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ABSTRACT 

 

This thesis provides a quantitative analysis of the dry bulk freight market and 

investigates a number of crucial issues associated with ship chartering. To this end, it 

analyzes the dynamics of spot and period freight markets separately and leads to 

insightful conclusions.  

 

At the outset, a theoretical discussion of the market fundamentals sets the scene and is 

followed by a thorough exploration of the key determinants of freight rates. At this 

point a new composite indicator is constructed -the Dry Bulk Economic Climate 

Index (DBECI)-, which is tailored to the dry cargo market and mirrors the aggregate 

impact of some carefully selected economic variables. As opposed to conventional 

approaches, the structure and the weighting scheme of this index are based on 

extensive exploratory and numerical analysis. This enhances the credibility of the 

DBECI and ultimately gives rise to more meaningful analyses. The next step is to 

carry out Co-integration analysis, Granger Causality tests and Impulse Response 

analysis in order to identify possible linkages between this new indicator and the 

freight market. In parallel, a similar numerical analysis is performed for some equally 

important determinants, such as the Chinese steel production, the average bunker 

prices, the port congestion, and the price of the most traded bulk commodities. The 

results reveal significant lead-lag relationships for the cases of DBECI, bunker prices, 

Chinese steel production, and commodity prices, while the port congestion appears to 

lead the freight rates only in the Capesize sector.  

 

The subsequent section is devoted to the development of parsimonious multivariate 

forecasting models (VAR/VECM and VARX). In this respect, the preceding 

theoretical and empirical analysis constitutes the groundwork for the selection of the 

most appropriate explanatory variables. Specifically, the Chinese steel production and 

the fleet development are used as endogenous variables, while the DBECI and the fuel 

prices are treated as exogenous. Next, a univariate framework (ARIMA) for the 

freight rates of Panamax and Capesize vessels is developed and serves as a 

benchmark for comparison of the forecasting accuracy of the proposed multivariate 

models. The findings show that the VARX model outperforms both of the alternative 

approaches, suggesting that the incorporation of these two exogenous variables 

(DBECI and average bunker prices) can significantly enhance the robustness of 

simpler models and ultimately result in more accurate forecasts.  

 



The last part of this thesis involves the investigation of excess return opportunities in 

the spot market. For this purpose the dynamics between trip charters and their 

corresponding voyage charters are studied. The thesis first examines the existence of a 

long-run equilibrium relationship and then develops a new methodology based on 

technical analysis so as to identify excess return signals and formulate a suitable 

chartering strategy. The results reveal that this approach outperforms the ‘naïve’ 

strategy of always chartering in vessels on trip time charters and perform the 

underlying voyage charters.  

 

Overall, the present thesis is of interest to academics and maritime practitioners alike. 

It fills significant gaps in the literature, while at the same time it can serve as a 

powerful decision support tool for shipping companies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ΠΕΡΙΛΗΨΗ 

 

Η παρούσα διδακτορική διατριβή παρέχει μία ποσοτική ανάλυση της ναυλαγοράς 

ξηρού χύδην φορτίου και διερευνά μία σειρά κρίσιμων θεμάτων που συνδέονται με 

τις ναυλώσεις πλοίων. Σε αυτό το πλαίσιο, αναλύονται οι ναυλαγορές spot και 

περιόδου ξεχωριστά και εξάγονται κατάλληλα συμπεράσματα.  

 

Σε πρώτο στάδιο παρέχεται μία θεωρητική ανάλυση των θεμελιωδών μεγεθών της 

συγκεκριμένης αγοράς και ακολουθεί μία ενδελεχής αναζήτηση των σημαντικότερων  

παραγόντων που επηρεάζουν τις τιμές των ναύλων ξηρού φορτίου. Παράλληλα, 

κατασκευάζεται ένας νέος σύνθετος δείκτης, ο δείκτης οικονομικού κλίματος της 

αγοράς ξηρού φορτίου (Dry Bulk Economic Climate Index or DBECI), ο οποίος ο 

οποίος περικλείει ένα σύνολο προσεκτικά επιλεγμένων οικονομικών μεταβλητών και 

αντανακλά τη συνολική επίδρασή τους στη ναυλαγορά ξηρού φορτίου. Σε αντίθεση 

με άλλες απλουστευμένες προσεγγίσεις που αποδίδουν ίσα βάρη στις παραμέτρους, ο 

υπολογισμός των βαρών του συγκεκριμένου δείκτη βασίζεται σε ένα συνδυασμό 

θεωρητικής έρευνας και εφαρμογής μίας προσαρμοσμένης μεθόδου γραμμικού 

προγραμματισμού. Αυτή η προσέγγιση βελτιώνει την αξιοπιστία του δείκτη και 

επιτρέπει τη διενέργεια πιο ουσιαστικής ανάλυσης. Το επόμενο βήμα περιλαμβάνει 

ανάλυση συν-ολοκλήρωσης (Co-integration analysis), εξέταση της Granger 

αιτιότητας (Granger causality) και ανάλυση κρουστικής απόκρισης (impulse response 

analysis), ώστε να ανιχνευτεί πιθανή σύνδεση ανάμεσα σε αυτό το νέο δείκτη και τη 

ναυλαγορά. Παράλληλα εφαρμόζεται μία παρόμοια προσέγγιση για κάποιους εξίσου 

σημαντικούς εξωτερικούς παράγοντες, όπως η συνολική παραγωγή χάλυβα στην 

Κίνα, η μέση τιμή υγρών καυσίμων πλοίου, η συμφόρηση λιμένων ως ποσοστό του 

συνολικού στόλου της κάθε κατηγορίας πλοίων, και οι τιμές των κύριων 

εμπορευμάτων της αγοράς ξηρού χύδην φορτίου (σίδηρος, γαιάνθρακας, σιτηρά). Τα 

αποτελέσματα καταδεικνύουν στατιστικά σημαντικές σχέσεις αιτιότητας για τις 

περιπτώσεις του DBECI, των τιμών καυσίμων πλοίου, του ύψους παραγωγής χάλυβα, 

και των τιμών των κύριων εμπορευμάτων, ενώ στην περίπτωση της συμφόρησης 

λιμένων αντίστοιχες σχέσεις εντοπίζονται μόνο για τις τιμές ναύλων των πλοίων 

τύπου Capesize.  

 

Στο επόμενο στάδιο της διατριβής αναπτύσσονται μοντέλα πρόβλεψης των 

μελλοντικών τιμών των ναύλων, κάνοντας χρήση της προηγούμενης ανάλυσης. Πιο 

συγκεκριμένα αναπτύσσονται πολύ-μεταβλητά μοντέλα τύπου VAR / VECM, για τα 

οποία επιλέγονται ως ενδογενείς μεταβλητές η παραγωγή χάλυβα στην Κίνα και το 

μέγεθος του στόλου κάθε τύπου φορτηγών πλοίων. Παράλληλα δημιουργούνται 



πολύ-μεταβλητά μοντέλα που εμπεριέχουν και εξωγενείς μεταβλητές τύπου VARX, 

στα οποία προστίθενται ως εξωγενείς μεταβλητές ο νέος δείκτης που 

κατασκευάστηκε σε προηγούμενο τμήμα της διατριβής (DBECI), καθώς και η μέση 

τιμή τιμών υγρών καυσίμων για πλοία. Τέλος κατασκευάζονται και αυτό-

παλινδρομικά μοντέλα τύπου ARIMA για τη διεξαγωγή συγκρίσιμων προβλέψεων. 

Τα αποτελέσματα καταδεικνύουν την ανωτερότητα των VARX μοντέλων έναντι των 

δύο εναλλακτικών προσεγγίσεων. Αυτό δείχνει ότι η χρήση των δύο νέων αυτών 

μεταβλητών που δημιουργήθηκαν στην παρούσα εργασία (DBECI και μέσες τιμές 

καυσίμων), μπορούν να βελτιώσουν σε σημαντικό βαθμό την ακρίβεια προβλέψεων 

των τιμών ναύλων. 

 

Το τελευταίο κομμάτι της διατριβής επικεντρώνεται στη spot ναυλαγορά και διερευνά 

τη δυνατότητα υπερβάλλουσας απόδοσης μέσω της κατάλληλης χρήσης και 

συντονισμού χρονοναύλωσης ταξιδίου (trip time charter) και ναύλωσης κατά ταξίδι 

(voyage charter). Αρχικά γίνεται χρήση co-integration analysis και αποδεικνύεται η 

ύπαρξη μιας μακροπρόθεσμης σχέσης ισορροπίας ανάμεσα στους δύο τρόπους 

ναύλωσης στη spot αγορά όταν αυτοί αφορούν την ίδια διαδρομή. Σε αυτό το 

πλαίσιο, εντοπίζονται βραχυπρόθεσμες αποκλίσεις τις οποίες εκμεταλλεύεται η 

παρούσα ανάλυση για τη δημιουργία μίας νέας στρατηγικής ναυλώσεων, που 

βασίζεται σε αρχές Τεχνικής Ανάλυσης. Τα αποτελέσματα δείχνουν ότι η 

προτεινόμενη προσέγγιση παρέχει υψηλότερες αποδόσεις συγκριτικά με συμβατικές 

στρατηγικές.  

 

Συνολικά, η παρούσα διατριβή έχει τόσο θεωρητική όσο και πρακτική χρησιμότητα. 

Συμπληρώνει σημαντικά κενά στη διεθνή βιβλιογραφία και παράλληλα μπορεί να 

ενισχύσει τη διαδικασία λήψης αποφάσεων σε ναυτιλιακές εταιρίες. 
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1.  INTRODUCTION 

 

1.1. Scope of Research  

Managerial decision analysis using quantitative techniques is an important and 

continuously growing area in shipping. Traditionally, most shipping companies over-

rely on experience and ‘gut feeling’. Many shipowners feel confident that a 

combination of experience of past cycles, personal insights, and up-to-date 

information can always lead them to the correct decision and drive their business 

forward. However, this kind of intuitive decisions is subject to cognitive and 

behavioural biases. Very often they tend to interpret data and market developments in 

ways that verify their initial hypothesis, even if it is invalid. Moreover, the shipping 

industry has undergone enormous changes over the past few years and the new 

complex landscape poses unprecedented challenges to decision makers. The shipping 

market variability is further magnified by the immense impact of its economic 

environment.  

 

In this volatile context, decision support tools can assist maritime practitioners in 

decision making and reinforce the competitive dimensions of their businesses. The 

majority of companies that embraced advanced analytics and embedded them into 

their operations have seen a substantial growth of their profitability in the long term. 

However this presumes that they can make proper use of those quantitative techniques 

and adopt a pragmatic approach to interpreting the results.  

 

In spite of the long history of forecasts and the increasing sophistication of modelling 

techniques, their reliability remains questionable. In fact, as Drucker (1977) argued, 

every attempt to accurately predict the market is doomed to fail. After all, this is in 

line with the Efficient Market Hypothesis, which is analyzed in great detail in the 

ensuing chapters. Nevertheless, this does not merit a reason to give up on forecasting. 

To the contrary, forecasting is absolutely essential in shipping, as long as the decision 

makers put it into the right perspective and interpret the results accordingly. As the 

shipping industry is getting more and more complex, the need for quantitative 

management has become even direr than in the past.    

 

The key is that forecasts should be viewed as a tool that enables managers to deal with 

uncertainty and enhance the decision making process. The prime goal of forecasters is 

not to come up with precise predictions of the future values of freight rates, but to 

specify the appropriate variables and feed them into a suitable model that can generate 
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sensible predictions and identify market trends.  In a nutshell, this is merely described 

in the words of Box (1979) who states that “all models are wrong but some are 

useful” (p. 202).   

 

Certain sophisticated techniques, such as data mining, use huge datasets and perform 

numerous statistical tests to uncover hidden correlations which are often unfounded 

and difficult to interpret. Unlike those methods, the current analysis is more targeted 

and aims to deliver practical insights that can substantially improve the decision 

making process. In particular, the thesis sets out the modelling process by positing the 

key factors that affect freight rates and then builds appropriate forecasting models. 

These are based on the ARMA and VAR/VECM modelling categories. Thereafter, 

this study focuses on the spot freight market and examines the effectiveness of a novel 

technique for making informed chartering decisions.  

 

The structure of this thesis is as follows: Chapter 2 introduces the dry bulk market and 

provides the necessary theoretical background, Chapter 3 presents a comprehensive 

review of the relevant literature, Chapter 4 describes the modelling framework and the 

related statistical tools, Chapter 5 focuses on the construction of a new index which 

will be used in the subsequent analysis, Chapter 6 explores the relationship between 

certain external factors and the freight market, Chapter 7 presents and evaluates the 

results of different forecasting models, Chapter 8 elaborates more on the spot freight 

market and introduces a new methodology that enhances decision making, and finally 

Chapter 9 concludes the thesis.   

 

 

1.2. Contribution 

The contribution of the present thesis to the existing literature is evident on many 

levels. The study begins with a comprehensive theoretical analysis of the freight 

market fundamentals and continues with a sound quantitative assessment of the 

impact of certain elements of the external environment. Next, the most critical of 

those factors are incorporated into a forecasting model whose performance is 

compared to alternative techniques. Finally, the thesis concentrates on the spot freight 

market and formulates a novel decision making tool.  

 

It is worth noting that another important contribution is that the various methods 

developed in this thesis are applied to different vessel sizes in both the spot and the 

period freight markets. This sheds some additional light on the unique characteristics 
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of each market segment and explains their distinctive reaction to external influences. 

The only exception is Chapter 8, which delves into the spot market and explores the 

related dynamics.  

 

The analysis of Chapter 6 provides statistical evidence in support of the view, widely 

held in the dry industry, that there is a lead-lag relationship between Chinese steel 

production and dry bulk freight rates, while it also explores the direction of this 

relationship. In addition, this study investigates the relationship between the dry bulk 

freight market and the price of ‘major bulks’. The interaction between dry commodity 

prices and freight rates has not warranted much attention in the maritime literature so 

far. Yet, given that these are the most traded bulk cargoes and their dynamics actually 

determine the level of freight rates for the entire dry cargo market, it turns out that the 

impact of those commodity prices deserves further attention. Hence, this examination 

is put forward and is followed by a theoretical interpretation. It arises that this 

relationship is not always straightforward; that is, high commodity prices do not 

necessarily correspond to high freight rates. Importantly, one of the main 

contributions of this study is the statistical confirmation and depiction of this 

relationship. Specifically, the findings demonstrate that commodity price spikes may 

boost freight rates in the short run, but the high price impedes trading activity going 

forward. Additionally, a similar analysis is performed for port congestion and bunker 

prices. Despite the plethora of studies on micro- and macro- economic determinants 

of freight rates, there have been no studies addressing those issues. The results are 

generally in line with industry expectations and contribute to the understanding of 

freight market movements.  

 

Along these lines, a new index is constructed, named DBECI, which captures the 

impact of several economic factors on the dry cargo freight market. In fact, it is a 

leading composite indicator and consists of a set of carefully selected macroeconomic 

metrics. The aggregation of those variables forms an index which is directed at the 

dry bulk market and corresponds to the specific influence of the economic 

environment. The very idea of setting up a bespoke index of that type for the shipping 

market has never been documented before, as it is discussed in the literature review of 

this thesis (Chapter 3). Unlike other indices which are assigned equal weights, the 

weighting of the DBECI is based on an extension of a linear programming technique 

(‘Benefit of the doubt’ approach). The usefulness of this indicator is verified by 

causality and impulse response analyses for a variety of vessel sizes. The respective 

results point to significant causation running from the DBECI to the freight rates of 

each vessel category.  
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The next step is to use the findings of the preceding analysis in order to build 

parsimonious forecasting models. To this extent, the study formulates multivariate 

VARX models using the DBECI and the average bunker prices as exogenous 

variables. Both of these variables are being used for the first time as explanatory 

variables in a forecasting model. In addition, the VAR/VECM and the VARX models 

factor in the fleet development and the Chinese steel production and treat them as 

endogenous variables. The former metric corresponds to ship supply and the latter to 

the demand for bulk carriers. This is another innovation of the current thesis and 

draws on the fact that the selection of the explanatory variables is based on the 

preceding analysis. The predictive power of these VARX models is assessed by 

means of comparison of the forecast errors with two alternative modelling 

approaches; i.e. the VAR/VECM and the univariate ARIMA. The numerical results 

suggest that VARX models outperform their counterparts in almost all cases. This 

provides sufficient evidence that the utilization of those two newly constructed 

metrics can substantially improve the forecasting accuracy of freight rates. 

 

Finally, the thesis concentrates on the spot market and investigates the excess return 

dynamics between trip charters and their corresponding voyage charters. First, it 

establishes the existence of a long-run equilibrium between time charter (t/c) trips and 

their underlying voyages, through co-integration testing. In this context, the focus 

shifts to the short-term deviations, which are exploited for the construction of a 

technical analysis based chartering strategy. In particular, a new methodology is 

developed, the Modified Momentum Trading Model (MMTM). This is used for the 

formulation of a suitable chartering strategy, which is eventually tested against the 

simple rule of entering into a voyage charter every week. The results show that the 

proposed approach outperforms the benchmark strategy, suggesting that the 

appropriate exploitation of rate deviations in the spot market can yield considerable 

excess returns. 

 

The relevant literature review (3.3 – 3.4) reveals that there have not been any studies 

investigating the relationship between trip charters and their underlying voyages. The 

body of the literature makes no distinction between trip charters and the (Time 

Charter Equivalent) TCE of voyages. These are rather used interchangeably to 

represent the spot market rates for purposes of comparison with the time charter 

period rates and FFAs. However, they constitute two different methods of chartering a 

vessel and it is interesting to study their dynamics. Hence this study extends the 

analysis to a new area of research, filling a critical gap in the literature. 
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 2.  THEORETICAL BACKGROUND 

 

2.1. Economies and Diseconomies of Scale in Shipping 

The cost of transporting a ton of cargo on a voyage is given by the following formula: 

 

 
C OPEX H

Unit Cost
Q

 
   (2.1) 

 

where C denotes the capital expenses, OPEX the operating expenses of the ship, H the 

cargo handling costs, and Q the parcel size (consignement).  

 

The above formula implies that as the size of a vessel increases, the unit transport cost 

goes down. This occurs because the numerator - which reflects the costs -, does not 

rise proportionally to the parcel size. Technological advancements and automation 

have contributed significantly to the minimization of transport costs for large vessels. 

In particular, modern megaships are cost efficient, consuming less fuel than older 

ships and keeping insurance and staffing costs to the minimum. In addition, the new 

megaships are highly automated and usually require approximately the same number 

of crew members as smaller ships.  

 

All in all, the cost increase is not in line with the increase in size. This provides a cost 

benefit on a ‘per ton’ basis and gives rise to the concept of economies of scale which 

largely explains the tendency towards larger ships.  

 

Another factor that has favoured the increase in ship size is the progress in delivery 

systems and logistical processes that facilitated the storage and movement of goods, 

and enabled businesses to handle larger cargo parcels. In addition, the last years’ 

upgrade of port facilities and equipment has given many ports the means to serve 

giant vessels.  

 

However, there are limitations to this trend, which create diseconomies of scale. In 

particular, there is a threshold beyond which the cost per unit stops to fall and begins 

to rise. This threshold is not fixed for all vessels and mainly depends on the ship type 

and its trading pattern.  

 

A major reason for diseconomies of scale is the port depth of most ports, which is too 

shallow to accommodate those behemoth vessels that have disproportionately deep 
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draughts. The only solution is to attempt to dredge the port seabed and deepen it, but 

this is usually uneconomical or even unfeasible. Furthermore, some of the megaships 

will be too large to cross the Panama Canal, even after the expansion. On top of that, 

in many cases, a small parcel - relative to the ship’s carrying capacity - may require 

special stowing and securing, raising the cargo handling costs. 

 

Additional limitations are imposed by port terminals, whose depths can accommodate 

megaships in the first place. However, they do not always have the appropriate 

infrastructure and equipment to handle massive amounts of goods efficiently. One of 

the main problems is caused by reduced land for temporary warehousing, as the 

sophisticated equipment (such as larger shore cranes) occupies more space. Moreover, 

the inland transport of large cargo quantities may require a huge number of trucks 

which have to arrive at the port gates simultaneously, creating congestion. 

 

 

2.2. Demand for shipping services 

Demand for ships is not a direct, but a derived demand. This implies that the 

customers are not after the ship itself. They are actually looking to use a ship in order 

to transport their cargo. It is the cargo space that is of interest to them. In this sense, 

the demand for shipping services derives from the demand for the carried 

commodities.  

 

The most appropriate unit of measurement of ship demand is the ton miles. This 

measure is defined as: 

 

 Ton-miles = Seaborne Trade x Average Haul  (2.2) 

 

According to the above formula, a ton-mile is defined as a ton of cargo moved one 

mile. This measure is preferable to the total deadweight (dwt) of ships needed, as it 

accounts for the distance too.  In fact, the cargo volume alone does not provide an 

accurate picture of ship demand. This requires the addition of an indication of how 

long the ships are going to be occupied. The latter can be expressed by the average 

haul over which the goods are carried. 
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2.2.1. Factors affecting demand 

Demand for shipping services is affected by a variety of factors, which eventually 

play a vital part in the determination of shipowner’s profitability.  

 

First of all, subsequent to the above discussion about ‘ton-miles’, it has been clear that 

the average haul is essential for the ship demand. Specifically, the higher the average 

distance, that is the longer the ships are occupied, the higher the demand for tonnage.  

 

The world economy plays a major role in the determination of ship demand. Weak 

economic activity reduces the level of consumption and drags down the volume of 

seaborne trade. Conversely, a vibrant economy may contribute to trade growth and 

spur the demand for shipping. At the same time, consumer sentiment is closely related 

to those dynamics. The expectations of consumers as to the future state of the market 

constitute an important driver of the ship demand, given that they largely determine 

investment decisions and consumer spending.  

 

Another critical factor is the level of transport costs. High transport costs may put a 

cap on trading activities, as they tend to increase the total commodity costs. 

Therefore, many transactions may completely break off or they may be held back till 

the market turns in charterers’ favour.  On the other hand, low transport costs may act 

as an incentive for buyers of commodities, encouraging them to exploit the market 

momentum and increase their imports. This in turn will escalate the trade of goods by 

sea, marking a growing demand.  

 

Taking a closer look at the components of seaborne trade, it turns out that the 

developments in certain commodity trades could shape or change the ship demand 

fundamentals. For instance, the level of steel production may modify the trends in the 

entire dry cargo market, given that iron ore is the main ingredient of steel and at the 

same time the most traded dry bulk commodity. Also, the broad volume of dry bulk 

trade is tied to the attractiveness of substitutes. For example, coal is in direct 

competition with other commodities, such as oil and Liquefied Natural Gas (LNG). A 

preference of importing countries to an alternative source of energy, instantly 

translates into higher demand for other ship types (e.g. tankers or LNG carriers) and 

lower demand for bulk carriers.  

 

Finally, demand for shipping services is largely affected by miscellaneous external 

factors and unexpected events which occur as random shocks and take their toll. 

These include political events, weather conditions, technological innovations, 



24 

 

regulatory changes etc. Political turmoil and wars occur in an unpredictable fashion 

and their effect on shipping is usually quite severe. For example the war between 

Egypt and Israel led to the closure of the Suez Canal and this gave a boost to the 

shipping demand. In other cases, an armed conflict may cause uncertainty and trigger 

extensive stockpiling in other parts of the world (e.g. the Korean war in early 1950s). 

However, even smaller scale or localized events may have implications for the ship 

demand, such as strikes or trade restrictions.  

 

Furthermore the weather element can be highly influential to the seaborne trade. For 

example a drought may destroy the crops and compel a grain self-sufficient country to 

cut down on exports or even start importing (e.g. droughts in Russia and Ukraine). 

Likewise, a flood may cause severe disruptions, like the Queensland floods that 

impacted coal production and exports. 

 

 

2.3. The supply of ships 

The supply of sea transport is inelastic and does not promptly respond to changes in 

demand given that the construction and delivery of new vessels may take between 1 

and 3 years and the life expectancy of ships is about 15-30 years. Thus, the supply 

side cannot immediately catch up with an increase in demand. Conversely, when the 

demand plummets, the supply cannot easily follow suit if the fleet is of relatively 

young average age.   

 

The supply of shipping services expresses the available seaborne carrying capacity in 

the market. In this respect it embodies the active fleet and is divided in different 

segments depending on the ship type and size. Supply is measured either in total 

deadweight tonnes or in total number of vessels trading in the freight market. In 

essence, it reflects the total capacity or the number of ships that are readily available 

for the carriage of goods.   

 

There are certain decision makers whose actions may determine the level of ship 

supply. First of all, shipowners have the most direct influence on supply, as their 

decisions to scrap or lay-up their vessels, or order newbuildings, automatically 

reshape the available carrying capacity. At the other end of the spectrum, charterers or 

shippers effectively seek transport space and occupy the existing fleet, while they may 

also affect the short term supply by negotiating the vessel speed when the market 

favours them. Bankers offer financing and thereby control the liquidity of shipping 
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companies. Thus when financiers provide easy lending shipowners raise capital to 

purchase new ships, while when financing gets tight and the market is in distress 

many shipowners resort to scrapping. Finally, regulators also play a part in supply of 

shipping services, considering that new legislation (environmental or safety) is likely 

to push non-compliant ships out of the market. 

 

2.3.1. Factors affecting supply 

Supply is subject to change both in the short and the long run. In the short term, the 

impact of a number of factors on the supply of shipping services is examined under 

the assumption of a constant stock of vessels. Those factors include lay-up, speed, 

time spent in port and so on. From this perspective, it is important to identify the 

primary factors that cause fluctuations to the active stock of ships and then interpret 

the underlying dynamics. On the other hand, the long-run development of supply is 

driven by changes in the stock of vessels which are substantiated by new deliveries, 

scrapping, and losses.  

 

Considering first the long term horizon, it turns out that new-building deliveries are 

the primary contributor to supply. The vessels that ‘hit the water’ add up to the 

existing tonnage and increase the supply of shipping services. The rate of new orders 

mainly depends on the access to financing and on the freight market expectations. The 

latter is conditional on the market information at the time of placing the order. 

Furthermore, the new-building prices and the availability of construction space (slots) 

within shipyards also influence the ordering decision.   

 

Demolition (or scrapping) refers to the breaking up of uneconomical ships by 

designated scrap yards. This process is vital for the shipping market as it removes the 

surplus of ships, alleviating the tonnage supply. This decision is usually made when 

the running costs of an old ship exceed the income for a long period of time or when it 

has to undergo costly repairs. The rate of scrapping is mainly tied to the levels of 

demolition prices, the average age of the world fleet and the market conditions and 

expectations.   

 

Turning to the short term, the prime factor reducing the number of ships available for 

trading (therefore the supply) is the practice of lay-up. This commercial decision is 

made by a shipowner when the vessel’s revenues are well below the operating 

expenses for a prolonged period of time. Under such circumstances, the vessel is 

placed in a safe anchorage until the freight market bounces back. In this way, the 
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shipowner accepts to forgo the (squeezed) revenues so that they can minimize the 

running costs.  

 

There are two types of lay-up, the hot and the cold lay-up. The former enables the 

ship to return to service more promptly and requires minimum safe manning, as well 

as heating to the main engine. The ship remains functional but the secondary systems 

may shut down. In contrast, the latter type of lay-up refrains from the need for heating 

to engine and generally reduces the operational costs to the minimum. Even so, a 

minimum crew is still necessary to stand watch and take care of the basic maintenance 

of the ship. Over the last few years, shipowners tend to opt for hot lay-up, particularly 

when they expect a market upturn in the short term. Besides, they reduce the risk for 

undesirable effects such as corrosion and hull fouling. The selection of a suitable 

location is not clear-cut. The shipowner has to take into account several factors, such 

as the cost of the lay-up berth, the accessibility to supplies, the favourable positioning 

upon reactivation and the weather conditions.  

 

Another critical factor is the average operating speed of the world fleet. High speed 

corresponds to shorter journey times which result in greater carrying capacity at a 

given point in time. On the other hand, when vessels slow steam (usually as a 

response to a stagnating freight market), the short run supply drops due to lower 

availability of vessels at the loading zones.  

 

Time spent in port is another major determinant of short-term supply and it has to be 

noted that this is outside shipowner’s control. Nevertheless, congestion is often 

beneficial for shipowners as it reduces the active stock of vessels. In contrast, when 

port turnaround times are reduced, vessels become available faster and this ultimately 

shortens the short-term supply of shipping services.  

 

In general, port time is considered ‘unproductive’ time for a ship. Even less 

‘productive’ is the time the ship spends ballasting or being off-hire. Thus, the 

proportion of laden to ballast journeys is of interest in terms of supply. A possible 

reduction in ballast legs, which might be a result of more ‘return’ cargoes, minimizes 

the ballast legs and allows a rise in laden days at sea.   

 

Lastly, some vessels may occasionally be converted to floating storage facilities either 

offshore or in port. For example large bulk carries may be used as floating silos to 

store grain. This decision reduces supply in the short run, but the reactivation process 

is not easy due to possible corrosion and damages. 
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2.4. The dry bulk commodities 

The dry bulk cargoes split into ‘major’ and ‘minor’ bulks. The major bulks comprise 

iron ore, coal and grains, while the minor bulks include steel products, nickel ore, 

forest products, fertilizers, sugar, scrap, pig iron, cement, bauxite/alumina, petroleum 

coke, phosphate rock, etc.  

 

The trade of major bulks accounts for over 50% of the total dry trade. Iron ore is one 

of the main ingredients (along with coking coal) for the production of steel. The 

largest consumer of this raw material is China and the main exporters include 

Australia, Brazil and South Africa. Coal is divided into steam (or thermal) coal which 

is used in electricity production and coking (or metallurgical) coal which is bought by 

steel plants. The main coal importers are China, South Korea, Japan and European 

Union, while it is massively exported by Australia, Indonesia and Russia. Grains 

encompass a variety of products, but the most traded of them include coarse grains, 

wheat, and soyabeans. The prime grain importers are Japan, Mexico, Egypt, Saudi 

Arabia, South Korea, China, Brazil, Algeria, Indonesia and Brazil, while some 

important exporters include US, Argentina, Australia, Russia, EU and Ukraine.      

