and 10th lag order. The changes of VDAX and VSTOXX do not 

Granger cause the underlying stock index returns at least up to the 8th lag order, whereas 

changes of VIX and VX1 do not provide information for next day’s returns at least up to the 5th 

and 4th lag, respectively. Only the changes of VXO seem to be informative of next day’s 

returns of S&P100 at all lag orders. 

The drawback of the Granger Causality Test is that it tends to reject the null 

hypothesis of Granger non-causality. A finding of causal effects might result from the 

omission of an intervening variable that is correlated with both of (or all) the left-hand-side 

variables. For this reason we will verify results from GC tests in a Least Squares regression 

framework.  

 

4.2. Information Criteria for lag length specification  
 

One question that rises is how many lags, l , to use in order to test in a regression 

framework the results of Granger Causality tests. We follow the general to specific approach.7 

We suppose there is an appropriate “true” value of l , that we seek. A general-to-simple 

approach would begin from a model that contains more than l   lagged values – it is assumed 

that though the precise value of  l ,  is unknown, one can posit a maintained value that should 

be larger than  l ,. So, if some maximum L  is known, then l L< can be chosen to minimize 

some measure for assessing “out of sample” prediction properties, as the Akaike information 

criterion, AIC( l ), of the Schwartz criterion, SC( l ). We must bear in mind the AIC has been 

seen to overfitting, whereas SC to underfitting in some finite sample cases. For this reason, 

we will weight the results of the two criteria to select an optimal lag order. We posit 100 days 

as a maximum lag order.   

                                                
7 Greene, 2003, pp. 564 – 565.  
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Table 9 
Granger Causality Tests  

 
Panel A: American Indices  

Null Hypothesis   Lags 2 3 4 5 6 7 8 9 10 12 15 20 40 60 100 

F-Statistic 0.61 1.17 1.58 4.01* 2.83** 2.58** 2.11** 1.91 1.82 2.86* 3.38* 3.09* 2.04* 1.88* 1.55*   & 500S PR  does not 
G.C. VIX∆  Prob. (0.55) (0.32) (0.18) (0.00) (0.01) (0.01) (0.03) (0.05) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

F-Statistic 3.60** 2.35 1.87 2.02 2.47** 2.70** 2.46** 2.25** 2.01** 2.04** 2.01** 2.14* 1.41 1.25 1.28**  VIX∆  does not G.C. 
& 500S PR  Prob. (0.03) (0.07) (0.11) (0.07) (0.02) (0.01) (0.01) (0.02) (0.03) (0.02) (0.01) (0.00) (0.05) (0.10) (0.04) 

F-Statistic 11.23* 8.46* 10.78* 14.79* 12.38* 10.15* 10.76* 10.57* 10.40* 9.26* 7.82* 6.87* 3.99* 3.24* 2.23*   & 100S PR  does not 
G.C. VXO∆  Prob. (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

F-Statistic 19.40* 17.55* 14.16* 14.20* 11.82* 10.14* 10.15* 9.92* 10.28* 8.66* 7.18* 5.68* 4.22* 3.70* 2.74*   VXO∆  does not G.C. 
& 100S PR  Prob. (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

F-Statistic 1.31 1.23 1.18 0.92 0.74 0.91 0.93 1.60 1.42 1.87** 1.68 2.87* 2.13* 1.44** 1.54* 
100NasdaqR  does not 

G.C. VXN∆  Prob. (0.27) (0.30) (0.32) (0.47) (0.62) (0.50) (0.49) (0.11) (0.17) (0.04) (0.05) (0.00) (0.00) (0.02) (0.00) 

F-Statistic 1.98 1.36 1.73 1.84 1.53 1.30 1.11 1.29 1.09 0.86 0.81 1.30 1.35 0.97 1.15   VXN∆  does not G.C. 
100NasdaqR  Prob. (0.14) (0.25) (0.14) (0.10) (0.16) (0.25) (0.36) (0.24) (0.37) (0.59) (0.67) (0.17) (0.08) (0.55) (0.17) 

F-Statistic 2.17 1.63 1.76 2.65** 2.12 2.16** 1.90 2.12** 2.03** 2.11** 1.97** 2.34* 1.48** 1.26 1.13   DJIAR  does not G.C. 
VXD∆  Prob. (0.12) (0.18) (0.14) (0.02) (0.05) (0.03) (0.06) (0.02) (0.03) (0.01) (0.02) (0.00) (0.03) (0.09) (0.19) 

F-Statistic 0.85 1.05 1.14 1.20 1.64 1.59 1.35 1.29 1.14 1.17 1.28 1.82** 1.40 1.23 0.97   VXD∆  does not G.C. 
DJIAR  Prob. (0.43) (0.37) (0.34) (0.31) (0.13) (0.13) (0.21) (0.24) (0.33) (0.30) (0.21) (0.02) (0.05) (0.12) (0.57) 

 
Table 9: Pairwise Granger Causality Tests between the Stock Indices Returns and the Implied Volatility Indices Changes, using various lag orders from 2 to 100 lags. Results 
are based on the samples of the indices, after we have excluded the last year of observations (3/18/04 – 3/17/05) for out-of-sample forecasting. Reported values are F-
statistics whereas numbers in parentheses are p-values. One asterisk denotes rejection of the null hypothesis of no Granger Causality at the 1% significance level and two 
asterisks rejection at the 5% significance.   
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Table 9 (Continued)  
Granger Causality Tests  

 
Panel B: European Indices  

 Null Hypothesis  Lags 2 3 4 5 6 7 8 9 10 12 15 20 40 60 100 

F-Statistic 15.59* 10.46* 7.85* 6.52* 6.40* 5.73* 5.10* 5.58* 5.31* 4.63* 3.85* 3.11* 2.32* 2.43* 1.81*  DAXR  does not 
G.C. VDAX∆  Prob. (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

F-Statistic 2.11 1.44 1.98 1.89 1.48 1.79 1.86 2.82* 2.59* 2.21** 2.11** 2.13* 2.14* 2.21* 1.68* VDAX∆  does 

not G.C. DAXR  Prob. (0.12) (0.23) (0.09) (0.09) (0.18) (0.08) (0.06) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) 
F-Statistic 6.51* 7.74* 6.30* 5.84* 6.13* 5.98* 4.91* 4.52* 4.19* 3.66* 2.98* 2.33* 1.58** 1.24 1.03  40CACR  does not 

G.C. 1VX∆  Prob. (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.11) (0.40) 

F-Statistic 1.49 1.68 2.20 2.83** 2.92** 4.04* 4.13* 3.70* 3.41* 2.94* 2.84* 2.73* 2.04* 1.61* 1.38**   1VX∆  does 

not G.C. 40CACR  Prob. (0.23) (0.17) (0.07) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) 
F-Statistic 3.93** 4.45* 5.68* 6.48* 5.52* 4.51* 3.93* 3.68* 3.19* 3.01* 2.89* 2.46* 2.00* 1.52** 1.35**   40CACR  does 

not G.C. 6VX∆  Prob. (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.02) 

F-Statistic 1.09 2.21 2.06 2.25 2.32** 1.93 1.99** 1.74 1.61 1.48 1.40 1.32 1.05 0.96 0.92   6VX∆  does 

not G.C. 40CACR  Prob. (0.34) (0.08) (0.08) (0.05) (0.03) (0.06) (0.04) (0.08) (0.10) (0.13) (0.14) (0.16) (0.38) (0.56) (0.69) 

F-Statistic 0.69 3.59** 3.01** 4.38* 3.98* 3.76* 3.79* 3.61* 3.30* 2.84* 2.35* 1.89** 1.54** 1.19 1.05 
  50DJESTOXXR  
does not G.C. 

VSTOXX∆  Prob. (0.50) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.16) (0.35) 

F-Statistic 0.55 1.87 1.50 1.40 1.78 1.36 1.75 2.61** 2.18** 1.75 1.81** 1.40 1.80* 1.54** 1.20   VSTOXX∆  
does not G.C. 

50DJESTOXXR  Prob. (0.56) (0.13) (0.20) (0.22) (0.10) (0.22) (0.08) (0.01) (0.02) (0.05) (0.03) (0.11) (0.00) (0.01) (0.10) 
 

Table 9: Pairwise Granger Causality Tests between the Stock Indices Returns and the Implied Volatility Indices Changes, using various lag orders from 2 to 100 lags. Results 
are based on the samples of the indices, after we have excluded the last year of observations (3/18/04 – 3/17/05) for out-of-sample forecasting. Reported values are F-
statistics whereas numbers in parentheses are p-values. One asterisk denotes rejection of the null hypothesis of no Granger Causality at the 1% significance level and two 
asterisks rejection at the 5% significance level.  
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Table 10 shows the values of the two information criteria as well as the adjusted R-

squared statistics for the purpose of lag length specification in the Granger causality 

regressions. The information criteria and the adjusted R-squared have been obtained by 

running 10 bivariate Vector Autoregressions (VAR) for each pair of indices, each of a different 

lag order,  namely for 2, 4,6,8,10,15,20,40,60,100l = .  

The VAR specification is of the form:  

1

l

t i t i t
i

Y C AY ε−
=

= + +∑  

where t
t

t

R
Y

IV
 

=  ∆ 
, C is a (2 1)× vector of constants, and iA a (1 2)× vector of coefficients.  

Values of the Akaike and Schwarz Information Criteria as well as the adjusted R-squared 

statistics reported in a VAR framework for each equation are the same as the ones reported 

in a single equations framework. However, a VAR framework is convenient only at this stage. 

After we will have chosen the optimal lag order, we will test the significance of each 

coefficient in a single equation framework. A single equation framework is more flexible, 

especially if Granger causality runs one way only, which is the case, as we have seen from 

the results of Granger causality tests.  

 Results for lag length selection, as presented in Table 10, show in the first place that 

the adjusted R-squared statistics for the regressions with the stock index returns as 

dependent variable are very low varying from 0% to 6%. We obtain significantly better results 

for regressions with the IV index changes as dependent, especially for VXO, VX1 and VX6 

changes for which the adjusted R-squared statistics average at 11%, 25% and 23% 

respectively. However, the adjusted R-squared for the regressions of the rest of the IV indices 

as dependents remain at the level of around 3%. Another important remark is that the 

adjusted R-squared statistics increase only very slightly as the lag order increases, or remain 

invariable. This means that the addition of lags does not increase the explanatory power of 

the regressors. An exception seems to be VXN for which the statistic takes the value of zero 

up to the 4th lag order and reaches the level of 12% at the 40th order and the level of 17% with 

a specification of 100 lags.  

