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Abstract 

 

This thesis is an experimental attempt at applying machine learning techniques to predict the 

load of a network within an SDN (Software Defined Networking) environment.  

Utilizing an Autonomic Network Management Framework, which was implemented by the 

University of Piraeus, as well as actual network infrastructure with OpenFlow switches, an 

autonomous software component was developed using the Java programming language, 

which makes predictions of future traffic between five nodes on a network by implementing 

the Backpropagation algorithm. The software component is deployed and tested in the above 

Framework as an SDN application. 

The main objective of the conducted experiments was both to assess the efficiency of a well-

known machine learning algorithm regarding prediction of future network traffic in real 

conditions based on specific network traffic patterns, as well as to investigate the possibility 

of simultaneous execution and cooperation of more than one SDN applications in order to 

facilitate the autonomic decision-making of traffic routing based on future predictions without 

any human intervention. 



Περίληψη 

 

Η παρούσα διπλωματική εργασία αποτελεί μία πειραματική απόπειρα εφαρμογής τεχνικών 

μηχανικής μάθησης για την πρόβλεψη του φόρτου ενός δικτύου στο πλαίσιο ενός 

περιβάλλοντος SDN (Software-Defined Networking). 

Αξιοποιώντας ένα Autonomic Network Management Framework, το οποίο υλοποιήθηκε από 

το Πανεπιστήμιο Πειραιώς, καθώς και πραγματικές δικτυακές υποδομές με OpenFlow 

switches, αναπτύχθηκε με την χρήση της γλώσσας προγραμματισμού Java ένα αυτόνομο 

στοιχείο λογισμικού, το οποίο πραγματοποιεί προβλέψεις της μελλοντικής κίνησης μεταξύ 

πέντε κόμβων ενός δικτύου υλοποιώντας τον αλγόριθμο Backpropagation. Το στοιχείο 

λογισμικού αυτό προσαρμόστηκε στο ανωτέρω Framework και εκτελέστηκε ως εφαρμογή 

SDN. 

Ο στόχος των σχετικών πειραμάτων, που εκτελέστηκαν, ήταν διπλός, και αφορούσε αφενός 

την αξιολόγηση της αποτελεσματικότητας ενός τυπικού αλγορίθμου μηχανικής μάθησης ως 

προς την έγκυρη πρόβλεψη του μελλοντικού δικτυακού φόρτου σε πραγματικές συνθήκες 

βάσει συγκεκριμένων μοντέλων δικτυακής κίνησης και αφετέρου την διερεύνηση της 

δυνατότητας της ταυτόχρονης εκτέλεσης και συνεργασίας περισσότερων από μίας 

εφαρμογών SDN με σκοπό την αυτόνομη λήψη αποφάσεων από το δίκτυο σχετικά με την 

δρομολόγηση της κίνησης βάσει μελλοντικών προβλέψεων χωρίς ανθρώπινη παρέμβαση. 
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Introduction 

 

The main goal of this master thesis was the development of a software application that 

predicts future network traffic based on monitoring and analyzing current traffic in real time. 

The application was implemented as an autonomous component in order to be executed in a 

Software-Defined Networking environment.  

Artificial Neural Networks and machine learning techniques were utilized for the 

implementation of network load prediction, whereas an Autonomic Network Management 

framework developed by the University of Piraeus was used for the integration and the 

execution of the application on top of an SDN Controller, using the Controller’s NorthBound 

Interface to communicate with the network.  

For our experiments, access to GÉANT physical testbed facility was provided by the University 

of Piraeus TNS Lab under the AUTOFLOW Project. The application was thus tested within a 

real small-scale network environment consisting of five Points of Presence, which produced 

and consumed real network traffic that was generated based on specific traffic patterns. 

Several scenarios were tested to evaluate the prediction algorithm itself as well as the 

efficiency of the application running simultaneously and cooperating with other applications 

in an SDN context, in order to facilitate the network in making rapid autonomous decisions 

regarding traffic engineering and flow control. 

The outline of this work is as follows: 

 Chapter 1: A brief presentation of basic SDN concepts as well as the experimentation 

framework used for the application execution. 

 Chapter 2: A brief description of the implemented software, the algorithm and the 

traffic models used for the experiments. 

 Chapter 3: Experimentation and results of using load prediction mechanisms in an 

OpenFlow SDN network. 

 Chapter 4: Experimentation and results of using load prediction mechanisms to 

influence traffic engineering in an OpenFlow SDN network. 

 Chapter 5: General conclusions. 

 Appendix: Application source code developed by the author. 
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Chapter 1 Background and Experimentation Framework 

 

1.1 Software Define Networking and OpenFlow 

The recent trends in technology industry, such as the massive virtualization of servers, the 

evolution of enterprise data centers and cloud infrastructures, the diversity of network access 

devices and applications and the need for parallel big data processing, established a need to 

reexamine network design and operation. The traditional network infrastructure paradigm 

consisting of hardcode-configured physical switches in a hierarchical design could no longer 

accommodate for the new high-bandwidth dynamic traffic demands and communication 

models. Software Defined Networking is a concept which addresses these needs of a highly 

flexible, adaptive, dynamically programmable and configured, as well as cost-effective 

network infrastructure. 

The Software-Defined Networking [1] is based on the idea of decoupling the Control Plane and 

the Forwarding (Data) Plane on a network switch and moving the forwarding decisions to a 

centrally located controller. A traditional network switch uses its local logic, the Control Plane, 

to forward packets through the Data Plane to different destinations based on its local 

configuration. In a Software-Defined Network the switches use their data plane to forward 

actual packets, but the packet switching mechanisms and decisions are controlled by an 

external central element, which is implemented as a software component. The software-

based SDN Controller is vendor-independent and it offers network administrators the ability 

to develop and run their own algorithms to control data flows and packet forwarding in a 

network. The abstraction between low-level packet switching and network applications and 

services allows for a highly adjustable and dynamically optimized network intelligence, which 

makes the network adapt rapidly to changes and special circumstances by addressing its 

particular needs. 

Other basic architectural components of a Software-Defined Network beside the SDN 

Controller are the SDN Applications and the SDN Datapaths. SDN Applications are software 

components that implement a certain logic of various network requirements and actions. 

They communicate with the SDN Controller via NorthBound Interfaces (NBI), which typically 

provide open and vendor-independent abstract network views. The SDN Controller transmits 

the desired network actions required by the SDN Applications to the SDN Datapaths, which 

are logical packet switching mechanisms located in physical network devices, consisting of 

forwarding engines and traffic processing functions. 

A general view of the SDN architecture is presented in Figure 1-1. 
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Figure 1-1: Overview of the SDN Architecture (image from Open Networking Foundation) 

 

In a conventional switch device the communication between the Control Plane and the 

Forwarding Plane is implemented with a vendor-specific internal bus. In a Software-Defined 

Network the Controller communicates with the devices over the network using mainly the 

OpenFlow [2] protocol. 

The OpenFlow specification defines an open standard for communication between a 

Controller and an OpenFlow-enabled switch through a standardized interface. An OpenFlow 

switch consists of: 

1. A Flow Table with actions associated with each flow, which indicate to the switch the 

way to handle the specific flow. 

2. The Secure Channel interface to allow communication with the Controller.  
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Figure 1-2: OpenFlow Switch (available at http://yuba.stanford.edu/cs244wiki/index.php/) 

 

Through the Secure Channel the Controller can program the switch to add, remove or process 

flows through specific commands based on the actions supported by each device. 

 

 

1.2 GÉANT Testbed 

The GÉANT OpenFlow Testbed [3] is a facility designed to support Software-Defined 

Networking experiments and prototyping. The facility is deployed on top of the GÉANT 

backbone production environment and is located in five GÉANT Points of Presence in the cities 

below: 

 London 

 Frankfurt 

 Vienna 

 Zagreb 

 Amsterdam 

 

Computing resources are offered as Virtual Machines (VMs) upon dedicated physical servers 

using Xen [4] hypervisor-based virtualization. Network resources are offered utilizing 

software-based OpenFlow switches based on Open vSwitch (OvS) [5] and network links for 

the interconnection between the switches. 
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Two general-purpose servers are installed in each of the five GÉANT PoPs. Each of the servers 

that are located in PoPs is either the host of a software-based OpenFlow switch (Open vSwitch 

[5]) on top of a native Linux Debian distribution or the host of a Xen hypervisor for the 

instantiation of multiple VMs that can be allocated to user slices. Server specifications are 

presented in Table 1-1. 

 

General GÉANT Server Specifications 

Number of CPUs ≥  2 

Number of cores per CPU ≥  4 

CPU Cache Size ≥  6 MBytes 

CPU Frequency ≥  2.60 GHz 

Memory Size ≥  16 GBytes 

RAID Controller  RAID 1/5 with SAS HDDs &≥ 4 HDDs support 

HDDs ≥2 x SAS 146 GB 

Network Interfaces 12 Gigabit Ethernet 

Table 1-1: GÉANT server specifications 

 

The Data Plane topology of the GÉANT OpenFlow facility is configured as a full mesh graph, so 

that every OpenFlow switch has direct connectivity with all of the other OpenFlow switches 

through direct connection with the routers of each facility and further on through Layer 2 

MPLS VPN circuits. 

Network resources are offered by utilizing OpenFlow switches based on Open vSwitch and 

network interconnection links of 1Gbps. 

End users can connect to the GÉANT OpenFlow Facility using the Virtual Machines hosted on 

servers on the five PoPs as traffic producers and consumers, as well as installing their own 

equipment within the facility. 

The network virtualization technology used by the GÉANT OpenFlow Facility, referred to as 

“network slicing technique”, dynamically allocates one or a range of VLAN IDs to each user 

slice to distinguish traffic. The network is partitioned per physical or logical Open vSwitch 

interface. VLANs can be involved in experimentation within the slice when a set of VLAN IDs 

is allocated to a slice. Thus any of the experimenters can use its own range of VLAN IDs on top 

of the OpenFlow topology.  

The switches are logically separated for each research group with the use of VLAN technology.  
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Moreover, the hosts of the software-based OpenFlow Switches are hosted in the pre-installed 

servers in each PoP. These hosts can be reachable through the Internet via their public IP 

addresses via SSH. 

For our experiments in the GÉANT OpenFlow facility we used the 192.168.1.0/24 private 

subnet with VLAN ID 256.  

The IP addresses of the hosts that are connected to the relevant OpenFlow switch are shown 

in Table 1.2. 

 

Host IP Addresses 

PoP Public IP Address Private IP Address 

London 62.40.110.137 192.168.1.3 

Frankfurt 62.40.110.71 192.168.1.2 

Vienna 62.40.110.110.3 192.168.1.4 

Zagreb 62.40.110.101 192.168.1.5 

Amsterdam 62.40.110.35 192.168.1.1 

Table 1-2: GÉANT host IP addresses 

 

The facility’s management and control plane elements and software are hosted in the 

Frankfurt PoP. This includes the GÉANT OpenFlow Control Framework and the FlowVisor 

software [6]. FlowVisor is a network virtualization application, which can be considered as a 

proxy protocol sitting logically between the multiple controllers and the OpenFlow switches 

in order to allow multiple controllers to share the same network infrastructure without 

interfering with each other.  

A general overview of the GÉANT OpenFlow facility is presented in Figure 1-3. 
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Figure 1-3: GÉANT OpenFlow Facility (image from GÉANT OF Testbed Users Manual) 

 

1.3 ANM Framework 

Load prediction mechanisms in a Software Defined Network were implemented as an 

autonomous software component which was integrated in an Autonomic Network 

Management (ANM) Framework, designed and implemented by the University of Piraeus TNS 

Lab for the purposes of AUTOFLOW Project. The main objective of AUTOFLOW is to exploit 

both Autonomic Network Management (ANM) and Software-Defined Networking (SDN) in 

order to provide a realistic solution to the complexity of network management. The main 

component of the project is the ANM Core, which includes a set of blocks that provide 

fundamental functionalities (Governance, Coordination and Knowledge) for the efficient 

operation of autonomic mechanisms. The latter are deployed as SDN applications on top of 

an SDN controller and use the controller’s NorthBound API to interact with the network. 

