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Mepdnyn

H pétpnon g amodoTikdtnToS TV CLGTNUATOV TOPay®YNS omoTeAEl KaBOopIoTIKO
wapdyovta v v Bertioon tovg. H amotiunon ¢ amodoTikOTnTog EMTLYYAVETOL
LE TN (PNOT TOPOUETPIKDOV 1 UN-TapopeTpik®v teyvikov. H Tlepifdiiovca Avéivon
Agdopévov - TTAA (Data Envelopment Analysis - DEA) omotelel pia amd Tig
ONUOPIAESTEPEG UN-TIOPOAUETPIKES TEYVIKES Y10 TNV EKTIUNGCT TNG OMOOOTIKOTNTAG
OLOEOMV HOVAO®V £VOG GUOTNUATOG, €L TN PACEL TOAALATADV EIGPODV KOl EKPODV
Kol omnpiletal GTO YPOUUKO TPOYPOAUUOTIONO. XOyypoveg emektdoels g TTAA
aroteAoVv 1 [epipdriovca Avédivon A&uwv (value based DEA) kot n moAvetodiokm

[Meppdriovca Avaivon Agdopévav (network DEA).

H IIepifdrirovoca  Avédlvon A&y  ompileton o teqvIKEG NG
[ToAvkprnprakng Avdivong Amopdacewv (Multiple Criteria Decision Analysis -
MCDA) y10. T0 HETACYNUATICUO TOV EMTEIMV TOV EIGPOMV Kol EKpodv o€ atieg. O
UETACYNUOTIGUOC 0vTOG €Eumnpetel 6TV EVOOUAT®OON TOV  TPOTIUCE®V TOV
EKACTOTE OVOALTY], GYXETIKA WE TIS GLUVOPTNOELS ASlOV TOV EIGPOMV/EKPODY, GTNV
extiunon ™¢ oamodotikdtTog TV povadwv. Ilapdho mov ta poviéAa NG
[TepiBarrovcag Avaivong A&iwv mov mpoteivovtalr ot Pifroypaio mapéyovv
EVKOAlDL OTNV €100Y®YN TPOTIUNCEMY OCYETIKA HE TIC GLVAPTACES OEIDV TV
EI0PODV/EKPODV, dloympilovv POVO TIC OMOSOTIKEG OO TIC WUN-OTOO0TIKES LOVAOEG

KOl A OVVATOVV VO EKTIUNGOVY TNV 0000 TIKOTNTO KAOE ATOTIULAUEVNC LOVADIGS.

H molvotaodiaxnm Ilepipdriovco Avaivorn Aedouéveov amotedel (o amd Tig
onNUavTiKOTEPEG EMEKTAGELS TG KAaootkng [lepidiiovcag Avaivong Aedopévov. Ta
ocvoppoatikd povtéda g [TAA Bempodv OTL 0 UNYOVIGHOG TOPAYMYNG CLVICTATOL GE
éva, otaoo. Tlapdia avtd, VIAPYOLVY TEPMTOCEIS OOV O OAVOAVLTHG YVopilel OTL O
UNYaVIoHOG Topoymyng amoTeAeitol amd vrodtadikosies (vrootadia). H mAnpogopia
aLT EMNPEACEL TNV EKTIUNOTN amodOTIKOTNTAG Kot To KAaooikd povtéda g [TAA
aOLVOTOVV VO POUOIDGOLV TNV TAnpoopia avtr. H moivotadiakn [epifdiiovoa
Avaivon Agdopévov avtAapBAaveTal To UNYovicpd mTopoaymyns o¢ £vo diktvo omd

VTooTAdw, To omoio. ocvuvdfovtor HETAED TOLG HE  EVOIUECOVS TOPAYOVTEG



(intermediate measures). Opwg, ta povtéda g Ilolvotadiakng IlepipdArovcog
Avdivong Agdopévov mov tapovstdloviat ot Piploypagia, dev mpocsdiopilovv éva
HOVOOIKO OeikT Omod0TIKOTNTAG OTO EMUEPOVS OTASW (LTOoTAOWN) Yoo KAOE
AmOTIUOUEVY povada. Emiong, m extiunon ¢ oamodoTikOTNTAG EMTLYYAVETOL
glodyovtog ayvootn otdfuon oto vrootdole avtd. Ta {ntpata avtd BEtovv oe
aUPoPATNON TV EYKLPOTNTO TOV OTOTEAECUATOV KOOMDS, Yo KAOE OmOTYUMUEV
povaoda, divetol SLOPOPETIKY Kol AyvmoTn oTdOon ota eTUEPOVS OTAdI Yol T

SLOHOPP®OT) TOL OEIKTN OTOOOTIKOTNTOG,

210 TPAOTO UEPOG TNG TOPOVCAG OOAKTOPIKNG SaTPIPNG, EMKEVIPOVOUUOTE
omv Iepdrirovoa Avdivon A&umv. Z10y0g eivar 1 avamtuén evog vEou LOVTEAOD
t0 omoio, og oavtifeon pe ta povréda g Ilepipdriovcoc Avdivong ASumv mov
nwpoteivovtor ot Piphoypoeio, kTG TNV omod0TIKOTNTA KAOE OTOTILOUEVNG
HOVASOG. XVYKEKPUUEVO, EICAYOVUE £V, UETOACYNUOTIOHO TOV O£d0UEVOV KOl TMV
peTafANTOV TV ypappukov povtédov g [TAA, pe tov omoio ot véeg petaPAnTég
ekppdlovv mAéov alo avti yi PBapn. Aelyvoovpue OTL 0 HETACYNUATIGUOC OVTOG
evioyvel T KAaookad povtéda g [TAA pe emmAéov 1010tTTEG KO €miong, OTL EMADEL
10 0épo acvvéyelag mov mapovotdlovv ot cuvaptmoelg a&log otnv ITAA pe un
YPOLUKEG EIKOVIKES €16p0Ec/ekpoés. Ta gvpiuata avtd, pag 0dnNyovv ot dnpovpyia
evog véov povtéhov g Ilepipdrriovcag Avdivong A&idv, 10 omoio extipnd Vv
amodoTIKOTNTO KaOE amoTiumdpevng povadas. Emiong, ewcdyovpe po véa pebodoroyia
Yo TNV €wooymyq npotyumcemv  ota miaicww ¢ TTAA  pécw  Movotovig
[MoAwdpounong (Ordinal Regression). H amotehespotikdtnTo ToOV VEOU HOVTEAOL TNG
[Meppdrrovcag Avdivong A&uwv mov ovortuope  avadelkvOeTol UEGH  TNG
EQOPUOYNG TOL OE U0 HEAETN Tepimtong mov €xel MOM mapovoiachHel ot
BipAoypapio, kab®OG Kot HEc amd TNV avATTLEN LG VELS EQOPUOYNS TOL oyeTileTaon
pe v aSloAdynon g €PELVNTIKNG OPACTNPLOTNTOS OKAOUAIK®V Kadnyntov, 1
omoia AapPavel vwOYN TG TNV TOLOTIKN KOl TOGOTIKY SAGTACT TOV dNUOCIEVCEDY

TOV KaONyNToOV.
210 deVTEPO UEPOG TNG TTAPOVGAG OOAKTOPIKNG OTPIPNG, EMIKEVTIPOVOUACTE
omv moAvotadiakn [epifdiiovoa Avdivon Agdopévav, OTOL Kol OVATTOGGOVLE

pia véa pebodoroyio e otdX0 TNV ETIAVCT TOV UEOVEKTNUATOV OV Yopaktnpilovv



Tt poviéha TG moAvotadiakng IlepiBdAlovcag Avdivong Aedopévev  mov
napovotaloviar ot Piprloypoeic. Xvykekpiuévo, EGAYOVLHE UKL TPOGEYYION
TOAVKPLTNPLOKOV TPOYPOLUOTICUOD 1) OOl YPNGIUOTOLEL TNV Ly UETPIKT, DOTE VO
VTOAOYIGEL TIG AMOOOTIKOTNTEG TOV HOVAOWV GTO VITOGTASIO OGO 7o KOVTd yiveTon
ota 10avikd Toug enineda. H mpocéyyion avt, o avtifeon pe ta vrdpyovia poviéla
nov mpoteivovtal ot Piproypaeio, Tapéxel HOVOSIKO OEIKTN OTOdOTIKOTNTAG Y10
KaOe povada oe kGbe VITOGTASIO0 KoL EmioNg dtoyelpileTal To EMUEPOVS VTTOCTASIO [LE
mv 0 Papdmra. Ta mieovekthuato ™ véag avtnig pebodoroyiag yivoviot
wwitepa caen Otav ocvykpivovpe Tto amoteAécpata e pebodoroyiog mov
avamtuape UE TO OMOTEAECUHOTO GAA®V HOVIEA®V, TOL TAPOLCIALoVTaL OTN
Broypapia, mave oe ocvvletikd JSedopévo kol o€ Ogdopéva oL EYouvv MO
peretn0el ot Prproypaeio. H mpaktikdtnTo TG Topoamdve HeBOdov avadetkvoeTal
TEPAUTEP® UECH TNG EPOPUOYNG TNG OE O KOVOTOUO HEAETN TEPIMTOONG, TOL
OoYETILETON PE TNV EPEVVNTIKT OPUCTNPLOTNTO OKOONUUIKMOV KAONYNTOV avaALOUEV

o€ 000 GTAd0 GLVOEEUEVO GEIPLUKAL.

AéEerg khewdod: lepifailovoo Avoaivon Aeoouévav, llepifailovoo Avaloon Aliamv,
KQVOVIKOTOINGY TV 000uévwv, moivotaoioxy Ilepifotiovaa Avalvon Acoouévawv,

EPEVVTIKN OPaTTHPIOTHTO, OKOONUOIK®Y oty Avatoty Exraidosvon.






Abstract

Performance measurement of production units is a critical aspect for their
improvement. Performance assessment can be achieved either by parametric
approaches, when specific parametric functional forms that transform particular inputs
to outputs are assumed or by non-parametric approaches, when no assumptions on the
production functions are made. Data Envelopment Analysis (DEA) is a non-
parametric technique for measuring the performance of Decision Making Units that
use multiple inputs to produce multiple outputs and has been established as the
leading technique in performance measurement. Recent extensions of DEA, among

others, include value based DEA and network DEA.

Value based DEA is a recent development that resorts to value assessment
protocols from Multiple Criteria Decision Analysis (MCDA) to transform the original
input/output data to a value scale so as to incorporate individual prior views according
to the value functions of the inputs and/or outputs in the efficiency assessment.
Although the existing value based DEA models are flexible, they fail to provide a

measure of efficiency.

Network DEA is one of the major extensions of the conventional DEA.
Specifically, conventional DEA models assume one stage production processes.
However, there are cases where the internal flow of the production process is known
and it plays a crucial role in the efficiency assessment. Network DEA conceives the
production process that characterizes the DMUs as a network of sub-processes
(stages, divisions), which are linked with intermediate measures. However, the
proposed models in network DEA do not necessarily provide unique divisional
efficiency scores. In addition, the estimation of the overall and the divisional
efficiency scores is achieved by unduly and implicitly assigning different priority to
the sub-processes. These issues question the neutrality of the results, which generally

can be biased and to lead to erroneous interpretation.

In this dissertation, we provide critical reviews on the value based and network

DEA models proposed in the literature and we develop new models which deal with



the aforementioned defects. Specifically, in the first part of this dissertation we
introduce a data transformation — variable alteration technique as a means to
transform the original input/output weights into values. We show that this
transformation enhances the conventional DEA models with additional properties and
that it treats successfully the discontinuity issue of the value functions in DEA, when
non-linear value functions for the inputs and the outputs are assumed (non-linear
virtual inputs/outputs). These findings allow us to develop a novel value based DEA
model, which unlikely the value based DEA models proposed in the literature,
provides a measure of efficiency for the evaluated units. Moreover, we develop a two-
phase approach to incorporate individual preferences in a DEA assessment framework
by means of Ordinal Regression. The effectiveness and the applicability of the novel
value based DEA model is further illustrated by revisiting a case study drawn from
the literature and by providing an application concerning the assessment of the
research performance of academics which takes into account both the quantity as well
as the quality of the research output. In the second part of this dissertation, we deal
with network DEA. Specifically, we introduce a multi-objective programming
approach for general series multi-stage processes, which employs the L, norm as a
distance measure to locate the stage efficiency scores as close as possible to their ideal
values that are obtained independently through standard DEA models. Our new
approach overcomes the defects of the basic network DEA models as it provides
unique and unbiased stage efficiency scores. When data are available in the literature,
the effectiveness of our approach is illustrated by comparing the results obtained by
our method with those obtained by other methods presented in the literature. When
data are not available in the literature, synthetic data are used for testing and
validation. The effectiveness and the applicability of our approach, is further
illustrated by providing an application for the assessment of the academic research

activity in higher education viewed as a two stage network process.

Keywords: Data Envelopment Analysis (DEA), value judgments, value based DEA,
max column normalization, network DEA, composition paradigm in network DEA,

academic research activity in Higher Education.
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Chapter 1: Introduction

Chapter 1

Introduction

The last decades, globalization and the soaring competition in the world market have
forced firms to increase their productivity and performance. Generally, the
improvement of performance requires a constant evaluation of the services,
production and sales of products that the firm is related to. To this end, performance
measurement and benchmarking can be viewed as supplementary fundamental aspects

for the longevity of a firm.

Measures such as sales per worker hour or sales per employee can be easily
established and provide partial information over the firm’s productivity. However,
such indicators are based on single measures and they provide limited information.
They neglect any interrelation with other performance measures and they can
generally lead to misleading results. Evaluating the firm’s performance on the basis of
multiple factors is not an easy task. When specific functional forms that transform
particular inputs to outputs are assumed and the assessment task is based on the
estimation of the parameters that fit the performance data, parametric approaches are
utilized. Contrarily, in non-parametric approaches no assumption is made on the
production functions. The production functions are empirically estimated on the basis
of the best practice units. Thus, benchmarking is achieved by comparing the evaluated

firm with other similar firms.

Data Envelopment Analysis (DEA) is a non-parametric technique for
measuring the relative efficiency of decision making units (DMUs) that use multiple
inputs to produce multiple outputs. The underlying mathematical instrument for
performing the analysis is linear programming. The two milestone DEA models,
namely the CCR (Charnes et el., 1978) and the BCC (Banker et al., 1984) models
have become standards in the literature of performance measurement, under the

assumption of constant (CRS) and variable (VRS) returns to scale respectively. Both
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are stated and solved either in the multiplier forms or their duals, the envelopment
forms. In terms of the multiplier form, the efficiency of a DMU is explicitly defined
on a bounded scale by the ratio of a weighted sum of its outputs to a weighted sum of
its inputs. The weights assigned to the input and the output data are the variables of
the corresponding linear program utilized in the efficiency assessment and they are
estimated in favor of the evaluated unit, so as to maximize its relative efficiency. The
units that achieve the highest efficiency score (equal to one) and they are not
dominated, they form the efficient frontier and they are used as benchmarks for the
inefficient units. The envelopment form, along with the efficiency scores, provides the
projections of the inefficient units on the efficient frontier, by assuming either an
input or an output orientation. Since the seminal paper of Charnes et al. (1978), DEA
has been established as the leading technique in performance measurement. Recent
extensions of DEA include, among others, the value based DEA and the network

DEA.

Several authors have spotted the relation between DEA and Multiple Criteria
Decision Analysis (MCDA). For example, Joro et al. (1998) and Halme et al. (1999)
related DEA to multi-objective programming. Bouyssou (1999) and Stewart (1996)
related DEA to MCDA ranking problems. Athanassopoulos and Podinovski (1997)
related linear programming formulations used in DEA to those used in MCDA with
partial information on weights. MCDA has developed many concepts and protocols to
elicit and use the preferences of the analyst providing so a broad methodological
framework to incorporate value judgements in DEA assessments, i.e. to incorporate
individual prior views according to the relative importance of the inputs and/or
outputs in the efficiency assessment. Within this framework, value based DEA is a
recent development that resorts to value assessment protocols from MCDA to
transform the original input/output data to a value scale on the basis of the analyst’s
preferences. Gouveia et al. (2008) and Almeida and Dias (2012) were the first to use
concepts form multi-attribute utility/value theory in DEA assessments. A limitation of
these works however, which in fact is attributed to the DEA model used, is that no
direct measure of efficiency is provided. In the first part of this dissertation, we

develop a novel value based DEA model which treats the aforementioned defect.
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Specifically, we introduce a data transformation — variable alteration technique as a
means to transform the original input/output weights into values. We show that this
transformation enhances the conventional DEA models with additional properties.
Moreover, we provide a critical review on DEA with non-linear virtual inputs and
non-linear virtual outputs that spots the discontinuity issue of the value functions. We
show that by extending the data transformation — variable alteration technique to DEA
with non-linear virtual inputs/outputs, the aforementioned discontinuity issue is
effectively treated. These findings and extensions allow us to develop a novel value
based DEA model which, unlikely the value based DEA models proposed in the
literature, provides a measure of efficiency for the evaluated units. Then, we revisit a
case study drawn from the literature. By assimilating the preferential information
given in the original work, the assessment results show that our approach successfully
locates the efficient DMUs and unlike the assessment method used in the original
work that discriminates only between efficient and inefficient units, it provides a
measure of efficiency. Additionally, apart from using direct preferential information
for the desired levels of the inputs and the outputs to estimate the value functions, we
develop an alternative indirect approach, based on Ordinal Regression analysis, to
assess a prototype of the value functions. To this end, we develop a two-phase
approach that bridges UTASTAR (Siskos and Yannacopoulos, 1985) with DEA.
Finally, we further illustrate the effectiveness and the applicability of the novel value
based DEA model by presenting an application concerning the assessment of the
research performance of academics which takes into account both the quantity as well

as the quality of the research output.

Network DEA is one of the major extensions of the conventional DEA. The
conventional DEA models assume one stage production processes and they generally
treat the production processes as “black box”; only the levels of the external inputs
that the system uses and the levels of the final outputs that the systems produces are
known. However, there are cases where the internal flow of the production process is
known and it plays a crucial role in the efficiency assessment. The conventional DEA
models fail to incorporate this information in the efficiency assessment. Network

DEA conceives the production process that characterizes the DMUs as a network of
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sub-processes (stages, divisions), which are linked with intermediate measures. The
most well-known approaches to network DEA are the multiplicative efficiency
decomposition introduced by Kao and Hwang (2008), the additive efficiency
decomposition introduced by Chen, Cook, Li and Zhu (2009) and the network SBM
approach introduced by Tone and Tsutsui (2009). However, these approaches do not
necessarily provide unique stage efficiency scores and moreover, the estimation of the
overall and the divisional efficiency scores is achieved by unduly and implicitly
assigning different priorities to the sub-processes. Recently, Despotis et al. (2016)
introduced an alternative approach to network DEA, which provides unique and
unbiased results. However, their modeling approach can be applied only in a two-
stage series network structure and cannot be extended in multi-stage series structures.
In the second part of this dissertation, we deal with network DEA and we develop a
novel network DEA approach for general series multi-stage processes which treats the
aforementioned defects of the network DEA models presented in the literature.
Particularly, we introduce a multi-objective programming approach, which employs
the L., norm as a distance measure to locate the stage efficiency scores as close as
possible to their ideal values that are obtained independently through standard DEA
models. Our new approach overcomes the defects of the basic network DEA models
as it provides unique and unbiased stage efficiency scores. When data are available in
the literature, the advantages of our approach are illustrated by comparing the results
obtained by our method with those obtained by other methods presented in the
literature. When data are not available in the literature, synthetic data are used for
testing and validation. The effectiveness and the applicability of our approach, is
further illustrated by providing an application for the assessment of the academic

research activity in higher education viewed as a two-stage network process.

Summarizing, in this dissertation we provide critical reviews on the value
based and network DEA models proposed in the literature and we develop new
models that overcome their defects. The effectiveness and the applicability of our new

models are further illustrated by providing new applications.
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1.1 Motivation and objectives of this research

In DEA, driving the efficiency assessments in line with individual preferences is of
major importance. The recent developed value based DEA models, although they
provide the analyst with the ability to incorporate individual preferences into the
assessment process, they do not provide an index of efficiency as they discriminate

only between efficient and non-efficient units.

Network DEA is a recent extension of conventional DEA for the efficiency
assessment of DMUSs, where their internal structure is taken into account. Particularly,
the entire production process of a DMU is analyzed into sub-processes (stages,
divisions) whose linkage is represented by series or parallel network structures. The
currently developed network DEA models do not provide unique divisional
efficiencies, whereas the efficiency scores are derived by implicitly assuming
unknown and different priorities to different stages, which bias the efficiency

assessment.

This dissertation deals with the above observed defects and it introduces novel
models that overcome the aforementioned drawbacks. Thus, the objectives of this

dissertation are:

e To present a review on methods utilized for incorporating value judgements in
DEA and to develop a novel value based DEA model which overcomes the
aforementioned defects.

e To present the current state of network DEA and to develop new network

DEA models, which provide unique and unbiased divisional stage efficiencies.
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1.2 Contribution of this research

The contribution of this research is summarized as follows:

6

Provides a thorough interpretation of the weight variables in DEA when max-
column normalization is applied on the data.

Introduces a data transformation — variable alteration technique, which
enhances the conventional DEA models with additional properties and deals
effectively with the discontinuity issue of the value functions in piece-wise
linear DEA.

Introduces a novel value based DEA model, which provides efficiency scores
for the evaluated units.

The proposed value based DEA model builds the bridge between the value
based DEA and the ordinal regression analysis MCDA approach.

Develops a framework for the assessment of the research activity of academics
via the value based piece-wise linear DEA approach.

Presents an application of the proposed value based DEA model to a case
study drawn from the literature and compares the results obtained.

Introduces a novel DEA approach for general multi-stage processes that
provides neutral and unbiased efficiency scores.

Presents an application of the proposed network DEA approach to the

assessment of the academic research activity in Higher Education.
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1.3 Organization of this dissertation

This dissertation is organized as follows:

Chapter 2: The chapter begins with an introduction to the basic assumptions, concepts
and definitions in DEA. Section 2.3 presents the fundamental DEA
models, namely, the CCR, the BCC and the Additive DEA models.
Section 2.4 presents techniques and approaches utilized for post DEA
analysis. Section 2.5 discusses some basic extensions of the conventional
DEA that are developed to meet different assumptions on the input/output

data analyzed.

Chapter 3: Reviews different methods to incorporate individual preferences in DEA
assessments. Section 3.2 analyzes the meaning of the input/output weight
variables in DEA. Section 3.3 discusses cases where individual
preferences need to be incorporated in DEA assessments. Section 3.4
reviews two broad classes of methods to incorporate value judgment in
DEA namely, the assurance region approach that introduces restrictions
on the input/output weights and methods that incorporate external
preference information by transforming the dataset or by adding fictitious

units. Then, the pros and the cons of these methods are discussed.

Chapter 4: Introduces a novel value based DEA model. In section 4.2 we introduce a
data transformation — variable alteration technique as a means to
transform the original input/output weights into values. In this way, value
functions are introduced in the DEA assessments that enhance the
conventional DEA models with additional properties. In section 4.3 we
provide a critical review of DEA with non-linear virtual inputs and
outputs that spots the discontinuity issue of the value functions. Then, we
extend the data transformation — variable alteration technique to DEA
models with non-linear virtual inputs and outputs by employing piece-
wise linear value functions. This extension effectively treats the
aforementioned discontinuity issue. In section 4.4, we develop a novel

value based DEA model which, unlikely the value based DEA models
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proposed in the literature, provides a measure of efficiency for the
evaluated units. Then, we revisit a case drawn from the literature that
concerns the assessment of a Portuguese retail chain in the pharmacy-
cosmetics-hygiene sector to apply our novel approach. For comparison
purposes, we assimilate the preferential information given in the original
work. The assessment results obtained show that our approach
successfully locates the efficient DMUs and unlike the assessment method
used in the original work that discriminates only between efficient and
inefficient units, it provides a thorough efficiency measure. Finally, in
section 4.5, we introduce a novel hybrid approach to incorporate
individual preferences in a DEA assessment framework by means of

ordinal regression.

Chapter 5: Illustrates the effectiveness and the applicability of the novel value based

DEA model presented in chapter 4 with an application. Particularly, we
develop a framework for assessing the research performance of academics
by taking into account both the quantity as well as the quality of the
research output. The effectiveness of our approach is justified by

comparing our results with those obtained by standard DEA models.

Chapter 6: Deals with network DEA. Section 6.2 provides a general literature review

Chapter 7:

8|

on network DEA. The basic network DEA approaches are presented in
sections 6.3, 6.4, 6.5 and 6.6. Section 6.7 concludes the chapter by

spotting specific shortcomings of the basic network DEA approaches.

Develops a novel network DEA approach for general series multi-stage
processes. We introduce a multi-objective programming approach, which
employs the L., norm as a distance measure to locate the stage efficiency
scores as close as possible to their ideal values that are obtained
independently through standard DEA models. Our new approach
overcomes the defects of the basic network DEA models spotted in the
previous chapter by providing unbiased and unique stage efficiency
scores. When data are available in the literature, the superiority of our

approach is illustrated by comparing the results obtained by our method
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with those obtained by other methods presented in the literature. Synthetic
data are used for testing and validation in general network structures
where the existing methods are not applicable. In section 7.2 we
categorize two-stage processes in four types and we develop our models
and solution procedures for each one of them. In section 7.3 we extend our
formulations to general multi-stage processes. The chapter ends with our

main conclusions.

Chapter 8: Develops a framework to assess the academic research activity in higher
education viewed as a two-stage network process. The first stage
represents productivity and the second stage represents the recognition of
the research outputs and the achievements of the academic staff. Measures
of the volume and the quality of the research work are both taken into
account in the assessment process, which is carried out by employing the
network DEA approach developed in chapter 7. The assessment
framework and the factors that were included in the analysis are presented
in section 8.2. Sections 8.3 and 8.4 present the results and our main

conclusions respectively.

Chapter 9: Concludes the dissertation by summarizing the main research findings

presented in the dissertation and provides future research directions.
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Chapter 2

Data Envelopment Analysis

2.1 Introduction

The competiveness in the world market has lead science to focus on how plants
(production units) can improve their performance. To this end, the measurement of
the efficiency of these units is a necessity. Efficiency is a measure of the ability of a
production unit to transform inputs to outputs. Performance measurement is not a
straightforward task. The classical approach to performance measurement assumes
specific forms of the production functions such as Cobb and Douglas (1928) and the
assessment of the units is made by estimating the parameters of the production
functions (parametric techniques) that fit the performance data. Farrell (1957)
introduced a non-parametric approach in the field of efficiency measurement where
no assumption is made for the production functions, that is the mechanism that
transforms inputs to outputs is assumed unknown and the assessment of the units is

based solely on the performance data.

Charnes et al. (1978), based on the innovative work of Farrell (1957),
introduced the Data Envelopment Analysis (DEA), a non-parametric technique based
on linear programming, to assess the relative efficiency of production units (Decision
Making Units - DMUs). DEA assumes that all DMUs are comparable, homogeneous
and that they consume the same inputs, to produce the same outputs; only the level of

inputs/outputs differs.

The choice of factors (inputs/outputs) in an assessment framework depends on
the case study and the availability of the data. Inputs are traditionally factors that are
consumed and their level should be decreased, while outputs are factors that are

produced and their level should be increased.
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Multiple EE—— DMU 1 —® Multiple
inputs (X;) — 5 outputs (Yy)
Multiple EE— DMU n — » Multiple
inputs (X,) > outputs (Y,)

Figure 2.1: Example of DMUs

Figure 2.1 presents a generic system consisting of # DMUs where each unit

consumes multiple inputs (vector X j) to produce multiple outputs (vector Y;).

Generally, DMUs belong to a production environment with an unknown technology
(7). The aim of DEA is to create an envelopment technology (7°"") from the observed
DMUs. The creation of the envelopment technology is based on the minimal
extrapolation principle e.g. to define the smallest convex set, which envelops all

observed DMUs and it is based on the following assumptions:

e All DMUs consume the same inputs to produce the same outputs. Only the
levels of the inputs/outputs that DMUs consume/produce differentiate from
one DMU to another. This assumption sets all DMUs comparable.

e The DMUs are observed entities that originate from the same unknown

technology (7).
e The envelopment technology is technically achievable (7" < 7).

e The input/output data are non-negative scalars.

DEA is built on the following axioms:

e Convexity: Any convex combination of DMUs that belong to 7", belong

n X n

oo J env _1. Ci

to T, i.e. Elﬂj{y. :leT , El/lj =1; /IjZO,]—l,...,n
j= J j=
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X, X
e Monotonicity: if [Y’} eT™ and X, > X, ¥, <Y, then L/O } eT™.
J 0

XJ. Xj
e Ray unboundedness: v eT™" =k v eT™ ,VkeR,;j=1,..,n.

J j

A major advantage of DEA over the parametric approaches is that it does not
require any a priori assumption of the production function that transforms inputs to
outputs. DEA is also referred to as a benchmarking technique, as it assess the
efficiency of decision making units relatively to the best practice units that are
located on the boundary of the production possibility set (efficient frontier). Since the
the innovative work of Charnes et al. (1978), more than 4000 articles have been

published, on DEA applications and extensions (Emrouznejad et al., 2008).
2.2 Basic concepts and definitions

In order to illustrate the basic concepts in DEA, three numerical examples are

presented below.
2.2.1 The one input - one output case

In this example, 6 stores (A-F) are presented and compared. Each store uses one input
(Employees) to produce a single output (Sales). The 2nd and 3rd rows of Table 2.1
present, for each store, the number of employees and the sales achieved in one month,

measured in units of tens of thousands, respectively.

Table 2.1: The one input — one output case

Store A B C D E F
Employees 2 7 5 8 4 10
Sales 1 6 3 2 6 7
Sales/Employee 0.5 0.857 0.6 0.25 1.5 0.7
Efficiency 0.333 0.571 0.4 0.167 1 0.467

The forth row of Table 2.1, depicts the sales per employee for each store. The latter
index is commonly used in management as a measure of productivity. The store E is

the most productive among the stores. The relative efficiency (productivity) of the
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stores is obtained by comparing the stores against the most productive one (store E)

as follows:

sales per employee of store i

<1,i=(A,B,C,D,E, F)
sales per employee of store E

The last row of Table 2.1 presents the efficiency scores of the stores. Thus, efficient
are the units whose relative efficiency score is 1 (store E). The units with relative

efficiency score less than one are inefficient (A, B, C, D, F). Figure 2.2 exhibits the

input/output data of the six stores presented in Table 2.1.

10 -+
Efficient Frontier
9 \
8 1 F
7 - E B o
6 - o
]
® 0
(7]
4 C
3 - o D
2 - A o
1 - o
O T T T T T 1
0 2 4 6 8 10 12
Employees

Figure 2.2: The production possibility set and the efficient frontier

The slope of the rays, which pass through the origin of the axes and the
observations, represent the sales per employee index for each store. The ray with the
largest slope that passes through the point E is called efficient frontier. The units A,
B, C, D and F are inefficient as they are below the efficient frontier. The efficient
frontier envelops all the observed units in the convex hull defined by the horizontal

axes and the efficient frontier. This convex hull is the production possibility set.

Besides the relative efficiency of the units, DEA provides also prescriptions

for their improvement so as to be deemed efficient. For instance, it yields sufficient
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and adequate information on how an inefficient DMU can be projected onto the

efficient frontier.

10 -
9 -

Efficient Frontier —_—

@)
)
S

Sales

0 2 4 6 8 10 12
Employees

Figure 2.3: Projections of unit C on the efficient frontier

As depicted in Figure 2.3, the inefficient unit C can be projected on the
efficient frontier in various ways. Every projection of DMU C to any point of the line
segment C;C, renders the unit efficient. Generally, there are two types of DEA
models. The input-oriented model, which aim to reduce the level of the inputs while
satisfying at least the given output levels (projection to C;) and the output-oriented
model, which attempt to increase the level of the outputs without requiring more of
any of the observed input (projection to C,). Non-oriented models have been also

presented in the literature (such models are illustrated in the next sub-section).
2.2.2 The two inputs - one output case

In this example we present a case of five stores, which use two inputs (full time
equivalent employees and floor area) to produce one output (sales). Table 2.2 shows

the input/output data for the five stores.
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Table 2.2: The two inputs — one output case

Store A B C D E
Employees 1 9 2 5 3
Floor Area 2 6 8 75 6

Sales 1 12 4 25 6

Employees/Sales 1 0.75 0.5 0.2 0.5
Area/Sales 2 0.5 2 3 1

To make the presentation of the data on a two-dimensional space possible, we
get for each store the level of inputs per unit of the output, as depicted in the last two

rows of Table 2.2. The data is graphically illustrated in Figure 2.4.

It is clear that the units which consume less input to produce 1 unit of output
are more efficient. Thus, the units B, D and E are efficient and they define the
efficiency frontier. The efficiency score of the inefficient units (C and A) can be

obtained by referring to the frontier. For example, the efficiency score of unit C is

) . oC
iven by the ratio !
g y OC

=0.8125, where the point C; is the intersection of the ray OC

with the line segment DE, which is part of the efficient frontier. This ratio is always
less than one for the inefficient units and denotes the level of inputs at which they
should be decreased proportionally so as the inefficient units to be deemed efficient.
For instance, the levels of both inputs of DMU C should be decreased by 18.75%
(0.8125%2=1.625, 0.8125*8=6.5) i.e. the full time equivalent employees should be
reduced at the level 1.625 and the area should be decreased to 6.5.
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Figure 2.4: The production possibility set and the efficient frontier

2.2.3 Single input - two outputs

In this example we present a case of five stores with one input (employees) and two

outputs (customers and sales) as shown in Table 2.3.

Table 2.3: The 1 input - 2 outputs case

Store A B C D E
Employees 1 2 2 4 2
Customers 2 6 8 4 6

Sales 7 12 4 24 6

Customers/ Employees 2 3 4 1 3
Sales/ Employees 7 6 2 6 3

To present the data on a two-dimensional space, we get for each store the level
of outputs per unit of the input, as shown in the last two rows of Table 2.3. The data

is graphically illustrated in Figure 2.5.

It is clear that the units with higher levels of outputs per unit of input are more
efficient. Thus, the units A, B and C are efficient and they define the efficiency

frontier whereas the units D and E are inefficient. The efficiency score of the
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inefficient units (D, E) can be obtained by referring to the frontier. For example, the
efficiency of unit E is defined by the ratio g—fj where point P, is the intersection of
2
the ray OE with the line segment BC, which is part of the efficient frontier. The unit
E is projected on the efficient frontier between the efficient units B and C. Thus, the
latter units are the reference units for E. In order the unit E to be deemed efficient
both outputs must be increased proportionally by l/gg This kind of inefficiency
2
which can be eliminated by a proportional improvement of the outputs is called
technical inefficiency. However, there are cases where the proportional improvement
of the outputs is not sufficient to restore the efficiency of an inefficient unit. For
instance, the efficiency of unit D is O—? However, the virtual unit Py, although it lies
1
on the boundary of the production possibility set, it is not efficient. Compared to unit
A, Py is inefficient because both exhibit the same level of sales per employee but unit
P, exhibits a lower level of customers per employee than A. Thus an extra non-radial
increase to the customers per employee is required (shift to point A) to restore the

efficiency of unit D. This kind of inefficiency is called as mix inefficiency.