 In the same table, we see that the Schwarz Information Criterion generally takes its 

minimum at the 2nd lag order, except in the regressions with the VX1, the VX6 and the 

VSTOXX changes as dependents, where it chooses as optimal the 4th lag order.  The Akaike 

IC in most cases chooses between the 8th and the 20th lag order. AIC takes its minimum in a 

lower order in the cases of DJIA returns and DAX returns, where it chooses the 2nd and the 4th 

lag order respectively. An order of 40 lags is chosen by the AIC for the VXN changes.  ΠΑ
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Table 10  
Information Criteria for Lag Length specification in Granger Causality regressions  

 
Panel A: American Indices  

Dependent  
Variable  Lags  2 4 6 8 10 15 20 40 60 100 

VIX∆  Adj. 2R  0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.06 

 AIC  3.30 3.29 3.29 3.28 3.28 3.26* 3.26 3.27 3.27 3.29 

  SIC 3.30* 3.31 3.31 3.31 3.32 3.32 3.33 3.41 3.49 3.64 

& 500S PR  Adj. 2R   0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

 AIC -6.276 -6.275 -6.276 -6.279* -6.277 -6.278 -6.277 -6.260 -6.250 -6.230 

  SIC -6.27* -6.26 -6.25 -6.25 -6.24 -6.23 -6.20 -6.12 -6.04 -5.87 

VXO∆  Adj. 2R   0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.14 

 AIC  4.59 4.58 4.57 4.56 4.55* 4.55 4.55 4.56 4.56 4.59 

  SIC 4.60 4.60 4.59 4.59 4.58* 4.60 4.61 4.67 4.73 4.87 

& 100S PR  Adj. 2R   0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.05 

 AIC -6.030 -6.038 -6.039 -6.039 -6.042* -6.041 -6.039 -6.040 -6.040 -6.020 

  SIC -6.03* -6.03 -6.02 -6.02 -6.01 -6.00 -5.98 -5.93 -5.87 -5.73 

VXN∆  Adj. 2R   0.00 0.00 0.02 0.02 0.03 0.04 0.09 0.12 0.10 0.17 

 AIC 3.84 3.85 3.84 3.84 3.84 3.84 3.81 3.79* 3.83 3.79 

  SIC 3.87* 3.90 3.92 3.94 3.97 4.03 4.06 4.29 4.59 5.13 

100NasdaqR  Adj. 2R   0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.06 

 AIC -4.51 -4.50 -4.50 -4.49 -4.49 -4.49 -4.50 -4.52 -4.54* -4.54 

  SIC -4.48* -4.45 -4.42 -4.39 -4.37 -4.30 -4.26 -4.01 -3.78 -3.20 

VXD∆  Adj. 2R   0.00 0.01 0.02 0.02 0.02 0.03 0.05 0.06 0.06 0.05 

 AIC 3.34 3.34 3.33 3.34 3.34 3.31 3.29* 3.30 3.32 3.38 

  SIC 3.36* 3.37 3.38 3.39 3.41 3.41 3.43 3.57 3.73 4.09 

DJIAR  Adj. 2R   0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.01 

 AIC -5.91* -5.90 -5.90 -5.90 -5.90 -5.90 -5.90 -5.88 -5.85 -5.78 

  SIC -5.89* -5.87 -5.86 -5.84 -5.82 -5.79 -5.76 -5.61 -5.44 -5.08 

 
Table 10: Information Criteria for lag length specification in the Granger Causality regressions. We 
report the Akaike (AIC) and the Schwarz (SIC) Information Criteria as well as the Adjusted R-squared 

(Adj. 2R ) from the regressions: t

l

i

l

i
itiitit RbIVacIV ε++∆+=∆ ∑ ∑

= =
−−

1 1
 and 

∑ ∑
= =

−− +∆++=
l

i

l

i
titiitit IVbRacR

1 1
ε , where R  denotes the Stock Index daily returns, and 

IV∆ the Implied Volatility Index daily changes. Regressions are run in a bivariate Vector 
Autoregression Setting, using various lag orders from 2 to 100 lags. One asterisk denotes lag order 
selection defined by the minimum of the information criterion.  Results are based on the samples of the 
indices, after we have excluded the last year of observations (3/18/04 – 3/17/05) for out-of-sample 
forecasting.  ΠΑ
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 Table 10 (Continued) 
Information Criteria for Lag Length specification in Granger Causality regressions 

Panel B: European Indices  

Dependent  
Variable  Lags  2 4 6 8 10 15 20 40 60 100 

VDAX∆  Adj. 2R   0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.06 0.06 

 AIC 3.179 3.180 3.176 3.178 3.175* 3.179 3.183 3.190 3.190 3.230 

  SIC 3.19* 3.20 3.20 3.21 3.22 3.24 3.26 3.35 3.43 3.64 

DAXR  Adj. 2R   0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.05 0.05 

 AIC -5.57 -5.60* -5.57 -5.58 -5.58 -5.57 -5.57 -5.57 -5.56 -5.53 

  SIC -5.56* -5.55 -5.55 -5.54 -5.53 -5.51 -5.49 -5.41 -5.32 -5.13 

1VX∆  Adj. 2R   0.22 0.25 0.25 0.25 0.26 0.26 0.27 0.27 0.27 0.27 

 AIC 5.361 5.337 5.335 5.333 5.333 5.329 5.325* 5.360 5.390 5.460 

  SIC 5.38 5.37* 5.38 5.39 5.40 5.43 5.46 5.63 5.81 6.17 

40CACR  Adj. 2R   0.00 0.00 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.03 

( 1)VX∆  AIC -5.36 -5.36 -5.36 -5.37 -5.37 -5.38 -5.39* -5.36 -5.33 -5.26 

  SIC -5.34* -5.33 -5.32 -5.32 -5.30 -5.28 -5.25 -5.08 -4.91 -4.55 

6VX∆  Adj. 2R   0.19 0.23 0.23 0.23 0.24 0.24 0.25 0.26 0.25 0.26 

 AIC 4.21 4.16 4.16 4.16 4.16 4.15* 4.16 4.17 4.21 4.28 

  SIC 4.22 4.19* 4.20 4.22 4.23 4.26 4.30 4.45 4.63 4.99 

40CACR  Adj. 2R   0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 

( 6)VX∆  AIC -5.36 -5.36 -5.36 -5.36 -5.36 -5.38* -5.37 -5.34 -5.31 -5.24 

  SIC -5.34* -5.34 -5.32 -5.30 -5.29 -5.27 -5.23 -5.06 -4.89 -4.53 

VSTOXX∆
 Adj. 2R   0.00 0.01 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 

 AIC 3.94 3.92 3.91 3.90* 3.90 3.91 3.91 3.94 3.98 4.05 

  SIC 3.96 3.95* 3.96 3.97 3.99 4.03 4.08 4.26 4.47 4.90 

50DJESTOXXR
 Adj. 2R   0.00 0.00 0.02 0.02 0.03 0.03 0.03 0.05 0.06 0.04 

 AIC -5.30 -5.31 -5.32 -5.32 -5.33* -5.32 -5.31 -5.30 -5.27 -5.17 

  SIC -5.29* -5.27 -5.27 -5.26 -5.24 -5.20 -5.15 -4.97 -4.78 -4.33 
 
Table 10: Information Criteria for lag length specification in the Granger Causality regressions. We 
report the Akaike (AIC) and the Schwarz (SIC) Information Criteria as well as the Adjusted R-squared 

(Adj. 2R ) from the regressions: t

l

i

l

i
itiitit RbIVacIV ε++∆+=∆ ∑ ∑

= =
−−

1 1
 and 

∑ ∑
= =

−− +∆++=
l

i

l

i
titiitit IVbRacR

1 1
ε , where R  denotes the Stock Index daily returns, IV∆ the 

Implied Volatility Index daily changes, and l the lag order. Regressions are run in a bivariate Vector 
Autoregression Setting, using various lag orders from 2 to 100 lags. One asterisk denotes lag order 
selection defined by the minimum of the information criterion.  Results are based on the samples of the 
indices, after we have excluded the last year of observations (3/18/04 – 3/17/05) for out-of-sample 
forecasting.  
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4.3. Testing Granger Causality results in a regression setting  

 

Following the above results, we choose to verify the findings from the Granger 

causality tests in a single regressions setting using 2, 4 and 6 lags. Thus, we use 

specifications of the form:  

1 1

l l

t i t i i t i t
i i

R c a R b IV ε− −
= =

= + + ∆ +∑ ∑  (3) 

1 1

l l

t i t i i t i t
i i

IV c a IV b R ε− −
= =

∆ = + ∆ + +∑ ∑  (4) 

 

For each regression we have performed the Breusch-Godfrey Serial Correlation LM 

Test and we have found evidence of autocorrelation, at the 5% level, for the VIX, the VXO, 

and the VX1 changes as well as the DAX, and the CAC40 returns. Hence, we test the 

significance of the coefficients using Newey-West autocorrelation and heteroscedasticity 

consistent standard errors.  

Table 11 presents the results for regression (3). We observe that the adjusted 2R are 

in most cases below 1% and coefficients are found non-significant even at the 10% 

significance level. The highest adjusted R-squared is reported for the S&P100 returns, 

namely 2%, with the IV coefficients significant at 1% for the first lag, and at 10% for the 

second and third lag. However, the explanatory power of the regressors is two small to be 

used for prediction. The results of regression (3) verify the Granger causality tests, according 

which, IV indices do not Granger cause stock index returns.  

Results from regression (4) are presented in Table 12. It is notable that coefficients of 

the lagged values of the dependent are found significant for all IV changes, even in cases 

when lagged stock index returns are found insignificant. For all IV indices, an order of 6 lags 

yields better results that the orders of 2 and 4 lags. The highest adjusted R-squared are 10% 

for VXO changes, and 23% and 25% for the changes of VX6 and VX1 respectively. However 

the coefficients of the S&P100 returns are found insignificant at least up to the third lag. This 

means that only lagged values of VXO could be used to predict its own movement one day 

ahead. On the contrary today’s return of DAX could have information content for tomorrow’s 

change of VDAX. But that would be only when used with today’s VDAX changes and their 

predictive power would be limited to 1%. The results imply that only the CAC40 returns have 

important information content for the VX1 and VX6 future changes and this does not extend 

over one day.  
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We have also regressed the IV changes on lagged stock index returns, and the stock 

index returns on lagged IV changes, for 2, 4 and 6 lags, without including lagged values of the 

dependent in the equations.    