The main role of the ANM core is to provide a seamless integration and expandability (“plug 

‘n’ play” and “unplug ‘n’ play”), as well as to ensure a trustworthy interworking of autonomic 

mechanisms within an operator's management ecosystem, based on three architectural 

blocks. The Governance block aims at giving a human operator a mechanism for controlling 

the network from a high-level business point of view, without the need of having a deep 

technical knowledge of the network. Information regarding autonomic mechanisms as well as 

monitoring parameters and alerts are sent to the operator, while the operator’s policies are 

translated into specific parameters relevant to the operation of the mechanisms. All this 

information is sent to the mechanisms through this block. The Knowledge block manipulates 

information and knowledge to be exploited from the other blocks and mechanisms. The role 

of the Coordination block is to ensure the proper sequence in triggering of mechanisms and 
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the conditions and constraints under which they will be invoked taking into account operator 

and service requirements. 

The ANM core is the framework that allows for the efficient operation and coexistence of 

multiple autonomic mechanisms (Autonomic Control Loops - ACLs), which run as SDN 

applications. In the scenarios described in this thesis we focus on a Load Prediction (LP) 

mechanism that addresses the problem of network congestion prediction, whereas in a 

specific experiment we also exploit an autonomic Traffic Engineering (TE) mechanism (Core-

TE) developed by the University of Piraeus TNS Lab, that addresses the problem of policy-

based traffic engineering in SDN/OpenFlow networks. 

The ANM Core uses the Floodlight [7] Controller, which offers an easy-to-use northbound API, 

remotely accessible through a REST API, which was easily integrated with the rest of the 

framework, as well as various monitoring statistics regarding network status. 

An overview of the framework used for our experiments is presented in Figure 1-4. 

 

 

Figure 1-4: Experimentation framework overview (image provided by the University of Piraeus TNS Lab) 
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Chapter 2 Implementation 

2.1 Software 

In order to carry out the experiments described in the following sections, certain software 

components have been developed.  

Load prediction mechanism has been implemented as an Autonomic Control Loop (ACL) 

software component (LP ACL), which can be deployed within the ANM Framework, the core 

component developed by the University of Piraeus TNS Lab under the AUTOFLOW Project.  

Our load prediction software component integrates and cooperates with the following 

AUTOFLOW project components: 

 ANM CORE: The Autonomic Network Management framework that provides 

fundamental functionalities to facilitate network operations and an ecosystem to 

host SDN applications. 

 Floodlight: The Java software SDN Controller used based on the OpenFlow 

protocol. 

 FloodlightRESTClient: A library to ease Floodlight NB integration through 

Java/HTTP. 

 MetricMonitor: A visualization tool that taps to Floodlight's NB and plots various 

port statistics using FloodlightRESTClient  

 Core-TE ACL: An Autonomic Control Loop which implements an algorithm for 

policy-based traffic engineering. 

In order to implement load prediction mechanisms in the abovementioned SDN ecosystem, 

the following two software projects have been developed: 

1) TimeSeriesPrediction. This project implements the actual machine learning 

algorithm for load prediction over time, as described in the following section. 

2) LPACL. This project is the actual autonomic mechanism which is deployed within 

the ANM Core Framework. It integrates with the Floodlight Controller 

Northbound API in order to read actual traffic demand values between the five 

GEANT PoP in real time and utilizes TimeSeriesPrediction project to perform the 

actual load forecasting based on those values. The software design is based on 

the autonomic system paradigm, where MAPE-K (Monitor, Analyze, Plan, Execute 

and Knowledge) feedback loops are used to ensure self-adaptation.  Upon the ACL 

deployment, four methods run consecutively and repeatedly throughout the life 

cycle of the ACL, Monitor, Analyze, Plan and Execute, referred to as MAPE Loops, 

in order to perform traffic monitoring and future network load calculation. 

All software has been implemented using Java 8 SE programming language with Eclipse SDK 

[8]. The source code of the implemented components can be found in the Appendix. 

http://poseidon.ds.unipi.gr:8080/svn/repo/autoflow/trunk/FloodlightRESTClient/
http://poseidon.ds.unipi.gr:8080/svn/repo/autoflow/trunk/MetricMonitor/
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2.2 Prediction Algorithm 

Extended research in time-series forecasting has been carried out in the recent years, 

examining mainly the application of Artificial Neural Networks (ANNs) as prediction tools for 

modelling non-linear systems. Supervised learning algorithms and regression-based 

techniques such as Backpropagation, Support Vector Machine and hybrid models have been 

extensively used for years for the prediction of future electric load demand, monthly river 

flow, network load etc. Most cases focus on pre-trained ANNs with historical data, while there 

are some approaches which use unsupervised techniques such as Kohonen maps and 

clustering algorithms in order to perform short or long-term forecasting. 

In order to carry out the experiments described in the following sections, we decided to use 

machine learning techniques to investigate the possibility of continuous forecasting of the 

future network load based on the monitoring of current network load established by common 

traffic patterns. 

In particular, we used a standard two-layer Backpropagation algorithm with a bipolar sigmoid 

activation function to train each neural network. Each neural network consists of five neurons 

at the input layer and one neuron at the output layer. The terms of Learning Rate and 

Momentum have been implemented as parameters for the user to experiment with the speed 

and the stability of the training algorithm. 

The iterative forecasting, according to which the predicted values are used as inputs for the 

next forecasts, is used as a method for multi-step-ahead prediction. 

Specific details about the algorithm execution are presented along with each experiment in 

the following Chapters. 

 

2.3 Traffic Models 

As we indicated earlier, in order to perform the experiments described in the following 

sections, we utilized the GEANT facility. End-to-end flows between the five GEANT PoP 

(OpenFlow Switches) were established by generating real UDP traffic using Iperf [9] scripts in 

each PoP.  

For each experiment we generated network traffic based on two traffic models presented in 

[10], which we describe briefly below. 

 Traffic Model 1 (TM1): random traffic demand follows a uniform distribution with various 

Average Demand Intensity (ADI). For the specific experiments we utilized TM1 with low, 

medium and high average load demand intensity of 40 Mbps, 280 Mbps and 400 Mbps 

respectively. 

 Traffic Model 2 (TM2): traffic demand between source and destination nodes is variable in 

time according to a sinusoidal function. 
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Chapter 3 Load Prediction in SDN/OpenFlow Networks 

 

3.1 Introduction 

In this experiment we attempt to investigate whether the ANM and SDN/OpenFlow 

technologies can be used for short prediction of network load, with the ultimate purpose of 

using the acquired knowledge of future traffic during the process of decision-making on 

routing and traffic engineering directly by the network in real time without any human 

intervention. 

By providing valuable information in advance, short-term network load forecasting aims at 

improving the efficiency of the network and facilitating the real-time management and control 

of the network functions.  

Load forecasting is implemented in real time for each Source-Destination Pair using neural 

networks trained with the Backpropagation algorithm. For each traffic model used, the 

predicted values are compared to the actual load values and the corresponding diagrams for 

indicative number of source-destination pairs are presented. 

The main objective of the experiment is to evaluate the behavior of the real-time load 

prediction algorithm based on specific traffic models. 

 

3.2 Actors, setup, topology 

All experiments described in this Chapter are carried out by generating real traffic on the 

GÉANT OpenFlow physical testbed. The GÉANT OpenFlow facility consists of five Points of 

Presence (PoPs) located in Amsterdam, Frankfurt, London, Vienna and Zagreb respectively. An 

OpenFlow software switch and a Virtual Machine on a physical server are located in each PoP. 

The five OpenFlow switches are interconnected in a full mesh with 1Gbps links. The network 

controller is located in a Virtual Machine in Frankfurt. Hosts are accessible through the 

Internet via SSH on their public IP addresses. 

Real traffic is generated between the five hosts, which correspond to a total of twenty (20) 

Source-Destination pairs (SD Pairs), by running Iperf scripts on each Virtual Machine. For this 

particular experiment certain traffic scripts were selected to reflect the two different traffic 

models as described in 2.3. 

In all the experiments described below, monitoring and load prediction are performed per SD 

Pair. 

For this particular experiment a two-layer neural network with five neurons in the input layer 

and one neuron in the output layer has been implemented for each source-destination pair. 

Each neural network is trained using the standard Backpropagation algorithm as described in 

Section 2.2. 
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The algorithm has two discrete phases, the training and the prediction phase. During the 

training phase a scenario-specific set of real load values per SD Pair is presented to each neural 

network as the training set. In each epoch of the algorithm, after samples of the training set 

are presented to the neural network, each neuron’s weights are adjusted and the summary 

mean square error for all neurons is calculated. 

During the prediction phase, the already trained neural networks, after being presented with 

input vectors of 5 sequential network load values per SD Pair (equal to the number of neurons 

in the input layer), they calculate the vectors of the estimated future load values. The 

prediction horizon i.e. the size of the prediction vectors varies according to the specific 

configuration of each experiment, as described in the following sections. 

In order to demonstrate the behavior of the Backpropagation algorithm regarding its 

forecasting capabilities, we tested two different experiment scenarios. 

 

3.3 Scenario 1 – Online Forecasting 

3.3.1 Storyline 

The goal of the first experimentation scenario is to evaluate the ability of the ACL to recognize 

short-term network patterns in real time without previous knowledge, in order to use them 

for future prediction. 

Initially, traffic is generated according to each traffic model between the five PoPs and, at the 

same time, LP ACL is deployed in the ANM framework. 

The two phases of the prediction algorithm (training and prediction phase) are executed 

consecutively in each MAPE loop repeatedly throughout the lifecycle of the ACL. During the 

training phase a set of 50 real network load values (measured in Kbps) for each SD Pair are 

recorded each second by monitoring the network traffic for 50 seconds and used to train each 

neural network. The size of the training sets (50 values corresponding to 50 seconds of 

monitoring) was chosen after experimenting as a trade-off in order to minimize the effects of 

the time-consuming training phase on the runtime efficiency of the prediction phase. 

During the prediction phase, an input vector of the next 5 real load values per SD Pair is 

presented to the trained neural networks, after monitoring the actual network traffic for 5 

seconds. Each network produces a prediction vector of 55 estimated future load values per 

SD Pair. The 55-length prediction vector corresponds to the duration of the next monitoring 

period (50 seconds of monitoring to form the 50-value training set and 5 seconds of 

monitoring to form the 5-value input vector to be used in the next prediction cycle).  

Actual and predicted load values are recorded in two CSV files for reasons of comparison and 

result evaluation, as well as possible utilization by other ACLs. 
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3.3.2 Execution 

In this experiment the prediction algorithm was evaluated in four cases with real traffic based 

on the traffic models described in Section 2.3. To further evaluate the behavior of the 

Backpropagation algorithm in the context of each traffic model, each experiment case was 

also executed with different parameters of Learning Rate and Momentum. 

Execution steps are as follows: 

 The ANM Core component runs and the AUTOFLOW ANM Application starts. 

 The LP ACL runs and appears in the right up pane of the ANM Application. 

 Real network traffic is generated by running the Iperf scripts of the specific traffic 

model on each GÉANT PoP. 

 The LP ACL is deployed in the ANM framework. 

 After 5 minutes of deployment time, two CSV files are updated with the actual and 

the predicted load values per SD Pair. 

Upon completion of each experiment case, the time-series graphs comparing the actual to the 

predicted traffic for each source-destination pair are drafted. Indicative number of graphs is 

presented in the following evaluation section. 