 

 

2.5. Types of bulk carriers 

 

 Handysize (20-39,999 dwt) 

The small size of Handysize ships enables them to comply with the restrictions of a 

variety of ports and transport a wide range of goods. In addition, they are equipped 

with on board cargo handling gear, which allows them to load and discharge cargo at 

ports with poor facilities.  

 

Those features render Handysize vessels overly versatile. Thus instead of following 

specific trade patterns, they are involved in the majority of dry bulk trades across the 

world. However, they are mainly deployed in minor bulk trades. 

 

 Handymax (40-49,999 dwt) 

Handymax ships have similar specifications to Handysize. What differentiates them is 

is their larger dimensions. They are primarily engaged in the movement of all major 

and some of the minor bulks, such as scrap, steel and forest products. 
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 Supramax (50-56,999 dwt) 

Supramax vessels have a greater carrying capacity than their Handysize – Handymax 

counterparts. Their cranes allow them to operate in ports with poor infrastructure, 

such as certain Asian ports. Hence, they are particularly suitable for Asian trades.    

 

 Ultramax (57-64,999 dwt) 

This ship type has a higher loading capacity than the smaller Handysize, Handymax 

and Supramax vessels. In particular Ultramax bulk carriers can load around 10-20% 

more cargo than the conventional Supramax ships.  

 

The dimensions of a typical Ultramax vessel are slightly smaller than a Panamax’s, 

but the Ultramax is equipped with on board cranes. This is why those vessels are 

highly desirable for Asian trades. Many Asian ports have very poor port facilities and 

they require vessels having their own cargo handling equipment. Furthermore, their 

smaller draft (13-14 meters) compared to the Panamax’s enables them to comply with 

the draft restrictions of a larger number of ports.  

 

As a final point, it is worth mentioning that the eco design of the modern Ultramax 

vessels makes them fuel efficient offering substantial fuel savings. 

 

 Panamax-Kamsarmax (65-84,999 dwt) 

The Panamax (65-79,999 dwt) and the larger Kamsarmax (80-84,999) ships are 

mainly gearless and participate in iron ore, coal and grain trades. They typically have 

seven holds and they commonly carry phosphates, bauxite, fertilizers, forest products 

and steels. 

 

 Capesize (100-199,999 dwt) 

Capesize ships have nine holds, while they are gearless and rely on shore facilities for 

loading and discharging. Their large dimensions and deep draughts make them so 

reliant on port infrastructure, that port restrictions and facilities play a critical part in 

the determination of their trade routes. In fact, very few ports around the world have 

the capacity to accommodate this size and as a result Capesize vessels are highly 

dependent on certain trades. 

 

These large vessels focus almost exclusively on iron ore and coal long-haul runs and 

to a lesser extent on grain trade – usually only the smaller Capesizes transport grain 

cargoes.  
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 Very Large Bulk Carriers (200,000+ dwt) 

These behemoth vessels are gearless and equipped with strengthened tank-tops, so 

that they can safely carry large quantities of iron ore. They can only approach ports 

which have berths specially designed for those megaships. 

 

The first Valemax vessels were ordered by the Brazilian mining company Vale S.A. 

They intended to exploit the economies of scale and carry iron ore from Brazil to 

European and Asian ports at a lower transport cost. In this manner, they expected to 

enhance their competitiveness over Australian ore producers who are based closer to 

major Asian customers. 

 

 

2.6. The dry bulk freight market 

The freight market is a market place where the shipowners sell sea transport and earn 

revenue in the form of freight or hire payments. A distinctive characteristic of this 

market is that it contributes to the total amount of cash held by the shipping industry 

through cash inflows from merchants, traders etc. 

 

The freight market is divided into different market segments, according to the ship 

size and type, while the level of freight rates depends on a variety of factors, such as 

market conditions, cargo quantity, cargo type, location, ship age, ship specification 

etc.  

 

At the same time, there exist different types of contractual agreements. The main 

methods of ship employment include voyage charters, time charters, contracts of 

affreightment, consecutive voyages and bareboat charters. Each of these categories 

will be discussed in great detail in the following sections.   

 

 

2.7. Ship chartering  

A ship is chartered after a series of negotiations between principals (shipowner and 

charterer) through their respective brokers (exclusive, competitive or in-house). The 

negotiation process includes various stages, such as indications, firm offers, counter 

offers, negotiation of the main terms, agreement on the clauses details and eventually 

the fixture.  
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The charterer is in search of a suitable vessel to carry a specific cargo or charter it in 

for a period of time. On the other edge, the shipowner is looking to secure 

employment for their ship ahead of the delivery of the carrying cargo, if possible. 

These two parties contact each other and negotiate the deal through one or more 

shipbrokers that liaise and conclude the deal in exchange for a commission.  

 

Initially, the (owners’) shipbrokers circulate information about the (estimated) dates 

and areas that the vessels become available, along with a description of their main 

technical characteristics. Simultaneously, the charterers’ brokers place cargoes on the 

market, providing details about the size, timing, type of cargo and loading/discharging 

rates. The above-mentioned orders and ship positions may be sent to competitive 

brokers, who will further circulate them to additional channels, aiming to be involved 

in the deal.  

 

When one of the two parties identifies an appealing ship (or cargo) the brokers get in 

contact and seek some additional information or clarifications to contemplate if the 

business can be beneficial (e.g. ‘freight ideas’). These ‘indications’ may be followed 

by counter indications, but none of these is binding. In fact, there is the flexibility of 

discussing potential business and exchange data with various parties concurrently at 

this stage.  

 

The next step is to request the principal’s authority to make an opening offer. This 

marks the official beginning of negotiations which may be quite lengthy and involve 

numerous offers and counter offers. The first and more critical round of negotiations 

focuses on the main terms of the contract. Should they reach a deal on the main terms, 

the charterer usually sends the suggested pro-forma charter party to the shipowner 

(and their broker) and then they proceed to the ‘subject details’ stage.  

 

The elements of the main terms differ depending on the type of contractual 

agreement. In the case of voyage charter, the focus is on the date, the cargo type and 

quantity, the load/discharge ports, the freight rate, demurrage and despatch etc. For 

time charters, the main terms usually concentrate on the hire rate, the charter period, 

the delivery date, the place of delivery and redelivery, trading limits, cargo exclusions 

etc.  

 

Every charterer’s offer and counter-offer is usually made with subjects (e.g. ‘subject 

receiver’s approval). Occasionally even shipowners put subjects on negotiations, 

especially in cases of unknown or unnamed charterers. Thereby they make the offers 
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subject to ‘approval of charterers by owners’.   

 

Under English Law, the fixture occurs only when the two parties have agreed on ‘all 

and every detail’. Therefore, all ‘subjects’ must have been lifted in order for a fixture 

to take effect.   

 

It should be noted that only one firm offer at a time can be made. This implies that a 

ship cannot be under offer for more than one cargo at the same time (unless they are 

part cargoes). Likewise the charterer cannot offer the same cargo to more than one 

vessels simultaneously. The rationale is that neither a ship could possibly move two 

(or more) full cargoes on a single voyage, nor a particular cargo could be carried by 

more than one ships at a given time.  

 

Another important point is that while it is legal to withdraw or alter an offer any time 

during the negotiations, it is not professionally ethical to do so until it expires or until 

it is accepted (or rejected or countered) by the other party. 

 

 

2.8. Types of contractual agreements and analysis of their main 

characteristics 

The following sections describe the main methods of chartering a ship and point out 

their distinctive characteristics. 

 

2.8.1. Voyage Charter 

The voyage charter is a method of ship chartering where the ship is employed for a 

single voyage, loading cargo from a designated port for discharge at a specific port in 

an agreed area. It is also known as ‘spot contract’. The Shipowner is paid a fixed 

freight either per ton of cargo carried or lump sum (more rarely), which is normally 

payable at the destination (or on signing the bills of lading). The quantity of cargo to 

be loaded is agreed in advance. 

 

Under a voyage charter, the shipowner incurs all ship running costs (crew costs, stores 

and provisions, insurance of vessel, spares etc.), as well as the additional voyage 

expenses (bunker expenses, port disbursements, canal tolls, insurance of cargo etc.). 

The shipbroker’s commission is payable on freight, and may also be payable on 

demurrage, depending on the agreement. 
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2.8.2. Time Charter (T/C) 

A time charter is a contract between a shipowner and a charterer for hire of a ship for 

a certain period of time. The shipowner remains responsible for the technical 

operation of the ship, with particular regard to crewing, maintenance, insurance of 

vessel, repairs, classification etc., but the time charterer (or disponent owner) takes 

over the commercial control of the vessel, including the appointment and payment of 

port agents, the purchase of bunkers, the canal tolls, the insurance of cargo etc. That is 

to say that the shipowner pays the operating expenses, while the charterer the voyage 

costs. The time charterer has the freedom to select trade routes and cargoes for the 

chartered vessel, but they have to conform to the pre-agreed trading limits and cargo 

exclusions. 

 

However, if the ship fails to perform properly or suffers mechanical breakdowns, she 

may be considered ‘off-hire’, during which period the charterer stops remunerating 

the shipowner. 

 

Under a t/c the shipowner instead of earning freight, is entitled for a hire at an agreed 

daily rate. This fee is normally paid monthly or semi-monthly in advance. The time 

charterer may decide to operate the ship in the spot market, carrying cargoes under 

voyage charters or alternatively sublet the vessel to other charterers on a t/c basis.   

 

A trip time charter is a short t/c, in which the ship is contracted for the duration of a 

specific trip only. On the contrary, under a standard or period time charter the time 

charterer has the freedom to trade the vessel for an agreed period (3 months / 6 

months/ 1 year/ 3 years etc.) within some pre-specified trading areas. 

 

2.8.3. Contract of Affreightment (CoA) 

The contract of affreightment (CoA) occurs when the shipowner (or ship operator) 

agrees to carry a large quantity of cargo between specified ports over a series of 

voyages for a fixed rate per ton. The chartering terms are pre-agreed and the carrier 

may use their own ship or charter-in outside tonnage in order to meet their contractual 

obligations. However, the exact cargo size and timing are usually not known from the 

beginning. 
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2.8.4. Consecutive Voyage Charter 

The consecutive voyage charter is essentially a variation of voyage charters where the 

ship is employed for a series of voyages which are made one after the other. The 

agreement may state that the vessel is placed at the disposal of charterer for an agreed 

period and is obligated to perform as many voyages as possible within this timeframe 

or alternatively that the ship is required to make a certain number of individual 

voyages. Each voyage is governed by separate terms, with respect to freight rate, 

demurrage etc. 

 

2.8.5. Bareboat charter 

A bareboat charter occurs when the charterer assumes both the commercial and the 

operational control of a vessel for a typically long period of time. This implies that the 

charterer pays the voyage costs of the vessel, as well as the operating expenses. The 

shipowner remains responsible only for the capital costs and receives a fixed hire over 

the period of the charter. This contractual agreement is practically a finance tool that 

allows charterers to manage and operate ships without proceeding to direct purchases.  

On the other hand, bareboat charters are preferred by entities with little experience or 

expertise in shipping, such as financial institutions, who decide to invest in shipping 

but avoid any involvement in ship operation. 

 

 

2.9. The Baltic Exchange 

The Baltic Exchange traces its origins in 1774 when it operated as a meeting place of 

maritime practitioners, known as ‘The Virginia and Baltic Coffee House’. In 1860s, 

the deployment of the cable system changed the fundamentals of communication in 

shipping and this in turn transformed the role of the Baltic Exchange. Even though the 

cable network facilitated trade and eliminated speculative ballast legs, it had some 

serious weaknesses as it was cumbersome and too expensive. Therefore, there was a 

pressing need for a central market place where brokers could meet shipowners and 

merchants and make deals for the carriage of cargoes. Shipbrokers were able to 

dispatch the related terms to their principals who could then send on voyage 

instructions to the ship’s Master by cable. Therefore, the Baltic Exchange took up the 

role of a global clearing house and enhanced the efficiency of communication in 

shipping.   

 

Information technology noted significant progress in 1970s, with the advent of fax, 
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telex, telephone and later email and computer networks. Shipbrokers could now use 

those new communication systems to circulate business and conduct negotiations 

much faster and cheaper. Therefore, the Baltic Exchange lost its status as the central 

maritime market place in which deals were struck verbally.  

 

Nevertheless, the Baltic Exchange remains the ‘guardian’ of ethics in shipping 

business. This is reflected in its motto ‘our word our bond’ which symbolizes the 

gravity of integrity and trust in shipping. Even today, the main terms of many 

contracts are first agreed upon verbally and only later are confirmed in writing. 

 

 

2.9.1. The Baltic Exchange indices  

 

ROUTE DETAILS WEIGHΤING CARGO 

C2 160,000 lt Tubarao/Rotterdam 10% Iron ore 

C3 160,000 mt Tubarao/Qingdao 15% Iron ore 

C4 150,000 mt Richards Bay/Rotterdam 5% Coal 

C5 160,000 mt W Australia/Qingdao 15% Iron ore 

C7 150,000 mt Bolivar/Rotterdam  5% Coal 

C8_03 172,000 mt Gibraltar-Hamburg trans Atlantic RV 10% Iron ore/Coal 

C9_03 
172,000 mt Amsterdam-Rotterdam-Antwerp or 

passing Passero/China-Japan 
5% Iron ore 

C10_03 172,000 mt Pacific RV 20% Iron ore/Coal 

C11_03 
172,000 mt China-Japan/Amsterdam-Rotterdam-

Antwerp or passing Passero 
15% Coal 

Table 1: Baltic Capesize Index route definitions 

 

 

ROUTE DETAILS WEIGHΤING CARGO 

P1A_03 74,000 mt Trans Atlantic (including ECSA) round 25% 
Grain, Ore, 

Coal, or similar 

P2A_03 
74,000 mt Skaw-Gibraltar via ECSA, US Gulf or 

USEC/Far East 
25% 

Grain, Ore, 

Coal, or similar 

P3A_03 
74,000 mt trans Pacific RV via Australia or 

Pacific 
25% 

Grain, Ore, 

Coal, or similar 

P4_03 
74,000 mt Japan-South Korea via USWC or 

Australia, redelivery Skaw-Passero 
25% 

Grain, Petcoke, 

Coal or similar 

Table 2: Baltic Panamax Index route definitions 
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ROUTE DETAILS WEIGHΤING CARGO 

1A 

52,454 mt Antwerp-Skaw/Singapore-

Japan 12.5% MOP/Petcoke 

1B 52,454 mt Canakkale/Singapore-Japan 12.5% MOP/Petcoke/Iron ore/Steels 

2 

52,454 mt SK-Japan for 1 Australian 

or trans Pacific RV  25.0% Coal/Grains/Sulphur 

3 52,454 mt SK-Japan/Gibraltar-Skaw 25.0% Coal/Steels/PKE/Nickel ore 

4A 52,454 mt USG/Skaw–Passero 12.5% Grains/Phosphate/Scrap/Petcoke 

4B 52,454 mt Skaw–Passero/USG 12.5% Bauxite/MOP 

5 

52,454 mt Dakar-Douala via 

ECSA/Singapore-Japan 0.0% Grains/Sugar 

9 

52,454 mt Dakar-Douala via 

ECSA/Skaw-Passero 0.0% Grains/Sugar 

Table 3: Baltic Supramax Index route definitions 

 

 

ROUTE DETAILS WEIGHΤING CARGO 

1 28,000 mt Skaw–Passero/Recalada–Rio  12.50% Phosphate/MOP 

2 
28,000 mt Skaw-Passero/Boston–

Galveston 
12.50% MOP/Phosphate/Urea 

3 28,000 mt Recalada–Rio/Skaw–Passero 12.50% Grains/Sugar 

4 
28,000 mt USG via USG or NCSA/Skaw–

Passero 
12.50% Grains/Bauxite/Scrap 

5 
28,000 mt SE Asia via 

Australia/Singapore–Japan incl China 
25% Coal/Logs/Grains 

6 
28,000 mt SK–Japan via 

Nopac/Singapore-Japan incl China 
25% Coal/Sulphur/Grains 

Table 4: Baltic Handysize Index route definitions 

 

 

2.10. Shipping cycles and their history 

The shipping market is known for its cyclical nature and this has become evident 

throughout its history. For instance in 1956 analysts were bullish and (wrongly) 

predicted that the shipping market boom would last for years. However, the year 

1957, which coincided with the reopening of the Suez canal, marked a long lasting 

recession that only ended in 1967 on account of the second closure of the Suez canal. 

The positive market expectations of 1955-6 triggered massive orders of new-building 

ships which were delivered a few years later and deteriorated the already struggling 

market. The demand side was very weak due to a slowing global economy and the 

accumulation of abundant commodity stockpiles in Europe.  
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The 8-year closure of the Suez Canal mainly boosted the tanker market, but it turned 

out to be beneficial for bulk carriers too. One of the most immense market booms 

came in 1973, when freight rates and ship prices skyrocketed. However, this was 

followed by a collapse of the wet market due to the Yom Kippur War. On the 

contrary, the dry bulk market proved more resilient and went through a period of 

favourable market conditions that lasted till 1975, when the cycle reversed and the 

bulk carriers entered a crisis. The trough lasted 3 years and then the market bottomed 

out. This recovery phase was mainly driven by lower ship ordering that alleviated the 

surplus of tonnage, combined with rising demand for commodities and especially for 

coal, which was imported in many cases as a substitute for the inflated oil. The high 

levels of congestion supported the dry bulk freight market, which remained strong 

until 1981, when a combination of factors such as weak world economy, mine strikes 

and falling coal trade turned the boom to a bust.  

 

The dry cargo market recovered in 1986 thanks to improved economic conditions and 

the freight rates reached a peak in 1989. Thereafter, the shipping market entered a 5-

year period of extreme fluctuations that made the identification of the cycle stages 

vague. Some notable events of that decade include the Asia crisis in 1997 that 

devastated the freight market, but this recession did not last as long as expected. Thus, 

the dry cargo market rebounded only to be pushed down again by the stock-market 

collapse (also known as dot-com bubble) in early 2001. 

 

The most recent cycle started in 2003 and saw the dry bulk freight rates spiking to all 

time high levels for the next 4-5 years. This unprecedented market boom was mainly 

driven by the sharp growth of China and its tremendous appetite for raw materials, 

such as iron ore and coal. This was combined with severe port congestion around the 

world, easy access to bank financing and relatively low supply of tonnage. However, 

the US sub-prime mortgage crisis of 2007 spread to the financial markets and the 

world economy and eventually did not leave the shipping market intact, causing a 

severe crash in 2008. Since then the freight market has been stagnating and struggling 

to bottom out, but no signs of a real recovery have been shown yet.   

 

Hence, the existence of cycles is easily identifiable, just by looking at the past market 

developments and pinpointing repetitive patterns. In this respect, it has been observed 

that each cycle comprises four consecutive stages: the trough, the recovery, the peak, 

and the collapse. However, the duration of the cycles is highly unpredictable. The 

study of the past 50 years has shown that a typical cycle lasts about 7 years on 
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average (Stopford, 2009). However, this length is not fixed and varies from time to 

time depending on the market fundamentals and the effect of external shocks. 

Specifically, the longest cycles of that period include 6 cycles which lasted more than 

9 years each and had 5-year troughs. The shortest ones include four 5-6 year cycles 

while there were also two 8-year cycles. If someone goes further back in time, in the 

sail era, they will come across cycles that lasted nearly 15 years.  

 

In this context, the high degree of market uncertainty makes the prediction of cycles’ 

duration and turning points very difficult or even impossible for some authors 

(Cufley, 1972). On top of this, market sentiment exacerbates this issue, especially at 

the extremes of the cycle (troughs and peaks).  

 

Economic and shipping cycles are broadly categorized as long and short term cycles. 

The former category encompasses cycles determined by major economic, 

technological, geopolitical or socio-cultural changes. The detection of this kind of 

cycles is extremely important, but difficult as the effect of such developments is 

usually diffuse. On the other hand, the short-term cycles (or business cycles) are much 

more agile and track the ever changing market trends over time.  

 

Every shipping cycle is driven by the supply and demand dynamics, but what causes 

the most dramatic changes and contributes to volatility is the occurrence of 

unexpected external events, such as macroeconomic shocks, wars, Canal closures, 

political turmoil, congestion and stockpiling. 

 

 

2.11. Seasonal cycles  

In addition to the characteristics and the categorization of cycles discussed in 2.10, 

shipping cycles are frequently shaped by cyclicality. This property refers to the 

periodic pattern of certain trades that may influence the behaviour of freight rates and 

form seasonal cycles at times.  

 

Prominent examples involve the agricultural trades, which are subject to the period of 

harvest. It has also been observed that industrial production falls during the summer 

months and this reflects negatively on the freight market. Furthermore, the Chinese 

New Year is usually associated with declining freight rates due to waning market 

activity.   
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2.12. The Efficient Market Hypothesis (EMH) 

The EMH states that prices at any time fully reflect all available information (Fama, 

1970). It follows that for a given set of information, market efficiency is not 

compatible with profit making on the basis of this specific information set (Jensen, 

1978). This concept is extended by Malkiel (1991), who points out that if an 

information set, Xt, is disclosed to all market participants and the security price does 

not change, then the market should be deemed efficient. The security prices in such a 

market would be adjusted according to fully and correctly reflected information.  

 

Following Roberts (1967), Fama (1970) distinguishes into three different forms of 

market efficiency, depending on the content of the information subsets, and tests 

whether prices efficiently adjust to the information of each case. The three forms 

include the weak form, the semi-strong and the strong form. The weak form takes into 

consideration only historical prices, the semi-strong form expands to all publicly 

available information, while the strong form includes both public and private 

information. The latter category involves an extreme form of market efficiency, which 

considers monopolistic access to information and presumes that the related costs are 

always zero (Grossman and Stiglitz, 1980). However, this cannot be valid in practice, 

due to the existence of trading and information costs. Therefore it best serves as a 

benchmark for the assessment of deviations from efficiency (Fama, 1991). 

Elaborating more on the access to private information by individual agents, Fama 

(1991) focuses on the measurement of abnormal returns and discusses the joint-

hypothesis problem, according to which the abnormal returns are not necessarily 

attributed to inefficiency, but they may also occur due to poor model specification or 

implementation. Finally, he discusses the predictability of returns in the context of the 

EMH. Fama (1998) focuses on long-term return anomalies, such as over-reaction or 

under-reaction to information, and provides evidence that they do not contradict the 

EMH. 

 

Most authors test the weak and the semi-strong form of the EMH. Considering that 

under the EMH no excess returns are possible, these tests usually attempt to reject the 

EMH by examining the ability of technical trading techniques to generate excess 

profits. The information set in such tests contains only past values in the case of weak 

efficiency, while it is extended to include economic indicators, default premia etc. 

when semi-strong efficiency is tested. The test of the strong form is not so 

straightforward, since it is not easy to obtain and measure private and inside 

information. Thus, this form of efficiency is usually tested indirectly (e.g. by looking 

at performance indicators and factoring in the cost of obtaining private information). 
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More recently, there is a tendency in the literature to approach the EMH using 

behavioural models, which account for the impact of market participant’s psychology 

and beliefs on trading (Barberis, Shleifer, & Vishny, 1998; Shleifer, 2000; Barberis 

and Thaller, 2003; Shiller, 2003; Papapostolou, Nomikos, Pouliasis, & Kyriakou, 

2014; Greenwood and Hanson, 2015; Alizadeh, Yip, & Thanopoulou, 2015). These 

papers attribute the failure of the EMH to biases coming from the heterogeneous 

behaviour of investors and attempt to capture the under-reaction and over-reaction. 

 

 

2.13. The competitive dry cargo market 

A market that would satisfy the aforementioned assumptions of efficiency is a 

perfectly competitive one. In such a market, the participants act in a rational manner 

and absorb all available information, shaping the rates accordingly. 

 

Specifically, the dry bulk market can be viewed as a perfectly competitive one, if it 

obeys the following properties:  

 

1. All market practitioners aim to maximize their profits. 

 

2. There is a sufficient number of buyers and sellers of shipping services (and 

assets) with comparable wealth levels.  

 

3. The dry bulk shipping companies offer the same type of service. 

 

4. There is easy and free entry to and exit from the market.  

 

5. All participants have access to full information.  

 

The first feature is straightforward. The shipowners seek to earn higher freight rates 

and increase their profit margins, while the charterers press for lower rates in order to 

reduce the transport costs and maximize their profit. After all, profit making is the 

very reason for entering this market.  

 

Assumption two is easily satisfied. There is a large number of small and medium 

sized ship owning companies and many of them own 1-2 vessels. Each of the top 
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shipowners controls a very small percentage of the total bulk carrier fleet (less than 

1%). Likewise, there are numerous charterers, ranging from commodity traders to 

factories and mines. Therefore none of the market participants is capable of 

influencing the behavior of the freight rates. However, it should be noted that 

shipowners do have some control over operating expenses and they continuously 

strive to keep them low, without compromising the working conditions of the crew 

and the safety of the ship and its cargo. The latter is ensured by international 

conventions, such as the Maritime Labor Convention (MLC) and Safety of Life At 

Sea (SOLAS).  

 

Nevertheless, special consideration should be placed on the case of the sale and 

purchase market, which is dominated by two types of investors; i.e. the operators who 

make long term investments and the pure speculators who are more interested in the 

capital gains from speculative sale and purchase activities rather than in the 

operational profits. Consequently, this heterogeneous behavior of market participants 

may create a flaw with regard to the application of the EMH. 

 

The third assumption is appropriate in the context of the dry bulk business. The 

shipowners are essentially sellers of carrying capacity, while the charterers act as 

buyers of cargo space. Owners are expected to provide a seaworthy vessel, free of any 

liens and well maintained, ensuring that it complies with the applicable maritime 

regulations and laws. However, if a shipowner presents a substandard ship, then the 

cargo space offered is of lower quality due to the higher risk of cargo damage or 

complete loss. Hence, this would undermine the competitiveness of the dry bulk 

market, violating the condition of uniformity of services.  

 

The fourth assumption is clearly satisfied. A prospective shipowner can easily enter 

this market by purchasing either a new-building or a second-hand bulk carrier. As 

long as the capital has been raised, there are no entry barriers or extra charges for new 

entrants. Conversely, a shipowner can exit the market by selling their ship in the 

second-hand or in the demolition market.  

 

Finally, the smooth flow of information is guaranteed by the Baltic Exchange, which 

is the main source of independent market data and tracks the daily rates for a variety 

of routes and ship types. In addition, individual shipbrokers act as information 

transmitters, collecting information and advising their clients on the current rates and 

characteristics of specific trades, as well as on the most recent market developments 

and trends. 
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2.14. The efficiency of freight markets 

 

If the dry bulk market is assumed efficient, then the term structure of the freight rates 

dictates that the time charter rate should be equal to a weighted average of spot rates 

and risk premia over the duration of the t/c contract. 

 

In this setting, there are six different theories depending on the nature of the risk 

premium. The risk premium is assumed zero in the pure expectations theory, constant 

in the expectations theory, positive or negative in the preferred habitat theory, varying 

with respect to the term to maturity in the liquidity preference theory, varying with 

time and term to maturity in the time-varying risk theory and finally dependent on the 

excess returns of the market t/c portfolio over spot rates, as well as on the covariance 

between the t/c portfolio of a single shipowner and the market portfolio in the case of 

the CAPM.  

 

As it is presented in Chapter 3, several authors have tested the EMH in the dry bulk 

freight market and they mainly consider weak efficiency, while some other authors, 

such as Adland and Strandenes (2006), assume semi-strong efficiency. At the same 

time, the consensus is that there is a time-varying risk premium. The critical point for 

the validity of the expectations theory (and the efficiency of the freight market) is the 

appropriate adjustment of this risk premium so that is maintains the market efficiency. 

Thus, everything comes down to the suitable approximation of the related risk. Some 

examples of such an approximation include the unconditional and conditional 

variance of past forecast errors, but this is beyond the scope of this study. 

 

 

2.15. Efficient market hypothesis and forecasting 

 

As it has been discussed thus far, according to the EMH, freight rates reflect all 

available information. This implies that only new information or market shocks can 

change them. Therefore, rates are unpredictable given that news or ‘force-majeure’ 

events cannot be predicted, by definition. In this regard, if rates were forecastable, 

then certain market participants, acting as ‘profit seekers’, would use forecasting 

techniques to produce unlimited profits. Nevertheless, in practice when new 

information or new trading rules lead to excess profits in the short-run, more and 

more market participants try to take advantage and increase their own profitability. 
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Going forward, the profit opportunity dwindles. Therefore, this suggests that the weak 

(or semi-strong) form of efficiency is practically maintained in the long-run, whilst 

there are short-term excess return opportunities.   

 

It follows that efficiency should be viewed as a dynamic condition that is attained in 

the long-run, rather than one that must be fulfilled at all times. This is demonstrated 

by the convergence to a long-term equilibrium, after a short period of deviations. To 

put it in perspective, this behavior of time series is adequately captured by co-

integration analysis, which is the framework followed in the present thesis.   

 

In a related study Timmermann and Granger (2004) discuss the implications of 

forecasting for market efficiency, drawing on the fact that the existence of a robust 

forecasting model practically violates the EMH. 

 

The mathematical (conditional) expectation of the next period’s rate Rt+1, given the 

information available at time t, It, is expressed as follows: 

 

 E(Rt+1 | It) = Rt+1 + εt+1  (2.3) 

 

where εt+1  is a random error which is i.i.d (independently and identically distributed), 

with zero mean and constant variance.  

 

The above equation is based on rational expectations and actually describes an 

unbiased forecast. Unbiasedness constitutes one of the three properties of 

mathematical expectations, along with orthogonality (or informational efficiency) and 

the law of iterated expectations. Rational expectations should be homogeneous and 

based on the true model. In general, market participants are supposed to form rational 

expectations when they produce forecasts using the true model and all available 

information, and at the same time they follow the three properties of mathematical 

expectations.     

 

 

2.16. Risk factors in the dry bulk freight market 

 

The aforementioned time-varying risk premium is based on the fact that the spot 

market is surrounded by a higher degree of uncertainty compared to the period 

market. For this reason, following Adland and Cullinane (2005), it is essential to state 
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the different sources of risk in the spot market. 