8 1 P, A
7 4--——"7"-"""-"""-"-"--"@--—--"---- B
85 -
Q P2
£+ E
%3 |
K] C
A2 -
1 - :
0 T T T II 1
00 1 2 3 4 5

Customers/Employee

Figure 2.5: The production possibility set and the efficient frontier
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2.3 The basic DEA models

This section presents the basic DEA models introduced by Charnes et al. (1978) and
Banker et al. (1984) namely, the CCR and the BCC models respectively.

2.3.1 The CCR model

The CCR model was introduced by Charnes et al. (1978) and it is based on the

assumption of constant returns to scale (CRS). According to this assumption, a
proportional change to the inputs aX, a€R", will lead to the same proportional

change of the outputs oY .

Consider now a system that consists of # DMUs where each unit consumes m
inputs to produce s outputs. We denote by y,; the level of the output r (r =1,...,s)
produced by DMU ; (7=1,...,n) and by x; the level of the input i (i=1,..., m)

consumed by DMU j. X, :(xlj,... X )T represents the vector of the inputs that

>y
DMU ; consumes and Y, :( Vijoees Yy )T the vector of outputs that DMU

produces. The relative efficiency of the evaluated unit j, is estimated by the

following fractional model (2.1).

uY,
max e, =—=>
/ X,
.z
> @.1)
uY.
Sl =12,
vX .
J
u,v=>0

where the variables 1 =(i,,...,,) and v=(¥,,...,7, ) are the weights assigned to the
outputs and the inputs respectively. The ratio u#Y, /ﬁX ,, in the objective function
denotes the efficiency of the evaluated unit j,, which is to be maximized, whereas
the constraints Y, / vX, <1, j=1,..,n and u1,v>0 bound the efficiency scores of all

the units, including the evaluated unit, in the interval ( 0,1]. The model (2.1) is solved
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for each unit at a time. The terms #,y,; and V,x; are called virtual output and virtual
input respectively whereas 4Y, is called total virtual output and VX is called total

virtual input.

K 15725

Let & :(ﬁf,ﬁ;,...,ﬁ*) and v :(17* v, ,ﬁ;) be an optimal solution of the
model (2.1) and e;o the optimal value of the objective function when DMU j, is
evaluated. DMU J, is CCR-efficient if and only if ej.o =1 and there exists at least one
optimal solution (ﬁ*,\?*) with 4 >0 and ¥ >0. Otherwise, DMU j, is CCR-

inefficient. Often the non-negativity constraints #,v>0 are replaced by #,v>¢
where, ¢ is a non-Archimedean infinitesimal number, in order to deal only with non-
zero weights. When a unit is evaluated and ej.o <1 then, there will be at least one
constraint for which the equality holds (binding constraint) when applying the

optimal multipliers #°,9v". The set E, = { jiaY,=v'X j} is composed of efficient
units and it is called the reference set or the peer group of DMU .

Model (2.1) is in fractional form and thus non-linear. However, it can be
transformed to an equivalent linear model by applying the Charnes-Cooper (Charnes

and Cooper, 1962) transformation (C-C transformation hereafter). Consider a scalar
t €N such as 1=1/9X,. By multiplying all terms of model (2.1) with >0 and by

setting v=#tv and u=t model (2.1) is transformed to the following linear

equivalent:

max e. =uY,
Jo Jo

S.t.
vX, =1 (2.2)
uY, —vX, <0,;j=1.2,..,n
u,v=>0
Model (2.2) is the CCR input oriented DEA model. Indeed, the objective function of

this model aims to maximize the total virtual output of the evaluated unit. If ¢" <1,
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the unit is inefficient and the total virtual output cannot achieve a higher level. Thus,

in order to be rendered efficient, reduction of the input levels is required.

The dual of model (2.2) is as follows:

min 0

s.t.

6’on -X120 (2.3)
Y/?,—on >0

A>0

where A=(4,...,4, )T. In the context of DEA, the model (2.2) is referred as the

multiplier model whereas the model (2.3) as the envelopment model. The

correspondence of these models is illustrated on Table 2.4.

Table 2.4: Correspondence between multiplier and envelopment models

Constraint Dual variable Constraint Primal variable
(model 2.2) model (2.3) model (2.3) model (2.2)
vonzl 0 QXJO—XZZO v>0
uY, —vX, <0, j=12,...n A>0 YZ—YJOZO u>0

The model (2.3) can be expressed in its standard (augmented) form by introducing the

) ) B _ T
non-negative slack variables s~ = (s1 ,...,sm) and s = (sf,...,s

the model (2.4).

+
I

T .
) as presented in

min @

s.t.

HXjO—X/I—s’zo (2.4)
Y/l—Yj0 —-s'=0

A,s,s" >0
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The variables s~ =60X, — X1 and st=YA1- Y, are called input excesses and output

shortfalls respectively.

The envelopment form estimates the efficiency scores (9) of the evaluated

units and provides the projections of the inefficient units on the efficiency frontier.
This can be achieved by solving the linear program (2.4) in two phases. In the first
phase model (2.4) is solved so as to acquire the optimal value of the objective
function @°. Then, in order to discover possible input excesses and/or output

shortfalls, the model (2.5) is solved.

max e"s +e's”

s.t.

s =0X, -XA (2.5)
s* =Y1-Y,

A,8,8">0

where e” eR'*",e* eR'"’ are vectors of appropriate dimensions, whose all
elements are equal to one. In model (2.5), the objective function aims to maximize
the summation of the slack variables while the optimal value of the objective function

obtained in the first phase is maintained.

If & =1 and all the slack variables are zero then, the evaluated unit is

efficient otherwise, it is inefficient. According to the complementary slackness
theorem in linear programming, it holds that s~ v =0 and s*'u" =0. Hence, if the

optimal value of the objective function in model (2.5) is greater than zero, i.e. there

are non-zero slacks then, there will be at least one element of u# ,v such as u, =0 or

v: =0 and the unit is characterized as inefficient. On the other hand, if the optimal
value of the objective function in the model (2.5) is zero, then, according to the strong
complementary slackness theorem, a positive optimal solution is assured (z" >0 and
v >0) in terms of the multiplier form and the unit is efficient. To conclude, if an

optimal solution of the linear program (2.5) satisfies that 8" =1 ands™ =0, s =0

(max slack solution is zero), the unit is CCR efficient.
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From the fractional model (2.1) an output oriented linear equivalent model can
be derived. Table (2.5) presents the input and output oriented CCR DEA models in

their multiplier and envelopment forms.

It is worth noting that the optimal solution of the output oriented CCR DEA
model can be obtained from the optimal solution of the input oriented CCR DEA
model according to the following linear transformations:

n =16

. ﬂjzﬂ;/e*,j:I,Z,...,n

o t =5 /6, i=12,.,m

, (2.6)
o (7=5"/6,r=12,.s
Table 2.5: Input and output oriented CCR DEA models
Multiplier model Envelopment model
max e, =uY, min &
B s.. s.t.
=
2 v =1 (2.2) 0X, —X1-s =0(24)
o Jo
é uY, —vX, <0, j=12,..,n YA-Y, -5 =0
= u,v>0 A,s,57>0
min vX, max 77
L) 0
D s.t.
= S.t.
Q R
S uy, =1 Xjy = Xu=-t=0 ¢
S J 2.7) Vuery e D
B uY, —vX,<0,j=12,..,n ponty —t =
=
O M,VZO ,u,f,t+20

The optimal solution of the input oriented CCR DEA model can be derived from the

output oriented CCR DEA model by the following linear transformations

. 9*21/77*
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. /1/:#]/77,]‘:1,2,...,11

o s :t,.J /n",i=1,2,...,m

1

o s =tT/n,r=12,.,s

7

To conclude, an efficient unit according to the input oriented CCR DEA
model will be efficient according to the output oriented CCR DEA model as well.

Concerning the inefficient units, both models provide the same efficiency scores

n=16.
2.3.2 The BCC model

The BCC DEA model was introduced by Banker et al. (1984). It is considered as an
extension of the CCR model to cases where a proportional change to the inputs may
lead to a change to the outputs with different proportion. Thus, the BCC model is

based on the assumption of variable returns to scale (VRS). Specifically, when a

proportional change to the inputs by o (aX ) lead to a proportional change to the
outputs by S( Y ) then:
e If B > « the returns to scale is increasing

e If p =« the returns to scale is constant

e If B <« the returns to scale is decreasing

Figure 2.6 depicts the efficiency frontier for the data illustrated in Table 2.1 under the

variable returns to scale assumption.
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Figure 2.6: Efficient frontier under the assumption of Variable Returns to Scale

The efficient frontier is piece-wise linear and it is defined by units A, E and F.
Table 2.6 presents the multiplier and the envelopment forms of the input oriented and
the output oriented BCC models. In terms of the multiplier form, the main structural
difference of the BCC model (2.9) compared to the CCR model (2.2) is the free of
sign variable d € R, which is the supportive hyper plane that defines locally the
efficient frontier. This new variable is associated with the additional convexity
constraint "4 =1 in the dual (envelopment) form where ¢” e R'*" is a vector whose

all elements are equal to one.
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Table 2.6: Input and output oriented BCC DEA models

Multiplier model Envelopment model
max uY, —d min 6
F§ S.t. S.t.
2 WX, =1 OX, = Xi=s =0 )\
*; uY,—d—-vX,<0,j=12,...,n (2.9) Yxl—Yj —st=0 '
g u,v>0 e"A=1
de A,s7,s7 >0
- min vX, —p max 77
Q S.t.
= S.t.
o] _
'g uyj =1 on—X,u—t =0
H uY,—vX, +p<0, j=1,2,..,n (2.11) Ypu—nY, —t"=0(2.12)
=2 n
o u,v>0 e'u=1
peR u, t,t">0

The definitions of efficiency and reference (peer) sets in the BCC models are
the same with the definitions of the CCR models. Concerning the returns to scale, in
terms of the multiplier form, the following Theorem holds:

Theorem: Assuming that (x,, y, )is on the efficient frontier, the following conditions

identify the situation for returns to scale at this point.

1. Increasing returns to scale prevails at (x,,y,) if and only if d <0 for all

optimal solutions.

2. Decreasing returns to scale prevails at (x,,y,) if and only if d >0 for all

optimal solutions.

3. Constant returns to scale prevails at (xo,yo) if and only if d=0in any

optimal solution.

However, checking all optimal solutions can be laborious. This can be avoided by

applying a procedure introduced by Banker et al. (1996). Suppose an optimal solution
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(9*,/1*,s+*,s‘*) of model (2.10) and that d" <0 is the value of the variable d in the

optimal solution of the dual model (2.9). To verify whether condition 1 or 3 applies

from the above theorem, the following model is solved.

max d

S.t.

v)?jo =1

ufjo—dzl (2.13)
uY, —d —vX,; <0, j=12,...nj# j,

d<0

u,v=0

Where X W= ¢ B —s~ and }71.0 =7, +s*" . The constraint d <0 restricts the

variable to be non-positive. If its maximum value reaches zero, then the returns to

scale is constant. Otherwise, the returns to scale is increasing. A similar procedure

can be applied when the optimal value of the free variable is positive(d "> O).

When the BCC model is compared to the CCR, the following hold:

e When a DMU achieves the minimum level in at least one input (column
minimum) or the highest level in at least one output (column maximum)
then, it is BCC efficient.

e The efficiency scores according to the BCC model are greater or equal to
the efficiency scores obtained by the CCR model.

e The set of the efficient units according to the CCR model is a subset of the
BCC efficient units.

2.3.3 The additive model

The basic additive model, introduced by Charnes et al. (1985), is a non-oriented DEA
model. Its main characteristic is that it does not provide a direct measure of efficiency
but it only discriminates the efficient and the inefficient DMUs. The mathematical

formulations of the additive models are presented in Table 2.7.
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According to the Additive model, a DMU is characterized efficient if and only
if the optimal value of the objection function is zero. Concerning its relation with the

CCR and the BCC models, the following hold:

e A DMU is additive-efficient under the assumption of constant returns to
scale if and only if it is CCR-efficient.
e A DMU is additive-efficient under the assumption of variable returns to

scale if and only if it is BCC-efficient.

Table 2.7: Additive models and their duals

Multiplier form Envelopment form

max e"s +e's”

S »
= min vX, —uY, -
g XA+s™ =X,
% S.t. 0 (2.15)
o vX —uY 20, j=12,..n (214 Yi-st=Y
& J J Jo
O u,v=>1 A,8,87>0
max e"s +eé's’
.S min vX, —uY, +d s.t.
g S.z. X/l‘i‘s_ :XJ()
% VXj—llej +d20,j:1,2,...,l’l (216) YA-s" :on (217)
%)
Q; u,v=>1 =1
deR o,
A5 ,87 20

As already mentioned, the additive model does not provide a direct measure of
efficiency. To this end, a slacks-based measure (SBM) of efficiency has been
introduced by Tone (1997, 2001). The SBM model is presented, in analytical form, in
the model (2.18).
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1 &
1_;;%/’%
l+lis:/y”jo

Sr:l

min

S.t.

1

n
z/ljxij-i-si =x;, 1=1,2,..,m
=

S Ay =S = Yy =12 @.18)

J=1

4;20,j=12,..,n
s; 20,i=L2,..m

N
s, 20, r=12,..,s

The model (2.18) is in fractional form and thus non-linear. However, it can be

transformed to an equivalent linear model by applying the C-C transformation.
2.4 Post DEA Analysis

DEA discriminates the efficient and the inefficient units and it provides their
efficiency scores. In addition, concerning the inefficient units, it yields sufficient
information on how they can be projected onto the efficiency frontier so as to be
rendered efficient. However, it cannot discriminate the efficient DMUs among them
and the results may be sensitive to changes on the data or on the weights that are
applied to the factors. To this end, several post-analysis techniques have been

developed.
2.4.1 Super efficiency

Super efficiency was introduced by Andersen and Petersen (1993) and it has been
used to discriminate the efficient units. In the super efficiency model (2.19) the
inequality constraint corresponding to the evaluated unit is omitted from the

constraint set and thus, the efficiency of the evaluated unit is not bounded in the

interval (0,1]. In this way, efficient DMUs are allowed to attain an efficiency score

higher than unity and consequently they can be ranked.
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max ”on
S.t.
vX B =1 (2.19)

qu —vXj <0,j=L2,..n;j#j,

u,vze

The model (2.19) is the input oriented super efficiency model under the

assumption of constant returns to scale. Notice that the constraint uY, —vX, <0 does

not hold for the evaluated unit j,. However, it is notable to mention that according to

Banker and Chang (2006) super efficiency procedure should be used for the detection
of outliers and not for ranking the efficient DMUs.

2.4.2 Cross efficiency

In DEA, the units are free to select their optimal weights so as to maximize their
relative efficiency. This is considered as one of the main advantages of DEA.
However, as the efficiency score of the evaluated unit is strictly related to the choice
of the (optimal) weights, it would be appealing to check how the efficiency score of a
unit is affected when applying the optimal weights of the other units (Cross-
efficiency). Doyle and Green (1994) emphasized the importance of cross efficiency

and developed benevolent and aggressive models to assess the cross efficiency.

Cross-efficiency provides a nxn matrix where E,; declares the efficiency

score of unit / attained by using the optimal weights of unit k. From the above

definition, it is clear that the elements £, , , k=12,...,n are the DEA efficient scores

of the units k£ =1,2,...,n respectively. Table 2.8, indicatively portrays the cross-

efficiency matrix of 4 units. Column-wise, the entries of the cross efficiency Table
2.8 provide the efficiency scores of a unit as occurred from the scope of other units
(peer appraisal). For example, E,; represents the efficiency score of unit 1 when the
unit 2 is assessed. The average of the entries column-wise provides the cross
efficiency score of the units. The elements of a row, present the score of the other
units, under the scope of the evaluated DMU (appraisal of peers). The peer appraisal

can be used so as to rank the efficient units while the averaged appraisal of peers can
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be used in a further analysis where the aim is to maximize (benevolent approach) or
to minimize (aggressive approach) the average efficiency score of the other units

while maintaining the efficiency of the evaluated unit.

Table 2.8: Cross efficiency Table

‘ Rated DMU Averaged
Rating )
appraisal of
bMU 1 2 3 4
peers
1 E1,1 Ei» Ei3 Ei4 Ay
2 Ezq Ez, Ezs Ez4 A,
3 Es Es» Es;3 Es4 Aj
4 E4 E4» E43 E44 Ay
€1 (%) €3 €4

Averaged appraisal by peers (peer appraisal)

The model (2.20) presents the benevolent approach (when the objective

function is maximized) and the aggressive approach (when the objective function is

minimized) while maintaining the efficiency score of the evaluated unit j, .

min/ max Zn: (uYJ —vXj)
=1
J#Jo
S.L.
uY, —vX, <0, j=12,.,n; j# j, (2.20)
vX, =1
ut; =k,

v,u=>0
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2.4.3 Ranking intervals

Cross-efficiency has been widely used as a post analysis method as it estimates how
the optimal weights of the rest units affect the efficiency score of a unit. However, it
does not take into consideration all the feasible set of weights. To this end, Salo and
Punkka (2011) developed mixed integer linear programs so as to estimate the best

and the worst ranking a DMU can achieve considering all feasible sets of weights.

n
rP¢! =1+ min Z z.
Jo J
Jj=1,
J#Jo
S.t.

qu SVX]+CZJ,J=1727"'7n;J¢]0

uY, =1 (2.21)
vXjO =1
u,v=0

z,€{0,1}, j # j,

C is a large positive number

rj:’”’” =1+ max Z z;
2
S.t.
v, <uY, +C(1-z,), j=12,...m j # j,
uy, =1 (2.22)
von =1
u,v=0

C is a large positive number

Model (2.21) estimates the best ranking (1{}(’)"”) unit j, can achieve whereas

model (2.22) the worst one(k/f)m’“ ) Thus, the rank of unit j, , having selected any
feasible solution, will lie in the interval[rji“’ ,rjzwm] DMUs that have wider ranking

interval are more sensitive to changes over the weights whereas those who have
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narrower ranking interval are more robust. This method, provides also dominance
relations over the DMUs e.g. DMU k dominates DMU [ if 7" > """ and it can

also discriminate efficient DMUs according to their ranking interval.
2.4.4 Weightrestrictions

Restrictions on weights are commonly used in order to incorporate individual
preferences in terms of tradeoffs among inputs and outputs. In this way, the flexibility
of the evaluated unit to select its optimal weights is restricted and in effect the
discriminative power of DEA is improved. The incorporation of weight restrictions in

DEA assessments is further discussed in chapter 3.
2.5 Extensions of DEA

Conventional DEA models have been extended to deal with situations under different
assumptions on the input/output data. In this section, we provide a short literature

review on extensions of the standard DEA models.

Non-discretionary inputs

There are cases where some of the inputs are exogenous or generally fixed and
their levels cannot be reduced (uncontrollable/non-discretionary inputs). Banker and
Morey (1986) were the first who pointed out this issue and developed an approach to
deal with such cases. Other similar methods to deal with non-discretionary inputs can
be found in Ray (1991) and Ruggiero (1996). A review of these approaches and some

improvements are presented in Ruggiero (1998).

Imprecise data

Conventional DEA models assume that the input/output data are fixed scalars.
However, there are cases where some of the data are imprecise. For instance, they
may be given in terms of bounded intervals or measured in an ordinal scale (ordinal

data) Cooper et al. (1999) and Despotis and Smirlis (2002) were the first who
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developed approaches to deal with imprecise data in DEA (IDEA). A review of these
approaches is provided in Zhu (2003).

Negative data

One of the assumptions that permeate DEA is that data are non-negative.
Nevertheless, there are cases where negative values are meaningful. Scheel (2001)
was among the first who addressed the issue of negative data in DEA. Portela et al.
(2004), Sharp et al. (2007) and Emrouznejad et al. (2010) further explored the
development of new models to deal with negative data. Matin and Azizi (2011)
provided a review on these approaches and proposed an alternative approach for

setting targets in the context of DEA with negative data.

Undesirable outputs

Often, a production process produces, besides its ordinary outputs, some bad
outputs (for example pollutants). Such outputs are characterized as undesirable
outputs and unlikely the ordinary outputs that are to be maximized, these outputs
should be minimized. Seiford and Zhu (2002) and Fare and Grosskopf (2004), among
others, introduced DEA variations to deal with undesirable outputs. A thorough

review of these methods can be found in Liu et al. (2010).

Value based DEA

Value based DEA is a recent development that resorts to value assessment
protocols from multiple criteria decision analysis (MCDA) to transform the original
input/output data to a value scale. Gouveia et al. (2008) were among the first who
linked DEA with MCDA by incorporating concepts from multi-attribute utility/value
theory in the additive DEA model. Later, Almeida and Dias (2012) based on the
seminal ideas presented in Gouveia et al. (2008), extended their methodology in the

context of a real-world application.
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Network DEA

The conventional DEA models assume one stage production processes e.g.
only the levels of the external inputs that the system consumes and the levels of the
final outputs that the systems produces are known. However, there are cases where
the internal flow of the production process is known and it plays a crucial role in the
efficiency assessment. Network DEA is a recent extension of DEA to measure the
efficiency of DMUs when the production process is analyzed in sub-processes that
produce intermediate products (measures). Fare and Whittaker (1995) where among
the first who extended DEA to evaluate the efficiency in such processes. Several
network DEA approaches have been proposed in the literature. Reviews of these

approaches can be spotted in Castelli et al. (2010) and Kao (2014a).

The rest of this dissertation focuses on value based and network DEA models

providing new developments and applications.
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Chapter 3

Value Judgments in DEA

3.1 Introduction

In DEA the efficiency assessment of units can be based either on a multiplier or an
envelopment model. In the multiplier model, the efficiency is defined as the ratio of
the weighted sum of outputs to the weighted sum of inputs. The optimal weights
assigned to the inputs and the outputs are computed separately for each DMU, by
solving a linear program which aims to maximize its relative efficiency.
Consequently, the choice of the weights is made without any a priori knowledge about
the relative importance of the factors and it is free of any assumptions. However, in
real world problems external information on the relative importance of the
inputs/outputs, as provided by the analysts, might be crucial. In such cases, although
the flexibility privileged to the evaluated unit in selecting its own weights is one of the
major advantages of DEA in locating inefficiencies, the weights assigned to the inputs
and the outputs may not be necessarily in line with the analysts’ individual
preferences. A DMU, for instance, can be rendered efficient by assigning a zero
weight to an output whose performance is at a very low level. In such a case, the
DMU might be deemed efficient by implicitly neglecting a factor that may be
determinant in the analysis framework. Thus, in such a situation, the flexibility in the
selection of weights may unduly favor a unit contrarily to the analysts’ preferences

and to provide unreliable results.

To address this issue, various methods to incorporate value judgments in DEA
efficiency assessments have been arisen. The necessity to intervene in the way the
weights are assigned to the inputs and the outputs originates from a variety of reasons,

such as to improve the discriminative power of DEA, to restrain the diversity of the
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weights assigned to the same factor by different DMUs and to incorporate individual

preferences and trade-offs over the inputs and the outputs.

In this chapter, a short review is presented on the most important
methodologies that have been proposed in the literature to incorporate value
judgements in the context of DEA. The advantages and disadvantages of each method

are also discussed.
3.2 The meaning of weights in DEA

As discussed in the previous chapter, the multiplier and the envelopment models are
duals of each other and they differ in their structure and in their interpretation. The
envelopment models are defined on the production space where the production
possibility set (PPS) is specified by a linear combination of the observed levels of
inputs and outputs of the DMUs. The efficiency in these models is defined as the
maximum proportional expansion of outputs (output-oriented) or the minimum
proportional reduction of inputs (input oriented) required to achieve the frontier of the
PPS. On the other hand, the multiplier models are represented on a value space where,
the weights are interpreted as imputed marginal values of outputs/inputs and the
overall efficiency is defined as the ratio of the total imputed value of the outputs to the
total imputed value of the inputs. To this end, weights in DEA are closely related to

value and tradeoffs among the factors.

Table 3.1 illustrates the data presented in Table 2.3 where the last three
columns provide the optimal weights when the CCR input oriented DEA model (2.2)

is employed.
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Table 3.1: The 1 input - 2 outputs case and the optimal weights

Store Input 1 Output 1 Output 2

Employees Customers Sales Efficiency " ul “
A 1 2 7 1 1 0 0.1429
B 2 6 12 1 0.5 0.0556 0.0556
C 2 8 4 1 0.5 0.1250 0
D 4 4 24 0.8571 0.25 0 0.0357
E 2 6 6 0.8333 0.5 0.1111 0.0278

When a DMU is assessed, there will be a least one binding constraint in model (2.2),
which defines a hyperplane on the efficient frontier. For example, concerning the

efficient DMU B, which lies on the efficient frontier, its hyperplane is given by the
equation 0.5x,, —0.0556y,, —0.0556y,, =0. Such equations provide information
concerning the marginal rates of substitution among inputs/outputs. Specifically, for

DMU B, the marginal rate of substitution between output 1 (customers) and output 2

(sales) is defined by the ratio:

_@i__w@Q__E;__Qmw6_

*

dy, 0/oy, u  0.0556

which means that increasing output 2 (sales) by 1 unit, will lead to the reduction of 1
unit of output 1 (customers) while DMU maintains its efficiency score. Thus, the ratio
of two optimal weights represents the marginal rate of substitution between the factors

that the weights are associated with.
3.3 Reasons to incorporate value judgments

The incorporation of the analyst’s preferences in a DEA assessment framework has
turned to be essential in real world applications. Allen et al. (1997) and Thanassoulis
et al. (2004) were the first who provided a comprehensive discussion about the needs

that value judgments respond to. These can be summarized as follows:
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To improve discrimination among the efficient DMUs

The discriminative power of DEA depends on the number of the evaluated
DMUs and the number of factors (inputs/outputs) that are included in the analysis.
That is, in cases where the number of the evaluated DMUs is relatively small
compared to the number of factors, the results from DEA do not provide the desired
discrimination between efficient and inefficient units. Returns to scale assumption
(constant or variable) is another parameter, which affects the discriminative power.
Variable returns to scale assumption provides the evaluated units with a higher degree
of flexibility with the aid of supportive hyperplane thus, identifying more DMUs as
efficient. These issues make more difficult the discrimination the efficient DMUs
from the inefficient ones. For example, Thompson et al. (1986), in an effort to site
nuclear physics facilities in Texas, they faced a problem with discrimination as five
out of six DMUs were estimated as relatively efficient. They dealt with this issue by
setting ranges of acceptable weights (assurance region), which were used to identify
the preferred efficient DMU. Cook et al. (1992) also highlighted the need of locating a
“winning” DMU among the efficient ones and examined various types of assurance
region constraints to deal with this issue. Other methods for improving the
discrimination among the efficient DMUs are the super-efficiency approach
(Andersen and Petersen, 1993), the cross efficiency approach (Green et al., 1996 and
Anderson et al., 2002) and multi-objective programming (Li and Reeves, 1999).
These approaches do not require any a priori external information on the importance
of the inputs and the outputs (Meza and Lins, 2002). Despotis (2002) introduced a
non-parametric global efficiency approach to improve the discriminating power of
DEA by employing different metrics and the common weights assumption. Salo and
Punkka (2011) developed mixed integer linear programs so as to estimate the best and

the worst ranking a DMU can achieve considering all feasible sets of weights.
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To reduce the diversity of weights assigned to a factor by different DMUs

As each DMU is free to select the optimal weights assigned to the factors, very
small or extremely large weights may be assigned to particular inputs and/or outputs
by each evaluated DMU. Thus, the analyst might be interested in reducing the
diversity of weights assigned to a factor. Roll et al. (1991) developed an approach
where Common Set of Weights (CSW) were used for all DMUs thus, removing any
flexibility on the weights selection. As they mention in their paper, “difference
between the efficiency measured with an ‘individual’ set of weights and that obtained
with a CSW may indicate the effects of special circumstances under which a DMU
operates”. Roll and Golany (1993) and Cook et al. (1991) developed further the
approach of CSW.

To incorporate preference information on marginal rates of substitution among the

factors

As mentioned in the previous section, the ratios of optimal weights assigned to
the factors by an evaluated DMU are interpreted as marginal rates of substitution
among the inputs/outputs. However, as some weights may be zero at optimality, the
related marginal rates of substitution will be ill-defined. In addition, even in the case
where they are well-defined, they may not reflect experts’ preferences and the desired
tradeoffs among the factors. To deal with such cases, additional information is
required to be incorporated in the DEA analysis framework so the results to be in line

with the analyst prior views.

To incorporate relative importance between the inputs and/or outputs

There are situations where additional value preferences need to be included in
the analysis. For example, Thanassoulis et al. (1995), measuring the efficiency of
perinatal care units in UK, imposed the weight of “babies at risk” (input) to be the
same with the weight of “number of survivals” (output). Beasley (1990) and Ahn and

Seiford (1993), measuring the performance of university departments in UK and
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USA, respectively, mentioned that universities with emphasis on post-graduate

students should be rewarded.
3.4 Incorporating value judgements in DEA

There is a considerable number of approaches in the literature to assimilate value
judgements in DEA. These approaches can be categorized into two broad classes of

methods:

e Introduction of weight restrictions

e Alteration of the data set

It is noteworthy to mention that other methods can be also employed to
facilitate the analyst preferences. Indicative examples are the method introduced by
Olesen and Petersen (1996), which restricts the hyperplanes where projections of the
inefficient units can be driven, as well as the method coined by Bessent et al. (1988),
which extends the efficient facets so that each inefficient DMU is fully enveloped by
the efficient DMUs. Additional approaches which, are not included in the above two
broad classes can be found in Halme et al. (1999), Podinovski (2004) and Cooper et
al. (2000).

3.4.1 Introduction of weight restrictions

Weight restrictions can be applied either directly to the weights or by imposing
constraints to the virtual inputs/outputs. These restrictions can be classified as

follows:
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Table 3.2: Types of weight restrictions

Absolute restrictions a, <u, <b, (1)
: a, <2 <p (r)
Assurance region Type I W= S 2
/
W, Wl S, (r3)
Assurance region Type IT ayv, Zu, (ry
U
a, < Yitlr < (rs)

Restrictions on virtual outputs

= b
Zr':l y”ju"

In Table 3.2 u,, u, and u, represent the weights associated to the #”, & and I output
respectively with r=1,...s, k=1L1..s, [=1,..,5s and r#k=#[/. Analogously,v,,
i=1,..,m, represent the weight assigned to the /" input. The a,,a,,a,,,b,,b,,w, and
w, represent user defined constants (parameters), which denote the intensity of the

analyst’s preference. Restrictions (7;)- (r3) and (rs) are expressed in terms of the
weights associated for the outputs. However, they can be also used to restrict the
weights assigned to the inputs. Restriction (7,) relates the weights assigned among the

inputs and the outputs. These types of constraints are further discussed below.

Absolute restrictions

Absolute weight restrictions are the most direct way for restricting the weight
space. They were first introduced by Dyson and Thanassoulis (1988) and Cook et al.
(1991, 1994). This type of constraints, restrict the weight variables to a continuous
and closed interval whose bounds denote the lower and the higher level that the
weights can achieve. These bounds can be viewed as thresholds of tolerance, which
intend to avoid the overestimation or the underestimation of a factor e.g. to avoid a
weight to attain a zero level and thus, the corresponding factor to be ignored in the

analysis.
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However, as the significance of the weights is on relative basis, defining
absolute bounds is not an easy task. In addition, there is a strong linkage on the
bounds in different weights. For example, setting an upper bound on one input weight
imposes an upper bound on its virtual input and thus a lower bound to the summation
of the virtual inputs of the remaining inputs. Furthermore, when absolute restrictions
are employed under the constant returns to scales assumption, the input oriented
models produce different relative efficiency scores from those obtained from the
output oriented models. Thus, the selection of the absolute restrictions should be on
the basis of the orientation. Finally, additional caution is needed when absolute

restrictions are employed as they may lead to infeasibility.

Assurance region Type I (ARI)

These types of constraints associate the weights among inputs or outputs. They
were first used by Thompson et al. (1986). Constraints of the form (»2) are more
common in the literature and they are based on the economic notion of marginal rates
of substitution. The bounds of such constraints are usually chosen on the basis of
analyst’s preferences in conjunction with prior price/cost information. In contrast to
absolute restrictions, when ARI are introduced under the CRS assumption, both input

and output oriented models provide the same efficiency scores.

Assurance region Type Il (ARII)

This type of constraints links the weights of inputs with the weights of outputs.
Thompson et al. (1990) was one of the first who discussed the introduction of such
constraints. They noted that apart from the infeasibility issues that may occur when
such types of constraints are employed, the relation of inputs and outputs may be not
clear (see Thanassoulis et al. 2004). When ARII are introduced, under the constant
returns to scale assumption, both input and output oriented models provide the same

efficiency scores.
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Restrictions on virtual inputs or virtual outputs

Restrictions on virtual inputs or virtual outputs constitute an alternative
approach to incorporate individual preferences. Unlike the previous methods, which
impose direct restrictions on the weights, this type of constraints restricts the
contribution of a virtual input (output) in the total virtual input (output) to range
within a bounded interval. Technically, the virtual input/output is dimensionless and
represents the worth of the corresponding factor in the efficiency assessment. The
ratio of the virtual input/output to the total virtual input/output denotes the relative
importance of the input/output, which contributes in achieving the efficiency score.
From a managerial aspect and application driven requisites, restraining of the relative
importance of a factor may seem appealing. However, as the implied restrictions are
DMU specific, the model may become computationally expensive due to a large

number of additional constraints.

Wong and Beasley (1990) suggest the following approaches concerning the

incorporation of constraints of type (#35) in the model:

I.  Add restrictions of type (r5) only for the DMU being evaluated. The
relative virtual values of the rest DMUs remain unbounded and thus, only
two additional constraints are appended in the model.

II.  Add restrictions of type (r5) to all the DMUs. Consequently, 2n
constraints are included in the model, where » denotes the number of
DMUs.

III.  Add restrictions of type (#5) for the assessed DMU plus two additional

constraints defined below (76).

Lrw {SLSU}’ (7"6)

The numerator in the fraction of type (76) denotes the virtual output » of a fictitious
DMU, which produces the average level of output » across all DMUs. The

denominator represents the total virtual output of the fictitious DMU.
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The approach II restricts the relative importance of an output for all DMUs.
However, this is accomplished at the cost of computation. Notice that, 2»n additional
constraints are included in the model each time the analyst wants to restrict the
importance of a factor. In applications with many DMUs, restricting multiple factors
will lead to the introduction of numerous constraints, which increase dramatically the

complexity of the model.

The approach I, reduces the number of additional constraints to two per factor.
Although, it is less computational expensive, it may lead to misinterpreted results.
Since, the relative importance of output 7 for the rest DMUs remains unbounded when
DMU j, is evaluated, the optimal weights assigned to DMU j, may be infeasible when
another DMU is evaluated. This issue raises a question of validity of the estimated

efficiency scores as they are calculated on a different basis.

The approach III, does not require the introduction of many additional
constraints and it also takes into consideration the level of the outputs of the rest
DMUs when unit j, is evaluated. However, even in a less degree, it still suffers from

the drawback of approach I.

The virtual inputs/outputs are dimensionless and not dependent on the units of
measurement of the factors. This is an advantage of restricting the virtual
inputs/outputs over restricting directly the weights. However, restrictions on virtual

inputs/outputs are closely related to absolute restrictions. For example, in an output

oriented model, since for the evaluated unit j, holds that Z y,u, =1, the constraint

r=1

L a b, . .
(r5) for this unit is reduced to a, <y, u, <b, orto ——<u, <——, i.e. to a constraint
h Vi Vi

of Type 1. Notice, that the relation between absolute restrictions on the weights and
restrictions on virtual measures holds when restrictions on virtual inputs are employed
in an input oriented model or when restrictions on virtual outputs are introduced on an
output oriented model. To this end, the efficiency scores are dependent on the

selection of the model’s orientation.
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3.4.2 Alteration of the data set

The introduction of restrictions to the weights or to the virtual inputs/outputs
constitutes a direct technique to incorporate value judgments in the DEA assessments.

