
 UNIVERSITY OF PIRAEUS

 DEPARTMENT OF DIGITAL SYSTEMS

 POSTGRADUATE PROGRAM “DIGITAL SYSTEMS AND SERVICES”

Traffic Load Prediction in SDN/OpenFlow Networks

Master Thesis

Candidate Advisor

 Theoni Petropoulou Prof. Panagiotis Demestichas

Piraeus, November 2016

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Panagiotis Demestichas,

for all the support and guidance he provided during the completion of this thesis. I would also

like to thank Adjunct Lecturer Dr. Kostas Tsagaris for his help, encouragement and patience,

as well as Dr. Vassilios Fotinos, Michail Michaloliakos and George Poulios for all their help and

cooperation throughout this work. Finally, I would like to thank my dear Marios for all his

support and faith in me.

This work is dedicated to Konstantinos.

Abstract

This thesis is an experimental attempt at applying machine learning techniques to predict the

load of a network within an SDN (Software Defined Networking) environment.

Utilizing an Autonomic Network Management Framework, which was implemented by the

University of Piraeus, as well as actual network infrastructure with OpenFlow switches, an

autonomous software component was developed using the Java programming language,

which makes predictions of future traffic between five nodes on a network by implementing

the Backpropagation algorithm. The software component is deployed and tested in the above

Framework as an SDN application.

The main objective of the conducted experiments was both to assess the efficiency of a well-

known machine learning algorithm regarding prediction of future network traffic in real

conditions based on specific network traffic patterns, as well as to investigate the possibility

of simultaneous execution and cooperation of more than one SDN applications in order to

facilitate the autonomic decision-making of traffic routing based on future predictions without

any human intervention.

Περίληψη

Η παρούσα διπλωματική εργασία αποτελεί μία πειραματική απόπειρα εφαρμογής τεχνικών

μηχανικής μάθησης για την πρόβλεψη του φόρτου ενός δικτύου στο πλαίσιο ενός

περιβάλλοντος SDN (Software-Defined Networking).

Αξιοποιώντας ένα Autonomic Network Management Framework, το οποίο υλοποιήθηκε από

το Πανεπιστήμιο Πειραιώς, καθώς και πραγματικές δικτυακές υποδομές με OpenFlow

switches, αναπτύχθηκε με την χρήση της γλώσσας προγραμματισμού Java ένα αυτόνομο

στοιχείο λογισμικού, το οποίο πραγματοποιεί προβλέψεις της μελλοντικής κίνησης μεταξύ

πέντε κόμβων ενός δικτύου υλοποιώντας τον αλγόριθμο Backpropagation. Το στοιχείο

λογισμικού αυτό προσαρμόστηκε στο ανωτέρω Framework και εκτελέστηκε ως εφαρμογή

SDN.

Ο στόχος των σχετικών πειραμάτων, που εκτελέστηκαν, ήταν διπλός, και αφορούσε αφενός

την αξιολόγηση της αποτελεσματικότητας ενός τυπικού αλγορίθμου μηχανικής μάθησης ως

προς την έγκυρη πρόβλεψη του μελλοντικού δικτυακού φόρτου σε πραγματικές συνθήκες

βάσει συγκεκριμένων μοντέλων δικτυακής κίνησης και αφετέρου την διερεύνηση της

δυνατότητας της ταυτόχρονης εκτέλεσης και συνεργασίας περισσότερων από μίας

εφαρμογών SDN με σκοπό την αυτόνομη λήψη αποφάσεων από το δίκτυο σχετικά με την

δρομολόγηση της κίνησης βάσει μελλοντικών προβλέψεων χωρίς ανθρώπινη παρέμβαση.

1

Table of Contents

Introduction ... 5

Chapter 1 Background and Experimentation Framework ... 6

1.1 Software Define Networking and OpenFlow... 6

1.2 GÉANT Testbed .. 8

1.3 ANM Framework ... 11

Chapter 2 Implementation .. 13

2.1 Software .. 13

2.2 Prediction Algorithm ... 14

2.3 Traffic Models .. 14

Chapter 3 Load Prediction in SDN/OpenFlow Networks ... 15

3.1 Introduction ... 15

3.2 Actors, setup, topology ... 15

3.3 Scenario 1 – Online Forecasting .. 16

3.3.1 Storyline ... 16

3.3.2 Execution ... 17

3.3.3 Results ... 17

3.4 Scenario 2 – Forecasting by pre-trained networks.. 25

3.4.1 Storyline ... 25

3.4.2 Execution ... 26

3.4.3 Results ... 26

3.5 Conclusions .. 29

Chapter 4 Autonomic Traffic Engineering with Load Prediction in SDN/OpenFlow Networks31

4.1 Introduction ... 31

4.2 Actors, setup, topology ... 31

4.3 Storyline ... 32

4.4 Execution ... 33

4.5 Results ... 34

4.6 Conclusions .. 39

Chapter 5 Conclusions ... 40

References ... 41

Bibliography ... 42

Glossary ... 44

APPENDIX .. 45

2

Table of Figures

Figure 1-1: Overview of the SDN Architecture (image from Open Networking Foundation) ... 7

Figure 1-2: OpenFlow Switch (available at http://yuba.stanford.edu/cs244wiki/index.php/) . 8

Figure 1-3: GÉANT OpenFlow Facility (image from GÉANT OF Testbed Users Manual) 11

Figure 1-4: Experimentation framework overview (image provided by the University of

Piraeus TNS Lab) .. 12

Figure 3-1: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

40 (Learning rate: 0.05, Momentum: 0.9) ... 17

Figure 3-2: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

40 (Learning rate: 0.01, Momentum: 0.6) ... 18

Figure 3-3: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

40 (Learning rate: 0.01, Momentum: 0.0) ... 18

Figure 3-4: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

40 (Learning rate: 0.1, Momentum: 0.0) ... 18

Figure 3-5: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

280 (Learning rate: 0.05, Momentum: 0.9) ... 19

Figure 3-6: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

280 (Learning rate: 0.01, Momentum: 0.6) ... 19

Figure 3-7: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

280 (Learning rate: 0.01, Momentum: 0.0) ... 19

Figure 3-8: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

280 (Learning rate: 0.1, Momentum: 0.0) ... 20

Figure 3-9: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

400 (Learning rate: 0.05, Momentum: 0.9) ... 20

Figure 3-10: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

400 (Learning rate: 0.01, Momentum: 0.6) ... 20

Figure 3-11: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

400 (Learning rate: 0.01, Momentum: 0.0) ... 21

Figure 3-12: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI

400 (Learning rate: 0.1, Momentum: 0.0) ... 21

Figure 3-13: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.05, Momentum: 0.9) .. 22

3

Figure 3-14: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.01, Momentum: 0.6) .. 23

Figure 3-15: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.01, Momentum: 0.0) .. 24

Figure 3-16: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks

(TM1-ADI 40) ... 27

Figure 3-17: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks

(TM1-ADI 280) ... 27

Figure 3-18: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks

(TM1-ADI 400) ... 28

Figure 3-19: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks

(TM2) ... 28

4

Table of Tables

Table 1-1: GÉANT server specifications (image provided by the University of Piraeus TNS Lab)

 ... 9

Table 1-2: GÉANT host IP addresses .. 10

Table 4-1: Topology set-up .. 32

Table 4-2: Core-TE ACL without LP ACL – Execution #1 .. 34

Table 4-3: Core-TE ACL without LP ACL – Execution #2 .. 34

Table 4-4: Core-TE ACL without LP ACL – Execution #3 .. 35

Table 4-5: Core-TE ACL without LP ACL – Execution #4 .. 35

Table 4-6: Core-TE ACL without LP ACL – Execution #5 .. 35

Table 4-7: Core-TE ACL with LP ACL – Execution #1 .. 36

Table 4-8: Core-TE ACL with LP ACL – Execution #2 .. 37

Table 4-9: Core-TE ACL with LP ACL – Execution #3 .. 37

Table 4-10: Core-TE ACL with LP ACL – Execution #4 .. 37

Table 4-11: Core-TE ACL with LP ACL – Execution #5 .. 38

5

Introduction

The main goal of this master thesis was the development of a software application that

predicts future network traffic based on monitoring and analyzing current traffic in real time.

The application was implemented as an autonomous component in order to be executed in a

Software-Defined Networking environment.

Artificial Neural Networks and machine learning techniques were utilized for the

implementation of network load prediction, whereas an Autonomic Network Management

framework developed by the University of Piraeus was used for the integration and the

execution of the application on top of an SDN Controller, using the Controller’s NorthBound

Interface to communicate with the network.

For our experiments, access to GÉANT physical testbed facility was provided by the University

of Piraeus TNS Lab under the AUTOFLOW Project. The application was thus tested within a

real small-scale network environment consisting of five Points of Presence, which produced

and consumed real network traffic that was generated based on specific traffic patterns.

Several scenarios were tested to evaluate the prediction algorithm itself as well as the

efficiency of the application running simultaneously and cooperating with other applications

in an SDN context, in order to facilitate the network in making rapid autonomous decisions

regarding traffic engineering and flow control.

The outline of this work is as follows:

 Chapter 1: A brief presentation of basic SDN concepts as well as the experimentation

framework used for the application execution.

 Chapter 2: A brief description of the implemented software, the algorithm and the

traffic models used for the experiments.

 Chapter 3: Experimentation and results of using load prediction mechanisms in an

OpenFlow SDN network.

 Chapter 4: Experimentation and results of using load prediction mechanisms to

influence traffic engineering in an OpenFlow SDN network.

 Chapter 5: General conclusions.

 Appendix: Application source code developed by the author.

6

Chapter 1 Background and Experimentation Framework

1.1 Software Define Networking and OpenFlow

The recent trends in technology industry, such as the massive virtualization of servers, the

evolution of enterprise data centers and cloud infrastructures, the diversity of network access

devices and applications and the need for parallel big data processing, established a need to

reexamine network design and operation. The traditional network infrastructure paradigm

consisting of hardcode-configured physical switches in a hierarchical design could no longer

accommodate for the new high-bandwidth dynamic traffic demands and communication

models. Software Defined Networking is a concept which addresses these needs of a highly

flexible, adaptive, dynamically programmable and configured, as well as cost-effective

network infrastructure.

The Software-Defined Networking [1] is based on the idea of decoupling the Control Plane and

the Forwarding (Data) Plane on a network switch and moving the forwarding decisions to a

centrally located controller. A traditional network switch uses its local logic, the Control Plane,

to forward packets through the Data Plane to different destinations based on its local

configuration. In a Software-Defined Network the switches use their data plane to forward

actual packets, but the packet switching mechanisms and decisions are controlled by an

external central element, which is implemented as a software component. The software-

based SDN Controller is vendor-independent and it offers network administrators the ability

to develop and run their own algorithms to control data flows and packet forwarding in a

network. The abstraction between low-level packet switching and network applications and

services allows for a highly adjustable and dynamically optimized network intelligence, which

makes the network adapt rapidly to changes and special circumstances by addressing its

particular needs.

Other basic architectural components of a Software-Defined Network beside the SDN

Controller are the SDN Applications and the SDN Datapaths. SDN Applications are software

components that implement a certain logic of various network requirements and actions.

They communicate with the SDN Controller via NorthBound Interfaces (NBI), which typically

provide open and vendor-independent abstract network views. The SDN Controller transmits

the desired network actions required by the SDN Applications to the SDN Datapaths, which

are logical packet switching mechanisms located in physical network devices, consisting of

forwarding engines and traffic processing functions.

A general view of the SDN architecture is presented in Figure 1-1.

7

Figure 1-1: Overview of the SDN Architecture (image from Open Networking Foundation)

In a conventional switch device the communication between the Control Plane and the

Forwarding Plane is implemented with a vendor-specific internal bus. In a Software-Defined

Network the Controller communicates with the devices over the network using mainly the

OpenFlow [2] protocol.