 

 Unemployment risk 

This type of risk pertains to the failure of a vessel to find a suitable cargo in the area 

of discharge. In this case the operator’s options are: a) to remain idle in port until a 

business comes up in the area, b) to accept a part cargo, hoping to find a 

supplementary one en route, but this would be subject to first charter’s approval, and 

c) to ballast to another area of higher demand. All of the above options are expected 

to result in economic losses for the ship owner. Therefore, according to Zannetos 

(1966) they need to concede to a negative risk premium.  

 

The unemployment risk cannot be completely eliminated as it is associated with the 

supply-demand dynamics; but it can be managed by closely monitoring and assessing 

the market fundamentals of each route. Additionally, the unemployment risk is 

dependent on the ship technical specifications and age, as a more modern design has 

better chances to secure employment than an obsolete one.  

 

 Higher volatility of spot rates compared to t/c rates 

Kavussanos (1996) and Kavussanos and Alizadeh (2002) among others, argue that 

spot rates fluctuate more than t/c rates. Consequently, a ship owner demands a 

compensation to go spot, leading to a negative risk premium. This is consistent with 

the empirical study of Norman (1981) for tankers.  

 

 Risk of limited supply of tonnage  

This risk mainly affects charterers. According to Norman (1979), in periods of limited 

supply the transportation value exceeds the cost. Often various reasons, such as the 

due date of the letter of credit, push charterers to find a vessel promptly and carry the 

cargo. Therefore, in such cases the charterers are more likely to accept an overvalued 

rate as long as they find a suitable vessel on time. In other words, the charterers are 

willing to pay a positive risk premium in the spot market. This risk premium is closely 

related to the supply-demand balance in a specific region while at the same time 

depends on vessel’s technical specifications and especially on speed.  

 

 Default risk 

In the case of a period charter, if the market moves against the charterers making 

unviable for them to keep on paying above market rates they might default on the 

contract. It is apparent that this type of risk is positively correlated with the freight 

market fluctuations. The more volatile the market, the more defaults may occur. On 
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the contrary, a shipowner is more secured under a voyage charter, since the largest 

part of the freight (usually 90%) is paid in advance. Therefore, in this context, the risk 

premium has a positive sign.  

 

 Risk of technological or legislative obsolescence 

When a charterer is committed to a long term charter there is always the risk that the 

vessel will not be efficient in the future, should the regulatory framework change or 

the bunker prices rise. In such cases, more modern vessels enter the market which 

comply with new regulations and have improved specifications in terms of design and 

fuel consumption. Therefore, the chartered vessel will not be able to compete on equal 

terms with the newcomers, leading to a reasonably negative risk premium. 

 

 Risk of strikes and adverse weather conditions at ports 

This risk factor is not included in the categorization of Adland and Cullinane (2005) 

or any other risk categorization, but in practice it is very important for chartering 

decisions. Under a voyage charter, if the cargo cannot be loaded or discharged due to 

strikes or rain, the time typically does not count as lay-time and the ship operator 

cannot claim demurrage for the time lost. On the contrary, if the vessel is on time 

charter, then in the above events it remains on-hire and as a result there is no loss of 

income despite the delays. Thus, if this type of risk is isolated in a similar fashion, the 

corresponding risk premium should be negative. 
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3.  LITERATURE REVIEW 

 

3.1 The impact of external factors on the freight market 

Shipping freight market is generally influenced by both internal and external factors. 

The shipping demand is a derived demand and as such it is driven by a variety of 

factors that reflect the demand for the carrying commodities as well as the state of the 

world economy. In this context, many authors have endeavoured to identify the most 

critical drivers of the freight market and explore their effect on freight rates. 

 

Zanettos (1966) adopts a structural approach to investigate the relationship between 

time charter rates and a set of variables, which includes the London Interbank Offered 

Rate (LIBOR), the oil price, the Air (index for air transportation), the tonnage in lay 

up, the tonnage scrapped, and the Operating Expenses (OPEX). Strandenes (1984), 

and later Beenstock and Vergottis (1989, 1993) find that the freight rates are 

determined by macroeconomic factors such as oil prices, world economic activity, the 

growth of industrial production, commodities trade, as well as by internal factors, 

such as newbuilding ship orders, deliveries, and demolitions. 

 

However, there is a gap in the literature, as there have been no comprehensive studies 

attempting to determine the underlying relationship between steel output and shipping 

freight rates at an empirical level. The general consensus is that the level of steel 

production is a bellwether of demand for raw materials and, consequently, of freight 

rate fluctuations; However, thus far, this only has theoretical grounding. Hence, the 

current study intends not only to cover this gap, but also to assess the relations in the 

context of both the spot and period charter market for three different vessel sizes (i.e. 

Capesize, Panamax and Supramax). 

 

Another strand of the literature has devoted itself to the investigation of the 

interaction between transport costs and commodity prices. For instance, Goodwin and 

Schroeder (1991) employ a VAR model and carry out impulse response analysis in 

order to examine the wheat price dynamics in six different international markets, 

while they also take account of the influence of both freight rates and exchange rates. 

Other authors investigate the effect of transport costs on spatial market integration 

(McNew, 1996; Roehner, 1996; Price-Leadin & Corn, 1999), while Sadorsky (1999) 

focuses on the oil market and adopts a VAR framework to assess the influence of oil 

prices on real stock returns.   
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Haigh and Bryant (2000) focus on the risk of river barge and ocean freight rates, as 

this is expressed by their time-varying volatility. In particular, they search for 

potential effects on grain prices. Overall, their findings support the hypothesis of a 

linkage between transport rates and commodity prices. Bessler and Lee (2002) use 

Error Correction Models (ECM) (along with directed acyclic graphs) to investigate 

the relationship among money, income, nominal prices, and wheat prices in the US. 

Haigh and Bessler (2004) extend this analysis and employ the same methodology to 

explore the relationship between commodity markets and the transport market. The 

results show that these two markets are interrelated. Alizadeh and Nomikos (2004) 

examine the causal relationship between futures and tanker freight rates, while 

McKenzie (2005) concentrates on the reaction of soybean levels to barge rate shocks 

and he finds that the basis levels in Gulf drop as a response to a hike in barge rates. 

 

Yu, Bessler, and Fuller (2007) employ co-integration analysis and algorithms of 

inductive causation on directed acyclic graphs to examine the relationship between 

US grain and freight markets, and conclude that there is substantial interaction 

between them. In addition, Poulakidas and Joutz (2009) look into the way by which a 

spike in oil prices affects tanker rates. Their analysis of the lead-lag relationship 

between crude oil prices, crude oil inventories and tanker rates is based on co-

intergration and Granger causality, and their results are indicative of significant lead-

lag relationships. 

 

Chen and Hsu (2012) turn their attention to the fluctuations of oil price and provide 

evidence that high volatility holds back global trade. Shi, Yang, and Li (2013) use a 

Structural Vector Autoregressive (SVAR) model to study the effect of crude oil price 

volatility on tanker freight rates. In addition, they split the oil price shocks into supply 

and non-supply shocks. On that basis, they apply impulse response analysis and their 

findings suggest that oil supply shocks impact the freight market, whilst they find no 

significant effect in the case of non-supply shocks. 

 

Shen and Chou (2015) investigate the existence of causal relationships between the 

price of West Texas Intermediate (WTI) oil and several Baltic Exchange indices. The 

empirical results show that there is significant co-integration between WTI and each 

of the Baltic indices. Furthermore, they perform Granger causality tests and find that 

WTI causes all of the indices. Therefore, they conclude that crude oil price may serve 

as a predictor variable in a forecasting model. 

 

In other studies, Kavussanos and Nomikos (2003), and Kavussanos, Visvikis, and 
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Dimitrakopoulos (2010, 2014) focus on the derivatives markets and examine the 

volatility spillover effects between shipping freight and commodity future markets. 

The empirical results show that the futures contracts for commodities such as wheat, 

corn and soybeans lead the respective FFA markets. Those findings support the 

assumption of a linkage between certain commodity prices and the underlying freight 

rates. 

 

3.1.1 Economic determinants of freight rates 

Many authors have investigated the role of macroeconomic variables in the formation 

of freight rates and they conclude that the major determinants of freight rates include 

global economic activity, industrial production growth, and oil prices (Hawdon, 1978; 

Strandenes, 1984; Beenstock & Vergottis, 1989; 1993).  

 

In other studies, Tamvakis (1995) and Tamvakis and Thanopoulou (2000) turn their 

attention to microeconomic variables and assess the impact of ship age on chartering. 

The motivation of their study came from the implications of the US Oil Pollution Act 

(OPA1990) which banned single hull tankers from US waters, as well as of the 

amendment of the MARPOL convention in 1996 which made it mandatory for tankers 

trading globally to be equipped with double hulls. Their hypothesis is that this would 

negatively affect the chartering of older, single hulled ships, and create a two-tier 

market. However, this hypothesis is not confirmed by the empirical analysis.  

 

Grammenos and Arkoulis (2002) investigate the impact of world macroeconomic 

factors on the stock returns of several listed shipping companies. The factors under 

consideration include industrial production, oil prices, inflation, exchange rates 

(against the USD), and laid up tonnage. The results reveal that laid up ships and oil 

prices have a negative effect on stock returns, whilst the exchange rate is positively 

related to the returns of stocks. Overall, the authors indentify a strong connection 

between the shipping industry and the macroeconomic environment.  Dikos, Marcus, 

Papadatos, and Papakonstantinou (2006) use system dynamics modelling and look at 

causality effects, so as to assess the macroeconomic factors that drive the tanker time 

charter rates. They estimate the flow of supply of tonnage through entry, exit and lay-

up decisions and then they compare it with demand. Finally from their interaction 

they determine the key factors that affect tanker rates. 

 

Alizadeh and Talley (2011a) focus on microeconomic determinants of dry bulk 

freight rates. They examine the effect of vessel size, age, length of lay-can, and 
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voyage route on rates using a system of simultaneous equations. The results indicate 

the existence of significant relationships; therefore, those factors should be taken into 

considerations during chartering negotiations. In another study, Alizadeh and Talley 

(2011b) apply a similar methodology in the tanker market and find that the 

determinants of tanker rates include the ship’s hull type (single or double hull), the 

age, the routes, the lay-can duration and the deadweight (dwt) utilization ratio (cargo / 

dwt). 

 

Lee (2012) follows a different direction and examines if the global economic 

conditions can have a significant effect on trade disputes. This paper bears some 

relevance to the subject matter of this thesis, considering that possible trade disputes 

may negatively influence the trading activities and reduce the demand for shipping 

services on certain routes. Moreover, viewing this in a smaller scale, it may impede 

the chartering negotiations between shipowners and charterers. Tang, Koh, Heng, 

Soh, and Lim (2013) investigate the macroeconomic determinants of shipping cycles, 

using the market downturn of 1980s as a point of reference. In this reading, they 

pinpoint the following macroeconomic factors: the exchange rate of USD, the crude 

oil price, the inflation, and the globalization.  

 

More recently, several authors have taken into consideration the impact of economic 

factors with respect to modelling and decision making in the shipping market. For 

example, Lyridis, Manos, and Zacharioudakis (2014) develop forecasting models for 

the dry cargo market and incorporate macroeconomic variables. Batrinca and Cojanu 

(2014), in their attempt to specify the main drivers of the dry cargo freight market, 

they construct a multiple OLS regression model and endeavour to detect the impact of 

each explanatory variable on the freight rates. The results verify the apparent negative 

relationship between freight rates and supply of ships, as well as the positive one 

between freight rates and demand. They also find that the world GDP has a positive 

effect on freight rates. However, the authors do not present sufficient evidence that 

the variables fulfil the Ordinary Least Squares (OLS) assumptions nor do they 

properly check the model specification. On top of that, they use annual data and 

inevitably miss out on the short term fluctuations. 
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3.2 Forecasting freight and time charter rates 

The pressing need to obtain reliable forecasts of freight rates has placed shipping 

forecasting at the forefront of maritime economic research over the past few years. 

The complex nature of the freight markets calls for the support of contemporary tools 

and techniques that can reinforce the effectiveness of decision making and 

significantly reduce the uncertainty.  

 

The research activities in this area have employed a great variety of models, which 

have dissimilar characteristics and are based on different assumptions. Yet, all these 

models have a common goal; that is, the generation of accurate forecasts so as to 

enhance decision making. 

 

At the early stages of research in this area, the majority of authors base their 

predictions on classical regression analysis. However, this approach entails serious 

weaknesses, since it is not appropriate for non-stationary time series. On top of that, 

the consensus among the majority of researchers is that freight rates are non-

stationary with unit roots. The related tests in this study confirm this hypothesis and 

thus the most suitable framework for this type of data is adopted. 

 

The present study proposes three different modelling frameworks: the VAR/VECM 

the VARX, and the ARIMA. All of them are designed to account for the non-

stationarity contribution and overcome the associated weaknesses. 

 

Forecasting had not attracted so much attention in the maritime literature till the 

1990s. Although Koopmans (1939) pointed out the necessity for forecasting in the 

shipbuilding market, very few authors attempted to predict shipping cycles or any 

other variables pertaining to the freight market. In fact, the bulk of research centred on 

trade rather than on shipping forecasting. Even so, the forecasting techniques at the 

time were very simplistic. For instance, it was common for the researchers to use 

historical average to represent trends.  

 

Going forward, Cullinane (1992) applies the Box-Jenkins approach to forecast the 

future movements of the Baltic Freight Index (BFI). His data runs from 1985 to 1988 

and he uses it to make short-term predictions which he considers more accurate than 

long-term. Thus, due to the short-term forecasting horizon, the model is utilized as the 

basis for a speculative BIFFEX investment strategy. The accuracy of the forecasts is 

evaluated on the basis of: the Mean Sum of Squares of the residuals (MSS), the Mean 

Absolute Deviation of the residuals (MAD), the Maximum Absolute Deviation of the 
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residuals (MAXAD), and a modification of Theil's inequality coefficient (U). 

 

As the research progresses, some authors point out the linkage of economic variables 

to the shipping market and discuss the different stages of forecasting in shipping 

(Beenstock & Vergottis, 1993) and (Stopford, 1997; 2009). 

 

Chang and Chang (1996) use regression analysis to test the explanatory power of 

(Baltic International Freight Futures Exchange) BIFFEX prices. They test the 

predictability of BIFFEX and their results suggest that their model can generate one-

month forecasts with 90% precision, which drops to 23% for six-month forecasts. 

 

Veenstra and Franses (1997) adopt the VAR / VECM modelling framework in order 

to obtain forecasts for the spot freight rates of some selected Panamax and Capesize 

routes. At the same time, they attempt to identify the underlying freight rate trends. 

The rationale of their approach is that the series are found non-stationary, while they 

also detect co-integrating relations. A distinctive characteristic of their methodology 

is that they do not include any additional endogenous or exogenous variables. The 

justification they provide is that since the EMH suggests that the freight rates 

incorporate all publicly available information, there is no need to add any extra 

variables. Their findings reveal that the freight rates are stochastic in nature and they 

use this feature to explain the inability of their model to produce accurate forecasts. 

They further claim that the latter results are consistent with the EMH and in this sense 

they can be interpreted as a verification of its validity.  

 

Li and Parson (1997) introduce a non-linear approach in the form of neural networks 

and evaluate its short and long term forecasting performance against ARMA models. 

Their data starts from January 1980 to November 1993 and includes monthly 

observations on tanker rates, demand, and supply. They estimate the parameters p and 

q of the ARMA (p,q) model on the basis of the  Pandit and Wu approach, where the 

values of p and q are varied and the F-test, the autocorrelation of residuals, and the 

cross-correlation between residuals and inputs determine the most appropriate model 

specification. Then, they conduct freight rate forecasting for the lead time of 1, 2, 5, 

12, 18, 20, 23, and 24 months. According to the Mean Squared Error (MSE) criterion 

the two approaches perform equally well in the short-run (for lead time of 1 month), 

whilst the neural network framework provides results with lower MSE in the longer 

term.      

 

Cullinane, Mason, and Cape (1999) examine the effect of a modification in the Baltic 
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Freight Index (BFI) that took place in 1993, when all handy size routes were struck 

out. They investigate this by applying ARIMA modelling to the periods prior to and 

after the revision. The results imply that the change in the composition of the BFI has 

not affected its behaviour significantly.  

 

Veenstra and Charalambides (2001) adopt a multivariate framework to forecast trade 

flows of four major commodities; i.e. crude oil, iron ore, grain, and coal. More 

specifically, they apply a VAR model over main trade routes and produce long-term 

forecasts. The simulation results are evaluated under the MSE criterion, which yields 

relatively small forecasting errors. 

 

Jonnala, Fuller, and Bessler (2002) attempt to specify a set of variables which best 

tracks the behaviour of freight rates in the grain trade. These include the ship size, the 

distance, the registry, the season, the charter party terms, and the tonnage deployed 

for the shipment of certain other dry cargoes. On this basis, they build an empirical 

model using autoregressive conditional heteroskedastic error processes and finally 

they compare its predictive power with a random-walk process. 

 

Kavussanos and Nomikos (1999, 2003) concentrate on the lead-lag relationship 

between freight futures and spot prices and assess the forecasting ability of some 

selected models. The distinct characteristic of their study is that the underlying asset – 

the freight - is non-storable. The authors first investigate the causal relationship 

between futures and spot prices carrying out causality tests and impulse response 

analyses. They find that there is a long-run relationship and significant causality 

running from futures to spot prices. Therefore, information from the futures can be 

used to obtain better forecasts of the spot prices, but the opposite is not true. Then, 

they develop several different models to generate forecasts of the spot and futures 

prices for several steps ahead. These are the VAR model in first differences, the 

VECM (and the parsimonious Seemingly Unrelated Regressions (SUR) – VECM), 

the ARIMA, the Exponential Smoothing and the Random-Walk (RW). According to 

the RMSE Ratio criterion, the VECM outperforms all other models in the prediction 

of spot prices, while ARIMA provides better forecasts than the RW model. 

 

Alizadeh and Nomikos (2003) assess the ability of Forward Freight Agreements 

(FFAs) to forecast the direction of future freight rates on four major routes and find 

that they are weak predictors and that the forecasting accuracy is inversely related to 

maturity. 
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Kavussanos and Visvikis (2004) turn their attention to the forward markets and 

investigate the predictive ability of Forward Freight Agreements (FFA) in relation to 

the respective spot freight rates. In this context, they first perform causality and 

impulse response analysis and subsequently they use some extensions of the VECM 

framework, such as the VECM-GARCH and the VECM-SURE models in order to 

capture the volatility spillovers between the two markets. In congruence with that 

study, Kavussanos, Visvikis, and Menachof (2004) employ co-integration analysis 

and VECM modelling to examine the FFA predictability in the Panamax freight 

market. Thus, they select some representative Panamax routes and evaluate whether 

the unbiasedness hypothesis holds. According to their results, 3-month FFA prices are 

unbiased predictors of spot freight rates in the Pacific, but not in the Atlantic region. 

All in all, they find that the results are subject to the distinctive features of each 

market, to the selection of trade routes, and to the duration of the contract. 

 

Lyridis, Zacharioudakis, Mitrou, and Mylonas (2004) engage in non-linear modelling 

and use Artificial Neural Networks (ANNs) to predict the spot rates of VLCC (Very 

Large Crude Carriers). Their analysis is based on the assumption that the past values 

of freight rates may impact the future values. This implies that in effect they reject the 

EMH. The first step of their work involves the identification of the most appropriate 

explanatory variables through the detection of the potential sources of variability. This 

constitutes the groundwork for the specification of reliable ANN models. Indeed, the 

results validate the robustness of their approach, especially for longer term forecasts 

during volatile periods. In particular, ANNs with variables in differential form seem 

to respond better to quick and extreme changes in the tanker market, minimizing the 

forecast errors. Notably, the results indicate a substantial improvement over the 

preceding analysis of Li and Parson (1997). 

 

In his PhD dissertation, Tsolakis (2005) devises the Error Correction Models (ECM) 

methodology to analyse the freight market (among others), arguing that, in contrast to 

other models, ECM do not violate the Classical Linear Regression Model (CLRM) 

assumptions. On this basis, he generates forecasts for different ship sizes. At the same 

time, he runs ARMA forecasts and compares the results. Overall, the ECM 

framework provides greater accuracy and therefore it is regarded as more appropriate. 

In addition, he finds that his approach performs better in the t/c market than in the 

spot market and he explains this by the stochasticity of the spot rates as opposed to the 

t/c rates. 

 

Randers and Göluke (2007) construct an aggregate forecasting model which intends 
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to identify turning points in the tanker freight market. However, their model does not 

account for the different ship sizes and trade routes. Their main assumption is that the 

cyclicality of the market can be described by the interaction of two balancing loops; 

i.e. the capacity and the utilization adjustment loops. 

 

Scarsi (2007) questions the reliability of forecasting models, due to the strong 

connection of the freight market with various external factors. He argues that this 

handicaps the ability of models to produce accurate forecasts and therefore market 

practitioners cannot rely on them. Furthermore, he points out that the shipowners’ 

failure to track market trends is largely attributed to poor monitoring of the market 

developments, as well as to the lack of a solid decision making process. 

 

Batchelor Alizadeh, and Visvikis (2007) test if the spot and forward freight rates can 

serve as inputs towards the joint prediction of their future values. In this setting, they 

formulate several different models (VAR, VECM, S-VECM, ARIMA, and Random 

Walk) and compare their performance on the basis of the Root Mean Squared Error 

(RMSE). VECM models appear to provide excellent in-sample fit, while they also 

yield satisfactory out-of-sample forecasts for the spot rates. On the flip side, none of 

the models perform well when forecasting forward rates. 

 

Thalassinos, Hanias, Curtis, and Thalassinos (2009) also adopt non-linear analysis 

and apply the False Nearest Neighbours (FNN) method to forecast the future values of 

an index that tracks the Afframax tanker rates. This method originated from chaos 

theory. 

 

Goulielmos και Psifia (2009) describe the volatile nature of freight markets and point 

out the weaknesses of forecasting in shipping. Then they propose certain novel 

techniques which significantly diverge from the traditional Random Walk processes 

and aim to introduce a new perspective on the modelling of the freight market. They 

adopt chaotic, non-linear, and deterministic approaches and their underlying methods 

involve Power Spectrum Analysis, Rescaled Range Analysis (and the related Hurst 

Exponent), V-statistic, and BDS Statistic. They come up with both in-sample and out-

of-sample forecasts and in this process they use Kernel Density Estimation and 

Principal Components Regression, both of which handle non-linear series in an 

appropriate manner. 

 

Duru and Yoshida (2009) explore the utilization of judgmental methods as forecasting 

tools and advocate the advantages of qualitative methods over quantitative ones. In 
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this respect, they predict the BDI using two judgmental forecasting techniques, the 

expert-opinion and the Delphi method. The accuracy of their approach is evaluated 

through a comparison with the following time-series methods: Exponential 

Smoothing, TRAMO/SEATS algorithms, and X12 ARIMA. The results present the 

judgmental forecasting methods as superior to the statistical methods; however, this 

method category incorporates intuition and subjective judgment, while at the same 

time it has some serious limitations; it is hardly feasible to continuously form groups 

of maritime experts and ask their opinions. Moreover, Duru, Bulut, and Yoshida 

(2013) review the performance of Delphi forecasting and conclude that even though it 

is a useful decision-making tool, at times it might lead to irrational judgments due to 

its high reliance on human imagination. 

 

Duru (2010) embarks on fuzzy logical modelling and develops appropriate algorithms 

to forecast the BDI. These are the Fuzzy Integrated Logical Forecasting (FILF) and 

the Extended FILF (E-FILF). Finally he validates the effectiveness of his proposed 

methodology by comparing the results with naïve-type methods.   

 

In another study, Goulielmos and Psifia (2011) challenge the popular assumption in 

the maritime literature that the freight rates are normally distributed and i.i.d 

(independently and identically distributed). They provide evidence that the Dry Cargo 

Freight Index, the Dry Cargo Time Charter Index, and the historical t/c rates of a 

typical Kamsarmax exhibit significant skewness and kurtosis and therefore deviate 

from normality. In this regard, they argue that the classical forecasting models which 

are based on this assumption, such as the Random Walk, produce erroneous results. In 

addition, they attempt to predict shipping cycles and their duration using the V-

statistic. However, they estimated that the cycle that started in 2008 was expected to 

last only two years, but this did not come about. 

 

Bulut, Duru, and Yoshida (2012) revisit the Fuzzy Time Series (FTS) method and 

build a Vector Autoregressive Fuzzy Integrated Logical Forecasting (VAR-FILF) 

model to generate predictions for the Handymax and Panamax t/c rates. The 

robustness of their method is tested against conventional time series approaches, as 

well as against the Bivariate cFTS (Bi-cFTS) and the Chen's FTS (cFTS) methods. 

However, their proposed model is very sensitive to the interval length. It should be 

noted that the applicability of FTS as a forecasting tool in the shipping market has 

been investigated by many authors and in a variety of settings. For example, 

Stefanakos and Schinas (2015) use this method to gain insights into the future 

movements of bunkers prices. 
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Papailias and Thomakos (2013) are concerned with the identification of cyclical 

patterns and with BDI forecasting. Their analysis suggests that the shipping cycles 

last about 3 – 5 years. However, this pattern fails to capture the current cycle, the 

duration of which has already exceeded this projected time frame. At the next stage of 

their paper they proceed to the prediction of the annual growth of the BDI. This is 

carried out through various models which embed explanatory variables and account 

for cyclicality. Those models include Linear Regressions and Broken Trends, Factor 

Methods, and Autoregressive models. The latter category serves as the benchmark for 

the evaluation of the predictive accuracy of the afore-mentioned models, and the 

results show that they are quite robust.   

 

Nielsen, Jiang, Rytter, and Chen (2014) deal with the assessment of the impact of the 

forecast horizon and of the number of observations on a freight forecasting model for 

the liner market. As a first step they formulate a forecast model based on the 

interaction between market rates and rates offered by individual firms. Within this 

perspective, they empirically analyze the manner in which the observation fit and the 

forecasting period affect the performance of the model. They conclude that it is of 

paramount importance to refrain from over-fitting and the robustness of the model is 

highly dependent on the balance between the number of explanatory variables and the 

forecast horizon. 

 

In the study of von Spreckelsen, von Mettenheim, and Breitner (2014), the non-linear 

forecasting methods of spot freight rates in the liquid market come under scrutiny. 

Their study spans various forecasting techniques ranging from ANN to linear 

methods. As a conclusion they note that non-linear models are more appropriate for 

short term forecasts of spot rates. 

 

Wong (2014) produces short and long term predictions of the BDI using Fuzzy 

heuristic modeling, Grey System and ARIMA. The latter proves to perform better 

than the others for longer term forecasts, whilst the GM(1,1) model provides the least 

accuracy overall. 

 

Zhang, Zeng, and Zhao (2014) analyze the causal relationship between spot freight 

rates and t/c rates, as well as between spot rates and FFAs. The related series are 

found co-integrated. Thus a VECM framework is regarded as the most appropriate to 

model the underlying relationships and provide forecasts of spot rates. 
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Geomelos and Xideas (2014) produce ex-post and ex-ante forecasts in the dry and wet 

markets using univariate (ARIMA, GARCH, and E-GARCH) and multivariate 

models (VAR / VECM and VARX). In parallel, they obtain combined forecasts in the 

form of an average of future values generated by the afore-mentioned models. The 

forecast errors show that the latter process outperforms the individual models. 

Another notable characteristic of this study is the formulation of VARX models using 

as endogenous variables the spot and t/c rates, the new-building second-hand prices, 

the scrap prices, and the fleet capacity, and as exogenous the world GDP and the 

seaborne trade (measured in million tonnes). 

 

Zeng, Qu, Ng, and Zhao (2015) come up with a new forecasting approach, whereby 

they decompose the BDI into three distinct components representing short term 

changes, long-run trends, and external shocks respectively. This method is called 

Empirical Mode Decomposition (EMD). Thereafter, each component is modelled 

using ANN, which is also applied when the composition takes place. It turns out that 

this EMD-ANN approach enhances the performance of a single ANN model and at 

the same time outperforms the conventional VAR. 

 

 

3.3 Spot and period rates in the context of the Efficient Market 

Hypothesis (EMH) 

The dry bulk market offers its participants the flexibility of entering into a charter 

party after choosing among a variety of contracts with different maturities. The 

modelling of the spot and period rates, as well as the examination of their relationship, 

has been in the forefront of freight market research over the last few years.  

 

An abundance of research has been conducted to investigate the relationship between 

spot and long-term rates in the context of the Efficient Market Hypothesis (EMH), 

while several other studies test the validity of the EMH in freight markets. Zannetos 

(1966) is the first to study the effect of short-term expectations on freight rates. In 

particular, he presents the bond market concept of term structure as a relationship 

between spot and period rates. However, he does not take into consideration that in 

the longer term, regardless of the short-term trends, market expectations cannot be 

fully reflected in the current t/c rates due to additional costs resulting from delays and 

so forth. Glen, Owen, and Van der Meer (1981) examine the risk premium in the 

tanker market, assuming that the t/c income is equal to the present value of a series of 

spot contracts over the same duration. Their conclusion is that the estimated risk 
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premium is not significantly different from 0. However, while acknowledging the 

existence of the Expectation Hypothesis they do not check its validity. This is done by 

Hale and Vanags (1989) who test the Expectation Hypothesis in the dry cargo market 

and their tests either reject it or lack the necessary statistical significance. However, 

there are concerns over the validity of their results, as their 6-year period data set may 

not represent a full cycle, while on top of that they make use of the questionable 

Mankiw-Summers test. On the other hand, Veenstra (1999) applies the improved 

Cambell and Shiller test. In his study, he re-examines the term structure between spot 

and t/c rates employing a present value model and estimates it using a VAR approach. 