1

l

t i t i t
i

R c a IV ε−
=

= + ∆ +∑  

1

l

t i t i t
i

IV c a R ε−
=

∆ = + +∑  

However, we observed that the adjusted R-squared fell dramatically when lagged 

values of the dependent were not included in regressions. An implication is that, in the cases 

where lagged values of the stock returns could help predict next day’s movements of the 

corresponding IV index, that would be possible only in conjunction with lagged changes of the 

IV index. This applies notably to the use of CAC40 returns for next day’s prediction of VX1 

and VX6 movements.  

 Since the results we obtained for the French indices cannot be generalized, we do 

not proceed to out-of-sample forecasting.  
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Table 11  
Test of Granger Causality in a regression setting  

Information content of the history of IV changes for the underlying Stock Indices Returns   
Dependent 

Variable Lags  c  1a  2a  3a  4a  5a  6a  1b  2b  3b  4b  5b  6b  Adj. 
2R  

& 500S P
tR  2 0.0003** -0.040 0.002     -0.0005 0.0003     0.001 

 4 0.0004** -0.039 0.0008 -0.043 -0.005   -0.0004 0.0003 -0.0001 -0.0001   0.001 

 6 0.0003*** -0.038 0.007 -0.035 0.003 0.002 0.016 -0.0004*** 0.0003 0.0000 0.0000 0.0004*** 0.0004*** 0.004 
& 100S P

tR  2 0.0004** 0.037 0.001     0.0005* 0.0004     0.01 

 4 0.0004** 0.051 -0.0005 -0.002 -0.047   0.0006* 0.0004*** 0.0003 -0.0001   0.02 

 6 0.0004** 0.048 0.004 -0.011 -0.046 -0.062** -0.008 0.0006* 0.0004*** 0.0002*** -0.0001 -0.0004*** 0.000 0.02 
100Nasdaq

tR  2 -0.0008 -0.017 -0.025     0.0003 0.001     0.007 

 4 -0.0007 -0.016 -0.019 0.015 -0.044   0.0003 0.001 0.0002 -0.001   0.005 

 6 -0.0006 -0.010 -0.021 0.005 -0.050 0.003 0.006 0.0005 0.001 0.0000 -0.001 0.0001 0.0002 0.004 
DJIA
tR  2 0.0002 -0.039 -0.037     -0.0004 -0.0002     -0.0008 

 
 4 0.0002 -0.038 -0.033 0.028 0.050   -0.0004 -0.0001 0.0005 0.0004   -0.001 

 6 0.0002 -0.040 -0.027 0.034 0.054 -0.014 0.035 -0.0004 -0.0000 0.0006 0.0004 0.0005 0.0007*** 0.002 
DAX
tR  2 0.0003 -0.006 0.018     0.0004 0.0005     0.0008 

 4 0.0003 -0.006 0.015 -0.033 -0.009   0.0004 0.0004 -0.0001 -0.0006   0.002 

 6 0.0003 -0.008 0.015 -0.031 -0.011 -0.058*** -0.051*** 0.0004 0.0004 0.0000 -0.0006 -0.0003 0.0000 0.005 
40CAC

tR  2 0.0001 0.013 -0.011     0.000 0.0002     0.0009 

( 1)VX∆  4 0.0001 0.020 0.004 -0.049 0.018   0.000 0.0004*** 0.0001 0.0003   0.004 

 6 0.0002 0.015 -0.001 -0.059 0.007 -0.091** -0.068*** 0.000 0.0003 0.000 0.0001 -0.0003** -0.0003*** 0.01 
40CAC

tR  2 0.0001 0.037 -0.026     0.0003 0.0003     0.0004 

( 6)VX∆  4 0.0001 0.048 0.003 -0.034 0.008   0.0006*** 0.0008** 0.0006 0.0003   0.004 

 6 0.0002 0.047 -0.004 -0.041 0.006 -0.080** -0.063*** 0.0006*** 0.0007** 0.0005 0.0002 -0.0005 -0.0005 0.009 
50DJESTOXX

tR  2 -0.0002 -0.011 0.001     0.000 0.0004     -0.001 

 4 -0.0002 -0.012 0.017 -0.126** 0.019   0.000 0.0006 -0.0008 0.000   0.004 

 6 -0.0002 -0.012 0.020 -0.131** 0.038 -0.079*** -0.153* 0.000 0.0007 -0.0008 0.0002 -0.0002 -0.0008 0.02 

Table 11: Test of Granger Causality in a regression setting using 2,4 and 6 lags. We run regressions of the form t

l

i
iti

l

i
itit IVbRacR ε+∆++= ∑∑

=
−

=
−

11
 for 6,4,2=l , where R  denotes the 

stock index returns and IV∆  the changes of implied volatility indices. Reported values are the estimated coefficients from the samples of indices after exclusion of the period 3/18/04 – 3/17/05. 
Significance is tested using t-statistics from Newey – West Heteroscedasticity-consistent standard errors. One asterisk denotes significance at 1%, two asterisks significance at 5% and three 
asterisks significance at 10%.   
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Table 12  

Test of Granger Causality in a regression setting  
Information content of the history of Stock Indices Returns for the changes of the IV Indices    

Dependent 
Variable Lags  c  1a  2a  3a  4a  5a  6a  1b  2b  3b  4b  5b  6b  Adj. 

2R  

tVIX∆  2 -0.0006 -0.048 -0.080**     -1.462 2.813     0.01 

 4 -0.003 -0.064 -0.095* -0.041 -0.005   -2.464 1.587 4.367 5.345***   0.02 

 6 -0.006 -0.069*** -0.104* -0.056 -0.016 0.030 -0.070* -2.615 0.974 3.350 4.879 10.155* -2.036 0.02 

tVXO∆  2 0.010 -0.144** -0.307**     -14.486 -12.489     0.08 

 4 0.003 -0.149* -0.331** -0.003 -0.023   -14.049 -14.594 5.969 15.399**   0.09 

 6 -0.005 -0.141* -0.339** 0.037 -0.023 0.142** -0.034 -12.788 -16.767 10.469 14.258** 20.905* -3.266 0.10 

tVXN∆  2 -0.040 -0.008 -0.030     -4.331 1.612     0.001 

 4 -0.036 -0.006 -0.029 0.070 -0.046   -4.463 2.091 3.265 2.459   0.004 

 6 -0.042 0.006 -0.052 0.079 -0.041 0.025 -0.148* -3.247 0.894 3.616 3.602 1.750 -0.119 0.02 

tVXD∆  2 -0.003 -0.059 -0.012     -6.117 3.936     0.002 

 4 -0.002 -0.070*** -0.022 -0.109** -0.074   -6.684 2.945 -3.385 -4.950   0.009 

 6 -0.004 -0.071*** -0.030 -0.121** -0.074 0.018 -0.059 -6.626 2.351 -3.888 -4.805 8.415** 0.295 0.02 

tVDAX∆  2 0.006 -0.130** -0.023     -9.395** 3.572     0.01 

 4 0.006 -0.132** -0.023 -0.040 0.007   -9.446** 3.631 0.586 -0.795   0.02 

 6 0.004 -0.133** -0.025 -0.046 0.0009 -0.002 -0.029 -9.335** 3.409 0.409 -0.945 1.964 4.694*** 0.02 

1tVX∆  2 0.001 -0.545* -0.321*     -22.849* 2.782     0.22 

 4 0.003 -0.612* -0.463* -0.186* -0.139**   -29.697* -11.195 3.566 -6.800   0.25 

 6 0.0007 -0.615* -0.467* -0.201* -0.158* -0.002 0.043 -28.838* -11.334 3.093 -8.391 11.291*** 16.661** 0.25 

6tVX∆  2 -0.005 -0.513* -0.211*     -9.758*** 3.985     0.19 

 4 -0.003 -0.602* -0.397* -0.298* -0.157**   -14.533* -6.541 -6.543 -5.225   0.23 

 6 -0.005 -0.601* -0.393* -0.299* -0.163** 0.039 0.012 -14.265* -5.940 -6.353 -5.682 10.897** 4.187 0.23 

tVSTOXX∆  2 0.001 0.013 -0.060     4.793 1.471     0.004 

 4 -0.004 0.034 -0.127*** 0.105 -0.045   5.647 -4.019 12.780** -3.561   0.01 

 6 -0.006 0.040 -0.159** 0.120 -0.102*** 0.067 -0.055 6.210 -5.764 13.938** -7.650 11.134** 2.980 0.03 

Table 12: Test of Granger Causality in a regression setting using 2, 4 and 6 lags. We run regressions of the form t
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11
 for 6,4,2=l , where R  denotes the 

stock index returns and IV∆  the changes of implied volatility indices. Reported values are the estimated coefficients from the samples of indices after exclusion of the period 3/18/04 – 3/17/05. 
Significance is tested using t-statistics from Newey – West Heteroscedasticity-consistent standard errors. One asterisk denotes significance at 1%, two asterisks significance at 5% and three 
asterisks significance at 10%.   
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Section 5 
Spillover Effects 

 

In this section we expect to capture spillover effects between the daily movements of 

implied volatility indices. For trading purposes, we are only interested in lagged spillover 

effects. Consequently we are not examining the contemporaneous relationship. The 

methodological framework that is going to be used is an unrestricted Vector Autoregression. 

Vector Autoregressions have been popularized by the work of Sims (1980) and have been 

extensively used for analyzing the dynamics of macroeconomic systems and particularly for 

tracing the effects of policy changes in the economy. The main question addressed by VARs 

is about the effect of a shock in a variable on other variables of the model and the time-path 

of this effect. The purpose of a VAR model is to summarize all of the dynamic interrelations 

between the variables, as well as their projection in time.  