Another approach is the alteration of the data. This is accomplished by two methods:

e Transformation of the original data

e Introduction of artificial DMUs

Transformation of the original data

The Cone Ratio (CR) approach introduced by Charnes et al. (1989), constitutes
one of the most well-known approaches to incorporate value judgments in DEA
assessments by applying a transformation on the original performance data. The CR
approach is quite close to AR constraints. For example, ARI restrictions can be also

treated in the CR approach. However, the latter is more general.
Consider the following multiplier model (3.1)

max e, :uY/.0
S.t.

von =1

uY —vX <0
uelU

velV

3.1)

where U c R} and V' < R”' represent closed convex cones containing information of

the weight restrictions. Uand 7 represent their negative polar cones and —U ,—V

contain information on how to convert the data set. Restrictions of ARI, like (72), can

be expressed in a matrix form for inputs as V = {V DV >0,v> 0} and similarly for

outputs as U = {u :Cu" 20,u> O}. Charnes et al. (1989) proved that model (3.1) is

equivalent to model (3.2).
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(3.2)

-1 -1
where 4" = (DTD) D", B" = (CTC) C" and & ,v are vectors representing the new
weight variables.

In model (3.2) the data set is actually transformed so as to incorporate the

desired weight restrictions. Notice, that the weights variables (E,\_z) in model (3.2) are

only restricted to be non-negative.

The CR approach has the advantage that captures value judgments through the
data transformation instead of restricting the weights directly as in AR approach. In
addition, it can be used to associate any number of multipliers. Such links may not be
translated in terms of Assurance Region. Thus, CR is considered more general than
AR. The CR approach requires the computation of an inverse matrix. The problem
that may rise is that the inverse of the matrix may not be defined and thus such data
transformation is not always possible. Once the optimal solution of model (3.2) is

obtained it must be transformed in terms of model (3.1) in order to be communicated.

Introduction of artificial DMUs

The introduction of artificial DMUs is another method to incorporate
preference information in DEA. This approach does not change the structure of the
constraints but, it enlarges the size of the PPS and changes the efficient frontier.
Specifically, unlike the weight restrictions which aim to limit the feasible region of
the weight variables directly, this method intends to reshape the efficient frontier by
introducing new DMUs which are not in the original dataset. These DMUs are

fictitious units which are designed to implement the desired best practice and to act as
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benchmarking units. Golany and Roll (1994) mention that there are two main
advantages of the incorporation of artificial DMUs compared to the introduction of
restrictions on the weights. As discussed in the previous sub-sections, the
incorporation of analyst’s preferences by imposing restrictions on the weight may lead
to numerous additional constraints, which increase the computational load. However,
in the case of adding a new DMU, the size of the constraints increases only by one in
the multiplier form. Moreover, introducing an artificial DMU in the observations does

not lead to infeasibility as the weight restrictions may do.

The incorporation of weight restrictions in the multiplier form leads to the
addition of new variables in the envelopment form. These new variables can be
treated as additional DMUs in the production technology. Roll et al. (1991) were the
first who pointed out this connection by providing a geometric meaning of lower
bounds to input weights. They showed that each weight restricted to be positive is

equivalent to adding an unobserved unit in the data set.

Golany and Roll (1994), pointing out that “the standards are used to determine
both optimal output levels and the corresponding minimal inputs”, studied the effects
of introducing “standard” DMUs in the DEA assessment. These DMUs can be
interpreted as benchmarking practices which however are difficult to define.
Nevertheless, they show that both weight restriction and “standard” DMUs affect the
efficiency scores in the same direction. Thanassoulis and Allen (1998) generalized
this finding by illustrating the equivalence of imposing AR weight restrictions of
Type I and II with adding new DMUs. Under the CRS assumption, they developed a
technique which produces a Full Set of Unobserved DMUS (FSUD) whose size is
equal to the number of observed DMUs. They showed that the incorporation of the
FSUD in the original data set is equal to imposing weight restrictions of type ARI and
ARIIL. However, as the FSUD may include DMUs who are duplicated and/or whose
input-output vectors are linear combinations of the input-output vectors of
real/unobserved DMUs, they extended their approach, by employing the concept of
super-efficiency (Andersen and Petersen, 1993), in order to get a subset of the FSUD,
which is adequate to simulate the ARI and ARIIL They called this subset as Reduced
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Set of Unobserved DMUs (RSUD). Analogously, they extended their approach under
the VRS assumption.

Allen and Thanassoulis (2004) incorporated Unobserved DMUs (UDMUs) in
the dataset to capture value judgments. They proposed an approach similar to
constrained facets approach (Bessent et al., 1988, Lang et al., 1995) in the sense that it
operates directly on the PPS rather than on DEA weights. Nevertheless, their
approach aims to project the inefficient DMUs on the efficient frontier in a manner
that all the input/output weights of the evaluated unit to be non-zero at optimality. To
this end they introduce the so called Anchor DMUs (ADMUs), whose input-output
levels are adjusted so as to reduce the inefficient part of the boundary of the PPS. This

approach can be summarized in 5 steps as follows (Allen and Thanassoulis, 2004):

1. Run an ordinary assessment by DEA to identify the DEA-efficient and non-
enveloped DMUs. If all DEA-inefficient DMUs are properly enveloped,
then stop.

2. If any non-enveloped DMUs exist, identify anchor DMUs (ADMUs) from
which to construct Unobserved DMUs (UDMUs).

3. In respect of each ADMU identify, which output(s) to adjust in order to
construct suitable UDMUs.

4. Using adjustments to the outputs identified in (3) and the analyst value
Jjudgments construct suitable UDMUE.

5. Re-assess the observed DMUs by DEA after adding the UDMUs
constructed. The number of enveloped observed DMUs will generally
increase, depending on the accuracy of the information supplied by the
analyst and on any unenvelopment caused by the presence of non-full

dimensional efficient facets (NFDEFss).

This approach is limited to CRS DEA models with a single input and multiple outputs

or a single output and multiple inputs.
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3.4.3 Incorporation of weight restrictions versus alteration of the dataset

As discussed above, there is equivalence between the introduction of weight
restrictions and the alteration of the data set in the sense that they both produce the
same efficiency scores. However, weight restrictions affect directly the weight space
whereas the alteration of the data set absorbs value judgements by changing the
efficient frontier. The choice whether to include weight restrictions or to alter the
dataset mainly depends on the information of value judgements that the analyst desire
to incorporate. However, the choice of one method does not exclude the other. They
can be both utilized simultaneously to capture prior views regarding the efficiency
assessment. Nevertheless, both methods have advantages and disadvantages. Some of

them are discussed below:

Local vs global trade offs

In the UDMUs approach introduced by Allen and Thanassoulis (2004), the
analyst is asked to provide tradeoffs between the inputs or outputs for specific DMUs.
Thus, these tradeoffs are set on a local level and depend on the DMU that is chosen.
On the other hand, weight restrictions affect all the evaluated DMUSs and thus, can be
viewed as global tradeoffs. From a managerial aspect, it may seem more convenient to
set local tradeoffs rather than global ones which affect the whole dataset.
Furthermore, weight restrictions may imply constant marginal rates of substitution
among the factors, which turns to be very restrictive in VRS technology where the
marginal rates of substitution alter in different parts of the efficient frontier. From this
point of view, setting local tradeoffs may seem more appealing in assessment

exercises where variable returns to scale are assumed.

Projections on the Efficient Frontier

Efficiency in DEA is a radial measure of reduction of the inputs (input-
oriented model) or expansion of the outputs (output-oriented model). However, this

does not hold when weight restrictions are added in the DEA model. In this case in
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order an inefficient DMU to reach its target in the efficient frontier might need to
increase particular inputs or to reduce particular outputs. An example of this
irregularity can be spotted in the results given in Chilingerian and Sherman (1997)
where DEA was employed to evaluate practice patterns of primary care physicians.
The UDMUs approach introduced by Allen and Thanassoulis (2004) does not suffer
from this irregularity as it maintains the radial nature of efficiency. However, not
fully-enveloped DMUs are projected on artificial units (Unobserved DMUs), whose

introduction has altered the efficient frontier.
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Chapter 4

A novel value based DEA approach

4.1 Introduction

The incorporation of value judgments in DEA has drawn significant attention by the
scientific community. The aim is to develop robust techniques that successfully
assimilate the analyst’s preferences in the efficiency assessment. Although there are
many techniques developed to address this issue in the context of DEA, eliciting user
preferences and incorporating them in the analysis remains a challenging research

arca.

In this chapter, we develop a novel approach, which allows for a better
expression and incorporation of individual preferences. The models developed within
this approach are enhanced with additional properties compared to the standard DEA
models remaining however in the ground of DEA. Specifically, we show that by
applying a data transformation — variable alteration technique, the new variables
obtain a meaningful interpretation for the analyst, allowing him/her to express
tradeoffs among the inputs and the outputs in a more effective manner. The new
approach can be easily extended to situations where the virtual inputs/outputs are
treated as piece-wise linear value functions so as to implement intra- and inter-
input/output value tradeoffs. The extensions of the conventional DEA models
introduced in this chapter allow us also to bridge DEA with Multi Criteria Decision

Analysis (MCDA).

The chapter unfolds as follows. In section 4.2, we present a data transformation
— variable alteration technique which leads to the development of max-column
normalized DEA models. Their additional properties are also discussed. In section
4.3, the data transformation — variable alteration technique is extended to deal with

non-linear virtual inputs and outputs. Actually, piece-wise linear functions are
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assumed to model the non-linear value functions. In section 4.4 we develop a general
value based DEA model where the individual preferences are extracted by means of
MCDA protocols. In section 4.5, a hybrid approach is presented where the value
functions are estimated by means of the ordinal regression MCDA method

UTASTAR.

4.2 Max-column normalized DEA models

In this section, we introduce a data-transformation — variable alteration technique,
which is based on the max column normalization. Although rescaling the data in DEA
has already been used in the literature, the advantages of the max-column data
transformation has not been explored. In 4.2.1 we discuss why rescaling the data is
needed in the DEA. In 4.2.2 we provide a thorough insight on the meaning of the
variables and the additional properties that the DEA models are enhanced with when

this sort of rescaling is employed.
4.2.1 Unbalanced data, rescaling and DEA

Performing a typical DE Analysis means solving a series of linear programs, one for
each DMU, either by a dedicated DEA software or by using generic standard LP
software. Whatever the case, one of the problems faced by some LP implementations
used to execute a DEA model is that of scaling. Indeed, unbalanced data may cause
problems in the execution of the LP software and may lead to round-off errors.
Unbalanced data often occur in DEA performance measurement due to different
magnitudes of input/output measures. Thus, rescaling the data before executing the
DEA models is a common practice, implicitly or explicitly considered for
computational purposes in order to eliminate the unbalance in the raw input/output
data caused by units of measurement of different order of magnitude. As a means to
address this problem, Sarkis (2007), for example, suggest to rescale the observed raw
data for the inputs and the outputs by dividing them by their means, column-wise.
However, although this data transformation is technically correct and effective,

rescaling on the means is impossible to interpret in a DEA context.
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Rescaling the data on the column maximum is another alternative. Let us call
this sort of rescaling max-normalization. In a different context and for a different
purpose, rescaling on the column maximum, followed by a variable alteration, has
been used by Cooper et al. (2001) to transform a non-linear imprecise DEA (IDEA)
model to a linear one. Our concern, however, in this section is to highlight the
meaning of max-normalization in DEA, which has not been stated explicitly

elsewhere and then, to underline some properties of the max-normalized DEA models.
4.2.2 On the meaning of max-column normalization
Consider the following couple of input-oriented CCR DEA models (multiplier and

envelopment forms):

Multiplier form:

max E(M,V, .]0) = Z yrjour
r=1

S.L.

2 X, v =1 (4.1
i=1

S

S m
Y l, —Z x,v; <0, j=1..n
r=1 i=1
u,v, 20 Vr,i
Envelopment form:

min @

s.t.
Zn:yrjﬁj —s =Y, r=1..s 4.2)
j=1
Ox,, —Zn:xij/li -5, =0 i=L...m
j=l
A,20,57 20,5, 20 Vj,r,i

The units of measurement for the multipliers in model (4.1) are such that the

virtual outputs y,_u, and the virtual inputs x, v, are both dimensionless. In this manner

outputs (inputs) with different units of measurement can be aggregated to a total
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virtual output (input), which is dimensionless as well. A typical interpretation of the
multipliers u, and v; , as presented in section 3.2, is that they represent marginal values
of output » and input i, respectively, with the efficiency measure E representing then
the ratio of the total value of outputs to the total value of inputs, where the latter has

been set to 1.

In the following, we illustrate that when the input/output data in the multiplier
model (4.1) are normalized on the column maximum, the variables are altered in a
manner that the derived DEA model, although structurally identical to the original
one, does no longer make explicit reference to weights but it does make direct
reference to worth instead. To facilitate the presentation, the following notations and

transformations, related to the outputs first, are introduced. Let / =min{y, }and
j
h, =max{y, }be the lowest and the highest observed values for output r over the
i

entire set of units, with /, >0 (strict positivity assumption). Then, y, €[/, h,]for
every unit j=1,...,n, with at least one unit having its output r at the level 4,. Let u, be
the optimal multiplier assigned in model (4.1) to the output measure Y, by the
evaluated unit j (represented by the slope of the line OA in Figure 4.1) and p,, =y u,
the corresponding virtual output estimated in favor of unit ;. When the optimal
multiplier u, is applied to the unit exhibiting the highest output 4,, it assigns to 4, the

highest value p, = i u, . For these two value estimates the following holds (see Figure

4.1):
yr_"
p;fj - h: r
or
- A~ Yy
p,; =Y,p,,Where y, :h— (4.3)

i
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Prj pr

Figure 4.1: Value estimates for output measure Y,

The treatment of inputs is analogous. Indeed, if / =min{x,} >0, 4 =max{x;} , v; is
J J

the optimal weight assigned to the input measure X; by the evaluated unit j, and

q; = x;v; is the associated virtual input for unit j, then the value assigned to the

highest observed input 4; is ¢, = h,v, and

X,
q; = h_jqi
or
~ A xl”
q, = %,q;, where %, =7’ (4.4)

i

Introducing the transformations (4.3) and (4.4) in models (4.1) and (4.2) the following

couple of max-normalized DEA models is obtained:
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Multiplier form:

Envelopment form:

max E(p,q,]o) = Zﬁﬁopr
r=1

S.L.

> X4 =1 4.5)
i=1

Z Pyp, =D %,q,0, j=1..n
r=1 i=1

p..q; =20 Vr,i

min @

S.t.

n R 1 . R

Sk =g el “o
J=1 r

N . I .
Hx% —inf/lf—;si =0 i=1..m
= i

A4;20,s7 20,5, 20 Vj,r,i

Typically, the model (4.5) is obtained by max-normalizing the raw data y, and

x; and altering the variables from u, and v; to p, and g; respectively, according to the

transformations (4.3) and (4.4). Structurally, the models (4.1) and (4.5) are identical,

the meaning, however, of the coefficients and the variables are quite different. Indeed,

¥, 1s dimensionless and represents the performance of unit j on the output r, as a

proportion of the maximum observed output ». The variable p, represents the worth of

the maximum observed output r. Thus, the term y,, p, represents the worth of the

output y,; as a proportion of p,. The interpretations for X, and g; are analogous. Thus

the weighting variables v; and u, are altered to the worth variables ¢; and p,

respectively. Applying a max-normalization without conceiving this alteration in the

meaning of the variables will lead to erroneous interpretations of the results.

Lemma 4.1 and Theorem 4.1 below show the equivalence of the original DEA

model (4.1) and the max-normalized model (4.5).
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Lemma 4.1
a)p=(p,,r=1..5),9=(q,,i=1,.,m) is a feasible solution to model (4.5) if and

only if u = (% =u,r=1..,s), v= (% =v,i= 1,...,mJ is a feasible solution to model

r 1

4.1);
b) E(p.q, j) = E(u,v, j) for every feasible p, g, u, v.

Proof

a)Letp=(p,,r=1..,5),9=(q,,i=1,....m) be a feasible solution to the model (4.5).

X, A
Setting X, :?” and y, :% , as in (4.3) and (4.4), the constraints of the model (4.5)

1 r

become:

m

injo%ZI

i=1

R S .
Z_;yr,-h —lex,-,b;so, j=1,.n
pr qi

—+ -+t>0 Vr,i
h, h,

From the latter derives that the constraints of the model (4.1) are satisfied for&, 9

r i

b

h,

1

that is u:[%:ur,rzl,...,s} v=[&:vi,i:1,...,mj is a feasible solution to

7

model (4.1). The proof of the inverse is straightforward.

S

b)E(p.,q,j)= Zj}rjpr = z );l’j p, = Zy” . =E(u,v, j), which completes the proof.=
r=1 r=1 r=1

”
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Theorem 4.1

p’=(p,r=1..5),q9°=(gq’,i=1,..,m) is an optimal solution to model (4.5) if and

only if u’ :(Z’ =u’,r =1,...,SJ, v’ 2[(2—1'=vf,i =1,...,mj is an optimal solution to

r 1

model (4.1).
Proof
Letp’ =(p’,r=1,...,5),9° =(q/,i =1,...,m)be an optimal solution to the model (4.5).
Then
E(p°.q°, jo) 2 E(p.q, Jo) (A-T)

for every feasible solution p, ¢ of model (4.5) and, according to Lemma 4.1,

u’ =(Z—’=uf,r=1,...,s},v" =(‘§l—i=vf,i=1,...,mj is a feasible solution to model

r 1

(4.1) and

E(uaavoajo):E(poaqoajO) (A-2)

Assume that u’ =(%=uf,r=l,...,s], v’ =(q—i=vf,i=1,...,mjis not an optimal

r 1

solution to model (4.1). That 1is, there exists a feasible solution

u :(& =u ,r= 1,...,sj LV = (q_, = v,.*,i = 1,...,m] of the model (4.1) such that

E@’ V', j))>EW’ V', jy) (A-3)

However, according to Lemma 4.1 p =(p.,r=1,.,5),q9 =(q,,i=1,.,m) is a

feasible solution to the model (4.1) and
E(p'.q . j))=EW V', j,) (A-4)

Then, from (A-2), (A-3) and (A-4) derives that E(p’,q,j,)> E(p°,q°, j,) which

contradicts (A-1). The proof of the inverse is straightforward and thus omitted.=
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Theorem 4.1 shows that models (4.1) and (4.5) are equivalent, in the sense that
they provide the same efficiency scores for the evaluated units and an optimal solution

of model (4.1) is generated from an optimal solution of model (4.5) and vice versa.
Thus, if p’,r=1,...s, ¢g’,i=1,...,m is an optimal solution of model (4.5), optimal

multipliers in terms of model (4.1) are recovered by the relations:

o
u, :p’,rzl, , 8
h?"
o
vl”=Qi yi=1..,s
h

As in the standard DEA, the optimal solution p’,r=1,...,s, ¢/,i=1,...,m of model

(4.5) and thus the recovered optimal multipliers u’,r =1,...,s, Vv’

i

i=1,..,m are not

necessarily unique.

The equivalence of the envelopment forms (4.2) and (4.6) is straightforward.
Indeed, they have the same objective function and the constraints related to the
outputs 7=1,...,s in model (4.6) derive by multiplying the terms in both sides of the
corresponding constraints in model (4.2) with the positive value 1/A,. Similarly, the
constraints of (4.6) that are related to the inputs i=1,...,m derive by multiplying the
terms of the corresponding constraints of (4.2) with the positive number 1/4;. Thus,

the models (4.2) and (4.6) have the same feasible and optimal solutions.

Given the transformations (4.3) and (4.4) the derivation of the BCC max-

normalized models is straightforward as follows:
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Multiplier form:

Envelopment form:

4.2.2.1 Some properties of the max-normalized DEA models

max E(p.q, pys jo) = D 9, P, + Po
r=1

S.t.
Z X4, =1
i=1

Zf/rjpr + D, —Z)%ijq[ <0, j=1l..n
r=1 i=1

p.,q9;=20 Vr,i

p, free
min &
S.t.
n . l .
2 Ik =S =0y, r=L..s
Jj=1 }h
R L 1 _
l9xj > xA——s =0 i=1..m
Yo g h 4

A;20,57 20,5, 20 Vj,r,i

(4.7)

(4.8)

Firstly, it is shown that one has nothing to lose by using the max-normalized DEA

models instead of the original ones since all the information provided by the original

models (4.1) and (4.2) can be recovered from the optimal solutions of models (4.5)

and (4.6). The same applies for the max-normalized BCC models (4.7) and (4.8) as

well. Then, the potential benefits of using the transformed models are discussed.

Recovery of optimal weights

As shown previously, the optimal weights in terms or model (4.1) can be

easily recovered by the optimal solution of model (4.5).
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Recovery of efficient projections

The efficient projections (X}, , ¥, ) in terms of model (4.6) are:

~ % n I . 1 .

Xy, =0 %, _;[Sf iy = Vi +h_,s"+
where 6" is the optimal value of the objective function in (4.6) obtained in phase I of
the two-phase procedure typically used to solve DEA models and s;7,s* are the
optimal slacks obtained from the max-slack solution of phase II. Multiplying the first
equation with /; and the second one with 4, we get the efficient projections in terms of
the original model (4.2) as follows:

a0 o A1 +*
hixyo_exyo_si _on h’y’fo_y’fo-‘rsr _yrjo

Restrictions on weights Vs restrictions on worth

Table 4.1 depicts various types of restrictions as stated in terms of weights in
model (4.1) and how these constraints should be translated in terms of the max-
normalized model (4.5), where k,l,r € {l,...,s},ie{l,....m}, je{l,..,n}and a, b and w

with the appropriate indices are user defined parameters.

Inversely, Table 4.2 shows how the restrictions stated originally in terms of the

model (4.5) should be translated to apply in model (4.1).
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Table 4.1: Translation of weight restrictions to worth restrictions:

Stated in terms of Translated in terms of

weights in model (4.1) values in model (4.5)

Absolute restrictions a, <u, <b, ah <p.<bh
. u h, _p h
Assurance region Type I a, <—+<b, ay,— <~ <b,
u hy I hy
+ Wty < e p ki p <—p
wu, +wau, <u =D, S —
r%r k" k / hr hk k hl 1
. a 1
Assurance region Type 11 ayv,zu, h—qi 2 I p,

.. . u V.
Restrictions on virtual a, < Yt <b, a < _uPr <b
outputs z Vi, z JA/K,- b,

r=1 r=1

Table 4.2: Translation of worth restrictions to weight restrictions

Stated in terms of Translated in terms of

values in model (4.5)  weights in model (4.1)

a b
Absolute restrictions a, <p <b h—’ <u, < h—r
) p h u h
Assurance region Type I a, <—<b, ay—<—-<b,—+
P b u h,
WD, t WD S Py w,hu, +whay < hu,
Assurance region Type 11 aq.2p, ahyv, > hu,

. : V. u
Restrictions on virtual a, < M <b, a, < L <b,
outputs D P, D>y,

r=l1 r=1

Below, some other properties of the max-normalized DEA models are discussed, that

can be regarded as advantages when using them instead of the original ones.
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Units invariance

As mentioned in Lovell and Pastor (1995) the CCR and the BCC DEA models
are not fully units invariant. The radial component of the efficiency scores obtained
from these models is units invariant, whereas the slack component obtained by the
max-slack solution is not. With their Theorem 4 and Corollary 2, Lovell and Pastor
(1995) showed that the oriented weighted normalized CCR and BCC models are units
invariant. They based their proof on the max-slack formulation of phase II by
weighting the slacks with the inverse of the sample standard deviations of the output
and the input variables, i.e. by normalizing the slacks on the sample standard
deviations. Moreover, they pointed out that any other first order dispersion measures
could be used as well to normalize the slacks. In the light of these findings, it is a
direct implication that the oriented max-normalized CCR model (4.6) and its BCC

counterpart (4.8) are units invariant.

Dimensionality

Both the data and the variables in the max-normalized DEA models (4.5)-(4.8)
are dimensionless (units free). As the raw input/output data are normalized on the
column maxima, any unbalance caused by units of measurement of different order of

magnitude is eliminated.

Managerial implications

Concerning the multiplier model, the original model (4.1) makes explicit
reference to weights, whereas the transformed model (4.5) makes reference to the
worth of the column maxima. Thus the eventual difficulty in conceiving the nature
and the meaning of the weights is bypassed when using the max-normalized DEA
models and any preferential information originally stated in terms of weights (weight
restrictions) can be equivalently and effectively be provided by the analyst in terms of

worth.
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4.3 Extension to DEA Models with non-linear virtual inputs and

outputs

Piece-wise linear DEA (PL-DEA) is an extension of standard DEA dealing with cases
where the partial value functions (virtual outputs/inputs) are assumed non-linear and
are represented in a piece-wise linear form. In 4.3.1 a short review on PL-DEA is
provided where we spot a discontinuity issue observed at the breakpoints of the value
functions. In 4.3.2 we re-formulate the PL-DEA approach, in a manned that it
provides a meaningful interpretation of the variables and eliminates the

aforementioned discontinuity defect.

4.3.1 Piece-wise linear DEA

PL-DEA was first introduced by Cook and Zhu (2009) to handle Decreasing Marginal
Values (DMV) and/or Increasing Marginal Values (IMV) in certain outputs in an
application that measures the efficiency of maintenance patrols in the province of
Ontario, Canada. Cook et al. (2009) further extended PL-DEA in the additive model
for inputs with diminishing values. Despotis et al. (2010) provided a general CCR
modeling approach for the efficiency assessment in the presence of non-linear virtual
inputs and outputs in terms of assurance region constraints to implement concave
output and convex input value functions. To illustrate their approach, they revisited a
previous work of Despotis (2005) dealing with the assessment of the human
development index in the light of DEA. Furthermore, Lofti et al. (2010) noticed that
the PL-DEA model fails to produce acceptable targets so they revised the PL-DEA by
proposing a two stage CCR modeling that handles the problem of setting the targets of
the units precisely. PL-DEA has been also adapted to interval DEA (Smirlis and
Despotis, 2013), i.e. to cases where the input/output data are only known to lie within
intervals with given bounds. The authors defined appropriate interval segmentations
to implement the piece-wise linear forms in conjunction with the interval bounds of
the input/output data. PL-DEA has been also used as the background technique in
Smirlis and Despotis (2012) to handle extreme observations (those that exhibit
irregularly high values in some outputs and/or low values in some inputs) in DEA,

instead of removing them from the analysis. Their modeling approach assumed that
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the contribution of output dimensions that show extreme values, to the efficiency
score diminishes as the output increases beyond a pre-specified level. Using such pre-
specified threshold levels as breakpoints, they applied the PL-DEA concept of
diminishing returns to implement piece-wise concave value functions.

Let Y, =(;,Yy5¥y) and X, =(x,,x,;,...,x,,) denote respectively the
vectors of outputs and inputs for unit j in model (4.1). Then, U, (y,)=y,u,., r=1,...s

and U,(x;)=x;v,, i=1,...,m are the virtual outputs and inputs for unit j respectively,

whereas the summations Z Vb, = Z U,(y,)=U()) and
r=1 r=1

Zx,.jvi = ZU ;(x;)=U(X,) represent the total virtual output and input respectively
i=1 i=1

for unit j, which are linear functions of the weights.

To deal with cases where the marginal value of an output diminishes as the
output increases, Despotis et al. (2010) relaxed the linearity assumption in DEA by
modeling the overall value of the output vector Y; as an additive value function

U, =U,)+U,(»;)+..+U/(y,) of piece-wise linear partial value functions.

The interval [/ ,h ], where /. =min{y,}and 4 =max{y,}, is split into successive
J ’ J ’

and non-overlapping segments by taking a number of breakpoints. Then, a different

weight variable is assigned to each segment. Restrictions on the weights are then

imposed to drive the concavity or the convexity of the value functions.

For the sake of simplicity, it is assumed here only one breakpoint b, that splits

the range of values of output 7 in two sub-intervals [/, ,5,] and (b, , h.]. On the basis

of this segmentation, the output value y, €[/,,h,] of any unit ; is decomposed in two

: _ <l 2 .
parts and is expressed as y,, =6, +J,;, where:

yjﬂ

(4.9)

7

Sl — yrjif yerbr 5% = 0 ifJ’erbr
br lf y,_-/>b,- g y,j_b,.l.f yr]>br

In this manner, the partial value U, (y,)is modeled in a piece-wise linear form as

follows:
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1 2
U(yr/) ur15 tu, 5 (4.10)

where ¢ and u,, are the distinct weights associated with the two sub-intervals.

In general, the non-linearity assumption is applicable or desirable for particular
outputs only (non-linear outputs), with the rest of them complying with the linearity
assumption. Without loss of generality, it can be assumed that the first d (d<s) outputs
are linear and the rest of them (i.e. forr=d +1,...,5) are non-linear. Then, the total

virtual output takes the following form:

Uy, = Zu Y+ z (urlé'l +u, 52)

r=d+1

The virtual inputs are modeled analogously. Indeed, if [/,4 ]is the interval
defined by the minimum and the maximum values of input i and a, is the breakpoint
that splits this interval in two segments [/,, a,]and(q, , 4], the input value x, €[/, /]

A ) | 2 .
of any unit j is decomposed in two parts x; = y; +7; where:

G X, <a 0 if x,<a,
¥y = { ' 75-:{ S @.11)
a, if x,>a, x,—a; if x;>aq,
The virtual input U, (x;) is then modeled as a piece-wise linear function:
Ui(x;) = Vn?/;' + Vi27/[j2‘ (4.12)

where v, and v, are the input weights associated with the two sub-intervals. The
total virtual input is then given by the following equation:

U(X ) zvz lj + z (vzlj/z/ +v127/z/)

i=t+1

where the first ¢ inputs are assumed linear and the rest of them non-linear. Imposing

the homogeneous restrictions u,, —c,u,, 20 (c, >1) on the weights u,; and u,0, the

value function (4.10) is restricted to be concave. Similarly, the relations —v, +z,v, >0
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(0<z <1), on the weights v —and v,, restrict the value function (4.12) to be
convex.

Figure 4.2 presents the concave shape of the non-linear function U  for a
typical non-linear outputy . Note that the function U, shows discontinuity at the
breakpoint value b,. This is due to fact that the weights u, and u,, applied on the
successive sub-intervals [O, br] and (br,hr] may be different. The same discontinuity

issue also holds for the non-linear function U, of the non-linear input x, depicted in

Figure 4.3. This is a defect of PL-DEA.

U,
—\ url E i
0 ; g
L b, h,
U, /
0 > X

Figure 4.3: Convex form for the non-linear input X;
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The formulations presented above actually transform the original data set into
an augmented data set by decomposing each one of the non-linear inputs and outputs
in two auxiliary linear inputs and linear outputs respectively. This transformation
allows performing the efficiency assessments without drawing away from the ground
of the standard DEA methodology. Model (4.13) below is a piece-wise linear DEA
model with weight restrictions imposing concave value functions for outputs and
convex value functions for inputs. As the inputs are in the denominator of the

efficiency ratio, convex value functions penalize the excess inputs.

max E(u,v, j,) = Zyrj u, + Z (51.0ur1+530ur2)

r=d+l1
S.t.

1

Z io ’+Z(7/1/ +7i?ovi2):1

i=1 i=t+1
' > X & 2 (4.13)
Zyrjur + Z (0,1, +0u ,2)—injv,. — Z (Pvat7;v) <0 j=Ll..,n "
r=1 r=d+1 i=1 i=t+1
u,—cu,20,r=d+1,..,s (c.21)

-V, +zv,20,i=t+1,...m (0<z <1)

u,v,20 r=1,...,d; l=1,...,t

U, ULV, 20 r=d+1,..,si=t+]....m

rl» il

U

4.3.2 Reformulation of Piece-wise linear DEA

We revisit, in the following, the work of Despotis et al. (2010) to provide an
alternative, yet effective formulation of DEA models with non-linear partial value

functions.

Applying the data rescaling-variable alteration technique presented in the

previous section on (4.9) and (4.11) we get respectively

~ Yy 0 if y.<b
51 rl/_ Yy = - if y;<b, 5= 5; —dy - ’
b rify >h B e e
7 r r r

and
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| . Xy - 5 0 zfxl.jSai
G Yy Y E X s, o Vi
Vi=—"= a; ) Vi = =N T4
i . h; —a, if x; >a,
1 if x; >a, h,—a,

Figure 4.4 depicts a piece-wise linear value function for a non-linear output

measure U, decomposed in two segments. With the above transformations, the weight
variables u,, and u,_,, which represent respectively the slopes of the line segments
OA and AB, are replaced by the value variables p,, and p,,, which represent the

value increments in the intervals [0, |and (b,,h, | respectively.

=

Figure 4.4: Value function for a non-linear output measure Y,

Analogously, Figure 4.5 illustrates a piece-wise linear value function for a non-linear

input measure x;, decomposed in two segments. With the above transformations, the
weight variables v, and v,,, which represent respectively the slopes of the line
segments OE and EF, are replaced by the value variables ¢, and g;,, which represent

the value increments in the intervals [0,¢;Jand (e, h;] respectively.
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9>

SN

o
Vv
=

Figure 4.5: Value function for a non-linear input measure X;

Model (4.13) is now transformed to the following model:

d K
max E(p.q, jo) =), 9, 0.+ 2, (0, Py +0, D,y)
r=1

r=d+1

S.t.

t m
z)%i/oqi + Z (7?4'1/0%1 +?;;oqi2) =1
i=1

d

i=t+1

. S A A = . LI . , (4.14)
Zl‘,y,_,-pr + Zdll(ﬁr_‘,pﬂ +5§pr2)—21‘,x1-,-q,- - Zl (730 +7742) <0 j=1,.on

r= r=d+ i= i=t+
(h.-b)p,—bcp,20,r=d+1,.,s (c.21)

—(h;—a,)q, +a,z,q,=0,i=t+1,...m (0<z <I)

p..4,20, r=1..,d;i=1...t

Doi>Prrsdi>49, 20, r=d+1,..,8;i=t+1,...m

In model (4.14) the new variables p,, p,, and p,, for outputs and ¢,, ¢, and

q., for inputs represent worth as opposed to the variables u,, u,, u_,, v., v, and v,

of model (4.13), which represent weights. Due to these variable transformations, the
weight restrictions of (4.13) are transformed in (4.14) as well to impose concavity for
the non-linear outputs and convexity for the non-linear inputs in terms of worth.

Model (4.14) is a max-normalized DEA model with piece-wise linear value functions
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of inputs and outputs that is equivalent to model (4.13), in the sense that both provide
the same efficiency scores and the optimal solution of the one can be generated from
the optimal solution of the other. The equivalence is a direct implication of the
Theorem 4.1 given in the previous section. Moreover, model (4.14) has all the
additional properties discussed in the previous section concerning dimensionality and

units invariance.

As spotted in 4.3.1, the augmentation of the dataset for non-linear
outputs/inputs and the assignment of a distinct weight variable to each segment causes
discontinuity in the value functions. However, applying the data transformation-
variable alteration technique, introduced in 4.2.2, fixes this irregularity as illustrated

in Figures 4.4 and 4.5.