He transforms the period t/c rates into voyage equivalent time charter rates measured 

in $ per ton (instead of $ per day) so as to be comparable to the voyage spot rates 

which are quoted in $ per ton. He finds that the rates are non-stationary but co-

integrated and concludes that his model adequately describes the relationhip between 

spot and period rates. Interestingly, he provides a practical application of his model, 

where he develops a chartering strategy, according to which, when the spread (defined 

as the difference between period and spot rates) is above its historical mean the 

operator chooses a period charter, while when it is below, they enter into a spot 

contract. In this sense, he interprets the historical mean as a risk premium that offsets 

the loss of flexibility arising out of a period contract. Yet this assumption is rejected 

from the empirical analysis. Furthermore, he makes some inconsistent simplifications. 

For instance, the assumption that the time horizon of period charters goes to infinity is 

flawed, as the duration of most period charters does not exceed 3-5 years. Also, it 

should be noted that although all these studies identify the existence of a risk 

premium, they do not attempt to model it. 

 

The study of Kavussanos and Alizadeh (2002) is of great importance for the maritime 

literature, as they reject the Expectation Hypothesis through a series of statistical tests 

and they introduce, for the first time, the concept of time-varying risk premium in the 

shipping market. Along these lines, they view it as the reason for the failure of the 

Expectation Hypothesis. In fact, they extend Veenstra’s (1999) approach to vessels’ 

prices. More specifically, in order to generate excess returns they develop a VAR 

model using the spread between new-building prices and operating profits, along with 

the spread between scrap values and operating profits. Their conclusion is that the 

owners’ decision to enter the spot or the t/c market varies in proportion to the spread 

between spot and t/c values, generating a time-varying risk premium. This time-

varying risk premium, during the formation of period rates, reflects the fact that the 

uncertainty over the direction of freight rates leads shipowners to enter into a period 

charter and accept a fixed but lower than the spot market rate in order to be secured 
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against a possible market downturn. This lower rate corresponds to a negative risk 

premium. They also indicate that the longer the duration of a period charter, the lower 

the rates, as the absolute value of the negative risk premium increases. However, this 

overlooks the role of market expectations at the time of the deal. When the long-term 

views of shipowners are bullish and the spot rates are depressed, they might claim 

higher period rates compared to spot, so that they can recover the lost earnings for 

committing to a lower rate than what they anticipate in the longer term. Finally, the 

authors attempt to model the time varying risk premium using the Generalised 

Autoregressive Conditional Heteroscedasticity in Mean (GARCH-M) model.  

 

In other studies, Wright (2000, 2002) applies co-integration analysis and tests for the 

existence of an intercept term, while at the same time examines the validity of the 

rational expectation hypothesis between spot and period rates. The results support the 

rational expectation hypothesis and reject the presence of an intercept. 

 

In another application, Tsolakis, Cridland, and Haralambides (2003) focus on second-

hand ship prices and draw on the concept of co-integration in order to develop an 

Error Correction Model and compare its results to an Autoregressive Model.  

 

Tvedt (2003) sees the stationarity of dry bulk freight rates and second-hand prices in a 

new light. He converts the currency denomination data from USD to Japanese yen and 

illustrates that the transformed observations do not follow a random walk. This 

contradicts the previous studies which find that the rates and prices are non-stationary 

in level. He bases the currency change on the influential role of Japan in the dry bulk 

market, arguing that yen can capture the dynamics of the dry bulk market more 

adequately. However, the USD remains the prevailing currency in international trade. 

 

The studies of Adland, Koekebakker, and Sodal (2004) and Adland and Cullinane 

(2006) point to the same direction. These authors argue that spot rates in the liquid 

market are locally non-stationary, but a non-linear mean-reverting drift at the 

extremes of the range gives rise to global stationarity. In particular, they claim that the 

behaviour of spot rates in the largest part of their range resembles a Martingale 

process and this causes local non-stationarity. Yet this is not the case with the edges, 

where the authors detect mean-reversion. Finally, it is worth noting that they express 

the spot rates as TCEs of some selected voyages.   

 

Haigh, Nomikos, and Bessler (2004) adopt alternative approaches and apply Directed 

Acyclic Graphs (DAG’s) and Error Correction Models to investigate the dynamics of 
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the freight rates and the routes that compose the Baltic Panamax Index (BPI). 

Eventually, they find that the index may not be appropriately weighted. 

 

Another branch of literature related to the present study addresses the relationship 

between spot rates and Future Freight Agreements (FFAs). For instance, Kavussanos 

and Visvikis (2004) examine the lead-lag relationship between spot returns and over-

the-counter (OTC) FFAs and find a bi-directional causal relationship for all routes. 

Bessler, Drobetz, and Seidel (2008) test spot rates and FFA prices for autocorrelation 

and co-integration, and conclude that spot rates are autocorrelated in contrast to FFAs, 

while spot and forward rates are co-integrated. 

 

There have been a number of pioneering studies that use the principles of technical 

analysis in a service market like shipping. For example, Norman (1982), Adland 

(2000), and Adland and Koekebakker (2004) implement technical rules in the second-

hand market in order to design investment strategies. In particular, Adland and 

Koekebakker (2004) test the market efficiency in the second-hand market by arguing 

that a technical strategy should not generate excess returns in an efficient market. 

Their strategy fails to produce excess profit; thus it provides some evidence in support 

of the EMH. However, this is not a sufficient condition for its validity, while at the 

same time it does not downplay the overall concept of technical trading. In other 

studies, Alizadeh and Nomikos (2006, 2007) discuss investment and divestment 

timing decisions for second-hand vessels in the context of a combination between 

technical and fundamental analysis. 

 

Yet it is not until recently that the principles of technical analysis have been used in 

freight markets. This stream of literature is initiated by Adland and Strandenes (2006), 

who implement technical trading rules and examine their profitability. The authors 

reject the traditional form of the EMH, given that freight rates cannot be stored or 

traded. Instead, they consider the semi-strong form efficiency as more realistic and 

test its validity on the basis of the hypothesis that a trading strategy is impossible to 

yield excess profit in an efficient market. It should be noted that, here, the term 

‘excess profit’ excludes the risk premium. As a final point, the authors suggest that 

the non-storable and non-tradable features of freight rates call for the utilization of 

technical analysis, which is indeed an appropriate framework for such cases.  

 

In another study, Alizadeh and Nomikos (2006) use the co-integrating relation 

between price and earnings in the ship sale and purchase market, as a way to combine 

technical and fundamental analysis, and eventually determine the optimum investment 
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or divestment timing. For this purpose they make use of P/E ratios (fundamental 

analysis) and then they look at historical data and implement technical trading rules 

(technical analysis) for the formation of a suitable trading strategy. The effectiveness 

of this strategy is then tested against a benchmark strategy (buy and hold) and the 

results are indicative of its superiority. In parallel, the authors attempted to overcome 

the data snooping bias by using the bootstrap method. 

 

Alizadeh and Nomikos (2007) extend this approach to the freight market and examine 

if certain chartering strategies based on technical analysis can generate excess returns. 

In particular, they apply a Moving Average (MA) trading rule, by which they charter 

in a vessel on a 12-month period charter and charter it out on a 6-month t/c if the 

difference between the two rates is higher than the average difference over the 

previous n-weeks. The study concludes that the MA approach can yield excess profits 

and provides more robust results when performed in rolling samples. Furthermore, 

Alizadeh, Adland, and Koekkebaker (2007) use technical trading rules to formulate 

optimal chartering strategies. In this context they examine the excess return potential.  

 

Adland and Jia (2008) focus on default risk and investigate the way it interacts with 

the freight market conditions, the charter duration and the financial situation of the 

charterer. Their results confirm that the default risk premium is positive and can be 

expressed as an increasing function of freight market conditions and charter duration. 

 

Wright (2011) attempts to model the risk premium using a model initially developed 

for the financial markets. In particular the risk premium is embedded in a discount 

rate which is used in combination with several assumptions and simplifications in 

order to adjust the Expectations Hypothesis in such a way as to account for term risk. 

However, this model, despite yielding some promising results, is of limited reliability 

due to the large number of simplifications and assumptions it contains.  For instance, 

the author assumes that risk and equity discount rates are correlated and he also uses a 

revenue generation technique based on assigned probabilities. 

 

A considerable part of the PhD thesis of Pourkermani (2012) is devoted to the 

examination of the EMH from the point of view of a ship operating company. In this 

respect, he evaluates two different chartering decisions, i.e. the selection of a long-

term t/c versus the entrance into consecutive voyage charters over the same period.   

This is done by building a regression model and forecasting the excess freight rate. 

The explanatory variables include commodity and macroeconomic series. If the EMH 

held true, there would be no excess returns. The results show that in the case of 
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Capesize vessels, the spot market can provide higher returns compared to the period 

market, rejecting the term-structure and the no-arbitrage argument. On the contrary, 

an operator of the second ship type under consideration (i.e. the Handymax), does not 

appear able to maximize his profits in the spot market. Therefore, the evidence of this 

thesis is inconclusive as to the ultimate verification or rejection of the EMH.   

 

Ko (2013) touches upon the term structure of dry freight rates and uses VAR and 

time-varying coefficient models. The underlying assumptions distinguish between 

short and long term random shocks. His study reveals that long-term structural shocks 

have a significant impact on short-term rates, but short-term shocks do not seem to be 

equally influential with regard to long-term rates. This is interpreted by the author as 

evidence of market efficiency, since the effect of external (long-term) shocks is 

reflected in the formation of freight rates. In addition, he measures the (time-varying) 

adjustment speed of freight rates, using as a reference the long-run equilibrium, which 

is derived from a VECM model. 

 

In the context of chartering decision making, Axarloglou Visvikis, and Zarkos (2013) 

examine the choice of ship operators between voyage and time charters. Given the 

existence of a time-varying spread, they determine its main drivers. These include the 

business environment and the associated cycles, the market expectations, and the 

volatility. The above dynamics are empirically analysed using a real options model. 

The findings indicate that operators ought to take into account the afore-mentioned 

factors, since they play a major role in the resource allocation process and the related 

trade-off between flexibility and commitment. In this reading, the occurring ‘rule of 

thump’ is that shipowners can maximize their revenue potential if they maintain their 

flexibility by entering the spot market through a voyage charter when the market is 

strong, whilst it is in their interest to commit charterers to a long-term t/c during 

periods of unfavourable (freight) market conditions. 

 

Zhang and Zeng (2015) investigate the lead-lag relationship between spot and t/c 

rates. In this respect, they first build a VECM model and then use impulse response 

analysis to describe the effect of external shocks. Their findings point to the existence 

of significant mutual influence between spot and period rates. Furthermore, they find 

that the price discovery occurs in the case of long term time charters of average sized 

bulk carriers, such as Supramax vessels. 
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3.4 Chartering Strategies 

Modern management techniques and mathematically based chartering decision-

making have been steadily gaining traction in the shipping industry over the past few 

years.  The competitive nature of the dry bulk market implies that timely and correct 

chartering decisions are of paramount importance for the viability of shipping 

companies.  

 

A robust chartering strategy is extremely vital for shipping firms as it can provide a 

solid competitive advantage and ultimately increase their profitability. Panayides 

(2003) shows that those ship management companies who formulate and follow 

appropriate competitive strategies can substantially enhance their performance. 

 

A ship operator is frequently confronted with several alternatives with regard to the 

commercial management of his vessel and needs to assess them and make the 

optimum decision. In particular, they have to select among the following main 

chartering options:  

 

 Perform a voyage charter and receive freight per metric ton. 

 Charter out the ship on time charter for a long period of time (period charter). 

 Enter into a short-term time charter (or trip t/c) and receive a daily hire throughout 

the charter period. 

 Agree to carry a large quantity of cargo over several voyages (Contract of 

Affreightment). 

 Engage in consecutive voyages. 

 Lay-up the vessel and wait for a market improvement. 

 

Practically the most common and simultaneously crucial chartering decision pertains 

to the choice between the spot and the period market. In a general sense, the key is to 

trade in the spot market when the freight rates are high and enter into a long-term time 

charter if a market downturn is anticipated. 

 

It is clear that due to the cyclicality and the external factors that affect the shipping 

business, even the most experienced operator is likely to misjudge. Therefore, the 

introduction of decision-making models in dry bulk chartering is increasingly 

attracting attention and interest in the maritime industry.   

 

The first study in the area of optimal chartering decisions is carried out by Mossin 

(1968). He focuses on the lay-up decision and his model assumes that freight rates 
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follow a random walk. The lay-up decision is taken on the basis of a fixed threshold, 

which is justified by assuming that the underlying process is stationary. Devanney 

(1971) develops a discrete-time finite-horizon model for chartering strategies. He 

considers the t/c rate and compares it with multiple spot rates.  

 

In another study, Taylor (1981) uses simulation modeling for the determination of the 

optimal ‘fleet mix’. A distinctive characteristic of his work is the introduction of a 

‘chartering preference function’ that presents the proportion of long-term charters that 

operators are willing to take as a function of a freight index.  One year later, Norman 

(1982) proposes two alternative approaches: a) the ‘portfolio of charters’, which 

focuses on the estimation of the operator’s price of risk and risk preferences, as well 

as on the optimal mix of ships under spot and term charters. b) The ‘chartering timing 

policies’, where he uses historical data to establish a simple decision rule between the 

spot and term charter.   

 

Strandenes (1984) measures the expected short- and long-term Time Charter 

Equivalent (TCE) in the spot market applying OLS and explores the operators’ 

decision to commit their vessels on period charters below the spot rate. The PhD 

thesis of Goncalves (1992) employs stochastic optimal control and capital markets 

theory, aiming to develop a rational decision support system to optimize chartering 

policies.  

 

Berg-Andreassen (1998) aims to establish optimal chartering strategies in the dry bulk 

market from a portfolio perspective. Given a combination of ships and routes he 

assumes that a fleet operator strives to maximize his profit through the most adequate 

allocation of chartering agreements. The effectiveness of this attempt is gauged by a 

risk-return model, which is adjusted to the dry freight market. The results suggest that 

when the ship operator hires in about 78% of his fleet, the expected return can be as 

high as 37%. 

 

Alderton (2004) puts forth that the ideal chartering strategy is to pursue spot contracts 

when the market is surging and enter into period charters as soon as the market hits 

the bottom. Engelen, Meersman, and Voorde (2006) attempt to capture the dynamics 

involved in the decision making process of shipowning companies. This is done 

within a system dynamics framework, where an endogenous decision model is 

tailored to the dry cargo market and factors in the state of the market and the decision 

making process of individual owners. Finally, they perform a simulation which 

demonstrates the effectiveness of their approach.  
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Scarsi (2007) turns her attention to the decision making process of shipowners and 

tries to identify the main causes of wrong decisions. Her analysis refers both to 

investment and to chartering decisions, and she also uses the case of the Handysize 

vessel to illustrate that many investors missed out on a profitable market opportunity 

due their inability to read the market and make the decision in a timely manner. In a 

nutshell, she attributes the incorrect decisions a number of factors that include: lack of 

experience, reliance on intuition rather than on a combination of experience and 

modeling tools, imitation of competitors, over-enthusiasm, weak company culture, 

and inability to adapt to changing market conditions.  

 

Ozer and Cetin (2012) conduct a survey to determine the most desired type of charter 

by Turkish owners of bulk carriers, as well as the key factors affecting their decision. 

It appears that the majority of shipowners prefer voyage charters, followed by 

consecutive voyages and short-period time charters. In conjunction with this, Factor 

Analysis indicates that the selection criteria include (in order of significance): risk, 

reliability of the charterer, condition of the vessel, sustainability of the trade income, 

profitability of trade, ship age, and experience of the shipowner in a particular charter. 

This study is quite insightful as it attempts to shed some light on the shipowner’s 

decision among a variety of chartering options. However, on the downside, the results 

are largely dependent on the sample of shipowners and the prevailing market 

conditions at that particular point in time. Moreover, it does not provide any clue as to 

the connection of each individual charter type with the factors under consideration. 

 

Wang, Huang, Liu, and Zheng (2013) concentrate on chartering decision making from 

the point of view of refineries. Practically acting as charterers, these entities aim to 

make chartering decision that will minimize the transport cost. In this setting, the 

authors devise geometric Brownian motion and Poisson processes for modeling the 

behavior of tanker freight rates and the number of ship offers respectively. It should 

be noted that these two factors are assumed independent, even though there are 

indications of (negative) correlation. Finally, the authors apply this methodology to 

the case of a Chinese refinery and find that it outperforms the company’s strategy. 

 

The thesis of Garnås (2014) is concerned with the implementation of Operations 

Research (OR) tools in the dry cargo market. In particular he attempts to utilize 

decision support software (DSS) in a number of chartering scenarios and then 

compare it to another optimization model (Turborouter). Though the idea of linking 

Operations Research with dry chartering seems interesting, the application has serious 
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shortcomings as it ignores the dynamics of this market.  

 

Gkochari (2015) introduces a novel approach into the shipping market, i.e. investment 

strategies based on option games, and applies it in the Capesize sector. His goal is to 

specify the most suitable timing of new investments and also explain the driving 

forces of shipping market cycles. Ultimately, he verifies the superiority of his 

approach by comparing it with a benchmark strategy which is based on the P/E ratio.    

 

Kou and Luo (2015) use game theory to explain the problem of oversupply in 

shipping. According to their analysis, new orders constitute a rational decision at the 

extremes of the cycle and the return on investment is higher when the ordering 

activity is synchronized. However, the accumulation of many ship orders may result 

in overcapacity and drag down the freight rates.  
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4.  MODELLING FRAMEWORK AND STATISTICAL 

TOOLS 

 

4.1. Introduction 

This chapter presents statistical tools and econometric methods which are relevant to 

the analysis that will follow in the ensuing chapters. It presents the general modelling 

framework of this thesis and sets the basis for the development of several more 

specific quantitative methods, which are described in the methodological section of 

each chapter. In addition, the statistical and diagnostic techniques discussed here are 

used for the robustness evaluation of the subsequent modelling approaches. 

 

 

4.2. Descriptive Statistics 

Every modelling attempt requires an investigation of the distributional characteristics 

of the data. This statistical analysis is referred as ‘descriptive statistics’ or ‘moments 

of a variable’ and includes measures of central tendency (e.g. mean), dispersion (e.g. 

range, variance, standard deviation) and distribution shape (e.g. skewness, kurtosis). 

 

4.2.1. Mean 

The arithmetic mean is calculated as the average of all observations in a given sample 

or population.  

 

 Sample Mean:  1

n

i

i

x

x
n




  (4.1) 

 

 Population Mean:  1

N

i

i

x

N
 


  (4.2) 

 

where xi denotes the values of observations, n the length of the sample and N the total 

number of observations in the population. 
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4.2.2. Standard Deviation 

The standard deviation measures the dispersion of a variable, and unlike variance it is 

measured in the same unit as the data. It is defined as the square root of the variance. 

That is the square root of the average of the squared deviations from the arithmetic 

mean.  

 

It is given by the following formulas for samples and populations respectively: 
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 Population standard deviation:  
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The fact that the sum of square deviations is divided by N in the case of population 

and by n-1 in the case of samples reflects that as the sample gets larger, the sample 

standard deviation becomes a more accurate estimator of the population standard 

deviation. 

 

4.2.3. Skewness 

Skewness (or third moment of the variable around its mean) is a measure of the 

degree of asymmetry of a distribution. The coefficient of skewness shows whether the 

variable is skewed left or right, or whether it is symmetric.   

 

The skewness values are given by the following formulas:  
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 Population skewness:  
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A negative coefficient of skewness indicates that the data are skewed to the left. This 
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means that the left tail is longer and fatter than the right tail. This type of distribution 

is characterized by a few extreme losses and numerous small gains. Conversely, a 

positively skewed distribution translates into a longer and fatter right tail. This type of 

skewness implies a large number of small losses and a few extreme gains.  Zero 

skewness indicates a symmetric distribution around its mean (Figure 1). The latter is 

one of the main characteristics of the normal distribution.  

 

The following figure presents the three different types of skewness: 

 

 

 

Figure 1: Types of Skewness 

      (Source: learnerator.com) 

 

4.2.4. Kurtosis 

Kurtosis (or fourth moment of the variable around its mean) is a measure of 

peakedness of a variable’s distribution. The coefficient of kurtosis shows whether the 

data are flat of peaked in relation to the normal distribution.  

 

The kurtosis values are given by the following formulas:  
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 Population kurtosis: 
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The symmetrical ‘bell-shaped’ (univariate) normal distribution has a kurtosis value of 
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3. Given that the estimated kurtosis is evaluated against the normal distribution, it 

turns out that the sample kurtosis has to be compared to 3. Hence, when the estimated 

kurtosis coefficient is higher than 3, the distribution of the variable is said to be 

leptokurtic and has heavy tails and a higher peakedness compared with the normal 

distribution (e.g. Laplace distribution). The heavy tails increase the likelihood of 

generating values that depart considerably from its mean. On the other hand, if the 

kurtosis is lower than 3, then the distribution is referred as platykurtic and is generally 

flatter that the normal distribution. Finally a sample kurtosis of 3, matches the 

peakedness of the normal distribution and the distribution is called mesokurtic (Figure 

2). 

 

The following figure depicts the above cases: 

 

Figure 2: Types of Kurtosis 

      (Source: learnerator.com) 

 

4.2.5. Jarque–Bera (JB) test 

The Jarque-Bera test checks how the skewness and kurtosis of the sample data 

measure up against the skewness and kurtosis of the normal distribution. The related 

test statistic is given by the following formula: 
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where Sk1 and Kurt1 are the skewness and kurtosis respectively and n the degrees of 

freedom. 

 

Specifically, under the null hypothesis the skewness is zero and the kurtosis is three – 

the latter is equivalent to excess kurtosis of zero. This test becomes powerless in cases 
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of very small samples, due to the high sensitivity of the chi-square approximation, 

which increases the likelihood of type I error. 

 

 

4.3. Stationarity Tests 

 

A time series is stationary if its mean, variance and auto-covariance are finite and 

time independent. In other words, stationary series are mean-reverting and do not 

follow any trends.   

 

Non-stationary time series are not appropriate for classical linear regression 

modelling, as they violate the CLRM assumptions. Non-stationarity changes the 

distributional theory and consequently the F- and t- test statistics are not valid for non-

stationary series. This implies that the hypothesis test results for the regressions 

parameters will not be reliable. In particular, the assumption for asymptotic analysis is 

violated, since the t-ratios do not follow a t-distribution.  

 

The properties and behavior of time series are largely affected by stationarity. Non-

stationary series may contain trends, cyclicality and persistent shocks.  

 

The main problem is that non-stationary time series may lead to spurious results, as 

the model might mistakenly yield a high R2 and identify relationships that do not exist 

in reality.  

 

Therefore, it turns out that non-stationary time series can provide misleading results if 

they are not modeled properly. This issue is tackled in the current thesis by the 

utilizations of VAR and VECM models, which can adequately handle non-stationary 

variables.    

 

The appropriate handling of non-stationary series is a very critical step in time series 

analysis, given that, as indicated by the relevant literature, most of the shipping and 

economic variables are not stationary.  

 

A common way of transforming non-stationary time series into stationary is by 

differencing them till they becomes stationary (or alternatively fit an error correction 

model if the series are co-intergated). The number of differencing procedures it takes 

to achieve stationarity determines the order of integration, I(.). This reflects the 
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number of unit roots that the series contains. For example, a non-stationary variable 

which is differenced once before it becomes stationary is denoted as I(1). Then it is 

called integrated of order one and is said to have one unit root. On the other hand, a 

stationary variable is denoted as I(0).  

 

The stationarity is checked by means of unit root tests. The present analysis uses two 

different unit root tests, i.e. the Augmented Dickey-Fuller (1979) and the 

Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992) tests.  

 

During the execution of unit root tests, the attention is drawn to the results for three 

different assumptions with regard to the exogenous regressors, i.e. none, constant and 

constant and linear trend (the KPSS test considers only the last two). 

 

4.3.1. Augmented Dickey-Fuller test 

Suppose the following typical AR(1) process: 

 

 
1 't t t ty ry x c      (4.10) 

 

where x΄t are possible exogenous regressors, r and c are parameters and εt denotes 

white noise.  

 

The ADF test, examines the following null and alternative hypotheses: 

 

H0: r = 1 

                   (4.11)         

H1: r < 1 

 

After deducting yt-1 from both sides of (4.10), it becomes: 

 

 1 't t t ty by x c       (4.12) 

 

where b = r – 1. Thus the test hypothesis (4.11) is rewritten as: 

 

H0: b = 0 

(4.13)                                 

H1: b < 0 
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The evaluation is done through the t-ratio for b: 

 

 
ˆ

ˆ( )
b

b
t

se b
   (4.14) 

 

Where b̂  is the estimator of b and se( b̂ )  the coefficient standard error. 

 

The ADF test entails some serious weaknesses when it comes to rejection of the null 

hypothesis of a unit root, especially under the presence of mean reversion which is 

long compared to the length of the sample (Harris, 1995; Maddala & Kim, 1998). 

 

This is remedied by performing an alternative test, the KPSS test, which assumes that 

the variable is stationary and tests the alternative hypothesis of a unit root. The KPSS 

test is generally more suitable for relatively small samples (Caner & Kilian, 2001; 

Kuo and Tsong, 2005). 

 

4.3.2. Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test 

The residuals from the OLS between yt and the exogenous xt in equation 3.6 below, 

form the basis of the KPSS test.  

 

 't t ty x c e    (4.15) 

 

The LM statistic is defined as:  

 

 
2

2

0

( )

t

S t
LM

T f
   (4.16) 

 

Where f0 denotes an estimate of the residual spectrum under zero frequency and S(t) a 

cumulative residual function. 

 

 

 
1

ˆ( )
t

i

i

S t e
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   (4.17) 

 

where  ˆ ˆ' (0)i t te y x c    
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4.4. Co-integration 

A critical question in time series analysis is whether time series are stationary. This 

property is typically examined using a unit root test, such as the ADF and KPSS tests 

which are employed in this study. If the series are found non-stationary, their joint 

probability distribution as well as their mean and variance change over time. Thus 

they do not exhibit mean-reversion and their interaction cannot be captured by 

traditional econometric techniques.  

 

However, if two (or more) non-stationary time series are integrated of the same order 

and at least one stationary linear combination between them exists, they are said to be 

co-integrated and have a common stochastic drift. This implies that their linear 

combination does not exhibit any spurious effects, while the error term of their 

regression is stationary. The distinctive feature of two co-integrated variables is the 

existence of a long-run equilibrium, characterized by short-run adjustments. 

 

The two main methods of testing for co-integration are the Eagle and Granger (1987) 

two-step procedure and the Johansen test (1991, 1995). The present thesis study 

makes use of the latter method, as it is more powerful. In particular, the Johansen 

approach seeks the most stationary linear combination, unlike the OLS based Engle-

Granger method that looks for the combination with the minimum variance.  This 

leads to a more robust power function and less bias in the case of Johansen test.  

Furthermore, the Johansen test is able to detect more than one co-integrating relations, 

in contrast to Engle-Granger’s method. 

 

For a k-dimensional vector of I(1) time series, yt , and a d-dimensional deterministic 

vector, xt , (containing terms such as a constant and a linear trend), the VAR(n) model 

is: 

 

 1 1 ...t t n t n t ty A y A y Bx         (4.18) 

 

and becomes: 

 

 

1
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

 


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  (4.19) 

 

where 
1

n

i

i

A A I


   and 
1

n

i j

j i

C A
 

     

 

In essence, the Johansen test refers to the estimation of the coefficient matrix A. 
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According to Granger’s representation theorem, if A has reduced rank r < k, then A = 

α b and b΄ y(t) is I(0), where a and b are k x r matrices of full column rank r (which is 

the number of co-integrating relations). This ensures that there exist at least k – r unit 

roots and co-integration is generated when r ≥ 1. 

 

Johansen co-integration test includes two types of tests; the trace and the maximum 

eigenvalue. The trace statistic is actually the trace of a diagonal matrix of generalized 

eigenvalues and is calculated by:  

 

 
   

1

| log 1
k

tr i

i r

LR r k T 
 

   , for r = 0,…, k-1  (4.20) 

 

where r is the number of co-integrating relations, k the number of endogenous 

variables λi are the eigenvalues of the A matrix and T is the sample size. 

 

Lastly, the maximum eigenvalue statistic is computed by: 

 

    max 1| 1 log 1 rLR r r T      , for r = 0,…, k-1  (4.21) 

 

 

4.5. Vector Autoregression (VAR) 

This study considers the VAR and VECM multivariate linear model classes, in order 

to overcome the issue of non-stationarity and capture the causal relationship between 

the dry bulk freight market and certain external factors. In addition, these models also 

serve as forecasting tools and generate freight rate predictions for different vessel 

sizes.  

 

The VAR/VECM framework offers some additional advantages. First of all, it is a 

relatively simple method, considering that almost all variables can be treated as 

endogenous without a problem. However, in order to increase the robustness of the 

models under consideration, the present thesis is complemented by the adoption of the 

VARX modelling framework, which allows for the inclusion of some purely 

exogenous variables.  

 

The estimation is straightforward, as it is carried out by applying Ordinary Least 

Squares (OLS) regression to each equation separately.  
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Lastly, VAR and VECM models are known for their satisfactory forecasting 

performance, especially compared with more complex models, such as the 

simultaneous equation methods. 

 

In  time  series  analysis  the Vector Autoregression (VAR) model explains the 

evolution of an endogenous variable as a linear function of its own lags and 

potentially the lags of all others variables in the system. A n-th order VAR, VAR(n),  

for a time series yt in the form of a m x 1 vector is described by the following 

formula: 

 

 1 1 2 2t t t p t n ty c A y A y A y           (4.22) 

 

where c is a m × 1 vector of intercepts, Ai is a time-invariant m × m matrix and εt is a 

m × 1 vector of error terms which are uncorrelated with their own lags, and have zero 

mean and no serial correlation across time (white-noise Gaussian residuals).  

 

VAR is a non-structural modelling approach which can be employed as an appropriate 

econometric specification for investigating the relations between variables, such as 

Granger causality, as it describes the joint generation process of the variables 

involved. That is to say that VAR models can be used both as a framework for the 

examination of possible relationships between the time series of the system, as well as 

a tool for predicting inter-related variables. In this regard, VAR models can be used 

for forecasting purposes in lieu of the non-parsimonious structural models, whose 

specification is much more cumbersome.  