 

3.3.3 Results 

Case 1: 

 Traffic model:  1 

 Average Intensity: 40 

   

Figure 3-1: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 0.05, 

Momentum: 0.9) 
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Figure 3-2: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 0.01, 

Momentum: 0.6) 

 

 

   

Figure 3-3: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 

0.01, Momentum: 0.0) 

 

 

   

Figure 3-4: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 40 (Learning rate: 

0.1, Momentum: 0.0) 
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Case 2: 

 Traffic model:  1 

 Average Intensity: 280 

 

   

Figure 3-5: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate: 

0.05, Momentum: 0.9) 

 

 

   

Figure 3-6: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate: 

0.01, Momentum: 0.6) 

 

 

   

Figure 3-7: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate: 

0.01, Momentum: 0.0) 
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Figure 3-8: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 280 (Learning rate: 

0.1, Momentum: 0.0) 

 

 

Case 3: 

 Traffic model:  1 

 Average Intensity: 400 

 

   

Figure 3-9: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate: 

0.05, Momentum: 0.9) 

 

 

   

Figure 3-10: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate: 

0.01, Momentum: 0.6) 
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Figure 3-11: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate: 

0.01, Momentum: 0.0) 

 

 

   

Figure 3-12: Actual and predicted traffic for 3 SD Pairs with real-time training with TM1-ADI 400 (Learning rate: 

0.1, Momentum: 0.0) 
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Case 4: 

 Traffic model:  2 

 

 

 

 

Figure 3-13: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2 

(Learning rate: 0.05, Momentum: 0.9) 
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Figure 3-14: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2 

(Learning rate: 0.01, Momentum: 0.6) 
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Figure 3-15: Actual and predicted traffic for 3 SD Pairs with real-time training with TM2 

(Learning rate: 0.01, Momentum: 0.0) 

 

The experimental results indicate that the load intensity of the network traffic has little to no 

effect on the behavior of the prediction algorithm. Moreover, tuning Backpropagation 

parameters such as the learning rate and the momentum has no significant effect on 

prediction accuracy in the specific context. 

The objective of the implemented algorithm is to predict the general trend of network traffic 

in a long period of time (at least as long as the LP ACL is running) by utilizing small periods of 

traffic as training sets for the neural networks. Nevertheless, in Case 4, in which Traffic Model 

2 was tested, apart from the less accurate results compared to the results of Traffic Model 1, 

we observe that there is a time shift of the predicted time series. In other words, prediction is 
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delayed as the result of the variation of the real traffic produced by the specific model, which 

forms a pattern that spans multiple training phases. Since Backpropagation is a supervised 

learning algorithm, a change in load which occurs at the end of the training phase will be 

realized by the algorithm after the completion of the current training and prediction phases, 

i.e. during the next prediction cycle. In worst case scenarios short-term load variations will not 

be detected by the algorithm at all. 

In most of our experiments the length of the time shift was half the duration of the training 

phase (25 seconds). Increasing the length of the training set would prolong the training phase 

without any significant effect on real-time prediction of network load that varies over time. 

On the other hand, it would prove useful in case of network monitoring and prediction based 

on known network traffic patterns observed in predefined time periods (days or weeks). This 

case is examined in Section 3.4 (Scenario 2) below. 

The deviation of the numeric values of the actual and the predicted load is limited. Given that 

the network load is measured in Kbps, this deviation is actually insignificant. 

Short-term bursts or instantaneous load variations cannot be estimated by the algorithm. 

 

3.4 Scenario 2 – Forecasting by pre-trained networks 

3.4.1 Storyline 

The goal of the second experimentation scenario is to investigate ways to improve the 

algorithm’s accuracy and performance, as well as to optimize the ACL’s efficiency, based on 

the assumption that network load is not subject to random high variations, but it follows some 

general trends throughout certain time periods (i.e. certain weekdays or certain dates of a 

year). 

Therefore, a different approach is attempted in the second scenario, where real-time 

prediction is performed by pre-trained neural networks. 

For scaling reasons, we assume that the four traffic models described in Section 2.3 reflect 

four different traffic patterns that occur within four different days of the week. Prior to 

forecasting, the LP ACL is deployed four times to train neural networks with the four above-

mentioned traffic scenarios (TM1 with three different average load intensities and TM2) after 

five minutes (300 seconds) of traffic monitoring with training sets of 300 load values per SD 

Pair. No changes have been made to the algorithm other than increasing the training set size 

to 300. 

For each traffic model the training phase took place within a different day of the week. The 

state of each neural network after final weight adjustment has been serialized and saved in a 

binary file named after the specific day (one file for each traffic model, representing the state 

of the neural network for each SD Pair at the corresponding day). 

The LP ACL was deployed four times within the same days of the next week. In order to 

evaluate the forecasting algorithm and validate the prediction results against real load values, 
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the corresponding traffic for each model is being generated before each deployment of the 

LP ACL. 

Upon detection of the current day, the neural network state is de-serialized and loaded from 

the file that corresponds to the specific day. This technique allows for the ACL to perform 

immediate prediction based on already known network traffic patterns, completely omitting 

the training phase. The already trained neural networks continuously calculate prediction 

vectors of 5 future load values, after being provided with input sets of 5 actual traffic values 

(5 seconds of monitoring the network), throughout the deployment duration of the ACL.  

As in the first scenario, actual and predicted load of the network is recorded in CSV files for 

comparison, evaluation and future exploitation. 

 

3.4.2 Execution 

Training 

 The ANM Core component runs and the AUTOFLOW ANM Application starts. 

 The LP ACL runs and appears in the right up pane of the ANM Application. 

 Real network traffic is generated by running the Iperf script of the specific traffic 

model on each GÉANT PoP. 

 The LP ACL is deployed in the ANM framework. 

 After 5 minutes of training, a file named after the specific day is generated, containing 

the serialized state of the neural network for each SD Pair. 

Prediction 

 Traffic is generated according to the traffic model used during the same day. 

 The LP ACL is deployed in the ANM framework. 

 After 5 minutes of execution, the actual and predicted load values for each SD Pair are 

recorded in two CSV files. 

Upon completion of each experiment case, the time-series graphs comparing the actual to the 

predicted traffic for each source-destination pair are drafted. Graphs for indicative number of 

SD Pairs are presented in the following section. 

 

3.4.3 Results 

In each experiment case the Backpropagation algorithm was executed with a Learning Rate 

of 0.01 and a Momentum of 0.0. The specific experiment has also been performed with 



27 

 

different learning rate and momentum parameter values. We observed that parameter tuning 

had no effect on the performance of the algorithm in the specific context. Hence, we do not 

consider necessary to present additional time-series graphs. 

 

  

  

Figure 3-16: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI 40) 

 

  

  

Figure 3-17: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI 

280) 
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Figure 3-18: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM1-ADI 

400) 

 

  

  

Figure 3-19: Actual and predicted traffic for 4 SD Pairs using pre-trained neural networks (TM2) 
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The results of the second scenario indicate that there is a high time and value accuracy of the 

predicted series against the actual ones. Compared to the results of the first scenario of the 

experiment, the time shift of the prediction is now minimized to 2-3 seconds. This is absolutely 

normal, since the entire network traffic pattern was used as the training set for 

Backpropagation algorithm in this case. 

Moreover, because the training phase was omitted and the duration of the prediction phase 

in each MAPE loop was minimized to 5 seconds, we observed that the execution of the 

algorithm was faster and more efficient. In the first scenario the prediction phase in each 

MAPE loop is suspended for 50 seconds during each training phase, hence there is the need 

for a relatively large prediction vector of 55 values, which increases the probability of 

prediction error. In this case prediction phases producing small 5-value vectors follow short 

monitoring periods of 5 seconds, resulting in faster traffic variation detection and 

subsequently prediction error minimization. 

Despite the high accuracy of the prediction results, the main drawback of the method 

presented in this second scenario is that it requires offline training for various network traffic 

patterns prior to the actual forecasting. 

After running both scenarios, we also made some observations which apply in both cases. 

While Traffic Model 1 scripts are running, at any moment there is a maximum of eight (8) SD 

Pairs with concurrent traffic. This fact has no impact on the ACL execution. When using Traffic 

Model 2 though, especially with scripts running on all five GÉANT PoPs, there are more than 

30 active flows and all 20 SD Pairs have simultaneous traffic. In this case, having also to access 

files on disk, the execution of the ACL appeared to be slower, especially during the training 

phase in the first scenario. In some cases we observed that the 1-second interval between 

reading traffic demand of each SD Pair during the training phase actually corresponded to a 

real interval of 3 to 5 seconds. Although not affecting the quality of the prediction, since 

predicted values are based on simple vectors of sequential values, this fact is certainly 

indicative of a scalability issue. 

 

3.5 Conclusions 

The goal of the first experiment was to evaluate the performance and the quality of the 

implemented Backpropagation algorithm in predicting future network load in real time, during 

the deployment of the LP ACL in the ANM framework. The evaluation method was based on 

the comparison of the predicted values against the actual values of network load, which were 

being recorded throughout the experiment execution. 

The results of both scenarios clearly show that the algorithm is quite sufficient in predicting 

network load in cases of traffic with little volatility or generally known traffic patterns and it 

can be used by SDN components in real time load forecasting, although it is limited by the 

network size. The algorithm is not able to handle random sudden surges in traffic demand (1-

2 seconds).  

Further investigation can be carried out on implementing different approximation and 

classification machine learning algorithms (i.e. Support Vector Machine and Self-Organizing 
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Maps with regression) and comparing prediction results to Backpropagation, as well as 

utilizing load prediction results from other SDN components in decision making on routing and 

traffic engineering. 
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Chapter 4 Autonomic Traffic Engineering with Load Prediction 
in SDN/OpenFlow Networks 

 

4.1 Introduction 

In this experiment we explore possible ways of load prediction exploitation in the ANM/SDN 

context, hence the ability of the network to continuously adjust its behavior regarding routing 

and traffic engineering in an autonomic way, based on short-term forecasting of network 

traffic. The motivation behind this particular experiment is to show whether a prediction 

algorithm, as described in the previous experiment, can be successfully applied in a SDN 

framework and contribute to the optimization of resource management and the efficiency of 

the network operation. 

In order to realize the scenario proposed in this experiment, we utilized two different 

Autonomic Control Loops (ACLs), the LP (Load Prediction) ACL and the Core-TE (Traffic 

Engineering) ACL. The LP ACL, which has been described in the previous section, performs 

online load prediction and outputs vectors of estimated future load values for each source-

destination pair (SD Pair) of the network. The Core-TE ACL controls the network functions 

through the enforcement of high-level policies like Energy Efficiency or Load Balancing. In this 

scenario, after both ACLs have been deployed in the ANM framework, they run concurrently 

and they exchange information. The short-term load prediction per SD Pair produced by the 

LP ACL is received by the Core-TE ACL. The Core-TE ACL enforces network configuration to 

proactively adapt to the future state by adjusting the paths used to accommodate traffic, 

either by aggregation or diffusion, based on estimated future load, thus resulting in Energy 

Efficiency or Load Balancing respectively. 

The evaluation methodology relies on the comparison of the routing decisions made by the 

Core-TE ACL when receiving the actual traffic against the paths it chooses when it reads the 

estimated load of the next moment. 

The main objective of this experiment is to highlight any possible practical value of load 

prediction in autonomous network management, as well as to examine the co-operation of 

different SDN applications in the ANM framework. 

 

4.2 Actors, setup, topology 

The general setup of the experiment resembles that of the previous experiment, with the 

addition of the Core-TE ACL. The ANM Core is used for the deployment of LP and Core-TE ACLs. 

The GÉANT OpenFlow physical testbed with Virtual machines in the five Points of Presence 

(PoPs) located in Amsterdam, Frankfurt, London, Vienna and Zagreb, connected with 

OpenFlow software switches in a full mesh with 1Gbps links, was used for traffic generation. 

The general topology setup is shown in Table 4-1. 
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PoP  Host Private IP address Switch name 

Amsterdam 192.168.1.1 S1 

Frankfurt 192.168.1.2 S2 

London 192.168.1.3 S3 

Vienna 192.168.1.4 S4 

Zagreb 192.168.1.5 S5 

Table 4-1: Topology set-up 

 

In this particular experiment we observe what happens to the routing paths of the traffic of 

the active SD Pairs when traffic is detected on another link. For this purpose traffic was 

generated between three PoPs as follows. 