The VARs advantage over a single equations framework is that they permit us to 

study jointly multiple series, detecting correlations between the disturbances across 

equations. Cross-equation correlations of disturbances may reflect factors common to all 

equations or cross-equations restrictions. Estimating the equations separately would waste 

information of the impact of random disturbances on the system. The VARs advantage over 

systems of structural equations is that they do not predetermine the structure of the dynamic 

interrelations between variables of interest. The structure of the model is identified by testing 

exclusion restrictions. Researchers however are inclined to pose as few restrictions as 

possible, since structural VARs have been debated on the basis of the simultaneous 

equations bias. That is, an observed correlation structure between variables may imply more 

than one ‘real’ structure between variables.  

We will analyze the spillover effects between the Implied Volatility Indices movements 

in the framework of an unrestricted VAR. This is appropriate since we do not want to 

predetermine the structure or direction of their interrelationships.  

 

5.1. Specification of the model and parameter estimation  

A multivariate time series tY  is a VAR process of order p , or a VAR ( p ) if it follows 

the model:  

0
1

p

t t i t i t
i

Y X Y ε−
=

= Φ + Φ +∑  (5) 

~ (0, )t Nε Ω  

where tY  is a vector of endogenous variables, tX  a vector of exogenous variables, 

1, ,..., pοΦ Φ Φ are matrices of coefficients to be estimated, and tε  is a vector of innovations 

that may be contemporaneously correlated but are uncorrelated with their own lagged values 

and with all of the right-hand side variables. They have mean zero, covariance matrix Ω , and 
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are assumed normal.  Variables in vector tY  are all treated as endogenous and each is 

assumed to be a function of the lagged values of all of the endogenous variables in the 

system. Treating a vector of variables tX as exogenous with respect to the other system 

variables means that it is assumed to be determined outside the system. This is equivalent to 

stating that other variables in the system are not informative about future values of tX  or that 

there is no feedback relationship. In this framework, OLS yields consistent and efficient 

estimates, even though innovations may be contemporaneously correlated.  

 To build the VAR model, first we define the endogenous and exogenous variables to 

be included in the model. The vector (8 1)× of endogenous variables is:  

[ ]1 6t t t t t t t t tY VIX VXO VXN VXD VDAX VX VX VSTOXX ′= ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆  

An (8 1)× vector C will be included as the set of exogenous variables.  

Next we have to identify the lag order p . Towards this end, we specify a maximum 

lag of 15, 10 and 5 days to test for, and observe the values of the information criteria. The 

Schwarz information criterion invariably takes its minimum value (22.97) at the 1st lag, 

whereas the Hannan-Quinn information criterion takes its minimum at 22.38, thereby 

selecting the 3rd lag. We also perform a VAR Lag Exclusion Wald test for a maximum of 5 

lags. The test shows that lags up to 3 days are, for all variables but VIX∆ , statistically 

significant at the 5% significance level. In accordance with the test results, we specify a VAR 

of order 3.  
3

1
t i t i t

i
Y C Y ε−

=

= + Φ +∑  (6) 

~ (0, )t Nε Ω   

 

The VAR model will be estimated on a common sample of the Implied Volatility 

Indices. Since the first observation for VXN is for 2/2/2001, the common sample consists of 

around four years of daily observations from 2/2/2001 until 3/17/2005. After synchronization of 

the data, the total number of observations that are used for the VAR estimation is 1000.  

Table 13 presents the results from a VAR(3) with the representation of equation (6). 

We report the estimated coefficients as well as the corresponding t -statistics and the 

adjusted R-squared. The significance of coefficients is tested at 1%, 5% and 10% level. 

Constants are all found insignificant. The highest adjusted R-squared statistics are 25% and 

32% reported for VX1 and VX6 changes respectively, whereas the lowest are 3% and 4% 

reported for VIX and VXN changes. The range of the model’s explanatory power for the other 

IV-indices-changes is between 7% and 10%. This means that the European IV indices, 

notably the French indices, are more affected by implied volatility movements in other 

markets than the American indices, especially VIX and VXN.  
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Table 13  
Spillovers of Implied Volatility Changes under a VAR(3) model   

Dependent Variable 
à  tVIX∆  tVXO∆  tVXN∆  tVXD∆  tVDAX∆  1tVX∆  6tVX∆  tVSTOXX∆  

ΔVIX(-1) 0.175*** 0.672* 0.288** 0.422* 0.351* 0.452** 0.213 0.440* 
(t-statistic) (1.730) (5.806) (2.411) (5.027) (3.259) (2.253) (1.559) (3.293) 

         
ΔVIX(-2) 0.057 0.356* 0.083 0.235*** 0.097 0.147 -0.108 0.244*** 

 (0.533) (2.922) (0.661) (2.648) (0.853) (0.694) (-0.748) (1.733) 
         

ΔVIX(-3) -0.047 0.285** 0.084 -0.016 -0.033 0.523 0.118 -0.014 
 (-0.469) (2.457) (0.700) (-0.188) (-0.307) (2.604) (0.865) (-0.103) 
         

ΔVXO(-1) -0.005 -0.450* -0.015 0.056 0.087 0.120 0.224** 0.118 
 (-0.064) (-5.041) (-0.164) (0.872) (1.046) (0.779) (2.125) (1.149) 
         

ΔVXO(-2) 0.105 -0.175*** 0.213** 0.095 0.151*** 0.165 0.261** 0.159 
 (1.258) (-1.839) (2.171) (1.371) (1.711) (1.000) (2.323) (1.449) 
         

ΔVXO(-3) 0.138*** -0.141 0.147 0.119*** 0.170** 0.176 0.085 0.180*** 
 (1.760) (-1.573) (1.595) (1.839) (2.049) (1.133) (0.810) (1.745) 
         

ΔVXN(-1) -0.026 -0.036 -0.107** -0.029 -0.131* -0.163 -0.021 -0.093*** 
 (-0.686) (-0.820) (-2.394) (-0.912) (-3.234) (-2.161) (-0.413) (-1.851) 
         

ΔVXN(-2) -0.008 -0.024 -0.067 -0.032 -0.017 0.058 0.041 -0.053 
 (-0.199) (-0.558) (-1.488) (-1.000) (-0.416) (0.766) (0.789) (-1.052) 
         

ΔVXN(-3) 0.021 0.026 0.000 0.051 0.014 0.007 0.072 0.030 
 (0.569) (0.602) (0.006) (1.621) (0.343) (0.100) (1.412) (0.609) 
         

ΔVXD(-1) -0.160** -0.152 -0.030 -0.447* -0.015 -0.013 -0.174 -0.096 
 (-1.964) (-1.630) (-0.309) (-6.603) (-0.168) (-0.081) (-1.583) (-0.887) 
         

ΔVXD(-2) -0.213** -0.218** -0.237** -0.349* -0.071 -0.277*** -0.084 -0.194*** 
 (-2.518) (-2.252) (-2.367) (-4.960) (-0.792) (-1.652) (-0.738) (-1.735) 
         

ΔVXD(-3) -0.224* -0.283* -0.355* -0.260* -0.059 -0.669* -0.188*** -0.069 
 (-2.817) (-3.105) (-3.780) (-3.938) (-0.702) (-4.245) (-1.747) (-0.656) 
         

ΔVDAX(-1) -0.111*** -0.127*** -0.056 -0.086 -0.404* -0.285** -0.228** -0.037 
 (-1.663) (-1.665) (-0.715) (-1.554) (-5.705) (-2.166) (-2.537) (-0.418) 
         

ΔVDAX(-2) -0.194* -0.252* -0.134 -0.108*** -0.378* -0.072 -0.280* -0.221** 
 (-2.805) (-3.187) (-1.640) (-1.881) (-5.136) (-0.525) (-2.995) (-2.414) 
         

ΔVDAX(-3) -0.093 -0.142*** -0.031 0.007 -0.252* 0.275** -0.125 -0.318* 
 (-1.410) (-1.872) (-0.398) (0.125) (-3.579) (2.096) (-1.398) (-3.643) 
         

ΔVX1(-1) 0.060* 0.098* 0.060** 0.080* 0.054** -0.557* 0.138* 0.093* 
 (2.709) (3.873) (2.276) (4.365) (2.311) (-12.689) (4.620) (3.164) 
         

ΔVX1(-2) 0.031 0.054*** 0.046 0.049** 0.024 -0.357* 0.112* 0.063*** 
 (1.217) (1.890) (1.562) (2.340) (0.893) (-7.196) (3.316) (1.888) 
         

ΔVX1(-3) 0.000 0.011 0.023 0.021 0.012 -0.133* 0.100* 0.013 
 (-0.009) (0.418) (0.891) (1.154) (0.503) (-3.017) (3.316) (0.443) 
         

ΔVX6(-1) -0.030 -0.054 -0.063*** -0.035 -0.067** -0.026 -0.800* -0.109* 
 (-0.953) (-1.487) (-1.699) (-1.346) (-1.991) (-0.408) (-18.734) (-2.616) 
         

ΔVX6(-2) 0.001 -0.018 -0.082*** -0.027 -0.041 -0.065 -0.556* -0.074 
 (0.033) (-0.429) (-1.894) (-0.880) (-1.045) (-0.905) (-11.293) (-1.538) 
         

ΔVX6(-3) -0.036 -0.055 -0.079** -0.047*** -0.074** -0.209* -0.384* -0.082** 
 (-1.172) (-1.558) (-2.168) (-1.822) (-2.232) (-3.414) (-9.197) (-2.014) 
         

ΔVSTOXX(-1) 0.003 0.009 -0.017 -0.008 0.157* 0.388* 0.169** -0.193* 
 (0.059) (0.151) (-0.273) (-0.187) (2.833) (3.747) (2.402) (-2.795) 
         

ΔVSTOXX(-2) 0.118** 0.182* 0.103 0.082*** 0.188* 0.346* 0.255* 0.024 
 (2.155) (2.915) (1.605) (1.801) (3.232) (3.202) (3.465) (0.330) 
         

ΔVSTOXX(-3) 0.114** 0.163* 0.100 0.050 0.197* -0.008 0.071 0.192* 
 (2.186) (2.737) (1.630) (1.148) (3.555) (-0.078) (1.015) (2.793) 
         

C -0.009 -0.013 -0.040 -0.006 -0.005 -0.016 -0.011 -0.007 
  (-0.235) (-0.297) (-0.847) (-0.188) (-0.118) (-0.199) (-0.196) (-0.134) 

 Adj. R-squared 0.03 0.07 0.04 0.10 0.09 0.25 0.32 0.09 
Table 13: Spillovers of the Implied Volatility Indices daily changes with three time lags. The regression setting is a VAR(3): 

3

1
t i t i t

i

Y C Y ε
−

=

= + Φ +∑  where tY is a (8 1)× vector of the eight Implied Volatility Indices daily changes at time t , t iY
−

is an 

(8 1)× vector of the eight IV Indices daily changes at time t i− , C  an (8 1)×  vector of constants included as exogenous 

variables, and iΦ  (1 8)×  vectors of coefficients to be estimated. Reported values are the estimated coefficients and values in 

parentheses are t-statistics. One asterisk denotes significance at the 1% level, two asterisks at the 5% level and three asterisks at 

the 10% level. The Adj. 
2R  for each regression is also reported. The sample used spans the period 2/2/2001-3/17/2005.  
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Results from the parameter estimation justify the choice of a VAR(3) model since 

lagged values at the third lag were found significant for all variables. The only exception is 

VXN whose effect on the other IV indices is limited to one period. Another general 

observation is that for each IV index-changes its own lagged values are found significant most 

at the 1% level. This extends to the third lag, although gradually fading out, for all European 

indices and for VXD. Only VIX seems to satisfy the efficient market hypothesis, since there is 

significance of its own lagged values only at the first lag and at the 10% level.  