 

 

4.6. VARX model   

The VARX model is essentially an extension of the VAR model with the inclusion of 

one or more exogenous variables. This is mathematically represented as:  

 

 0 1 1 1 1t t t nn t m tmtY Y X XJ J L L U             (4.23) 

 

where Yt stands for the endogenous variables, Xt is a vector of exogenous variables, 

Li and Ji are coefficient matrices λ0 is a vector of intercepts and the error Ut is i.i.d. 

normally distributed. 
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The endogenous and exogenous variables, yi and xi respectively, may be in levels or 

first differenced, depending on the properties of the data (i.e. the existence of 

stationarity). 

 

An important requirement for the VARX model is the fulfillment of the following 

condition:   

 

    
1 1

[ | , ] 0t t i t ii j
E U Y X

 

  
   (4.24) 

 

with probability 1.  

 

The absence of a contemporaneous Xt from eq. 4.23 does not compromise generality.  

 

The proof is as follows: 

 

Suppose a contemporaneous Xt is includes in the initial VARX model. Then it will 

take the form: 
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  (4.25) 

 

with L0 ≠ 0.  

 

Assuming now a VAR model for Xt: 

 

  

 1 1 1t t t q tqX XM YM V         (4.26) 

 

and    
1 1

[ | , ] 0t t i t ii j
E V Y X

 

  
  (4.27) 

  

substituting eq. 4.26 in eq. 4.25, the latter becomes: 
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 (4.28) 

 

This is of the (initial) form (4.23), therefore it confirms the maintenance of generality.  
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4.7. Vector Error Correction Model (VECM) 

The Vector Error Correction Model (VECM) is actually a restricted version of VAR 

and incorporates an additional error correction component, which is obtained from co-

integration. This term accounts for the gradual short-term adjustment to the long-run 

equilibrium after a change in an independent variable. In fact, VECM does not 

‘correct the error’ of a VAR model. It calculates the speed of adjustment to a long-

term equilibrium after a change in an independent variable. This speed is measured 

through the adjustment coefficients of the model.  

 

An important precondition of the VECM is the co-integration of its variables. This 

implies that the  VECM  model  is  not  valid  if  the  variables  are  not  co-integrated.  

In  that  case  the  appropriate  modelling  framework  is  the  VAR.   Thereby there 

exists a long-run equilibrium and the deviation from this is reflected into the short-

term dynamics. Therefore, when the series are co-integrated one should use the 

VECM approach instead of the VAR. VECM is designed to capture the dynamic 

interrelationship between non-stationary but co-integrated variables. However, it is 

noteworthy that VECM models can also be developed with stationary data.  

 

Symbolically, the general form of the VECM model is:  
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 


 



         (4.29) 

 

where μt is the deterministic term, Yt is a vector of  endogenous variables, Δ is the 

first difference operator, Γi and Π are coefficient matrices measuring the short- and 

long-term adjustments and εt is a vector of white noise error terms.  

 

In the bivariate case, the VECM can be written in the form: 

 

(4.30) 

 

where  yt  =  α0  +  α1 xt  is  the  long-run  co-integrating  relationship  and  λχ  and  λy  

are  the  error  correction  parameters. 
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4.8. VECMX model 

The VECM model can be extended to embed exogenous variables, in addition to the 

endogenous. The form of the model can be mathematically represented as:  

 

 
1 1
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where Xt is a vector of exogenous variables and Bj are parameter matrices.  

 

 

4.9. Granger causality 

In general, correlation does not necessarily imply causality. Furthermore, although 

regression analysis establishes dependence among variables, it does not provide any 

information about the direction of the relationship or about the existence of causation 

(Gujarati, 2004). Therefore, a more robust tool is necessary, which can provide 

substantial statistical evidence with regard to causality. Thus, we make use of the 

Granger (1969) approach, which is a powerful and widely used method for the 

examination of causal relationships. This technique deals with the short run causality 

between a dependent and an independent variable. 

 

In the case of two variables, y and z, Granger causality, is defined as follows: 

 

“z is Granger-caused by y, if z can be better predicted using the lagged values of both 

variables, than by using only its own lagged values, or equivalently, if the coefficients 

of the lagged y’s are statistically significant.”  

 

Mathematically, Granger causality is tested using the VAR model below:  

 

 

(4.32) 

 

H0: b1 = b2 = ... = bn = 0 (y does not Granger-cause z), against H1: 'Not H0' 

 

and 

 

H0: d1 = d2 = ... = dn = 0 (z does not Granger-cause y), against H1: 'Not H0' 
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Therefore, Granger causality tests are equivalent to testing a set of linear hypotheses. 

According to Toda and Yamamoto (1995), Granger causality has to be checked by 

setting up a well specified VAR model in the level form of the data, regardless of the 

unit roots. Even if the data are non stationary the VAR model should be in levels (as if 

the data were stationary), adding one extra lag (which should not be included in the 

test formulation too) in order to fix up the distribution of the Wald test in such a way 

as to maintain the asymptotical chi-square distribution. Then the Granger causality 

tests can safely be performed. It is worth noting that the test statistics in the case of 

Granger causality analysis follow chi-square distribution and not F distribution.  

 

It is crucial to note that the VAR model in the level form of I(1) data is appropriate 

only when testing for Granger causality. It should not be used for other purposes, such 

as Impulse Response (IR) analysis or forecasting. Thus, the IR analysis and forecast 

models that follow use VAR in first differences for non-stationary and non-co-

integrated data, and VECM models for co-integrated variables. 

 

Granger causality is a very useful descriptive technique and it plays a critical role in 

the specification of quantitative models. However, as Gujarati (2004) points out, 

Granger causality cannot be utilized to establish exogeneity. In other words, one 

cannot infer which variables are exogenous and which are endogenous, on the 

grounds of Granger causality tests alone. This decision can be made in light of an in-

depth analysis of the fundamentals of each case, which may provide a sound 

theoretical justification.  

 

 

4.10. Impulse Response (IR) Analysis 

IR analysis complements Granger-causality providing further insights into the way 

that a pair of variables interacts with each other. This is very useful, given that the 

interpretation of the coefficients in the VAR models is not so straightforward.   

 

In particular, the Impulse Response function identifies the reaction of one variable 

with regard to an impulse to another within a system that may involve a number of 

other variables as well.  

 

The impulse enters the system through a positive shock of one standard deviation to 

the residual and then an impulse response function traces the effect on the endogenous 

variables in the VAR model.  
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IR analysis presumes that there is significant Granger causality between the 

endogenous variables under examination. However, as opposed to Granger Causality, 

the model specification of IR analysis cannot involve a VAR in levels if the data are 

found non stationary. It should involve either a VAR in first differences or a VECM if 

the variables are co-integrated. 

 

 

4.11. Variance Decomposition 

The variance decomposition or forecast error variance decomposition (FEVD) 

describes the percentage of the forecast variance that can be explained by random 

innovations to the endogenous variables in the VAR model. This implies that the 

FEVD reflects how much information is contributed by each endogenous variable 

within the system. 

 

Therefore, the variance decomposition is particularly useful when fitting a 

VAR/VECM forecasting model. It can provide valuable insights as to the selection of 

appropriate explanatory variables. 

 

 

4.12. Model Evaluation and Residual Diagnostics 

The previous sections indicated that the VAR and VECM models are defined as systems 

of linear equations, with each individual equation describing an endogenous variable as a 

function of the sum of its own lags and the lags of every other variable in the system. The 

fact that those equations are linear and have the same number of explanatory variables 

enables the use of Ordinary Least Squares (OLS) for the estimate the coefficients of the 

overall system. This implies that the OLS estimators need to satisfy the assumptions of 

the Classical Linear Regression Model (CLRM) across the equations of the system. The 

CLRM requirements are discussed in 4.12.2.  

 

4.12.1. The Coefficient of Determination R-Squared 

The coefficient of determination (R2) is a statistical measure that shows how well the 

data fits the model. It generally measures the goodness of fit of the regression line to 
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the data.  

 

Say that TSS stands for the Total Sum of Squares and is described as: 

 

  
22

i iTSS y Y Y      (4.33) 

 

while RSS is the Residual Sum of Squares (RSS) given by:  

 

 2ˆ
iRSS u   (4.34) 

 

 

Y denotes the independent variable, Y  the sample mean and ut the residual. 

 

Then the value of R-squared is defined as: 

 

 2 1
RSS

R
TSS

    (4.35) 

 

In view of the above definition, the R-squared provides an indication of how much 

variation in the dependent variable the independent(s) is/are able to explain.   

 

The values of R2 range from 0 to 1. A value of 1 indicates a perfect fit and implies that 

all movements of the dependent variable are completely explained, while an R-square 

of 0 means that the dependent variable is not related to the explanatory variable(s) at 

all. 

 

A high R2 (in excess of 0.8) suggests that a very high percentage of variation in the 

dependent variable is explained, which translates into a good fit. 

 

However, a low R-squared is not sufficient evidence against the model (Goldberger, 

1991). Therefore, the modeller should be more interested in the theoretical connection 

of the explanatory variables with the dependent one, as well as the statistical 

significance.  

 

Moreover, an increase in the number of explanatory variables is likely to inflate the 

R-squared, due to a possible (associated) decrease in residuals. However, the 

inclusion of more variables does not necessarily enhance the robustness of the model; 

on the contrary it may well have the opposite effect.   
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4.12.2. The Assumptions of the Classical Linear Regression Model 

(CLRM) 

The reliability of the detected relationship between variables is subject to the validity 

of the following assumptions about the data:   

 

• The conditional mean of stochastic disturbances is zero, given the value of 

regressors.  

• The variance of the errors is constant and finite. No heteroscedasticity. 

• There is no autocorrelation between the error terms. Their covariance is zero.  

• The errors are not correlated with the corresponding explanatory variables. 

• No perfect multicolinearity exists between the explanatory variables.   

• The error terms are normally distributed. 

• The number of observations must exceed the number of explanatory variables.  

• The explanatory variables are assumed non-stochastic.  

• The model should be correctly specified. This requires the choice of correct 

variables and correct functional form, and the avoidance of specification error or 

specification bias.  

 

Should the model fail to satisfy the assumptions of the CLRM, the estimators may 

lose their consistency and unbiasedness or they may no longer be Best Linear 

Unbiased Estimators (BLUE). In particular, the coefficient estimates and the standard 

errors may become biased rendering hypothesis testing invalid, and the assumed 

distribution for the test statistic will not be appropriate.   

 

Furthermore the model should be properly specified. Common specification errors 

involve over-fitting, that is the inclusion of unnecessary variables and under-fitting 

which refers to the omission of critical variables.  

 

The current analysis focuses on the examination of the properties of residuals in the 

estimated models. In this respect, it is checked if key assumptions, such as 

homoscedasticity and absence of autocorrelation, are fulfilled.  

 

The following paragraphs of this chapter discuss the main problems associated with 

the violation of certain assumptions of the CLRM. 
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4.12.3. Heteroscedasticity 

Heteroscedasticity is present when the conditional variance of the error terms, εi, is 

unequal across the observations. It is a highly undesirable feature in econometric 

modelling.  

 

Given the value of the explanatory variables Χi, homoscedasticity -which is the 

opposite of heteroscedasticity- is expressed as: 

 

var(εi | Χi)  = E[εi - E(εi | Χi)] 

 

        =E(εi
2 | Χi)  (4.36) 

 

   = σ2 (constant) 

  

The presence of heteroscedasticity has serious implications for the estimators, as it 

harms their efficiency (even in large samples) and their minimum variance status; 

overall they are no longer BLUE. Therefore, under such circumastances the t and F 

tests lose their reliability and may provide erroneous results. 

 

Yet, heteroscedasticity does not affect the consistency and unbiasedness of estimators.  

In fact, many authors argue that heteroscedasticity does not merit a reason to reject an 

otherwise good model (Mankiw, 1990), while Fox (1997) claims that the exact impact 

of heteroscedasticity is vague and he goes on to say that it becomes a real problem 

only when the largest variance is ten time higher than the smallest.  

 

Heteroscedasticity may be caused by various reasons. A usual source of 

heteroscedasticity is the presence of outliers in the sample. These outlying 

observations are very distant from the rest of the sample data and can create 

heteroscedasticity, especially in small samples. Another cause of heteroscedasticity 

can be the uneven distribution of an explanatory variable. If it is positively or 

negatively skewed, it may induce heteroscedasticity. Furthermore, heteroscedasticity 

might be owed to incorrect model specification, as a result of omission of important 

variables or inadequate functional forms.  Lastly, heteroscedasticity may be due to 

inappropriate transformations of data.  

 

There are a few diagnostic tests which are designed to detect variable variances. This 
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study employs the White Heteroskedasticity test and the Auto Regressive Conditional 

Heteroscedasticity (ARCH) test. 

 

4.12.3.1. White Heteroskedasticity test 

These tests are based on White’s (1980) general test for heteroscedasticity. The null 

hypothesis assumes homoscedasticity and the test checks if the non-constant 

explanatory variables are jointly significant.  

 

The test is performed without Cross Terms, i.e. using only the levels and squares of 

the independent variables.  

 

The test gives the LaGrange Multiplier (LM) chi-square statistic, which is distributed 

as a χ2. 

 

4.12.3.2. Auto Regressive Conditional Heteroscedasticity (ARCH) test 

The Auto Regressive Conditional Heteroscedasticity (ARCH) test of Engle (1982) 

performs LaGrange Multiplier (LM) tests for ARCH effects in residuals. In general, 

ARCH models assume that the variance of errors terms is a function of error terms of 

past periods.  

 

Although the White test is considered the best test for heteroscedasticity, when the 

dataset contains time series it is informative to check for ARCH errors. 

 

4.12.4. Autocorrelation 

Autocorrelation or serial correlation describes the correlation between the disturbance 

terms of different observations.  

 

Symbolically, 

 

 E(εiεj) ≠ 0,  i ≠ j  (4.37) 

 

where ε denotes the disturbances.  

 

Even though some researchers make a distinction between the terms ‘serial 

correlation’ and ‘autocorrelation’, they are typically used interchangeably.  
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The most common sources of autocorrelation include model misspecification 

stemming from over-fitting or under-fitting, inertia or sluggishness of time series, data 

manipulation (resulting in smoothness and systematic patterns), extrapolation or 

interpolation of data, data transformation and non-stationary error terms.   

 

The main consequence of autocorrelation is that the estimators are not efficient 

anymore, though they remain asymptotically normally distributed, unbiased and 

consistent. Therefore, the test statistics may not produce reliable estimates, while the 

R-squared may also provide misleading values. 

 

There are several tests for autocorrelation, with the Durbin-Watson (DW) being the 

most commonly used. However, it is not a very powerful test, for it is based on certain 

conditions which cannot be fulfilled in the case of variables in first difference form. 

Those conditions call for the inclusion of a constant term, non-stochastic explanatory 

variables and no lags in the dependent variable. Moreover, the DW test is tailored to 

AR(1) errors, reducing the scope of this test. These weaknesses make an alternative 

test, the Breusch-Godfrey LM test, more suitable for the kind of this analysis.  

 

4.12.4.1. Breusch-Godfrey LM test 

The Breusch-Godfrey LM test can be used to test for ARMA errors of higher order 

than the DW test and can be applied irrespective of the existence of lagged dependent 

variables.  

 

This test makes use of the estimated residuals in its formulation. It tests the null 

hypothesis of no serial correlation up to a specified lag and reports the F-statistics, 

which examine the lagged residuals in terms of their joint significance (as an omitted 

variable test). 

 

4.12.5. Multicollinearity 

Multicollinearity arises when there is a linear relationship among the explanatory 

variables. In that case, the estimators have large variances and the model coefficients 

contain large standard errors rendering their estimation imprecise. This may occur 

even if the R-squared values appear to be very large.  

 

Nevertheless, despite the presence of multicollinearity, the estimators remain BLUE. 
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That is to say, that multicollinearity mainly affects the estimation of the model 

coefficients.  

 

Another problem associated with the presence of multicollinearity is the sensitivity of 

the estimators to small changes in the data. 

 

 

4.13. Forecasting - Criteria for a useful forecast 

In the shipping market it is of paramount importance to develop forecasting models 

which are capable of providing the decision makers with relevant, practical, 

reasonable and thoroughly researched information. In this respect, the forecasts of this 

study should satisfy the following criteria: 

 

 Relevance 

This refers to the particular area where the forecast focuses and to the extent to which 

it can be useful to practitioners.  

 

The analysis of this thesis concentrates on the prediction of spot and period rates for 

different sizes of bulk carriers. The dilemma to enter the spot or the period market is 

faced by all ship operators, every time the previous employment of their vessels is 

terminated. Therefore, it would be very illuminating to obtain a hint as to the future 

levels of rates. Likewise, cargo owners weigh up if it is wiser to lock-into a long term 

contract at a fixed rate for the carriage of their cargoes or if it can be cheaper for them 

to continually seek tonnage in the spot market. Finally, numerous other related 

parties, such as shipbrokers, bankers, shipbuilders etc. can potentially use the 

forecasts of this analysis in order to complement their market assessment or consult 

their clients.  

 

 Rationale 

As mentioned, predictions of spot and period rates are vital for a variety of shipping 

and shipping-related operations. Having a significant impact on the most crucial 

management decisions, forecasting has become an essential function of every 

business. Accurate forecasts can offer guidance and generally assist in decision 

making. Inability to make correct projections of the future state of the freight market 

may result in devastating financial losses.  

  

This study adopts a multivariate modelling framework which factors in the most 

critical endogenous and exogenous variables. An integral part of this process is the 
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selection between the VAR and VECM framework. This decision is contingent on the 

time series characteristics of each case.  The rationale behind this approach is that the 

freight market is not isolated from its external environment. To the contrary, it is 

affected by global economic conditions, as well as by several other factors. This is 

apparent in all figures of Chapter 6, which illustrate the co-movement between freight 

rates and each of the exogenous variables. However, in order to ensure that this is not 

a matter of spurious correlation, a statistical justification of the explanatory power of 

the independent variables is provided. This is substantiated through Granger Causality 

tests and Variance Decomposition.  

 

In addition, an alternative approach (i.e. the Box-Jenkins) is applied and serves as a 

benchmark for the assessment of the robustness of the previously described 

methodology. This technique is based on a different philosophy, as it adopts a 

univariate perspective and generates forecasts accordingly. The key idea of this 

framework is that the historical behaviour of rates is the sole determinant of their 

future evolution. In this context, a properly specified model tracks the historical 

fluctuations of the time series and identifies patterns that will be repeated in the 

future.  

 

 Research 

The selection of explanatory variables is based on both theoretical and empirical 

analysis.  In general, the specification and implementation of forecasting techniques, 

alongside the selection of the appropriate explanatory variables, requires a sound 

theoretical analysis, combined with econometrics. The present thesis is based on 

extensive analysis of every aspect of the dry bulk freight market and the factors 

affecting it. Furthermore, it contains a comprehensive literature review, which 

provides an account of the past research in this area. Thereafter, the focus is placed on 

quantitative methods and time series analysis, and this unfolds a detailed discussion of 

univariate and multivariate causal models. Eventually, these frameworks are adjusted 

to the novel approach of this thesis and the findings are evaluated. 

 

 

4.14. Forecasting methods 

Forecasting techniques can be divided into two broad categories: Quantitative and 

qualitative methods. The former comprises time series models and causal analysis 

models, while the latter is based on expert judgment.   

 

The basic principle of time series models is that historical values can be used to 
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predict future values. The ARIMA models which are used in the present thesis belong 

to this category.  

 

Causal analysis forecasting models are determined by the relationship between a 

dependent variable and a number of independent ones, which are treated as either 

endogenous or exogenous. Some representative examples of this category include 

regression analysis models and the VAR-VECM framework (which is used in this 

study).   

 

As opposed to the previously described quantitative methods, the qualitative 

forecasting approach relies on personal experience and expert knowledge in lieu of 

numerical data. It involves techniques such as surveys and the Delphi method. 

 

 

4.15. The Box-Jenkins approach 

 

4.15.1. Modelling Steps 

Starting with the univariate case, the thesis adopts the most reliable and widespread 

method, the Box-Jenkins (1970) approach. The basis of this technique is the 

AutoRegressive Moving Average (ARMA) model. This model actually contains the 

AR(p) and MA(q) models.  The mathematic representation of an ARMA (p,q) model 

is given by: 
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where Xt is a time series c is a constant, the random variables εt, εt-i are white noise, p 

the order of autocorrelation, q the order of the moving average, and φi, θi are 

papameters.  

 

The most important contribution of Box and Jenkins is that they respond to the 

stationarity limitation within the ARMA framework. In fact, ARMA models require 

stationary data and this largely restricts their applicability, since most series have unit 

roots. Box-Jenkins approach deals with this by differencing the successive 

observations of a series as many times as it is necessary until the (differenced) series 

becomes stationary.  

 



89 

 

Therefore, when the series is non-stationary, the most appropriate framework is 

referred to as AutoRegressive Integrated Moving Average ARIMA (p,d,q). In 

essence ARIMA (p,d,q) has evolved from ARMA (p,q), with an extra parameter d 

representing the number of differencing to achieve stationarity. 

 

The Seasonal ARIMA (SARIMA) model, is an extention of ARIMA (p,d,q) whereby 

a seasonal factor is added. The SARIMA model can be written as SARIMA (p,d,q) 

(P,D,Q), where the capital letters P,D,Q refer to the counterparts of the parameters 

p,d,q for the seasonal model.  

 

The ARIMA or 'Box-Jenkins approach involves the following modelling steps:  

 

Step 1: Identification  

This step includes stationarity testing - as a way to decide between ARMA and 

ARIMA-, and specification of the appropriate parameters (p,q) on the basis of 

correlograms.  

 

Step 2: Model Specification 

This step comprises the following two sub-steps:  

 

 Examination of the autocorrelation (ACF) and partial autocorrelation (PACF) 

function. According to Yokum and Armstrong (1995), the forecasting model 

selection should be based on the precision of results. However, as there is no 

universally accepted measure of the accuracy of series’ forecasting, the model is 

specified on the basis of the above examination.  

 Determination of the optimum lags using the Akaike Information Criterion (AIC), 

and the Schwarz criterion. These criteria equip the model with a measure of 

goodness of fit and manage over fitting, by applying a penalty for excessive 

number of parameters. Thus, a new variable or lag will increase the penalty, 

despite reducing the error sum of square. The lower the criteria value the better the 

model specification. 

 

Step 3: Estimation  

Given the values (p, q), which have been specified in the previous steps, the method 

proceeds to the estimation of the ARMA terms using Least Squares.  

 

Step 4: Diagnostic checking 

This step examines the extent to which the models are valid and includes residual 

diagnostics, such as residual serial correlation and residual heteroscedasticity tests. In 
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addition, the R-squared of each model is calculated and reported.  

 

Step 5: Forecasting 

Generation of ex-post and ex-ante forecasts.  

 

Step 6: Evaluation of the forecasting accuracy 

The forecasting accuracy of the model is examined using the following criteria: Root 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE).  

 

 

4.16. Causal Relationship Forecasting 

The causal analysis models generally capture linear interdependencies among 

multiple variables. The concept of causal relationship forecasting is materialized by 

the construction of a proper model which predicts the future values of a dependent 

variable using independent variables other than time. The selection of the independent 

variables is a very critical step. The forecaster should ensure that they serve as leading 

indicators and at the same time they form a parsimonious model. What’s more, many 

seemingly causal relationships are in fact just correlated events. Therefore, a lot of 

care must be taken when selecting causal variables.  

 

This study attempts to predict the future values of spot and period rates for Panamax 

and Capesize bulk carriers. To this end, the foregoing theoretical and empirical 

analysis determines the selection of appropriate independent variables. Hence, it is 

demonstrated that these should include: the fleet development of Panamax and 

Capesize vessels, the Chinese steel production, the Dry Bulk Economic Climate Index 

(DBECI), and the average bunker prices. 

 

 

4.17. Dynamic Forecasting 

Dynamic forecasting is a multistep process that predicts the values of the forecast 

sample using the previously forecasted values of the dependent variable. Initially, the 

first observation is estimated based on the lagged values of the dependent variable 

(one-step ahead forecast). This is followed by a number of consecutive predictions, 

which use the forecasted values of the previous steps. It is clear that the selection of 

the starting point is very crucial in this type of forecasting.   
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4.18. Static Forecasting 

Static forecasts use the actual values of the lagged variables and generate one step 

ahead forecasts. Therefore, it is necessary to have actual data for every observation 

within the forecast sample, be it lagged endogenous or exogenous variable.  

 

In this context, it is obvious that both static and dynamic forecasts will have a 

common starting point; i.e. the first observation in the sample. 

 

 

4.19. Evaluation of Forecasting Accuracy 

The evaluation of forecasts is not as straightforward as it may sound. Baranto (1977) 

argues that the correct examination of forecast errors and the forecast process itself 

can be equally challenging.  For this reason, a proper assessment should be based on a 

combination of error statistics and not on a single criterion.  

 

Forecast errors are indicative of the forecasting accuracy. The forecast error is the 

difference between the forecast value and what actually occurred. In fact, all forecasts 

contain some level of error. The main sources of error are: the bias which occur when 

a consistent mistake is made and the randomness that refers to errors that are not 

explained by the model being used. The predictive power of the proposed models will 

be examined using the following criteria: 

 

 Mean Absolute Error (MAE)  

 Root Mean Squared Error (RMSE) 

 

4.19.1. Mean Absolute Error (MAE) 

The mean absolute error is defined as: 
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where Ft is the forecast value, At is the actual value and N is the sample size.  

 

In time series analysis, it is a pretty widespread measure of forecasting accuracy. The 
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MAE is actually the average of absolute errors, providing an indication of the 

proximity of predictions to the actual values. The outcome is assessed according to 

the following rule of thumb: the larger the MAD the less accurate the model.  

 

4.19.2.  Root Mean Squared Error (RMSE) 

In the same notation as above, the root mean squared error is defined by the formula: 
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The MSE represents a measurement of the average of squared differences between the 

forecast and the actual values. This function corresponds to the variance and 

constitutes a measure of risk. Likewise, the RMSE corresponds to the deviation.   

 

In general, when comparing two or more unbiased estimators, the one with the lowest 

variance is most desirable and the best predictor. Connecting this with the previously 

described convergence of MSE to the variance, it turns out that low values of MSE 

indicate a high degree of forecasting accuracy.   

 

As opposed to the MAE, the MSE is more appropriate for forecasts that avoid great 

forecast errors. The main drawback of MSE is that it is highly vulnerable to outliers. 

Squaring magnifies their effect, weighing large errors more than small ones. 

 

The root mean square error (RSME) is obtained by the square root of the MSE. This 

transformation does not affect the performance of this measure, but at the same time it 

does not correct the flaws of the MSE either.  

 

 

4.20. Forecasting Methodology 

In congruence with the above tools, this study employs three different forecasting 

techniques, which focus on the dry bulk freight market. These are based on the 

VAR/VECM, the VARX and the Box-Jenkins approach. The common objective of all 

these models is the generation of forecasts for the spot and period rates of the most 

representative categories of bulk carriers. It should be noted that all variables are 

modelled in logarithmic form.  

 

Starting with the VAR/VECM, the first step is to test the time series for stationarity. If 
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the data are found non-stationary, the next step is the investigation of the existence of 

co-integrating relations using the Johansen test (1991, 1995). The co-integrated 

variables are modelled within a VECM modelling environment, whilst the non-co-

integrated within a VAR framework. Meanwhile, several lag length criteria are used, 

such as the sequential modified LR test statistic (LR), the Final prediction error 

(FPE), the Hannan-Quinn information criterion (HQ), the Schwarz information 

criterion (SC) and the Akaike information criterion (AIC) in order to come up with 

the most suitable number of lag intervals. In addition it is checked if the selected lag 

satisfies the no-residual-correlation criterion. If not, the selection is revised 

accordingly. 

 

The next step is to fit the model and finally examine its specification in terms of serial 

correlation and heteroscedasticity. This purpose is served by several pertinent tests, 

such as the Residual Serial Correlation LM test and the Residual Heteroskedasticity 

test.   

 

VARX models are built in a similar fashion and contain the same endogenous 

variables as their VAR/VECM counterparts, but they are enhanced by the addition of 

appropriate exogenous variables. The far-reaching goal of this study is to improve the 

forecasting accuracy of the previously described multivariate framework.   

 

In addition to the aforementioned perspectives, the study adopts an additional 

approach, the ARIMA models, so as to obtain a complementary forecasting tool and 

eventually compare the predictive power of the proposed techniques.  

 

The preceding steps lead to the development of appropriate modelling frameworks, 

which can potentially generate reliable forecasts. This allows the generation of 

comparable ex-post static and ex-ante dynamic forecasts by each model. Eventually, 

the predictive success of each approach is evaluated using the following criteria: Root 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE). 
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5.  CONSTRUCTING A NEW COMPOSITE INDICATOR 

– THE DRY BULK ECONOMIC CLIMATE INDEX 

(DBECI) 

 

5.1. Introduction 

The economic environment constitutes an integral part of the context in which the 

freight market is developing. The profound connection of seaborne trade with the 

state of the economy has been reflected numerous times in the close relationship 

between business and freight cycles. It has also been documented ever since the early 

stages of the tramp market. For example, Isserlis (1938) points out the linkage 

between economic cycles and freight rate movements, noting that the demand for 

shipping is primarily triggered by the world economy. Platou (1970) pinpoints the 

influential role of the economic environment in the dry cargo market. For example, 

the sharp decline in the industrial production of 1958 reflected the sluggish world 

economy of that period which harmed the seaborne trade of raw materials and 

contributed to the falling freight rates. 

 

The present study aims to capture those dynamics, by constructing a composite 

indicator which mirrors the macroeconomic environment of the dry bulk freight 

market. In particular, the Dry Bulk Economic Climate Index (DBECI) is composed of 

some carefully selected components and variables, which are consistent with its role 

as a leading indicator of the freight market. In fact each variable alone provides some 

stimulus to the future values of the freight rates (this is discussed in more detail in the 

following sections). Therefore, a new indicator can be formed by putting all those 

variables together and assigning the most appropriate weight to each of them. Such an 

indicator can gauge the relevant economic developments and provide advanced 

warnings of imminent changes in the freight market.  