Two scripts run on the Virtual Machines of Amsterdam and Vienna respectively. Initially, the 

host at Amsterdam (192.168.1.1) starts sending 30 Mbps of traffic to Vienna (192.168.1.4) and 

after 150 seconds it starts sending 10 Mbps of traffic to London (192.168.1.3). After 150 

seconds the host in Vienna starts sending 20 Mbps of traffic to the host in London. 

 

4.3 Storyline 

For the following experiment we assume that load prediction is performed by pre-trained 

neural networks, as described in the second scenario of the previous experiment (Section 3.4). 

For this purpose we have trained neural networks for the traffic model described in Section 

4.2 and verified the prediction results prior to the execution of the experiment, following the 

steps described in Section 3.4.2. 

In order to examine how load prediction influences traffic engineering, initially we deployed 

only the Core-TE ACL, after traffic has been generated between the three PoPs (Amsterdam 

to Vienna, Amsterdam to London and Vienna to London). Energy Efficiency was selected as a 

high level policy throughout the experiment. During execution the paths chosen by the Core-

TE ACL for each SD Pair in each MAPE loop were stored, for future reference. To validate the 

integrity of the results, the above scenario (Core-TE ACL) was executed five (5) times. 

Then, we generated the same traffic again between the three PoPs. This time, both the LP and 

Core-TE ACLs were deployed in the ANM framework. Upon deployment, the LP ACL started 

calculating the five future load values for each SD Pair and updated a CSV file in each MAPE 

loop. Instead of receiving real-time traffic demand of each SD Pair, the Core-TE ACL read the 

estimated load of each SD Pair from the CSV file in each MAPE loop. The ultimate goal of this 
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experiment is to examine whether the Core-TE ACL will choose to reroute traffic of one or 

more SD Pairs as soon as it detects estimated additional traffic (by reading the predicted 

values). 

The paths chosen by the Core-TE ACL for each SD Pair in each MAPE loop were also saved. The 

above scenario (Core-TE ACL with LP ACL) was also executed five (5) times. 

Upon completion of execution, the paths chosen by the Core-TE ACL and the number of 

activated links in both scenarios (Core-TE ACL running with and without LP ACL) were 

compared. The results are presented in Section 4.5. 

 

4.4 Execution 

For validation purposes, each of the following test cases was executed five times. The 

execution steps are presented below: 

Case 1 – Core-TE ACL 

 The ANM Core component runs and the AUTOFLOW ANM Application starts. 

 The Core-TE ACL runs and appears in the right up pane of the ANM Application. 

 Real network traffic is generated by running Iperf scripts on two GÉANT PoPs 

(Amsterdam and Vienna). 

 The Core-TE ACL is deployed in the ANM framework with Energy Efficiency as the high-

level policy. 

 After 10 minutes of execution, the Core-TE ACL was un-deployed and the file with the 

recorded paths for each SD Pair was updated. 

 

Case #2 – Core-TE ACL with LP ACL 

 The ANM Core component runs and the AUTOFLOW ANM Application starts. 

 The Core-TE and the LP ACLs run and appear in the right up pane of the ANM 

Application. 

 Real network traffic is generated by running Iperf scripts on two GÉANT PoPs 

(Amsterdam and Vienna). 

 The LP ACL is deployed in the ANM framework. 

 The Core-TE ACL is deployed in the ANM framework with Energy Efficiency as the high-

level policy. 
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 After 10 minutes of concurrent execution, the two ACLs were un-deployed and the 

recorded paths for each SD Pair were updated. 

 

4.5 Results 

In the following tables we observe the active SD Pairs, the traffic route (paths) and the number 

of activated inter-switch links in two consecutive MAPE loops, as they were recorded during 

execution. Time values T0 and T1 refer to the loops before and after detecting additional 

traffic on the third SD Pair respectively. 

The results after five executions of the Core-TE ACL running without the LP ACL are presented 

below. 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-2: Core-TE ACL without LP ACL – Execution #1 

 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-3: Core-TE ACL without LP ACL – Execution #2 
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Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-4: Core-TE ACL without LP ACL – Execution #3 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-5: Core-TE ACL without LP ACL – Execution #4 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-6: Core-TE ACL without LP ACL – Execution #5 
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We should clarify the aforementioned routing decisions (Table 4-2-Table 4-6) taken by the 

Core-TE ACL. Although the selected policy is Energy Efficiency, Core-TE routes traffic not from 

the direct link between an SD Pair but from paths with more links. Two reasons can be 

identified for this behavior. At first, Core-TE attempts to re-use already activated links and 

avoid the activation of unused ones. Therefore, it is possible to select a longer path (in number 

of hops) for the accommodation of traffic between an SD Pair and not the shortest one. In 

addition, Core-TE is designed to act proactively. It promotes the activation of specific links in 

the network, which belong to a ring that connects all switches. In this manner, subsequent 

requests will be accommodated by the already activated resources, resulting in the increase 

of the energy savings in the long term. Taking into account these two aspects of the Core-TE 

mechanism, the aforementioned routing decisions can be justified. More information about 

the Core-TE mechanism and the heuristic algorithm that is based on can be found in [10]. 

From the above tables it is clear that the Core-TE ACL shows a steady behavior during the five 

executions with the specific traffic model. As soon as actual traffic is detected on the third SD 

Pair (Vienna-London), the Core-TE chooses to route this traffic via the default path for the 

Energy Efficiency high-level policy, i.e. the ring between all switches (S4-S5-S1-S2-S3), 

according to the implementation of the traffic engineering algorithm. In each case the number 

of activated links increases from 3 to 5. Eventually, after some loops the Core-TE decides to 

reroute the traffic of the third SD Pair via a shorter path (S4-S3) to allow for better use of 

resources.  

 

The tables below show the results after five executions of Core-TE and LP ACLs running 

simultaneously. 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S3 

Table 4-7: Core-TE ACL with LP ACL – Execution #1 
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Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

4 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S2-S3 

Table 4-8: Core-TE ACL with LP ACL – Execution #2 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S3 

Table 4-9: Core-TE ACL with LP ACL – Execution #3 

 

Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S3 

Table 4-10: Core-TE ACL with LP ACL – Execution #4 
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Time SD Pairs Paths Active links 

T0 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

3 

S1->S3 (Amsterdam-London) S1-S2-S3 

T1 

S1->S4 (Amsterdam-Vienna) S1-S2-S3-S4 

5 S1->S3 (Amsterdam-London) S1-S2-S3 

S4->S3 (Vienna-London) S4-S5-S1-S2-S3 

Table 4-11: Core-TE ACL with LP ACL – Execution #5 

 

The results above show that in one case the Core-TE used the “ring” path to route the traffic 

of the third SD Pair, whereas in the other four cases it opted for shorter paths (S4-S3 and S4-

S2-S3). In these cases the number of activated links after the detection of new traffic remains 

the same or increases from 3 to 4, allowing the deactivation of more links (for energy 

efficiency). 

To further examine and confirm the behavior of the two ACLs running concurrently, we 

executed the experiment another three times. The results were identical to the ones 

presented in Table 4-7. 

Comparing the paths used to route the traffic and the activated links in the above two cases, 

we observe that there is an average gain of 30% regarding the number of activated links when 

traffic engineering utilizes load prediction to route the traffic. When Core-TE ACL runs without 

LP ACL, it decides to reroute the traffic in every loop based on the high-level policy and the 

state of the network at the specific millisecond during which various network parameters such 

as active SD Pairs, flows and traffic demand are captured. When traffic engineering algorithm 

(Core-TE) is in place, the frequent rerouting of traffic, which may occur on some flows even 

without changing the high-level policy, it is possible to affect the way that the ACL reads the 

value of traffic demand of a given SD Pair, if it is captured right after the traffic has been 

rerouted –although the actual traffic demand value of the SD Pair is not affected. On the other 

hand, load prediction is based on neural networks which have been pre-trained without traffic 

engineering being present in the network, thus the routing paths are the same throughout 

the execution and the traffic demand values recorded from each SD Pair are straightforward. 

When Core-TE ACL runs with load prediction, it is forced to read the predicted load for each 

SD Pair instead of reading actual traffic demand values. Being presented with more consistent 

sequential load values from the prediction CSV file, and considering the fact that each load 

value represents the traffic demand of the future moment, the Core-TE ACL has the ability to 

rapidly adapt to a future state by making a more efficient routing decision. 
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4.6 Conclusions 

In this section we investigated the co-existence of traffic engineering and load prediction SDN 

applications, as well as the practical use of real-time network traffic forecasting in an SDN 

environment. To facilitate the evaluation method and simplify the presentation of the results, 

we performed a small-scale experiment examining the Energy Efficiency policy with a traffic 

model designed specifically for this purpose.  

The execution process of the experiment clearly proved an absolutely smooth co-operation of 

two different software components in runtime inside the ANM framework. The results of this 

particular small-scale experiment demonstrated also that traffic engineering can be positively 

affected by real-time load forecasting, since the “software-based nature” of the network and 

its control functions allows for almost instantaneous adaptation to a future different state. 

The average 30% gain in utilization of resources, although it seems quite promising, it should 

be considered as a positive indication in the context of the specific experiment only. Further 

experimentation is encouraged in order to discover the actual benefits of load prediction on 

traffic engineering in a network with more nodes and heavier traffic, as well as to examine 

possible scalability issues. 

 

 

 



40 

 

Chapter 5 Conclusions 

The main objective of this thesis was to evaluate a typical forecasting algorithm used for real-

time network load prediction within the context of an SDN network. 

The conducted experiments demonstrated that the synergy of ANM and SDN may provide a 

realistic solution towards a more intelligent and adaptive network with minimum human 

intervention. The well-known and simple techniques used for the software development of 

the SDN components indicate that network researchers and administrators can develop any 

algorithm to manage and control various network circumstances. Moreover, the management 

framework proved to be an operator-friendly environment, where any SDN application can be 

rapidly deployed on demand. In comparison with conventional network architectures, the 

experimentation with SDN Controller and applications clearly demonstrated the advantages 

of a centralized software management that provides a universal view of the network and 

enhances the concept of the “Network as a Service” without the need to configure individual 

devices. 