The OpenFlow specification defines an open standard for communication between a

Controller and an OpenFlow-enabled switch through a standardized interface. An OpenFlow

switch consists of:

1. A Flow Table with actions associated with each flow, which indicate to the switch the

way to handle the specific flow.

2. The Secure Channel interface to allow communication with the Controller.

8

Figure 1-2: OpenFlow Switch (available at http://yuba.stanford.edu/cs244wiki/index.php/)

Through the Secure Channel the Controller can program the switch to add, remove or process

flows through specific commands based on the actions supported by each device.

1.2 GÉANT Testbed

The GÉANT OpenFlow Testbed [3] is a facility designed to support Software-Defined

Networking experiments and prototyping. The facility is deployed on top of the GÉANT

backbone production environment and is located in five GÉANT Points of Presence in the cities

below:

 London

 Frankfurt

 Vienna

 Zagreb

 Amsterdam

Computing resources are offered as Virtual Machines (VMs) upon dedicated physical servers

using Xen [4] hypervisor-based virtualization. Network resources are offered utilizing

software-based OpenFlow switches based on Open vSwitch (OvS) [5] and network links for

the interconnection between the switches.

9

Two general-purpose servers are installed in each of the five GÉANT PoPs. Each of the servers

that are located in PoPs is either the host of a software-based OpenFlow switch (Open vSwitch

[5]) on top of a native Linux Debian distribution or the host of a Xen hypervisor for the

instantiation of multiple VMs that can be allocated to user slices. Server specifications are

presented in Table 1-1.

General GÉANT Server Specifications

Number of CPUs ≥ 2

Number of cores per CPU ≥ 4

CPU Cache Size ≥ 6 MBytes

CPU Frequency ≥ 2.60 GHz

Memory Size ≥ 16 GBytes

RAID Controller RAID 1/5 with SAS HDDs &≥ 4 HDDs support

HDDs ≥2 x SAS 146 GB

Network Interfaces 12 Gigabit Ethernet

Table 1-1: GÉANT server specifications

The Data Plane topology of the GÉANT OpenFlow facility is configured as a full mesh graph, so

that every OpenFlow switch has direct connectivity with all of the other OpenFlow switches

through direct connection with the routers of each facility and further on through Layer 2

MPLS VPN circuits.

Network resources are offered by utilizing OpenFlow switches based on Open vSwitch and

network interconnection links of 1Gbps.

End users can connect to the GÉANT OpenFlow Facility using the Virtual Machines hosted on

servers on the five PoPs as traffic producers and consumers, as well as installing their own

equipment within the facility.

The network virtualization technology used by the GÉANT OpenFlow Facility, referred to as

“network slicing technique”, dynamically allocates one or a range of VLAN IDs to each user

slice to distinguish traffic. The network is partitioned per physical or logical Open vSwitch

interface. VLANs can be involved in experimentation within the slice when a set of VLAN IDs

is allocated to a slice. Thus any of the experimenters can use its own range of VLAN IDs on top

of the OpenFlow topology.

The switches are logically separated for each research group with the use of VLAN technology.

10

Moreover, the hosts of the software-based OpenFlow Switches are hosted in the pre-installed

servers in each PoP. These hosts can be reachable through the Internet via their public IP

addresses via SSH.

For our experiments in the GÉANT OpenFlow facility we used the 192.168.1.0/24 private

subnet with VLAN ID 256.

The IP addresses of the hosts that are connected to the relevant OpenFlow switch are shown

in Table 1.2.

Host IP Addresses

PoP Public IP Address Private IP Address

London 62.40.110.137 192.168.1.3

Frankfurt 62.40.110.71 192.168.1.2

Vienna 62.40.110.110.3 192.168.1.4

Zagreb 62.40.110.101 192.168.1.5

Amsterdam 62.40.110.35 192.168.1.1

Table 1-2: GÉANT host IP addresses

The facility’s management and control plane elements and software are hosted in the

Frankfurt PoP. This includes the GÉANT OpenFlow Control Framework and the FlowVisor

software [6]. FlowVisor is a network virtualization application, which can be considered as a

proxy protocol sitting logically between the multiple controllers and the OpenFlow switches

in order to allow multiple controllers to share the same network infrastructure without

interfering with each other.

A general overview of the GÉANT OpenFlow facility is presented in Figure 1-3.

11

Figure 1-3: GÉANT OpenFlow Facility (image from GÉANT OF Testbed Users Manual)

1.3 ANM Framework

Load prediction mechanisms in a Software Defined Network were implemented as an

autonomous software component which was integrated in an Autonomic Network

Management (ANM) Framework, designed and implemented by the University of Piraeus TNS

Lab for the purposes of AUTOFLOW Project. The main objective of AUTOFLOW is to exploit

both Autonomic Network Management (ANM) and Software-Defined Networking (SDN) in

order to provide a realistic solution to the complexity of network management. The main

component of the project is the ANM Core, which includes a set of blocks that provide

fundamental functionalities (Governance, Coordination and Knowledge) for the efficient

operation of autonomic mechanisms. The latter are deployed as SDN applications on top of

an SDN controller and use the controller’s NorthBound API to interact with the network.

The main role of the ANM core is to provide a seamless integration and expandability (“plug

‘n’ play” and “unplug ‘n’ play”), as well as to ensure a trustworthy interworking of autonomic

mechanisms within an operator's management ecosystem, based on three architectural

blocks. The Governance block aims at giving a human operator a mechanism for controlling

the network from a high-level business point of view, without the need of having a deep

technical knowledge of the network. Information regarding autonomic mechanisms as well as

monitoring parameters and alerts are sent to the operator, while the operator’s policies are

translated into specific parameters relevant to the operation of the mechanisms. All this

information is sent to the mechanisms through this block. The Knowledge block manipulates

information and knowledge to be exploited from the other blocks and mechanisms. The role

of the Coordination block is to ensure the proper sequence in triggering of mechanisms and

12

the conditions and constraints under which they will be invoked taking into account operator

and service requirements.

The ANM core is the framework that allows for the efficient operation and coexistence of

multiple autonomic mechanisms (Autonomic Control Loops - ACLs), which run as SDN

applications. In the scenarios described in this thesis we focus on a Load Prediction (LP)

mechanism that addresses the problem of network congestion prediction, whereas in a

specific experiment we also exploit an autonomic Traffic Engineering (TE) mechanism (Core-

TE) developed by the University of Piraeus TNS Lab, that addresses the problem of policy-

based traffic engineering in SDN/OpenFlow networks.

The ANM Core uses the Floodlight [7] Controller, which offers an easy-to-use northbound API,

remotely accessible through a REST API, which was easily integrated with the rest of the

framework, as well as various monitoring statistics regarding network status.

An overview of the framework used for our experiments is presented in Figure 1-4.

Figure 1-4: Experimentation framework overview (image provided by the University of Piraeus TNS Lab)

13

Chapter 2 Implementation

2.1 Software

In order to carry out the experiments described in the following sections, certain software

components have been developed.

Load prediction mechanism has been implemented as an Autonomic Control Loop (ACL)

software component (LP ACL), which can be deployed within the ANM Framework, the core

component developed by the University of Piraeus TNS Lab under the AUTOFLOW Project.

Our load prediction software component integrates and cooperates with the following

AUTOFLOW project components:

 ANM CORE: The Autonomic Network Management framework that provides

fundamental functionalities to facilitate network operations and an ecosystem to

host SDN applications.

 Floodlight: The Java software SDN Controller used based on the OpenFlow

protocol.

 FloodlightRESTClient: A library to ease Floodlight NB integration through

Java/HTTP.

 MetricMonitor: A visualization tool that taps to Floodlight's NB and plots various

port statistics using FloodlightRESTClient

 Core-TE ACL: An Autonomic Control Loop which implements an algorithm for

policy-based traffic engineering.

In order to implement load prediction mechanisms in the abovementioned SDN ecosystem,

the following two software projects have been developed:

1) TimeSeriesPrediction. This project implements the actual machine learning

algorithm for load prediction over time, as described in the following section.

2) LPACL. This project is the actual autonomic mechanism which is deployed within

the ANM Core Framework. It integrates with the Floodlight Controller

Northbound API in order to read actual traffic demand values between the five

GEANT PoP in real time and utilizes TimeSeriesPrediction project to perform the

actual load forecasting based on those values. The software design is based on

the autonomic system paradigm, where MAPE-K (Monitor, Analyze, Plan, Execute

and Knowledge) feedback loops are used to ensure self-adaptation. Upon the ACL

deployment, four methods run consecutively and repeatedly throughout the life

cycle of the ACL, Monitor, Analyze, Plan and Execute, referred to as MAPE Loops,

in order to perform traffic monitoring and future network load calculation.

All software has been implemented using Java 8 SE programming language with Eclipse SDK

[8]. The source code of the implemented components can be found in the Appendix.

http://poseidon.ds.unipi.gr:8080/svn/repo/autoflow/trunk/FloodlightRESTClient/
http://poseidon.ds.unipi.gr:8080/svn/repo/autoflow/trunk/MetricMonitor/

14

2.2 Prediction Algorithm

Extended research in time-series forecasting has been carried out in the recent years,

examining mainly the application of Artificial Neural Networks (ANNs) as prediction tools for

modelling non-linear systems. Supervised learning algorithms and regression-based

techniques such as Backpropagation, Support Vector Machine and hybrid models have been

extensively used for years for the prediction of future electric load demand, monthly river

flow, network load etc. Most cases focus on pre-trained ANNs with historical data, while there

are some approaches which use unsupervised techniques such as Kohonen maps and

clustering algorithms in order to perform short or long-term forecasting.

In order to carry out the experiments described in the following sections, we decided to use

machine learning techniques to investigate the possibility of continuous forecasting of the

future network load based on the monitoring of current network load established by common

traffic patterns.

In particular, we used a standard two-layer Backpropagation algorithm with a bipolar sigmoid

activation function to train each neural network. Each neural network consists of five neurons

at the input layer and one neuron at the output layer. The terms of Learning Rate and

Momentum have been implemented as parameters for the user to experiment with the speed

and the stability of the training algorithm.

The iterative forecasting, according to which the predicted values are used as inputs for the

next forecasts, is used as a method for multi-step-ahead prediction.

Specific details about the algorithm execution are presented along with each experiment in

the following Chapters.

2.3 Traffic Models

As we indicated earlier, in order to perform the experiments described in the following

sections, we utilized the GEANT facility. End-to-end flows between the five GEANT PoP

(OpenFlow Switches) were established by generating real UDP traffic using Iperf [9] scripts in

each PoP.

For each experiment we generated network traffic based on two traffic models presented in

[10], which we describe briefly below.

 Traffic Model 1 (TM1): random traffic demand follows a uniform distribution with various

Average Demand Intensity (ADI). For the specific experiments we utilized TM1 with low,

medium and high average load demand intensity of 40 Mbps, 280 Mbps and 400 Mbps

respectively.

 Traffic Model 2 (TM2): traffic demand between source and destination nodes is variable in

time according to a sinusoidal function.

15

Chapter 3 Load Prediction in SDN/OpenFlow Networks

3.1 Introduction

In this experiment we attempt to investigate whether the ANM and SDN/OpenFlow

technologies can be used for short prediction of network load, with the ultimate purpose of

using the acquired knowledge of future traffic during the process of decision-making on

routing and traffic engineering directly by the network in real time without any human

intervention.

By providing valuable information in advance, short-term network load forecasting aims at

improving the efficiency of the network and facilitating the real-time management and control

of the network functions.

Load forecasting is implemented in real time for each Source-Destination Pair using neural

networks trained with the Backpropagation algorithm. For each traffic model used, the

predicted values are compared to the actual load values and the corresponding diagrams for

indicative number of source-destination pairs are presented.

The main objective of the experiment is to evaluate the behavior of the real-time load

prediction algorithm based on specific traffic models.