4.4 Value based DEA

Incorporating value judgments in DEA is a broad methodological framework that
facilitates driving the efficiency assessments in line with individual preferences.
Value based DEA is a recent development that resorts to value assessment protocols
from multiple criteria decision analysis (MCDA) to transform the original
input/output data to a value scale. In this context, we introduce in this section a novel
piece-wise linear programming approach to value based DEA, which employs a data
transformation-variable alteration technique and assurance region constraints. In 4.4.1
we provide a brief review on the links between DEA and MCDA spotted in the
literature and we highlight the motivations for the development of a new approach.

The new approach is developed in section 4.4.2.
4.4.1 Links between MCDA and DEA

Multi-Criteria Decision Analysis (MCDA) has developed many concepts and
protocols to elicit and utilize the analyst’s preferences. Several authors have
contributed in building bridges between DEA and MCDA. Joro et al. (1998) and
Halme et al. (1999) related DEA with multi-objective linear programming. Bouyssou

(1999), Doyle and Green (1993) and Stewart (1996) also connected DEA and discrete
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multiple criteria problems. Athanassopoulos and Podinovski (1997) spotted relations

between DEA and MCDA with partial information on weights.

Gouveia et al. (2008) provided a link between DEA and MCDA. They treated
DMUs as decision alternatives in terms of MCDA, which they are evaluated on
criteria which correspond to the inputs and outputs in DEA models. In order to
incorporate user’s preferences in their hybrid assessment model, they employed the
additive model using concepts from multi-attribute utility theory with imprecise
information. Actually, they proposed the conversion of the input and output factors
into utility functions, which were aggregated additively. Then, they minimize the loss
of value of the evaluated unit relatively to the best unit, obtained for the evaluated

DMU’s optimal weights.

Almeida and Dias (2012) developed the methodology of Gouveia et al. (2008)
in the context of a real-world application. Similarly to Gouveia et al. (2008), they used
preference elicitation protocols drawn from the MCDA in the frame of the weighted
additive DEA model (Ali et al., 1995), as a mean to incorporate user preferences in

the DEA efficiency assessments. Their approach unfolds in three phases as follows:

Phase I:

The raw values of the observed inputs and outputs are mapped onto the value

interval [0,1]. That is, the inputs and the outputs, as measured in their original scales,

are converted into a value scale, by assuming either linear or non-linear value
functions V. By this transformation, all factors are treated as outputs to be maximized:

VX5 X)) = (oo ViV

mjo “m+l,j2°" vm+s,j

). The overall value of unit j is given in the

additive form

m+s

Uj[Vj(Xj’Yj)]:;vkiWk

The weights w,, k=L12,..,m+s are dimensionless scaling constants. Optimal

weights are calculated for each individual unit j in phase 2.
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Phase 2:

The following linear program is solved for a unit j, at a time:

min d

S.t.

Zwkka—Zwkkao <d (=1,...,n) (4.15)
k=1 k=1

m+s

ZWk =1
k=1

(W, Wyseety W

e W

m+s

where W denotes the set of intra-weight constraints reflecting the user’s preferences.

By convention, the weights are normalized so as to sum up to 1. Model (4.15)

estimates for unit j, an optimal vector of weights (w/,w),...,w’

m+s

) that minimizes,

in the min-max sense, the loss of value to the best unit. Let d”* denote the optimal
value of d in the optimal solution of (4.15). Then, if 4% =0 and
wl >0,k=1,.,m+s for at least one optimal solution of (4.15), the unit j, is

characterized as efficient. Otherwise, it is inefficient.

Phase 3:

The following linear program is solved for every inefficient unit j, to find its

projection on the efficient frontier:

m+s .
— Jo
max z= E w.'s,
k=1

S.L.

kajﬂj =Sk =V, (k =1...,m +S) (4.16)
j=1

32, =1
j=1

/1j >20(j=1,..,n),s, 20 (k=1,....m+s)
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Model (4.16) is the envelopment form of a weighted additive DEA model,
where only outputs are considered. For the optimal values d”* and z" of the

objective functions of models (4.15) and (4.16) holds that d” =z .

As mentioned above, the weights w,, k =1,2,...,m+s are scaling constants,

estimated for each unit at its best advantage in phase 2. In Almeida and Dias (2012)
and Gouveia et al. (2008), these weights are generally interpreted as “value trade-offs
for the client”. To be exact, as long as each unit is left free to define its own (optimal)
weights in phase 2, these value trade-offs differ from one unit to another and each
time are estimated in favor of the evaluated unit. A limitation of this approach, which
in fact is attributed to the choice of the additive DEA model, is that no direct measure
of efficiency is provided. It only discriminates the efficient and the inefficient units.
These issues motivated the development of a novel approach which can provide a
measure of efficiency and in which the aforementioned weights acquire a particular

meaning and are easily interpreted. This approach is presented in 4.4.2.
4.4.2 A piece-wise linear programming approach to value based DEA

The data transformation — variable alteration technique, introduced in the previous
sections, allow for the development of a general value based DEA model. This
modelling approach facilitates the incorporation of value judgments while the

efficiency assessments remain on the ground of DEA.

Consider n DMUs that use m inputs (X,,X,,...,X, ) to produce s outputs
(Y.,Y,,....Y,). Given the output vector ¥, =(y,,,,,,...,¥,) of unit j, its overall value

U (Y]) is given by the additive value function:

U=, ()

As long as the higher the levels of the outputs the greater their values, the partial value

functions U,, r=1,...,s are assumed non-decreasing. Notice that these partial value
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functions are generalizations of the so called virtual outputs in the DEA context,

which are typically assumed linear, with the total virtual output given by
UY) =2y,
r=I1

where u,, ¥ =1,...,s are the weights assigned to the outputs. As concerns the inputs,

we define the overall value V(X j) of the input vector X, =(x,;,x,;,...,x,;) by

V) =2 ()

As the less the input level the highest its value, the partial value functions

V., i=1,...,m of the individual inputs are assumed non-increasing. Notice, again, that

in the original DEA models, the partial value functions of the inputs (virtual inputs)

are assumed linear and the total virtual input is given by
V(X,)= Z}: XV,

where v, i=L...,m are the weights assigned to the inputs. However, as V(Xj)

forms the denominator of the efficiency ratio, the individual virtual inputs are
considered non-decreasing value functions, so as excess inputs are penalized.
Assuming, for the developments, non-increasing value functions for the inputs allows

to treat the inputs as outputs. With such an arrangement, the value based relative

efficiency £, of the evaluated unit j; is estimated by the following general model:

maXEjo = ZUV(ijo)-i_ZI/i(xijo)
r=1 i=1

s.t. (4.17)

UG )+ Vix) <l (=1
r=1 i=1

Model (4.17) is equivalent to an input oriented DEA model with m+s outputs

and a dummy input, set at the level of 1 for all the units. In a different context, this
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sort of a DEA-like model was introduced by Despotis (2005) as an index-maximizing
model for the reassessment of the human development index (HDI) via DEA. Unlike
the basic assumption permeating the original DEA, that the virtual inputs and outputs
are linear functions of the weights, in this general approach, non-linear value
functions are allowed whenever necessary. Relaxing the linearity assumption, allows
treating cases where, for example, the marginal value of an output diminishes as the

output increases.

Modeling the value functions

In general, the non-linearity requirement is desirable for particular outputs
(inputs) only, with the rest of them complying with the linearity assumption. To
distinguish them, the former are called non-linear (NL) outputs (inputs) and the latter

linear (L) outputs (inputs). Without loss of generality, it can be assumed that the first

d (r = 1,...,a’) outputs are linear and the rest of them (i.e. for »=d +1,...,s ) are non-
linear. Analogously, the first ¢ (i = 1,...,t) inputs are assumed linear and the rest of

them (i =¢+1,...,m) are assumed non-linear.

Linear outputs

Let [/ < mjin{yrj} and A 2> rn]ax{y,j} be fixed minimum and maximum values
for output r, set so as the range [/ ,h ] Q[m/in{y,j},m?x{yrj}] covers the observed
outputs of the entire set of units. By convention, it is set U,(/.) =0. Then, the value of
any y, €[/,,h] is given by:

l]r (y;j) = (y;j _lr )ur

Notice, that the analyst can choose any value 7 such as 0</ <7 and U, (/)=0.

This flexibility allow to the DM to introduce additional information in the assessment

framework whereas the standard DEA models cannot incorporate.
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Applying the following transformation:

Y _lr N
U.(y,)= (h. =1 )u, ﬁ =ViP,

the value of y,; €[/,,4,] is obtained as function of the new variable p, as:

with
A yrj_lr
YT

From the above transformation derives that for any two output observations y,, and

V.. holds that

Yy 2 Vi & Ur(yri) = U”(y"k)

U, (v,)

0 >
L Y, h, Y,

Figure 4.6: Value function for a linear output measure Y,

As depicted in Figure 4.6, the above transformation alters the weight variable u,,
which represents the slope of the line OA, to the new variable p, that represents the
value of 4. . The coefficient ¥, is now dimensionless and the term Y, p, represents

the value of the output y, as a proportion of p, .

| 83



Doctoral Dissertation — D.G. Sotiros

Non-linear outputs

The non-decreasing value functions for the non-linear outputs are modeled in a

piece-wise linear form. To this end, k, +1 breakpoints are assumed that split the range
[1.,h,] of the non-linear output r in k, segments: [5,57],[62,5'].....[b" .b""], with
b, =1 and b =h, . By convention, it is set U,(,)=0. Then, any output y, €[/ ,h,]

can be decomposed as y,, =/, +5r1j + 5; +...+0" , where

o

1 _ yrj'brl lf yrjgbf
P\ i v, >

0 if y,<bf

S =4y, =bl if bl <y, <b p=23, k-1  (418)
b;:u+l _b;u lf y}j > b;:u+l

. k,
Sk~ 0 if y,<b,
Y Yy b if b < Y, < biH!

r r

Assuming that the value function is linear in each segment, a distinct weight variable

u,, is assigned to each segment 4 =1,2,....k, . Then, the partial value U,(y,)is given

in a piece-wise linear form as:

rjorl r2

k}’
U,(3,) = Othy + Oty + ..+ S5u, = Shu,, (4.19)
u=l1

Applying to each segment the same transformation introduced for the linear outputs
above, we get the value function (4.19) in terms of the new variables p,;, P,55.., Py

as follows:
~ ~ ~ k). ~
U,(3,) =0, P+ 8,00+ 0, Dy =D 0D, (4.20)
u=l1

with
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H

A#:

i ﬁ,yzl,Z,...,k

I3

It is straightforward from (4.20) that U, ()= p, + p, +...+ P

vt
C
B Py
P
A

P ! !
o i i >
b=l b; b bl=h Y

Figure 4.7: Value function for a non-linear output measure Y,

Figure 4.7 depicts a piece-wise linear value function for a non-linear output measure

Y decomposed in three segments. With the above transformations, the weight
variables u,,,u , and u, , which represent respectively the slopes of the line segments
OA, AB and BC, are replaced by the value variables p,,p., and p,;, which

represent the value increments in the intervals [b},567], [b',5)] and [b),b]

respectively.

Putting all together, i.e. the value functions of the linear and the non-linear
outputs as given in (4.18) and (4.20) respectively, the value function (total virtual

output) for the unit j is obtained, as follows:

d K k. n
U(Yj)zzjjrjpr—f_ Z 25,717,/, (4.21)
r=1

r=d+1 p=1

In equation (4.21), the first summation refers to linear outputs, whereas the second

summation refers to non-linear outputs.
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Linear inputs

As mentioned at the beginning of 4.4.2, the proposed value based modeling
approach assumes non-increasing value functions for the inputs as a means to treat the

inputs as outputs. Let /, <min{x, }and % >max{x;} be fixed minimum and maximum
J J
values for input 7, set so as the range [/;, 4] 2[min{x, },max{x;}] covers the observed
J ’ J ’

inputs of the entire set of units. By convention, it is set V;(%,)=0. Then, the value of

any x; €[l;,h] is given by:
Vl('x[]) = (h[ X )Vi

Applying the transformation:

h—-x;,
Vi(xé/‘):(hi_li)vi hA—l.. = X9,

1 1

the value of x, €[/, /] is obtained as function of the new variable ¢, as:
Vl(xy) = 'Q"l]qz (4.22)

with

From the above transformation derives that for any two input observations x; and X,

holds that

X, 2x, < Vi(x)<Vi(x,)

1,
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4q;

Vi)
B

o

L X . h X.

Figure 4.8: Value function for a linear input measure X;
As depicted in Figure 4.8, the above transformation alters the weight variable v,,
which represents the tangent of the angle OBA , to the new variable q; that represents
the value of the most preferred input level /;. The coefficient X, is now dimensionless

and the term X, g, represents the value of the output x; as a proportion of g;.

Non-linear inputs

The non-increasing value functions for the non-linear inputs are modeled

analogously in a piece-wise linear form. Indeed, if &, +1 is the number of breakpoints
k; ak,»+l

that split the interval [li,hi] in k, segments [a,a’],[a’,a ],...[a",a "], with a =1

and a'"=h, any input value x,€[l,h] is decomposed as

1 2 k; .
x; =h =y, +7; +..+y;) where:

. 2
X 0 ifx,2q

Yi=q 2 o1 2
a; —x; if a; <x; <q

. p+l
0 if X, 2 af
u+1 _ . u u+l
yi=qa Xy i al <xy<al  u=23 k-1 (4.23)
1 .

a;l+ _ al:u %f‘ xlj < a;‘

ki+1 . k;

7/,(‘_ et —x; lfxij >a

[/ K+l k; . k;

a" —a' If x;<q
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Assigning a distinct weight variable v,, to each segment x=1,2,...,k, , the partial

value V/(x,) is given in a piece-wise linear form as:

ki
Vi) = Fia 7+t 7V, = D27V (4.24)
pu=1

Applying to each segment the same transformation introduced for the linear inputs,
the value function (4.24) can be expressed in terms of the new variables ¢;,,4;,,.-,q;

as follows:

k[
Vi(X,) =Pyt + Fidia ot T i = D744 (4.25)

u=1

with

It is straightforward from (4.25) that V,([,) =g, + ¢, +...+ ¢,

neot

Figure 4.9: Value function for a non-linear input measure X;

Figure 4.9 depicts a piece-wise linear value function for a non-linear input measure

X. decomposed in three segments. With the above transformations, the weight

variables Vv,,V;, and V;;, which represent respectively the slopes of the line segments

1
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AB, BC and CD, are replaced by the value variables ¢,,,4q,, and g, which represent
the value decrements in the intervals [@,@ ], [@’,a ] and [a,a;] respectively.

Summing up (4.22) and (4.25), we get the value function (total virtual input)

for the unit j, as follows:

V(X,)= nyq + Z z 7iq, (4.26)

i=t+1 p=1

In equation (4.26), the first summation refers to linear inputs, whereas the second

summation refers to non-linear inputs.

Deriving the value based DEA model

Putting together the value functions for outputs and inputs given in (4.21) and

(4.26) respectively, we get the overall value E; of the unitj as a function of the value

variables p and ¢:

E,(p.q)=U(Y,)+V(X,)= Zy,,p £y 25"p,y+2xyq S @2

r=d+1 u=l1 i=t+1 pu=1

The non-linear value functions in (4.27) can be customized so as to acquire specific

properties on the basis of individual preferences. This can be done by introducing
restrictions on the variables p,,, #=L..,k. and g,, #=l,...k. For example,

homogeneous restrictions of the form
(b:H—z _b:H—l)prlu _Cry(b){ﬁ—1 _bl"u)pl‘,,u-%—l 2 O (Cry 2 l;ﬂ: 1""’kr _2)

impose concavity on the value function of output r, with the parameters c,, adjusting

the sharpness of the diminishing returns. Analogously, the restrictions

(@ —a"Ng,—z,(a" —a)q, ., 20 (z,2Lu=1,..k-2)

impose convexity on the value function of input i.
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Completing the developments, the value based model to assess the efficiency
of the evaluated unit j,, with reference to the abstract model (4.17), is provided

below:

max E, (p,q) = Zm&+2§)nu§h&+22m%

r=d+1 u=1 i=t+1 pu=1

s.t.

Zyvpﬁ > Z prmz + ZZMW <1j=12,.

r=d+1 p=1 i=t+1 p=1 (4‘28)
p, 20 (r=1,.,d)

P20 (r=d+1,...s, u=1,..k)
q,20 Ozhwﬂ
9y 2 0 (i=t+1,...m, u=1L..k)

pr‘y s qw EW

In the last constraint of (4.28), W denotes the region defined by user-specified
restrictions on the variables that provide the non-linear value functions of outputs and

inputs with properties reflecting the user’s preferences.

The formulations presented above actually transform the original input/output
data set into an expanded data set by decomposing each one of the non-linear inputs
and outputs in auxiliary linear inputs and linear outputs respectively. This
transformation allows performing the efficiency assessments without drawing away
from the grounds of the DEA methodology. As a practical guide to implement the
data transformation, one may consider in the set of units two dummy DMUs, one
comprised by the fixed minimum values for the inputs and the outputs, the other
comprised by the fixed maximum values. Notice here that these dummy units are not
taken into account for the efficiency assessments. Then, the transformation is carried
out in two steps: In the first step the non-linear inputs and outputs are decomposed on
the basis of the segments assumed for each one of them to derive the expanded data
set. In a second step, the expanded data are normalized column-wise on the column

ranges.
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4.4.3 An application of the value based DEA model to the Efficiency assessment of

a Portuguese retail chain in the pharmacy-cosmetics-hygiene sector

In this sub-section we revisit the case originally studied in Almeida and Dias (2012),
which concerns the efficiency assessment of 19 stores of a Portuguese retail chain in

the pharmacy-cosmetics-hygiene sector.

Table 4.3: Observed input/output data in original scales

DMU Inputs in original scales Outputs in original scales

Xsrx (L) Xgmp (NL) Xsac (L) Xewr (L) Xyre (NL) Ysur (L) Ypy (NL)
1 360614 13.2 153071 275240 213 1994652 36.4
2 263736 9.5 111409 117916 213 1194289 44.6
3 628938 17.8 218122 492305 436 3841226 322
4 479582 16.5 189495 134824 262 2299879 23.8
5 600449 15.9 222567 411982 331 3905880 39.7
6 299876 123 159338 185368 208 1554821 37.2
7 171010 9.2 92436 124355 231 625315 22.0
8 354506 13.9 153228 231525 400 1570432 244
9 521819 13.1 155918 145527 222 2249522 28.0
10 357204 7.3 96041 179931 200 1505312 454
11 307347 11.3 135895 171760 313 1387585 28.1
12 701109 15.8 214814 300106 290 5425809 324
13 392894 152 170675 250726 216 2269410 40.5
14 604291 20.0 222424 387543 443 3410820 27.8
15 272851 12.0 148268 159532 197 1410839 339
16 327304 11.9 181352 168006 207 1263137 29.1
17 356157 11.5 130337 181693 286 1371183 26.5
18 152850 11.4 87223 147252 301 877671 32.6
19 295598 133 193606 160607 199 1634121 26.0

The five inputs considered, with their characterizations as linear (L) or non-linear

(NL) and their scales of measurement, are: Average stock (STK — L - €), Number of
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employees (EMP — NL-full time equivalent), Salary costs (SAC — L - €), Rent (RNT —
L- €) and Area (ARE — NL-m?). Two outputs are considered: Global sales (SAL — L-

€) and Family 4 sales/Global sales (F4 — NL- %). The input/output data are given in
Table 4.3.

In a preliminary stage, the raw data were originally transformed in values.
Fixed minimum and maximum levels for the inputs and outputs were set, beyond the

observed minima and maxima, as shown in Table 4.4.

Table 4.4: Fixed minimum and maximum levels for inputs and outputs

Fixed
min/max Xeyp
levels Xsrx (L) (NL) Xsac(L)  Xpnr (L) Xyre (NL) Ysur (L) Yry (NL)

I 100000 6 50000 100000 150 500000 20

h 1000000 24 250000 500000 450 6000000 50

Linear value functions were assumed for the three linear inputs Xszx, Xsac,
Xryr and the linear output Ys4;. The value functions of the non-linear inputs Xzg,
Xgup and the non-linear output Yg,, as shown in Figures 4.10-4.12, were obtained by

interacting with the decision maker (Almeida and Dias, 2012).

V(XEMP) ! (6,1)
0.9

0.8
0.7
0.6
0.5

0.4

0.3 (12, 0.25)

0.2
0.1 q====--m-mmmmmmommbo-oomoooeS (24,0)

Number of employees (X;,,p)

Figure 4.10 : Piece-wise linear value functions for the input Xz,
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(150,1)

1
V(XARE)
0.9

0.8
0.7

0.6 (250, 0.5)
0.5 tmmmmmmmmmmmmmma
0.4

0.3

(350, 0.2)
0.2 dmmmmmmmmmm -

0.1 (450, 0)

A E R

150 200 250 300 350 400 450
Area (X z)

Figure 4.11: Piece-wise linear value functions for the input Xz

20 25 30 35 40 45 50
F4 sales(Y,,)

Figure 4.12: Piece-wise linear value functions for the output Y,

The efficiency estimates for the 19 DMUs, as given in Almeida and Dias
(2012), are shown in the last column of Table 4.8 under the label z* They were
obtained by solving models (4.15) and (4.16), with the phase 2 model (4.16)

augmented with the following intra-weight constraints:
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W=
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The ordinal constraints derived by ranking the factors, whereas the last constraint

provides a trade-off between the most and the least important factors. The latter

constraint was introduced to avoid null weights (Almeida and Dias, 2012).

Table 4.5: Expanded data set in original scales

Inputs Outputs
DMU Xsrx (L) Xpup (NL) Xsac(L)  Xevr(L) Xare (NL) Ysu (L) Yrs (NL)

Yewe  Vews  Yewr Vare  Yare  Vane G O Ol

1 360614 0.00 2.80 8.00 153071 275240 37.00 100.00 100.00 1994652 10.00 6.40 0.00
2 263736 2.50 4.00 8.00 111409 117916 37.00 100.00 100.00 1194289 10.00 10.00 4.60
3 628938 0.00 0.00 6.20 218122 492305  0.00 0.00 14.00 3841226 10.00 2.20 0.00
4 479582 0.00 0.00 7.50 189495 134824  0.00 88.00  100.00 2299879  3.80 0.00 0.00
5 600449 0.00 0.10 8.00 222567 411982  0.00 19.00  100.00 3905880 10.00  9.70 0.00
6 299876 0.00 3.70 8.00 159338 185368 42.00 100.00 100.00 1554821 10.00 7.20 0.00
7 171010 2.80 4.00 8.00 92436 124355 19.00 100.00 100.00 625315 2.00 0.00 0.00
8 354506 0.00 2.10 8.00 153228 231525  0.00 0.00 50.00 1570432  4.40 0.00 0.00
9 521819 0.00 2.90 8.00 155918 145527  28.00 100.00 100.00 2249522  8.00 0.00 0.00
10 357204 4.70 4.00 8.00 96041 179931 50.00 100.00 100.00 1505312 10.00 10.00 5.40
11 307347 0.70 4.00 8.00 135895 171760  0.00 37.00 100.00 1387585  8.10 0.00 0.00
12 701109 0.00 0.20 8.00 214814 300106  0.00 60.00  100.00 5425809 10.00 2.40 0.00
13 392894 0.00 0.80 8.00 170675 250726  34.00 100.00 100.00 2269410 10.00 10.00 0.50
14 604291 0.00 0.00 4.00 222424 387543  0.00 0.00 7.00 3410820  7.80 0.00 0.00
15 272851 0.00 4.00 8.00 148268 159532 53.00 100.00 100.00 1410839 10.00 3.90 0.00
16 327304 0.10 4.00 8.00 181352 168006 43.00 100.00 100.00 1263137  9.10 0.00 0.00
17 356157 0.50 4.00 8.00 130337 181693  0.00 64.00 100.00 1371183  6.50 0.00 0.00
18 152850 0.60 4.00 8.00 87223 147252 0.00 49.00 100.00 877671 10.00  2.60 0.00
19 295598 0.00 2.70 8.00 193606 160607 51.00 100.00 100.00 1634121  6.00 0.00 0.00

Associated

VsTK VEMP,1 VEMP,2 VEMP.3 Vsac VRNT VARE,1 VARE,2 VARE,3 UsaL UFq,1 UFy,2 UFq3

weight variables
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Applying the data transformation-variable alteration technique developed in
the previous sections, the expanded data set and its range-normalized counterpart are
obtained, as shown in Table 4.5 and Table 4.6 respectively. For comparison purposes,
the same fixed minimum and maximum values were assumed as shown in Table 4.4.
The breakpoints for the non-linear factors are set to the values originally considered in

Almeida and Dias (2012), as shown in Table 4.7.

Table 4.6: Transformed data set

DMU Xsrx(L) Xeup (NL) Xsac(l)  Xpvr(L) Xure (NL) Ysar (L) Yoirs (NL)
Xow  Tewe Tew  Tew  Fse Xeg Fae Tane Tame Vsu O S &
1 0.71 0.00 0.70 1.00 0.48 0.56 0.37 1.00 1.00 0.27 1.00 0.64 0.00
2 0.82 0.42 1.00 1.00 0.69 0.96 0.37 1.00 1.00 0.13 1.00 1.00 0.46
3 0.41 0.00 0.00 0.78 0.16 0.02 0.00 0.00 0.14 0.61 1.00 0.22 0.00
4 0.58 0.00 0.00 0.94 0.30 0.91 0.00 0.88 1.00 0.33 0.38 0.00 0.00
5 0.44 0.00 0.02 1.00 0.14 0.22 0.00 0.19 1.00 0.62 1.00 097 0.00
6 0.78 0.00 0.93 1.00 0.45 0.79 0.42 1.00 1.00 0.19 1.00 0.72 0.00
7 0.92 0.47 1.00 1.00 0.79 0.94 0.19 1.00 1.00 0.02 0.20 0.00 0.00
8 0.72 0.00 0.53 1.00 0.48 0.67 0.00 0.00 0.50 0.19 044 0.00 0.00
9 0.53 0.00 0.73 1.00 0.47 0.89 0.28 1.00 1.00 0.32 0.80  0.00 0.00
10 0.71 0.78 1.00 1.00 0.77 0.80 0.50 1.00 1.00 0.18 1.00 1.00 0.54
11 0.77 0.12 1.00 1.00 0.57 0.82 0.00 0.37 1.00 0.16 0.81 0.00 0.00
12 0.33 0.00 0.05 1.00 0.18 0.50 0.00 0.60 1.00 0.90 1.00 0.24 0.00
13 0.67 0.00 0.20 1.00 0.40 0.62 0.34 1.00 1.00 0.32 1.00 1.00 0.05
14 0.44 0.00 0.00 0.50 0.14 0.28 0.00 0.00 0.07 0.53 0.78 0.00 0.00
15 0.81 0.00 1.00 1.00 0.51 0.85 0.53 1.00 1.00 0.17 1.00 0.39 0.00
16 0.75 0.02 1.00 1.00 0.34 0.83 0.43 1.00 1.00 0.14 091 0.00 0.00
17 0.72 0.08 1.00 1.00 0.60 0.80 0.00 0.64 1.00 0.16 0.65 0.00 0.00
18 0.94 0.10 1.00 1.00 0.81 0.88 0.00 0.49 1.00 0.07 1.00 0.26 0.00
19 0.78 0.00 0.68 1.00 0.28 0.85 0.51 1.00 1.00 0.21 0.60 0.00 0.00

Associated Value

qstk qEMP.1 qEMP.2 qEMP.3 gs4ac 4qRNT G A4RE,1 G A4RE2 GARE.3 PsaL PFra1 PF42
variables

PFa3
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Table 4.7: Breakpoints for the non-linear inputs and outputs in original scales

Breakpoints for Xgyp Breakpoints for X pg Breakpoints for Yry,
1 2 3 4 4 1 2 3 4
op  pp  Gpp  pp alARE aZARE ajRE A bF4 bp4 bF4 bp4
Xemp 6 12 16 20
Xire 150 250 350 450
Yry 20 30 40 50

To build the model for the specific data set, without drawing away from the
preferential information assumed in the original work, the following adjustments that

imitate the same decision situation are made.

Value functions:

To maintain the preferential information assumed for the non-linear inputs and
outputs in the current development, the following constraints in terms of the value

variables are introduced:

9evp, _SqEMP,Z =0
2q5p> =34 pyp; =0
39 ires = ars, =0
2q 4pe 2 =3 g =0
3Pray = Prap =0
Pras —3Pra3 =0

For example, as concerns the non-linear output F4, the slopes of the line segments of

the value function are (see Figure 4.12):

Upyy =0.02,1,,,=0.06,u,,,=0.02

As the ratio of these weights is of interest in the proposed model, the following
variable transformations are applied to derive these ratios in terms of the

corresponding value variables:
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Upgy 1 PN Upy (b;4 ~bry) _ b;4 _b]l:‘4 PN Pray 10 l
3

Upy s 3 Upy, (b;w _b1i4) - 3(b13,4 _b;‘4) Pras - 3(40-30)

Upsy 3 Upy, (b;4 _b;u) B 3(b;4 —b;4) Drsp  3(40-30) 3
T BB (b ~(50-40)
Upys Upy3(bpy—bpy)  (Dpy—bpy) Prys  (50-40)

Ranking and trade-off constraints:

Analogously, the ordinal and trade-off constraints # assumed in the original
work (Almeida and Dias, 2012) are translated in terms of the proposed model as

follows:

Psar Z 95tk Z 9 2 Dsac 2 Pray + Pras ¥ Pras 2 9eups Y 9empn T 9emrs 2 Qares ¥ Dareas + Dare s

pSAL <1 1'1(qARE,1 + qAREA,Z + qARE,3)

On the basis of the above adjustments, the model (4.28) that assesses the relative

efficiency of the evaluated unit j, takes the form of the model (4.29).

The efficiency scores and the optimal solutions (in terms of value variables)
are presented in Table 4.8. Figures 4.13-4.19 exhibit the value functions assessed by

the 19 DMU s for the inputs Xsrx, Xgmp, Xsac, Xpnvr, Xare and the outputs Yy, and Yy
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~ ol Q2 a3
Ysar,jyPsar 6F4,j0 Pray T §F4,j“ Prax ™t 5F4,j“ Pras

_ A Al A2 ~3 A

max £ 5 = sk, Dsrx T Vemp,j, 9empy T Vemp j, Demp2 T Veup,j 9emp s T Xsuc, j,Dsac + Xrvr, j,4rvr
Al 2 A3
TV ure,j dares T Vare,j9are2 TV are,j,94re 3
S.t.
[section 1]
D +0! +52 +5
YVsur,jPsar T Ora jPray TOra jPras T Ors iPra3
A Al ~2 A3 ~ ~

Xk stk Y Vemr, j 9empy T Veur, i emp 2 T Veur, j9emp 3 T Xsac, j9sac T Xpar, jDrnr

+7;114RE,quRE,1 + ﬁjRE,quRE,Z + 7;/31115,,"]/11%5,3 <1 (j=1..n) (4.29)

[section 2]

Devry ~ e, =0
2qmp2 =3 pups =0
3 4rey =3 are2 =0
29 4rg> =39 g =0
3Pray—Pran =0
Pras=3Pps3=0

[section 3]

Psar — sk 20

Gsrx —Gryr 20

drvr ~bDsac = 0

Gsic = Pray— Pras — Pra3z 20

Prayt Prast Pras —9emps ~Deurr — Dewps 20
9empy T 9emp 2 T 9emp s ~Dares ~Darer ~9are s 20

P 1 I'IQARE,I -1 l'lqARE,Z -1 l'lqARE,3 <0

Py:9, 20

The [section 1] comprises the ordinary DEA constraints. The [section 2]
constraints derive from the preferential information that drive the forms of the piece-
wise linear value functions, whereas the [section 3] constraints are formed on the
basis of the ranking and trade-off information assumed in the original study (Almeida

and Dias, 2012).
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DMU E/ qstrk  4emp1 9emp2  9EmP3  9sac GRNT  Y4RE 1  YARE2 9ARE3  PsaL Pr41  PF42  PF43 z*
1 0915 0.772  0.072  0.014 0.010 0.096 0.096 0.048 0.029 0.019 0.772 0.019 0.058 0.019 0.046
2 1.000 0423 0.029 0.006 0.004 0.093 0423 0.019 0011 0.008 0423 0.019 0.056 0.019 0.000
3 0.789 0930 0.063 0.013 0.008 0.084 0.084 0.042 0.025 0.017 0930 0.017 0.050 0.017 0.118
4 0901 0469 0.049 0.010 0.007 0.066 0469 0.033 0.020 0.013 0.730 0.013 0.039 0.013 0.057
5 0.888 0.796 0.054 0.011 0.007 0.112 0.112 0.036 0.022 0.014 0.796 0.022 0.067 0.022 0.061
6 0937 0.736  0.050 0.010 0.007 0.066 0.192 0.033  0.020 0.013 0.736 0.013 0.040 0.013 0.035
7 0995 0358 0.027 0.005 0.004 0358 0358 0.018 0.011 0.007 0.358 0.007 0.022 0.007 0.003
8 0.805 0876 0.059 0.012 0.008 0.149 0.149 0.039 0.024 0.016 0.876 0.016 0.047 0.016 0.106
9 0896 0472 0.050 0.010 0.007 0.066 0472 0.033 0.020 0.013 0.734 0.013 0.040 0.013 0.060
10 1.000 0.184 0.138 0.028 0.018 0.184 0.184 0.092 0.055 0.037 0.661 0.037 0.110 0.037 0.000
11 0.876 0.788 0.053  0.011  0.007 0.071 0206 0.035 0.021 0.014 0.788 0.014 0.043 0.014 0.067
12 1.000 0.085 0.064 0.013 0.008 0.085 0.085 0.042 0.025 0.017 0942 0.017 0.051 0.017 0.000
13 0937 0.754 0.051 0.010 0.007 0.107 0.107 0.034 0.020 0.014 0.754 0.021 0.064 0.021 0.034
14 0.753 0974 0.066 0.013  0.009 0.088 0.088 0.044 0.026 0.018 0974 0.018 0.053 0.018 0.137
15 0947 0.729 0.049 0.010 0.007 0.066 0.190 0.033  0.020 0.013 0.729 0.013 0.039 0.013 0.029
16 0.859 0.540 0.036 0.007 0.005 0.049 0.540 0.024 0.015 0.010 0.540 0.010 0.029 0.010 0.080
17 0.841 0439 0.030 0.006 0.004 0391 0439 0.020 0.012 0.008 0.439 0.008 0.024 0.008 0.089
18 1.000 0357 0.024 0.005 0.003 0357 0357 0.016 0010 0.006 0357 0.006 0.019 0.006 0.000
19 0920 0.750 0.051  0.010 0.007 0.068 0.196 0.034 0.020 0.014 0.750 0.014 0.041 0.014 0.044

The results obtained by the proposed approach are straightly comparable with

those given in Almeida and Dias (2012). Indeed, as shown in the second and the last

columns of Table 4.8, exactly the same units (namely, the units 2, 10, 12 and 18) are

estimated efficient with both approaches. From a computational burden aspect,

although the proposed linear program (4.29) is a little larger than the phase 2 and

phase 3 programs (4.15) and (4.16) due to the additional variables derived from the

segmentation of the non-linear factors and the associated [section 2]-constraints, it is

only solved once for each unit. Recall here that according to the Almeida and Dias

(2012) procedure, a phase 2 program is solved for each unit and then a phase 3

program is solved for each inefficient unit. In particular, and in the context of their
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study, the proposed program (4.29) is solved 19 times, whereas 34 runs are needed
(19 for phase 2 and 15 for phase 3) to complete the assessments with their approach.
Moreover, any ordinary ready-made DEA software is sufficient to solve the proposed
model, which is not the case for the three-phase procedure introduced by Almeida and

Dias (2012).