As for the specific small-scale experiments, the forecasting algorithm proved to be quite 

reliable for predicting network traffic following generally known patterns and to have a 

positive influence on dynamic traffic engineering even in real-time execution in small 

networks. Nevertheless, after monitoring the concurrent execution of both the LP and Core-

TE ACLs, it was obvious that in a realistic implementation of real-time traffic engineering with 

load prediction there would be certain limitations imposed by the network diameter, the 

number of flows, the short changes of traffic demand, which may cause a large number of 

useless variations in traffic forwarding, as well as the processing resources. Thus, at this point 

we consider it as a valuable solution for small network segments which experience 

deterministic traffic patterns, as a dynamic network management mechanism. 
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Glossary 

 

ACL Autonomic Control Loop 

ADI Average Demand Intensity 

ANM Autonomic Network Management 

ANN Artificial Neural Network 

API Application Programming Interface 

CSV Comma-Separated Values 

LP Load Prediction 

MPLS Multi-Protocol Label Switching 

NB NorthBound 

NBI NorthBound Interface 

OvS Open vSwitch 

PoP Point of Presence 

REST Representational State Transfer 

SD Pair Source-Destination Pair 

SDN Software-Defined Networking 

TE Traffic Engineering 

TM Traffic Model 

VM Virtual Machine 

VPN Virtual Private Network 
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APPENDIX 

 

Application source code 

 

 

 

Note: Only the source code developed exclusively by the author is included in this Appendix.  
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TimeSeriesPrediction Project 
 

TSPrediction.java 
 
package timeseriesprediction; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.Collections; 

import java.util.List; 

 

 

public class TSPrediction implements java.io.Serializable { 

 

    ArrayList<ArrayList<Double>> allData  = new ArrayList<ArrayList<Double>>(); 

    ArrayList<double[]> inputData = new ArrayList<double[]>(); 

    ArrayList<double[]> totalPrediction = new ArrayList<double[]>(); 

    ArrayList<double[]> testPrediction = new ArrayList<double[]>(); 

    public static double[][] prediction; 

     

    int threadNum; 

     

    ArrayList<String> testThreadOrder; 

     

    ActivationNetwork actNetworks[]; 

     

    private int iterations = 1000; 

    private double learningRate = 0.01; 

    private int sigmoid = 2; 

    private int windowSize = 5; 

    private int predictionSize = 1; 

    private double factor; 

    private double setMin; 

    private double momentum = 0.0; 

     

     

    public ArrayList<String> testOrder() { 

        return testThreadOrder; 

    } 

     

    public ArrayList<double[]> getPrediction() { 

        return totalPrediction; 

    } 

     

    public TSPrediction(ArrayList<ArrayList<Double>> inputData) { 

        allData = inputData; 

        for(ArrayList<Double> list: allData) { 

            Object x = list.toArray(); 

            this.inputData.add((double[]) x); 

        } 

    } 

     

    public TSPrediction() { 

         

    } 

     

    public TSPrediction(int threadNum) { 

        this.threadNum = threadNum; 

    } 

     

    public double getLearningRate() { 

        return learningRate; 

    } 

     

    public void setLearningRate(double value) { 

        learningRate = value; 

    } 
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    public double getMomentum() { 

        return momentum; 

    } 

     

    public void setMomentum(double value) { 

        momentum = value; 

    } 

     

    public int getSigmoid() { 

        return sigmoid; 

    } 

     

    public void setSigmoid(int value) { 

        sigmoid = value; 

    } 

     

    public int getIterations() { 

        return iterations; 

    } 

     

    public void setIterations(int value) { 

        iterations = value; 

    } 

     

     

    public ArrayList<double[]> checkPrediction() { 

        return this.testPrediction; 

    } 

     

         

    public void predict(ArrayList<Double[]> input, int predictionSize) { 

        int index; 

        testThreadOrder = new ArrayList<String>(); 

        totalPrediction = new ArrayList<double[]>(); 

        for(index=0; index<input.size(); index++) { 

            // forecast horizon 

            int PREDICTION_SIZE = predictionSize; 

            ArrayList<Double> predictionVector = new ArrayList<Double>(); 

            ArrayList<Double> normalizedFeeder = new ArrayList<Double>(); 

            ArrayList<Double> feeder = new ArrayList<Double>(); 

            double[] predictedValue = new double[1];                     

            Double sdpairInputData[] = input.get(index);                 

             

            // normalization [-0.85, 0.85] 

            double maxVal = Collections.max(Arrays.asList(sdpairInputData)); 

            double minVal = Collections.min(Arrays.asList(sdpairInputData)); 

                     

            if((maxVal - minVal) == 0) { 

                factor = 0; 

            } 

            else { 

                factor = 1.7 / (maxVal - minVal); 

            } 

            if(factor==0) { 

                factor = 1; 

            } 

            setMin = minVal; 

                     

                     

            for (int r = 0; r < sdpairInputData.length; r++) { 

                normalizedFeeder.add((sdpairInputData[r] - setMin) * factor - 0.85);                         

                feeder.add(sdpairInputData[r]);                      

            } 

 

            for (int l = 0; l < PREDICTION_SIZE; l++) {                      

                double[] inputVector = new double[normalizedFeeder.size()];                      
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                for (int s = 0; s < inputVector.length; s++) { 

                    inputVector[s] = normalizedFeeder.get(s);                 

                } 

                       

                predictedValue = actNetworks[index].calculate(inputVector); 

                         

                predictedValue[0] = (predictedValue[0] + 0.85) / factor + setMin;                       

                                                 

                if(predictedValue[0] < 0) { 

                    predictedValue[0] = 0.0; 

                }                       

                predictionVector.add(predictedValue[0]);                         

                normalizedFeeder.remove(0); 

                normalizedFeeder.add((predictedValue[0] - setMin) * factor - 0.85);                      

                feeder.remove(0); 

                feeder.add(predictedValue[0]);                 

                                                 

                maxVal = Collections.max(feeder); 

                minVal = Collections.min(feeder); 

                         

                if((maxVal - minVal) == 0) { 

                    factor = 0; 

                } 

                else { 

                    factor = 1.7 / (maxVal - minVal); 

                } 

                if(factor==0) { 

                    factor = 1; 

                } 

                    setMin = minVal;       

           } 

 

           double[] predictionArray = new double[PREDICTION_SIZE]; 

           for (int s = 0; s < predictionArray.length; s++) {        

               predictionArray[s] = predictionVector.get(s);                 

           }     

           totalPrediction.add(predictionArray); 

        } 

    } 

     

 

    public void train(ArrayList<Double[]> inputSet) { 

        int index ; 

        testThreadOrder = new ArrayList<String>(); 

        actNetworks = new ActivationNetwork[inputSet.size()]; 

        for(index=0; index<threadNum; index++) { 

             

            Double sdpairInputData[] = inputSet.get(index);  

            double maxVal = Collections.max(Arrays.asList(sdpairInputData)); 

            double minVal = Collections.min(Arrays.asList(sdpairInputData)); 

            // fix normalization 

            if((maxVal - minVal) == 0) {                         

                factor = 1; 

            } 

            else { 

                factor = 1.7 / (maxVal - minVal); 

            } 

            setMin = minVal;                     

 

            int samples = sdpairInputData.length - predictionSize - windowSize; 

 

            double[][] input = new double[samples][]; 

            double[][] output = new double[samples][]; 

 

            for (int i = 0; i < samples; i++) 

            { 

                input[i] = new double[windowSize]; 

                output[i] = new double[1]; 
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                // set input 

                for (int j = 0; j < windowSize; j++) 

                { 

                    input[i][j] = (sdpairInputData[i + j] - setMin) * factor - 0.85; 

                } 

 

                if(factor==0) { 

                    factor = 1; 

                } 

                // set output 

                output[i][0] = (sdpairInputData[i + windowSize] - setMin) * factor - 0.85; 

            } 

 

            int neuronCount[] = new int[2];  

            neuronCount[0] = windowSize*2; 

            neuronCount[1] = 1; 

 

            actNetworks[index] = new ActivationNetwork(new BipolarSigmoidFunction(sigmoid),  

                 windowSize, neuronCount); 

            actNetworks[index].setNetworkName("Network"+String.valueOf(index)); 

 

            BackPropagation backpropagation = new BackPropagation(actNetworks[index]); 

 

            backpropagation.setLearningRate(learningRate); 

            backpropagation.setMomentum(momentum); 

 

            int solutionSize = sdpairInputData.length - windowSize; 

            double[] solution = new double[solutionSize]; 

            double[] networkInput = new double[windowSize];                   

 

            int iteration = 0; 

            double learningError = 0.0; 

            double predictionError = 0.0; 

            double error = 0.0;               

 

            while(true) 

            {                        

                error = backpropagation.runEpoch(input, output) / samples; 

 

                learningError = 0.0; 

                predictionError = 0.0; 

 

                // iterate through data 

                for (int i = 0, n = sdpairInputData.length - windowSize; i < n; i++) 

                { 

                    // feed network with normalized input data 

                    for (int j = 0; j < windowSize; j++) 

                    { 

                        networkInput[j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;                                  

                    } 

 

                    // evaluate                               

                    solution[i] = (actNetworks[index].calculate(networkInput)[0] + 0.85) / factor +   

                      setMin; 

                    if (solution[i] < 0.0) 

                    { 

                        solution[i] = 0.0; 

                    } 

 

 

                    if (i >= n - predictionSize) 

                    { 

                        predictionError += Math.abs(solution[i] - sdpairInputData[windowSize + i]); 

                    } 

                    else 

                    { 

                        learningError += Math.abs(solution[i] - sdpairInputData[windowSize + i]); 
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                    } 

                } 

 

                iteration++; 

 

                if((error <= 0.009) || (iteration > 2000)) { 

                    break; 

                }                    

 

            }                     

                                      

        }        

         

    } 

     

} 
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Neuron.java 
 
package timeseriesprediction; 

 

public abstract class Neuron implements java.io.Serializable { 

 

    protected int       inputsCount = 0; 

    protected double[]  weights = null; 

    protected double    output = 0;      

     

    protected static double rand = Math.random(); 

     

     

    public int getInputsCount() { 

        return inputsCount;  

    } 

     

     

    public double getOutput() { 

         return output;  

    } 

     

     

     

    public double getWeight(int index) { 

            return weights[index];  

    } 

     

     

    public void setWeight(int index, double value) { 

        weights[index] = value; 

    } 

     

     

    public Neuron(int inputs) {      

        inputsCount = Math.max(1,  inputs); 

        weights = new double[inputsCount];       

        randomize( ); 

    } 

     

     

    public void randomize() {        

        for ( int i = 0; i < inputsCount; i++ ) { 

            weights[i] = Math.random(); 

        } 

    } 

     

     

     

    public abstract double calculate(double[] input); 

     

     

} 
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Layer.java 
 
package timeseriesprediction; 

 

public abstract class Layer implements java.io.Serializable { 

 

    protected int       inputsCount = 0; 

    protected int       neuronsCount = 0; 

    protected Neuron[]  neurons; 

    protected double[]  output; 

     

     

     

    public int getInputsCount() { 

        return inputsCount; 

    } 

     

     

    public int getNeuronsCount() { 

        return neuronsCount; 

    } 

         

     

    public double[] Output() { 

        return output;  

    } 

     

     

    public Neuron getNeuron(int index) { 

        return neurons[index];  

    } 

     

     

    protected Layer(int neuronsCount, int inputsCount) { 

        this.inputsCount = Math.max(1, inputsCount); 

        this.neuronsCount = Math.max(1, neuronsCount); 

        neurons = new Neuron[this.neuronsCount];         

        output = new double[this.neuronsCount]; 

    } 

     

     

    public double[] calculate(double[] input) {      

        for (int i = 0; i < neuronsCount; i++) { 

            output[i] = neurons[i].calculate(input); 

        } 

        return output; 

    } 

     

     

    public void randomize() {        

        for (Neuron neuron : neurons) 

            neuron.randomize(); 

    } 

     

} 
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Network.java 
 
package timeseriesprediction; 

 

public abstract class Network implements java.io.Serializable { 

 

    protected int   inputsCount; 

    protected int   layersCount; 

    protected Layer[]   layers; 

    protected double[]  output; 

     

    public int InputsCount() { 

        return inputsCount;  

    } 

     

    public int LayersCount() { 

        return layersCount; 

    } 

     

    public double[] Output() { 

        return output; 

    } 

     

    public Layer getLayer(int index) { 

        return layers[index];  

    } 

     

     

    protected Network(int inputsCount, int layersCount) { 

        this.inputsCount = Math.max(1, inputsCount); 

        this.layersCount = Math.max(1, layersCount);         

        layers = new Layer[this.layersCount]; 

    } 

     

     

    public double[] calculate(double[] input) { 

        output = input; 

        for (Layer layer : layers) { 

            output = layer.calculate(output); 

        } 

        return output; 

    } 

     

     

    public void randomize() { 

        for (Layer layer : layers) { 

            layer.randomize(); 

        } 

    } 

     

} 
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BipolarSigmoidFunction.java 
 
package timeseriesprediction; 

 

public class BipolarSigmoidFunction implements java.io.Serializable { 

 

    private double alpha = 2; 

     

     

     

     

    public double getAlpha() { 

        return alpha; 

    } 

     

     

    public void setAlpha(double value) { 

        alpha = value; 

    } 

 

     

    public BipolarSigmoidFunction() { 

         

    } 

     

     

    public BipolarSigmoidFunction(double alpha) 

    { 

        this.alpha = alpha; 

    } 

     

     

    public double actFunction(double x) 

    { 

        return ((2 / (1 + Math.exp(-alpha * x))) - 1); 