3.2 Actors, setup, topology

All experiments described in this Chapter are carried out by generating real traffic on the

GÉANT OpenFlow physical testbed. The GÉANT OpenFlow facility consists of five Points of

Presence (PoPs) located in Amsterdam, Frankfurt, London, Vienna and Zagreb respectively. An

OpenFlow software switch and a Virtual Machine on a physical server are located in each PoP.

The five OpenFlow switches are interconnected in a full mesh with 1Gbps links. The network

controller is located in a Virtual Machine in Frankfurt. Hosts are accessible through the

Internet via SSH on their public IP addresses.

Real traffic is generated between the five hosts, which correspond to a total of twenty (20)

Source-Destination pairs (SD Pairs), by running Iperf scripts on each Virtual Machine. For this

particular experiment certain traffic scripts were selected to reflect the two different traffic

models as described in 2.3.

In all the experiments described below, monitoring and load prediction are performed per SD

Pair.

For this particular experiment a two-layer neural network with five neurons in the input layer

and one neuron in the output layer has been implemented for each source-destination pair.

Each neural network is trained using the standard Backpropagation algorithm as described in

Section 2.2.

16

The algorithm has two discrete phases, the training and the prediction phase. During the

training phase a scenario-specific set of real load values per SD Pair is presented to each neural

network as the training set. In each epoch of the algorithm, after samples of the training set

are presented to the neural network, each neuron’s weights are adjusted and the summary

mean square error for all neurons is calculated.

During the prediction phase, the already trained neural networks, after being presented with

input vectors of 5 sequential network load values per SD Pair (equal to the number of neurons

in the input layer), they calculate the vectors of the estimated future load values. The

prediction horizon i.e. the size of the prediction vectors varies according to the specific

configuration of each experiment, as described in the following sections.

In order to demonstrate the behavior of the Backpropagation algorithm regarding its

forecasting capabilities, we tested two different experiment scenarios.

3.3 Scenario 1 – Online Forecasting

3.3.1 Storyline

The goal of the first experimentation scenario is to evaluate the ability of the ACL to recognize

short-term network patterns in real time without previous knowledge, in order to use them

for future prediction.

Initially, traffic is generated according to each traffic model between the five PoPs and, at the

same time, LP ACL is deployed in the ANM framework.

The two phases of the prediction algorithm (training and prediction phase) are executed

consecutively in each MAPE loop repeatedly throughout the lifecycle of the ACL. During the

training phase a set of 50 real network load values (measured in Kbps) for each SD Pair are

recorded each second by monitoring the network traffic for 50 seconds and used to train each

neural network. The size of the training sets (50 values corresponding to 50 seconds of

monitoring) was chosen after experimenting as a trade-off in order to minimize the effects of

the time-consuming training phase on the runtime efficiency of the prediction phase.

During the prediction phase, an input vector of the next 5 real load values per SD Pair is

presented to the trained neural networks, after monitoring the actual network traffic for 5

seconds. Each network produces a prediction vector of 55 estimated future load values per

SD Pair. The 55-length prediction vector corresponds to the duration of the next monitoring

period (50 seconds of monitoring to form the 50-value training set and 5 seconds of

monitoring to form the 5-value input vector to be used in the next prediction cycle).

Actual and predicted load values are recorded in two CSV files for reasons of comparison and

result evaluation, as well as possible utilization by other ACLs.

17

3.3.2 Execution

In this experiment the prediction algorithm was evaluated in four cases with real traffic based

on the traffic models described in Section 2.3. To further evaluate the behavior of the

Backpropagation algorithm in the context of each traffic model, each experiment case was

also executed with different parameters of Learning Rate and Momentum.

Execution steps are as follows:

 The ANM Core component runs and the AUTOFLOW ANM Application starts.

 The LP ACL runs and appears in the right up pane of the ANM Application.

 Real network traffic is generated by running the Iperf scripts of the specific traffic

model on each GÉANT PoP.

 The LP ACL is deployed in the ANM framework.

 After 5 minutes of deployment time, two CSV files are updated with the actual and

the predicted load values per SD Pair.

Upon completion of each experiment case, the time-series graphs comparing the actual to the

predicted traffic for each source-destination pair are drafted. Indicative number of graphs is

presented in the following evaluation section.

3.3.3 Results

Case 1:

 Traffic model: 1

 Average Intensity: 40

Figure 3-1: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 0.05,

Momentum: 0.9)

18

Figure 3-2: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 0.01,

Momentum: 0.6)

Figure 3-3: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate:

0.01, Momentum: 0.0)

Figure 3-4: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate:

0.1, Momentum: 0.0)

19

Case 2:

 Traffic model: 1

 Average Intensity: 280

Figure 3-5: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate:

0.05, Momentum: 0.9)

Figure 3-6: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate:

0.01, Momentum: 0.6)

Figure 3-7: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate:

0.01, Momentum: 0.0)

20

Figure 3-8: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate:

0.1, Momentum: 0.0)

Case 3:

 Traffic model: 1

 Average Intensity: 400

Figure 3-9: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate:

0.05, Momentum: 0.9)

Figure 3-10: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate:

0.01, Momentum: 0.6)

21

Figure 3-11: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate:

0.01, Momentum: 0.0)

Figure 3-12: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate:

0.1, Momentum: 0.0)

22

Case 4:

 Traffic model: 2

Figure 3-13: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.05, Momentum: 0.9)

23

Figure 3-14: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.01, Momentum: 0.6)

24

Figure 3-15: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2

(Learning rate: 0.01, Momentum: 0.0)

The experimental results indicate that the load intensity of the network traffic has little to no

effect on the behavior of the prediction algorithm. Moreover, tuning Backpropagation

parameters such as the learning rate and the momentum has no significant effect on

prediction accuracy in the specific context.

The objective of the implemented algorithm is to predict the general trend of network traffic

in a long period of time (at least as long as the LP ACL is running) by utilizing small periods of

traffic as training sets for the neural networks. Nevertheless, in Case 4, in which Traffic Model

2 was tested, apart from the less accurate results compared to the results of Traffic Model 1,

we observe that there is a time shift of the predicted time series. In other words, prediction is

25

delayed as the result of the variation of the real traffic produced by the specific model, which

forms a pattern that spans multiple training phases. Since Backpropagation is a supervised

learning algorithm, a change in load which occurs at the end of the training phase will be

realized by the algorithm after the completion of the current training and prediction phases,

i.e. during the next prediction cycle. In worst case scenarios short-term load variations will not

be detected by the algorithm at all.

In most of our experiments the length of the time shift was half the duration of the training

phase (25 seconds). Increasing the length of the training set would prolong the training phase

without any significant effect on real-time prediction of network load that varies over time.

On the other hand, it would prove useful in case of network monitoring and prediction based

on known network traffic patterns observed in predefined time periods (days or weeks). This

case is examined in Section 3.4 (Scenario 2) below.

The deviation of the numeric values of the actual and the predicted load is limited. Given that

the network load is measured in Kbps, this deviation is actually insignificant.

Short-term bursts or instantaneous load variations cannot be estimated by the algorithm.

3.4 Scenario 2 – Forecasting by pre-trained networks

3.4.1 Storyline

The goal of the second experimentation scenario is to investigate ways to improve the

algorithm’s accuracy and performance, as well as to optimize the ACL’s efficiency, based on

the assumption that network load is not subject to random high variations, but it follows some

general trends throughout certain time periods (i.e. certain weekdays or certain dates of a

year).

Therefore, a different approach is attempted in the second scenario, where real-time

prediction is performed by pre-trained neural networks.

For scaling reasons, we assume that the four traffic models described in Section 2.3 reflect

four different traffic patterns that occur within four different days of the week. Prior to

forecasting, the LP ACL is deployed four times to train neural networks with the four above-

mentioned traffic scenarios (TM1 with three different average load intensities and TM2) after

five minutes (300 seconds) of traffic monitoring with training sets of 300 load values per SD

Pair. No changes have been made to the algorithm other than increasing the training set size

to 300.

For each traffic model the training phase took place within a different day of the week. The

state of each neural network after final weight adjustment has been serialized and saved in a

binary file named after the specific day (one file for each traffic model, representing the state

of the neural network for each SD Pair at the corresponding day).

The LP ACL was deployed four times within the same days of the next week. In order to

evaluate the forecasting algorithm and validate the prediction results against real load values,

26

the corresponding traffic for each model is being generated before each deployment of the

LP ACL.

Upon detection of the current day, the neural network state is de-serialized and loaded from

the file that corresponds to the specific day. This technique allows for the ACL to perform

immediate prediction based on already known network traffic patterns, completely omitting

the training phase. The already trained neural networks continuously calculate prediction

vectors of 5 future load values, after being provided with input sets of 5 actual traffic values

(5 seconds of monitoring the network), throughout the deployment duration of the ACL.

As in the first scenario, actual and predicted load of the network is recorded in CSV files for

comparison, evaluation and future exploitation.

3.4.2 Execution

Training

 The ANM Core component runs and the AUTOFLOW ANM Application starts.

 The LP ACL runs and appears in the right up pane of the ANM Application.

 Real network traffic is generated by running the Iperf script of the specific traffic

model on each GÉANT PoP.

 The LP ACL is deployed in the ANM framework.

 After 5 minutes of training, a file named after the specific day is generated, containing

the serialized state of the neural network for each SD Pair.

Prediction

 Traffic is generated according to the traffic model used during the same day.

 The LP ACL is deployed in the ANM framework.

 After 5 minutes of execution, the actual and predicted load values for each SD Pair are

recorded in two CSV files.

Upon completion of each experiment case, the time-series graphs comparing the actual to the

predicted traffic for each source-destination pair are drafted. Graphs for indicative number of

SD Pairs are presented in the following section.

3.4.3 Results

In each experiment case the Backpropagation algorithm was executed with a Learning Rate

of 0.01 and a Momentum of 0.0. The specific experiment has also been performed with

27

different learning rate and momentum parameter values. We observed that parameter tuning

had no effect on the performance of the algorithm in the specific context. Hence, we do not

consider necessary to present additional time-series graphs.

Figure 3-16: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI 40)

Figure 3-17: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI

280)

28

Figure 3-18: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI

400)

Figure 3-19: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM2)

29

The results of the second scenario indicate that there is a high time and value accuracy of the

predicted series against the actual ones. Compared to the results of the first scenario of the

experiment, the time shift of the prediction is now minimized to 2-3 seconds. This is absolutely

normal, since the entire network traffic pattern was used as the training set for

Backpropagation algorithm in this case.

Moreover, because the training phase was omitted and the duration of the prediction phase

in each MAPE loop was minimized to 5 seconds, we observed that the execution of the

algorithm was faster and more efficient. In the first scenario the prediction phase in each

MAPE loop is suspended for 50 seconds during each training phase, hence there is the need

for a relatively large prediction vector of 55 values, which increases the probability of

prediction error. In this case prediction phases producing small 5-value vectors follow short

monitoring periods of 5 seconds, resulting in faster traffic variation detection and

subsequently prediction error minimization.

Despite the high accuracy of the prediction results, the main drawback of the method

presented in this second scenario is that it requires offline training for various network traffic

patterns prior to the actual forecasting.

After running both scenarios, we also made some observations which apply in both cases.

While Traffic Model 1 scripts are running, at any moment there is a maximum of eight (8) SD

Pairs with concurrent traffic. This fact has no impact on the ACL execution. When using Traffic

Model 2 though, especially with scripts running on all five GÉANT PoPs, there are more than

30 active flows and all 20 SD Pairs have simultaneous traffic. In this case, having also to access

files on disk, the execution of the ACL appeared to be slower, especially during the training

phase in the first scenario. In some cases we observed that the 1-second interval between

reading traffic demand of each SD Pair during the training phase actually corresponded to a

real interval of 3 to 5 seconds. Although not affecting the quality of the prediction, since

predicted values are based on simple vectors of sequential values, this fact is certainly

indicative of a scalability issue.