A spillover effect is detected at first sight from VIX-changes to other indices with 

coefficients as high as 0.67 for VXO, around 0.44 for VXD, VX1 and VSTOXX, and 0.29 for 

VXN. The effect of VIX extends to the second day for VXO, VXD and VSTOXX and also to 

the third day for VXO. VXO spills over to VX6 extending to two time periods, and also to VXN 

(with a coefficient of 0.21) and VDAX (with coefficients around 0.15) with two days difference. 

On the other hand there is no important spillover of VXN changes except over one period for 

VDAX  (-0.13) at the 1% level, and VSTOXX (-0.9) at the 10% level. More influential is VXD 

whose values up to the 3rd lag are significant for VIX, VXO, VXN, and to a smaller extend for 

the European VX1, VX6 and VSTOXX. What is notable about VXD spillover effect is that the 

coefficients of the third lag are larger than coefficients at the second lag, and these larger 

than coefficients at the first lag. This could mean that the information content of VXD is not 

immediately incorporated to the other indices movements. This is observed also in other 

indices when coefficients are insignificant at the first lag and significant at the second or third 

lag.  

Continuing at table 13, we will examine the transmission of implied volatility 

movements from the European markets towards the other markets. VDAX is quite influential 

since it significantly affects all the other indices with the exception of VXN. Coefficients 

estimates show that current changes of the IV indices reflect less the information content of 

VDAX changes at the first lag than that at the second lag. Hence VDAX changes at the 2nd 

lag affect VIX by -0.19, VXO by -0.25, VXD by -0.11, VX6 by -0.28 and VSTOXX by -0.22. 

This effect of VDAX extends to the 3rd time period, in the cases of VXO , VX1 and VSTOXX. 

Almost the same picture of better results at the second lag, is presented by VSTOXX. 

VSTOXX at the first lag affects VDAX (0.16), VX1 (0.39) and VX6 (0.17). This effect persists 

up to the second lag for the French indices and up to the third lag for VDAX. There is also a 

spillover effect from VSTOXX to VIX and VXO appearing at the second lag (with coefficients 

0.12 and 0.18) and at the third lag (0.11 and 0.16). Information about VX1 changes seems to 

be immediately incorporated to the movements of the other IV indices, since coefficients are 

higher at the first lag than at the other lags. Lagged values of VX1 at the first period are 

significant for the current changes of all IV indices. VX1 spills over mainly to VX6 (0.14), but 

also to VSTOXX (0.09), VXO (0.10), VXD (0.08), VIX (0.06), VXN (0.06) and VDAX (0.05). In 

some cases the effect extends to the second and third lag. VX6 is notably less influential than 

VX1. Still, its first lagged value affects VSTOXX by -0.10, VXN by -0.06 and VDAX by -0.07. 
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There is also some information transmission about VX6 changes towards VX1 and VXD, 

which takes place with a three lags difference.  

After estimating the parameters of the VAR, we test the stability of the model. The 

estimated VAR is stable (stationary) if all the inverse roots of the characteristic AR polynomial 

have modulus less than one and lie inside the unit circle. If the VAR is not stable, certain 

results (such as impulse response standard errors) are not valid. Results from the VAR 

Stability Condition Check show that no root lies outside the unit circle, therefore the model 

satisfies the stability condition.  

 

5.2. Impulse Response Functions  

 

Next we want to trace the effect of a one-time shock to the j th variable endogenous 

variable on future values of all the endogenous variables. Equation (5) can be written in the 

form:  

1 1 2 2 ...t t t p t p tY C Y Y Y ε− − −= + Φ + Φ + + Φ +  

A vector MA ( )∞  representation of this VAR is:  

1 1 2 2 ...t t t t t tY µ ε ε ε− − − −= + + Γ + Γ +  (7) 

where µ is the mean or equilibrium of the process, and  

t s
s

t

Y
ε

+∂
Γ =

′∂
. (8) 

If we define the ijγ element of sΓ as ,i t s
ij

jt

y
γ

ε
+∂

=
∂

, then the impulse response function of the 

VAR is the plot of the ijγ elements of sΓ as a function of s . The impulse response function 

describes the response of ,i t sy + to one-time impulse in jty with all other variables at time t or 

earlier held constant. ijγ is viewed as the dynamic multiplier that identifies the consequences 

of a one-unit increase in the j th variable’s innovation at time t , ( )jtε , for the value of the i th 

variable at time t s+ , ,( )i t sy + , holding all other innovations at all dates constant.  

 In a VAR, the innovations tε are assumed uncorrelated with their own lags and with 

lags of the endogenous variables but are allowed to be contemporaneously correlated. If 

tε are contemporaneously correlated then the innovation of the first variable at time t , 1tε , 

provides information about the values of innovations of the other variables at the same time t , 

2tε , 3tε … ntε . Hence the innovation of the j th variable, jtε , cannot be explicitly associated 

with the j th variable, since it has a common component with the concurrent innovations of 

the other variables. To sidestep this problem, the variance-covariance matrix of tε , Ω , is 
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often transformed so that innovations become contemporaneously uncorrelated. A 

transformation is the following:  

ADA′Ω =  

where A  is a unique lower triangular matrix with 1s along the principal diagonal and D  is a 

unique diagonal matrix with positive entries along the principal diagonal. The vector tu of 

orthogonalized residuals is given by:  
1

t tu A ε−≡  (9) 

The elements of tu are contemporaneously uncorrelated since ( )t tE u u D′ = , where D is a 

diagonal matrix whose ( , )j j element is the variance of jtu . The vector tu instead of tε is 

then used to calculate the dynamic multipliers for the impulse responses:  

t s
s j

jt

Y a
u

+∂
= Γ

∂
 (10) 

where ja is the j th column of the matrix A .  

 Another common transformation of Ω  is the Cholesky decomposition, where Ω  is 

decomposed as:  

A D DA PP′ ′Ω = =  

where P A D≡ is the Cholesky factor with the standard deviation of tu along its principal 

diagonal, and D is the diagonal matrix whose ( , )j j element is the standard deviation of 

jtu . This means that: 

( )j j jtp a Var u=  (11) 

where jp is the j the column of the matrix P .The Cholesky orthogonalized residuals are 

given by:  

1 1/ 2 1 1/ 2 t
t t t t

uv P D A D u
D

ε ε− − − −≡ = = =   

We can see that tv is the standardized tu , meaning than the impulse in this case is defined 

as one standard deviation in tu . Under Cholesky decomposition, the vector tv is used instead 

of tε in the impulse response function, as:  

t s
s j

jt

Y p
v

+∂
= Γ

∂
 (12) 

 The drawback with the use of orthogonalized residuals in the impulse response 

function is that an ordering of variables is imposed. Changing the recursive ordering of the 

variables leads to different dynamic multipliers. Since we do not to impose any theoretical 

assumptions about the relative importance of each variable, we choose to plot the impulse 
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responses as defined in equation (8) and not as defined in equations (10) or (12). However, 

we have described the process of Cholesky factorization, since it will be used for the variance 

decomposition.  

Figure 25 plots the impulse responses of the changes of each IV index to one unit 

Innovations in changes of all the IV indices. The vertical axis measures 
, 1

t

IV t i

IV
ε∆ + −

∂∆

∂
for the time 

periods 1,..., 6i = . The first period refers to the concurrent response whereas periods 2 to 6 

refer to the response to past innovations of 1 to 5 lags. We have chosen to present the 

impulse responses up to 6 periods, since the responses of the IV-changes to past innovations 

after the 5th lag converge to zero. As expected, the concurrent response of the changes of 

each IV index to one unit of its own innovation is one unit, whereas to innovations of the other 

IV-changes is zero. We can observe the mean reverting behavior of the responses, which is 

an indication of the stability of the VAR, or its tendency to return to its equilibrium after a 

disturbance of the system.  

Examining the main responses of the indices one by one, we can see that VIX 

responds only to VXD and VDAX and VSTOXX innovations of the previous two days with a 

magnitude of response of about 0.20 units for 1 unit innovation of VXD and VDAX and with a 

response of 0.10 units for 1 unit innovation of VSTOXX. VSTOXX but especially VDAX are 

the only European indices which seem to provoke a response to the American indices. The 

less affected is VXD who responses mainly to the previous day’s VIX 1 unit innovation by 

0.40 units and to VIX innovation two days before, by 0.23 units. Similar is the response of the 

other American indices to VIX lagged innovations, with VXO’s magnitude of response to the 

previous day’s VIX 1 unit innovation reaching 0.67 units. VXO and VXN also respond slightly 

to VXD.  

Turning our attention to the European indices, a first observation is that the 

responses of VX1 and VX6 to their own lagged innovations as well as to those of the other 

indices persist over a longer time period. In the case of VX1 this stands for its response to all 

indices except VXO and VX6, whereas VX6 has an almost zero response to VXN and VX1 

past innovations. It is interesting that the French indices do not significantly respond to one 

another’s past innovations. The magnitude of their response to the other indices 1 unit 

innovations, extended over 6 periods, does not exceed the 0.40 units. VDAX seems to 

respond mainly to VIX previous day’s 1 unit innovation by almost 0.40 units. The magnitude of 

VSTOXX’ s response to the same impulse is a little larger, around 0.45 units and persists one 

day longer. VSTOXX responds to all other indices past innovations, albeit to a lesser extend. 