    } 

     

     

    public double Derivative(double x) 

    { 

        double y = actFunction(x); 

 

        return (alpha * (1 - y * y) / 2); 

    } 

     

     

    public double Derivative2(double y) 

    { 

        return (alpha * (1 - y * y) / 2); 

    }    

} 
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ActivationNeuron.java 
 
package timeseriesprediction; 

 

public class ActivationNeuron extends Neuron implements java.io.Serializable { 

 

    protected double threshold = 0.0f; 

     

    protected BipolarSigmoidFunction function = null; 

     

     

    public double getThreshold() { 

        return threshold; 

    } 

     

    public void setThreshold(double value) { 

        threshold = value; 

    } 

     

     

    public BipolarSigmoidFunction getActivationFunction() 

    { 

        return function;  

    } 

     

     

    public ActivationNeuron(int inputs, BipolarSigmoidFunction function) { 

        super(inputs); 

        this.function = function; 

    } 

     

     

    @Override 

    public  void randomize() {       

        super.randomize();       

        threshold = Math.random(); 

    } 

     

     

    @Override 

    public double calculate(double[] input) {    

        // input size not equal to neuronsCount at the input layer 

        if (input.length != inputsCount) 

            throw new IllegalArgumentException(); 

 

        double sum = 0.0; 

 

        // calculate weighted  inputs 

        for (int i = 0; i < inputsCount; i++) 

        { 

            sum += weights[i] * input[i]; 

        } 

        sum += threshold; 

 

        return (output = function.actFunction(sum)); 

    }    

     

} 

 
  



56 

 

ActivationLayer.java 
 
package timeseriesprediction; 

 

public class ActivationLayer extends Layer implements java.io.Serializable { 

 

     

    public ActivationNeuron getActivationNeuron(int index) { 

        return (ActivationNeuron) neurons[index];  

    } 

     

     

     

    public ActivationLayer(int neuronsCount, int inputsCount, BipolarSigmoidFunction actfunction) { 

        super(neuronsCount, inputsCount);        

        for (int i = 0; i < neuronsCount; i++) { 

            neurons[i] = new ActivationNeuron(inputsCount, actfunction); 

        } 

    } 

} 
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ActivationNetwork.java 
 
package timeseriesprediction; 

 

public class ActivationNetwork extends Network implements java.io.Serializable { 

 

    protected String networkName; 

     

     

     

    public String getNetworkName() { 

        return networkName; 

    } 

     

     

    public void setNetworkName(String value) { 

        networkName = value; 

    } 

     

    public  ActivationLayer getActivationLayer(int index) { 

        return ((ActivationLayer) layers[index]);  

    } 

     

     

    public ActivationNetwork(BipolarSigmoidFunction actfunction, int inputsCount, int[] neuronsCount) 

{ 

        super(inputsCount, neuronsCount.length); 

        // create each layer 

        for (int i = 0; i < layersCount; i++) 

        { 

        layers[i] = new ActivationLayer( 

        // neurons count in the layer 

        neuronsCount[i], 

        // inputs count of the layer 

        (i == 0) ? inputsCount : neuronsCount[i - 1], 

        // activation function of the layer 

        actfunction); 

        } 

    } 

} 
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BackPropagation.java 
 
package timeseriesprediction; 

 

public class BackPropagation implements java.io.Serializable { 

 

    private ActivationNetwork network; 

    private double learningRate = 0.01; 

    private double momentum = 0.0; 

    private double[][] neuronErrors = null; 

    private double[][][] weightsUpdates = null; 

    private double[][] thresholdsUpdates = null; 

     

     

    public double getLearningRate() { 

        return learningRate; 

    } 

     

    public void setLearningRate(double value) { 

        learningRate = Math.max(0.0,  Math.min(1.0,  value)); 

    } 

     

         

    public double getMomentum() { 

        return momentum; 

    } 

     

    public void setMomentum(double value) { 

        momentum = Math.max(0.0,  Math.min(1.0,  value)); 

    } 

     

     

    public BackPropagation(ActivationNetwork network) { 

         

        this.network = network; 

        neuronErrors = new double[network.LayersCount()][]; 

        weightsUpdates = new double[network.LayersCount()][][]; 

        thresholdsUpdates = new double[network.LayersCount()][]; 

         

        for (int i = 0, n = network.LayersCount(); i < n; i++) 

        { 

            Layer layer = network.getLayer(i); 

            neuronErrors[i] = new double[layer.getNeuronsCount()]; 

            weightsUpdates[i] = new double[layer.getNeuronsCount()][]; 

            thresholdsUpdates[i] = new double[layer.getNeuronsCount()]; 

 

            // for each neuron 

            for (int j = 0; j < layer.getNeuronsCount(); j++) 

            { 

                weightsUpdates[i][j] = new double[layer.getInputsCount()]; 

            } 

        } 

         

    } 

     

     

    public double run(double[] input, double[] output) { 

        // compute the network's output 

        network.calculate(input); 

 

        // calculate network error 

        double error = calculateError(output); 

 

        // calculate weights updates 

        calculateUpdates(input); 

 

        // update the network 
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        updateNetwork(); 

 

        return error; 

    } 

     

     

    public double runEpoch(double[][] input, double[][] output) { 

        double error = 0.0; 

 

        // learning for samples 

        for (int i = 0, n = input.length; i < n; i++) { 

            error += run(input[i], output[i]); 

        } 

        return error; 

    } 

     

     

    private double calculateError(double[] expectedOutput) { 

        // current and the next layers 

        ActivationLayer layer, layerNext; 

        // current and the next errors arrays 

        double[] errors, errorsNext; 

        // error values 

        double error = 0; 

        double e; 

        double sum; 

        // neuron output value 

        double output; 

        // layers count 

        int layersCount = network.LayersCount(); 

         

        // get activation function of neurons 

        BipolarSigmoidFunction  function =                     

            network.getActivationLayer(0).getActivationNeuron(0).getActivationFunction(); 

 

        // calculate errors      

        layer = network.getActivationLayer(layersCount-1); 

        errors  = neuronErrors[layersCount - 1]; 

 

        for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {           

            output = layer.getActivationNeuron(i).getOutput();           

            e = expectedOutput[i] - output;          

            errors[i] = e * function.Derivative2(output);            

            error += (e * e); 

        } 

 

        for (int j = layersCount - 2; j >= 0; j--) {             

            layer = network.getActivationLayer(j);           

            layerNext = network.getActivationLayer(j+1); 

            errors = neuronErrors[j]; 

            errorsNext = neuronErrors[j + 1]; 

 

            // all neurons of the layer 

            for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) { 

                sum = 0.0; 

                // all neurons of the next layer 

                for (int k = 0, m = layerNext.getNeuronsCount(); k < m; k++) { 

                     

                    sum += errorsNext[k] * layerNext.getActivationNeuron(k).getWeight(i); 

                } 

                errors[i] = sum * function.Derivative2(layer.getActivationNeuron(i).getOutput()); 

            } 

        } 

        return error / 2.0; 

    } 

     

     

    private void calculateUpdates(double[] input) { 
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        // current neuron 

        ActivationNeuron neuron; 

        // current and previous layers 

        ActivationLayer  layer, layerPrev; 

        // layer's weights updates 

        double[][] layerWeightsUpdates; 

        // layer's thresholds updates 

        double[] layerThresholdUpdates; 

        // layer's error 

        double[]    errors; 

        // neuron's weights updates 

        double[] neuronWeightUpdates; 

        // error value 

        double  error; 

 

        layer = network.getActivationLayer(0); 

        errors = neuronErrors[0]; 

        layerWeightsUpdates = weightsUpdates[0]; 

        layerThresholdUpdates = thresholdsUpdates[0]; 

 

        // update weights of each neuron  

        for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) {           

            neuron = layer.getActivationNeuron(i); 

            error   = errors[i]; 

            neuronWeightUpdates = layerWeightsUpdates[i]; 

 

            for (int j = 0, m = neuron.getInputsCount(); j < m; j++) {               

                neuronWeightUpdates[j] = learningRate * (momentum * neuronWeightUpdates[j] + (1.0 – 

                   momentum) * error * input[j]); 

            } 

            layerThresholdUpdates[i] = learningRate * (momentum * layerThresholdUpdates[i] + (1.0 –  

                   momentum) * error); 

        } 

 

         

        for (int k = 1, l = network.LayersCount(); k < l; k++) { 

            layerPrev = network.getActivationLayer(k-1);             

            layer = network.getActivationLayer(k); 

            errors = neuronErrors[k]; 

            layerWeightsUpdates = weightsUpdates[k]; 

            layerThresholdUpdates = thresholdsUpdates[k]; 

 

            for (int i = 0, n = layer.getNeuronsCount(); i < n; i++) { 

                neuron = layer.getActivationNeuron(i); 

                error   = errors[i]; 

                neuronWeightUpdates = layerWeightsUpdates[i]; 

 

                for (int j = 0, m = neuron.getInputsCount(); j < m; j++) {                   

                    neuronWeightUpdates[j] = learningRate * (momentum * neuronWeightUpdates[j] + (1.0  

                       - momentum) * error * layerPrev.getActivationNeuron(j).getOutput()); 

                } 

 

                layerThresholdUpdates[i] = learningRate * (momentum * layerThresholdUpdates[i] + (1.0  

                       - momentum) * error); 

            } 

        } 

    } 

     

     

    // update each neuron in each layer (weights and thresholds) 

    private void updateNetwork() { 

        ActivationNeuron    neuron;      

        ActivationLayer     layer;       

        double[][]  layerWeightsUpdates;         

        double[]    layerThresholdUpdates;       

        double[]    neuronWeightUpdates; 

 

        // for each layer  
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        for (int i = 0, n = network.LayersCount(); i < n; i++) {             

            layer = network.getActivationLayer(i); 

            layerWeightsUpdates = weightsUpdates[i]; 

            layerThresholdUpdates = thresholdsUpdates[i]; 

 

            // for each neuron  

            for (int j = 0, m = layer.getNeuronsCount(); j < m; j++) {               

                neuron = layer.getActivationNeuron(j); 

                neuronWeightUpdates = layerWeightsUpdates[j]; 

 

                // for each weight  

                for (int k = 0, s = neuron.getInputsCount(); k < s; k++) {                   

                    neuron.setWeight(k, neuron.getWeight(k) + neuronWeightUpdates[k] ); 

                } 

                 

                neuron.setThreshold(neuron.getThreshold() + layerThresholdUpdates[j]); 

            } 

        } 

    } 

     

} 
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TSPrediction.java 
 
package timeseriesprediction; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.Collections; 

import java.util.List; 

 

 

 

public class TSPrediction implements java.io.Serializable { 

 

    ArrayList<ArrayList<Double>> allData  = new ArrayList<ArrayList<Double>>(); 

    ArrayList<double[]> inputData = new ArrayList<double[]>(); 

    ArrayList<double[]> totalPrediction = new ArrayList<double[]>(); 

    ArrayList<double[]> testPrediction = new ArrayList<double[]>(); 

    public static double[][] prediction; 

     

    int threadNum; 

     

    ArrayList<String> testThreadOrder; 

     

    ActivationNetwork actNetworks[]; 

     

    private int iterations = 1000; 

    private double learningRate = 0.01; 

    private int sigmoid = 2; 

    private int windowSize = 5; 

    private int predictionSize = 1; 

    private double factor; 

    private double setMin; 

    private double momentum = 0.0; 

     

     

    public ArrayList<String> testOrder() { 

        return testThreadOrder; 

    } 

     

    public ArrayList<double[]> getPrediction() { 

        return totalPrediction; 

    } 

     

    public TSPrediction(ArrayList<ArrayList<Double>> inputData) { 

        allData = inputData; 

        for(ArrayList<Double> list: allData) { 

            Object x = list.toArray(); 

            this.inputData.add((double[]) x); 

        } 

    } 

     

    public TSPrediction() { 

         

    } 

     

    public TSPrediction(int threadNum) { 

        this.threadNum = threadNum; 