3.5 Conclusions

The goal of the first experiment was to evaluate the performance and the quality of the

implemented Backpropagation algorithm in predicting future network load in real time, during

the deployment of the LP ACL in the ANM framework. The evaluation method was based on

the comparison of the predicted values against the actual values of network load, which were

being recorded throughout the experiment execution.

The results of both scenarios clearly show that the algorithm is quite sufficient in predicting

network load in cases of traffic with little volatility or generally known traffic patterns and it

can be used by SDN components in real time load forecasting, although it is limited by the

network size. The algorithm is not able to handle random sudden surges in traffic demand (1-

2 seconds).

Further investigation can be carried out on implementing different approximation and

classification machine learning algorithms (i.e. Support Vector Machine and Self-Organizing

30

Maps with regression) and comparing prediction results to Backpropagation, as well as

utilizing load prediction results from other SDN components in decision making on routing and

traffic engineering.

31

Chapter 4 Autonomic Traffic Engineering with Load Prediction
in SDN/OpenFlow Networks

4.1 Introduction

In this experiment we explore possible ways of load prediction exploitation in the ANM/SDN

context, hence the ability of the network to continuously adjust its behavior regarding routing

and traffic engineering in an autonomic way, based on short-term forecasting of network

traffic. The motivation behind this particular experiment is to show whether a prediction

algorithm, as described in the previous experiment, can be successfully applied in a SDN

framework and contribute to the optimization of resource management and the efficiency of

the network operation.

In order to realize the scenario proposed in this experiment, we utilized two different

Autonomic Control Loops (ACLs), the LP (Load Prediction) ACL and the Core-TE (Traffic

Engineering) ACL. The LP ACL, which has been described in the previous section, performs

online load prediction and outputs vectors of estimated future load values for each source-

destination pair (SD Pair) of the network. The Core-TE ACL controls the network functions

through the enforcement of high-level policies like Energy Efficiency or Load Balancing. In this

scenario, after both ACLs have been deployed in the ANM framework, they run concurrently

and they exchange information. The short-term load prediction per SD Pair produced by the

LP ACL is received by the Core-TE ACL. The Core-TE ACL enforces network configuration to

proactively adapt to the future state by adjusting the paths used to accommodate traffic,

either by aggregation or diffusion, based on estimated future load, thus resulting in Energy

Efficiency or Load Balancing respectively.

The evaluation methodology relies on the comparison of the routing decisions made by the

Core-TE ACL when receiving the actual traffic against the paths it chooses when it reads the

estimated load of the next moment.

The main objective of this experiment is to highlight any possible practical value of load

prediction in autonomous network management, as well as to examine the co-operation of

different SDN applications in the ANM framework.

4.2 Actors, setup, topology

The general setup of the experiment resembles that of the previous experiment, with the

addition of the Core-TE ACL. The ANM Core is used for the deployment of LP and Core-TE ACLs.

The GÉANT OpenFlow physical testbed with Virtual machines in the five Points of Presence

(PoPs) located in Amsterdam, Frankfurt, London, Vienna and Zagreb, connected with

OpenFlow software switches in a full mesh with 1Gbps links, was used for traffic generation.

The general topology setup is shown in Table 4-1.

32

PoP Host Private IP address Switch name

Amsterdam 192.168.1.1 S1

Frankfurt 192.168.1.2 S2

London 192.168.1.3 S3

Vienna 192.168.1.4 S4

Zagreb 192.168.1.5 S5

Table 4-1: Topology set-up

In this particular experiment we observe what happens to the routing paths of the traffic of

the active SD Pairs when traffic is detected on another link. For this purpose traffic was

generated between three PoPs as follows.

Two scripts run on the Virtual Machines of Amsterdam and Vienna respectively. Initially, the

host at Amsterdam (192.168.1.1) starts sending 30 Mbps of traffic to Vienna (192.168.1.4) and

after 150 seconds it starts sending 10 Mbps of traffic to London (192.168.1.3). After 150

seconds the host in Vienna starts sending 20 Mbps of traffic to the host in London.

4.3 Storyline

For the following experiment we assume that load prediction is performed by pre-trained

neural networks, as described in the second scenario of the previous experiment (Section 3.4).

For this purpose we have trained neural networks for the traffic model described in Section

4.2 and verified the prediction results prior to the execution of the experiment, following the

steps described in Section 3.4.2.

In order to examine how load prediction influences traffic engineering, initially we deployed

only the Core-TE ACL, after traffic has been generated between the three PoPs (Amsterdam

to Vienna, Amsterdam to London and Vienna to London). Energy Efficiency was selected as a

high level policy throughout the experiment. During execution the paths chosen by the Core-

TE ACL for each SD Pair in each MAPE loop were stored, for future reference. To validate the

integrity of the results, the above scenario (Core-TE ACL) was executed five (5) times.

Then, we generated the same traffic again between the three PoPs. This time, both the LP and

Core-TE ACLs were deployed in the ANM framework. Upon deployment, the LP ACL started

calculating the five future load values for each SD Pair and updated a CSV file in each MAPE

loop. Instead of receiving real-time traffic demand of each SD Pair, the Core-TE ACL read the

estimated load of each SD Pair from the CSV file in each MAPE loop. The ultimate goal of this

33

experiment is to examine whether the Core-TE ACL will choose to reroute traffic of one or

more SD Pairs as soon as it detects estimated additional traffic (by reading the predicted

values).

The paths chosen by the Core-TE ACL for each SD Pair in each MAPE loop were also saved. The

above scenario (Core-TE ACL with LP ACL) was also executed five (5) times.

Upon completion of execution, the paths chosen by the Core-TE ACL and the number of

activated links in both scenarios (Core-TE ACL running with and without LP ACL) were

compared. The results are presented in Section 4.5.

4.4 Execution

For validation purposes, each of the following test cases was executed five times. The

execution steps are presented below:

Case 1 – Core-TE ACL

 The ANM Core component runs and the AUTOFLOW ANM Application starts.

 The Core-TE ACL runs and appears in the right up pane of the ANM Application.

 Real network traffic is generated by running Iperf scripts on two GÉANT PoPs

(Amsterdam and Vienna).

 The Core-TE ACL is deployed in the ANM framework with Energy Efficiency as the high-

level policy.

 After 10 minutes of execution, the Core-TE ACL was un-deployed and the file with the

recorded paths for each SD Pair was updated.

Case #2 – Core-TE ACL with LP ACL

 The ANM Core component runs and the AUTOFLOW ANM Application starts.

 The Core-TE and the LP ACLs run and appear in the right up pane of the ANM

Application.

 Real network traffic is generated by running Iperf scripts on two GÉANT PoPs

(Amsterdam and Vienna).

 The LP ACL is deployed in the ANM framework.

 The Core-TE ACL is deployed in the ANM framework with Energy Efficiency as the high-

level policy.

34

 After 10 minutes of concurrent execution, the two ACLs were un-deployed and the

recorded paths for each SD Pair were updated.

4.5 Results

In the following tables we observe the active SD Pairs, the traffic route (paths) and the number

of activated inter-switch links in two consecutive MAPE loops, as they were recorded during

execution. Time values T0 and T1 refer to the loops before and after detecting additional

traffic on the third SD Pair respectively.

The results after five executions of the Core-TE ACL running without the LP ACL are presented

below.

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-2: Core-TE ACL without LP ACL – Execution #1

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-3: Core-TE ACL without LP ACL – Execution #2

35

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-4: Core-TE ACL without LP ACL – Execution #3

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-5: Core-TE ACL without LP ACL – Execution #4

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-6: Core-TE ACL without LP ACL – Execution #5

36

We should clarify the aforementioned routing decisions (Table 4-2-Table 4-6) taken by the

Core-TE ACL. Although the selected policy is Energy Efficiency, Core-TE routes traffic not from

the direct link between an SD Pair but from paths with more links. Two reasons can be

identified for this behavior. At first, Core-TE attempts to re-use already activated links and

avoid the activation of unused ones. Therefore, it is possible to select a longer path (in number

of hops) for the accommodation of traffic between an SD Pair and not the shortest one. In

addition, Core-TE is designed to act proactively. It promotes the activation of specific links in

the network, which belong to a ring that connects all switches. In this manner, subsequent

requests will be accommodated by the already activated resources, resulting in the increase

of the energy savings in the long term. Taking into account these two aspects of the Core-TE

mechanism, the aforementioned routing decisions can be justified. More information about

the Core-TE mechanism and the heuristic algorithm that is based on can be found in [10].

From the above tables it is clear that the Core-TE ACL shows a steady behavior during the five

executions with the specific traffic model. As soon as actual traffic is detected on the third SD

Pair (Vienna-London), the Core-TE chooses to route this traffic via the default path for the

Energy Efficiency high-level policy, i.e. the ring between all switches (S4-S5-S1-S2-S3),

according to the implementation of the traffic engineering algorithm. In each case the number

of activated links increases from 3 to 5. Eventually, after some loops the Core-TE decides to

reroute the traffic of the third SD Pair via a shorter path (S4-S3) to allow for better use of

resources.

The tables below show the results after five executions of Core-TE and LP ACLs running

simultaneously.

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S3

Table 4-7: Core-TE ACL with LP ACL – Execution #1

37

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

4 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S2-S3

Table 4-8: Core-TE ACL with LP ACL – Execution #2

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S3

Table 4-9: Core-TE ACL with LP ACL – Execution #3

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S3

Table 4-10: Core-TE ACL with LP ACL – Execution #4

38

Time SD Pairs Paths Active links

T0

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

3

S1->S3 (Amsterdam-London) S1-S2-S3

T1

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4

5 S1->S3 (Amsterdam-London) S1-S2-S3

S4->S3 (Vienna-London) S4-S5-S1-S2-S3

Table 4-11: Core-TE ACL with LP ACL – Execution #5

The results above show that in one case the Core-TE used the “ring” path to route the traffic

of the third SD Pair, whereas in the other four cases it opted for shorter paths (S4-S3 and S4-

S2-S3). In these cases the number of activated links after the detection of new traffic remains

the same or increases from 3 to 4, allowing the deactivation of more links (for energy

efficiency).

To further examine and confirm the behavior of the two ACLs running concurrently, we

executed the experiment another three times. The results were identical to the ones

presented in Table 4-7.

Comparing the paths used to route the traffic and the activated links in the above two cases,

we observe that there is an average gain of 30% regarding the number of activated links when

traffic engineering utilizes load prediction to route the traffic. When Core-TE ACL runs without

LP ACL, it decides to reroute the traffic in every loop based on the high-level policy and the

state of the network at the specific millisecond during which various network parameters such

as active SD Pairs, flows and traffic demand are captured. When traffic engineering algorithm

(Core-TE) is in place, the frequent rerouting of traffic, which may occur on some flows even

without changing the high-level policy, it is possible to affect the way that the ACL reads the

value of traffic demand of a given SD Pair, if it is captured right after the traffic has been

rerouted –although the actual traffic demand value of the SD Pair is not affected. On the other

hand, load prediction is based on neural networks which have been pre-trained without traffic

engineering being present in the network, thus the routing paths are the same throughout

the execution and the traffic demand values recorded from each SD Pair are straightforward.

When Core-TE ACL runs with load prediction, it is forced to read the predicted load for each

SD Pair instead of reading actual traffic demand values. Being presented with more consistent

sequential load values from the prediction CSV file, and considering the fact that each load

value represents the traffic demand of the future moment, the Core-TE ACL has the ability to

rapidly adapt to a future state by making a more efficient routing decision.

39

4.6 Conclusions

In this section we investigated the co-existence of traffic engineering and load prediction SDN

applications, as well as the practical use of real-time network traffic forecasting in an SDN

environment. To facilitate the evaluation method and simplify the presentation of the results,

we performed a small-scale experiment examining the Energy Efficiency policy with a traffic

model designed specifically for this purpose.