 

A major characteristic of the world economy is its cyclicality, which is compatible 

with the cyclical behaviour of the shipping market. On top of this, shipping cycles are 

frequently driven by economic cycles, reflecting the close ties of the demand for bulk 

carriers with the state of the economy. This cyclical process is occasionally 

precipitated by random economic shocks, which frequently have large-scale effects. 

These rare, but sudden disturbances cause substantial changes in the demand for 

shipping services, affecting the level of freight rates quite dramatically.   

 

The high complexity of the world economy requires a painstaking process of 
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analysing its fundamental factors. China and the US are at the core of this study, 

given the prominent role of their economies in the dry bulk market. In this regard, the 

variables making up the DBECI include several economic metrics of those two 

nations. This ensures that the underlying sample is not significantly influenced by the 

economic figures of countries that do not play an important part in the dry bulk 

seaborne trade.  

 

The impact of the global economy on the dry bulk freight market has been quite 

evident over the course of shipping history.  

 

The Wall Street Crash of 1929 and the subsequent great depression of 1930s set off a 

prolonged shipping recession which translated into a sharp drop of trade volume and a 

large number of lay-ups.  

 

The global economic conditions deteriorated again in 1997, due to the crisis of the 

Asian economies. The falling industrial production dragged the freight market 

downwards. This lasted until 2000, when the ‘Asian crisis’ ended and the industrial 

production got back on track. The improved economic fundamentals led to a long 

anticipated rebound of the freight market, even though it proved short-lived. 

 

The most notable surge of the freight market occurred between 2003 and 2007, when 

the rates reached all-time highs. The spurring growth of China and its massive imports 

of raw materials was the main driver behind this market rally. This ceased in the 

second half of 2007, when a deep financial crisis spread to the world economy and 

ultimately to the shipping market, causing an unprecedented plunge of freight rates in 

the second half of 2008.   

 

 

5.2. Methodology 

The aggregation of different individual indicators into a common composite indicator 

requires sound theoretical and quantitative analysis. Thus, the first step involves the 

development of the theoretical framework, which dictates the selection process of the 

underlying variables and explains their relevance to the dry bulk freight market. 

Furthermore, the DBECI is broken down into three sub-groups: power of consumers, 

liquidity, and industrial activity. This nested structure reflects the conceptual 

formation of the composite indicator by three distinct driving forces, each of which is 

described by a set of representative variables.  
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The data analysis begins with normalization of the selected indicators, so that they 

become comparable. Then multivariate analysis takes over in order to explore the 

overall structure of the indicators and ultimately apply an appropriate weighting 

method.  

 

Most indicators rely on equal weights, but this study refrains from making use of this 

simplistic weighting scheme, so that it can reflect on the relative importance of each 

sub-indicator and also avoid other issues such as double counting. In fact, equal 

weights can be highly misleading and it is better to be avoided. Lovell, Pastor, and 

Turner (1995) state that the component parts of an indicator should not be restricted 

by equality.   

 

This potential limitation is sidestepped by the adoption of a linear programming 

method which generates appropriate weights for the sub-indicators. In this respect, the 

weights are assigned using the ‘Benefit of the Doubt approach’ (BOD) (Melyn & 

Moesen, 1991; Cherchye, Moesen, Rogge, & Van Puyenbroeck, 2007), which derives 

from the Data Envelopment Analysis (DEA) (Charnes, Cooper and Rhodes, 1978). 

The core idea of BOD is that the assigned weights are estimated on the basis of the 

relative performance of each sub-indicator against a benchmarking frontier. In 

particular, the aggregation and weighting of the eight individual sub-indicators into a 

common indicator is based on an extension of the BOD approach, which includes an 

ideal time observation that acts as the absolute, unique benchmark for all time periods 

and thus makes the assessment scores constant over time. A detailed description of the 

mathematical background of this modified technique is beyond the scope of the 

current study, but it can be found in Tsioumas, Smirlis and Papadimitriou (2016). 

 

 

5.3. Data and Descriptive Statistics 

The data on each sub-indicator are gathered from various sources. Specifically, the 

New Residential Construction (or Housing Starts) is published monthly by the U.S. 

Department of Commerce's U.S. Census Bureau, the Euro/USD exchange rates are 

retrieved from Eurostat, the Yuan/USD and the World Industrial Production from the 

Global Economic Monitor (GEM) (World Bank Group), the Brent Crude Oil Price 

from Clarkson Shipping Intelligence Network, the Federal funds effective rate and the 

Consumer Credit Outstanding (Levels) (US) from the Board of Governors of the 

Federal Reserve System and finally the Manufacturing and Trade Inventories and 
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Sales (US) from the U.S. Department of Commerce's U.S. Census Bureau 

 

Table 5 presents the Descriptive Statistics for each sub-indicator of the DBECI.   

 

 

  Mean  Min Max 
Standard 

Deviation 
Skewness Kurtosis 

Power of Consumers 
      

New Residential 

Construction  
1355.04 513 2263 543.53 -0.11 -1.41 

Euro/USD  1.22 0.85 1.58 0.18 -0.52 -0.68 

Yuan/USD  7.48 6.05 8.28 0.84 -0.38 -1.58 

Brent price  63.36 10.25 137.19 34.95 0.28 -1.32 

       

Liquidity       

Fed rate 2.25 0.07 6.54 2.17 0.54 -1.24 

Consumer Credit 

Outstanding  
2336883.8 1431200 3233200 467178.3 -0.22 -0.88 

       

Industrial Activity       

Industrial Production  1337.01 1020 1710 170.68 0.06 -1.16 

Inventories  1028734.9 674466 1400400 184228.8 0.19 -1.14 

Table 5: Descriptive Statistics (Index components) 

 

 

5.4. Normalisation of data 

Normalization is an essential step towards the construction of the composite index, 

considering that the sub-indicators are expressed in different units of measurement. 

This adjustment makes data handling possible, as they are converted in a common 

scale.  

 

In the context of the BOD approach, the values of each sub-indicator are normalized 

using max-min rescaling. Say ijx  is a sub-indicator then the normalized values ijx  

will be given by the following formula: 
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  (5.1) 

 

where minix , maxix  are the lowest and highest bounds respectively. 
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5.5. Conceptual Framework 

The DBECI is divided into three major components (i.e. Power of Consumers, 

Liquidity and Industrial Activity). Each of them describes a separate dimension of the 

DBECI and their combination shapes the final composite indicator. This division 

gives rise to a nested structure and reflects the conceptual formation of the composite 

indicator by the aggregation of three distinct driving forces. The underlying sub-

indicators are the New Residential Construction (US), the Euro/USD and Yuan/USD 

Exchange rates, the Brent Crude Oil Price, the Federal funds rate, the Consumer 

Credit Outstanding (US), the World Industrial Production and the Manufacturing and 

Trade Inventories (US). Specifically, the precise allocation of sub-indicators with 

respect to the corresponding component parts is presented below.  

 

Index Components: 

 

1) Power of Consumers 

 New Residential Construction (US) 

 Exchange Rate Euro/USD  

 Exchange Rate Yuan/USD  

 Brent Crude Oil Price 

 

2) Liquidity 

 Federal funds rate 

 Consumer Credit Outstanding (Levels) (US) 

 

3) Industrial Activity  

 World Industrial Production  

 Manufacturing and Trade Inventories (US) 

 

In what follows the chapter provides a description of each individual sub-indicator, as 

well as explanations of its linkage with the dry bulk freight market. 

 

5.5.1. New Residential Construction (US) 

New residential construction (or Housing Starts) captures the newly issued building 

permits, the new construction projects and the housing that were brought to 

completion. Its significance lies in the fact that the housing sector is one of the major 

investment options and accounts for a considerable part of consumer spending. In 

particular this indicator tracks the constructors’ behavior and reflects their market 
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expectations.  

 

The construction industry uses several dry bulk commodities such as steel, cement, 

clinker etc. Therefore, an increase in construction activity pushes the demand for such 

commodities upwards, favoring the bulk carriers. 

 

5.5.2. Consumer Credit Outstanding (Levels)_US 

The Federal Reserve releases monthly the Consumer Credit report which monitors the 

consumer credit conditions, tracking the changes in the consumer outstanding debt, as 

this is measured by the combination of revolving and non-revolving credit. 

Specifically, revolving credit mainly involves credit card loans and prearranged 

overdraft plans, while non-revolving comprises education, vehicle and personal loans. 

 

This variable actually expresses the availability of credit for consumers. To that 

extent, it is a major determinant of consumer spending and needs to be taken into 

careful consideration. Especially since a large variety of products and services are 

bought on credit. 

 

5.5.3. Exchange Rates: Euro/USD and Yuan/USD 

In the aftermath of the breakdown of the Bretton Woods system in 1971, the global 

economy has switched to floating exchange rates, which are highly volatile. This has 

largely impacted the world trade, re-establishing the trading relationships and 

activities, and rendering them reliant on the exchange rates fluctuations. 

 

The exchange rate of EUR against USD has a significant impact on the Trans-Atlantic 

trade and this extends to the entire dry cargo market. In particular, a strong USD is 

seen as very expensive by European importers and this affects negatively the US 

exports of dry commodities, such as grain and coal, to Europe. Likewise, the Chinese 

imports from the US are significantly affected by the prevailing exchange rate.  

 

5.5.4. Brent Crude Oil Price 

Brent crude price tracks the prices of crude oil in the Atlantic and serves as a leading 

benchmark for the global oil trade. The Brent crude oil price is a major driver of the 

world economy. As oil prices fluctuate, inflation follows suit and ultimately 

determines the buying power of consumers. Crude oil is a prime source of energy and 
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its products have various uses that range from heating and electricity generation to 

their utilization as fuel in every mode of transport. Importantly, a possible rise in oil 

prices increases the production and transport costs, and eventually it is passed on the 

end user through higher product prices. Consequently, higher oil prices may translate 

into lower consumer spending and in turn into sluggish trading activity and 

diminished demand for raw materials.  

 

Yet, this is not always the case. Despite the two oil crises of 1973 and 1979 and the 

collapse of the tanker market, the dry bulk market withstood this challenging 

economic environment and boomed on the back of dry commodities stockpiling and 

port congestion. As a matter of fact, the rising oil prices favoured the dry cargo 

market, as they increased the revenues and the liquidity of oil producing countries, 

providing a boost to their trading activity. Furthermore, the high oil prices of that 

period proved to be very beneficial for the coal trade, which was used as a substitute 

for oil. Consequently, this also contributed to the booming dry bulk market.  Before 

long, the outset of an economic recession, combined with falling oil prices and some 

other factors, led the dry bulk market to a slump. (Stopford, 2009) 

 

5.5.5. Federal funds rate 

The US federal funds rate represents a target interest rate that is set by the Federal 

Open Market Committee and effectively determines the interbank borrowing. When 

Fed decides to raise the rate, banks are discouraged from borrowing money and 

subsequently the loan interest rates rise, disincentivizing investments and generally 

reducing consumption. In this context, consumers typically prefer to deposit money 

into their bank accounts, exploiting the higher rates, rather than borrowing debt to buy 

goods or assets.  

 

Moreover, a possible Fed rate hike could enhance the attractiveness of the USD 

relative to foreign market currencies. This may be harmful for the US exports, as the 

devaluation of other currencies against the USD, will make the US exported goods 

more expensive. 

 

5.5.6. World Industrial Production 

World industrial production measures the industrial output in the global economy. 

This includes mining, manufacturing, electricity power, and utilities.  

 

Stopford (1999) illustrates that world industrial production is strongly related to 
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seaborne trade. He also provides historical evidence that falling industrial production 

played a central role in harming the demand for ships. Focusing on the dry cargo 

market, the level of industrial production is closely linked to the volume of seaborne 

trade of the underlying raw materials. Therefore, a sudden drop in industrial 

production can spiral the freight market downwards. 

 

5.5.7. Manufacturing and Trade Inventories and Sales (US) 

The Manufacturing and Trade Inventories and Sales (US) provide insights on the 

economic conditions. This metric corresponds to the aggregated value of inventories 

and sales across the manufacturing, retail and wholesale sectors. 

 

High inventory levels indicate slowing sales and the economy is contracting too. In 

this sense, this variable is tied to the state of the economy and the trading activity 

alike, providing useful clues about the demand for the underlying raw materials. A 

large chunk of the latter is imported by bulkers, marking the key role of inventory 

levels for the dry bulk market. 

 

 

Figure 3 presents the evolution of DBECI from January 1999 to July 2014. This 

composite indicator, as explained, is constructed by the aggregation of the previously 

described variables. It is noteworthy that the movements of DBECI prior to 2007 

demonstrate that this leading indicator would have been able to predict the market 

crash of 2007 and the subsequent shipping market recession.  
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The next chapters will explore the relationship of this indicator with the dry bulk 

freight market and ultimately its utilization in forecasting models.  
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6.  IMPACT OF EXTERNAL FACTORS ON THE 

FREIGHT MARKET 

 

6.1. Introduction 

The dry bulk freight market is essentially an open system and as such it is in constant 

interaction with its external environment. Therefore, it will be utterly useful to specify 

the most critical variables in terms of their impact on rates. This will reinforce the in-

depth analysis of freight rate fluctuations, laying the foundation for the modeling 

work that will follow.  

 

As discussed in the literature review of Chapter 3, many authors have attempted to 

identify the key factors that affect the freight market. However, the complex nature of 

this market suggests that there might be more outside factors that have a significant 

effect on freight rates.  

 

In this reading, the current analysis undertakes to detect additional factors that play an 

influential role in the transportation of dry cargo. This is accomplished using causality 

and Impulse Response analyses. In particular, certain variables which can 

theoretically be viewed as leading indicators of future freight rates are shortlisted and 

then their dynamic relationship with the Baltic Exchange indices for different vessels 

sizes is empirically investigated. This set of variable comprises the Dry Bulk 

Economic Climate Index (DBECI), the average IFO price, the Chinese steel 

production, the port congestion and the commodity prices of the major bulks. 

 

 

6.2. Data 

The analysis is performed using the EViews software and the dataset consists of 

monthly time series for the period starting from January 1999 to July 2014. The Baltic 

exchange indices are published by the Baltic Exchange. Monthly historical data for 

BCI, BPI, BSI (available from July 2005 onwards) and Chinese crude steel production 

were obtained from the Clarkson’s Research Services Ltd (CRLS) database. The same 

source also provides data for IFO (380 cst) bunker prices, as well as for Capesize Port 

Congestion (as a percentage of the Capesize fleet) (from January 2010 onwards), 

Panamax Port Congestion (as a percentage of the Panamax fleet) (from January 2010 

onwards) and Handymax Port Congestion (as a percentage of the Handymax fleet 

(from January 2010 onwards). The latter was used due to the unavailability of port 
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congestion data for Supramax. Therefore data was found for the most closely related 

vessel category.  

 

The commodity prices data were taken from World Bank. All commodity prices are 

expressed on a Free On Board (FOB) basis. Also, it is important to mention that there 

are no data for FOB iron ore prices after the December of 2010, due to the 

introduction of Cost and Freight (CFR) China’s spot pricing. In a future study, the 

analysis can be enriched with more recent data which could be obtained by 

subtracting the Australia – China Capesize freight rates from the CFR price. The 

prices of the Australian thermal coal refer to 6,300 kcal/kg of less than 0.8% and 

sulfur 13% ash, from 2002 onwards, whilst the grade under consideration prior to this 

was: 6,667 kcal/kg of less than 1.0% sulfur and 14%  ash content. The iron ore of this 

analysis has a 64.5% Fe content and the wheat type is no. 2 Hard Red Winter 

(ordinary).  

 

Finally, the data sources of the underlying sub-indicators of the DBECI are stated in 

Chapter 5.   

 

It should be noted that the data analysis and the relevant tests are performed in log-

transformed data. 
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6.3. Descriptive Statistics 

 

  Table 1: Descriptive Statistics   

  Mean  Min Max 
Standard 

Deviation 
Skewness Kurtosis J-B 

Supramax        

BSI 7.456384 6.056784 8.784468 0.631458 0.29388 2.483711 2.779578 

       [0.249128] 

        

Panamax        

BPI  7.621196 6.244167 9.27153 0.699573 0.405845 2.412986 7.818366 

       [0.020057] 

        

Capesize        

BCI 7.976203 6.767343 9.729610 0.710936 0.433155 2.412623 8.444516 

  
            

[ 0.014665] 

AVG_IFO 5.665112 4.114164 6.606637 0.650939 -0.195059 1.803429 12.34179 

       [0.002089] 

Steel_Prd_Ch 10.293280 9.108972 11.162400 0.652012 -0.405058 1.705315 18.174040 

       [0.000113] 

DBECI 3.959326 3.778041 4.112170 0.089844 -0.067338 1.886095 9.809107 

       [ 0.007413] 

Commodity Prices      
 

Coal_Aus 4.055929 3.178054 5.261965 0.58744 -0.074772 1.703569 13.26995 

       [0.001314] 

        

Iron _Aus 3.853521 3.282038 4.974386 0.575082 0.601563 1.910924 14.4848 

       [0.000716] 

        

wheat_USG 5.317629 4.67367 6.118097 0.399924 0.099622 1.666786 14.15869 

              [0.000842] 

Notes:        

Figures in [.] are p-values 

The Jarque-Bera (J-B) test is used to check for normality. The J-B statistic is asymptotically χ²(2)-distributed.  

Table 6: Descriptive Statistics  

 

 

First of all, the values of Baltic indices presented in Table 6 suggest that the larger the 

vessel size the higher the standard deviation. This corresponds to the higher volatility 

that characterizes the larger bulk carriers as a result of their reliance on certain trades.  
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As far as the shape of the sample distribution is concerned, it is illustrated that all 

three Baltic Exchange indices are positively skewed and the same holds for iron ore 

and wheat prices. All other variables are skewed to the left. According to Table 6 the 

sample kurtosis is less than 3 in all cases, therefore the distribution of each variable is 

flatter than the normal distribution. Lastly, the Jarque-Bera tests indicate that the 

sample data do not match a normal distribution, with the exception of BSI. However, 

the available data for BSI begin from July 2005. This means that the dataset for this 

particular index is very short, and this renders the Jarque-Bera test unreliable.   

 

 

6.4. Theoretical Framework – Methodology 

The lead-lag relationship refers to the situation where the values of a leading variable 

are linked to the values of a lagged variable at later times. 

 

The analysis, first of all, tests for unit roots performing the Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) test and the Augmented Dickey–Fuller (ADF) test. Both tests 

are carried out in the log-levels and log-differences of the series of this analysis. The 

KPSS test examines the null hypothesis of stationarity under two different 

assumptions: First the series have an intercept, and second, a constant and linear 

trend. On the other hand, the ADF test is performed on the log- levels and log-

differences of the same variables and tests the null hypothesis of non-stationarity 

under three different assumptions: An intercept, a constant and linear trend, and 

neither.  

 

If the series are found non-stationary it is necessary to examine the existence of co-

integration, using the Johansen test. Then, a VAR model is set up in the levels of the 

data, and the appropriate lags are determined using various lag length criteria, such as 

the sequential modified LR test statistic (LR), the Final prediction error (FPE), the 

Hannan-Quinn information criterion (HQ), the Schwarz information criterion (SC) 

and the Akaike information criterion (AIC) (See Appendix B). Thereafter, it is 

checked if the model is well specified by looking at its R-squared, and by applying the 

VAR Residual Serial Correlation LM test and the VAR Residual Heteroskedasticity 

Test.  

 

Based on that model, the study employs Granger causality tests, as a way to 

investigate the existence of causal relationships. When the results are significant, it is 

sensible to proceed to Impulse Response (IR) analysis in order to explore the manner 
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in which the variables affect each other. In particular, IR analysis will indicate if 

changes in one variable have a positive or negative effect on the other and how long 

this effect will last. It should be noted that if two variables are co-integrated, the IR 

analysis should be based on a VECM model and if not, on an unrestricted VAR. 

 

 

6.5. Dry Bulk Economic Climate Index (DBECI) and Freight Market 

The construction of the DBECI was described in Chapter 5. This section investigates 

the linkage of this composite indicator to the dry bulk freight market.  

 

6.5.1. Empirical Results 

 

6.5.1.1. Stationarity Tests 

The ADF and KPSS unit root tests are carried out in the log-levels and log-differences 

of DBECI and Baltic indices. The KPSS tests the null hypothesis of stationarity under 

two different assumptions: First the series have an intercept, and second, a constant 

and linear trend. Alongside, the ADF test is performed on the log- levels and log-

differences of the same variables and tests the null hypothesis of non-stationarity 

under three different assumptions: An intercept, a constant and linear trend, and 

neither.  

 

 

  Log-Levels   Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

DBECI -2.338886 -2.395470 -0.836106  -2.710362* -2.704792 -2.658569*** 

          

BCI -2.620608* -2.517031 -0.113657  -10.15873*** -10.19775*** -10.18645*** 

          

BPI -2.525228 -2.497892 -0.304766  -10.84987*** -10.89695*** -10.87895*** 

          

BSI -2.142959 -3.442606* -0.467363  -7.410905*** -7.415576*** -7.437151*** 

                

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 7: ADF test (DBECI) 
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  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

DBECI 0.228546  0.167210**  0.113229 0.094181 

        

BCI  0.354190*  0.328912***  0.152610 0.035532 

        

BPI 0.331683 0.331278***  0.167447 0.023463 

        

BSI 0.770942*** 0.094768  0.073853 0.041639 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett 

kernel 

Table 8: KPSS test (DBECI) 

 

 

The results of the ADF and KPSS tests are presented in Tables 7 and 8. The 

combination of those two tests provides sufficient evidence that all series are non-

stationary in level forms, but stationary in first differences. 

 

6.5.1.2. Co-integration Analysis 

Given that the series are integrated of order 1, Johansen Co-integration test 

investigates the existence of co-integrating relations. The results are presented in 

Table 9:  
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Pair of variables Lags 
Hypothesized 

No. of CE(s) 
Trace 

0.05 CV 

(trace) 

Max 

Eigenvalue 

0.05 CV 

(Max Eigen.) 

BCI - DBECI 8 None 10.16576 20.26184 6.904804 15.8921 

BPI - DBECI 8 None 11.94067 20.26184 9.306167 15.8921 

BSI - DBECI 5 None* 17.73629 20.26184 16.53512 15.8921 

   At most 1 1.201178 9.164546 1.201178 9.164546 

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series.   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 9: Johansen Co-integration test (DBECI) 

 

 

The results demonstrate that there are no co-integrating relations. Therefore each pair 

of variables will be modelled using an unrestricted VAR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 

 

6.5.1.3. Causality Analysis 

 

Dependen

t variable 

Exclude

d 

variable 

Model 
Lag

s 

Chi-

sq.   

(p-

value) 

Outcome 

Residual 

Serial 

Corr. 

LM test 

 Residual 

Heteroskedasticit

y 

R-sq. 

BCI DBECI 

VAR 

8 
0.007

4 

causality at 

1%   

0.0755* 
 0.0084*** 

0.29895

4 
DBECI BCI 8 

0.571

0 
No causality 

BPI DBECI 

VAR 

8 
0.000

2 

causality at 

1% 
0.4741  0.0001*** 

0.21902

7 
DBECI BPI 8 

0.625

6 
No causality 

BSI DBECI 
VEC

M 

5 
0.001

4 

causality at 

1% 
0.7917  0.0000*** 

0.34364

8 
DBECI BSI 5 

0.263

3 
No causality 

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

VAR/VEC Residual Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

VAR/VEC Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

Table 10: Granger Causality Test (DBECI) 

Table 10 reports the outcome of several Granger causality tests between the BDECI 

and the respective Baltic Exchange indices. It turns out that there is significant 

unidirectional causality between the BDECI and each of the representative indices. 

Specifically, BDECI causes BCI, BPI and BSI at a 1% level. On the flip side, there is 

no causality running from any of those indices to BDECI. Therefore, this is an 

indication that BDECI could be used as an exogenous variable in a freight forecasting 

model.  

 

The R2 values show that the underlying models are satisfactory in terms of goodness 

of fit, relatively speaking. In addition the LM tests demonstrate that the models are 

free from serial correlation, with the exception of the BCI – DBECI VAR model, 

which appears auto-correlated at a high level though (10%).   

 

Finally, even though the variables were converted into logarithmic forms, residual 

heteroscedasticity is still present as shown by the relevant White heteroscedasticity 

tests (no-cross terms). This may be due to the uneven distribution of the variables of 

this analysis, as indicated by the skewness that the descriptive statistics of Table 1 

detect. Another possible source of heteroscedasticity is the existence of outliers, 

combined with the small sample size.  
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In any case, although the presence of heteroscedasticity harms the efficiency of 

estimators, it does not affect their consistency and unbiasedness. Hence, it normally 

does not merit a reason to reject an otherwise satisfactory model. 

 

6.5.1.4. Impulse Response Analysis 

The next step involves IR analysis. The figures below depict the responsiveness of the 

freight market to a positive shock to DBECI. Specifically, IR analysis detects the 

precise reaction of each Baltic index, given a sudden spike in the DBECI. 

 

The vertical axis measures the magnitude of the effect of the shock on each variable 

and the horizontal axis the number of months after the shock. 

 

 

Figure 4: BCI and DBECI 

 

 

According to Figure 4 the BCI is expected to head upwards over the short and 

medium term, suggesting that a booming economic environment has a long lasting 

positive impact on Capesize rates. Eventually, after some fluctuations the effect of the 

shock dies out.  

  

This behaviour is consistent with the theoretical expectations of the relationship under 

consideration. Therefore, IR analysis provides empirical evidence of the direction of 

the relationship between DBECI and BCI and effectively validates the utilization of 

the DBECI as a leading indicator of the freight rates. 
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Figure 5: BPI and DBECI 

 

Figure 5 shows the reaction of BPI to a positive shock to DBECI. The exhibit 

demonstrates that the response of the BPI is quite similar to BCI. The main difference 

is that in the case of Panamax vessels the full effect of the shock comes up slower, 

while it dies out a little sooner and slightly more steeply. Therefore, Capesize ships 

are more susceptible to changes in economic conditions, than the smaller and 

relatively more versatile Panamaxes. 

 

 

-.2

-.1

.0

.1

.2

.3

1 2 3 4 5 6 7 8 9 10

Response of BSI to DBECI

 

Figure 6: BSI and DBECI 

 

 

Finally, Figure 6 shows that BSI responds in a similar manner as the other two types 

of bulk carriers. However, given that the BSI has been found co-integrated with the 

DBECI, the effect of the shock does not die out. On the contrary, the two variables 
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reach a long-term equilibrium emanating from their co-integrating relation. 

 

 

6.6. Steel Production and Freight Market 

This analysis provides statistical evidence in support of the view, widely held in the 

dry industry, that there is a lead-lag relationship between Chinese steel production and 

dry bulk freight rates. Furthermore, this raises an important question about the 

direction of their relationship. Despite the plethora of studies on micro and macro 

economic determinants of freight rates, there have been no studies addressing these 

issues. Hence, this study undertakes such an investigation at an empirical level. The 

results are generally in line with industry expectations and contribute to the 

understanding of the interplay between commodity demand and freight market 

movements.  

 

Given that this analysis is tailored to the dry bulk market, it uses the Chinese steel 

production as a proxy of the total steel which is produced using raw materials carried 

by sea. In this sense, the world steel output would not be an equally accurate measure, 

considering that many steel producing countries buy raw materials from domestic 

mines or mines in their proximity and transport them overland. To the contrary, China 

has developed into the major iron ore importer, while its steel industry accounts for 

over 50% of world steel production (Figure 7). At the same time, the dry bulk freight 

market is largely driven by Chinese iron ore (primarily) and coking coal imports. 

Considering that those two commodities are the basic components of steel, it is 

interesting to investigate how China’s steel output interacts with the entire dry cargo 

market. 
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Crude Steel Production by Main Iron Ore Importer in 2013
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Figure 7: Steel output by iron ore importer 

 

 

Chapter 3 provides a detailed account of the related research activities. However, it 

appears that there is a gap in the literature, as there has been no thorough empirical 

examination of the underlying relationship between those variable. The general 

consensus is that the level of steel production is a bellwether of demand for raw 

materials and in turn of freight rate fluctuations; though, so far this only has 

theoretical grounding. Hence, the current study intends not only to cover this gap, but 

also shed some light on this interaction. 
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6.6.1. Empirical Results 

 

6.6.1.1. Stationarity Tests 

The results, which are presented in Tables 11 and 12, reject the null hypothesis in 

almost all cases of level forms suggesting that the series are non-stationary. 

 

  Log-Levels   Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

Stl_Prd_Ch -1.873946 -0.797431  2.473431  -3.248202** -3.655370** -1.824531* 

          

BCI -2.620608* -2.517031 -0.113657  -10.15873*** -10.19775*** -10.18645*** 

          

BPI -2.525228 -2.497892 -0.304766  -10.84987*** -10.89695*** -10.87895*** 

          

BSI -2.142959 -3.442606* -0.467363  -7.410905*** -7.415576*** -7.437151*** 

                

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 11: ADF test (Chinese Steel Production) 

 

 

  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

Stl_Prd_Ch 1.611345*** 0.389544***  0.25282 0.10718 

        

BCI  0.354190*  0.328912***  0.152610 0.035532 

        

BPI 0.331683 0.331278***  0.167447 0.023463 

        

BSI 0.770942*** 0.094768  0.073853 0.041639 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett 

kernel 

Table 12: KPSS test (Chinese Steel Production) 
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Since the variables are non stationary, Johansen Co-integration tests investigate the 

existence of co-integrating relations. The results are discussed in the next paragraph.  

 

6.6.1.2. Co-integration Analysis 

The results of the Johansen Co-integration test are presented in Table 13: 

 

 

Pair of variables Lags 
Hypothesized 

No. of CE(s) 
Trace 

0.05 CV 

(trace) 

Max 

Eigenvalue 

0.05 CV 

(Max Eigen.) 