It is notable that it takes two days for VSTOXX to respond to VXD and VDAX 1 unit 

innovations, with a magnitude of response around 0.20 units.  
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Figure 25 
Spillovers of Implied Volatility Changes under a VAR model  

Impulse Responses to One Unit Innovations 
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Figure 25: Non-factorized Impulse Responses of the changes of each Implied Volatility Index to one unit innovations on 

the changes of the other Implied Volatility Indices. The vertical axis measures 
, 1

t

IV t i

IV
ε∆ + −

∂∆

∂
for time periods 1,..., 6i = . 

The first period refers to the concurrent response whereas periods 2 to 6 refer to the response to past innovations of 1 
to 5 lags.  
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5.3. Variance Decomposition  

 

While impulse response functions trace the effects of a shock to one endogenous 

variable to future values of her variables in the VAR, variance decomposition separates the 

variation in an endogenous variable into the component shocks to the VAR.  

Equation (7) can be written as the error in forecastingY , s periods into the future:  

1 1 2 2 1 1
ˆ ...t s t s t s t s t s s tY Y ε ε ε ε+ + + + − + − − +− = + Γ + Γ + + Γ  

The mean square error ( MSE ) of this forecast is:  

( ) ( )( ) 1 1 2 2 1 1
ˆ ˆ ˆ ...t s t s s st s t t s t t s tMSE Y E Y Y Y Y+ + − −+ + +

 ′ ′ ′ ′= − − = Ω + Γ ΩΓ + Γ ΩΓ + + Γ ΩΓ 
 

 

where ( )t tε ε ′Ω = Ε . Using equation (9) we can write tε in terms of tu :  

1 1 2 2 ...t t t t n ntAu a u a u a uε = = + + +  

Then ( ) ( ) ( ) ( )1 1 1 2 2 2 ...t t t t n n nta a Var u a a Var u a a Var uε ε ′ ′ ′ ′Ω = Ε = + + + , and the MSE  can 

be written as:  

( ) ( ){ }1 1 2 2 1 1
1

ˆ ...
n

jt j j j j j j s j j st s t
j

MSE Y Var u a a a a a a a a− −+
=

′ ′ ′ ′ ′ ′ ′ = + Γ Γ + Γ Γ + + Γ Γ ∑  

where n  is the number of endogenous variables of the VAR. Using equation (11) we can 

express the MSE in terms of the j th column of the Cholesky factor P :  

( ) 1 1 2 2 1 1
1

ˆ ...
n

j j j j j j s j j st s t
j

MSE Y p p p p p p p p− −+
=

′ ′ ′ ′ ′ ′ ′ = + Γ Γ + Γ Γ + + Γ Γ ∑  

Each term { }1 1 2 2 1 1...j j j j j j s j j sp p p p p p p p− −′ ′ ′ ′ ′ ′ ′+ Γ Γ + Γ Γ + + Γ Γ of the sum expresses the 

contribution of orthogonalized disturbance of the variable j  to the MSE of the s -period-

ahead forecast of Y . As s → ∞ , the ( )t̂ s tMSE Y + converges to the unconditional variance of 

tY . Therefore, for large s , each term of the sum expresses the portion of the total variance of 

tY  that is due to the innovation ju .  

 A factorization of Ω is necessary in Variance Decomposition, so that variance 

portions will add up to one (100%). This requires, as we have seen in the impulse response 

function, an ordering of the variables. We choose to give precedence to VIX since the 

estimation of the VAR(3) model indicated that it has the highest spillover effect on the other 

indices. The ordering of the variables is the following:  

{ }, , , , , 1 , 6 ,t t t t t t t tVIX VXO VXN VXD VDAX VX VX VSTOXX∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆  

Figure 26 presents for each IV index daily changes, the decomposition of its forecast 

variance into the component past innovations to all the IV indices. As a consequence of the 
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VAR ordering assumed, the first period variance for the first variable, VIX∆ , is completely 

due to its own innovation. From the second period the forecast variance of VIX changes is 

decomposed to 98.4% of its own past innovations and around 0.20% of the innovations on 

the other IV changes. Most of the forecast variance of VXO, VXN, VXD and VDAX changes is 

decomposed into their own past innovations and the past innovations of VIX changes. The 

contribution of VIX in these cases is stabilized after the second period to approximately 83% 

for VXO, 74% for VXD, 46% for VXN and 40% for VDAX. The forecast variance 

decomposition for VSTOXX changes is stabilized after the third period to 21% of its own past 

innovations, 36% of the innovations on VIX changes and 38% of the past innovations on 

VDAX changes. The same picture of main components is presented for the French VX1, with 

its forecast variance comprising of around 72% of its own past innovations, 14% of the past 

disturbances on VDAX changes and 10% of innovations on VIX changes. Finally, the forecast 

variance decomposition of VX6 changes is stabilized after the third period to 57% of its own 

past disturbances, 17% of VX1 past innovations, 16% of innovations hitting VDAX changes, 

and 7% of the past disturbances on VIX changes.  
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Figure 26 
Spillovers of Implied Volatility Changes under a VAR model  

Variance Decomposition  

0

20

40

60

80

100

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVIX

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVXO

0

10

20

30

40

50

60

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVXN

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVXD

0

10

20

30

40

50

60

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVDAX

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVX1

0

10

20

30

40

50

60

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVX6

0

10

20

30

40

50

1 2 3 4 5 6

DVIX
DVXO
DVXN

DVXD
DVDAX
DVX1

DVX6
DVSTOXX

Variance Decomposition of DVSTOXX

 
 

Figure 26: Variance Decomposition of the changes of each Implied Volatility Index into the component shocks to the 
VAR model. The vertical axis in each graph reports the percentage of the forecast variance due to past innovations on 
each IV index changes, over 6 periods. Variance Decomposition is based on Cholesky factorization with the following 
ordering of the variables: , , , , , 1, 6,VIX VXO VXN VXD VDAX VX VX VSTOXX∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ .    
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Section 6 
Calculating Value-at-Risk 

  

In 1996 JP Morgan introduced RiskMetrics a methodology of computing simple 

measures of market risk for a given portfolio of assets. An important contribution of the 

RiskMetrics (1996) methodology is the introduction of the Value- at-Risk (VaR) concept which 

collapses the entire distribution of the portfolio returns into a single number which investors 

have found useful and easily interpreted as a measure of market risk. Value at Risk (VaR) is a 

widely used risk measure that answers the question “What is the $value such that a portfolio 

loss over the next time horizon T exceeds this value only 100%p× of the times?” The 

definition of $VaR is:  

Pr($ $ )t T t TLoss VaR p+ +> =  

There are three main competing models of measuring VaR, parametric models: 

variance – covariance approach and Monte Carlo (MC) Simulation methods (MC methods 

assume normality), and non-parametric models: Historical simulation. In the Variance-

Covariance approach we use either the Delta Normal method in the case of linear portfolios 

(stocks, commodities) or the Delta Gamma method for non-linear portfolios (options, interest 

rates, bonds). There is a growing interest in testing and comparing various VaR methods8, 

since VaR is, among others, an approved regulatory methodology in the market risk 

component in Basel I and is expected to remain so in Basel II.  

In this section we will proceed as follows. Using our dataset, we will calculate different 

VaR measures for 1-day-ahead forecast period at the 1% and 5% significance level, for a 

long position on the S&P500 index. We have chosen to use the variance – covariance 

approach and Historical Simulation. Since our portfolio is linear we will use the Delta Normal 

method in which we need an estimate of volatility. As inputs for the delta normal method we 

will use Historical volatility, volatility derived from an Exponentially Weighted Moving Average 

Model (EWMA), an Exponential GARCH model and as a third input the implied volatility index 

for the S&P500 stock index, VIX. Our aim is to test the performance in the calculation of VaR 

of the three volatility imputs in the variance – covariance approach and compare it with the 

performance of VaR calculated with historical simulation. For this purpose we will use Kupiec 

Test as a Backtesting method. The fundamental question we will address is: Can an implied 

volatility index (VIX) be used as an efficient input in the calculation of VaR for its underlying 

stock index (S&P500), and how well does it perform compared to other VaR measures? 

We will follow Skiadopoulos et al. (2004) in the methodology of historical simulation, 

and Figlewski (2004) in calculating historical volatility. We will model volatility by an EWMA 

according the RiskMetrics model of J.P.Morgan (1996) and Christoffersen (2003) 20-23. We 

will follow Giot (2005b) in the use of implied volatility as an input in VaR.  

                                                
8 Several tests for comparing different VaR models are discussed in Christoffersen, Hann and Inoue 
(2001).  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 50 

The sample for the VaR calculation begins at 2/2/2001 and ends 3/17/2005. The first 

500 observations (2/2/2001 – 2/28/2003) will be used for the EGARCH parameter estimation. 

The first variance forecast as well as the first VaR forecast will be for 3/3/2003. Hence, the 

Backtesting period will be from 3/3/2003 until 3/17/2005, and will include 499 observations.  

 
6.1. Variance – Covariance Method  

 

For long position in a portfolio, VaR is the left percentile of the cumulative density 

function of the distribution of its future returns. Since not only the future returns but also the 

distribution of future returns is uncertain, VaR is itself a random variable. The Delta – Normal 

method for the calculation of VaR requires an explicit assumption about the distribution of 

future returns. Under the assumption of a normal distribution and zero mean for the daily 

returns, VaR is given by:  
1p

t T p t TVaR Z σ−
+ +=  

where ( )Z ⋅ is the cumulative density function of (0,1)N  distribution and t Tσ + is the standard 

deviation of the returns. ( )Z ω gives the probability that t Tz +  is equal or less to the number 

ω , whereas the inverse, 1
pZ − , gives the number ω such that p*100% of the probability mass 

is below that number. 1
pZ − is 1,645 for a 5% significance level and 2,326 for a significance 

level of 1%. Next we define the three estimates that are going to be used for the standard 

deviation, 1tσ + , of the returns, the Historical Moving Average, the Risk Metrics Exponentially 

Weighted Moving Average, the Exponential GARCH and the VIX.   