The execution process of the experiment clearly proved an absolutely smooth co-operation of

two different software components in runtime inside the ANM framework. The results of this

particular small-scale experiment demonstrated also that traffic engineering can be positively

affected by real-time load forecasting, since the “software-based nature” of the network and

its control functions allows for almost instantaneous adaptation to a future different state.

The average 30% gain in utilization of resources, although it seems quite promising, it should

be considered as a positive indication in the context of the specific experiment only. Further

experimentation is encouraged in order to discover the actual benefits of load prediction on

traffic engineering in a network with more nodes and heavier traffic, as well as to examine

possible scalability issues.

40

Chapter 5 Conclusions

The main objective of this thesis was to evaluate a typical forecasting algorithm used for real-

time network load prediction within the context of an SDN network.

The conducted experiments demonstrated that the synergy of ANM and SDN may provide a

realistic solution towards a more intelligent and adaptive network with minimum human

intervention. The well-known and simple techniques used for the software development of

the SDN components indicate that network researchers and administrators can develop any

algorithm to manage and control various network circumstances. Moreover, the management

framework proved to be an operator-friendly environment, where any SDN application can be

rapidly deployed on demand. In comparison with conventional network architectures, the

experimentation with SDN Controller and applications clearly demonstrated the advantages

of a centralized software management that provides a universal view of the network and

enhances the concept of the “Network as a Service” without the need to configure individual

devices.

As for the specific small-scale experiments, the forecasting algorithm proved to be quite

reliable for predicting network traffic following generally known patterns and to have a

positive influence on dynamic traffic engineering even in real-time execution in small

networks. Nevertheless, after monitoring the concurrent execution of both the LP and Core-

TE ACLs, it was obvious that in a realistic implementation of real-time traffic engineering with

load prediction there would be certain limitations imposed by the network diameter, the

number of flows, the short changes of traffic demand, which may cause a large number of

useless variations in traffic forwarding, as well as the processing resources. Thus, at this point

we consider it as a valuable solution for small network segments which experience

deterministic traffic patterns, as a dynamic network management mechanism.

41

References

[1] Open Network Foundation (2012), “Software-defined networking: The new norm for

networks,” White Paper. Available at

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-

papers/wp-sdn-newnorm.pdf

[2] Open Networking Foundation, OpenFlow. Available at

https://www.opennetworking.org/sdn-resources/openflow

[3] Technical Annex B: GÉANT OpenFlow Facility. Available at

http://geant3.archive.geant.net

[4] “Xen”. Available at http://www.xenserver.org/

[5] “Open vSwitch”. Available at http://openvswitch.org/

[6] Sherwood, Rob, et al. (2009), “Flowvisor: A network virtualization layer,” OpenFlow

Switch Consortium, Tech. Rep.

[7] “Floodlight”. Available at http://www.projectFloodlight.org/Floodlight/

[8] Eclipse Software Development Kit (SDK), http://www.eclipse.org

[9] “Iperf”. Available at https://iperf.fr/

[10] Foteinos, Vassilis, et al. (2014), “Operator-friendly Traffic Engineering in IP/MPLS Core

Networks,” IEEE Transactions on Network and Service Management, Vol. 11, Issue 3,

333-349.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/sdn-resources/openflow
http://geant3.archive.geant.net/
http://www.xenserver.org/
http://openvswitch.org/
http://www.projectfloodlight.org/Floodlight/
http://www.eclipse.org/
https://iperf.fr/

42

Bibliography

Alberti, A.M. (2012), "Software-Defined Networking: Perspectives, Requirements, and

Challenges, 7th API Think-Tank on Software-Defined Networking.

Baumann, T., Germond, A. J. (1993), “Application of the Kohonen network to short-term load

forecasting,” Neural Networks to Power Systems, 1993. ANNPS '93, Proceedings of the Second

International Forum on Applications of IEEE, 407-412.

Cheng, H. et al. (2006), “Multistep-ahead time series prediction”, PAKDD 10, 765-774.

Diamantaras, K., Kung, S.Y. (1996), Principal Component Neural Networks: Theory and

Applications, John Wiley, NY.

Ganek, A.G., Corbi, T.A. (2003), “The dawning of the autonomic computing era”, IBM Systems

Journal 42 (1), 5-18.

Hamzaçebi, C., Akay, D., Kutay, F. (2009), “Comparison of direct and iterative artificial neural

network forecast approaches in multi-periodic time series forecasting”, Expert Systems with

Applications, Vol. 36, Issue 2, Part 2, 3839-3844.

Heineman, G., Councill, W. (2007), Component-based software engineering, Addison-Wesley.

Kaastra, I., Boyd, M. (1996), “Designing a neural network for forecasting financial and

economic time series”, Neurocomputing 10, 215-236.

Kephart, J. O., Chess, D.M. (2003), “The vision of autonomic computing”, Computer 36.1, 41-

50.

Papalexopoulos, A. D., Shangyou Hao, Peng, T.-M. (1993), “Short-term system load forecasting

using an artificial neural network,” Neural Networks to Power Systems, ANNPS '93,

Proceedings of the Second International Forum on Applications of IEEE, 239-244.

Park, Dong C., et al. (1991), “Electric load forecasting using an artificial neural network, IEEE

Trans. Power Systems, Vol. 6, Issue 2, 442-449.

Sfetsos, A., Siriopoulos, C. (2004), “Time series forecasting with a hybrid clustering scheme

and pattern recognition,” IEEE Trans. Systems Man & Cybernetics: Systems, Vol. 34, Issue 3,

399-405.

Weigend, A.S., Gershenfeld, N.A. (1993), Time Series Prediction: forecasting the future and

understanding the past, Addison-Wesley.

Yang, B., Sun. Y. (2008), “An improved neural network prediction model for load demand in

day-ahead electricity market,” Intelligent Control and Automation, WCICA 2008, 4425-4429.

43

“How the emergence of OpenFlow and Software-Defined Networking (SDN) will change the

networking landscape” (2012), Brocade, available at

http://docs.media.bitpipe.com/io_10x/io_102956/item_484489/TT%2012-

129%20Brocade%20openFlow%20and%20SDN.pdf

Open Network Foundation (2013), “SDN Architecture Overview”, available at

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-

reports/SDN-architecture-overview-1.0.pdf

GÉANT OpenFlow Facility – GOFF, User Manual, v0.3, October 2013.

http://docs.media.bitpipe.com/io_10x/io_102956/item_484489/TT%2012-129%20Brocade%20openFlow%20and%20SDN.pdf
http://docs.media.bitpipe.com/io_10x/io_102956/item_484489/TT%2012-129%20Brocade%20openFlow%20and%20SDN.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf

44

Glossary

ACL Autonomic Control Loop

ADI Average Demand Intensity

ANM Autonomic Network Management

ANN Artificial Neural Network

API Application Programming Interface

CSV Comma-Separated Values

LP Load Prediction

MPLS Multi-Protocol Label Switching

NB NorthBound

NBI NorthBound Interface

OvS Open vSwitch

PoP Point of Presence

REST Representational State Transfer

SD Pair Source-Destination Pair

SDN Software-Defined Networking

TE Traffic Engineering

TM Traffic Model

VM Virtual Machine

VPN Virtual Private Network

45

APPENDIX

Application source code

Note: Only the source code developed exclusively by the author is included in this Appendix.

46

TimeSeriesPrediction Project

TSPrediction.java

package timeseriesprediction;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

public class TSPrediction implements java.io.Serializable {

 ArrayList<ArrayList<Double>> allData = new ArrayList<ArrayList<Double>>();

 ArrayList<double[]> inputData = new ArrayList<double[]>();

 ArrayList<double[]> totalPrediction = new ArrayList<double[]>();

 ArrayList<double[]> testPrediction = new ArrayList<double[]>();

 public static double[][] prediction;

 int threadNum;

 ArrayList<String> testThreadOrder;

 ActivationNetwork actNetworks[];

 private int iterations = 1000;

 private double learningRate = 0.01;

 private int sigmoid = 2;

 private int windowSize = 5;

 private int predictionSize = 1;

 private double factor;

 private double setMin;

 private double momentum = 0.0;

 public ArrayList<String> testOrder() {

 return testThreadOrder;

 }

 public ArrayList<double[]> getPrediction() {

 return totalPrediction;

 }

 public TSPrediction(ArrayList<ArrayList<Double>> inputData) {

 allData = inputData;

 for(ArrayList<Double> list: allData) {

 Object x = list.toArray();

 this.inputData.add((double[]) x);

 }

 }

 public TSPrediction() {

 }

 public TSPrediction(int threadNum) {

 this.threadNum = threadNum;

 }

 public double getLearningRate() {

 return learningRate;

 }

 public void setLearningRate(double value) {

 learningRate = value;

 }

47

 public double getMomentum() {

 return momentum;

 }

 public void setMomentum(double value) {

 momentum = value;

 }

 public int getSigmoid() {

 return sigmoid;

 }

 public void setSigmoid(int value) {

 sigmoid = value;

 }

 public int getIterations() {

 return iterations;

 }

 public void setIterations(int value) {

 iterations = value;

 }

 public ArrayList<double[]> checkPrediction() {

 return this.testPrediction;

 }

 public void predict(ArrayList<Double[]> input, int predictionSize) {

 int index;

 testThreadOrder = new ArrayList<String>();

 totalPrediction = new ArrayList<double[]>();

 for(index=0; index<input.size(); index++) {

 // forecast horizon

 int PREDICTION_SIZE = predictionSize;

 ArrayList<Double> predictionVector = new ArrayList<Double>();

 ArrayList<Double> normalizedFeeder = new ArrayList<Double>();

 ArrayList<Double> feeder = new ArrayList<Double>();

 double[] predictedValue = new double[1];

 Double sdpairInputData[] = input.get(index);

 // normalization [-0.85, 0.85]

 double maxVal = Collections.max(Arrays.asList(sdpairInputData));

 double minVal = Collections.min(Arrays.asList(sdpairInputData));

 if((maxVal - minVal) == 0) {

 factor = 0;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 if(factor==0) {

 factor = 1;

 }

 setMin = minVal;

 for (int r = 0; r < sdpairInputData.length; r++) {

 normalizedFeeder.add((sdpairInputData[r] - setMin) * factor - 0.85);

 feeder.add(sdpairInputData[r]);

 }

 for (int l = 0; l < PREDICTION_SIZE; l++) {

 double[] inputVector = new double[normalizedFeeder.size()];

48

 for (int s = 0; s < inputVector.length; s++) {

 inputVector[s] = normalizedFeeder.get(s);

 }

 predictedValue = actNetworks[index].calculate(inputVector);

 predictedValue[0] = (predictedValue[0] + 0.85) / factor + setMin;

 if(predictedValue[0] < 0) {

 predictedValue[0] = 0.0;

 }

 predictionVector.add(predictedValue[0]);

 normalizedFeeder.remove(0);

 normalizedFeeder.add((predictedValue[0] - setMin) * factor - 0.85);

 feeder.remove(0);

 feeder.add(predictedValue[0]);

 maxVal = Collections.max(feeder);

 minVal = Collections.min(feeder);

 if((maxVal - minVal) == 0) {

 factor = 0;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 if(factor==0) {

 factor = 1;

 }

 setMin = minVal;

 }

 double[] predictionArray = new double[PREDICTION_SIZE];

 for (int s = 0; s < predictionArray.length; s++) {

 predictionArray[s] = predictionVector.get(s);

 }

 totalPrediction.add(predictionArray);

 }

 }

 public void train(ArrayList<Double[]> inputSet) {

 int index ;

 testThreadOrder = new ArrayList<String>();

 actNetworks = new ActivationNetwork[inputSet.size()];

 for(index=0; index<threadNum; index++) {

 Double sdpairInputData[] = inputSet.get(index);

 double maxVal = Collections.max(Arrays.asList(sdpairInputData));

 double minVal = Collections.min(Arrays.asList(sdpairInputData));