    } 

     

    public double getLearningRate() { 

        return learningRate; 

    } 

     

    public void setLearningRate(double value) { 

        learningRate = value; 

    } 

     

    public double getMomentum() { 
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        return momentum; 

    } 

     

    public void setMomentum(double value) { 

        momentum = value; 

    } 

     

    public int getSigmoid() { 

        return sigmoid; 

    } 

     

    public void setSigmoid(int value) { 

        sigmoid = value; 

    } 

     

    public int getIterations() { 

        return iterations; 

    } 

     

    public void setIterations(int value) { 

        iterations = value; 

    } 

     

     

    public ArrayList<double[]> checkPrediction() { 

        return this.testPrediction; 

    } 

     

         

    public void predict(ArrayList<Double[]> input, int predictionSize) { 

        int index; 

        testThreadOrder = new ArrayList<String>(); 

        totalPrediction = new ArrayList<double[]>(); 

        for(index=0; index<input.size(); index++) { 

            // forecast horizon 

            int PREDICTION_SIZE = predictionSize; 

            ArrayList<Double> predictionVector = new ArrayList<Double>(); 

            ArrayList<Double> normalizedFeeder = new ArrayList<Double>(); 

            ArrayList<Double> feeder = new ArrayList<Double>(); 

            double[] predictedValue = new double[1];                     

            Double sdpairInputData[] = input.get(index);                 

             

            // normalization [-0.85, 0.85] 

            double maxVal = Collections.max(Arrays.asList(sdpairInputData)); 

            double minVal = Collections.min(Arrays.asList(sdpairInputData)); 

                     

            if((maxVal - minVal) == 0) { 

                factor = 0; 

            } 

            else { 

                factor = 1.7 / (maxVal - minVal); 

            } 

            if(factor==0) { 

                factor = 1; 

            } 

            setMin = minVal; 

                     

                     

            for (int r = 0; r < sdpairInputData.length; r++) { 

                normalizedFeeder.add((sdpairInputData[r] - setMin) * factor - 0.85);                         

                feeder.add(sdpairInputData[r]);                      

            } 

 

            for (int l = 0; l < PREDICTION_SIZE; l++) {                      

                double[] inputVector = new double[normalizedFeeder.size()];                      

                         

                for (int s = 0; s < inputVector.length; s++) { 

                    inputVector[s] = normalizedFeeder.get(s);                 
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                } 

                       

                predictedValue = actNetworks[index].calculate(inputVector); 

                         

                predictedValue[0] = (predictedValue[0] + 0.85) / factor + setMin;                       

                                                 

                if(predictedValue[0] < 0) { 

                    predictedValue[0] = 0.0; 

                }                       

                predictionVector.add(predictedValue[0]);                         

                normalizedFeeder.remove(0); 

                normalizedFeeder.add((predictedValue[0] - setMin) * factor - 0.85);                      

                feeder.remove(0); 

                feeder.add(predictedValue[0]);                 

                                                 

                maxVal = Collections.max(feeder); 

                minVal = Collections.min(feeder); 

                         

                if((maxVal - minVal) == 0) { 

                    factor = 0; 

                } 

                else { 

                    factor = 1.7 / (maxVal - minVal); 

                } 

                if(factor==0) { 

                    factor = 1; 

                } 

                    setMin = minVal;       

           } 

 

           double[] predictionArray = new double[PREDICTION_SIZE]; 

           for (int s = 0; s < predictionArray.length; s++) {        

               predictionArray[s] = predictionVector.get(s);                 

           }     

           totalPrediction.add(predictionArray); 

        } 

    } 

     

         

    public void train(ArrayList<Double[]> inputSet) { 

        int index ; 

        testThreadOrder = new ArrayList<String>(); 

        actNetworks = new ActivationNetwork[inputSet.size()]; 

        for(index=0; index<threadNum; index++) { 

             

            Double sdpairInputData[] = inputSet.get(index);  

            double maxVal = Collections.max(Arrays.asList(sdpairInputData)); 

            double minVal = Collections.min(Arrays.asList(sdpairInputData)); 

            // fix normalization 

            if((maxVal - minVal) == 0) {                         

                factor = 1; 

            } 

            else { 

                factor = 1.7 / (maxVal - minVal); 

            } 

            setMin = minVal;                     

 

            int samples = sdpairInputData.length - predictionSize - windowSize; 

 

            double[][] input = new double[samples][]; 

            double[][] output = new double[samples][]; 

 

            for (int i = 0; i < samples; i++) 

            { 

                input[i] = new double[windowSize]; 

                output[i] = new double[1]; 

 

                // set input 
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                for (int j = 0; j < windowSize; j++) 

                { 

                    input[i][j] = (sdpairInputData[i + j] - setMin) * factor - 0.85; 

                } 

 

                if(factor==0) { 

                    factor = 1; 

                } 

                // set output 

                output[i][0] = (sdpairInputData[i + windowSize] - setMin) * factor - 0.85; 

            } 

 

            int neuronCount[] = new int[2];  

            neuronCount[0] = windowSize*2; 

            neuronCount[1] = 1; 

 

            actNetworks[index] = new ActivationNetwork(new BipolarSigmoidFunction(sigmoid),  

                windowSize, neuronCount); 

            actNetworks[index].setNetworkName("Network"+String.valueOf(index)); 

 

            BackPropagation backpropagation = new BackPropagation(actNetworks[index]); 

 

            backpropagation.setLearningRate(learningRate); 

            backpropagation.setMomentum(momentum); 

 

            int solutionSize = sdpairInputData.length - windowSize; 

            double[] solution = new double[solutionSize]; 

            double[] networkInput = new double[windowSize];                   

 

            int iteration = 0; 

            double learningError = 0.0; 

            double predictionError = 0.0; 

            double error = 0.0;               

 

            while(true) 

            {                        

                error = backpropagation.runEpoch(input, output) / samples; 

 

                learningError = 0.0; 

                predictionError = 0.0; 

 

                // iterate through data 

                for (int i = 0, n = sdpairInputData.length - windowSize; i < n; i++) 

                { 

                    // feed network with normalized input data 

                    for (int j = 0; j < windowSize; j++) 

                    { 

                        networkInput[j] = (sdpairInputData[i + j] - setMin) * factor - 0.85;                                  

                    } 

 

                    // evaluate                               

                    solution[i] = (actNetworks[index].calculate(networkInput)[0] + 0.85) / factor +  

                           setMin; 

                    if (solution[i] < 0.0) 

                    { 

                        solution[i] = 0.0; 

                    } 

 

 

                    if (i >= n - predictionSize) 

                    { 

                        predictionError += Math.abs(solution[i] - sdpairInputData[windowSize + i]); 

                    } 

                    else 

                    { 

                        learningError += Math.abs(solution[i] - sdpairInputData[windowSize + i]); 

                    } 

                } 
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                iteration++; 

 

                if((error <= 0.009) || (iteration > 2000)) { 

                    break; 

                }                    

 

            }                     

                                      

        }        

         

    } 

     

} 
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LPACL Project 
 

LP.java 
 
package autoflow.acl.lp; 

 

import gr.tns.RestUtil; 

import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.net.MalformedURLException; 

import java.net.URI; 

import java.net.URISyntaxException; 

import java.sql.Date; 

import java.text.DateFormat; 

import java.text.SimpleDateFormat; 

import java.util.Calendar; 

import java.util.List; 

import java.util.Locale; 

import umf.common.SysUtil; 

import umf.common.gov.IGovernance; 

import umf.common.nem.NEMSkin; 

import autoflow.acl.lp.monitor.Monitor; 

import autoflow.acl.lp.monitor.DataUpdator; 

import autoflow.acl.lp.network.Network; 

import cern.colt.matrix.DoubleMatrix1D; 

import cern.colt.matrix.impl.DenseDoubleMatrix1D; 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileInputStream; 

import java.io.FileOutputStream; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.InputStreamReader; 

import java.io.ObjectInputStream; 

import java.io.ObjectOutputStream; 

import java.io.OutputStream; 

import java.net.HttpURLConnection; 

import java.net.MalformedURLException; 

import java.net.URL; 

import java.util.ArrayList; 

import java.io.PrintWriter; 

import javax.swing.JOptionPane; 

import timeseriesprediction.*; 

 

 

public class LP extends AbstractLP { 

 

    public static Network netObj = new Network(); 

    public static Monitor mon = new Monitor(); 

    public static int cyc=0; 

     

    TSPrediction tsp ;    

     

    public static String inputStr; 

    ArrayList<ArrayList<Double>> allData  = new ArrayList<ArrayList<Double>>(); 

    public static ArrayList<Double[]> trainingSet; 

    public static ArrayList<Double[]> inputSet; 

     

     

    public static String staticFilename; 

    public static String filePath; 

    public static Boolean trained = true; 

    public static Boolean finishedTraining = false; 

     

    public static Boolean preTrainedNetworks = true; //change it to "false" for runtime training 

    public static Boolean start = true; 
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    public static void main(String[] args) throws IOException { 

        LP acl; 

        try { 

            acl = NEMSkin.createBind(LP.class,  

                    initManifest(LP.class),  

                    SysUtil.nextAvailableTCPPort(8099)); 

            IGovernance gov = RestUtil.getHTTPProxy("http://localhost:7777/",  

                    IGovernance.class); 

            gov.onNEMLoaded(acl.getBaseURI()); 

        } catch (ClassCastException e) { 

            e.printStackTrace(); 

        } catch (URISyntaxException e) { 

            e.printStackTrace(); 

        } 

         

    } 

     

    /** 

     * @param manifestUri 

     * @throws ClassCastException 

     * @throws FileNotFoundException 

     * @throws MalformedURLException 

     */ 

    public LP(URI manifestUri) throws ClassCastException, 

            FileNotFoundException, MalformedURLException { 

        super(manifestUri); 

    } 

 

    @Override 

    protected void monitor() { 

        // check if a file with serialized neural networks exist for the current day 

        if(start) { 

            Calendar cal = Calendar.getInstance(); 

            String today = new SimpleDateFormat("EEEE", Locale.ENGLISH).format(cal.getTime()); 

            //JOptionPane.showMessageDialog(null, today); 

            filePath = "C:\\eclipse\\workspace\\LPACL\\data\\" + today + ".ser"; 

            File f = new File(filePath); 

            if(f.exists()) { 

                JOptionPane.showMessageDialog(null, "Neural network loaded, starting prediction..."); 

            } 

            else { 

                int selectedOption = JOptionPane.showConfirmDialog(null,  

                        "A neural network for " + today + " was not found. Click YES to train a new 

                           network or No " + "to proceed with real-time prediction", "Choose",  

                        JOptionPane.YES_NO_OPTION);  

                if (selectedOption == JOptionPane.YES_OPTION) { 

                    preTrainedNetworks = true; 

                    trained = false; 

                } 

                else { 

                    preTrainedNetworks = false; 

                } 

            } 

            start = false; 

        } 

         

        // train neural network based on actual load 

        if(preTrainedNetworks && !trained && !finishedTraining) { 

 

            tsp = new TSPrediction(20);  

                 

            try { 

                PrintWriter writer = new  

                   PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv"); 
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                writer.print(""); 

                writer.close(); 

                     

                for(int i=0; i<300; i++) {  

                // Monitor 

                    mon.operation(netObj, super.nbi, super.flowSpace); 

                    //Thread.sleep(1000); 

                    // update data about SD pairs (newData) based on monitoring 

                    DataUpdator.operation(netObj, true); 

                } 

            } 

            catch(Exception e) { 

                e.printStackTrace(); 

            } 

            System.out.println(); 

             

        } 

        // perform runtime prediction by training neural network in each loop 

        else if (!preTrainedNetworks){ 

            tsp = new TSPrediction(20);  

            try { 

                PrintWriter writer = new  

                    PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv"); 

                writer.print(""); 

                writer.close(); 

                 

                for(int i=0; i<50; i++) { //50 load values, training set 

                // Monitor 

                    mon.operation(netObj, super.nbi, super.flowSpace); 