To conclude, there are three critical advantages of the proposed approach when
compared to the approach of Almeida and Dias (2012) that motivated the current

developments:

e [t provides a measure of efficiency in the form of a ratio rather than in the

form of a min-max loss of value
e [t requires fewer linear programs to be solved.

e [t provides a meaningful interpretation to the variables
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Figure 4.13: Value function assessed by the DMUS for X,
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Figure 4.14: Value function assessed by the DMUS for Xg»
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Figure 4.15: Value function assessed by the DMUS for X,
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Figure 4.16: Value function assessed by the DMUS for Xz
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Figure 4.17: Value function assessed by the DMUS for X,z:
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Figure 4.18: Value function assessed by the DMUS for Ys,,
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Figure 4.19: Value function assessed by the DMUS for Yy,
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4.5 Incorporating user preferences in value based DEA modeled by

means of Ordinal Regression

In sub-section 4.4.3 we showed how one can incorporate the analyst’s preferences
using concepts of multi-attribute value theory. In particular, the value functions were
estimated using direct preferential information for the desired levels of the inputs and
the outputs. In this section, we develop an alternative indirect approach, based on
ordinal regression analysis, to assess a prototype of the value functions. To this end,
we utilize the preference elicitation protocol used in the ordinal regression method

UTASTAR (Siskos and Yannacopoulos, 1985).

UTASTAR is an extension of UTA multi criteria method (Jacquet-Lagreze and
Siskos, 1982), which is based on linear programming. It adopts the aggregation-
disaggregation principle in order to assess value functions according to the analyst’
preferential structure. Given a weak preference order on a subset of alternatives that
the analyst is familiar with, the value functions of the criteria are adjusted so as to
develop a preference model as consistent as possible with the analyst’s individual

preferences.

We develop a two-phase approach that bridges UTASTAR with DEA.
Adjusting the UTASTAR formulation so as to be compatible with the developments
presented in the previous section, we apply, in phase I, the UTASTAR method to
assess the prototype preferential model of the analyst. Then, the assessed model is
incorporated, in phase II, in the DEA efficiency assessments. A regular interpretation
of DEA inputs and outputs to criteria in the MCDA terminology is that inputs are
criteria to be minimized, whereas outputs are criteria to be maximized. With such a
correspondence, the formulations in (4.21) and (4.26) developed in the previous

section can be fully utilized in the UTASTAR context.

Given a subset AR of the n DMUSs and a weak order on its items, that reflects
the analyst’s overall preference over AR , the LP model below assess piece-wise
linear functions for the criteria (inputs and outputs) as consistent as possible with the

analyst’s stated preferences:
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min FZZ(d;erjf)

JeAg
(E,(p.q)+d; —d} ) ~(E,.,(p.q)+d;, —d},)> 5 if jPj+1
(E,(p.q)+d; =d})—~(E,..(p.q)+d;. =d;,, )= 0if jlj+1 (4.30)
sk, m k
22 Pt 220 =
r=1 u=1 i=l p=l1

pry Zoﬁqi‘u Zoﬁdj_ Zo)d; ZoﬁjEAR

where E.(p,q) j=1,..,R are given in the equation (4.27), d;, d, are

J
overestimation and underestimation errors respectively, P denotes strict preference
and [ denotes indifference. As model (4.30) may have multiple optimal solutions,
characteristic optimal solutions are investigated that maximize the value of one
criterion at a time. This is accomplished in a post-optimality stage by solving a linear
program each criterion (input and output) as showed below. The model (4.31) refers
to outputs only and be adjusted for the inputs by replacing the objective function with

ki . 1
_ 1=1,....m
_Zqiﬂ’ o

u=1

K
max ¢, =Y p., (r=L..s)
=1

S.t.

(E,(p.9)+d; -d ) ~(E,a(p.g)+d,. —d}.)> & if jPi+]

(E»(p, Q)+d; -d)=(E  (p.q)+d;, —d;.,) =0 if jlji+1 431)
m k

ZZm,ZZ =1

r=1 u=1 i=l u=l1

Y (d;+d;)<F +e¢

Jedg

prﬂ Zo’qiﬂ Zo’d; Zo’d;r ZO’jGAR

Totally, s+m LPs are solved (i.e. s LPs for the criteria associated with the
outputs and m LPs for the criteria associated with the inputs). The last constraint in
(4.31) is introduced in order to support the optimal value F* of the objective function

attained in model (4.30). Having obtained s+m alternative optimal solutions, the
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average, which is also optimal due to convexity, is used as representative of the

analyst’s preferences. This completes the phase I of our approach.

If (fyn,plz,...,plkl,....,psl,psz,...,ﬁsks,qn,qn,...,qlkl,....,qml,qmz,...,qum) denote

the average optimal solution, the assessed preferential model is incorporated in the

DEA model (4.28), by appending the following constraint set V-

pr,u+1 - pr u+l 1 S'M =1 k
D, D, '

S (4.32)
qz wu+l qi,y+1

Solving model (4.28) with the additional constraints (4.32) for one DMU at a
time we get the efficiency scores of the entire set of DMUs. This is the phase II which

completes the approach.

4.5.1 Illustration

We provide in this sub-section a numerical illustration with 25 DMUs, one input (X))

and two outputs (Y], Y, ) , as depicted in Table 4.9.

For the sake of simplicity, three breakpoints are assumed for each factor as

shown in Table 4.10 (i.e. the range of each factor is split in two segments).
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Table 4.9: Observed input/output data in original scales
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DMU X Y, Y;
1 60 57 51
2 54 45 53
3 57 64 58
4 50 58 52
5 64 56 59
6 40 60 59
7 60 58 42
8 47 46 46
9 52 53 48
10 61 54 50
11 65 50 52
12 44 72 55
13 68 46 25
14 62 50 50
15 54 48 67
16 53 43 44
17 53 53 64
18 52 52 59
19 55 70 55
20 56 53 57
21 63 44 39
22 70 71 54
23 60 67 71
24 53 53 56
25 61 40 55

Factors b1 bz b3 Q, a, a;
X - - - 40 60 75
Y, 30 50 72 - - -
Y, 10 40 71 - - -
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Applying the transformations (4.18a) for the outputs and (4.23) for the inputs we get
the expanded data set as shown in Table 4.11 and its range-normalized counterpart in

Table 4.12.

Table 4.11: Expanded data set in original scales

bDMU 711 712 511 512 521 522
1 15 20 7 30 11
2 15 15 0 30 13
3 15 20 14 30 18
4 10 15 20 8 30 12
5 0 11 20 6 30 19
6 20 15 20 10 30 19
7 0 15 20 8 30
8 13 15 16 0 30
9 15 20 3 30 8
10 14 20 4 30 10
11 0 10 20 0 30 12
12 16 15 20 22 30 15
13 0 7 16 0 15 0
14 0 13 20 0 30 10
15 6 15 18 0 30 27
16 7 15 13 0 30 4
17 7 15 20 3 30 24
18 8 15 20 2 30 19
19 5 15 20 20 30 15
20 4 15 20 3 30 17
21 0 12 14 0 29 0
22 0 5 20 21 30 14
23 0 15 20 17 30 31
24 7 15 20 3 30 16
25 0 14 10 0 30 15
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omu P8 , 5
1 0 1 1 0.32 1 0.35
2 0.30 1 0.75 0 1 0.42
3 0.15 1 1 0.64 1 0.58
4 0.50 1 1 0.36 1 0.39
5 0 0.73 1 0.27 1 0.61
6 1 1 1 0.45 1 0.61
7 0 1 1 0.36 1 0.06
8 0.65 1 0.80 0 1 0.19
9 0.40 1 1 0.13 1 0.26
10 0 0.93 1 0.18 1 0.32
11 0 0.68 1 0 1 0.39
12 0.80 1 1 1 1 0.48
13 0 0.47 0.80 0 .5 0
14 0 0.87 1 0 1 0.32
15 0.30 1 0.90 0 1 0.87
16 0.35 1 0.65 0 1 0.13
17 0.35 1 1 0.14 1 0.77
18 0.40 1 1 0.09 1 0.61
19 0.25 1 1 0.91 1 0.48
20 0.20 1 1 0.14 1 0.55
21 0 0.80 0.70 0 9 0
22 0 0.33 1 0.95 1 0.45
23 0 1 1 0.77 1 1
24 0.35 1 1 0.14 1 0.52
25 0 0.93 0.50 0 1 0.48
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Table 4.13 below depicts the selected subset Az of DMUs with the preference
ranking provided by a hypothetical analyst.

Table 4.13: A subset of DMUs and a preference ranking

DMU }911 7?12 5‘11 512 5‘21 522 Ranking
6 1 1 1 0.45 1 0.61 1
12 0.80 1 1 1 1 0.48 2
19 0.25 1 1 0.91 1 0.48 3
3 0.15 1 1 0.64 1 0.58 4
15 0.30 1 0.90 0 1 0.87 5
1 0 1 1 0.32 1 0.35 6
21 0 0.80 0.70 0 0.97 0 7

Applying model (4.30) and then performing the post-optimality analysis with
model (4.31) on the data of Table 4.13, we get the following average optimal solution
shown in Table 4.14 with F*=0.

Table 4.14: Average solution derived from the post-optimality model (4.31)

qll 6?12 i)ll i’lZ ﬁZl ﬁ22

0.009 0.333 0.255 0.016 0.333 0.054

As the optimal value of the objective function in model (4.30) is zero (F*=0),
the assessed preference model is fully consistent with the ranking provided by the
analyst. Figures 4.20 - 4.22 depict the value functions assessed for the input X1 and
the outputs Y1 and Y2 on the basis of the optimal solution given in Table 4.14, which

constitute a prototype of the analyst’s value functions.
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Figure 4.20: Value function for the input X;
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Figure 4.21: Value function for the output Y;
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Figure 4.22: Value function for the output Y,
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The assessment of the value functions completes the phase I. The value based
DEA efficiency assessments are made in phase II, by incorporating in the value based
DEA model (4.28) the following set of constraints
0.009¢,, —0.333¢,, =0

W =10.255p,, —0.016p,, =0
0.333p,, —0.054p,, =0

which translate the assessed value functions in terms of the variables p and g. The
efficiency scores of the units, as shown in Table 4.15, are obtained by solving model

(4.28) for one DMU at a time.

Table 4.15: Efficiency scores according to model (4.31) and the value restrictions

DMU Efficiency | DMU  Efficiency
1 0.977 14 0.942
2 0.978 15 0.997
3 0.988 16 0.977
4 0.988 17 0.995
5 0.957 18 0.989
6 1.000 19 0.995
7 0.977 20 0.983
8 0.987 21 0.828
9 0.984 22 0.971
10 0.954 23 1.000
11 0.936 24 0.984
12 1.000 25 0.924
13 0.739

Figures 4.23 - 4.25, exhibit the contribution of the input and the outputs to the
efficiency index, as assessed by each evaluated DMU in order to maximize its
efficiency score. This is the major characteristic DEA, which grants the flexibility to
each DMU to assess its efficiency score by putting higher value to its advantageous

features (inputs or outputs).
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Figure 4.23: Value functions assessed by the DMUs for X,
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Figure 4.24: Value functions assessed by the DMUs for Y;
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Figure 4.25: Value functions assessed by the DMUs for Y,
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As shown in Figures 4.23 - 4.25, the underlying value functions assumed by all the
DMUs in the DEA efficiency assessments maintain the prototype preferential model

assessed by UTASTAR on a sample of DMUs (Figures 4.20-4.22).
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Chapter 5

Evaluation of the research activity of academic

staff - A value based DEA approach

5.1 Introduction

Data Envelopment Analysis has been extensively used as a performance measurement
framework in the different levels of the education sector (elementary, secondary and
higher education). For example, Bessent and Bessent (1980), Bessent et al. (1982) and
Chalos and Cherian (1995) utilized DEA to assess the efficiency of elementary
schools. Arnold et al. (1996) evaluated the efficiency of 638 public secondary schools
in Texas. As the results obtained by using Ordinary Least Squares (OLS) and
Stochastic Frontier Analysis (SFA) were unsatisfactory, they used DEA in
conjunction with regression analysis at a second phase to measure the impact of
environmental factors and thus to improve the quality of the results. Bradley et al.
(2001) assessed the technical efficiency of 2657 secondary schools in England by

utilizing DEA to explain the inter-school variation in the observed efficiencies.

The literature on performance measurement in higher education is extensive
and it is overviewed in the rest of this chapter. In this chapter, we develop an
assessment framework to assess the research activity of academic staff in Higher
Education (112 researchers, faculty members with Business and Economics of Greek
Universities). The novelty of the proposed assessment approach is that it takes into
account both the extent and the quality of the research work of the academics. To
facilitate the incorporation of a quality aspect in the assessments, a value based piece-
wise linear variant of the DEA model with intra- and inter — input/output value
restrictions is employed. Assuming convex value functions for the publications in
highly ranked journals and concave value functions for the publications in unranked

journals, the quality research records are rewarded while the contribution of extensive
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publications in non-quality journals is diminished in the overall research performance.
The effectiveness of the assessment framework in capturing the quality and the extent
of the research work is further illustrated by comparing the results with those obtained

by using standard DEA models.

Section 5.2 provides a literature review on performance measurement in
Higher Education. Section 5.3 presents the motivation for developing the proposed
assessment approach. Section 5.4 provides the factors (inputs and outputs) used and
presents the descriptive statistics of the dataset. Section 5.5 presents the model that is
employed and the parameters that were assumed in the assessment. The results and

some concluding remarks are presented in sections 5.6 and 5.7 respectively.
5.2 Performance measurement in Higher Education - An overview

Traditionally, the assessment of Higher Education Institutes (HEIs) is based on
teaching and research, which reflect, in a major extent, the quality of services that
HEIs provide. Anderson and Walberg (1997) mentioned that, in education, it is
difficult to use market mechanisms to determine the performance of an educational
institution. Therefore, methods which encompass the essential characteristics of HEIs
are needed. In earlier studies, the researchers attempted to synthesize the information
produced by official agencies or public services in order to develop performance
indicators. However, they attracted criticism due to controversial results; as Johnes
and Taylor (1990) noticed, different indicators yield significant differing evaluations
of the same HEI. Johnes (2006) explored the advantages and drawbacks of various
methods for measuring the efficiency in the higher education sector and remarked the
absence of input and output prices, the non-profit character of the institutions and the
production of multiple outputs (e.g., research, teaching and community services) from
multiple inputs. As Avkiran (2001) noticed, these inherent attributes render the higher

education an attractive domain for DEA.

The application of DEA for the performance assessment in higher education
has generally focused on the efficiencies of university programs or departments. A
few years after the DEA was introduced by Charnes et al. (1978), the technique was

straightforwardly applied to the higher education sector. For instance, Rhodes and
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Southwick (1988) evaluated 96 public and 54 private universities in USA. Ahn et al.
(1988) compared the efficiencies of U.S. universities obtained from DEA with
findings derived by managerial accounting measures and econometric approaches. In
the UK, Tomkins and Green (1988) studied twenty accounting departments of English
universities using different DEA models. Beasley (1990) assessed chemistry and
physics departments on the basis of research ratings. Johnes and Johnes (1993) used
the data Research Assessment Exercise (RAE) of the year 1989 to assess the research
performance of economics departments in the UK. The primary purpose of the
periodic assessment RAE is to evaluate the quality of research undertaken by British
HEIs and to support the distribution of the public funds for research. Similar
assessment was conducted by Johnes (1995) on the basis of the data of RAE the year
of 1992 by assessing the scale and technical efficiencies of economics departments in
the UK with respect to their research output. Doyle et al. (1996) applied bootstrapping
techniques and DEA on the basis of RAE - 1992 data to assess the research
performance of business schools in the UK. They used cross-efficiencies to model
peer appraisal and assurance regions to model various policy constraints.
Athanassopoulos and Shale (1997) assessed the research performance of 45
universities in the UK using DEA by taking into account both the quantity and the
quality of the research outputs as measured by research publications. They aggregated
the publications of different categories in a single index obtained as a weighted
average. Johnes (2006) assessed 100 English universities using data for the academic
year 2000-2001. The input/output factors used were number of students, expenditures
and grants provided by the Higher Education Funding Council for England (HEFCE).

Coelli (1996) studied the performance of the University of New England,
Australia, relatively to 35 other Australian universities. He examined the performance
of the academic and the administrative sections as well as the performance of the
universities as a whole. He considered as outputs the number of students and the
publication index (weighted by type) and various types of expenses and staff numbers
as inputs. Avkiran (2001) applied also DEA in order to examine the relative efficiency
of Australian universities. He developed three performance models, in particular one
for the overall performance and two for the delivery of educational services and the

fee-paying enrolments performance. In that study, he included the Research Quantum,
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which is the research component of Federal funds given to universities for their
research activity, in order to reflect both the quality and quantity of research output
(Department of Employment, Education, Training and Youth Affairs-DEETYA,
1997). Also, he noticed that the absence of market mechanisms to price educational
outputs renders traditional production or cost functions inappropriate. Therefore,
alternative efficiency analysis methods, such as DEA, should be used for the
assessment of universities. Abbott and Doucouliagos (2003) utilized DEA to estimate
technical and scale efficiency for the Australian public universities using data of 1995.
They used a variety of output and input measures in order to illustrate the sensitivity
of efficiency analysis. Concerning the measure of research output, they employed the
Research Quantum Allocation that each university receives, as in the case of Avkiran
(2001). They noted though, that it was the best measure of research output available
for Australian universities. Stern et al. (1994) assessed 21 academic departments of
the Ben-Gurion University in Israel. They used as inputs the operating costs and the
salaries while as outputs they used the grants, the publications, the graduate students,
and the contact hours. Korhonen et al. (2001) proposed the Value Efficiency Analysis
approach as a means to incorporate the analyst’s preferences in assessing the research
performance of universities and research institutions. In particular, they used four
composite indicators: quality of research, research activity, impact of research and
doctoral student’s activity, which were comprised of several simple indicators. For
instance, the composite indicator quality of research comprised of the following
simple indicators: number of articles published in international referred journals,
scientific books and chapters in scientific books published by internationally well-
known publishers and citations, which they were aggregated as a weighted average
with the weights being obtained by experts. Kao and Hung (2008) assessed the
relative efficiency of the academic departments at National Cheng Kung University in
Taiwan. They used assurance-region constraints to incorporate a priori information

provided by the top administrators of the university.

Ng and Li (2000) employed DEA for the assessment of the research
performance of 84 key Chinese HEIs from 1993 to 1995. They used research staff and
funding as inputs and publications data as outputs. Later, Johnes and Yu (2008)
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investigated the relative efficiency in the production of research of 109 Chinese
regular universities in 2003 and 2004. They took into consideration the impact and the
productivity of research as well as indicators regarding the staff, the students, the

capital and the resources.

There is a limited number of studies conducted for assessing the performance
of Greek academic institutions. Katharaki and Katharakis (2010) evaluated 20 Greek
public universities by applying DEA and econometric models. Concerning the inputs,
they included the number of academic staff with teaching and research activity, the
number of non-academic staff, the number of active registered students and the
operating expenses other than labour inputs such as expenditure of energy, non-salary
expenses, administration services, buildings and grounds, libraries and student
services. Concerning the outputs, they took into consideration the number of
graduates including undergraduate, graduate and post-graduate degrees and the total
economic resources of the university as a result of the research work, teaching and
research staff. Also, Kounetas et al. (2011) assessed the research performance of the
18 academic departments of a single Greek University for the years 2001-2004. They
considered six scenarios with various combinations of inputs and outputs. For
instance, they considered the total expenditures, the number of the academic staff and
the number of graduates as inputs, whilst they considered the number of publications,
the number of conferences and the number of monographs as outputs. In addition,
they applied a Tobit model in order to analyze the impact of the environmental effects
on departmental efficiencies. They found that the infrastructure, the age and the
schools’ personnel have an important role. More recently, Halkos et al. (2012)
estimated the performance of 16 departments of University of Thessaly by applying
DEA and bootstrapping techniques. They used as inputs the number of academic staff,
the number of auxiliary staff, the number of students and the total income, while as

outputs teaching and research indicators.
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5.3 Motivation and aim

Academic research is considered as one of the most important activities of academic
staff in higher education. The extent and quality of academic research are
determinants for the academics’ appointment and advancement. However, the quality
is a controversial topic because of the existence of a large volume of publications in
journals of low quality. As the research activity in a university is strictly designated
by the research activities of its staff members, the outcomes leverage its recognition
and affect its position in international academic rankings (competitiveness).
Moreover, there are countries where quality and performance issues play a crucial role
in determining the funding that they receive from the government (e.g. in the UK and
Australia). Therefore, the policy makers as well as the public draw significant
attention to the results of the assessment of Higher Education Institutions (HEIs) and
of their departments or faculties. Governments in many countries have already
delivered policies with the aim to handle issues of accountability, cost control and
enhancements of the quality of HEIs. In line with the above policies, in many
countries periodical exercises are carried out by assessment bodies (committees). In
the UK, for instance, the primary objective of Research Excellence Framework (REF)
is the evaluation of the quality of research in publicly funded HEIs. It replaced the
previous assessment system, last conducted in 2008, and named Research Assessment
Exercise (RAE). In Australia, the Excellence in Research for Australia (ERA)
initiative evaluates the quality of the research in Australian universities in order to
provide advice to the Government on research matters and assist the National
Competitive Grants Program (NCGP). Beyond the aforementioned initiatives,
complementary policies, such as internal assessments are often adopted in many
institutions. For instance, the research development group at Helsinki School of
Economics established a two-person team in order to assess the research performance

and assist the administration to the allocation of the resources (Korhonen et al., 2001).

In the sub-sequent sections we present an assessment framework to measure
the performance of Greek universities academic staff. The aim is to encompass in the
assessments both the volume as well as the quality of the research work. This is

achieved by rewarding the researchers with qualitative research records (i.e.
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publications in highly ranked journals with significant number of citations) and,
contrary, by penalizing those that exhibit extensive publications in unranked journals

with insignificant contribution.
5.4 Data

We study the research performance of 112 faculty members of Business and
Economics Departments of Greek Universities. The factors (input and outputs) that
are taken into account to measure the research performance of academics are

summarized in Table 5.1 below.

Table 5.1: Input and Outputs included in the analysis

Input -

Iy, Time (years) since the first publication

Outputs -

O4+4 Number of publications in highly ranked journals
(rank A+ or A) according to the ERA 2010.

Opc Number of publications in medium ranked journals
(rank B or C) according to the ERA 2010.

Op Number of publications in unranked journals.

Ocp Number of publications in proceedings of national
and international conferences.

Orp Number of research projects that the researcher
participated.

Ocit Number of citations (excluding self-citations) as per
scopus.

A single input is used (Iy,) to measure the total time devoted in research by an
academic since his/her first publication. Concerning the outputs, the publications are
classified according to the quality of the journal they are published and they are
treated as separate outputs. The journal rankings are drawn from the Excellence in
Research for Australia (ERA) 2010 journal classification system, which classifies the

journals in four quality classes (A+, A, B and C). A distinct class D is devoted to the
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journals that are not ranked in ERA. So, we considered three distinct outputs
concerning journal publications (Oy..4, Oz, and Op) as shown in Table 5.1. The last
three outputs (Ocp, Orp and Oc;) refer respectively to publications in conference
proceedings, research projects that the individual has participated and the citations

that the publications of the individual have received.

The data were drawn from Scopus, Google Scholar and the academic’s
personal Curriculum Vitaes (CVs). As the data may contain inaccuracies (for example
outdated CVs) they are estimates of the research record rather than accurate
performance metrics. However, the aim here is not to assess the true performance of
the individuals or the institutions they belong to but only to provide the assessment
framework with realistic data. Table 5.2 provides the descriptive statistics for the data

that were estimated and used in the analysis.

Table 5.2: Descriptive statistics for the input and the outputs data

Variable Mean StDev Minimum Median Maximum
Iy, 17.78 6.72 5.00 17.00 30.00
Oy 6.14 4.67 0.00 5.000 19.00
Oc 11.74 7.51 0.00 10.00 29.00
Op 14.88 10.93 0.00 13.00 47.00
Ocp 34.98 21.97 1.00 32.50 104.00
Orp 6.35 4.58 1.00 5.000 15.00
Ocy, 56.23 78.21 0.00 23.00 350.00

As Avkiran (2001) mentioned, the performance indicators concerning the
academic research are, among others, the number of publications. However, as there
are major differences to the quality of the journals, it is necessary to classify the
publications according to the quality of the journal they are published and then to
aggregate them or to treat them as separate outputs. However, aggregation of the
classes of the journals requires a priori knowledge about the relative importance
among these classes and such information turns the assessment to be strict and
inflexible (e.g. the DMUs cannot select the best weighting scheme among the classes

of journals so as to achieve the maximum possible efficiency score).

In the current case study, publications are classified according to the quality of

the journal they are published and treated as separated outputs. In addition, assurance
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region constraints (Type I) are introduced in the assessment framework so as to
incorporate individual preferences over the relative importance of these classes. In
contrast to the aggregation of the classes of journals to a single output, this modelling
approach grants the flexibility to each evaluated scholar to select the most preferable

weights over the classes remaining though consistent with the evaluator’s preferences.

The journal rankings are drawn from the Excellence in Research for Australia
(ERA) 2010 journal classification system. Journals which are not included in ERA are
considered as unranked journals. The indicators used in ERA include a range of
metrics such as citation profiles which are common to disciplines in the natural
sciences, and peer review of a sample of research outputs which is more broadly
common in the humanities and social sciences. ERA is a comprehensive collection.
The data submitted by universities covers all eligible researchers and their research
outputs. The precise set of indicators used has been developed in close consultation
with the research community. This approach ensures that the indicators used are both
appropriate and necessary, which minimizes the resourcing burden of ERA for
Government and universities and ensures that ERA results are both robust and broadly

accepted.

It is worthy to note here that the choice of the ERA journal classification
system is an assumption in the current assessment framework. Other journal
classification systems could be used instead. In this case though, because of the wide
range of scope covered by the publications of the 112 academics of Business and
Economics of Greek Universities under evaluation, a classification system that
includes a wide list of journals was needed. ERA2010 is such a classification system
as it comprises 20712 journals of a wide spectrum of scientific fields. For instance,
the UK’s Association of Business Schools (ABS) journal ranking includes a short list
of journals relative to business and management science; as a result, it did not meet

the needs of the current assessment.
5.5 Methodology

For the efficiency assessment of the academic staff we employ the output oriented

VRS variant of the PL-DEA value based model (4.14) developed in chapter 4. The
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VRS assumption is based on the fact that the corresponding outputs are not
necessarily strictly analogous to the years since first publication. In addition, provided
that an academic cannot reduce the years since his/her first publication an output
orientation is chosen so as the targets to be based on the publications, conference
proceedings, research projects and the citations that an academic should achieve given
the total time devoted to research. The results of this set up acquire a meaningful
interpretation for the academics and the policy makers; the efficiency scores denote
the proportional expansion of all outputs so as inefficient academics to be rendered
efficient and competitive. In order to facilitate the incorporation of the quality and the
extent of the research output in the assessment, certain intra- and inter-variable

constraints are introduced.

Intra-variable restrictions

To put emphasis on the quality of the research outcome, the outputs O,. 4, Oz, Op and
O¢;, are considered as non-linear whereas the rest of the factors are assumed linear.
Especially for the output O,. 4, a convex value function is assumed so as to reward
those academics showing high volume of quality publications. A single breakpoint is

set to b2

e =8 that splits the range of values of O,., in two sub-intervals

1 2 2 3 L .,
[bA+,A Ly :| and (bA+,A ) bA+,A:' where b, =1, 4= mjln{y(A+,A),_/} and

bjﬂ a=h = mjax{y( 4+, » While the convexity of the value function is driven by
.. u(A+,A),1 1 ..
the condition ——— < E Similar arrangements are made for the outputs Oz and
u
(A4+,4),2

Oc; for which the corresponding breakpoints are set to b, . =18 and 52, =200

Upcy

Ucyy _ 1 .
<1 and — < —. Contrarily, a
B,C),2 uCit,Z

respectively, and the convexity conditions are
u
(

concave value function is assumed for the output Op so as to reduce the contribution

of a large number of publications in non-quality journals in the efficiency. For this

output the breakpoint is set to 52 = 20 and the concavity of the value function is
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u
driven by the condition —2~>2 . Figures 5.1, 5.2, 5.3 and 5.4 present the non-linear
Up,

value functions for the outputs O4. 4, O, Oci; and Op respectively, based on the

above parameters.
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Figure 5.1: Convex value function for publications in A+, A journals
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Figure 5.2: Convex value function for publications in B, C journals
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Figure 5.3: Convex value function for citations
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Figure 5.4: Concave value function for publications in unranked journals

The selection of the breakpoints is based on the distribution of the values of the
corresponding outputs. Specifically, breakpoints were selected on points where the

corresponding distributions were presenting a significant change. Additional
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information about the distribution of the values of the certain output factors is
provided in Figures 5.5-5.8. The intra-variable restrictions are subjective estimates
that can be considered as reflecting a hypothetical evaluator’s point of view. These
estimates play a crucial in the efficiency assessment and obviously different estimates

may lead to different results.
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Figure 5.5: Publications in A+, A journals Figure 5.6: Publications in B, C journals

N e R N PP
f f
b =0 b =20 by =47 b., =0 b, =200 B, =350
Figure 5.7: Publications in unranked journals Figure 5.8: Number of Citations

Inter-variable restrictions

In addition to the intra-variable restrictions that form the convex and concave value
functions within the outputs, inter-variable restrictions are employed to define certain
priorities across the outputs that describe the research outcome. Institutions and/or
academics would normally have views as to the relative value of publications
appearing in differently ranked journals and also the worth of citations versus

publications. These views are subjective and possibly institution specific. Without
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claiming generality, and for illustrative purposes only, the inter-variable restrictions

depicted in Table 5.3 have been incorporated in the assessment.

Table 5.3: Inter-variable value restrictions

Value of Publications in A+, A journals > 2*value of Publications in B, C journals
Value of Publications in B, C journals> 3* value of Publications in unranked journals

Value of Publications in B, C journals> 3* value of Conference proceedings

Table 5.4 below summarizes the intra-variable and inter-variable constraints in

terms of values incorporated in the value based PL-DEA model.

Table 5.4: Restrictions translated in terms of values

Intra-variable restrictions Inter-variable restrictions

2 1
Py .1 bA+, 4 —bAJr, 4 Piasaa TPas a2 2 2(p(B,C),1 +p(B,C),z)
(41
= 3 2
p(A+,A),2 2 (bA+,A _bA+,A)

Pr.oy T Peog2 2 3(17[),1 + pD,z)

2 1
P o) < (bB,C _bB,C) 3
= (13 2 P +p =3p
Pwor ( b} . b ) ®.0.1 T PB.o2 cp

pcﬁ,l < l (bcz'it - bé‘it )
Pci,2 2 (béit _béit)

Ppy > 2(b12) _le)

Pps (b; -b, )

The output oriented VRS value based PL-DEA model utilized for the

assessment takes the following form:
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(b;,c - bé,c )p(B,C),l - (bé,c - b;,c )P<B,c>,2 <0

2(b2y = bl ) Py = (Pen = bew ) Pena <0

2(by =by ) Ppa— (b5 —bp ) Py <0

[section 3]
2p(B,C),1 + 2p(E,C),2 = Pas.ay ~ Plas.ayn S 0
3pD,1 + 3pD,2 - p(B,C),l - p(B,C),z <0

3pcp— P.cy1 ~ P,c)2 <0
P04, 20
w, € R

where the [section 1], [section 2] and [section 3] comprise the ordinary DEA
constraints, the intra-variable restrictions and the inter-variable restrictions

respectively.
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5.6 Results

By applying the model (5.1) and the standard DEA model (2.11) for comparison

purposes, a significant reduction of the efficient academics as well as of the average

efficiency scores is observed (Table 5.5).

Table 5.5: Number of efficient academics and average efficiency scores

Standard DEA Value based PL-DEA
model (2.11) model (5.1)
Number of efficient 27 17
researchers
Average efficient score 0.641 0.425
To further illustrate the effectiveness of the value based PL-DEA approach in

capturing the quality and the extent of the research output of the academics, two

examples are analyzed.

(1)

(i)

134|

A subset of ten poor performing researchers satisfying the condition /Iy, >

20, O4+qy <4 and Op =17 has been identified. The average values of
efficiency score in cases of standard DEA model (2.11) and the Value
Based PL-DEA model (5.1) are 0.563 and 0.199 respectively, indicating a
significant reduction of their efficiency. None of them is detected as
efficient by model (5.1) in contrast to model (2.11) which identified two of
the ten academics as efficient.

Three academics #1, #2 and #3 are selected as typical cases representing a
well performing academics with adequate years of research activity (case
#1) and two young academics with significant and a poor activity (cases #2
and #3 respectively). Their performance and efficiency scores are
presented in Table 5.6. The results show that the quality and extent of
research activity in cases #1 and #2 has been rewarded (efficiency scores =
1) and the poor performance in case #3 has been further penalized by the

Value based PL-DEA model (5.1).
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Table 5.6: Research records and performance of three characteristic cases

Factor Case #1 Case #2 Case #3
Iy 28 9 6
Ol 19 8 1
Opc 28 20 0
Op 34 31 7
Ocp 91 15 14
Orp 15 5 1
Oci 268 35 2

Efficiency Scores

Value based PL-DEA

model (5.1) ! ! 0.389

Standard DEA

model (2.11) ! ! 0.823

5.7 Concluding remarks

In this chapter we developed a framework for assessing the research performance of
the academic staff, which aims to encompass in the assessments both the volume as
well as the quality of the research output. For the efficiency assessment we utilized
the value based PL-DEA model that we developed in chapter 4. The effectiveness of
this approach is justified by comparing the value based results with those obtained by
the standard DEA model. The assessment exercise presented in this chapter is based
on a number of assumptions, such as the selection of data sources, the classification of
journals employed and the external preferential information adapted, that do affect the
results. Nevertheless, these are parameters of the proposed framework, which can be

adjusted by policy makers so as to reflect their value judgments.
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NEW MODELS AND APPLICATIONS
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Chapter 6

Network DEA

6.1 Introduction

The conventional DEA models are based on the assumption that the internal structure
of the Decision Making Unit is unknown. That is, the units are treated as black boxes
with only the levels of the inputs that enter the system and the levels of the outputs
that leave the system being known. Network DEA is an extension of conventional
DEA, which takes into account the internal structure and the flow of intermediate
measures of the DMUs. Network DEA conceives the production process that
characterizes the DMUs as a network of sub-processes. Several models have been
proposed in the network DEA literature. Castelli et al. (2010) provide a
comprehensive categorized overview of models and methods developed for different
multi-stage production configurations. Kao (2014a) provides a thorough classification
of studies in network DEA, according to the type of the network structure and the

model employed.

In this chapter, after a short overview of network DEA literature (section 6.2),
we focus on and outline the four basic network DEA approaches established in the
literature, namely, the independent approach (section 6.3), the multiplicative
decomposition approach introduced by Kao and Hwang (2008) (section 6.4), the
additive decomposition approach introduced by Chen, Cook, Li and Zhu (2009)
(section 6.5) and the SBM approach introduced by Tone and Tsutsui (2009) (section

6.6). In section 6.7 we spot some limitations of the aforementioned basic approaches.
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6.2 Network DEA: An overview

Lee and Billington (1992) where among the first who denoted the pitfalls in supply
chain management and highlighted that although its overall performance depends on
the joint performance of its sites (nodes of the supply chain), in most cases, the
management of each site is performed by autonomous teams. Thus, measures for the
overall performance of the supply chain should be adopted. In this line of thought,
Fare and Whittaker (1995) and Fare and Grosskopf (1996), based on Fare (1991),
utilized DEA to evaluate the efficiency in network structures, where the outputs from
one process are used as inputs to another one (intermediate measures). They
formulated the network activity as a DEA model and they presented the technology

for each node (stage) of the network.