BCI - Stl_Prd_Ch 3 None 18.60982  20.26184 11.31229  15.89210 

BPI - Stl_Prd_Ch 2 None*  21.11337  20.26184  15.42237  15.89210 

    At most 1  5.690995  9.164546  5.690995  9.164546 

BSI - Stl_Prd_Ch 3 None  18.93434  20.26184  12.15577  15.89210 

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series.   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 13: Johansen Co-integration test (Chinese Steel Production) 

 

According to the results, there is only one co-integrating relation; that is between BPI 

and Chinese steel production. This implies that only this pair of variables will be 

modelled using a VECM model, whereas all the rest will require an unrestricted VAR.  

 

6.6.1.3. Causality Analysis 

On the basis of the VAR framework, Granger Causality tests examine the lead-lag 

relationship between Baltic indices and crude steel production. Table 14 summarizes 

the test results, together with the results of the tests examining the model 

specification. 
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Dependen

t variable 

Excluded 

variable 
Model 

Lag

s 

Chi-sq.   

(p-value) 
Outcome 

Residual 

Serial 

Corr. 

LM test 

 Residual 

Heteroskedastici

ty 

R-sq. 

BCI 
Stl_Prd_C

h 
VAR 

3 
  

0.0439** 

causality at 

5% 
0.9587 0.0000*** 

0.15504

8 Stl_Prd_C

h 
BCI 3  0.0743* 

causality at 

10% 

BPI 
Stl_Prd_C

h VEC

M 

2 
0.0002**

* 

causality at 

1% 
 

0.0494*

* 

0.0006*** 
0.13259

7 Stl_Prd_C

h 
BPI 2 0.1005 No causality 

BSI 
Stl_Prd_C

h 
VAR 

3 

 

0.0015**

* 

causality at 

1% 
0.5235 0.0000*** 

0.35412

6 
Stl_Prd_C

h 
BSI 3 

0.0012**

* 

causality at 

1% 

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

VAR/VEC Residual Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

VAR/VEC Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

Table 14: Granger Causality Test (Chinese Steel Production) 

 

 

The above results suggest that for the Capesize, there is significant causality from 

Chinese steel production to BCI (5%). In fact, a bi-directional relationship exists 

between China’s steel production and Capesize rates. A similar two-way lead-lag 

relationship is generated in the Supramax sector as well. However, in Panamax 

vessels, the Chinese steel production leads the BPI, but the opposite is not true.  

 

Finally, the results reported in Table 14 show that the variables under consideration 

are not serially correlated (except BPI-Steel Production) but heteroscedastic. 

However, the latter is a matter of small samples which are prone to noise that 

ultimately affects the variances of the disturbance terms. All in all, the current models 

can be considered acceptable in terms of goodness of fit and residual diagnostics. 

 

6.6.1.4. Impulse Response Analysis 

The last step of the methodology involves Impulse Response analysis. The results are 

provided in figures 8 - 10 respectively. The horizontal axis represents the number of 

months after the shock, while the vertical axis measures the magnitude of the effect 

on the variables. 
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Figure 8: BCI and Chinese Steel Production 

 

 

In Figure 8 it is observed that a positive shock to steel output, initially triggers a 

small-scale and marginally negative reaction of BCI, which can be attributed to 

market nervousness, as the Capesize market is highly dependent on Chinese iron ore 

imports and a high output may give rise to worries of overcapacity. However, the high 

level of steel production creates the need to restock the raw materials utilized in the 

steel mills, and usually this process starts taking place about one month later. This 

explains the positive response of BCI after approximately 1.5 month, as the graph 

shows. At some point the restocking phase ends, leading to a decline in the demand 

for transport of raw materials by Capesize vessels. Eventually, the effects of the shock 

die out, as no co-integration relationship exists. 
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Figure 9: BPI and Chinese Steel Production 
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Looking at the BPI, in Figure 9, it is noticeable that Panamax ships, unlike Capesizes, 

are not negatively affected over the first 1-1.5 month, but their rates exhibit a modest 

upward trend. Given that Panamax vessels are not as much reliant on iron ore trade as 

Capesizes, the BPI is less volatile than the BCI and less affected by market sentiment 

in the short term. Thereafter, Panamax rates start to increase. This corresponds to the 

expectation of a new seasonal increase in production and imports of raw materials. 

Thus, after some overshooting, the BPI and the steel production reach a long term 

equilibrium emanating from their co-integration. 
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Figure 10: BSI and Chinese Steel Production 

 

 

Figure 10 shows that the response of Supramax resembles the one of Panamax in the 

short-term. This was anticipated considering that this smaller vessel size targets a 

greater variety of cargoes, including minor bulks, and this makes them even less 

dependent on iron ore trade. Nevertheless, they overly engage in iron ore and coking 

coal trades, especially on short-haul routes within the Pacific. This explains their 

causal relationship with China’s steel production, as well as their positive response to 

a sudden increase in steel output. 

 

 

6.7. Average Bunker Prices and Freight Market 

The bunker prices vary from station to station and as a result a ship operator needs to 

check the offered prices of each refuel station separately and then plan the optimal 
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route. However, this study intends to factor in the effect of the marine fuel oil prices 

on the freight market. This purpose is better served through an indicator that describes 

the average monthly price of the most widely used fuel in shipping, i.e. the 

Intermediate Fuel Oil (IFO) with a maximum viscosity of 380 Centistokes (cst). 

 

Thus, the first step is to identify the most representative bunkering stations worldwide 

and thereafter to calculate the average IFO 380 price. These include: Rotterdam, 

Singapore, Japan, Houston, Los Angeles, Philadelphia, Genoa, Panama, Fujairah and 

Fos.  

 

The relationship between dry freight rates and bunker prices has been investigated 

quite extensively in the literature. Chapter 3 provides an extensive literature review of 

this subject matter. In general, fuel cost usually accounts for over 50% of the vessel’s 

voyage expenses. This means that when bunker prices rise, ship operators press for 

higher freight rates, in order to break-even. In this regard, high bunker prices trigger a 

considerable increase in the total transport cost, which translates into higher freight 

rates. Nevertheless, occasionally, high fuel prices might impede seaborne trade, due to 

the expensive fuel bill that fosters the total transport costs, acting as a disincentive for 

traders.   

 

6.7.1. Empirical Results 

 

6.7.1.1. Stationarity Tests 

The results of the two unit root tests are reported in Tables 15 and 16 and reject the 

null hypothesis in almost all cases of level forms. Therefore all variables are non-

stationary. 
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  Log-Levels   Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

AVG_IFO -1.962037 -4.611779***  1.332059  -9.490358*** -9.532666*** -9.324351*** 

          

BCI -2.620608* -2.517031 -0.113657  -10.15873*** -10.19775*** -10.18645*** 

          

BPI -2.525228 -2.497892 -0.304766  -10.84987*** -10.89695*** -10.87895*** 

          

BSI -2.142959 -3.442606* -0.467363  -7.410905*** -7.415576*** -7.437151*** 

          

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 15: ADF test (Average Bunker Prices) 

 

 

  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

AVG_IFO 1.736481*** 0.108420  0.096349 0.031577 

        

BCI  0.354190*  0.328912***  0.152610 0.035532 

        

BPI 0.331683 0.331278***  0.167447 0.023463 

        

BSI 0.770942*** 0.094768  0.073853 0.041639 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett 

kernel 

Table 16: KPSS test (Average Bunker Prices) 

 

 

6.7.1.2. Co-integration Analysis 

Since the variables are non stationary, Johansen Co-integration analysis checks the 

existence of co-integrating relations. The results are presented in Table 17: 
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Pair of variables Lags 
Hypothesized 
No. of CE(s) 

Trace 
0.05 CV 
(trace) 

Max 
Eigenvalue 

0.05 CV 
(Max Eigen.) 

BCI - AVG_IFO 3 None 12.43565 20.26184 9.000719 15.8921 

BPI - AVG_IFO 4 None 
 10.8345

6 
 20.2618

4 
 6.893213  15.89210 

BSI - AVG_IFO 2 None* 
 24.6886

6 
 20.2618

4 
 22.56969  15.89210 

    At most 1 
 2.11896

7 
 9.16454

6 
 2.118967  9.164546 

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the 
series.   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 17: Johansen Co-integration test (Average Bunker Prices) 

 

 

According to the results, there is only one co-integrating relation; that is between BSI 

and the average IFO price.  

 

6.7.1.3. Causality Analysis 

The results of the Granger causality test are presented in Table 18 below. 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

Depende

nt 

variable 

Excluded 

variable 
Model 

Lag

s 

Chi-sq.   

(p-value) 
Outcome 

Residua

l Serial 

Corr. 

LM test 

 Residual 

Heteroskedastici

ty 

R-sq. 

BCI 
AVG_IF

O 
VAR 

3 0.0298** causality at 5% 

 0.2459 0.0000*** 

 

0.14716

5 
AVG_IF

O 
BCI 3  0.2772 No causality 

BPI 
AVG_IF

O 
VAR 

4 
0.0060**

* 
causality at 1% 

0.9502 0.0000*** 

 

0.13280

9 
AVG_IF

O 
BPI 4 0.0633* 

causality at 

10% 

BSI 
AVG_IF

O VEC

M 

2 
0.0000**

* 
causality at 1% 

 

0.0843* 
0.0000*** 

0.33134

5 AVG_IF

O 
BSI 2  0.0724* 

causality at 

10% 

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

VAR/VEC Residual Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

VAR/VEC Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

Table 18: Granger Causality Test (Average Bunker Prices) 

 

 

To that end, there is significant unidirectional causality from Average IFO to BCI, at a 

5% level, while BCI does not cause the Average IFO price. In the case of BPI and 

BSI, it appears that they are both caused by Average IFO prices at a 1% level of 

significance. According to the tests there is two-way causality, as both the BPI and the 

BSI cause the Average IFO price at a 10% level.  

 

The residual diagnostic tests and the R-squared values suggest that the models can be 

accepted, despite the presence of heteroscedasticity.   

 

6.7.1.4. Impulse Response Analysis 

The final step is to run Impulse Response analysis. The results are provided in figures 

11 - 13 respectively. The vertical axis measures the magnitude of the effect of the 

shock on the variables, while the horizontal axis stands for the number of months after 

the shock 
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Figure 11: BCI and Average Bunker Prices 

 

 

Figure 11 shows that a positive shock to the average IFO price will trigger a positive 

response of the BCI in the short run. After about three months, the effect of this shock 

will ease off and eventually dissipate. 
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Figure 12: BPI and Average Bunker Prices 

 

 

Likewise, the Panamax rates are also sensitive to a sharp increase in bunker prices. As 

Figure 12 illustrates, they surge during the first three months and then they start to 

abate till the effect completely vanishes.   
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Figure 13: BSI and Average Bunker Prices 

 

 

Finally, the impact of skyrocketed bunker prices on BSI is quite similar to the other 

two peer vessels. What differentiates this ship category is that BSI appears to have a 

co-integrating relation with average IFO prices. Therefore, the effect reaches a long-

term equilibrium, instead of vanishing over time. 

 

 

6.8. Commodity Prices and Freight Market 

The aim of this analysis is to investigate empirically the relationship between the dry 

bulk freight market and the prices of ‘major bulks’. The interacton between dry 

commodity prices and freight rates has not attracted so much attention in the maritime 

literature so far. However, changing commodity prices can influence the timing and 

quantity of imports and exports and, by extension, the volume of seaborne trade. In 

this context, many maritime practitioners tend to monitor the levels of commodity 

prices in order to obtain insights into the anticipated demand for bulk carries. 

Therefore the empirical examination of this relationship deserves further attention. 

 

Hence, this section examines the underlying relationship between commodity prices 

and freight rates at an empirical level and then provides a theoretical interpretation. 

The elements of this analysis consist of representative prices of coal, iron ore and 

wheat, and Baltic Exchange indices that correspond to the most widely used vessel 

size for each commodity. 

 

The dry cargo market is mainly driven by the trade of the ‘so-called’ major bulk 

cargoes, i.e. iron ore, coal and grain. In fact, the trade dynamics of those commodities 

actually shape the level of freight rates for the entire dry cargo market. The price of 
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those commodities seems to interact with the respective freight rates. The present 

study investigates the existence of such a causal relationship and subsequently focuses 

on the way they are related. 

 

In general, commodity prices reflect the level of economic activity. Changes in 

demand cannot be accommodated instantaneously by supply adjustments and as a 

consequence prices fluctuate accordingly. High commodity prices, as long as they are 

not driven by supply shocks, indicate robust economic activity and more vessels are 

employed to carry raw materials such as iron ore and coal, as well as commodities 

like grain to cover the increasing food consumption. Grains encompass a variety of 

products, but the most traded of them include wheat, coarse grains, and soyabeans. In 

particular, wheat is primarily used for human consumption (unlike coarse grains 

which are mainly used in livestock feed). This implies that high consumer demand for 

food products containing wheat, assuming a steady supply, is expected to inflate the 

prices of this commodity. According to Trostle (2008), the rapid growth in average 

income since the late 1990s was one of the prime contributors to higher food 

commodity prices, like grain prices. However, low commodity prices do not 

necessarily drag freight rates lower, unless they result from weak demand. In periods 

of excessive production, the low commodity prices act as an incentive for more 

imports, benefiting the freight market. On top of this, some trading practices are 

related to commodity prices. For example, sometimes China tends to accumulate huge 

stockpiles of iron ore and coal, and withhold imports until the prices get down to a 

critical level which triggers an upsurge in imports. 

 

Conversely, transport costs are a significant portion of the total import costs and they 

may ultimately affect the selling price. 

 

This analysis provides a quantitative assessment of the dynamics described above. In 

this context, it examines the interactive relationship between the price of the major 

dry bulk commodities and some selected dry cargo indices. It should be noted that 

only the pairs of variables with significant causation are reported. 

 

6.8.1. Empirical Results 

The BCI is modelled with respect to Australian coal and iron ore prices because both 

of these commodities are primarily shipped in Capesize vessels from Australia to 

China and Japan (mainly). Likewise, the BPI is analyzed in relation to the wheat 

exports from USG, since this ship type is generally preferred for this trade. Finally, 
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given that Supramax is used at times for the carriage of Australian coal, the study 

examines if there is any linkage between BSI and coal price. 

 

6.8.1.1. Stationarity tests 

The ADF and KPSS unit root tests are performed in the log-levels and log-differences 

of the commodity prices and Baltic indices. The results, which are reported in Tables 

19 and 20 respectively, reject the null hypothesis in almost all cases of level forms. 

Therefore all variables are non-stationary. 

 

 

  Log-Levels   Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

Coal_Aus -1.543081 -1.871604  0.504107  -9.278440*** -9.296026*** -9.261264*** 

          

Iron _Aus -0.518144 -2.513173  1.163481  -11.45257*** -11.42865*** -11.35782*** 

          

wheat_USG         

          

BCI -2.620608* -2.517031 -0.113657  -10.15873*** -10.19775*** -10.18645*** 

          

BPI -2.525228 -2.497892 -0.304766  -10.84987*** -10.89695*** -10.87895*** 

          

BSI -2.142959 -3.442606* -0.467363  -7.410905*** -7.415576*** -7.437151*** 

                

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 19: ADF test (Commodity Prices) 

 

 

 

 

 

 

 

 

 

 



128 

 

 

  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

Coal_Aus  1.409133***  0.181499**   0.101358 0.057427 

        

Iron _Aus 1.26978***  0.248529***  0.121429  0.085554 

        

wheat_USG  1.571722*** 0.0886  0.048387 0.044197 

        

BCI  0.354190*  0.328912***  0.152610 0.035532 

        

BPI 0.331683 0.331278***  0.167447 0.023463 

        

BSI 0.770942*** 0.094768  0.073853 0.041639 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett 

kernel 

Table 20: KPSS test (Commodity Prices) 

 

6.8.1.2. Co-integration Analysis 

The next step is the investigation of the existence of co-integrating relations using the 

Johansen Co-integration test. The results are presented in Table 21: 
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C
o

m
m

o
d

it
y
 

Pair of 

variables 
Lags 

Hypothesize

d No. of 

CE(s) 

Trace 
0.05 CV 

(trace) 

Max 

Eigenvalu

e 

0.05 CV (Max 

Eigen.) 
C

o
a

l 

BCI - Coal_Aus 2 None 19.37321 20.26184 13.75200 15.89210 

BSI - Coal_Aus 2 None* 
 21.2586

7 

 20.2618

4 
 14.49940  15.89210 

    At most 1 
 6.75927

0 

 9.16454

6 
 6.759270  9.164546 

Ir
o

n
 

O
re

 

BCI - Iron_Aus 3 None 18.37316 20.26184 12.68811 15.89210 

W
h

ea
t 

BPI - 

Wheat_USG 
2 None 11.46379 20.26184 7.74861 15.89210 

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series.   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 21: Johansen Co-integration test (Commodity Prices) 

 

 

According to the results, there are two co-integrating relations; one between BCI and 

iron ore price and another one between BSI and coal price. 

 

6.8.1.3. Causality Analysis 

Table 22 summarizes the results of Granger Causality tests, as well as the results of 

the tests examining model specification. 
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C
o

m
m

o
d

it
y
 

M
o

d
el

 

Dependen

t variable 

Excluded 

variable 

Lag

s 

Chi-sq.   

(p-

value) 

Outcome 

Residu

al 

Serial 

Corr. 

LM test 

 Residual 

Heteroskedasti

city 

R-sq. 
C

o
a

l 

VAR 

BCI Coal_Aus 2  0.0867* 
causality at 

10% 0.0187

** 
  0.0177** 

0.1295

55 
Coal_Aus BCI 2  0.0896* 

causality at 

10% 

VEC

M 

BSI Coal_Aus 2 
0.0005*

** 

causality at 

1% 0.1665 0.0005*** 
0.2742

52 
Coal_Aus BSI 2 0.2580 No causality 

Ir
o

n
 O

re
 

VAR 

BCI Iron_Aus 3 

 

0.0181*

* 

causality at 

5% 

0.1264 0.0001*** 
0.3297

97 

Iron_Aus BCI 3 

 

0.0372*

* 

causality at 

5% 

W
h

ea
t 

VAR 

BPI 
Wheat_U

SG 
2 0.0506 

causality at 

5% 
0.9935 0.6623 

0.0774

09 Wheat_U

SG 
BPI 2 0.4191 No causality 

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

VAR/VEC White Heteroskedasticity Test: No Cross Terms / H0: homoscedasticity in residuals 

VAR/VEC Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

Table 22: Granger Causality Test (Commodity Prices) 

 

 

The results reveal the existence of a bi-directional relationship in the cases of iron ore 

and coal, while they indicate that wheat price leads the BPI but the opposite is not 

true. Those findings can support decision making in both dry bulk chartering and 

commodity trading. 

 

6.8.1.4. Impulse Response Analysis 

The final step is to proceed to IR analysis. The focus is on the effect of commodity 

prices on the freight market. Therefore, the IR graphs under analysis depict the 

response of Baltic Indices to positive shocks to commodity prices. 

 



131 

 

-.10

-.05

.00

.05

.10

.15

.20

.25

.30

1 2 3 4 5 6 7 8 9 10

Response of DBCI to DCOAL_AUS

 

Figure 14: BCI and Coal Price 

 

 

Figure 14 illustrates the response of BCI to a positive shock to the price of Australian 

coal. The exhibit actually implies that Capesize freight rates are drifting upwards for a 

certain period after a sudden increase in coal prices. Apparently this reflects an 

upswing in coal demand, which will be strong enough to boost coal exports. This is in 

turn beneficial for Capesize rates as coal shipments from Australia are mainly carried 

by Capesize vessels. However, this is not expected to last long; as the graph shows, at 

some point the high coal price hampers the coal trade, pushing the freight rates 

downwards. 
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Figure 15: BSI and Coal Price 

 

 

Figure 15 shows that BSI behaves in a similar fashion as the BCI over the short term. 

However, its drop is not as steep as in the case of Capesizes. This insensitiveness can 
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be attributed to the low degree of volatility that characterizes the smaller vessels sizes. 
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Figure 16: BCI and Iron Ore Price 

 

 

Figure 16 suggests that a positive shock to the iron ore price pushes rates below the 

equilibrium level for some time until they recover and head upwards, towards a long-

term equilibrium stemming from their co-integration. The iron ore trade is particularly 

sensitive to ore price fluctuation and as a result the initial response is negative. A 

price hike in this commodity seems to have an adverse effect on its trade in the short 

run. However, a few months later this effect subsides, as the graphs illustrates. 
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Figure 17: BPI and Wheat Price 

 

 

Figure 17 depicts how BPI reacts to a positive shock to the US wheat price. The 
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soaring wheat price is indicative of robust consumption and traders rush to fix 

tonnage to move cargoes and make a profit from the high wheat price. In this regard, 

charterers are ready to pay higher freight rates as long as a shipowner presents a 

vessel promptly. 

 

 

6.9. Port Congestion and Freight Market 

Port congestion can potentially influence freight rates. In general, time spent in port, 

relative to time spent at sea can have a significant effect on ship supply. When the 

port turnaround times increase, ships travel less frequently in a given time period and 

the (short-term) supply falls. Given that the freight rates are determined by the 

balance between supply and demand, it turns out that longer time in port is expected 

to have a knock-on effect on freight rates, pushing them upwards. That is to say that 

congestion may ultimately reinforce the dry bulk freight market. Effectively, port 

congestion absorbs much of the excess tonnage, providing a market relief.  

 

Many times in the history of the dry bulk market, congestion has played an influential 

role in the development of shipping cycles. For instance, in 1980, congestion was one 

of the key drivers of the dry cargo market recovery. The booming US coal exports led 

to congestion in the domestic ports and raised the waiting time of ships to more than 

three months towards the end of the year. Similar congestion issues came up in West 

African and Middle Eastern ports, due to their poor infrastructure. Overall, this 

increased the need for available ships and drove the rates upwards, triggering a 50% 

year-on-year rise. The opposite happened 3-4 years later, when the elimination of port 

congestion, coupled with an economic downturn resulted in depressed freight rates 

Stopford (2009). Between 2003 and 2007 many ports were heavily congested as a 

result of severe weather conditions and poor infrastructure. This largely contributed to 

the market boom of that period. 

 

6.9.1. Empirical Results 

 

6.9.1.1. Stationarity Tests 

The results of the two unit root tests are reported in Tables 23 and 24. They reject the 

null hypothesis in almost all cases of level forms. Therefore all variables are non-

stationary. 
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  Log-Levels   Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

Cong_Cape -3.524470** -4.059646** -0.887461  -8.326591*** -8.246193*** -8.369764*** 

          

Cong_Pmx -3.159872** -3.767521** -1.228787  -9.745167*** -9.839376*** -9.774455*** 

          

Cong_Hmx -3.162065** -4.252115*** -2.434370**   -7.503366*** -7.469655*** -7.484993*** 

          

BCI -2.620608* -2.517031 -0.113657  -10.15873*** -10.19775*** -10.18645*** 

          

BPI -2.525228 -2.497892 -0.304766  -10.84987*** -10.89695*** -10.87895*** 

          

BSI -2.142959 -3.442606* -0.467363  -7.410905*** -7.415576*** -7.437151*** 

                

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 23: ADF test (Port Congestion) 

 

 

  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

Cong_Cape 0.645304**  0.171148**  0.172505 0.114037 

        

Cong_Pmx 0.738893**  0.183900**  0.369572* 0.339336 

        

Cong_Hmx 0.781518*** 0.097543   0.134762 0.077703 

        

BCI  0.354190*  0.328912***  0.152610 0.035532 

        

BPI 0.331683 0.331278***  0.167447 0.023463 

        

BSI 0.770942*** 0.094768  0.073853 0.041639 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett 

kernel 

Table 24: KPSS test (Port Congestion) 
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6.9.1.2. Co-integration Analysis 

As a next step, the Johansen Co-integration test investigates the existence of a long-

term equilibrium.  

 

 

Pair of variables Lags 
Hypothesized 

No. of CE(s) 
Trace 

0.05 CV 

(trace) 

Max 

Eigenvalue 

0.05 CV (Max 

Eigen.) 

BCI - Cong_Cape 1 None* 22.10549  20.26184 16.52982  15.89210 

    At most 1 5.575674  9.164546 5.575674  9.164546 

BPI - Cong_Pmx 1 None*  21.10717  20.26184  15.27828  15.89210 

    At most 1  5.828895  9.164546  5.828895  9.164546 

BSI - Cong_Smx 1 None*  19.86777  20.26184  16.33397  15.89210 

    At most 1  3.533800  9.164546  3.533800  9.164546 

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series.   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 25: Johansen Co-integration test (Port Congestion) 

 

 

Table 25 demonstrates that the three pairs of variables of this analysis are co-

integrated.  

 

6.9.1.3. Causality Analysis 

The next step is to investigate each pair in terms of causation. Table 26 reports the 

relevant results.  
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Dependen

t variable 

Excluded 

variable 
Model 

Lag

s 

Chi-sq.   

(p-value) 
Outcome 

Residu

al 

Serial 

Corr. 

LM test 

 Residual 

Heteroskedastici

ty 

R-sq. 

BCI 
Cong_Cap

e VEC

M 

1 
0.0034**

* 

causality at 

1% 
0.8486 0.8670 

0.14984

9 Cong_Cap

e 
BCI 1 0.9613 No causality 

BPI 
Cong_Pm

x VEC

M 

1 0.7980 No causality 

0.4250 0.7274 
0.11639

7 Cong_Pm

x 
BPI 1 0.0707 

causality at 

10% 

BSI 
Cong_Hm

x VEC

M 

1  0.5180 No causality 

0.5543 0.0001*** 
0.06056

8 Cong_Hm

x 
BSI 1  0.1455 No causality 

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

VAR/VEC Residual Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

VAR/VEC Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

Table 26: Granger Causality Test (Port Congestion) 

 

 

The Granger causality tests reveal that the only index caused by port congestion is the 

BCI, at a 1% level. Therefore Impulse Response analysis is only conducted for this 

particular pair of variables. However, the small number of observations for the port 

congestion series (data starts from January 2010) harms the reliability of this causality 

analysis, and this is reflected in the low values of R-squared. Especially for Panamax 

and Supramax the R2 values stand at 0.12 and 0.06 respectively. Therefore, it is hardly 

surprising that the theoretical relationship between port congestion and the rates of 

those two vessel types cannot be confirmed at an empirical level.    

 

6.9.1.4. Impulse Response Analysis 

The final step involves Impulse response analysis. Given that the only Baltic index 

caused by port congestion is the BCI (Table 26), it is reasonable to apply IR analysis 

solely to this case.   
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Figure 18: BCI and Port Congestion 

 

Figure 18 demonstrates that the expected positive reaction of BCI to a sharp increase 

in Capesize congestion occurs with a noticeable delay, while it is ultimately aligned to 

a long-term equilibrium for the months ahead. This delayed response can be explained 

by the fact that the implications of congestions for the short term supply of ships are 

not realized instantly by the freight market. On the contrary, the market needs an 

adjustment period till it practically reflects on the new supply conditions. 

 

 

6.10. Concluding Remarks 

This chapter investigates the interactive relationship between the Baltic Exchange 

indices and a set of carefully selected external variables. The empirical results suggest 

that all of the variables lead the BCI, while there is a bi-directional lead-lag 

relationship in the case of Chinese steel production, coal price and iron ore price. The 

BPI is caused by Chinese steel production, DBECI, average bunker prices and wheat 

prices. On the other hand, only iron ore prices and Panamax congestion cause the BPI. 

As for the BSI, there is a one-way relationship running from Chinese steel production, 

average bunker prices and coal price, while the opposite holds only in the case of 

Chinese steel production and bunker prices.  

 

Finally it should be noted that the DBECI and the average bunker prices exhibit the 

most significant causality with each of the Baltic indices (1%). This constitutes 

evidence in favour of their utilization as explanatory variables in a forecasting model. 

This is attempted in Chapter 8, where both of these variables are embedded in a 

VARX model. 
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7.  FORECASTING DRY BULK FREIGHT RATES 

 

7.1. Introduction 

Freight rate forecasting, as an instrument of decision making, is particularly crucial 

for a variety of practitioners and stakeholders in the shipping business. Shipowners 

need forecasts in order to make the most profitable chartering decision for their 

vessels, charterers usually adjust their commercial decisions according to the expected 

transport costs and bankers are interested in the future inflows of borrowers during the 

loan evaluation process. 

 

This chapter focuses on the generation of forecasts for the spot and period rates of 

Panamax and Capesize bulk carriers, using ARIMA, VAR/VECM and 

VARX/VECMX models. Based on the detailed description of each of those three 

modelling approaches (Chapter 4), they are now put into practice and their relative 

performance is assessed. To this end, the chapter presents the necessary test statistics 

and then describes the formulation of the most appropriate models. 

 

 

7.2. Methodology 

Initially ARIMA models are set up and produce pertinent forecasts. This method will 

mainly serve as a benchmark for comparison with the more sophisticated approaches 

that will be developed afterwards. The ARIMA models are built for the spot and 

period rates of Panamax and Capesize vessels. First it is shown that the time series of 

this analysis are first-differenced stationary. Therefore the predictions need to be 

based on an ARIMA, rather than on an ARMA framework. The structure of ARIMA 

models is determined using several model specification tools, such as correlograms 

and Inverse Roots of AR/MA Polynomials. Thereafter, those models are used in order 

to make forecasts and to compare their accuracy with the alternative approaches.    

 

In the case of VAR and VARX models, the series are first checked in terms of 

Stationarity and Co-integration and then undergo Granger causality tests in order to 

validate the variable selection. The underlying models are set up in the levels of the 

data and the appropriate lags are determined using various lag length criteria, such as 

the sequential modified LR test statistic (LR), the Final prediction error (FPE), the 

Hannan-Quinn information criterion (HQ), the Schwarz information criterion (SC) 

and the Akaike information criterion (AIC) (See Appendix C). 
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At the same time, the residual diagnostics and the goodness of fit of the models are 

examined, so that the reliability of the results can be verified.  Eventually, ex-post and 

ex-ante forecasts are produced and relevant criteria are employed in order to decide 

upon the most robust technique.  