 // fix normalization

 if((maxVal - minVal) == 0) {

 factor = 1;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 setMin = minVal;

 int samples = sdpairInputData.length - predictionSize - windowSize;

 double[][] input = new double[samples][];

 double[][] output = new double[samples][];

 for (int i = 0; i < samples; i++)

 {

 input[i] = new double[windowSize];

 output[i] = new double[1];

49

 // set input

 for (int j = 0; j < windowSize; j++)

 {

 input[i][j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;

 }

 if(factor==0) {

 factor = 1;

 }

 // set output

 output[i][0] = (sdpairInputData[i + windowSize] - setMin) * factor - 0.85;

 }

 int neuronCount[] = new int[2];

 neuronCount[0] = windowSize*2;

 neuronCount[1] = 1;

 actNetworks[index] = new ActivationNetwork(new BipolarSigmoidFunction(sigmoid),

 windowSize, neuronCount);

 actNetworks[index].setNetworkName("Network"+String.valueOf(index));

 BackPropagation backpropagation = new BackPropagation(actNetworks[index]);

 backpropagation.setLearningRate(learningRate);

 backpropagation.setMomentum(momentum);

 int solutionSize = sdpairInputData.length - windowSize;

 double[] solution = new double[solutionSize];

 double[] networkInput = new double[windowSize];

 int iteration = 0;

 double learningError = 0.0;

 double predictionError = 0.0;

 double error = 0.0;

 while(true)

 {

 error = backpropagation.runEpoch(input, output) / samples;

 learningError = 0.0;

 predictionError = 0.0;

 // iterate through data

 for (int i = 0, n = sdpairInputData.length - windowSize; i < n; i++)

 {

 // feed network with normalized input data

 for (int j = 0; j < windowSize; j++)

 {

 networkInput[j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;

 }

 // evaluate

 solution[i] = (actNetworks[index].calculate(networkInput)[0] + 0.85) / factor +

 setMin;

 if (solution[i] < 0.0)

 {

 solution[i] = 0.0;

 }

 if (i >= n - predictionSize)

 {

 predictionError += Math.abs(solution[i] - sdpairInputData[windowSize + i]);

 }

 else

 {

 learningError += Math.abs(solution[i] - sdpairInputData[windowSize + i]);

50

 }

 }

 iteration++;

 if((error <= 0.009) || (iteration > 2000)) {

 break;

 }

 }

 }

 }

}

51

Neuron.java

package timeseriesprediction;

public abstract class Neuron implements java.io.Serializable {

 protected int inputsCount = 0;

 protected double[] weights = null;

 protected double output = 0;

 protected static double rand = Math.random();

 public int getInputsCount() {

 return inputsCount;

 }

 public double getOutput() {

 return output;

 }

 public double getWeight(int index) {

 return weights[index];

 }

 public void setWeight(int index, double value) {

 weights[index] = value;

 }

 public Neuron(int inputs) {

 inputsCount = Math.max(1, inputs);

 weights = new double[inputsCount];

 randomize();

 }

 public void randomize() {

 for (int i = 0; i < inputsCount; i++) {

 weights[i] = Math.random();

 }

 }

 public abstract double calculate(double[] input);

}

52

Layer.java

package timeseriesprediction;

public abstract class Layer implements java.io.Serializable {

 protected int inputsCount = 0;

 protected int neuronsCount = 0;

 protected Neuron[] neurons;

 protected double[] output;

 public int getInputsCount() {

 return inputsCount;

 }

 public int getNeuronsCount() {

 return neuronsCount;

 }

 public double[] Output() {

 return output;

 }

 public Neuron getNeuron(int index) {

 return neurons[index];

 }

 protected Layer(int neuronsCount, int inputsCount) {

 this.inputsCount = Math.max(1, inputsCount);

 this.neuronsCount = Math.max(1, neuronsCount);

 neurons = new Neuron[this.neuronsCount];

 output = new double[this.neuronsCount];

 }

 public double[] calculate(double[] input) {

 for (int i = 0; i < neuronsCount; i++) {

 output[i] = neurons[i].calculate(input);

 }

 return output;

 }

 public void randomize() {

 for (Neuron neuron : neurons)

 neuron.randomize();

 }

}

53

Network.java

package timeseriesprediction;

public abstract class Network implements java.io.Serializable {

 protected int inputsCount;

 protected int layersCount;

 protected Layer[] layers;

 protected double[] output;

 public int InputsCount() {

 return inputsCount;

 }

 public int LayersCount() {

 return layersCount;

 }

 public double[] Output() {

 return output;

 }

 public Layer getLayer(int index) {

 return layers[index];

 }

 protected Network(int inputsCount, int layersCount) {

 this.inputsCount = Math.max(1, inputsCount);

 this.layersCount = Math.max(1, layersCount);

 layers = new Layer[this.layersCount];

 }

 public double[] calculate(double[] input) {

 output = input;

 for (Layer layer : layers) {

 output = layer.calculate(output);

 }

 return output;

 }

 public void randomize() {

 for (Layer layer : layers) {

 layer.randomize();

 }

 }

}

54

BipolarSigmoidFunction.java

package timeseriesprediction;

public class BipolarSigmoidFunction implements java.io.Serializable {

 private double alpha = 2;

 public double getAlpha() {

 return alpha;

 }

 public void setAlpha(double value) {

 alpha = value;

 }

 public BipolarSigmoidFunction() {

 }

 public BipolarSigmoidFunction(double alpha)

 {

 this.alpha = alpha;

 }

 public double actFunction(double x)

 {

 return ((2 / (1 + Math.exp(-alpha * x))) - 1);

 }

 public double Derivative(double x)

 {

 double y = actFunction(x);

 return (alpha * (1 - y * y) / 2);

 }

 public double Derivative2(double y)

 {

 return (alpha * (1 - y * y) / 2);

 }

}

55

ActivationNeuron.java

package timeseriesprediction;

public class ActivationNeuron extends Neuron implements java.io.Serializable {

 protected double threshold = 0.0f;

 protected BipolarSigmoidFunction function = null;

 public double getThreshold() {

 return threshold;

 }

 public void setThreshold(double value) {

 threshold = value;

 }

 public BipolarSigmoidFunction getActivationFunction()

 {

 return function;

 }

 public ActivationNeuron(int inputs, BipolarSigmoidFunction function) {

 super(inputs);

 this.function = function;

 }

 @Override

 public void randomize() {

 super.randomize();

 threshold = Math.random();

 }

 @Override

 public double calculate(double[] input) {

 // input size not equal to neuronsCount at the input layer

 if (input.length != inputsCount)

 throw new IllegalArgumentException();

 double sum = 0.0;

 // calculate weighted inputs

 for (int i = 0; i < inputsCount; i++)

 {

 sum += weights[i] * input[i];

 }

 sum += threshold;

 return (output = function.actFunction(sum));

 }

}

56

ActivationLayer.java

package timeseriesprediction;

public class ActivationLayer extends Layer implements java.io.Serializable {

 public ActivationNeuron getActivationNeuron(int index) {

 return (ActivationNeuron) neurons[index];

 }

 public ActivationLayer(int neuronsCount, int inputsCount, BipolarSigmoidFunction actfunction) {

 super(neuronsCount, inputsCount);

 for (int i = 0; i < neuronsCount; i++) {

 neurons[i] = new ActivationNeuron(inputsCount, actfunction);

 }

 }

}

57

ActivationNetwork.java

package timeseriesprediction;

public class ActivationNetwork extends Network implements java.io.Serializable {

 protected String networkName;

 public String getNetworkName() {

 return networkName;

 }

 public void setNetworkName(String value) {

 networkName = value;

 }

 public ActivationLayer getActivationLayer(int index) {

 return ((ActivationLayer) layers[index]);

 }

 public ActivationNetwork(BipolarSigmoidFunction actfunction, int inputsCount, int[] neuronsCount)

{

 super(inputsCount, neuronsCount.length);

 // create each layer

 for (int i = 0; i < layersCount; i++)

 {

 layers[i] = new ActivationLayer(

 // neurons count in the layer

 neuronsCount[i],

 // inputs count of the layer

 (i == 0) ? inputsCount : neuronsCount[i - 1],

 // activation function of the layer

 actfunction);

 }

 }

}

58

BackPropagation.java

package timeseriesprediction;

public class BackPropagation implements java.io.Serializable {

 private ActivationNetwork network;

 private double learningRate = 0.01;

 private double momentum = 0.0;

 private double[][] neuronErrors = null;

 private double[][][] weightsUpdates = null;

 private double[][] thresholdsUpdates = null;

 public double getLearningRate() {

 return learningRate;

 }

 public void setLearningRate(double value) {

 learningRate = Math.max(0.0, Math.min(1.0, value));

 }

 public double getMomentum() {

 return momentum;

 }

 public void setMomentum(double value) {

 momentum = Math.max(0.0, Math.min(1.0, value));

 }

 public BackPropagation(ActivationNetwork network) {

 this.network = network;

 neuronErrors = new double[network.LayersCount()][];

 weightsUpdates = new double[network.LayersCount()][][];

 thresholdsUpdates = new double[network.LayersCount()][];

 for (int i = 0, n = network.LayersCount(); i < n; i++)

 {

 Layer layer = network.getLayer(i);

 neuronErrors[i] = new double[layer.getNeuronsCount()];

 weightsUpdates[i] = new double[layer.getNeuronsCount()][];

 thresholdsUpdates[i] = new double[layer.getNeuronsCount()];

 // for each neuron

 for (int j = 0; j < layer.getNeuronsCount(); j++)

 {

 weightsUpdates[i][j] = new double[layer.getInputsCount()];

 }

 }

 }

 public double run(double[] input, double[] output) {

 // compute the network's output

 network.calculate(input);

 // calculate network error

 double error = calculateError(output);

 // calculate weights updates

 calculateUpdates(input);

 // update the network

59

 updateNetwork();

 return error;

 }

 public double runEpoch(double[][] input, double[][] output) {

 double error = 0.0;

 // learning for samples

 for (int i = 0, n = input.length; i < n; i++) {

 error += run(input[i], output[i]);

 }

 return error;

 }

 private double calculateError(double[] expectedOutput) {

 // current and the next layers

 ActivationLayer layer, layerNext;

 // current and the next errors arrays

 double[] errors, errorsNext;

 // error values

 double error = 0;

 double e;

 double sum;

 // neuron output value

 double output;

 // layers count

 int layersCount = network.LayersCount();

 // get activation function of neurons

 BipolarSigmoidFunction function =

 network.getActivationLayer(0).getActivationNeuron(0).getActivationFunction();

 // calculate errors

 layer = network.getActivationLayer(layersCount-1);

 errors = neuronErrors[layersCount - 1];

 for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {

 output = layer.getActivationNeuron(i).getOutput();

 e = expectedOutput[i] - output;

 errors[i] = e * function.Derivative2(output);

 error += (e * e);

 }

 for (int j = layersCount - 2; j >= 0; j--) {

 layer = network.getActivationLayer(j);

 layerNext = network.getActivationLayer(j+1);

 errors = neuronErrors[j];

 errorsNext = neuronErrors[j + 1];

 // all neurons of the layer

 for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {

 sum = 0.0;

 // all neurons of the next layer

 for (int k = 0, m = layerNext.getNeuronsCount(); k < m; k++) {

 sum += errorsNext[k] * layerNext.getActivationNeuron(k).getWeight(i);

 }

 errors[i] = sum * function.Derivative2(layer.getActivationNeuron(i).getOutput());

 }

 }

 return error / 2.0;

 }

 private void calculateUpdates(double[] input) {

60

 // current neuron

 ActivationNeuron neuron;

 // current and previous layers

 ActivationLayer layer, layerPrev;

 // layer's weights updates

 double[][] layerWeightsUpdates;