Wang et al. (1997) employed DEA in assessing the information technology
impact on the performance of firms by assuming a two-stage series production
process. They assessed the efficiency of each stage independently. Seiford and Zhu
(1999) employed a two-stage structure in order to evaluate the overall performance of
55 U.S. commercial banks. In their setting, the first stage represented profitability and
the second one marketability. They employed the independent approach and they

calculated the efficiency score of each stage separately.

Cook et al. (2000) claimed that, in network structures, there are situations
where particular inputs are shared among the stages. To this end, they developed a
network DEA model, which determines the best resource split so as to maximize the
overall efficiency of the network process. They considered the overall efficiency of

the system as a convex combination of the individual stage efficiencies.

Zhu (2000) applied the independent assessment approach to determine a multi-
dimensional financial performance model for the assessment of the Fortune 500

companies.

Cook and Hababou (2001) extended the additive DEA model and developed a
dual-component measure to assess the performance of bank branches in both sales and

service with shared inputs.
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Chen and Zhu (2004) developed a linear model for two-stage series production
processes, by taking into account the intermediate measures that link the two stages,
in order to locate the efficient frontier of the production possibility set i.e. to provide
information on how to project an inefficient DMU on the frontier so as to be rendered

overall efficient.

Chen, Liang, Yang and Zhu (2006), proposed a non-linear model for assessing
the stage and the overall efficiency series multistage production processes. The
average of the stage efficiencies is maximized and the model is solved as a parametric

linear program.

Chen, Liang and Yang (2006), approached the efficiency in supply chains as a
DEA game model. They focused on a supply chain with two members and they
showed that there are numerous Nash equilibrium efficiency plans for the two

members.

Kao and Hwang (2008) introduced the multiplicative approach in two stage
series processes. They assumed that the overall efficiency of the system is the product
of the efficiencies of the two sub-processes. Thus, they proposed a linear program to
estimate the overall efficiency of the system and then, they decomposed the overall
efficiency to the stage efficiencies. They also introduced a technique to check the
uniqueness of the stage efficiencies. This approach has drawn significant attention

from the scientific community.

Tone and Tsutsui (2009) extended the SBM model in complex network
structures. Within their setting, they provided input oriented, output oriented and non-
oriented efficiency scores. Their model is applicable in both CRS and VRS situations

and it provides projections for the inefficient units.

Chen, Cook, Li and Zhu (2009), introduced the additive -efficiency
decomposition in two-stage processes. They assumed that the overall efficiency of the
system is a weighted average of the stage efficiencies. Assuming that the weights of
the stage efficiencies should reflect their importance, they represented the “size” of
each stage as the portion of total resources devoted to each stage. This representation

allowed them to transform their model into a linear program and to estimate the
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overall efficiency of the system. Stage efficiencies are calculated a posteriori and
similarly to the technique that Kao and Hwang (2008) introduced, they developed a
technique to check the uniqueness of the stage efficiencies. An advantage of the
additive efficiency decomposition approach over the multiplicative one is its

straightforward extension to VRS situations.

Chen, Liang and Zhu (2009) studied the relationship between the models of
Kao and Hwang (2008) and Chen and Zhu (2004) and they showed their equivalence.

Chen et al. (2010) provided an approach to derive the DEA frontier for two

stage processes according to the multiplicative approach.

Kao (2009a, 2009b, 2012, 2013 and 2014b) extended the multiplicative

approach in general network structures with parallel and series sub-systems.

Chen et al. (2013) discussed the pitfalls in network DEA concerning the
estimation of the stage efficiencies, the efficient frontier and the projections of the
inefficient units on the efficient frontier. They pointed out that the multiplier models
and their duals, i.e. the envelopment models, use different concepts of efficiency and
thus, their equivalence does not necessarily holds. They claimed that the projections
of the inefficient units on the efficient frontier should be determined by the
envelopment-based DEA models whereas the stages efficiencies should be estimated

by the multiplier-based DEA models.

Lim and Zhu (2016) developed formulas to obtain frontier projections and
divisional efficiency scores for two-stage processes, using the primal and dual

solutions obtained by a multiplicative network DEA model.

Recently, Despotis et al. (2016) criticized the additive efficiency
decomposition approach introduced by Chen, Cook, Li and Zhu (2009) and they
proved that the efficiency scores obtained by the additive efficiency decomposition
model are biased. They introduced the composition paradigm, where the efficiencies
of the stages are estimated first and the overall efficiency of the system is obtained ex

post. Their network DEA model provides unique and unbiased stage efficiency scores.

Applications of network DEA include: Avkiran (2009) and Fukuyama and
Matousek (2011) where network DEA is employed to assess the efficiency of banks in
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the United Arab Emirates and Turkey respectively; Zhu (2011) and Adler et al. (2013)
where the performance of airlines and airports is measured by presenting the
production processes as network activities; Chen et al. (2012) where the performance

of incineration plants in Taiwan is measured by using multi-activity network DEA.
6.3 The independent assessments approach

Wang et al. (1997) used DEA in assessing information technology (IT) impact on firm
performance. In their case study they assumed a two-stage series production process
where the first stage uses three inputs (IT budget, fixed assets, and employees) to
produce one output (deposits), which is then used as the only input for the second
stage, which in turn produces the final outputs of the whole production process
(profits and %]loans recovered). Figure 6.1 depicts the structure of the two-stage series

production process.

IT Budget Profits

Deposits
Stage 1 Stage 2

Fixed Assets

% Loans Recovered
Employees

Figure 6.1: Example of a two-stage series production process

As presented in Figure 6.1, “deposits” is both output from the first stage and input to
the second stage. Such factors are generally treated as intermediate measures, which

link the sub-processes and play a key role in the efficiency assesment.

Wang et al. (1997) was the first to use the so called independent assessments
approach. Specifically, treating the two stages independently they estimated the stage
and the overall efficiency of the system by using standard DEA models. The overall
efficiency of the system is defined as the ratio of the total virtual external outputs over

the total virtual external inputs, ignoring the intermediate measures. The models (6.1-
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6.3) are employed to calculate the efficiency of the first stage, the second stage and

the overall efficiency of the system respectively.

e, =max wZ, e, =max uY,

S.t. S.t.

vX, =1 (6.1) wZ, =1 (6.2)
wZ,—vX;<0,j=12,.,n uY, —wzZ, < 0,j=12,...,n
v,w>0 w,u >0

0 _
e, =max qu0

s.t.
vX, =1 (6.3)
uY, —vX,;<0,j=12,...n

v,w,u =0

A rational convention is that a DMU to be characterized as overall efficient it must be
efficient in all stages. Models that fail to incorporate this relation, can lead to
misleading results. Actually, this shortcoming of the independent approach is
attributed to the fact that the link among the sub processes is ignored in the evaluation
process. The intermediate measures have a conflicting role in the efficiency
assessments (e.g. the first stage aims to maximize their worth whereas the second
stage aims to minimize it). Thus, this linkage affects the efficiency scores of the sub

processes (stages) as well as the overall efficiency.

As the independent approach ignores the internal structure of a production
process, it can be applied in order to estimate realistic upper bounds (ideal efficiency
scores) for the efficiencies of the sub processes as well as for the overall one.
Nevertheless, when a cooperative model that incorporates the linkage of the
intermediate production processes is applied, the ideal efficiency scores of the

independent approach are not always achievable.
6.4 The multiplicative efficiency decomposition approach

Kao and Hwang (2008) introduced a novel approach for the efficiency assessment in

series two-stage processes where the first stage transforms external inputs to a number
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of intermediate measures, which then are used as inputs to the second stage that

produces the final outputs as depicted in Figure 6.2.

Production process

Stage 1 Stage 2

Figure 6.2: Representation of a two-stage series production process

Their approach is based on the reasonable assumption that the values of the
intermediate measures (virtual intermediate measures) are the same, no matter if they

are considered as outputs of the first stage or inputs to the second stage. For the

evaluated DMU j,, they define the overall efficiency of the system as the ratio of the

uY,
total virtual external outputs over the total virtual external inputs e?o =—>" . The

VX,
. ) . . wZ i
efficiencies of the first and the second stage are respectively e, = % ¢ and
Jo Vv )
Jo
, Y, | |
e :70. Thus, the overall efficiency of the system is the product of the
w

Jo

2

. . 0 1
efficiencies of the two sub-processes: e; =e¢, -€; .

Model (6.4) below is the fractional model to calculate the overall efficiency of
the system and model (6.5) is the corresponding linear one which derives by applying

the C-C transformation.

| 145



Doctoral Dissertation — D.G. Sotiros

Y
max u_JO
VXjO max “on

S.t. S.t.
wZ . VX, =1

L<1,j=12,..,n (6.4) ! (6.5)
VX, wZ,-vX,;<0,j=12,.,n
uY. uY. —wzZ.<0,j=12,...n

L <1,j=1,2,...,n jmWe =g
wZ, v,w,u >0
v,w,u=>0

Let (v*, w*,u*) be an optimal solution of model (6.5). Then, the overall efficiency of

*

: ul, . L .
the system is e?o =—2 -y Y, . The stage efficiencies can be then obtained from the

v X,
Jo

optimal solution of model (6.5) as follows:

* *

. wZ, . , ul, e’

e/u: * Jo
v X. :

Jo Jo Jo

As the optimal solution of model (6.5) is not necessarily, the decomposition

0 1 2 . . . . . .
e, =e, -e; may be not unique either. To deal with this the non-uniqueness issue,

Kao and Hwang (2008) proposed a post-optimality phase where the efficiency of the
first or the second stage (according to the priority given by the analyst) is maximized
while maintaining the optimal overall efficiency of the system derived by model (6.5),

as shown below.

1max 2max

e, =max wZ, e, =max ul,

s.t. s.t.

vX, =1 wZ, =1
wZ,-vX;<0,j=12,...,n (6.6 wZ,-vX;<0,;=12,...,n (6.7)
uY, —wzZ, <0,j=12,..n uY, —wzZ, <0,j=12,..n

uY, = e?o uY, —e?onjo =0

v,w,u>0 v,w,u>0
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where e?o is the overall efficiency of the system as derived by model (6.5). Once

0
Jo
Imax °
e.io

Imax

e, 1s calculated by model (6.6), the efficiency of the second stage is efof =

Analogously, if priority is given to the second stage, the efficiency of the first stage is

0
e
1 J . . 1 1
e, =—:—. Notice that if e™ =e- and e

o g2max Jo Jo
Jo

2max 2

o =e,~ then, the efficiency

decomposition is unique. However, the uniqueness of the stage efficiencies in the

multiplicative approach does not necessarily holds.

Although the multiplicative model is not straightforwardly extended to fit to
VRS situations, Kao and Hwang (2011) proposed a method to decompose technical

and scale efficiencies.
6.4.1 Extensions to complex network structures

Kao (2014b) extended the multiplicative decomposition approach to general multi-
stage processes arguing that any structure can be transformed into a series of parallel

structures.

Multi-stage series processes

Assume a production process composed of g sub-processes (stages) in series,
where the external inputs X enter the system through the first stage and external
outputs Y are produced by the final stage g. Each one of the stages /,...,g-1 produces
intermediate measures Z(”,..., Z" that are used as inputs to the sub-sequent stage

2,...,q respectively, as depicted in Figure 6.3.

X Z(l) 7 (=D 7P 7(@=D
1 — p q

Figure 6.3: Representation of a multi-stage series production process
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The model (6.8) provides the overall efficiency and the stage efficiencies of the

system
max “on
S.t.
vX. =1

whZW —vX <0, j=1,2,..,n

(p)7(p) (p=1) 7(p-1) P C oy —
w”Z}.p —w Z],” <0,j=L2,...m;p=2,....q—-1
uY, —whzE <0,/ =1,2,...,n

v,u>0

(6.8)

w? >0,p=1,..,9-1
where Z'” ( p=1L..,q —1) are the outputs of the p sub-process (intermediate
measures) and w'” the associated vector of weights. Let (v*,w*“),...,w*(q‘”,u*) be an

optimal solution of model (6.8) when DMU j, is evaluated. Then, the overall

efficiency of the system as well as the stage efficiencies for DMU j, are obtained as

follows:
Y
u .
e;) =—> :u*Yj
" v X, 0
Jo
W'z
1 _ Jo
€ T iy
: v X/0
*( .> (») (6.9)
w Pz
r __ Jo

Jo - W*(p,l)fo,l) ’p :2,-.-,q_1

*
vy,

Jo W*(q—l)Zg{—l)

As noted previously, the stage efficiencies obtained by model (6.8) are not necessarily

unique.
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Parallel structures

The parallel structure is defined as a process, which is composed of

independent sub-processes that can operate simultaneously. Assume a system with ¢

parallel sub-processes that use X", p=1,...,q inputs to produce Y p=1,..¢

q9 q
outputs as depicted in Figure 6.4. The summations X = ZX @ y= ZY ) denote

p=l1 p=1

the total system inputs and the total system outputs respectively.

X0 yO
1
X x y® Y
p
X(Q) Y(LI)
q

Figure 6.4: General representation of a parallel structure

To estimate the overall efficiency of the system as well as the efficiencies of each sub-

process the following model (6.10) is employed

max uY.
Jo

S.t.

vX, =1 (6.10)
qu(p) —vXj(.p) <0,j=1.2,...,m;p=1,...,q

v,u >0

Let (v*,u*) be an optimal solution of model (6.10) when DMU j, is evaluated. Then,

the overall efficiency of the system and the stage efficiencies are obtained as follows:
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u Y/b *
e]o ==, U Jo
v on
o (6.11)
Y'P)
P _ Jo —
]O_V*X(p)’p_ ’ 5q

The overall system efficiency is decomposed as a weighted average of the stage
efficiencies where the weight for each stage is defined as the portion of the total
virtual inputs that the stage consumes over the total virtual inputs consumed by the

whole system, as follows:

=2 =¢ (6.12)

Notice that the weight attached to each stage is a function of the variables of model
(6.10) and they are calculated endogenously on the basis of the optimal solution of
model (6.10). So, the weights assigned to the stages differ from one DMU to another
and consequently, different priority is assumed to the stages for each DMU. Because
model (6.10) may have multiple optimal solutions, the efficiency score of each stage

as well as its associated weight in equation (6.12) may not be unique either.

Efficiency decomposition of general multistage processes

Kao (2014b) suggests that “the key to decompose the system efficiency of a
general multi-stage system is to find a transformation of series and parallel
structures”. This can be achieved by introducing dummy processes so as to transfer
the external inputs and the external outputs dedicated to particular sub-processes
throughout the system. Figure 6.5 below exhibits a general multi-stage system and
Figure 6.6 illustrates the transformed one with three series sub-systems, where each
one of them has a parallel structure. Notice, that the circular nodes denote dummy

Processces.
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x®
x® 70 7@ y©®)
1 2 3
Figure 6.5: General multi-stage system
Subsystem | E Subsystem | E Subsystem Il

X0 i | Yo
BalN : : >

X2, x0 s e yo

Figure 6.6: Transformed multi-stage system

The overall efficiency of the system depicted in Figure 6.5 is estimated by model

(6.13).
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e?o = max u(z)Y_/(uz) +u(3)Yj(n3)

S.L.

v“)XJ(.:) +v(2)X;()2> +v(3)X;j> =1

w“)Z;” —v“)X;” <0,j=1,..,n (6.13)
u(z)ij + w(”Z;z) —v(z)Xﬁz) - w“)Z;” <0,j=1,..,n

uij(” —v(3)X;3) - meﬁz) <0,j=1,..,n

v(l) , v(2) , v(3) , w(l) , W(2)’ u(2) , u(3) >0

According to the previous notations, the overall efficiency of the system, when DMU

Jo 1s evaluated, can be decomposed to the product of the efficiencies of the series

sub-systems e?o =E]1.0 *Efo *Ej.o. Each sub-system has a parallel structure and it is

composed from one real and one dummy process whose efficiency is equal to one.

Thus, the efficiency of each sub-system is calculated as follows:

1 0, @4 _ D M
E =w"e,+0"e,=0"¢, +(1-0")

Efo = a)(z)e_fo + a)(s)ef.o = a)(z)e_fo +(1-a0™)

Ej.o =0V, + 0%, =0Ve, +(1-0")

where

oV =y OX D/ OXD 4y @YD 4O x )
0)(2) — (W*(l)Z;I) +V*(2)X;2)) / (W*(l)Z;I) +V*(2)X;2) +v*(3)X§3))

B) _ (@72 |6 () 12 7(2) | *3) (), 2y (2)
" =W Z7 v X (w2 v X +u )
6.5 The additive efficiency decomposition approach

Chen, Cook, Li and Zhu (2009), introduced the additive efficiency decomposition
approach for the simple two-stage process as depicted in Figure 6.2. They define the

overall efficiency of the system as a weighted average of the stage efficiencies

e) =t'e. +t’¢’ with ¢+ =1. The stage efficiencies (el. e ) are defined as in the
Jo Jo Jo Jo? " Jo

multiplicative approach e}, =—%-, ¢7 =

vX . wz
Jo Jo

wZ . ”on
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However, when the weights (tl,tz) are treated as user-defined parameters, the

authors ended to a non-linear model. For the sake of linearity, the weights (tl,tz) are

defined as functions of the decision variables in a manner that they reflect the size of
each stage as viewed by the portion of the total resources devoted to each stage as

follows:

vX . wZ

tl_ J tz_ J
J > J
vXj+ij vXj+ij

Thus, the overall efficiency of the system is:

eQ :t1~ €l< +t2 eZ — Von A WZjo WZjo quo _ WZjo +qu0

e + . —
o hehe el X v wZ o vX . v +wZ, wZ, vX, +wZ
Jo Jo Jo Jo Jo Jo Jo Jo

and it is obtained by the fractional model (6.14) or its linear equivalent (6.15), which
is derived by applying the C-C transformation.

wZ. +ul,
max Jo Jo

vX, +wZ max wZ, +ul,
S.t. S.t.
wZ, vX, +wZ =1

L<1,j=12,..,n (6.14) ° (6.15)

VX, ij—vXjSO,jzl,Z,...,n
Y =12 ulj, =wz;, <0,j=1,2,...n
Wz, v,w,u >0
v,w,u=>0

Let (v*, w*,u*) be an optimal solution of model (6.15). Then, the overall efficiency of

w Zjo tu on

the system is e? =
CvX, +wZ
Jo

=wZ j0+u*YjO. The stage efficiencies can be

obtained from the optimal solution of model (6.15) as follows:

* *
w/Z. uyY
| Jo 2 Jo
e/o_ * ’efo_ *
‘ v X. : wZ.
Jo Jo

As in the case of the multiplicative approach, the decomposition of the overall

efficiency to the stage efficiencies may not be unique. To deal with this issue, Chen,
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Cook, Li and Zhu (2009) followed the post-optimality check introduced by Kao and
Hwang (2008). To this end, according to the priority given by the analyst, they
maximize the efficiency of the first or the second stage by the models (6.16) and

(6.17) below, respectively.

I max

e, =max ijO

S.t.

vX; =1

ij—vXj <0,j=L2,...,n (6.16)

uY,-wZ,<0,j=L2,..,n
(1= )wz, +u, =<}

v,w,u >0

ejz.oma" =max uY,

S.t.

ijO =1

wZ,—vX,;<0,j=12,.,n (6.17)

uY,-wz, < 0,j=1L2,...n
0 0
WZ./(J +quo _e./onio - ejo

v,w,u >0

If priority is given to the first stage, model (6.16) is applied to calculate the maximum

efficiency of the first stage while maintaining the overall efficiency of the system
(e?o )as estimated by model (6.15). Once the maximum efficiency of the first stage is

0 *1 _Imax
. —t.e.
Jo Jo Jo
*2
Jo

obtained, the efficiency of the second stage is calculated as ejz.o‘ = where

*] *) . . . . . .
t, and ¢ derive form the optimal solution of model (6.15). Analogously, if priority
to the second stage is given, the maximum efficiency of the second stage is estimated

by applying model (6.17). Once the optimal value of the objective function (ezma") is

Jo
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0 _ /*2 2max
Jo Jo Jo
*1
t.io

calculated, the efficiency of the first stage is calculated as e;; = . Notice

Imax

that the efficiency decomposition is unique only if ¢,™ = e- and 2™ =e’- , which
Jo Jo .

Jo Jo

generally does not hold.
6.5.1 Extension to VRS

The additive efficiency decomposition approach is readily extended under the VRS
assumption as given in the fractional model (6.18) and its linear equivalent (6.19)
below.

wZ, +a)1+uY/ + o’
max 2 -

vXj0+wZv

S.t.
wZ . +a'
—L—<1,j=12,..,n

VX, (6.18)
uY, + o’

- <l,j=12,..,n

wZ .

J

v,w,u >0
@, 0" €R

max wZi0 + o' +uYJ.O +w’

S.t.

von +wZ =1

ij+a)1—vXjSO,j:1,2,...,n (6.19)
”on + o’ —ijO <0,j=12,...,n

v,w,u >0

o', 0" € R

Once the overall efficiency of the system is calculated, models (6.20) and (6.21) can
be applied to estimate the maximum efficiency of the first and the second stage
respectively. After calculating the maximum efficiency of one stage, the efficiency

score of the other one can be estimated in an analogous manner as in the CRS case.
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Imax

e =max wZ, + o'
S.t.
von =1
ij+a)1—vXjS0,j=1,2,...,n

, (6.20)
u¥,+o”-wZ,;<0,j=12,...n
(l—efo)*ijo +uY, +o' + o’ =e;?0
v,w,u=>0
0,0 €N
e_foma" = max qu0 +o°
S.t.
ijO =1
ij+a)1—vX/. <0,;j=12,..,n

' (6.21)

2 .
u¥,+o”-wZ, <0, j=12,..,n
wZ. +uY —e’ *vX. +0' +o’ =é
Jo Jo Jo Jo Jo
v,w,u =0

o', 0" €N
6.6 The Slacks-Based Measure for network DEA

The multiplicative and the additive efficiency decomposition approaches utilize the
radial measure of efficiency. Tone and Tsutsui (2009), developed an alternative
network DEA approach (network SBM) which employs the slacks-based measure.
The advantage of this approach is based on the estimation of the efficiency score
when changes in inputs and outputs are not proportional. They used the weighted
SBM (Tsutsui and Goto, 2009). Specifically, they set exogenous weights on the stages

so as to incorporate the importance of the stages in the efficiency assessment.

Under the assumption of variable returns to scale, the evaluated DMU | is

expressed as follows:
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xff = X2k + 5%
y(l)f _ YRk gkt
edt =1

AF>0,5 20,5 >0,k=1,..,K

(6.22)

where K is the number of the stages, X* =(x1",...,xf), Y* =(y1",...,yf) and k

denotes the k" stage k =1,..,K .

They considered two cases to describe the way two stages k and & (h# k) are
linked by means of the intermediate measures. In the first case, it is assumed that the
intermediate measures can be freely determined by the optimization (free link

assumption), a situation that it represented by the following constraints:

ZUM qh = 7N 2k (6.23)

In the second case, it is assumed that the intermediate measures are fixed (fix link

assumption) with the corresponding constraints being as follows:

ng,h) — k) g
) _ lkh) i

o

(6.24)

Depending on the orientation selected, three models have been proposed to assess the

efficiency scores of the units.

Input oriented network SBM

Model (6.25) below is proposed to assess the input oriented efficiency score of

the evaluated unit j:
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K 1 my, Sk—
g, = min Zwk {1——(21—,(}}
P

mg\ i-1 X,
S.t
xf = X2k 450
y(])c = Yk Qk — gkt
el =1
A20,5520,s">0,k=1..,K (6.25)
and

Z(k’h)lh — Z(k’h)lk

where m, is the number of inputs that the k stage consumes, w' represents the

K
relative importance of stage k with Zw" =1. The constraints for the intermediate
k=1

measures depend on the assumption made (free or fixed link). Let (Hj,ik*,sk"*,sk**)
be an optimal solution of model (6.25). If ¢’ =1, then the evaluated DMU is overall

efficient. The stage efficiency scores as well as their relation with the system

efficiency are given in the following equations:

my k= K
6, =1—L(Zsl‘—k} g => we, (6.26)
m, \ T X

10

Output oriented network SBM

To implement the output orientation, it is sufficient to replace the objective

function in model (6.25) with the following:

= maxiwk [1 +l[i . H (6.27)
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where 7, is the number of outputs that stage & produces. The stage efficiency scores as

well as their relation with the overall efficiency are given in the following equations:

. = 1 1 _$Ew

g - 6.28
1-{—1[25{( J To ;TK ( )

k
rk r=1 yro

Non-oriented network SBM

If no orientation is assumed, then the efficiency assessment can be performed

by model (6.25), where the objective function is replaced by the following:
K 1 (& s*
wh1—-— L
* . kz mk ; xl]:)
£, =min
w14t (i 5, J
rk r=1 y}{{()

Then, the stage efficiencies can be obtained analogously from the following equation:

m,  k=*
L

e\ =1 Xig

= o
B

k
7 \= Vo

(6.29)

il Nl

(6.30)

However, as Chen et al. (2013) pointed out, the network SBM approach cannot
be applied in multi-stage processes where the stages have no additional external
inputs and/or outputs and thus, the network SBM approach cannot be conceived as a

general network DEA approach.
6.7 Drawbacks and limitations

The efficiency assessment in network structures is not straightforward. The stages
(nodes of the network) are linked with intermediate measures, which are treated both
as outputs from one stage and inputs to another stage. Thus, the intermediate measures
have a conflicting role in the efficiency assessment. The standard DEA models

(independent approach) do not take into account the linkage of the stages in the
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efficiency assessment and thus, they lead to misleading results (Wang et al., 1997).
Several methods have been proposed in the network DEA literature to overcome this
issue, which can generally unfold in two general approaches; the decomposition

approach and the composition approach.

The decomposition approach is based on the assumption that the stages should
cooperate so as the system to achieve its maximum efficiency. Thus, in this approach,
the overall efficiency of the system is estimated first and then, the stage efficiencies
are obtained ex post from the optimal solution. It is noteworthy that the proposed
methods that are based on the decomposition approach differ only in the definition of
the overall efficiency. For example the multiplicative method of Kao and Hwang
(2008) assumes that the overall efficiency of the system is the squared geometric
mean of the stages efficiencies whereas the additive model introduced by Chen, Cook,
Li and Zhu (2009) assumes that the overall efficiency of the system is a weighted
average of the stage efficiencies. However, the stage efficiencies obtained by the
methods materializing the efficiency decomposition approach are not unique. This is
the main drawback of all the efficiency decomposition methods. Moreover, the
additive efficiency decomposition method provides biased stage efficiency scores,
which is an additional drawback of this method. The multiplicative efficiency
decomposition method, apart from that it is limited only to cases where constant
returns to scale are assumed, when maximizing the overall efficiency of a unit, may
implicitly, yet unreasonably, assume different DMU-specific priorities for the stages.
Thus, the decomposition of the overall efficiency to the stage efficiencies may bias
the efficiency assessments in favor of one stage over the other and it does not provide
the analyst with the necessary information to communicate the results, as concerns the

priorities of the stages.

Unlike the efficiency decomposition approach, in the composition approach,
introduced by Despotis et al. (2016), the efficiencies of the two stages are estimated
first and the overall efficiency of the DMU is obtained ex post. A major advantage of
the assessment method presented in Despotis et al. (2016), over the additive and the
multiplicative decomposition methods is that the former provides unique and unbiased

efficiency scores for two-stage processes. Its disadvantage, however, is that it cannot
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be readily extended in series processes with more than two stages. This is an effect of
the different orientations selected for the first and the second stage, which in fact was
made to simplify the models and keep them within the field of linear programming

(simplicity at the expense of generality).

In the next chapter, we provide a novel approach that extends the composition
paradigm in general multi-stage processes and eliminates the drawbacks and the

limitations mentioned above.
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Chapter 7

A novel network DEA approach for general series

multi-stage processes

7.1 Introduction

In this chapter, we introduce the composition paradigm in general series multi-stage
processes, by proposing a multi-objective programming approach. Without harming
simplicity, our approach overcomes the lack of generality in Despotis et al. (2016), as
long as our model and the solution method proposed can handle any type of series
multi-stage process. Our developments make the direct comparison of the new
approach with the multiplicative method (Kao and Hwang, 2008) possible and
fruitful, in a manner that enables us to point out some critical issues that one should
take into account when using the multiplicative decomposition method. Unlike the
additive (Chen, Cook, Li and Zhu, 2009) and the multiplicative -efficiency
decomposition (Kao and Hwang, 2008) methods, our new general approach secures
the uniqueness of the efficiency scores. Moreover, the efficiency assessments are
neutral, in the sense that no implicit priority is assumed for some stages over the

others.

The chapter is organized as follows. Section 7.2 is devoted to two-stage
processes. We identify four distinct types of processes that cover all possible
configurations. In sub-section 7.2.1 we introduce our modeling approach in detail
with respect to the elementary two-stage process, which assumes that nothing but the
external inputs to the first stage enters the system and nothing but the outputs of the
second stage leaves the system. A thorough comparison of our method with the
multiplicative approach (Kao and Hwang, 2008) highlights the advantages of the
former and points out some critical shortcomings of the latter. In sub-sections 7.2.2 to

7.2.4, we generalize our approach to more complicated two-stage configurations.
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When case data are available in the literature, we compare the results obtained by our
method with those from other methods. Otherwise, we provide synthetic data and the
corresponding results for testing and validation. In section 7.3 we extend our

formulations in general multi-stage processes. Conclusions are drawn in section 7.4.
7.2 Two-stage processes

In this section we develop our novel network DEA approach for the case of two-stage
series processes. We follow the composition paradigm introduced in Despotis et al.
(2016). In the composition paradigm, as opposed to the decomposition approach (Kao
and Hwang, 2008, Chen, Cook, Li and Zhu, 2009), the stage efficiencies are estimated
without any a priori definition of the overall efficiency of the system. In Despotis et
al. (2016), once the stage efficiencies are estimated, the overall efficiency is computed
a posteriori by aggregating the stage efficiencies additively or multiplicatively. In this
chapter we define the overall efficiency of the system as the ratio of the weighted

external outputs over the weighted external inputs of the system.

We consider four types of processes that cover all possible two-stage series

configurations, as depicted in Fig. 7.1.

X z Y X z Y
— 1 > 2 —»> —> 1 > 2 —>

Type I Type 11

L
X Z Y X z Y
— 1 > 2 —> —> 1 —> 2 —>
lK l K
Type 111 Type IV

Figure 7.1: The four types of series two-stage processes
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Let us introduce the following basic notation:

jed = {1,...,11} : The index set of the » DMUs.
Jo €J : Denotes the evaluated DMU.

X, = (‘xij’i =1,..., m) : The vector of stage-1 external inputs used by DMU; (all types).

J

Z, = (zpj, p=1..., q) : The vector of intermediate measures for DMU; (all types).

Y, :( yrj,rzl,...,s): The vector of stage-2 final outputs produced by DMU; (all
types).

L = (Z god =1, a) : The vector of stage-2 external inputs (types [ and IV).

K, =(k

¢

c=1,.. .,b) : The vector of stage-1 final outputs (types III and IV).
n= (771,...,77,,1) : The vector of weights for the stage-1 external inputs in the fractional
model.

v:(vl,...,vm): The vector of weights for the stage-1 external inputs in the linear

model.

Q= ((01,...,(0q): The vector of weights for the intermediate measures in the fractional

model.

w= (wl,...,wq): The vector of weights for the intermediate measures in the linear

model.

W= (0)1 yeees O ) : The vector of weights for the stage-2 outputs in the fractional model.
u =(u,,...,u, ): The vector of weights for the stage-2 outputs in the linear model.

y = (7/1 yeees 7a) : The vector of weights for the stage-2 external inputs.

1 =(4,..., 4, ): The vector of weights for the stage-1 final outputs.

e; : The overall efficiency of DMU;.
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ej. : The efficiency of the first stage for DMU;.
ejz. : The efficiency of the second stage for DMU;.
EJ1 : The independent efficiency score of the first stage for DMU;.

E jz : The independent efficiency score of the first stage for DMU;.

7.2.1 Type I structure

Consider the elementary case (Type I) where each DMU transforms some external
inputs X to final outputs Y via the intermediate measures Z with a two-stage process,
as depicted in Fig. 7.1. In this basic setting, nothing but the external inputs to the first
stage enters the system and nothing but the outputs of the second stage leaves the
system. Typically, the efficiency of the first and the second stage of a DMU ; are
defined as follows:

\_9Z, oY

e , oo =—>L
LonX, 9z,

The overall efficiency of DMU j is defined as the ratio of the total virtual exogenous

output to the total virtual exogenous input:

oY,

el =—-1

J 77X

J

Consider the basic input oriented CRS-DEA models that estimate the stage-1 and the

stage-2 efficiency for the evaluated unit jy independently:

s.t. | (7.1)
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Jo

s.t. (7.2)
oY, —pZ, <0, j=1...,n

J
pZE,W2E
In order to link the efficiency assessments of the two stages, it is universally accepted
that the weights associated with the intermediate measures are the same, no matter if
these measures are considered as outputs of the first stage or inputs to the second
stage. Appending the constraints of model (7.1) to model (7.2) and vice versa we get
the following augmented models (7.3) and (7.4) for the first and the second stage

respectively:

Eljo = max —2
ano
S.L.
0Z,~nX,;<0, j=1..,n (7.3)

oY, —¢Z, <0, j=1L...,n

nze,pz2e,02¢&

Eiozmax Jo
(DZjo
S.L.
0Z,~nX,<0, j=1...n (7.4)

oY, —pZ, <0, j=1L...,n

nze,pz2e,02&

As noticed in Despotis et al. (2016), the optimal solutions of (7.1) and (7.2) are also
optimal in (7.3) and (7.4) respectively. Models (7.3) and (7.4) have common

constraints and, thus, they form the following bi-objective program:
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(7.5)

nze,pze,w2¢&

Applying the C-C transformation with respect to the first objective function, i.e.
multiplying all the terms of the fractional objective functions and the constraints by

t>0, such that X A =1 and setting tn=v,to=u,tp=w we get the following

equivalent bi-objective program, whose second objective function is still fractional.
max wZ
Jo
Jo

wZ .
Jo

max

S.t.

vXj0 =1 (7.6)
wZ,—vX, <0, j=1...,n

qu—ij <0, j=1,...,n

VZEWZEUZE

Solving the linear equivalents of models (7.3) and (7.4) one gets the independent

efficiency scores Eljo and Eio of the two stages respectively. In terms of multi-

objective programming (MOP), the vector (Elj0 ,Ei.o ) constitutes the ideal point of the

bi-objective program (7.6) in the objective functions space. The efficiencies of the
two stages can be obtained by solving the bi-objective program (7.6). However, as the
ideal point is not generally attainable, solving a MOP means finding efficient (Pareto
optimal) solutions in the variable space that are mapped on the Pareto front in the
objective functions space, i.e. solutions that they cannot be altered to increase the
value of one objective function without decreasing the value of at least one other

objective function. The model (7.7) below employs the weighted Tchebycheff norm
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(Lo norm) to locate a point on the Pareto front, by minimizing the maximum of the
. L] 1 1 2 2 1 2
weighted deviations ¢, (Ej.o —ejo) and ¢, (Efo —ejo) of (ejo =wZ, .e, =uY, /WZ/O)

from the ideal point (Elj0 E% ) , with weights ¢, >0 and ¢, >0.

min o
S.t.
t(E, —wZ )<6
uY,
t, [Ef ——“J <5
wZ, (7.7)
vX i =1

ij—vXj <0, j=1,...,n
uY, -wZz, <0, j=1,...,n

vzew2egu=>£,02=0

Every optimal solution of (7.7) is weakly efficient (weakly Pareto optimal) solution for
(7.6) (Ehrgott, 2000). At optimality, at least one the first two constraints in (7.7) will
be binding. Assuming that there is no stated preference information that gives priority

to one of the two stages, we employ in our assessments the unweighted Tchebycheff

norm, i.e. we assume £, =¢, =1, and we get the following:

min &
S.t.
1
E e wZ i <o

(Ei0 —5)ij0 —uY, <0
vX, =1

wZ,—vX, <0, j=1,...,n
uY/ —WZJ. >0, j=1,...,n

v2ew2egu=¢£,02>0

(7.8)

Although model (7.8) is non-linear, it can be easily solved by bisection search (c.f.
Despotis, 1996). Clearly,0 <0 <1. Hence bisection search can be performed in the

bounded interval [0,1] as follows. Let § be a lower bound of & for which the

constraints of (7.8) are not consistent (initially §=0) and & an upper bound of &
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for which the constraints are consistent (initially & =1). Then, the consistency of the

constraints is tested for 5':(§+5 )/ 2. If they are consistent, & will replace & ; if
they are not it will replace & . The bisection continues until both bounds come

sufficiently close to each other. Let (5 VLW u*) be an optimal solution of (7.8) and

*
wZ. uY.
1* * 2*
e, =——r=wZ,, e =——"
‘ v X, : : wZ,
Jo Jo

The model (7.9) below provides a Pareto optimal solution to (7.6). The model (7.9) is
equivalent to employing lexicographically (in a second phase) the L; norm on the set

of optimal solutions of (7.8) (see, e.g. Steuer and Choo, 1983).

max s, +s,

S.t.
l *
E, —wZ, +5=0
(B2 -5")wz, ~u¥, +s,wZ, =0
vXjO:I (7.9)
wZ,—vX, <0, j=1...,n
qu—ij <0, j=1,...,n
VZEWZEUZE

525200 >52>0
In (7.9), & is the optimal value of the objective function of (7.8) and w'Z ;, the
optimal virtual intermediate measure derived by model (7.8). Notice here that the term
wZ ;, 1s used as an effective substitute of wZ ;, to secure the linearity of the model. In
case that s, >0 in the optimal solution of (7.9), the program is solved iteratively by

replacing in each iteration the weights W in the coefficient of s, with the optimal

weights W obtained in the preceding iteration, until the stage efficiencies in two
successive iterations remain unchanged (c.f. Despotis, 1996) for a similar treatment).