                    Thread.sleep(1000); 

                // update data about SD pairs (newData) based on monitoring 

                    DataUpdator.operation(netObj, true); 

                } 

            } 

            catch(Exception e) { 

                e.printStackTrace(); 

            } 

            System.out.println(); 

        } 

 

    } 

         

    @Override 

    protected void analyze() { 

        // read training data from file 

        if((!trained && !finishedTraining) || !preTrainedNetworks) { 

         

            String inputFile = "C:\\eclipse\\workspace\\LPACL\\data\\training.csv";          

            BufferedReader fileReader = null; 

             

             

            final String DELIMITER = ";"; 

            try 

            { 

                String line = ""; 

                StringBuilder sb = new StringBuilder();                

                 

                for(int i=0; i<20; i++) {  

                    allData.add(new ArrayList<Double>()); 

                } 

                //create the file reader 

                fileReader = new BufferedReader(new FileReader(inputFile));             

              

                //read the file line by line 

                while ((line = fileReader.readLine()) != null) 

                { 

                     

                    //get all tokens available in line 
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                    String[] tokens = line.split(DELIMITER);                                 

                     

                    for(int j=0; j<tokens.length; j++) { 

                        Double readVal = Double.parseDouble(tokens[j]); 

                        if ((readVal.isNaN()) || (readVal.isInfinite())) { 

                            readVal = 0.0; 

                        } 

                        allData.get(j).add(readVal); 

                    }                 

                } 

                 

            } 

            catch (Exception e) { 

                e.printStackTrace(); 

            } 

            finally 

            { 

                try { 

                    fileReader.close(); 

                } catch (IOException e) { 

                    e.printStackTrace(); 

                } 

            } 

             

            System.out.println(); 

             

             

            // train neural networks 

            trainingSet = new ArrayList<Double[]>();     

             

            try { 

                for(ArrayList<Double> list: allData) { 

                    Double x[] = new Double[list.size()]; 

                    for(int k=0; k<list.size(); k++) { 

                        x[k] = list.get(k); 

                    } 

                     

                    trainingSet.add(x); 

                } 

            } 

            catch(Exception e) { 

                e.printStackTrace(); 

            } 

             

            tsp.setLearningRate(0.01); 

            tsp.setMomentum(0.0); 

            tsp.setSigmoid(2); 

            tsp.train(trainingSet); 

            System.out.println(); 

         

         

        }  

    } 

         

    @Override 

    protected void plan() { 

        // serialize trained neural networks 

        if((!trained && !finishedTraining) && preTrainedNetworks) { 

            try { 

                 

                FileOutputStream fout = new FileOutputStream(filePath); 

                ObjectOutputStream oos = new ObjectOutputStream(fout); 

                //JOptionPane.showMessageDialog(null, "Starting serialization..."); 

                oos.writeObject(tsp); 

                oos.close(); 

                fout.close(); 

                //JOptionPane.showMessageDialog(null, "Finished serialization."); 
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            } 

            catch(IOException e) { 

                e.printStackTrace(); 

            } 

            finishedTraining = true; 

            //System.out.println(); 

        }  

    } 

         

    @Override 

    protected void execute() {   

        // runtime monitoring and prediction 

        if(trained || !preTrainedNetworks) {         

            try { 

                String inputFile = "C:\\eclipse\\workspace\\LPACL\\data\\input.csv";             

                BufferedReader fileReader = null; 

                final String DELIMITER = ";"; 

                 

                PrintWriter writer = new   

                     PrintWriter("C:\\eclipse\\workspace\\LPACL\\data\\input.csv"); 

                writer.print(""); 

                writer.close(); 

                 

                int it=0; 

                while(it<5) { 

                    mon.operation(netObj, super.nbi, super.flowSpace);   

                    //Thread.sleep(1000);    

                    //update data about SD pairs (newData) based on monitoring 

                    if(DataUpdator.operation(netObj, false)) { 

                        it++; 

                    } 

                } 

                allData = new ArrayList<ArrayList<Double>>(); 

                String line = "";             

                 

                for(int i=0; i<20; i++) {  

                    allData.add(new ArrayList<Double>()); 

                }          

                                         

                fileReader = new BufferedReader(new FileReader(inputFile));             

              

                //read the file line by line 

                while ((line = fileReader.readLine()) != null) { 

                     

                    //get all available tokens in line 

                    String[] tokens = line.split(DELIMITER); 

                                     

                     

                    for(int j=0; j<tokens.length; j++) { 

                        Double readVal = Double.parseDouble(tokens[j]); 

                        if ((readVal.isNaN()) || (readVal.isInfinite())) { 

                            readVal = 0.0; 

                        } 

                        allData.get(j).add(readVal); 

                    }                          

                } 

                fileReader.close(); 

                                 

                // prepare input set in the correct format 

                inputSet = new ArrayList<Double[]>(); 

                for(ArrayList<Double> list: allData) { 

                    Double x[] = new Double[list.size()]; 

                    for(int k=0; k<list.size(); k++) { 

                        x[k] = list.get(k); 

                    } 

                    inputSet.add(x); 

                }        

            } 
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            catch(Exception e) { 

                e.printStackTrace(); 

            } 

             

            try { 

                ArrayList<double[]> prediction = new ArrayList<double[]>(); 

                // load serialized neural networks for prediction 

                if(preTrainedNetworks) { 

                    TSPrediction tsprediction = new TSPrediction(); 

                    try { 

                         

                        FileInputStream fin = new FileInputStream(filePath); 

                        ObjectInputStream ois = new ObjectInputStream(fin);          

                        tsprediction = (TSPrediction) ois.readObject();          

                        ois.close(); 

                    } 

                    catch(Exception e) { 

                        e.printStackTrace(); 

                    }        

                     

                    tsprediction.predict(inputSet,  5); 

                    prediction = tsprediction.getPrediction(); 

                } 

                else { 

                    // prediction with runtime training 

                    tsp.predict(inputSet, 55); 

                    prediction = tsp.getPrediction(); 

                } 

                 

                // write predicted values to csv file 

                FileWriter predictFR = new  

                    FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\prediction.csv", true); 

                BufferedWriter out = new BufferedWriter(predictFR); 

                StringBuilder sb = new StringBuilder();          

                String newLineFields[] = new String[prediction.size()];          

                for(int i=0; i<prediction.get(0).length; i++) { 

                    for(int j=0; j<prediction.size(); j++) { 

                        double temp[] = new double[prediction.size()]; 

                        temp =   prediction.get(j); 

                        newLineFields[j] = String.valueOf(temp[i]); 

                    } 

                    sb.append(String.join(";", newLineFields)); 

                    sb.append("\n"); 

                     

                }            

                out.write(sb.toString());            

                out.close(); 

            } 

            catch(Exception e) { 

                e.printStackTrace(); 

            }        

        } 

    } 

} 
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DataUpdator.java 
 
package autoflow.acl.lp.monitor; 

 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

import java.io.PrintWriter; 

import java.text.DecimalFormat; 

import java.text.DecimalFormatSymbols; 

import java.text.NumberFormat; 

import java.util.Calendar; 

import autoflow.acl.lp.network.Network; 

import autoflow.acl.lp.network.SDPair; 

import autoflow.acl.lp.network.SDPairValue; 

import autoflow.acl.lp.network.SDPairValueAssigner; 

import java.util.Collections; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.Iterator; 

import java.util.LinkedHashMap; 

import java.util.Locale; 

import java.util.Map; 

import java.util.Vector; 

import java.io.FileOutputStream; 

import java.io.File; 

import autoflow.acl.lp.network.SDPair; 

import autoflow.acl.lp.network.SDPairFlow; 

 

// Updates data for SOM operation, creates the newData file, ... feed SOM 

public class DataUpdator { 

 

    public DataUpdator() { 

 

    } 

     

     

    public static boolean operation(Network netObj, boolean training) 

    { 

        FileWriter fstream; 

        FileWriter fstream3; 

        BufferedWriter out3; 

        BufferedWriter out; 

         

        FileWriter fstream2; 

        BufferedWriter out2; 

        Calendar cal = Calendar.getInstance(); 

        HashMap<Integer, Double> activeSDpairs = new HashMap<Integer, Double>(); 

         

        LinkedHashMap<String, Double> SDpairsLoad = new LinkedHashMap<String, Double>(); 

         

        boolean allZeros = true; 

         

        // initialize a linked hash map with sdpair load 

        // key is the last digits of source-destination IP addresses 

        for(int i=1; i<6; i++) { 

            for(int j=1; j<6; j++) { 

                 

                if(j!=i) { 

                    String key = String.valueOf(i) + String.valueOf(j); 

                    SDpairsLoad.put(key, 0.0); 

                     

                } 

            } 

        } 
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        // check active SDpairs from network object 

        // update load hash map according to IP addresses 

        HashSet<SDPairValue> sdpairvalues = netObj.getSdpValAss().getSDPairValues(); 

        Iterator<SDPairValue> sdpviter = sdpairvalues.iterator(); 

        SDPairValue sdpv = new SDPairValue(); 

        if(sdpairvalues.size()!=0) { 

             

            while(sdpviter.hasNext()) { 

                sdpv = sdpviter.next(); 

                String src = sdpv.getSrcDPID(); 

                String dest = sdpv.getDstDPID(); 

                String sdp = src.substring(src.length()-1) + dest.substring(dest.length()-1); 

                 

                Double trafficDemand = 0.0; 

                Vector<Integer> uniqueVal = sdpv.getValue(); 

                for(int p=0; p<netObj.getSdpairs().size(); p++) { 

                    if (netObj.getSdpairs().elementAt(p).getUniqueVal().equals(uniqueVal)) { 

                        trafficDemand = netObj.getSdpairs().elementAt(p).getTrafficDemand(); 

                        if(trafficDemand.isNaN() || trafficDemand.isInfinite()) { 

                             

                            return false; 

                        } 

                        if(trafficDemand > 0.0) { 

                            allZeros = false; 

                        } 

                        break; 

                    } 

                } 

                 

                if(allZeros) { 

                    return false; 

                } 

                 

                SDpairsLoad.replace(sdp,  trafficDemand/1024); //kbps 

                 

                System.out.println(); 

            } //end while 

         

        } //end if 

         

         

         

        Iterator<String> loadIter = SDpairsLoad.keySet().iterator(); 

        String next = loadIter.next(); 

         

         

        while(loadIter.hasNext()) { 

            next = loadIter.next(); 

        } 

         

        // write SDpair load to files in a certain order according to source-destination IPs 

        try { 

            if(training) { 

                fstream = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\training.csv", true);  

            } 

            else { 

                fstream = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\input.csv", true);  

            } 

             

            fstream3 = new FileWriter("C:\\eclipse\\workspace\\LPACL\\data\\alltraffic.csv", true); 

            out = new BufferedWriter(fstream);           

            out3 = new BufferedWriter(fstream3); 

             

             

            Iterator<String> filewriter = SDpairsLoad.keySet().iterator(); 

            DecimalFormatSymbols otherSymbols = new DecimalFormatSymbols(Locale.US); 

            otherSymbols.setDecimalSeparator('.'); 
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            DecimalFormat df = new DecimalFormat("#.000", otherSymbols); 

             

            while(filewriter.hasNext()) { 

                String key = filewriter.next(); 

                out.write(df.format(SDpairsLoad.get(key)).toString()); 

                //omit last delimiter - 54 is the last SDpair 

                if(!key.equals("54")) { 

                    out.write(";"); 

                } 

                out3.write(df.format(SDpairsLoad.get(key)).toString()); 

                if(!key.equals("54")) { 

                    out3.write(";"); 

                } 

            } 

             

            out.write("\n"); 

            out3.write("\n"); 

             

            out.close();     

             

            out3.close(); 

             

        } 

        catch(Exception e) { 

            System.err.println("Error: " + e.getMessage()); 

        } 

     

        return true; 

    } 

 

} 

 