 
Historical Moving Average  

The first input for variance is a Historical Moving Average of past squared returns 

calculated as:  

( )
2

2
1

1

1
1

t

t i
i t n

R R
n

σ +
= + −

= −
− ∑  

, where 
1

1 t

i
i t n

R R
n = + −

= ∑ , 0R = and  n  is 100 and 250 days. As we move on to the next day, 

the oldest observation drops out of the n-day measurement sample and a new observation is 

taken into account.  
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Risk Metrics  

Risk Metrics model for the forecast of tomorrow’s variance is a weighted average of 

today’s variance and today’s squared return. The unknown parameter λ contained in the 

model, was estimated by Risk Metrics for a large number of assets, at 0.94. We use the same 

estimate.   
2 2 2

1 (1 )t t tRσ λσ λ+ = + −  

0.94λ =  

The initial forecast for variance will be a historical a historical average of squared returns of 

the previous 252 days.   

 
EGARCH  

GARCH models are designed to capture certain characteristics that are commonly 

associated with financial time series, that is fat tails, volatility clustering and leverage effects.  

The leverage effect, refers to the empirical observation that asset returns are negatively 

correlated with changes is volatility. That is, volatility tends to rise in response to lower than 

expected returns and to fall in response to higher than expected returns. Asymmetric GARCH 

models capture this effect. The EGARCH model was introduced by Nelson (1991). In contrast 

to GARCH models, Nelson’s exponential GARCH, brings forward the asymmetric relation 

between returns and changes in volatility9. A negative value of jL indicates that volatility 

tends to rise (fall) when news affecting returns are negative (positive). In other words, 

downward movements in the market are followed by higher volatilities than upward 

movements of the same magnitude. This is also highlighted by Engle (1993) in the news 

impact curve with asymmetric response to good and bad news.  

We will use an EGARCH (p,q) model to forecast conditional variance with conditional 

mean equation:   

t t t tR R R zε σ= + = +  

t
t

t

z ε
σ

= , ~ . . . (0,1)tz i i d N  

Imposing a zero value for the mean return, we have t t t tR zε σ= = . The specification of the 

conditional variance equation is:  

2 2

1 1 1

ln ln
p q q

t i t i j t j j t j
i j j

k G A z L zσ σ − − −
= = =

= + + +∑ ∑ ∑  

Since t t tR zσ= we approximate 1tz −  by the standardized returns:  

1
1

1

t
t

t

Rz
σ

−
−

−

=  , 1
1

1

t
t

t

R
z

σ
−

−
−

=  

                                                
9 See Nelson (1991), pp. 349-351.  
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Estimation of the parameters of the EGARCH model will be based on a sample of 

500 observations from 2/2/2001 until 2/28/2003.  Assuming that the estimated model remains 

stable over time, we will use the in-sample estimated parameters to derive out-of-sample 

forecasts for the conditional variance.  

We have chosen to fit an EGARCH(1,2) for S&P500 returns’ variance, after several 

diagnostic tests for the optimal Garch (p) an Arch(q) order.  The ARCH LM test and the 

Correlogram of squared standardized residuals show that there does not remain any non-

modeled heteroscedasticity and autocorrelation. Statistical significance of coefficients is 

tested using Bollerslev – Wooldridge Standard Errors. Convergence is achieved with the 

standard Marquardt optimization algorithm with maximum 500 iterations. Table 14-17 present 

the parameter estimation as well as the diagnostic tests for the model.  

The estimated  variance equation for S&P 500 returns is the following:  

& 500
2 2

1 1 2 1,
ln 0.1444 0.9872ln 0.2770 0.3025 0.2012S P

t
t t t tt R

z z zσ σ − − − −= − + − + −  

As initial values for variance in order to feed in the first two values of the GARCH, the ARCH 

and the Leverage terms, we use historical averages of squared returns from the previous 500 

observations.  

 
VIX  

Since the VIX refers to volatility per year, we need to apply the following 

transformation in order to derive one-day-ahead variance estimates. Assuming 252 trading 

days we have:    

1
252t tVIXσ = . 

 

6.2. Historical Simulation  

 

The Historical Simulation is a non-parametric method to calculate VaR, in that we 

don’t have to make assumptions for the stochastic model underlying the daily returns, as with 

the variance-covariance approach. Yet the assumption that underlies Historical Simulation is 

that tomorrow’s return will follow the distribution of the returns of the N-days previous period. 

For 1-day-ahead p%  VaR  with an N-day rolling window, the 1-day VaR estimate is the left p 

percentile of the cumulative distribution of the previous N daily returns. For each VaR 

forecast, we use a window of 100 and 250 previous observations, rolling it over as a new 

observation becomes available and the oldest drops out of the window. The drawback of 

historical simulation is that it is very slow at updating VaR forecasts.  ΠΑ
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Table 14 
Variance Estimation using an EGARCH (1,2) model for S&P500 daily log Returns  

 
Dependent Variable: 

2log tσ  
Constant GARCH  

Coefficient  
ARCH Coefficients  LEVERAGE Coefficients  

Dependent in the 
mean equation 

↓ 
k  1G  1A  2A  1L  2L  

& 500S P
tR  -0.1444* 0.9872* -0.2770* 0.3025* -0.2012* 0.0399 

(z-statistic) (-2.734) (178.937) (-3.009) (3.284) (-3.568) (0.713) 
 

Table 14: Estimation of the conditional variance for the S&P500 Returns using an EGARCH (2,1) 
model. Parameter estimation is based on the sample period 2/2/2001 – 2/28/2003. The mean 
equation is specified as t t t tR zε σ= = , whereas the conditional variance equation is specified as: 

2 2

1 1 1

ln ln
p q q

t i t i j t j j t j
i j j

k G A z L zσ σ − − −
= = =

= + + +∑ ∑ ∑  where t j
t j

t j

z
ε

σ
−

−

−

= . Reported values are 

coefficient estimates and values in parentheses t-statistics. One asterisk denotes rejection of the 
null hypothesis of a zero coefficient at the 1% significance level.   

 
 

Table 15  
EGARCH (1,2) Diagnostic Test I 

Autocorrelations of the Standardized Squared Residuals 

AC(1) 0.009 
AC(2) -0.007 
AC(3) 0.016 

Ljung-Box Q(12) 6.9835 
 
Table 15: Diagnostic test for remaining autocorrelation of the Standardized Squared Residuals in the 
EGARCH model. We report autocorrelations up to the third lag as well as the Ljung-Box statistic for 
autocorrelation up to the 12th lag. Autocorrelations are all insignificant  even at the 10% level.  

 
 

Table 16 
EGARCH (1,2) Diagnostic Test II 

ARCH Test (for 2 lags) on the Standardized Squared Residuals 

F-statistic 0.032 

Obs*R-squared 0.064 
 
Table 16: Diagnostic test for remaining heteroscedasticity on the squared standardized residuals in the 
EGARCHmodel. The reported ARCH test statistics, F-statistic and Observations*R-squared, are 
insignificant up to the second lag, even at the 10% significance level.  
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Section 7 
Backtesting 

   

The success of a VaR model depends on two aspects. First, it is the ability to 

accurately forecast VaR violations over a given time horizon and with a given probability. 

Second, it is the ability to produce low VaR estimates so that low regulatory capital is 

imposed. Backtesting is the procedure for assessing the forecasting performance of a VaR 

model. It tests whether the proportion of actual VaR violations in a sample is significantly 

different from the given confidence level. We employ two backtesting procedures, Basle 

Traffic Light and Kupiec Test to assess the performance of the VaR models discussed in the 

previous section.  

 

7.1. Basle traffic light  
 

Since 1996, the Basle Committee on Banking Supervision enforces banks, and other 

financial institutions like insurance companies, to hold regulatory capital against their market 

risk exposure. The capital rules cover all assets in a bank’s trading account as well as all 

foreign exchange and commodity positions and are applicable to any bank or other financial 

institution whose trading activity accounts for more than 10% of its total assets or is more than 

$ 1 billion. These capital charges are based on VaR estimates generated by the banks’ 

internal VaR models and are imposed according to a multiplication factor derived by the 

classification of the VaR model into the green, yellow or zone. This is called the Traffic Light 

concept. The benchmark is 1-day-ahead 1% VaR, and the classification depends on the 

frequency of VaR violations over a period of 250 trading days. 1% VaR corresponds to 2 or 3 

VaR violations over 250 trading days. However, regulatory authorities allow for up to 4 VaR 

violations in 250 days in order to classify a VaR model in the green zone. This corresponds to 

the minimum multiplication factor of 3. Necessary capital reserves are assigned by multiplying 

the 1% daily VaR with the multiplication factor. Models which produce between 5 and 9 VaR 

violations over a year are classified in the yellow zone. 5, 6, 7, 8 and 9 violations over a year 

correspond to a multiplication factor of 3.40, 3.50, 3.65, 3.75 and 3.85 respectively. When 10 

or more violations a year are observed, the model is classified in the red zone and a 

multiplication factor of 4 is imposed. Since holding regulatory capital is costly, a VaR model 

falling into the red zone is usually rejected.  

Basel’s Traffic Light VaR Model Classification   

 
Green 

Zone 
Yellow Zone 

Red 

Zone 

VaR violations over 250 days 0-4 5 6 7 8 9 
10 or 

more 

Multiplication Factor for 

Regulatory Capital  
3 3.40 3.50 3.65 3.75 3.85 4 
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7.2. Kupiec Test  
 

Kupiec Test is a test of unconditional coverage in that it tests the null hypothesis that 

a proportion of violations of each day’s VaR forecast over a given sample is not significantly 

different than the significance level of VaR. Chistoffersen has proposed a test of conditional 

coverage, in that it also tests the independence of violations, or the violations’ clustering10. 

Next we give a brief description of Kupiec Test. The test is based on the comparison between 

daily realized returns and the corresponding VaR forecasts, conceptualized as a binomial 

experiment. For each day two outcomes are possible, the forecasted VaR would have either 

understated or overstated the realized return. For each day, the outcome of the binomial 

experiment tI could be one,  corresponding to a violation of the VaR limit, that is a loss 

exceeding the VaR forecast, or zero,  for a nonviolation, that is when the realized return is 

covered by the VaR forecast. Thus a series of ones and zeros, of violations and 

nonviolations, is constructed. The Sequence of  VaR violations is defined as:   

1

1
0tI +


= 


 

, if  1 1t tR VaR+ +< −  

, if the above statement is false.  