 // layer's thresholds updates

 double[] layerThresholdUpdates;

 // layer's error

 double[] errors;

 // neuron's weights updates

 double[] neuronWeightUpdates;

 // error value

 double error;

 layer = network.getActivationLayer(0);

 errors = neuronErrors[0];

 layerWeightsUpdates = weightsUpdates[0];

 layerThresholdUpdates = thresholdsUpdates[0];

 // update weights of each neuron

 for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {

 neuron = layer.getActivationNeuron(i);

 error = errors[i];

 neuronWeightUpdates = layerWeightsUpdates[i];

 for (int j = 0, m = neuron.getInputsCount(); j < m; j++) {

 neuronWeightUpdates[j] = learningRate * (momentum * neuronWeightUpdates[j] + (1.0 –

 momentum) * error * input[j]);

 }

 layerThresholdUpdates[i] = learningRate * (momentum * layerThresholdUpdates[i] + (1.0 –

 momentum) * error);

 }

 for (int k = 1, l = network.LayersCount(); k < l; k++) {

 layerPrev = network.getActivationLayer(k-1);

 layer = network.getActivationLayer(k);

 errors = neuronErrors[k];

 layerWeightsUpdates = weightsUpdates[k];

 layerThresholdUpdates = thresholdsUpdates[k];

 for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {

 neuron = layer.getActivationNeuron(i);

 error = errors[i];

 neuronWeightUpdates = layerWeightsUpdates[i];

 for (int j = 0, m = neuron.getInputsCount(); j < m; j++) {

 neuronWeightUpdates[j] = learningRate * (momentum * neuronWeightUpdates[j] + (1.0

 - momentum) * error * layerPrev.getActivationNeuron(j).getOutput());

 }

 layerThresholdUpdates[i] = learningRate * (momentum * layerThresholdUpdates[i] + (1.0

 - momentum) * error);

 }

 }

 }

 // update each neuron in each layer (weights and thresholds)

 private void updateNetwork() {

 ActivationNeuron neuron;

 ActivationLayer layer;

 double[][] layerWeightsUpdates;

 double[] layerThresholdUpdates;

 double[] neuronWeightUpdates;

 // for each layer

61

 for (int i = 0, n = network.LayersCount(); i < n; i++) {

 layer = network.getActivationLayer(i);

 layerWeightsUpdates = weightsUpdates[i];

 layerThresholdUpdates = thresholdsUpdates[i];

 // for each neuron

 for (int j = 0, m = layer.getNeuronsCount(); j < m; j++) {

 neuron = layer.getActivationNeuron(j);

 neuronWeightUpdates = layerWeightsUpdates[j];

 // for each weight

 for (int k = 0, s = neuron.getInputsCount(); k < s; k++) {

 neuron.setWeight(k, neuron.getWeight(k) + neuronWeightUpdates[k]);

 }

 neuron.setThreshold(neuron.getThreshold() + layerThresholdUpdates[j]);

 }

 }

 }

}

62

TSPrediction.java

package timeseriesprediction;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

public class TSPrediction implements java.io.Serializable {

 ArrayList<ArrayList<Double>> allData = new ArrayList<ArrayList<Double>>();

 ArrayList<double[]> inputData = new ArrayList<double[]>();

 ArrayList<double[]> totalPrediction = new ArrayList<double[]>();

 ArrayList<double[]> testPrediction = new ArrayList<double[]>();

 public static double[][] prediction;

 int threadNum;

 ArrayList<String> testThreadOrder;

 ActivationNetwork actNetworks[];

 private int iterations = 1000;

 private double learningRate = 0.01;

 private int sigmoid = 2;

 private int windowSize = 5;

 private int predictionSize = 1;

 private double factor;

 private double setMin;

 private double momentum = 0.0;

 public ArrayList<String> testOrder() {

 return testThreadOrder;

 }

 public ArrayList<double[]> getPrediction() {

 return totalPrediction;

 }

 public TSPrediction(ArrayList<ArrayList<Double>> inputData) {

 allData = inputData;

 for(ArrayList<Double> list: allData) {

 Object x = list.toArray();

 this.inputData.add((double[]) x);

 }

 }

 public TSPrediction() {

 }

 public TSPrediction(int threadNum) {

 this.threadNum = threadNum;

 }

 public double getLearningRate() {

 return learningRate;

 }

 public void setLearningRate(double value) {

 learningRate = value;

 }

 public double getMomentum() {

63

 return momentum;

 }

 public void setMomentum(double value) {

 momentum = value;

 }

 public int getSigmoid() {

 return sigmoid;

 }

 public void setSigmoid(int value) {

 sigmoid = value;

 }

 public int getIterations() {

 return iterations;

 }

 public void setIterations(int value) {

 iterations = value;

 }

 public ArrayList<double[]> checkPrediction() {

 return this.testPrediction;

 }

 public void predict(ArrayList<Double[]> input, int predictionSize) {

 int index;

 testThreadOrder = new ArrayList<String>();

 totalPrediction = new ArrayList<double[]>();

 for(index=0; index<input.size(); index++) {

 // forecast horizon

 int PREDICTION_SIZE = predictionSize;

 ArrayList<Double> predictionVector = new ArrayList<Double>();

 ArrayList<Double> normalizedFeeder = new ArrayList<Double>();

 ArrayList<Double> feeder = new ArrayList<Double>();

 double[] predictedValue = new double[1];

 Double sdpairInputData[] = input.get(index);

 // normalization [-0.85, 0.85]

 double maxVal = Collections.max(Arrays.asList(sdpairInputData));

 double minVal = Collections.min(Arrays.asList(sdpairInputData));

 if((maxVal - minVal) == 0) {

 factor = 0;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 if(factor==0) {

 factor = 1;

 }

 setMin = minVal;

 for (int r = 0; r < sdpairInputData.length; r++) {

 normalizedFeeder.add((sdpairInputData[r] - setMin) * factor - 0.85);

 feeder.add(sdpairInputData[r]);

 }

 for (int l = 0; l < PREDICTION_SIZE; l++) {

 double[] inputVector = new double[normalizedFeeder.size()];

 for (int s = 0; s < inputVector.length; s++) {

 inputVector[s] = normalizedFeeder.get(s);

64

 }

 predictedValue = actNetworks[index].calculate(inputVector);

 predictedValue[0] = (predictedValue[0] + 0.85) / factor + setMin;

 if(predictedValue[0] < 0) {

 predictedValue[0] = 0.0;

 }

 predictionVector.add(predictedValue[0]);

 normalizedFeeder.remove(0);

 normalizedFeeder.add((predictedValue[0] - setMin) * factor - 0.85);

 feeder.remove(0);

 feeder.add(predictedValue[0]);

 maxVal = Collections.max(feeder);

 minVal = Collections.min(feeder);

 if((maxVal - minVal) == 0) {

 factor = 0;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 if(factor==0) {

 factor = 1;

 }

 setMin = minVal;

 }

 double[] predictionArray = new double[PREDICTION_SIZE];

 for (int s = 0; s < predictionArray.length; s++) {

 predictionArray[s] = predictionVector.get(s);

 }

 totalPrediction.add(predictionArray);

 }

 }

 public void train(ArrayList<Double[]> inputSet) {

 int index ;

 testThreadOrder = new ArrayList<String>();

 actNetworks = new ActivationNetwork[inputSet.size()];

 for(index=0; index<threadNum; index++) {

 Double sdpairInputData[] = inputSet.get(index);

 double maxVal = Collections.max(Arrays.asList(sdpairInputData));

 double minVal = Collections.min(Arrays.asList(sdpairInputData));

 // fix normalization

 if((maxVal - minVal) == 0) {

 factor = 1;

 }

 else {

 factor = 1.7 / (maxVal - minVal);

 }

 setMin = minVal;

 int samples = sdpairInputData.length - predictionSize - windowSize;

 double[][] input = new double[samples][];

 double[][] output = new double[samples][];

 for (int i = 0; i < samples; i++)

 {

 input[i] = new double[windowSize];

 output[i] = new double[1];

 // set input

65

 for (int j = 0; j < windowSize; j++)

 {

 input[i][j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;

 }

 if(factor==0) {

 factor = 1;

 }

 // set output

 output[i][0] = (sdpairInputData[i + windowSize] - setMin) * factor - 0.85;

 }

 int neuronCount[] = new int[2];

 neuronCount[0] = windowSize*2;

 neuronCount[1] = 1;

 actNetworks[index] = new ActivationNetwork(new BipolarSigmoidFunction(sigmoid),

 windowSize, neuronCount);

 actNetworks[index].setNetworkName("Network"+String.valueOf(index));

 BackPropagation backpropagation = new BackPropagation(actNetworks[index]);

 backpropagation.setLearningRate(learningRate);

 backpropagation.setMomentum(momentum);

 int solutionSize = sdpairInputData.length - windowSize;

 double[] solution = new double[solutionSize];

 double[] networkInput = new double[windowSize];

 int iteration = 0;

 double learningError = 0.0;

 double predictionError = 0.0;

 double error = 0.0;

 while(true)

 {

 error = backpropagation.runEpoch(input, output) / samples;

 learningError = 0.0;

 predictionError = 0.0;

 // iterate through data

 for (int i = 0, n = sdpairInputData.length - windowSize; i < n; i++)

 {

 // feed network with normalized input data

 for (int j = 0; j < windowSize; j++)

 {

 networkInput[j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;

 }

 // evaluate

 solution[i] = (actNetworks[index].calculate(networkInput)[0] + 0.85) / factor +

 setMin;

 if (solution[i] < 0.0)

 {

 solution[i] = 0.0;

 }

 if (i >= n - predictionSize)

 {

 predictionError += Math.abs(solution[i] - sdpairInputData[windowSize + i]);

 }

 else

 {

 learningError += Math.abs(solution[i] - sdpairInputData[windowSize + i]);

 }

 }

66

 iteration++;

 if((error <= 0.009) || (iteration > 2000)) {

 break;

 }

 }

 }

 }

}

67

LPACL Project

LP.java

package autoflow.acl.lp;

import gr.tns.RestUtil;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URI;

import java.net.URISyntaxException;

import java.sql.Date;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.List;

import java.util.Locale;

import umf.common.SysUtil;

import umf.common.gov.IGovernance;

import umf.common.nem.NEMSkin;

import autoflow.acl.lp.monitor.Monitor;

import autoflow.acl.lp.monitor.DataUpdator;

import autoflow.acl.lp.network.Network;

import cern.colt.matrix.DoubleMatrix1D;

import cern.colt.matrix.impl.DenseDoubleMatrix1D;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.InputStreamReader;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.OutputStream;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.io.PrintWriter;

import javax.swing.JOptionPane;

import timeseriesprediction.*;

public class LP extends AbstractLP {

 public static Network netObj = new Network();

 public static Monitor mon = new Monitor();

 public static int cyc=0;

 TSPrediction tsp ;

 public static String inputStr;

 ArrayList<ArrayList<Double>> allData = new ArrayList<ArrayList<Double>>();

 public static ArrayList<Double[]> trainingSet;

 public static ArrayList<Double[]> inputSet;

 public static String staticFilename;

 public static String filePath;

 public static Boolean trained = true;

 public static Boolean finishedTraining = false;

 public static Boolean preTrainedNetworks = true; //change it to "false" for runtime training

 public static Boolean start = true;

68

 public static void main(String[] args) throws IOException {

 LP acl;

 try {

 acl = NEMSkin.createBind(LP.class,

 initManifest(LP.class),

 SysUtil.nextAvailableTCPPort(8099));

 IGovernance gov = RestUtil.getHTTPProxy("http://localhost:7777/",

 IGovernance.class);

 gov.onNEMLoaded(acl.getBaseURI());

 } catch (ClassCastException e) {

 e.printStackTrace();

 } catch (URISyntaxException e) {

 e.printStackTrace();