The same holds for the second phase programs in types II-IV as well as in the general

case presented in the next sub-sections. The optimal solution (19, w,ﬁ) of (7.9) is a
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Pareto optimal solution of (7.6) and the efficiency scores for unit j, in the first and

the second stage as well as the overall efficiency of the system are respectively:

wZ. uY, uY,
& =—H=WZ, 6 & =—", & =—=1Y,
0 VX 0 0 Z 0 VX 0
Jo Jo Jo
with e} :éj.o -éjz.o. Since the optimal solution of (7.8) is weakly Pareto optimal, in

(7.9), at most one of the two optimal values of the variables $, and §, will be strictly

positive. If 5, =0 and §, =0, then the optimal solution of (7.8) is Pareto optimal.

Hlustration

For comparison purposes, we apply models (7.8) and (7.9) to the data
originally presented in (Kao and Hwang, 2008) and used in many other studies. The
case concerns the performance measurement of 24 Taiwanese non-life insurance
companies. The authors considered a two-stage production process with two inputs
(Operation expenses-X1 and Insurance expenses-X2), two intermediate measures
(Direct written premiums-Z1 and Reinsurance premiums-Z2) and two final outputs
(Underwriting profit-Y1 and Investment profit-Y2). For the complete data set the
reader is referred to the original article (Kao and Hwang, 2008). Table 7.1
summarizes the results obtained by applying the additive decomposition method
(Chen, Cook, Li and Zhu, 2009) (columns 2-4) and the multiplicative decomposition
method (Kao and Hwang, 2008) (columns 5-7).

Table 7.2 exhibits the results obtained by applying the proposed approach.
Specifically, columns 2 and 3 present the independent (ideal) efficiency scores for
stage-1 and stage-2 respectively, columns 4 and 5 present the stage-1 and stage-2
efficiency scores, whereas the last column presents the overall efficiency scores.
Notice here that in all cases (DMUs), the model (7.8) provided Pareto optimal

solutions, i.e. model (7.9) did not alter the efficiency scores obtained from (7.8).
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Table 7.1: Results obtained from the additive and the multiplicative decomposition methods

Chen, Cook, Li and Zhu (2009) Kao and Hwang (2008)
DMU ¢ & e° el & e°
1 0.9926 0.7045 0.8491 0.9926 0.7045 0.6992
2 0.9985 0.6257 0.8122 0.9985 0.6257 0.6248
3 0.6900 1 0.8166 0.6900 1 0.6900
4 0.7243 0.4200 0.5965 0.7243 0.4200 0.3042
5 0.8307 0.9233 0.8727 0.8307 0.9233 0.7670
6 0.9606 0.4057 0.6887 0.9606 0.4057 0.3897
7 0.7521 0.3522 0.5804 0.6706 0.4124 0.2766
8 0.7256 0.3780 0.5795 0.6630 0.4150 0.2752
9 1 0.2233 0.6116 1 0.2233 0.2233
10 0.8615 0.5408 0.7131 0.8615 0.5408 0.4660
11 0.7291 0.2068 0.5088 0.6468 0.2534 0.1639
12 1 0.7596 0.8798 1 0.7596 0.7596
13 0.8107 0.2431 0.5565 0.6720 0.3093 0.2078
14 0.7246 0.3740 0.5773 0.6699 0.4309 0.2886
15 1 0.6138 0.8069 1 0.6138 0.6138
16 0.8856 0.3615 0.6395 0.8856 0.3615 0.3202
17 0.7232 0.4597 0.6126 0.6276 0.5736 0.3600
18 0.7935 0.3262 0.5868 0.7935 0.3262 0.2588
19 1 0.4112 0.7056 1 0.4112 0.4112
20 0.9332 0.5857 0.7654 0.9332 0.5857 0.5465
21 0.7505 0.2623 0.5412 0.7321 0.2743 0.2008
22 0.5895 1 0.7418 0.5895 1 0.5895
23 0.8426 0.4989 0.6854 0.8426 0.4989 0.4203
24 1 0.0870 0.5435 0.4287 0.3145 0.1348
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DMU  E' E el 62 80
1 0.9926 0.7134 0.9847 0.7055 0.6946
2 0.9985 0.6275 0.9971 0.6260 0.6242
3 0.6900 1 0.6900 1 0.6900
4 0.7243 0.4323 0.7125 0.4205 0.2996
5 0.8375 1 0.7912 0.9537 0.7545
6 0.9637 0.4057 0.9618 0.4038 0.3884
7 0.7521 0.5378 0.6385 0.4243 0.2709
8 0.7256 0.5113 0.6375 0.4232 0.2698
9 1 0.2920 0.9408 0.2328 0.2190
10 0.8615 0.6736 0.7557 0.5678 0.4290
11 0.7405 0.3267 0.6594 0.2455 0.1619
12 1 0.7596 1 0.7596 0.7596
13 0.8107 0.5435 0.6075 0.3404 0.2068
14 0.7246 0.5178 0.6463 0.4395 0.2840
15 1 0.7047 0.9341 0.6389 0.5968
16 0.9072 0.3847 0.8843 0.3618 0.3199
17 0.7233 1 0.4419 0.7186 0.3175
18 0.7935 0.3737 0.7572 0.3373 0.2554
19 1 0.4158 0.9962 0.4120 0.4104
20 0.9332 0.9014 0.7289 0.6970 0.5081
21 0.7505 0.2795 0.7400 0.2690 0.1991
22 0.5895 1 0.5895 1 0.5895
23 0.8501 0.5599 0.8020 0.5119 0.4106
24 1 0.3351 0.7978 0.1328 0.1060
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Comparison of the new approach with the multiplicative decomposition approach

In the following, we will show the relation of our approach with the
multiplicative decomposition method of Kao and Hwang (2008). Recall here that the
multiplicative decomposition model assumes that the overall efficiency is the product

of the stage efficiencies:

wZ . uY. .
el' J ez J eo _ 1 2 _ J

:’.:, PR o
JvXijZ/JJ]vX

The model below estimates the stage efficiencies by optimizing the overall efficiency:

e, =maxul,

s.t.

vX, =1

ij—vXj <0, j=1,...,n
uY, -wZz, <0, j=1,...,n

(7.10)

VZEWZEUZE

Once an optimal solution (v*,w*,u*) of model (7.10) is obtained, the overall

efficiency and the stage efficiencies are calculated as follows:

* *

wZ. uY. e’

* 1 * 2
e, =uY e =s—=wZ , e =—=-=—1
' ‘ ' v X, : : wZ. e.
Jo Jo Jo

The difference between our method and the multiplicative decomposition method is
conceptual rather than structural. In fact, our method follows the composition
paradigm introduced in (Despotis et al., 2016). Structurally, models (7.6) and (7.10)
have exactly the same constraints and differ only in the objective functions. That is
both models have the same feasible region. Model (7.6) is a bi-objective program
(vector-maximization model) with the objectives representing the stage-1 and stage-2
efficiencies. The overall efficiency of the system is obtained by the Pareto optimal
solution of (7.6) that locates the stage efficiencies as close as possible to their ideal
values in the minmax sense. In model (7.10), on the other hand, the overall efficiency
of the system is maximized and the stage efficiencies are obtained as offspring, by

decomposing the overall efficiency. The structural similarity of models (7.6) and
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(7.10) enables plotting their objective functions space jointly. Fig. 7.2 below is a

general representation of the objective functions space of models (7.6) and (7.10) for

an evaluated unit (X 0,ZO,YO). Actually, it is the plane in the three-dimensional space

(vX,,wZ,uY,) that is vertical to the axis vX at vX;=1. The horizontal axis

represents for both models the stage-1 efficiency. The vertical axis represents the
overall efficiency as per model (7.10), i.e. the product of stage-1 and stage-2

efficiencies for both models.

u Y0

B(LD)

wZ

Figure 7.2: General representation of the objective functions space of models (7.6) and (7.10)

The point B(1,1) represents the boundaries of the objective functions values and
corresponds to an overall efficient unit with e}o =wZ , =1 and e_?o =u*on =1. Then,
the efficiency of stage-2 is ejz.0 = u*YjO IwZ ;, =1 and is represented by the slope of the

bisecting line OB. The point I corresponds to the stage-1 and stage-2 ideal

(independent) efficiency scores of the evaluated unit and is formed as the intersection

of the vertical line to the horizontal axis at E(l) and a line form the origin with slope

Eg , 1.€. EO2 = tanlOA . The point C is located by the model (7.9) on the Pareto front of

model (7.6) and is formed as the intersection of the vertical line to the horizontal axis
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at & =WwZ, and the line from the origin with slope & =#Y, /WZ, . The abscissa of C

is the stage-1 efficiency, whereas its ordinate is the overall efficiency of the evaluated
unit as defined in the multiplicative model. Thus, C represents the Pareto front point

derived by the multiplicative model (7.10) if and only if its ordinate is maximal.

Consider now the parametric version of model (7.8) that is solved for different

values of the parameters # >0 and ¢, >0, such that #, +2, =1.

min o

s.t.

twZ j0+52tlEljo

tu¥, —(LE, —8)wz, 20
vX, =1

ij—vXjSO, j=L...,n
qu—ijSO, j=L...,n

(7.11)

vzew2eu=>¢6,020

For every f, and ¢, , model (7.11) locates a point on the Pareto front of model (7.6).
That is, model (7.8) can be used as an instrument to generate the Pareto front of model
(7.6). The greatest is the value of #, than f, the highest is the priority given to stage-1

over stage-2 and vice versa. The crooked line ABCD in Fig. 7.3 represents the Pareto

front of model (7.6) for DMU 17 (c.f. Tables 7.1 and 7.2). Point I depicts the ideal

(independent) stage efficiencies of this unit. Particularly, its abscissa is Ell7 =0.7233

and the slope of the line OI is Elz7 =1. Point C is the point on the Pareto front that
corresponds to the solution obtained by the multiplicative model of Kao and Hwang

(2008). Its ordinate is e}, =0.36, which is maximal, its abscissa is e}, =0.6276

whereas the stage-2 efficiency is e =¢/, /e, =0.5736 and is represented by the
slope of the line OC. Point B depicts the point on the Pareto front obtained by our

model (7.9). The abscissa of point B is the stage-1 efficiency é117 =0.4419, the slope

of the line OB is the stage-2 efficiency é127 =0.7186, whereas the ordinate of point B is
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the overall efficiency ¢, =0.3175. It is clear that generally holds ] <e! because ¢

is maximal.

u¥y;
0.723f

—

ey

0.36
0.318 | D
1
|
1 1
I 1
1 1
1 1
I 1
] 1
1 1
1 1
1 1
P ! !
0 ] ) H M/Z]7
0 0.442 0628 0.723

Figure 7.3: The Pareto front of DMU 17

Fig. 7.4 exhibits the conventional Pareto front for DMU 17 in the objective functions
space of (7.6) with the horizontal and the vertical axes representing respectively the

stage-1 and the stage-2 efficiency scores. Point I is formed by the ideal efficiency

scores (Ell7 =0.7233,E} = 1). The curve ABCD is the Pareto front for unit 17, the

point B(O.4419, 0.7186) is the Pareto optimal solution obtained by model (7.8) and

is uniquely formed by the intersection of the Pareto front with a ray from the ideal

point I with direction (—1,—1). Point C (0.6276, 0.5736) represents the solution

obtained by the multiplicative model (7.10).
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2
= 1 2
. I(E, E?)
b *
DLTTEE e +
05?36 ............................................... .................. ._*_
D
. ; L .
0.4419 06276 07233 1T 1

Figure 7.4: The conventional Pareto front for DMU 17 in the (el, e2) space

The model (7.9) locates a unique point on the Pareto front, i.e. it estimates
unique efficiency scores for the two stages. Given that the unweighted Tchebycheff
norm is employed in (7.8), no priority is assumed for one stage over the other. If,
however, one is to assign different priorities to the two stages, the efficiency

assessment can be performed via the weighted variant (7.11), with specific values for
the parameters #, and 7, that reflect the analyst’s preference. Each distinct pair (tl,tz)
locates a point on the Pareto front. Since the model (7.11) can locate any point on the
Pareto front, it can locate point C in Fig.7.3 (point C in Fig. 7.4) as well. Indeed,
solving model (7.11) for ¢, =0.81668, ¢, =0.18332 we get the same stage and overall

efficiencies as those obtained by the multiplicative method. Notice however, that in
this case the stage-1 is over-weighted significantly at the expense of the stage-2. This
is an indication that the multiplicative decomposition method, when maximizing the

overall efficiency of a unit, may implicitly, yet unreasonably, assume different and,
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interestingly, DMU-specific priorities for the two stages. Thus, the decomposition of
the overall efficiency to the stage efficiencies may bias the efficiency assessments in
favor of one stage over the other and it does not provide the analyst with the necessary

information to communicate the results, as concerns the priorities of the stages.

Kao and Hwang (2008) proposed a pair of post-optimality models to check the
uniqueness of the efficiency decomposition. As shown in Fig. 7.3, the efficiency
decomposition for DMU 17 is unique at point C. Although this holds for all the 24
units in Table 7.1, it is not a general property of the multiplicative decomposition in
model (7.10). Table 7.3 presents a synthetic case of 30 DMUs with two inputs (X1,
X2), two intermediate measures (Z1, Z2) and two outputs (Y1,Y2) drawn form a
uniform distribution in the interval [10,100]. Columns 8-10 present the overall and
stage efficiency scores obtained by the multiplicative decomposition model (7.10).
Columns 11-14 present alternative efficiency decompositions that maintain the
optimal overall efficiency score ¢’. They are calculated by applying the post-
optimality check proposed in (Kao and Hwang, 2008). Specifically, columns 11-12
provide the maximal and the minimal efficiencies for stage-1 that maintain the overall
efficiency score. Respectively, the maximal and the minimal efficiencies for stage-2
are given in columns 13-14. These results show that the efficiency decomposition for

the units 8, 13, 18, 19, 23 and 30 is not unique.

The crooked line ABD in Fig. 7.5 depicts the Pareto front generated by model
(7.11) for unit 18. Notice again that applying model (7.8) to the data of Table 7.3
generates Pareto optimal solutions for all the units, i.e. the second-phase model (7.9)

does not alter the efficiency scores obtained by the former. The point I depicts the
ideal solution of (7.6) (Ell8 =0.5046,E,, = 1) . Actually, the independent (ideal)
efficiency score of stage-2 is represented by the slope of the line OI. The segment BD

of the Pareto front is parallel to the horizontal axis and all the points on it correspond

to equivalent efficiency decompositions that maintain the same overall efficiency

e, =02477. Points B and D depict the two extreme decompositions

(@ =¢/e, =03021, ¢, =08201) and (¢, =0.5046,¢ =¢" /e =0.4910)

> “max

respectively. The slopes of the lines OB and OD represent the stage-2 efficiency
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scores ejw and € respectively. Point C represents the unique Pareto optimal point

obtained by our model (7.8) with é' =0.3082, & =0.8037 and é° =0.2477. Fig. 7.6
exhibits the conventional form of the Pareto front for unit 18. The counterpart in Fig.
7.6 of the segment BD of the Pareto front in Fig. 7.5 is the curve BD, which, in fact,
consists of an infinite number of alternative efficiency decompositions of the overall
efficiency e’ =0.2477. Contrariwise, model (7.8) generates the unique pair of Pareto
optimal efficiency scores depicted on point C. Summarizing, unlike the Kao and
Hwang’s (2008) multiplicative efficiency decomposition method, our approach

generates unique and unbiased efficiency scores.

Table 7.3: Synthetic data and results obtained by model (7.10) and post-optimality analysis

D
M Xl X2 ZI 2 Yl y2 € & e elar €1 eZ, e2 DMU
U

1 695 686 566 844 487 628 02316 05070 0.1174 02316 02316 05070 0.5070 1

2 402 662 88 472 858 283 03265 07508 02451 03265 03265 0.7508 0.7508 2

3 813 89.8 444 184 383 207  0.0866 0.6844 0.0593 0.0866 0.0866 0.6844 0.6844 3

455 979 287 416 382 103  0.1344 05830 0.0784 0.1344 0.1344 05830 0.5830 4

5562591 265 527 442 174 0.1688 0.5823 0.0983 0.1688 0.1688 0.5823 0.5823 5

6 648 644 147 705 866 229  0.1685 1 0.1685 0.1685 0.1685 1 1 6

7 792 68.1 635 393 476 35 0.1644 05613 0.0923 0.1644 0.1644 05613 0.5613 7

8§ 36 743 666 574 403 948 04297 0.6953 02987 0.4297 04145 0.7208 0.6953 8

9 108 103 465 479 575 952 1 1 1 1 1 1 1 9

10 177 93.6 359 587 459 12 05235 05149 02696 0.5235 05235 05149 05149 10
11388 975 552 417 605 827 03113 08189 02550 03113 03113 08189 08189 11

12 609 964 86 289 931 723 02006 1 02006 02006 0.2006 1 1 12
13703 458 653 353 343 988 03158 0.7390 02334 03158 02334 1 07390 13
14 205 756 13.1 60 533 183 03759 07190 02703 03759 03759 0.7190 07190 14
15179 748 542 667 521 158  0.6443 04696 03026 0.6443 0.6443 04696 04696 15
16 51.8 19.8 523 742 736 847  0.6980 0.8163 05698 0.6980 0.6980 0.8163 0.8163 16
17 113 273 427 723 689 374 1 0.6694 0.6694 1 1 0.6694 0.6694 17
18 587 42.1 959 266 516 964  0.5046 04910 02477 05046 03021 0.8201 04910 18
19 414 516 83 754 205 72 04656 04237 0.1973 04656 04537 0.4348 04237 19
20997 87.1 875 969 586 39 02311 03739 0.0864 02311 02311 03739 03739 20
21 256 146 52 19.1 443 513 05293 0.8807 0.4662 0.5293 0.5293 0.8807 0.8807 21

22 65.1 973 794 68 53.8 555 02438 04927 0.1201 02438 02438 04927 04927 22
23 404 33 745 217 139 557 05001 03652 0.1826 0.5001 03031 0.6025 03652 23
24194201 775 741 609 71 0.8855 0.5673 0.5023 0.8855 0.8855 0.5673 0.5673 24
25542993 208 699 478 122 0.1867 05291 0.0988 0.1867 0.1867 05291 05291 25
26 80.1 275 513 958 217 126 05850 0.1674 0.0979 0.5850 0.5850 0.1674 0.1674 26
27 829 38.1 433 753 168 266 03403 02273 0.0774 03403 03403 02273 02273 27
28 98.6 81.8 938 159 403 358  0.1455 04735 0.0689 0.1455 0.1455 04735 04735 28
29 77.3 403 956 525  96.1 442 03766 0.7660 0.2885 03766 03766 0.7660 0.7660 29
30 38.6 583 378 661 16 69.9 02274 09032 02054 02618 0.2274 09032 0.7847 30
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Figure 7.5: Non-unique efficiency decomposition of unit 18
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Figure 7.6: The conventional Pareto front for unit 18 in the (el,e2) space
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7.2.2 Type Il structure

In the structure of type II, the second stage uses some extra external inputs L beyond
the intermediate measures as depicted in Fig. 7.1. In this case, the efficiency of the
first and the second stage of DMU j are defined as follows:
uY,
J ’ e./z‘ - -
vX wZ,+yL,

J

The overall efficiency of DMU j is defined as the ratio of the total virtual exogenous

output to the total virtual exogenous input:

uY.

J

€] =——"—
VX, +7L;

Similarly to Type I, the bi-objective program for estimating the efficiencies of the two

stages is as follows:

wZ .

Jo

VXJ o
o,

WZfo + 7Lfo

max

max

(7.12)
S.t.

ij—vXj <0, j=1,...,n
uY_/—ij—)/L_/ <0, j=1...,n

V2EW2EUZEYZE

Applying the C-C transformation to (7.12) on the basis of the denominator of the first

objective function, we get the following:
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max wZ .
Jo
uY.

Jo

max ———
WZ]O + j/Ljo

s.t.

vX, =1 (7.13)
wZ,—vX, <0, j=1...,n

uY,—wZ,—yL, <0, j=L...,n

VZ2EW2EUZEYZE

Notice here that there is a variable transformation from (7.12) to (7.13) (see previous
section) but we use the same variable names for the economy of notation. The same

simplification is adopted in the next sections.

The minmax model that calculates the stage-1 and stage-2 efficiency scores at

a minimum distance (unweighted L., norm) from their ideal counterparts is as follows:

min o
S.t.
1
E W wZ P <6

(E> =8)(wZ. +yL. )-uY <0

Jo ( Jo /0) Jo (7.14)
vXjO:I

wZ,-vX,; <0, j=L...,n

uY,—wZ, —yL, <0, j=1,...,n

vew2eu=gy>¢6020

The ideal efficiency scores are obtained by considering (7.12) with one objective
function at a time and solving its linear equivalent derived by the C-C transformation.
The optimal solution of (7.14) is weakly Pareto optimal solution of (7.13). As

explained in the previous section, model (7.14) can be solved by bisection search. Let

(6 ,v,w,u,7) bean optimal solution of (7.14) and

* *
1 _WZjo o » u Y.io
ej - T _WZjaej - %, %,
v X, Y wZ. +y L
Jo Jo

Jo

The second phase program (7.15) below provides a Pareto optimal solution to (7.13):
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max s, + 5,
S.t.
1 *
E./o _WZ./O +S1 =0
(E; =8")(wZ,, +7L, )-uY, +s,(WZ, +7'L,)=0
vX, =1 (7.15)
wZ,—vX, <0, j=1,...,n
uY,-wZ,-yL, <0, j=1,...,n
VZ2EW2EUZEYZE

5 25200 25,20

Given the optimal solution (§1,§2,ﬁ, W,ﬁ,ﬁ) of (7.15), the efficiency scores for unit J,

in the first and the second stage as well as the overall efficiency of the system are

respectively:
wZ, uY. uY,
e}o = 0 = = WZjo’ ejzb = ~ ]O" ’ ejo = 5 jo"
WX, wZ, +yL;, VX, +YL

If §, =5, =0, then the optimal solution of (7.14) is already Pareto optimal, and model

(7.15) does not alter the efficiency scores obtained by (7.14).

Hlustration

We illustrate models (7.14) and (7.15) on a two-stage process of type II drawn
from Li et al. (2012). The case concerns the assessment of regional R&D process of
30 Provincial Level Regions in China. The stage-1 represents the technology
development whereas the stage-2 represents the economic application. The stage-1
inputs are: R&D personnel (X1), R&D expenditure (X2) and the proportion of
regional science and technology funds in regional total financial expenditure (X3).
The outputs (intermediate measures) of stage-1, which are inputs to stage-2 are:
number of patents (Z1) and number of papers (Z2). The extra input to stage-2 is
contract value in technology market (L). The final outputs are GDP (Y1), total exports
(Y2), urban per capita annual income (Y3) and gross output of high-tech industry
(Y4). The reader is referred to Li et al. (2012) for the complete data set.
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For comparison, we present in Table 7.4 the results given in Li et al. (2012)
and those obtained by model (7.15). Li et al. (2012) calculate the stage-1 and stage-2
efficiency scores parametrically and then they give the overall efficiency as the
product of the stage efficiencies, although in their case, the overall efficiency is not
readily decomposed to the stage efficiencies, as in the case of the simple structure of
Type I (Kao and Hwang, 2008, Liang et al., 2008). However, to be in line with their
results, we present the product of the stage efficiencies obtained by our approach as

well.

Notice that, for all DMUs, the model (7.14) provided Pareto optimal solutions.
This is validated by the fact that in the second phase program (7.15), the optimal

values of the slacks were §, =S, =0. Fourteen out of the thirty units show identical

individual efficiency scores. Notice also that é'-é* <e”. This is a natural effect of the
fact that in Li et al. (2012), among the parametrically generated pairs of stage
efficiency scores, the one that shows the maximal squared geometric average is
selected. However, as it is explained in section 7.2.1, such an approach often assumes
implicitly different priorities for the two stages, with one stage arbitrarily favored over
the other. Indeed, the stage efficiency scores given in Li et al. (2012) for the units 3,
17, 18, 19, 22 and 26, for example, can be obtained by the weighted variant of model

(7.14)  with  the couples of weights (¢, =0.256745, ¢, = 0.74325),
(1, =0.966292, t, = 0.033708),  (t, =0.975312, ¢, = 0.024688),  (#, =0.199731,
t, =0.800269), (¢, =0.779891,¢,=0.220109) and (¢, =0.169132, ¢, =0.830868)

respectively. The advantage of our approach is that it provides unique and unbiased
efficiency scores. However, if it is to assign explicitly different priorities to the two

stages, the weighted variant of (7.14) could be used.
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Table 7.4: Results from Li et al. (2012) and from model (7.15) (same as from model (7.14))

Lietal. (2012) Model (7.15)

DMU e' & e® =el-e2 E! E? el 62 el.62 é° DMU
1 0.1598  0.1598 1 01598 1 0.1598  0.1598 01598 1
201 02489  0.2489 1 02489 1 02489 02489 02489 2
308950  0.5365  0.4802 1 05728 09314 05042 04696 04696 3
4 06774 05704 03864 07426 05704 07021 05300 03721 03721 4
506697 03895  0.2608 06697 03895 06697 03895 02608 03310 5
6 05668 1 0.5668 05668 1 05668 1 05668 06137 6
7 1 02207 0.2207 1 03121 09177 02298 02109 02113 7
8 1 1 1 1 1 1 1 1 1 8
9 09398 1 0.9398 09398 1 09398 1 09398 09534 9
10 1 | 1 1 | 1 1 1 1 10
11 08885 0.8351  0.7420 0.8885  0.8351  0.8885 08351 07420 07756 11
1209328 02648  0.2470 09328 02703 09278 02653 02462 02566 12
13 08493 07373 0.6262 08504 07373 08495  0.7364  0.6256  0.6707 13
14 09060 02816 02551 09060 03360  0.8545 02845 02431 02431 14
15 1 03685 03685 1 03780 09921 03702 03673 03689 15
16 09225 1 0.9225 09225 1 09225 1 09225 09225 16
17 05644 09914  0.5595 05647 1 05572 09925 05531  0.6958 17
18 07152 04947 03538 07158 05184 0698 05012 03501 04158 18
19 06671 03668 02447 06969 03742 0.6810 03583 02440 02440 19
20 04573 1 0.4573 04573 1 04573 1 04573 04629 20
21 07101 08176  0.5806 07101 08498 06854 08251 05656 04573 21
22 05708 05156  0.2943 05864 05709 05495 05340 02935 03976 22
23 1 0.1941  0.1941 1 02509 09441  0.1951 01842  0.1905 23
24 1 04566 0.4566 1 04817 09758 04574 04463 04517 24
25 1 05846  0.5846 1 06159 09756 05915 05770 05839 25
26 07293 09171  0.6688 09111 09541 07869 08299 06530  0.7304 26
27 1 1 1 1 1 1 1 1 1 27
28 03599 1 03599 03599 1 03599 1 03599 03599 28
29 04300 1 0.4300 04300 1 04300 1 04300 04308 29
30 1 | 1 1 | 1 1 | | 30

7.2.3 Type IlII structure

In the structure of type III, the first stage produces some final outputs K that exit the
system, beyond the intermediate measures as depicted in Fig. 7.1. In this case, the

efficiency of the first and the second stage of DMU j are typically defined as follows:

. wZ +ukK, ,  uf,
&= v &%~
vX; wZ,
) ) uY, + uk.
The overall efficiency of the system is e} = #
_ X
J

On the basis of the above definitions, the bi-objective program for estimating the

efficiencies of the two stages is as follows:
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wZ. +uk,
max Jo Jo

& (7.16)
S.t.

ij+,qu—vXj <0, j=1,...,n
uY, —-wZz, <0, j=1...,n

VZEW2EUZEUZE

Applying the C-C transformation to (7.16) with respect to the first objective function
we get the model (7.17) below:

maxwZ, +uk,
ut.

Jo

WZjo

max

S.t.

vXj0 =1 (7.17)
wZ, +ukK, —vX, <0, j=1,...,n

uY, -wZz, <0, j=1...,n

VZEWZEUZEMUZE

The following model calculates the stage-1 and stage-2 efficiency scores at a
minimum deviation (unweighted L., norm) from their ideal efficiency values:

mind

S.t.

1

Ej —wZ, —ukK; <6

(E; —8)wZ, —uY, <0

vX, =1

wZ, +uK; —vX, <0, j=1...,n

uY/ —WZ_/ <0, j=1...,n

(7.18)

vzew2egu>g,u>¢g,020

The ideal efficiency scores are obtained by solving (7.16) with one objective function

at a time, after transforming it to its linear equivalent. Solving the non-linear model
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(7.18) by bisection search for & €[0,1] we get an optimal solution (5 ,v,w,u’, 1),
which is weakly Pareto optimal for the MOP (7.17) and

* * *
* _ w Zfo +‘Ll Kjo S * 2% u on
e/o - * _WZfo +‘u K/o’ efo Tk
- VX, bR S T

Jo
The second phase program (7.19) below provides a Pareto optimal solution to (7.17):

maxs, +s,

S.L.

1 o oF

E, —wZ —uK, +5,=6

(Ef0 —§*)ij.0 -uY, +W*Zj0s2 =0

vX, =1 (7.19)
wZ_/+yK_/—vX_/SO, j=1...,n

qu—ijSO, j=1..,n

VZEWZEUZEUZE

5 >25>0,6 25,20

Given the optimal solution (§1,§2,\3, W, U, [t) of (7.19), the efficiency scores for unit Jj,

in the first and the second stage as well as the overall efficiency of the system are

respectively:
wZ . + 4K . A uY, ouY +4kK A )
j — ]oA Jo _sz +ﬂK] , ef =— Jo , ]0 ]O,\ Jo ZMYJ +/qu
' WX, o owZ VX,

If §, =8, =0, then the optimal solution of (7.18) is already Pareto optimal, and model

(7.19) does not alter the efficiency scores obtained by the former.

Hlustration

For validation of our computations, we give the data and the results of a
synthetic numerical example with 30 DMUs, two inputs (X1, X2), two intermediate
measures (Z1, Z2), two final outputs from stage-1 (K1, K2) and two final outputs
from stage-2 (Y1, Y2). The data shown in Table 7.5 are random and drawn column-

wise from a uniform distribution in the intervals given in the last row of the Table 7.5.
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Table 7.5: Synthetic data for type lll structure and results obtained from models (7.18) and (7.19)

D[IJVI XI X2 X3 zI 72 KI K2 Yl Y2 E B el e’ et & ¢ pmu
1 712 63 466 614 109 542 643 84 361 09577 08675 08261 07358 08261 0.7358 0.6680 1
2 213 126 594 935 944 317 60 54 225 07471 04769 0.6897 04195 0.6897 04195 02894 2
3658 166 30.1 1344 57.3 23.1 428 123 12.8 07216 0.8008 04995 0.5787 0.4995 05787 03247 3
4 719 125542 113 948 636 35 67 36 05012 07008 04988 0.6984 04988 0.6984 0.4488 4
5 784 59 195 132 1408 528 195 9.1 44 1 0.6409 1 0.6409 1 0.6409 0.6409 5
6 304 15 433 573 100.1 604 17.8 7.8 141 07040 04007 0.6297 03264 0.6297 03264 02055 6
7 302 111 345 148 666 516 438 69 237 0.8818 0.5956 0.7346 0.4484 07346 04484 03294 7
8 114 5 335 122 692 606 748 2.1 185 1 04063 1 0.4063 1 0.4063 0.6461 8
9 627 151292 1467 1028 73.6 258 7.6 13.6 0.8210 02802 0.7551 02143 07551 02143 02115 9
10 759 119 174 848 1414 189 163 13.9 20.1 09664 0.4963 09657 04956 09657 04956 04785 10
11 878 194 509 109.8 53.6 632 455 11.1 183 04268 0.7725 03723 07180 03723 07420 03723 11
12 171 108 155 983 664 162 311 17.8 346 1 1 09862 09862 09862 09862 09785 12
13 489 89 508 133.1 656 S7.8 642 3.4 457 06282 1 05831 09549 0.5831 09549 05714 13
14 824 81 51 571 988 73.6 105 194387 07835 1 07541 09858 0.7541 1 07541 14
15 559 145 23.4 964 881 208 27.6 4.4 446 06494 09708 0.6382 09597 0.6382 09597 06125 15
16 464 103 148 70.8 127.1 757 56.6 127435 1 0.9065 1 0.9065 1 0.9065 09558 16
17 519 7 378 1199 641 759 237 88 108 09267 05121 09119 04973 09119 0.5047 09119 17
18 432 83 516 1232 117 406 796 92 232 08530 0.4097 08192 03758 0.8192 03758 03079 18
19 60.6 14.1 438 58  107.5 272 629 162123 0.5695 0.8221 05250 07776 0.5250 0.7999 0.5250 19
20 597 117 228 899 1319 15 33 117369 0.8400 0.6671 0.8064 0.6335 0.8064 0.6335 0.5108 20
21 264 122 237 1423 1107 698 479 102 19.5 1 03648 1 03648 1 03648 03648 21
22 706 183 238 93.6 123.1 51.6 435 23 29 07008 0.5350 0.6993 0.5334 0.6993 0.5334 03730 22
23 67.8 52 463 737 1244 503 252 7.7 122 1 03134 09824 02958 09824 02958 06289 23
24 835 137 475 729 1119 346 655 69 43.6 05683 0.9473 05257 09047 0.5257 09047 0.5036 24
25 338 6 276 771 748 705 547 92 34 1 0.8944 1 0.8944 1 0.8944 09735 25
26 819 94 577 131 645 147 635 6.1 212 05791 05489 05125 04823 05125 04823 03998 26
27 38 123 57.6 944 986 24.1 61.8 143486 0.6075 1 05587 09512 0.5587 09512 05314 27
28 744 7.6 40 141 885 73.6 189 86 13.5 0.8706 03625 0.8493 03412 0.8493 03412 07296 28
29 922 124 458 945 548 235 579 55 119 05081 04043 04888 03849 0.4888 0.3964 04888 29
30 733 143 548 914 533 192 623 42 347 04444 1 0.4444 1 0.4444 1 0.4444 30

[10,100] [5,20] [10,60] [50,150] [50,150] [10,80] [10,80] [2,20][10,50]

For five out of the thirty units (namely, units 11, 14, 17,

19 and 29), the second phase

program (7.19) corrected the efficiency scores derived by the minmax model (7.18),

providing Pareto optimal solutions. For the rest of the units, Pareto optimal solutions

were obtained early by model (7.18).