If the sequence of violations should be completely unpredictable, then the series of outcomes 

should be distributed as a series of draws from an independent Bernoulli distribution:  

0 1: ~ . . .tH I i i d+  Bernoulli (p) 

The Bernoulli distribution function is:  

( ) 1 11
1; (1 ) t tI I

tf I p p p+ +−
− = −  

Unconditional coverage tests the null hypothesis that the proportion of actual VaR violations, 

π , is not significantly different from the given probability level, p , 0( : )H pπ = . To perform 

the test we use the likelihood of an . . .i i d Bernoulli sequence:  

1 1 0 11

1

( ) (1 ) (1 )t t

T
I I T T

t
L π π π π π+ +−

=

= − = −∏  

where 0T is the number of VaR nonviolations in the sample, and 1T is the number of VaR 

violations in the sample. The likelihood ratio used for unconditional testing is the following:   

( )
( )

2
12 ln ~uc

L p
LR X

L π

 
= −  

 
 

It is asymptotically distributed Chi-squared with one degree of freedom. By substitution we 

have:  

                                                
10 See Christoffersen (2003), pp. 181-189.  
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( )
( )

( ) ( )[ ] ( ) ( ){ }

[ ]

0 01 1

0 1 0 1 0 1
2

1

2ln 2 ln ln 2 ln 1 ln 1

1
2 ln(1 ) ln ln(1 ) ln 2 ln ln

1
~

T TT T
uc

L p
LR L p L p p

L

p p
T p T p T T T T X

π π π
π

π π
π π

= − = − − = − − − −

−
= − − + − − − = − +

−

           
    

        

 

The critical value for Kupiec Test at the 5% is 3.8415. When the estimated value for the 

likelihood ratio exceeds the critical value, then we reject the null hypothesis of an adequate 

VaR model.  

 

7.3. Backtesting Results  
 

 The following table presents the results from backtesting 1-day-ahead 99% VaR and 

95% VaR of S&P500 daily returns calculated with the variance- covariance approach using 

four different estimates for variance, and with Historical Simulation with a rolling window of  

100 and 250 past observations.  

 
Table 17  

Backtesting VaR for S&P500  
 

  
Variance – Covariance Delta Normal Method  Historical Simulation  

  

Historical 
MA(100)  

Historical 
MA(250) 

Risk 
Metrics  E-GARCH  VIX HS(100)  HS(250)  

99% VaR         
Exceptions  T1 1 1 4 18 1 8 2 

Ratio of 
exceptions 

π 0,2% 0,2% 0,8% 3,6% 0,2% 1,6% 0,4% 

Kupiec test LRuc 4,7973* 4,7973* 0,2129 20,5114* 4,7973* 1,5505 2,3409 
Basel 
Classification   Green 

zone 
Green 
Zone  

Green 
Zone  

Yellow 
Zone  

Green 
Zone  

Green 
Zone  

Green 
Zone  

 

  
Variance – Covariance Delta Normal Method  Historical Simulation  

  

Historical 
MA(100)  

Historical 
MA(250) 

Risk 
Metrics  E-GARCH  VIX HS(100)  HS(250)  

95% VaR         
Exceptions  T1 19 9 23 34 3 22 14 

Ratio of 
exceptions 

π 3,8% 1,8% 4,6% 6,8% 0,6% 4,4% 2,8% 

Kupiec test LRuc 1,6218 14,0771* 0,1645 3,1190 32,1915* 0,3817 5,9721* 
 
Table 17: Backtesting 1-day-ahead 99% and 95% VaR for a long position on S&P500. The backtesting 
period is 3/32003 – 3/17/2005 and consists of 499 daily observations. Kupiec Test is performed at the 
5% level with critical value 3.8415. An asterisk denotes rejection of the VaR model. Classification of the 
models  for the 99% VaR, according to Basel Traffic Light System, is also presented. The model is 
classified into the green zone if the VaR violations over a horizon of 500 trading days are not over 9, into 
the yellow zone if the violations reported are between 10 and 19, whereas a number of exceptions 
higher than 20 results in the red zone classification.   
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Results from the backtesting of S&P500 daily VaR models show initially that all 

models are classified into the green zone except for the EGARCH based model which is 

classified into the yellow zone. This is  according to Basel Traffic Light system which is purely 

based on the proportion of exceptions in a given sample. Historical Moving Averages as well 

as the Implied Volatility index VIX in the Variance –Covariance approach, for the one-day-

ahead 99% VaR are rejected by the Kupiec’s Test on the basis of producing very few 

violations of the VaR estimates. E-GARCH on the contrary is rejected on the basis of 

producing too many violations. The test rejects the null hypothesis that the ratio of violations 

is equal to the coverage rate of the VaR model, not only when too many VaR violations have 

occurred but also when we have too few violations in the sample11. Too few violations imply 

an overstatement of VaR and hence the commitment of excess capital. For the 95% VaR the 

models that have performed better according to Kupiec test are Historical MA(100), Historical 

Simulation (100), Risk Metrics and E-GARCH. These models are not rejected although their 

ratio of observed exceptions differs significantly from the expected probability of violations. 

VIX on the contrary is rejected for having a very low ratio of exceptions relative to the 5%. 

Consequently the use of VIX in an 1-day-ahead VaR model would result in the acceptance of 

the model according to Basel traffic light but also in a commitment of excess regulatory capital 

since it overstates daily VaR estimates.  

 

 

                                                
11 See Benos, Angelidis (2004), pp. 6-7.   
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Section 8 
Conclusions 

 

The purpose of this dissertation was to examine the properties of the Implied Volatility 

Indices. We verified in line with current literature the existence of the Leverage effect for all 

indices although it was found asymmetric only for the French indices. This means that the  

negative relationship between stock returns and IV changes is intensified in the case of a 

downward movement of returns than in the case of an upward movement. The general non-

verification of asymmetry in the leverage effect is in contrast to existing literature that reports 

IV indices as investor’s fear gauges. We have also examined the stability of the leverage 

effect assuming a structural break at the 11th September 2001 attack. We have found an 

intensification of the leverage effect after the 11th September attack, for the three American 

indices S&P500, S&P100 and DJIA and the German index DAX. This means that a raise of 

the implied volatility index after the 11th September, is associated with a larger drop of the 

underlying stock index, than it did before. On the contrary, the risk-return relationship for the 

French indices, for DJEUROSTOXX and for Nasdaq-100 has not been affected. There were 

no asymmetric features developed of intensified after the 9/11/2001. The CUSUM test 

indicates stability of coefficients for all indices relationship except S&P500-VIX, S&P100-VXO 

and DJEUROSTOXX50 – VSTOXX stabilized after the 11th September 2001. 

We tested whether IV indices past prices helped the prediction of today’s stock 

returns, and if returns could be used to forecast future prices of IV indices. Granger Causality 

tests for different lag orders showed that only returns Granger cause IV indices changes, 

especially returns of the European indices and S&P100. For the other American indices, there 

is no Granger causality neither way at least at the first lag orders. We checked these results, 

using regression analysis. For various lag orders, R-squared for the regressions with the 

stock index returns as dependent variable are very low varying from 0% to 6% whereas 

regressions with  IV index changes as dependent averaged at 3% with the exceptions of VXO 

(11%), VX1(25%) and VX6 (23%). Regressions for 2,4,6 lags verified Granger causality 

results, and further indicated that only the CAC40 past returns could be used to predict VX1 

and VX6 future changes but this does not extend over one day, and it could be done only in 

conjunction with lagged values of the IV indices themselves.   

We used a Vector Autoregression of order 3 to examine the spillovers between IV 

indices’ movements. With a VaR(4) the model was punished with lower adjusted R-squared. 

However the French IV indices seem to incorporate information from the other IV indices for a 

longer time period, around 5 days. Regression results showed that in line with the current 

literature, there is a high and significant spillover from the VIX towards all the other indices 

which persists to a second day for VXO, VXD and VSTOXX. From the other American 

indices, there is a regional spillover to the American market, whereas VXN doesn’t seem to 

have any spillover effects at all. The highest spillover of the European indices is coming from 

VDAX and VSTOXX. These indices affect very strongly the other European indices at the first 
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lag, but they present a strong spillover also to VIX and VXO appearing at the second lag and 

persisting to the third lag. VX1 affects mainly VX6 but also the American indices to a lesser 

extent than VSTOXX and VDAX. In general, VXN and VX6 are the less influential. Impulse 

response analysis of the spillovers showed that responses generally fade to zero after the 5th 

period.  

Applying Cholesky factorization to the system of IV-indices disturbances,  we also 

decomposed the forecast variance of each IV index changes into their own past innovations 

and the past innovations of the changes of the other IV indices. The findings indicated a high 

contribution of VIX in the variance forecast of the other indices, namely 83% for VXO, 74% for 

VXD, 46% for VXN and 40% for VDAX. VSTOXX changes were decomposed into 21% of its 

own past innovations, 36% of the innovations on VIX changes and 38% of the past 

innovations on VDAX changes. The VX1 forecast variance comprised of around 72% of its 

own past innovations, 14% of VDAX and 10% VIX innovations. We also found that VX1, 

VDAX and to a smaller extend VIX past innovations contribute considerably to VX6 forecast 

variance.  

Finally we calculated and back-tested S&P500 daily 99% and 95% VaR models with 

the historical simulation (HS) and the variance covariance approach using as inputs for 

variance two historical moving averages, Risk metrics estimates, EGARCH estimates and VIX 

time series. Basel Traffic Light and Kupiec test were used as backtesting criteria. Results 

showed that HS(100) and HS(250) outperformed the other models. The VIX generally 

overstated the expected VaR resulting in an acceptance by Basle criteria of proportion of 

exceptions, but a rejection by Kupiec test.  

Further research could examine the performance of the other Implied Volatility indices 

in VaR models for their respective underlying index, extending the backtesting methodology 

to independence and conditional coverage tests. A recently introduced implied volatility index, 

VSMI, based on the Swiss Market Index (SMI) options, could also be the subject of future 

analysis.  
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