 }

 }

 /**

 * @param manifestUri

 * @throws ClassCastException

 * @throws FileNotFoundException

 * @throws MalformedURLException

 */

 public LP(URI manifestUri) throws ClassCastException,

 FileNotFoundException, MalformedURLException {

 super(manifestUri);

 }

 @Override

 protected void monitor() {

 // check if a file with serialized neural networks exist for the current day

 if(start) {

 Calendar cal = Calendar.getInstance();

 String today = new SimpleDateFormat("EEEE", Locale.ENGLISH).format(cal.getTime());

 //JOptionPane.showMessageDialog(null, today);

 filePath = "C:\\eclipse\\workspace\\LPACL\\data\\" + today + ".ser";

 File f = new File(filePath);

 if(f.exists()) {

 JOptionPane.showMessageDialog(null, "Neural network loaded, starting prediction...");

 }

 else {

 int selectedOption = JOptionPane.showConfirmDialog(null,

 "A neural network for " + today + " was not found. Click YES to train a new

 network or No " + "to proceed with real-time prediction", "Choose",

 JOptionPane.YES_NO_OPTION);

 if (selectedOption == JOptionPane.YES_OPTION) {

 preTrainedNetworks = true;

 trained = false;

 }

 else {

 preTrainedNetworks = false;

 }

 }

 start = false;

 }

 // train neural network based on actual load

 if(preTrainedNetworks && !trained && !finishedTraining) {

 tsp = new TSPrediction(20);

 try {

 PrintWriter writer = new

 PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv");

69

 writer.print("");

 writer.close();

 for(int i=0; i<300; i++) {

 // Monitor

 mon.operation(netObj, super.nbi, super.flowSpace);

 //Thread.sleep(1000);

 // update data about SD pairs (newData) based on monitoring

 DataUpdator.operation(netObj, true);

 }

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 System.out.println();

 }

 // perform runtime prediction by training neural network in each loop

 else if (!preTrainedNetworks){

 tsp = new TSPrediction(20);

 try {

 PrintWriter writer = new

 PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv");

 writer.print("");

 writer.close();

 for(int i=0; i<50; i++) { //50 load values, training set

 // Monitor

 mon.operation(netObj, super.nbi, super.flowSpace);

 Thread.sleep(1000);

 // update data about SD pairs (newData) based on monitoring

 DataUpdator.operation(netObj, true);

 }

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 System.out.println();

 }

 }

 @Override

 protected void analyze() {

 // read training data from file

 if((!trained && !finishedTraining) || !preTrainedNetworks) {

 String inputFile = "C:\\eclipse\\workspace\\LPACL\\data\\training.csv";

 BufferedReader fileReader = null;

 final String DELIMITER = ";";

 try

 {

 String line = "";

 StringBuilder sb = new StringBuilder();

 for(int i=0; i<20; i++) {

 allData.add(new ArrayList<Double>());

 }

 //create the file reader

 fileReader = new BufferedReader(new FileReader(inputFile));

 //read the file line by line

 while ((line = fileReader.readLine()) != null)

 {

 //get all tokens available in line

70

 String[] tokens = line.split(DELIMITER);

 for(int j=0; j<tokens.length; j++) {

 Double readVal = Double.parseDouble(tokens[j]);

 if ((readVal.isNaN()) || (readVal.isInfinite())) {

 readVal = 0.0;

 }

 allData.get(j).add(readVal);

 }

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 finally

 {

 try {

 fileReader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 System.out.println();

 // train neural networks

 trainingSet = new ArrayList<Double[]>();

 try {

 for(ArrayList<Double> list: allData) {

 Double x[] = new Double[list.size()];

 for(int k=0; k<list.size(); k++) {

 x[k] = list.get(k);

 }

 trainingSet.add(x);

 }

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 tsp.setLearningRate(0.01);

 tsp.setMomentum(0.0);

 tsp.setSigmoid(2);

 tsp.train(trainingSet);

 System.out.println();

 }

 }

 @Override

 protected void plan() {

 // serialize trained neural networks

 if((!trained && !finishedTraining) && preTrainedNetworks) {

 try {

 FileOutputStream fout = new FileOutputStream(filePath);

 ObjectOutputStream oos = new ObjectOutputStream(fout);

 //JOptionPane.showMessageDialog(null, "Starting serialization...");

 oos.writeObject(tsp);

 oos.close();

 fout.close();

 //JOptionPane.showMessageDialog(null, "Finished serialization.");

71

 }

 catch(IOException e) {

 e.printStackTrace();

 }

 finishedTraining = true;

 //System.out.println();

 }

 }

 @Override

 protected void execute() {

 // runtime monitoring and prediction

 if(trained || !preTrainedNetworks) {

 try {

 String inputFile = "C:\\eclipse\\workspace\\LPACL\\data\\input.csv";

 BufferedReader fileReader = null;

 final String DELIMITER = ";";

 PrintWriter writer = new

 PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\input.csv");

 writer.print("");

 writer.close();

 int it=0;

 while(it<5) {

 mon.operation(netObj, super.nbi, super.flowSpace);

 //Thread.sleep(1000);

 //update data about SD pairs (newData) based on monitoring

 if(DataUpdator.operation(netObj, false)) {

 it++;

 }

 }

 allData = new ArrayList<ArrayList<Double>>();

 String line = "";

 for(int i=0; i<20; i++) {

 allData.add(new ArrayList<Double>());

 }

 fileReader = new BufferedReader(new FileReader(inputFile));

 //read the file line by line

 while ((line = fileReader.readLine()) != null) {

 //get all available tokens in line

 String[] tokens = line.split(DELIMITER);

 for(int j=0; j<tokens.length; j++) {

 Double readVal = Double.parseDouble(tokens[j]);

 if ((readVal.isNaN()) || (readVal.isInfinite())) {

 readVal = 0.0;

 }

 allData.get(j).add(readVal);

 }

 }

 fileReader.close();

 // prepare input set in the correct format

 inputSet = new ArrayList<Double[]>();

 for(ArrayList<Double> list: allData) {

 Double x[] = new Double[list.size()];

 for(int k=0; k<list.size(); k++) {

 x[k] = list.get(k);

 }

 inputSet.add(x);

 }

 }

72

 catch(Exception e) {

 e.printStackTrace();

 }

 try {

 ArrayList<double[]> prediction = new ArrayList<double[]>();

 // load serialized neural networks for prediction

 if(preTrainedNetworks) {

 TSPrediction tsprediction = new TSPrediction();

 try {

 FileInputStream fin = new FileInputStream(filePath);

 ObjectInputStream ois = new ObjectInputStream(fin);

 tsprediction = (TSPrediction) ois.readObject();

 ois.close();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 tsprediction.predict(inputSet, 5);

 prediction = tsprediction.getPrediction();

 }

 else {

 // prediction with runtime training

 tsp.predict(inputSet, 55);

 prediction = tsp.getPrediction();

 }

 // write predicted values to csv file

 FileWriter predictFR = new

 FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\prediction.csv", true);

 BufferedWriter out = new BufferedWriter(predictFR);

 StringBuilder sb = new StringBuilder();

 String newLineFields[] = new String[prediction.size()];

 for(int i=0; i<prediction.get(0).length; i++) {

 for(int j=0; j<prediction.size(); j++) {

 double temp[] = new double[prediction.size()];

 temp = prediction.get(j);

 newLineFields[j] = String.valueOf(temp[i]);

 }

 sb.append(String.join(";", newLineFields));

 sb.append("\n");

 }

 out.write(sb.toString());

 out.close();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

}

73

DataUpdator.java

package autoflow.acl.lp.monitor;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.PrintWriter;

import java.text.DecimalFormat;

import java.text.DecimalFormatSymbols;

import java.text.NumberFormat;

import java.util.Calendar;

import autoflow.acl.lp.network.Network;

import autoflow.acl.lp.network.SDPair;

import autoflow.acl.lp.network.SDPairValue;

import autoflow.acl.lp.network.SDPairValueAssigner;

import java.util.Collections;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Iterator;

import java.util.LinkedHashMap;

import java.util.Locale;

import java.util.Map;

import java.util.Vector;

import java.io.FileOutputStream;

import java.io.File;

import autoflow.acl.lp.network.SDPair;

import autoflow.acl.lp.network.SDPairFlow;

// Updates data for SOM operation, creates the newData file, ... feed SOM

public class DataUpdator {

 public DataUpdator() {

 }

 public static boolean operation(Network netObj, boolean training)

 {

 FileWriter fstream;

 FileWriter fstream3;

 BufferedWriter out3;

 BufferedWriter out;

 FileWriter fstream2;

 BufferedWriter out2;

 Calendar cal = Calendar.getInstance();

 HashMap<Integer, Double> activeSDpairs = new HashMap<Integer, Double>();

 LinkedHashMap<String, Double> SDpairsLoad = new LinkedHashMap<String, Double>();

 boolean allZeros = true;

 // initialize a linked hash map with sdpair load

 // key is the last digits of source-destination IP addresses

 for(int i=1; i<6; i++) {

 for(int j=1; j<6; j++) {

 if(j!=i) {

 String key = String.valueOf(i) + String.valueOf(j);

 SDpairsLoad.put(key, 0.0);

 }

 }

 }

74

 // check active SDpairs from network object

 // update load hash map according to IP addresses

 HashSet<SDPairValue> sdpairvalues = netObj.getSdpValAss().getSDPairValues();

 Iterator<SDPairValue> sdpviter = sdpairvalues.iterator();

 SDPairValue sdpv = new SDPairValue();

 if(sdpairvalues.size()!=0) {

 while(sdpviter.hasNext()) {

 sdpv = sdpviter.next();

 String src = sdpv.getSrcDPID();

 String dest = sdpv.getDstDPID();

 String sdp = src.substring(src.length()-1) + dest.substring(dest.length()-1);

 Double trafficDemand = 0.0;

 Vector<Integer> uniqueVal = sdpv.getValue();

 for(int p=0; p<netObj.getSdpairs().size(); p++) {

 if (netObj.getSdpairs().elementAt(p).getUniqueVal().equals(uniqueVal)) {

 trafficDemand = netObj.getSdpairs().elementAt(p).getTrafficDemand();

 if(trafficDemand.isNaN() || trafficDemand.isInfinite()) {

 return false;

 }

 if(trafficDemand > 0.0) {

 allZeros = false;

 }

 break;

 }

 }

 if(allZeros) {

 return false;

 }

 SDpairsLoad.replace(sdp, trafficDemand/1024); //kbps

 System.out.println();

 } //end while

 } //end if

 Iterator<String> loadIter = SDpairsLoad.keySet().iterator();

 String next = loadIter.next();

 while(loadIter.hasNext()) {

 next = loadIter.next();

 }

 // write SDpair load to files in a certain order according to source-destination IPs

 try {

 if(training) {

 fstream = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv", true);

 }

 else {

 fstream = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\input.csv", true);

 }

 fstream3 = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\alltraffic.csv", true);

 out = new BufferedWriter(fstream);

 out3 = new BufferedWriter(fstream3);

 Iterator<String> filewriter = SDpairsLoad.keySet().iterator();

 DecimalFormatSymbols otherSymbols = new DecimalFormatSymbols(Locale.US);

 otherSymbols.setDecimalSeparator('.');

75

 DecimalFormat df = new DecimalFormat("#.000", otherSymbols);

 while(filewriter.hasNext()) {

 String key = filewriter.next();

 out.write(df.format(SDpairsLoad.get(key)).toString());

 //omit last delimiter - 54 is the last SDpair

 if(!key.equals("54")) {

 out.write(";");

 }

 out3.write(df.format(SDpairsLoad.get(key)).toString());

 if(!key.equals("54")) {

 out3.write(";");

 }

 }

 out.write("\n");

 out3.write("\n");

 out.close();

 out3.close();

 }

 catch(Exception e) {

 System.err.println("Error: " + e.getMessage());

 }

 return true;

 }

}