7.2.4 Type IV structure

The Type IV structure is the most general two-stage series process. Multiples of this

structure in series composes the general multi-stage series process, which will be

studied in the next section in the light of our proposed approach. In this case, the

efficiency of the first and the second stage of DMU j are defined as follows

1
€

_WZ,+ K,

vX .

J

)ej

2 _

u,

wZ,+yL; '
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) ., uY.+uk.
The overall system efficiency is €] = ————.
vX, +yL,

The bi-objective program for estimating the efficiencies of the two stages is as

follows:

WZfo + ’UKfo
VX/(J
uY

Jo

WZjo +7/Ljo

max

max

(7.20)
s.t.

wZ,+puK, —vX <0, j=1,...,n
qu—ij—ij <0, j=1,...,n

V2EW2EUZEYZEUZE

Applying the C-C transformation to (7.20) on the basis of the denominator of the first

objective function, we get the following:

maxwZ, +uk,

uYio
max ——
WZ/() +7/Ljn
s.t.
X, =1 (7.21)

wZ,+puK, —vX <0, j=1,...,n
uY,—-wZ,—yL, <0, j=1,...,n

VZ2EW2EUZEYZEUZE

Similarly to the previous structures, the minmax model that calculates the
stage-1 and stage-2 efficiency scores at a minimum distance (unweighted L., norm)

from their independent counterparts is as follows:
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min o

S.t.

1

E/o _WZ./O _’UK./O £5

(Elzo _5)(WZ./O +}/L./o )_uYJb <0
vXjO:I

wZ,+uK, —vX,; <0, j=1,...,n
qu—ij—)/LjSO, j=1...,n

(7.22)

V2ZEW2EUZEYZEUZED20

Solving the model (7.22) by bisection we get a weakly Pareto optimal solution

of the MOP (7.21) (&' ,v',w,u',7 , ') and

wZ, +uK. . u'Y,
Jo Jo Jo WZ +7/L
Jo Jo

l*

*
Jo v X )
Jo

2*

The second phase program (7.23) below provides a Pareto optimal solution to the

MOP (7.21):

maxs, +5,
s.t.
1 *
Ej, —WZ;, —pK; +s5,=0
(E; =8")(wzZ,, +7L, )-uY, +(W'Z, +7'L, )5, =0
WX, =1 (7.23)
ij +,qu—vXj <0, j=1,...,n
uY,-wZ,-yL, <0, j=1,....n
VZ2EW2EUZEYZEMUZE

5 25200 25,20

AAAAA

scores for unit j, in the first and the second stage as well as the overall efficiency of

the system are respectively:

A wZ, +uk, . R a u¥, +7L, B uY, +uk,
jO_A—_WZ,‘O-",UK,‘anjO_ N 7ej0_ N

vX ‘ ‘ wZ. vX . +yL,

Jo Jo Jo Jo
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If §, =5, =0, then the optimal solution of (7.22) is already Pareto optimal, and model

(7.23) does not alter the efficiency scores obtained by (7.22).

Hlustration

For testing and validation purposes, we provide the reader with the data (Table
7.6) and the results (Table 7.7) of a synthetic numerical example with 30 DMUs, three
inputs to stage-1 (X1, X2, X3), two intermediate measures (Z1, Z2), to final outputs
from stage-1 (K1, K2), two extra inputs to stage-2 (L1, L2) and two final outputs from
stage-2 (Y1, Y2). The data exhibited in Table 7.6 are random and drawn column-wise

from a uniform distribution in the intervals given in the last row of the Table 7.6.

Table 7.6: Synthetic data for type IV structure

DMU X1 X2 X3 Z1 72 K1 K2 L1 L2 Y1 Y2
1 223 132 54.6 110.1 66.1 21.8 44.6 18 31 133 12.5
2 68.3 83 15.8 75.4 116.4 19.8 12 19.6 25.8 24 18.2
3 52 19.2 31.2 94.3 59.9 473 47.4 11.5 22.5 2.3 36
4 31.8 12 40.3 66.4 127.2 10.5 35.8 16.8 37.1 3 19.5
5 95.3 12 29 108.9 523 15 225 14 27.2 15.8 16.7
6 52.8 6.1 22.6 102.4 78.8 69.6 27 14.8 44.9 12.6 20.4
7 50.5 9.3 48.7 124.6 120.6 522 49.8 59 385 9.5 20.5
8 80.1 17.4 58.4 64.5 131.2 37.7 14.6 10.3 65.6 16.7 39.9
9 539 14 36.9 129.8 122.1 60.9 24.1 11.9 49.5 16.8 15
10 20.9 9.5 48.8 66.4 1325 12.2 68.7 10.1 54.5 10 28.3
11 82.5 7.1 16.8 71.9 138.9 47.7 60.7 5.6 19.1 19.7 33.6
12 27 10.6 25.6 51.9 84.4 473 63.3 11 39.6 12.2 43.7
13 49.6 10.7 20.6 125.5 97.3 153 32.6 17.7 38.9 18.9 44.7
14 55.7 19.4 46.6 91.5 1173 79 60.3 11.8 26.4 7.5 38.7
15 55.1 18.2 52.5 90.1 61 12.2 249 17 335 17.2 43.9
16 66.3 8 34.9 131.1 63.7 57 30.7 10.7 52.5 11.2 15.5
17 933 6.3 43.5 535 133.9 38.6 32.1 134 45 19.7 15.4
18 10.8 11.9 31.5 118.7 89.4 349 23.6 11 67.3 8 20.5
19 98.5 6.8 213 75.4 133 28 28.9 16.1 26.7 9.5 20.3
20 27.8 17.1 24.9 81 522 30.6 143 16.9 353 17.4 15.4
21 42 72 59.7 98.4 147.5 29.2 394 14.8 423 10.7 44.5
22 98.7 8.5 51 132.8 60.6 273 69.3 19.8 61.9 19.9 333
23 53.5 15.6 25.7 93.5 121.6 313 34.6 19.7 56.5 13 47.6
24 25.1 16.7 56.8 81.6 145.6 62.1 74.8 11.7 17.4 7.6 29.9
25 96.3 153 45.1 120.5 133.6 25.7 56.8 19.7 16.9 14.9 385
26 97.9 6.8 53.1 103.8 89.8 45.7 49.6 17.7 56.3 4.9 12.5
27 37.4 15 15.5 63.1 128.2 53.1 22 55 57.7 5.8 11.8
28 70 12.8 21.5 126.1 972 283 443 11.4 56.7 4.9 47.2
29 24 5.8 33.8 91.2 82.6 73.7 76.2 19.4 424 7.8 10.3
30 48.6 18.6 559 126 73.8 154 57.6 17.1 76.2 13.2 25.6

[10,100] [5.20]  [10,60] [50,150] [50,150] [10,80] [10.80] [5.20] [10,80] [2,20] [10,50]
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Table 7.7: Results obtained from models (7.22) and (7.23) applied to the data of Table 7.6

DMU f! B el e?* el é2 é°

1 0.7338 0.7327 0.6751 0.6739 0.6751 0.6739 0.5573
2 1 0.4751 0.9868 0.4619 0.9868 0.4619 0.4643
3 0.7608 1 0.7287 0.9679 0.7287 0.9679 0.7805
4 0.8938 0.4268 0.8280 0.3610 0.8280 0.3610 0.3361
5 0.6914 1 0.5488 0.8574 0.5488 0.8574 0.5360
6 1 0.6708 1 0.6708 1 0.6708 0.8084
7 0.8812 0.6316 0.8529 0.6033 0.8529 0.6033 0.5606
8 0.5496 0.9796 0.4727 0.9028 0.4727 0.9028 0.4842
9 0.8656 0.7555 0.8298 0.7198 0.8298 0.7198 0.6305
10 1 0.6316 1 0.6316 1 0.6316 0.8970
11 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1

13 1 0.8690 0.9715 0.8405 09715 0.8405 0.8321
14 0.6687 0.9337 0.6686 0.9336 0.6686 0.9336 0.6687

._.
W
<
~
)
—
W
—_

0.4119 0.9904 0.4119 0.9904 0.6253

16 0.9813 0.7660 0.7815 0.5662 0.7815 0.5662 0.4829
17 1 1 0.9344 0.9344 0.9344 0.9344 0.8910
18 1 0.5189 1 0.5189 1 0.5189 0.5189
19 1 0.5096 0.9858 0.4954 0.9858 0.4954 0.4922

%)
S
e
93
=N
Q
=N
—_

0.7067 0.9390 0.7067 0.9390 0.7086
0.7871 0.9975 0.7846 0.9975 0.7846 0.7838
0.7993 0.8403 0.7993 0.8403 0.6978

NN
N —
S =
Nel
[
O
—_
—_

23 0.8255 0.7260 0.8178 0.7184 0.8178 0.7184 0.6697
24 1 0.9035 0.9623 0.8658 1 0.8658 0.8658
25 0.6613 1 0.6613 1 0.6613 1 0.7661
26 0.9447 0.2427 0.9343 0.2323 0.9343 0.2323 0.2395
27 1 0.3791 1 0.3791 1 0.3791 0.5963
28 1 1 0.9030 0.9030 0.9030 0.9030 0.8742
29 1 0.3762 1 0.3762 1 0.3762 0.3762
30 0.6246 0.6813 0.5512 0.6079 0.5512 0.6079 0.4320

As shown in Table 7.7, in all units except one (namely the unit 24) the second phase
program (7.23) did not alter the efficiency scores obtained by model (7.22). For unit
24, the second phase program increased the stage-1 efficiency score from 0.9623 to 1

without decreasing the efficiency score of stage-2 (0.8658).
7.3 Multi-stage processes

A multi-stage series process is actually a multiple of type I-IV structures in series,
where links exist only between successive stages. Thus, our developments for two-
stage processes can be straightforwardly generalized in multi-stage configurations

depicted in Fig. 7.7.
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Figure 7.7: General multi-stage series process

We adjust the notation as follows:
jed = {l,...,n} : The index set of the n DMU .

Jo €J : Denotes the evaluated DMU.

q =1,...,0 : The index of one of the Q stages.

X ﬁq) ,q =1,...,0 : The vector of stage-g external inputs used by DMU,.

Z}q),q =1,...,0—1: The vector of intermediate measures passed from stage-q to the next
one, for DMU;,.

Yj(q) ,q =1,...,0: The vector of stage-g final outputs produced by DMU;.

()

v q=1...,0: The vector of weights for the stage-¢ external inputs.

w(q),q =1,...,0 —1: The vector of weights for the stage-q intermediate measures.

(q)

u?,q=1,...,0: The vector of weights for the stage-¢ outputs.

e : The overall efficiency of DMU;.
eﬁ.q) ,q=1,...,0: The efficiency of stage-g for DMU,.

E;q) ,q =1,...,0 : The independent efficiency score of stage-g for DMU,.
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()

In this general case, the efficiency e’ ,q= L,...,Q of each stage is defined as follows:

o urY 4wz
G T X0
@ _ u(q)y(q) + W(q)Zj(q) _, |
e —_ v(q)X(q) + W(q l)ZEq_l) b q - PEREE Q —_
(Q)Y(Q)
() _ u-1;
e = :

Model (7.24) below is a multi-objective program with Q objective functions, each

representing the efficiency of stage-g, g=1,..., O.

LY 4,070

Jo Jo

max V(I)Xﬁi)

U(q)Y,EJq) +W(q)Z§q)
max v(q)XJ(.f) e I)Zﬁq 7 4= 2,...,0-1

w9y

naxTo) X 4 070
s.t.
uyW +wz0 O x W <o, =1,...,n (7.24)
Wy Wz XD N7 <0, =1, ng = 2,..,0-1
u(Q)Y/(Q) Q) x(9) _ (01 ZEQ V<0,j=1,...,n

)

The ideal values (independent efficiency scores) EEZ ,q=1,...,0 of the Q stages are

obtained by considering each objective function separately and solving the linear
equivalent of model (7.24) derived by the C-C transformation. Given the ideal
efficiency scores that each stage attains when considered independently from the
others, the program (7.25) below provides a weakly Pareto optimal solution to the

MOP (7.24) and estimates efficiency scores for the Q stages as close as possible to

their ideal counterparts with respect to the unweighted L., norm. Model (7.25) below
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is derived by applying the C-C transformation to (7.24) on the basis of the

denominator of the first objective function and is solved by bisection search.

min o

S.t.

EO 0y w0 < 5

(B =8) (VX w2 ) ) 20 <0,g=2,..,0-1

i (7.25)

Let (5*,v*(q),q =1...,0, w*(q),q =1,...,0-1, u*(q),q = 1,...,Q) be an optimal solution

of model (7.25), which is weakly Pareto optimal for (7.24) and

1) _ J o _ W)y 1) (1)
e VX0 T Wz,

" u (@) yla) o W () 7(4)

*(q) _ Jo J —
ejo = v*(q)Xﬁf) N W*(qfl)Zj(qﬂ) > q 2,. . ,Q 1

*0)y(9)

20 _ u =Y,

Jo v*(Q)Xﬁ()Q) 4 W*(Q*I)ZE()Q 1)

The second phase program that provides a Pareto optimal solution for the MOP (7.24)

is as follows:
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w9 >g,q=1...,0-1
5 > >0, g=1...,0

Given an optimal solution (\3(']),L?(q),§(q),q =1,...,0, W g=1,...,0- 1) of (7.26) the

stage efficiency scores for the evaluated unit j, and the overall system efficiency are:

Oy 1) L 2170
PO Y ( )4—1/:/) Z, _ A0y 4 2070
Jo A(1 1 j o
on
) ﬁ(ﬂ)Y(q) +‘/’{}(‘7)2(£7)
(g b ; ~ )
e/o - v(q)XJ(Oq) + w(qfl)Z];],l) s q 2, ,Q 1
~(0)y(0)
09 = Wy
Jo ‘;(Q)XJ(OQ) T Q—I)Z§0Q_1)
ZQ L@y @
éo q=1 Jo
Py iyl
q=1 Jo
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Hlustration

For testing and validation to be made possible, we provide a synthetic example
with 30 DMUs operating as three-stage processes, as depicted in Fig. 7.8. The
randomly generated data and the results obtained by solving model (7.26) for each

DMU are given in Tables 7.8 and 7.9 respectively.

1 2 3
x® < x®
1
7 7®
1 > 2 > 3
2 3
v v® v?

Figure 7.8: A three-stage process

Table 7.8: Synthetic data for the multi-stage process of Fig. 7.8

DMU X© X0 v,0 Y0 z® 70 X0 X0 v2 v,0 7z® 7,0 X0 X0 v0 yv,®
1 56.7 85 109 375 39 473 547 47 36.8 231 214 257 582 497 364 372
2 509 77 33 428 73 367 169 57.7 34 11 369 351 121 372 434 585
3 16.6 174 18 321 724 183 295 116 122 37.8 366 359 586 443 266 505
4 67.6 165 32 485 635 362 564 278 123 257 149 268 195 547 472 203
5 89.7 19 99 443 207 129 559 431 161 204 263 269 434 127 589 472
6 384 6.6 169 294 11.7 263 457 241 108 38 21 333 393 252 334 482
7 877 77 9.1 332 548 367 409 215 274 28 387 412 438 123 632 458
8 377 65 13 305 341 473 272 456 433 208 213 573 281 19.8 241 421
9 80.9 123 16.7 46 852 424 56.8 412 347 344 458 447 41 46 41.7 287
10 464 7.9 18 444 885 294 162 395 308 23.6 431 27 506 46.1 202 509
11 43.1 184 18.8 322 329 403 465 43 446 244 256 508 1T 539 321 291
12 274 65 54 428 741 267 423 124 139 288 299 124 142 391 20.1 348
13 201 57 67 528 817 489 51.7 274 463 179 378 83 587 135 304 556
14 347 134 182 464 578 495 299 326 143 134 434 9.6 426 561 278 543
15 68.1 16.6 127 432 80.7 446 475 22 307 253 344 14 21.6 50 347 36.1
16 72,6 97 11.1 194 855 256 518 458 157 353 33 228 302 243 296 327
17 655 1.7 13 306 539 282 261 528 324 192 23 216 161 372 27.6 443
18 108 10.1 167 386 683 199 376 241 102 89 283 5.6 234 592 529 564
19 775 82 116 334 561 414 59 46.6 407 205 38.6 347 229 458 69.6 564
20 83.8 127 5.6 17 121 453 375 169 439 155 454 102 266 519 71.7 437

21 71.7 18.6 102 241 457 465 265 518 46.7 19 388 13.1 176 31.7 322 333
22 134 144 97 484 617 323 41 169 495 342 107 39.7 274 335 465 541
23 403 65 194 156 517 34 28 394 302 19.1 37 523 161 38 407 377
24 663 109 132 495 398 16 478 283 209 18.7 275 586 542 235 488 562
25 684 58 145 18.1 85 46 30.7 503 14 17.6 275 364 147 475 346 213
26 279 125 15 418 764 28 346 352 303 99 147 598 565 352 238 413
27 315 115 82 35 779 182 447 345 334 141 426 354 30 423 44 487
28 63.8 20 113 237 398 46 58.6 539 405 8 23 334 124 254 296 272
29 482 172 12379 575 405 264 277 133 20 19.8 232 27.1 169 214 335
30 599 123 48 199 79.8 453 519 325 36.5 14 237 287 468 33.8 725 275

[10,90] [5,20] [2,20] [15,55] [10,90] [10,50] [10,60] [10,60] [10,50] [5,40] [10,50] [5,60] [10,60] [10,60] [20,75] [20,60]
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Table 7.9: Results obtained from models (7.25) and (7.26) applied to the data of Table 7.8

51

DMU E! E? B el* g2 g3 é 82 é3 6° DMU
1 06979 07085 0.6474 06692 06798 06188 06692 06798 06188 06356 1
2 06594 1 1 06594 1 1 06594 1 1 08133 2
307012 1 06006 07012 1 0.6006 07012 1 0.6006 06891 3
4 03173 04927 1 02963 04717 09790 03068 04717 0.9985 03003 4
503083 1 1 03083 1 1 03083 1 1 03083 5
6 1 1 08725 1 1 08724 1 1 08724 09933 6
706428 09838 1 0.6275 09685 09847  0.6275 0.9685 09983 0.8213 7
8 09935 1 09554 09527 09593 09147  0.9935 0.9593 09350 09593 8
9 06355 0.8040 04696  0.6340  0.8025  0.4681  0.6347 0.8025 0.4681 0.6054 9
10 1 1 06376 1 1 06376 1 1 0.6376 0.7888 10
11 0579 1 08851 05322 09526  0.8378 05322 09526 08378 05421 11
1207939 08150 08203 07534 07746 07798  0.7939 0.7746 0.8249 07746 12
131 08043 1 1 08043 1 1 0.8043 1 09403 13
14 08064 08718 07640  0.6911 0.7566 0.6488  0.7178 07566 0.6488 0.6566 14
15 04241 06843  0.6668 03929  0.6531  0.6356 03929 0.6531 0.6356 03929 15
16 06169 07314 06621 05491 06635 05942  0.5491 0.6635 0.6082 05454 16
17 07395 09225 09456 07380 09210 09440  0.7380 09210 0.9441 07391 17
18 1 07168 1 09779  0.6868 09700 1 0.6868 09700 08158 18
19 06961 08030 1 06887 07956 09926  0.6887 0.7956 0.9999 06784 19
20 04158 1 1 04158 1 1 04158 1 1 06516 20
21 03437 1 08453 03437 1 08453 03437 1 08453 09219 21
2 1 1 | 1 1 1 1 1 1 1 2
23 1 1 07844 1 1 07844 1 1 0.7844 09360 23
24 06497 1 09073 06449 09951 09024  0.6449 0.9951 09024 0.6454 24
25 1 06358 07559 09700  0.6058 07259 1 0.6058 0.7259 07349 25
26 07068 1 06771 05676  0.8608 05379  0.6752 0.8608 0.5379 0.5908 26
27 05689 1 06982 04697 09008 05990 0.4697 0.9008 0.6615 04713 27
28 03655 07667 07944 03359 07372 0.7649 03359 07372 0.7824 03095 28
29 04378  0.6626  0.8439  0.4050  0.6297 08110  0.4050 0.6298 0.8132 0.4048 29
30 04510 06185 1 04373 06048 09863  0.4373 0.6048 0.9999 03540 30

The bold figures in columns 8-10 of Table 7.9 indicate the units, whose final Pareto

optimal efficiency scores were obtained in the second phase.

7.4 Conclusion

We introduced in this chapter a novel network DEA approach to efficiency

assessment in series multi-stage processes. Actually, it is a multi-objective

programming approach that employs the L, norm as distance measure to locate the

stage efficiency scores as close as possible to their ideal values. Our approach is

general, in the sense that it can handle series multi-stage processes of any type. It is

exact, as it provides unique efficiency scores and it is neutral, as it treats the different

stages equivalently. Also, it responds accurately to any different weighting scheme for

the stages, by driving the efficiency assessments accordingly.
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Chapter 8

The assessment of the academic research activity -

A network DEA approach

8.1 Introduction

Data envelopment analysis has been commonly used as an instrument to measure the
performance of academic units (Universities, faculties, departments or individuals) in
various aspects of academic activities such as research, teaching and administration
(Beasley, 1995, Athanassopoulos and Shale, 1997, Korhonen et al., 2001, Avkiran,
2001, Katharaki and Katharakis, 2010, Kounetas et al., 2011). Recently, network
DEA has been also applied to assess the performance of entities in education in
various aspects Monfared and Safi (2013) assessed the academic performance of
colleges in Alzahra, Iran. They used a two-stage network structure with shared inputs
to represent teaching and research as two separate activities. Johnes (2013) evaluated
the efficiency of higher education institutions in England. He employed a two-stage
network structure with the first stage representing the teaching activity and the second
one, employability of the graduates. Lee and Worthington (2016) employed network
DEA to evaluate the research performance of Australian universities. They utilized a
two-stage network structure to represent the university research production as a two-
stage process. The first stage represented research and the second one grant
applications. Full time equivalent Academics and the number of PhD students were
considered as the two external inputs to the first stage, whose output was a publication
indicator (considered also as input to the second stage) measured as a weighted
average of the number of publications of different categories. The output of the

second stage was the value of grants (total research income).
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In this chapter, we present a framework to assess the academic research
activity in higher education. The aim of this assessment framework is to encompass
both the extent and the quality of the research work as well as its impact. Thus, a two-
stage network structure is used in which the first stage represents productivity and the
second one the recognition of the research outputs (publications). To illustrate the
proposed approach, an anonymous dataset of 40 academics with estimated realistic
data is used. For the efficiency assessment, we utilize the network DEA approach
developed in the previous chapter. The results of the analysis have a meaningful
interpretation and the current application also highlights the applicability and the

effectiveness of the network DEA approach developed in the previous chapter.
8.2 Assessing the research productivity and impact of academics

The scope of the proposed approach is to estimate the relative efficiency of academics
with respect to their research activity and the impact of the research. The quality of
the research output and the recognition it receives in the international scientific
community affects the recognition of the researcher himself as well as the reputation
of the hosting institution. In this context, the research activity of an individual staff

member is viewed as a two-stage process as depicted in Figure 8.1.

The first stage represents the productivity of the individual: The inputs in this
stage are time in post (X") and fotal salary since appointment (X(z)). The output of
the first stage is publications (Z). In order to make the assessment strict, the following

assumptions were made regarding the publications:
e Only publications in journals indexed in Scopus were taken into account.

e In case of multiple authors, each individual author is credited with a
fraction of the publication, actually with //n, where n is the number of
authors. So, the total number of publications of an individual is given as
single-author equivalent (SAE). In this manner, each publication is counted
at most once at the faculty or at the institution level, as there might be co-

authors from other institutions.
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e The journals, and thus the publications in that journals, are classified in
four quality classes (A+, A, B, C) according to the ERA2010 journal
classification system (ERA: Excellence in Research in Australia). A fifth

class D is made for journals that are not indexed in ERA2010.

L
— Publications before

Individual faculty member appointment

E E (1)
NG : , i y
Timein post | Publications Citations
E since :
: appointment Impact :
' Productivity PP P / |
: Recognition '
x\? | v
Totalsalary ¢+ i Achievements

Figure 8.1: The academic research activity as a two stage-process

The second stage represents the impact that the research work of the individual
has in academia and the recognition, which the researcher has gained as a result of his
work. Once released, a publication becomes an independent entity, which, depending
on its quality and dissemination, generates citations and recognition. The latter is
measured through the academic achievements of the individual, such as being chief
editor of scientific journals, associate editor or member of editorial boards, being
invited as keynote speaker in conferences, participating in scientific or advisory
committees of conferences. The number of occurrences of each one of the above are
weighted and aggregated to derive a measure of academic achievements. The
publications made by an individual before his appointment are extra inputs to the
second stage, as in conjunction with those made in post, they contribute in the

academic profile of the individual.
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Two cases were examined: In case I, the total number of single-author
equivalent (SAE) publications was considered with no distinction among the journals.
In case II, the publications were broken down in the quality classes mentioned above,
with the SAE publications in each class constituting a distinct measure. The
descriptive statistics for the data considered in case I and case II are exhibited in Table

8.1 and Table 8.2 respectively.

Table 8.1: Descriptive statistics of the data for case I: Total number of publications (SAE)

Factors Min Max Average  St. Dev.
X" | Years in post 3 28.50 1173 6.90
@ | Total Salary
X (tens of thousands) 6.42  105.68 35.55 25.81
Z Total SAE 025 2090 5.49 5.08
L Total SAE 0.00 14.56 4.04 4.04
Y® | Citations (tens of) 1.60  95.10 24.76 22.38
Y® | Achievements 0.50 25.50 6.34 6.07

The breakdown of the publications in categories is made to introduce the
quality dimension in the assessments. This is made by introducing assurance region
constraints in the assessment models (7.14) and (7.15), which were presented in the
previous chapter. In the current assessment, we assumed that the publications in

category A’ should be weighted at least 1.5 and at most twice as much as the
publications in A (i.e. I.5<w (A+ ) /w (A) <2). For the other categories, we assumed
the following weight constraints: 2 < W(A) / W(B) <2.5,1.5< W(B) / W(C) <2 and
ZSW(C)/W(D)S?).

Although the aforementioned assurance region constraints reflect a global
knowledge e.g. publication in journal ranked as A" are more important than
publications in journals ranked as A, the intensity of preference is subjective. For

instance, a policy maker could consider that publications in category A” should be

weighted at least twice and at most thrice as much as the publications in A. Such
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changes in the parameters of the constraints can lead to different results. However, the
aim of this application is not to assess the individuals or the institutions they belong
to. Rather it is to illustrate the proposed framework with realistic data and then to

present its effectiveness.

Table 8.2: Descriptive statistics of the data for case II: Publications broken down in quality classes

Factors Min Max Average  St. Dev.
X" | Years in post 3.00 28.50 11.73 6.90
@) | Total Salary
X (tens of thousands) 6.42 105.68 35.55 25.81
ZO | A+ 0.00 200  0.19 0.43
A\ 0.00 6.42 1.11 1.72
7% |B 0.00 7.42 1.63 1.67
79 | C 0.00 9.2 1.78 2.03
79 D 0.00 426  0.79 1.06
LY | A+ 0.00 4.45 0.39 0.84
L® A 0.00 8.03 1.09 1.55
L® |B 0.00 6.33 1.16 1.52
LY |C 0.00 8.53 1.1 1.66
L® |D 0.00 1.58 0.29 0.48
Y® | Citations (tens of) 1.60 95.10  24.76 22.38
Y® | Achievements 0.50 2550 634 6.07
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8.3 Results

The results obtained by applying the model (7.14) and the second phase program
(7.15), to the data summarized in Tables 8.1 and 8.2 are given in Table 8.3.
Comparing the distributions in Figures 8.2 and 8.3, one can observe a decrease in the
productivity scores (stage-1), on average, when the quality of the publications is taken
into account in case II. This is exhibited in Table 8.3 as well, where the data for two
faculty members are presented. Both records are almost identical and their difference
is revealed only when their publications are broken down in categories of quality.
They are both inefficient in case I, with the individual #10 outperforming a bit the
individual #18 in terms of productivity. However, when the quality dimension of the
publications is taken into account in case II, the individual #10 is rendered efficient
whereas the #18 loses much of his productivity score. Comparing the distributions in
Figures 8.4 and 8.5, it is observed that there is an increase of the average efficiency
score. Concerning the impact of the research and the achievements, the faculty
member #10 outperforms #18 in case I, whereas #10 is outperformed by #18 in case
I. This reversal can be justified by the fact that, although both individuals have
almost the same level of citations and academic achievements, the #18 achieves this
level of outputs with publications of low quality. In other words, the assessment
disfavors the faculty member #10 for whom one would expect higher achievements

from his high level publications.

In terms of productivity (case II, stage-1), only one faculty member is rendered
efficient. In terms of impact of the research, five faculty members are efficient.
However, as shown in Figures 8.6 and 8.7, none of the faculty members is overall

efficient, but this is not rare in network DEA.
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Table 8.3: Data and results for two indicative individuals

Individual #10 #18
Years in post 7 7
Total income in post
(tens of thousands) 150 159
Publications after appointment 8.1 21
(SAE total)

A" 2.0 0.0

A 2.0 1.5

B 2.1 2.5

C 2.0 1.8

D 0.0 23
Publications before appointment
(SAE total) 44 43

A" 2.8 0.0

A 1.6 0.0

B 0.0 2.7

C 0.0 1.8

D 0.0 0.0
Citations (tens of) 39.0 40.4
Achievements 5.0 4.0
Case I - Productivity (Stage-1) 0.976 0.918
Case I - Impact (Stage-2) 0.242 0.208
Case I - Overall 0.236 0.191
Case II - Productivity (Stage-1) 1.000 0.554
Case II - Impact (Stage-2) 0.128 0.319
Case II - Overall 0.128 0.177
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Figure 8.4: Stage-2 efficiency distributions in case |
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8.4 Conclusion

We developed a framework for the assessment of the research performance at a
faculty member level. The research activity of each faculty member is viewed as a
two-stage process. The first stage represents the research productivity of the
individual while in post, whereas the second stage represents the impact of his
research work. Disentangling productivity from impact is justified by the fact that a
research paper, once published, becomes an independent entity. Utilizing the models
(7.14) and (7.15), which were developed in the previous chapter, allows us to treat
both stages equally and thus to obtain neutral and unbiased results. However, the ERA
2010 classification system that was selected as well as the subjective judgments for
the priorities given to the journal quality classes are assumptions that do affect the

results. Nevertheless, any other choice could be made.
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Chapter 9

Summary and conclusion

In this dissertation, we focused on two extensions of the conventional DEA, namely,
value based DEA and network DEA. We provided critical reviews on the value based
and network DEA models proposed in the literature and we developed new models

which overcome their limitations.

In the first part of this dissertation we dealt with value based DEA.
Specifically, we introduced a data transformation — variable alteration technique as a
means to transform the original input/output weights into values. We showed that this
transformation enhances the conventional DEA models with additional properties
such as units invariance, dimensionality and a meaningful interpretation of the
variables in the DEA models. We provided a critical review on DEA with non-linear
virtual inputs/outputs which spots the discontinuity issue of the value functions and
then, we extended the data transformation — variable alteration technique to DEA
models with non-linear virtual inputs and outputs, by employing piecewise linear
value functions, that effectively treats the aforementioned discontinuity issue and
provides a clearer representation of the value functions in such cases. These findings
allowed us to develop a novel value based DEA model, which unlikely the value
based DEA models proposed in the literature, provides a measure of efficiency for the
evaluated units. To illustrate the effectiveness of our new developments, we revisited
a case study drawn from the literature. By assimilating the preferential information
given in the original work, the assessment results showed that our approach
successfully locates the efficient DMUs and unlike the assessment method used in the
original work that discriminates only between efficient and inefficient units, it
provides a measure of efficiency. Moreover, we developed a two-phase approach to
incorporate individual preferences in a DEA assessment framework by means of

Ordinal Regression. The advantage of this new approach is that instead of using direct

| 213



Doctoral Dissertation — D.G. Sotiros

preferential information for the desired levels of the inputs and the outputs to estimate
the value functions, it allows us to assess a prototype of the value functions based on
Ordinal Regression. Finally, we further illustrated the effectiveness and the
applicability of the novel value based DEA model by presenting an application
concerning the assessment of the research performance of academics which takes into

account both the quantity as well as the quality of the research output.

In the second part of this dissertation we dealt with network DEA by
developing a novel network DEA approach for general series multi-stage processes.
Particularly, we introduced a multi-objective programming approach, which employs
the L, norm as a distance measure to locate the stage efficiency scores as close as
possible to their ideal values that are obtained independently through standard DEA
models. Our new approach overcomes the defects of the network DEA models
proposed in the literature as it provides unique and unbiased stage efficiency scores.
When data were available in the literature, the advantages of our approach were
illustrated by comparing the results obtained by our method with those obtained by
other methods presented in the literature. When data were not available in the
literature, synthetic data were used for testing and validation. The effectiveness and
the applicability of our approach, was further illustrated by providing an application
for the assessment of the academic research activity in higher education viewed as a
two-stage network process. However, utilizing the proposed network DEA approach
to cases where particular resources are shared among the stages of the system will
lead to a highly non-linear model. This issue can be viewed as a limitation of this

approach.

The extension of the current developed value based DEA model to network
structures as well as the extension of the current developed network DEA approach in
parallel network structures are subjects for further research. Moreover, it is worthy to
mention that in network DEA the efficiency scores under the assumption of variable
returns to scale are not necessarily higher than the efficiency scores obtained under
the assumption of constant returns to scale, as it happens in the conventional DEA
models. Moreover, in network DEA, although some DMUs may be identified as

efficient in particular sub-processes (stages) of the network activity, none of them
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may be identified as overall efficient in the production process. This violates the
assumption that the efficiency scores are estimated on a relative basis. These issues

are considered as irregularities in network DEA and require further investigation.
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