 

The in-depth analysis of the factors impacting the freight market (Chapter 6), 

combined with the extensive theoretical discussion of the supply-demand dynamics 

and the related factors (Chapter 2), enables the selection of appropriate independent 

variables for the proposed models. Specifically, the VAR/VECM models are 

formulated using as endogenous variables the fleet development (of the corresponding 

vessel size) and the Chinese steel production. The former reflects the ship supply, 

while the latter is a leading indicator of the demand for bulk carriers. The choice of 

those variables and their treatment as endogenous is justified by the preceding 

analysis. In particular, it has been demonstrated that freight rates are largely 

determined by the available tonnage, assuming a constant demand. On the flip side, 

the state of the freight market plays a major part in scrapping and in newbuilding 

ordering activity, and as a result it affects fleet development. As far as the Chinese 

steel production is concerned, the causality analysis of Chapter 6 provides evidence 

that there is a reciprocal relationship between China’s steel production and the dry 

bulk freight market. Interestingly, the impulse response analysis demonstrates that a 

spike of Chinese steel output triggers an increase in the Baltic Exchange indices. 

Conversely, Tsioumas and Papadimitriou (2015) show that a positive shock to freight 

rates may lead the steel plants to cut back on steel output until the transport cost is 

adjusted downwards.  

 

Within this perspective, it turns out that both the fleet development and the Chinese 

steel production are influenced by the dependent variable of the system, that is, the 

freight rates. Therefore, they can be classified as endogenous. Of course, the 

utilization of such variables in the proposed modelling approach will also be validated 

through a series of econometric tests that constitute an integral part of the following 

analysis.        

 

The VARX models of this analysis contain the same endogenous variables as the 

VAR/VECM specification and the target is to enhance the forecasting ability of the 

latter models, by incorporating two carefully selected exogenous variables. These are 

the DBECI and the Average IFO price. The construction of the DBECI has been 

described in detail in Chapter 5, while the calculation of the Average IFO price is 
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discussed in Chapter 6. Both variables have been found to significantly affect the dry 

cargo freight market and this justifies their utilization in the first place. Furthermore, 

the DBECI and the average bunker prices are principally determined by world 

economic and political factors and therefore they are independent of the dry bulk 

rates. This implies that both of these variables have to be treated as exogenous.   

 

Hence, the analysis produces ex-post and ex-ante forecasts for the Panamax and 

Capesize spot and period rates using each of those three approaches. Ultimately, the 

forecasting accuracy of the respective models is evaluated using the Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE). This enables the 

determination of the most robust modelling framework for the prediction of bulk 

carrier rates in both the spot and the period freight market.  

 

 

7.3. Data 

The analysis of this chapter is based on monthly data for the period January 1999 to 

July 2014. Forecasts are generated for the spot and period rates of representative 

Panamax and Capesize vessels. Data was retrieve from Clarkson’s Research Services 

Ltd (CRLS). This database provides historical average spot and period rates for each 

vessel category. Specifically, the study considers the following variables:  6-month 

time-charter rate for a standard 75,000 dwt Panamax (available from March 2001 

onwards), Panamax average spot earnings, 6-month time-charter rate for a standard 

170,000 dwt Capesize (available from December 2001 onwards) and Capesize 

average spot earnings.  

 

According to Clarksons Research Services Limited (2014), the quoted average spot 

rates express the average voyage earnings of the most representative routes, while the 

period rates are calculated as the average of quotations for delivery in Atlantic and 

Pacific and redelivery worldwide (Sources & Methods for the Shipping Intelligence 

Weekly, 2013,  pp. 3-4).  

 

In addition, the same database provides data for the Capesize and Panamax fleet 

development, the Chinese steel production and the bunker prices (as discussed in 

Chapter 6). 

 

It should be noted that the data analysis and the following tests are performed in log-

transformed data. 



141 

 

 

7.4. Descriptive Statistics 

 

 

  Mean  Min Max 

Standard 

Deviatio

n 

Skewness Kurtosis J-B 

Capesize        

Avg spot 
10.1499 

7.29979

7 12.14761 0.951129 -0.11551 

2.45713

7 2.712053 

       [0.257683] 

6-m tc 170k 10.44399 

9.07680

9 12.10349 0.794059 0.288493 

2.19091

6 6.254357 

       [0.043841] 

Panamax        

Avg spot 
9.510897 

7.73455

9 11.21316 0.77262 0.293751 

2.34140

1 6.069005 

       [0.048099] 

6-m tc 75k 9.912624 

8.77955

7 11.39639 0.663752 0.371453 

2.32940

0 6.719158 

       [0.034750] 

                

Endogenous 

Variables        

Ch_steel production 
10.29328

0 

9.10897

2 

11.16240

0 0.652012 

-

0.405058 

1.70531

5 18.174040 

       [0.000113] 

Cape fleet developmet 4.894069 

4.35273

3 5.708873 0.445268 0.567334 

1.91598

3 19.18747 

       [0.000068] 

Pmx fleet development 4.627833 

4.14227

9 5.251735 0.320771 0.356991 

2.01304

5 11.56167 

       [0.003086] 

Exogenous Variables        

DBECI 3.959326 

3.77804

1 4.112170 0.089844 

-

0.067338 

1.88609

5 
9.809107 

       

[ 

0.007413] 

IFO_avg 5.665112 

4.11416

4 6.606637 0.650939 -0.19506 

1.80342

9 12.34179 

              [0.002089] 

Notes:        

Figures in [.] are p-values 

The Jarque-Bera (J-B) test is used to check for normality. The J-B statistic is asymptotically χ²(2)-distributed.  

Table 27: Descriptive Statistics 

 

 

As reported in Table 27, the unconditional volatility (standard deviation) of Capesize 

vessels is higher than that of Panamax. This is in line with theoretical expectations, as 

the freight rates of larger bulk carriers are generally more volatile due to their reliance 

on a smaller number of trades and routes. Furthermore, the standard deviation of spot 

rates is greater than period rates’ for both sectors. This implies that the spot market is 
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more volatile than the period market.  

 

Table 27 also shows that Capesize spot rates, Chinese steel production, DBECI and 

average bunker prices are negatively skewed, whilst Capesize period rates, Panamax 

spot and period rates, Capesize fleet development and Panamax fleet development are 

right-tailed. Those asymmetric distribution shapes are likely to create 

heteroscedasticity in residuals. The coefficients of kurtosis are less than 3 for all 

variables. Thus, the sample distribution is platykurtic and as such it is flatter than the 

normal distribution. Finally, the Jarque-Bera tests reveal that all variables under 

consideration deviate from normality, except Capesize spot rates. 

 

7.5.1.1. Stationarity tests 

First of all, the ADF and the KPSS unit root tests are applied so as to examine the 

stationarity of the series. The tests are performed in the log-levels and log-differences 

of the variables. The results, which are presented in Tables 28 and 29, reject non-

stationarity in most cases of level forms, while the combination of the outcomes of 

those two unit root tests suggests that all series of this analysis can be treated as 

integrated of order 1, i.e. I(1).  
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  Log-Levels     Log-first differences 

  Intercept 
Const. & 

trend 
None  Intercept 

Const. & 

trend 
None 

Capesize         

Avg spot 

-

2.726120

* 

-3.241553* 
-

0.266505 
 

-

10.03327**

* 

-

10.05386**

* 

-

10.06686**

* 

6-m tc 170k 

-

2.715559

* 

-3.072885 
-

0.071153 
 

-

9.216683**

* 

-

9.235168**

* 

-

9.246937**

* 

          

Panamax         

Avg spot -1.816000 -2.451533 
-

0.322688 
 

-

11.40529**

* 

-

11.47329**

* 

-

11.44123**

* 

6-m tc 75k 

-

2.798544

* 

-2.948510 
-

0.080346 
 

-

7.796749**

* 

-

7.864675**

* 

-

7.821839**

* 

          

Endogenous 

Variables 
        

Ch_steel production 
-

1.873946 
-0.797431 

 

2.47343

1 

 

-

3.248202*

* 

-

3.655370*

* 

-1.824531* 

Cape fleet 

developmet 

-0.155199 -2.537684  1.741868  

-

2.123648**

* 

-

2.045969**

* 

-

1.139691**

* 

Pmx fleet 

development 

 2.062845 -1.920478  3.990434  

-

4.202614**

* 

-

4.909135**

* 

-1.112253 

          

Exogenous 

Variables 
        

DBECI 

-2.33889 -2.395470 
-

0.836106 
 -2.710362* -2.704792 

-

2.658569**

* 

IFO_Average 

-1.962037 

-

4.611779**

* 

 1.332059  

-

9.490358**

* 

-

9.532666**

* 

-

9.324351**

* 

                

  Notes:        

  *** indicates rejection of the null at 1% level, **at 5% and * at 10%        

  H0: the series is non stationary, H1: the series is stationary        

Table 28: ADF test 
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  Log-Levels   Log-first differences 

  Intercept Const. & trend  Intercept Const. & trend 

Capesize       

Avg spot  0.354555* 0.329984***  0.143769  0.043076 

6-m tc 170k 0.419046* 0.262273***  0.154757  0.062233 

        

Panamax       

Avg spot 0.343910  0.332426***   0.154909 0.025768 

6-m tc 75k 0.276823  0.273947***   0.115373  0.037239 

        

Endogenous Variables       

Ch_steel production 1.611345*** 0.389544***  0.25282 0.10718 

Cape fleet developmet  1.444268***  0.317433***   0.532207**  0.213227* 

Pmx fleet development  1.455519***  0.302044***   0.738906** 0.090258 

        

Exogenous Variables       

DBECI 0.228546  0.167210**  0.113229 0.094181 

IFO_Average 1.736481*** 0.108420  0.096349 0.031577 

            

  Notes:      

  *** denotes rejection of H0 at 1% level, **at 5% and * at 10% 

  H0: the series is stationary, H1: the series is non stationary 

  

The bandwidth for each test is chosen on the basis of the Newey-West selection 

using Berlett kernel. 

Table 29: KPSS test 

 

 

7.5. Forecasting spot and period rates – Empirical Results 

 

7.5.1. ARIMA Modeling 

Below are the results of the various steps pertaining to the Box-Jenkins’ approach.  

 

7.5.1.1. Identification – Correlograms 

Starting with the identification phase of the ARIMA models, it is important to 

examine the correlation between the current values of residuals and their past values. 

In essence, the modeller needs to ensure that the models have accounted for any 

possible autocorrelation.   
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In this respect, the correlograms below are generated and are used to investigate the 

autocorrelation and the partial correlation of each variable. The former measures the 

degree of correlation between the current and the lagged values of each series. The 

latter also stands for the correlation coefficient between the current and the lagged 

series, but it additionally accounts for the predictive power of the values of the series 

with smaller lags. 

 

 

                

          Figure 19: Capesize 6m t/c (levels)                                      Figure 20: Capesize 6m t/c (1st differences) 

                                       

 

                        

   Figure 21: Capesize spot (levels)                                         Figure 22: Capesize spot (1st differences)  

 

 



146 

 

                

        Figure 23: Panamax 6m t/c (levels)                                          Figure 24: Panamax 6m t/c (1st differences) 

                                       

 

                

          Figure 25: Panamax spot (levels)                                            Figure 26: Panamax spot (1st differences) 

                 

 

The above correlograms, aid the identification of the type of the most suitable 

ARIMA models. According to Figures 19 - 26, the correlograms confirm the results 

of the Stationarity tests which show that all series are non-stationary in levels, but 

stationary in first differences. In addition, the observed behaviour of the 

autocorrelation and partial-correlation functions for twelve different lags provides 

another indication of the optimum order of ARIMA models. Furthermore, for the 

safest determination of the most appropriate lag order, it is essential to also take into 

consideration some pertinent information criteria, such as the Akaike information 

criterion and Schwarz criterion. Their values are reported in Appendix C.  

 

The selected lag order for each ARIMA model is presented in the second column of 
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Table 30 under ‘Model type’. 

 

7.5.1.2. ARIMA Equation Diagnostics 

The next step is to examine the structure of the ARMA portion of the estimated 

equation. 

 

7.5.1.2.1. Inverse Roots of AR/MA Polynomials 

The first method, the Inverse Roots of AR/MA Polynomials, displays the inverse 

roots of the AR and MA characteristic polynomial. The ARMA process is stationary 

and invertible, if and only if the AR and MA roots respectively fall inside the unit 

circle. The generated graphs reveal that this condition is satisfied by all variables 

under examination. 
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Figure 27: Capesize 6m t/c inverse roots 
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Figure 28: Capesize average spot inverse roots 
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Figure 29: Panamax 6m t/c inverse roots 
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Figure 30: Panamax average spot inverse roots 

 

7.5.1.2.2. Correlogram Diagnostic (Actual and ARMA Model 

Correlogram) 

The second method compares the autocorrelation and partial autocorrelation pattern of 

the structural residuals with the estimated model, for a given number of periods. It 

should be noted that the structural residuals are the residuals that occur after removing 

the impact of the fitted exogenous regressors but not the ARMA terms. 

 

The model is seen as well specified if the estimated autocorrelations and partial 

autocorrelations are close to the residual. 
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Figure 31: Capesize 6m t/c (correlogram) 
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Figure 32: Capesize average spot (correlogram) 
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Figure 33: Panamax 6m t/c (correlogram) 
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Figure 34: Panamax average spot (correlogram) 

 

 

Overall, the results of the equation diagnostics show that the graphs of this analysis 

trace the theoretical patterns with satisfactory accuracy. Therefore the fitted ARIMA 

models can be considered parsimonious. 
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7.5.1.3. Residual Diagnostics 

 

 

Variable Model type 
Residual Serial 

Corr. LM test 

 Residual 

Heteroskedasticity 
R-sq. 

Capesize         

avg spot ARIMA(1,1,0) 0.0083*** 0.0000*** 0.0111 

6-m tc 170k ARIMA(1,1,1) 0.3133 0.0601* 0.1255 

         

Panamax       

avg spot ARIMA(2,1,0) 0.0670* 0.6272 0.0176 

6-m tc 75k ARIMA(2,1,1) 0.7832 0.6659 0.2087 

         

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

Breusch-Godfrey Serial Correlation LM test / H0: no serial correlation  

ARCH Heteroskedasticity Test / H0: homoscedasticity in residuals 

Table 30: Residual Diagnostics (ARIMA) 

 

 

Table 30 provides evidence that the specification of the ARIMA models of this 

analysis can be deemed acceptable. Specifically, the Breusch-Godfrey LM tests reveal 

the absence of serial correlation in all cases.  

 

At the same time, the majority of the series do not exhibit heteroscedasticity, 

according to ARCH Heteroskedasticity test. The only exceptions are the Capesize 

average spot rates, which are found heteroscedastic and the Capesize 6-m t/c rates. 

However, in the latter case the homoscedasticity hypothesis is rejected at a 10% level, 

which is not a grave problem, considering that the chi-square probability is more 

meaningful at the 1% and 5% levels.   

 

The values of R-squared are relatively low and this may have a negative effect on the 

precision of predictions. The low R-squared may be attributed to the size of the 

sample, since ARIMA models typically require a larger number of observations to 

operate effectively.  

 

Overall, despite the addressed weaknesses, the ARIMA models appear to be 

satisfactorily specified. 
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7.5.2. VAR / VECM Models 

 

7.5.2.1. Johansen Co-integration tests 

Given that the series are non-stationary (see 7.5.1.1.) Johansen co-integration tests are 

performed so as to search for potential long-term equilibriums. The results are 

presented below.  

 

 

  Variables Lags 
Hypothesized 

No. of CE(s) 
Trace 

0.05 CV 

(trace) 

Max 

Eigenvalue 

0.05 CV (Max 

Eigen.) 

  Capesize 
       

  Avg spot vs 

7 None 34.18947 35.19275 21.80002 22.29962   {Cp fleet devel 

  Ch_steel prod} 

          

  6-m tc 170k vs 

5 None 6.571528 35.19275 6.563918 22.29962   {Cp fleet devel 

  Ch_steel prod} 

          

  Panamax        

  Avg spot vs 

5 None 30.94755 35.19275 19.44932 22.29962   {Pmx fleet devel 

  Ch_steel prod} 

          

  6-m tc 75k vs 

2 None* 42.93139 35.19275 25.81752 22.29962   {Cp fleet devel 

  Ch_steel prod} 

    At most 1 17.11387 20.26184 9.344156 15.8921 

          

             

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 31: Johansen Co-integration test (VAR/VECM) 

 

 

As Table 31 illustrates, there is only one co-integrating relation, and that is between 

Panamax period rates and the selected set of endogenous variables. Therefore, the 

forecasts have to be based on VECM modelling for Panamax period rates and on 

VAR for all other cases.  
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7.5.2.2. Causality Analysis 

Granger causality tests check the validity of the explanatory variables. It should be 

noted that this study follows the Toda and Yamamoto (1995) approach, by which the 

Granger causality tests are conducted on the basis of a well specified VAR model in 

the levels of the data, even though they are I(1). This is vital so as to maintain the 

asymptotical chi-square distribution of the Wald test. Therefore, we construct a VAR 

model in levels adding one extra lag. Yet this additional lag is not included in the test 

formulation. 

 

Table 32 summarizes the results. 

 

 

  

M
o

d
el

  

Dependent 

variable 
Excluded variables Lags 

Chi-sq.         

(p-value) 
Outcome 

C
a

p
es

iz
e V
A

R
 

Avg spot 
Cp fleet devel 

7 

0.0566* causality at 10% 

Ch_steel prod 0.0245** causality at 5% 

All 0.0121** causality at 5% 

       

V
A

R
 

6-m tc 
Cp fleet devel 

5 

0.0978* causality at 10% 

Ch_steel prod 0.0281** causality at 5% 

   All 0.0359** causality at 5% 

              

P
a

n
a

m
a

x
 

 

Avg spot Pmx fleet devel 
5 

 0.0477** causality at 5% 

 Ch_steel prod  0.0017*** causality at 1% 

  All  0.0002*** causality at 1% 

       

V
E

C
M

 

6-m tc 
Pmx fleet devel 

2 

0.0001*** causality at 1% 

Ch_steel prod 0.0855* causality at 10% 

 All 0.0000*** causality at 1% 

            

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0   

Table 32: Granger Causality (VAR/VECM) 

 

 

It is evident that all variables exhibit significant causality with the respective rates. 

This implies that they can be safely treated as explanatory variables in the ensuing 

VAR/VECM models.  
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7.5.2.3. Variance Decomposition 

The next step is to further scrutinize the selected explanatory variables by means of 

Forecast Error Variance Decomposition (FEVD). This will determine the proportion 

of the variance of the forecast error which is attributable to the respective endogenous 

variables for each period.  

 

Tables 33 – 36 present the outcome of this analysis for each individual dependent 

variable.  

 

 

 Period S.E. DC_6M_170K DCP_DEVEL DCH_STEEL_PR 

     
      1  0.234287  100.0000  0.000000  0.000000 

 2  0.244111  98.87041  0.479180  0.650411 

 3  0.250285  94.82607  1.318075  3.855860 

 4  0.253072  93.91638  2.295857  3.787759 

 5  0.257022  93.44870  2.393935  4.157366 

 6  0.257968  92.87159  2.393070  4.735343 

 7  0.259402  92.10234  2.665986  5.231670 

 8  0.259486  92.06821  2.687289  5.244503 

 9  0.260415  91.48199  2.983102  5.534911 

 10  0.261051  91.20041  3.064577  5.735016 

     
     

Table 33: Capesize 6m t/c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 

 

 Period S.E. DCP_AVG_SPOT DCP_DEVEL DCH_STEEL_PR 

     
      1  0.422201  100.0000  0.000000  0.000000 

 2  0.428837  97.97422  1.227030  0.798745 

 3  0.451073  94.43394  1.482124  4.083938 

 4  0.460927  92.25602  3.828787  3.915197 

 5  0.463302  92.09726  3.844418  4.058326 

 6  0.465622  91.30731  4.006322  4.686366 

 7  0.469341  90.72438  4.492760  4.782855 

 8  0.475368  89.40445  5.886806  4.708739 

 9  0.478148  89.28422  5.829239  4.886543 

 10  0.480228  88.68566  5.986277  5.328066 

 

Table 34: Capesize spot 

 

 

 Period S.E. PMX_6M_75K PMX_DEVEL CH_STEEL_PR 

     
      1  0.144949  100.0000  0.000000  0.000000 

 2  0.251200  99.01218  0.507279  0.480542 

 3  0.334414  93.12696  3.974288  2.898753 

 4  0.399281  87.55384  7.630662  4.815493 

 5  0.453011  81.96164  11.89630  6.142065 

 6  0.498693  77.55551  15.45009  6.994396 

 7  0.539717  73.97875  18.50994  7.511308 

 8  0.577218  71.21857  20.91358  7.867855 

 9  0.612337  68.99762  22.87592  8.126456 

 10  0.645418  67.20679  24.45359  8.339623 

 

Table 35: Panamax 6m t/c 
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 Period S.E. DPMX_AVG_SPOT DPMX_DEVEL DCH_STEEL_PR 

     
      1  0.255825  100.0000  0.000000  0.000000 

 2  0.258822  98.39645  1.142369  0.461185 

 3  0.280596  87.94859  4.980959  7.070447 

 4  0.281803  87.73660  4.938402  7.324994 

 5  0.283301  87.48392  4.887078  7.629000 

 6  0.285525  87.20156  5.149411  7.649029 

 7  0.289013  85.18802  6.146508  8.665473 

 8  0.289085  85.16410  6.166050  8.669847 

 9  0.289557  84.97907  6.147284  8.873646 

 10  0.289852  84.81471  6.316638  8.868654 

     
     

Table 36: Panamax spot 

 

 

Table 33 illustrates that about 5% of Capesize period rates forecast error is due to 

steel price shocks and another 2 - 3% due to changes in the supply of Capesize 

vessels. Alongside, it appears that more than 90% of the prediction error is self-

generated.  

 

In this context, Tables 33 – 36 present a similar picture. The self-generated variation 

accounts for proportions that vary between 85 – 95%, while the contribution of the 

Chinese steel production ranges between 5 – 9% and that of the fleet development 

between 3 – 6% (except for the Panamax period rates where it contributes up to 

25.5%).   

 

All in all, as expected, the largest portion of the forecast error is generated by the 

dependent variables themselves over time. The notable characteristic of the foregoing 

analyses is that all endogenous variables of this study explain a significant part of the 

variation in the respective forecast errors.  

 

 

 

 

 

 

 



157 

 

7.5.2.4. Residual Diagnostics 

 

 

  
Model 

Type 
Dependent 

Independent 

(Endogenous) 
Lags 

Residual Serial 

Corr. LM test 

 Residual 

Heteroskedasticity 
R-sq. 

C
a

p
es

iz
e 

            

VAR 
Avg spot 

Ch_steel prod 
7 0.6482 0.0001*** 0.242989 

Coal cons 

        

VAR 6-m tc 
Cp fleet devel 

5 0.1722 0.0001*** 0.205895 
Ch_steel prod 

                

P
a

n
a

m
a

x
 

 

Avg spot 
Pmx fleet devel 

5 0.9270  0.0005*** 0.236271 
VAR Ch_steel prod 

        

VECM 6-m tc 
Pmx fleet devel 

2  0.0024***  0.0059*** 0.322904 
Ch_steel prod 

           

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

VAR Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

VAR/VEC White Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

Table 37: Residual Diagnostics (VAR/VECM) 

 

 

The above residual diagnostics suggest that all of the VAR models are well specified, 

as their residuals do not exhibit serial correlation. In contrast, the VECM for the 6-

month Panamax rates appears affected by serial correlation. This points to data 

misspecification and may be the reason for the large forecast errors that arise in this 

case (see 7.8). Along these lines, the R-squared of this VECM model is greater than 

any other VAR of this analysis. However, this may be misleading due to questionable 

estimates of the related test statistics in the presence of serial correlation.  

 

The main pitfall of all VAR/VECM models developed in this study is the detection of 

heteroscedasticity, as shown in Table 37. This can be attributed to the asymmetric 

shape of the distribution of each variable, as indicated by the non-zero coefficients of 

skewness reported in Table 37. In fact, positive or negative skewness can be the major 

cause of heteroscedasticity. Nevertheless, as discusses in Chapter 4, this is not a 

reason to reject an otherwise satisfactory model.  

 

Table 37 also illustrates that the values of R-squared are higher than the respective 
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values for the ARIMA models (see Table 30). Therefore it can be inferred that the 

VAR/VECM models formulated provide a better fit for the data than the ARIMA 

framework. 

 

 

7.5.3. VARX Models 

 

7.5.3.1. Johansen Co-integration tests 

As discussed in 7.5.1.1., all variables of this analysis have unit roots. Thus, Johansen 

co-integration tests should be performed to investigate the existence of long-term 

equilibriums.  

 

 

  Series 
Exogenous 

series 
Lags 

Hypothesized 

No. of CE(s) 
Trace 

0.05 CV 

(trace) 

Max 

Eigenvalue 

0.05 CV 

(Max 

Eigen.) 

  Capesize  
       

  Avg spot vs  

5 None 32.88359 35.19275 21.94628 22.29962   {Cp fleet devel DBECI 

  Ch_steel prod} IFO_avg 

           

  6-m tc 170k vs  

7 None 33.70651 35.19275 21.19163 22.29962   {Cp fleet devel DBECI 

  Ch_steel prod} IFO_avg 

           

  Panamax         

  Avg spot vs  

3 None 29.98012 35.19275 19.90082 22.29962   {Pmx fleet devel DBECI 

  Ch_steel prod} IFO_avg 

           

  6-m tc 75k vs  

3 None 27.75045 35.19275 18.68955 22.29962   {Cp fleet devel DBECI 

  Ch_steel prod} IFO_avg 

           

               

Notes: 

* denotes rejection of the hypothesis at the 0.05 level. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the series   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1:  r+1 cointegrating relations. 

Table 38: Johansen Co-integration test (VARX) 

 

 

Table 38 shows that there is no co-integration whatsoever. Therefore, the forecasting 
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models have to be built on the basis of a VARX rather than a VECMX framework.  

 

7.5.3.2. Causality Analysis 

The development of parsimonious VARX models requires the careful and statistically 

sound selection of explanatory variables. For this purpose Granger causality tests are 

carried out and investigate the explanatory power of each independent series. As in 

the case of VAR/VECM models, the study uses the Toda and Yamamoto (1995) 

approach.  

 

 

  Dependent 

variable 
Excluded variables Lags 

Chi-sq.         

(p-value) 
Outcome 

C
a

p
es

iz
e 

Avg spot 

Cp fleet devel 

5 

 0.0544* causality at 10% 

Ch_steel prod 0.0152** causality at 5% 

All 0.0100*** causality at 1% 

      

6-m tc 

Cp fleet devel 

7 

0.0788* causality at 10% 

Ch_steel prod 0.0767* causality at 10% 

All 0.0542* causality at 10% 

          

P
a

n
a

m
a

x
 

Avg spot Pmx fleet devel 
3 

0.0146** causality at 5% 

Ch_steel prod 0.0005*** causality at 1% 

 All  0.0000*** causality at 1% 

      

6-m tc 
Pmx fleet devel 

3 

0.0136*** causality at 1% 

Ch_steel prod 0.0507* causality at 10% 

 All 0.0037*** causality at 1% 

          

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

H0: All lagged terms of excluded variable insignificant 

The test statistic follows the chi-square distribution under H0 

Table 39: Granger Causality (VARX) 

 

 

Table 39 provides evidence that each and every independent variable causes the 

respective rates. This confirms that they can serve as explanatory variables and form 

appropriate VARX models.   
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7.5.3.4. Residual Diagnostics 

 

 

  
Model 

Type 

Dependen

t 

Independent 

(Endogenous) 

Independent 

(Exogenous

) 

Lag

s 

Residua

l Serial 

Corr. 

LM test 

 Residual 

Heteroskedasticit

y 

R-sq. 

C
a

p
es

iz
e 

             

VAR

X 
Avg spot 

Ch_fleet devel DBECI 
5 0.2272  0.0077*** 

0.26683

8 
Ch_steel prod IFO_avg 

         

VAR

X 
6-m tc 

Cp fleet devel DBECI 
7 0.8366 0.0021*** 

0.33414

5 
Ch_steel prod IFO_avg 

                  

P
a

n
a

m
a

x
 

 

Avg spot 

Pmx fleet 

devel DBECI 3  0.2600  0.0000*** 
0.20728

9 
VARX Ch_steel prod IFO_avg 

         

VARX 6-m tc 

Pmx fleet 

devel DBECI 3 0.2549 0.0002*** 
0.33529

3 
Ch_steel prod IFO_avg 

                  

            

Notes: 

*** indicates rejection of H0 at 1% level, **at 5% and * at 10% 

VAR Residual Serial Correlation LM test / H0: no serial correlation at lag order h 

VAR/VEC White Heteroskedasticity Tests: No Cross Terms / H0: homoscedasticity in residuals 

Table 40: Residual Diagnostics (VARX) 

 

 

The residual diagnostics presented in Table 40 suggest that all VARX models are well 

specified, relatively speaking. According to the LM tests, the residuals are free from 

autocorrelation, but they are heteroscedastic. As discussed earlier, heteroscedasticity 

affects the efficiency and the minimum variance status of estimators. However, given 

that it has no repercussions for their consistency and unbiasedness, the models are not 

rejected on the grounds of heteroscedasticity. After all, its presence was anticipated, 

in light of the results of Descriptive Satistics (Table 27) which indicated that all 

variables are unevenly distributed (skewed left or right).  

 

In the scope of the present study, the most serious problem arising out of 

heteroscedasticity would be the unreliability of F-tests, since they rely on 

homoscedasticity. This obstacle is overcome by using the Wald test statistics when 

testing for Granger causality.   
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As far as the goodness of fit is concerned, Table 40 shows that the VARX models 

have higher R-squared values in all cases, except the Panamax spot rates. This is 

indicative of the substantial improvement that the addition of two exogenous variables 

brings about. The VARX models are able to explain a larger portion of the variation 

in the dependent variables, compared to the respective VAR/VECM and ARIMA 

models. 

 

 

7.6. Forecasts 

The final step of this analysis involves the generation of point ex-post and ex-ante 

forecasts.  

 

First, ex-post forecasting is performed and the forecasted values are compared with 

the true values of the data for the selected period. This provides a first indication of 

the performance and the goodness-of-fit of the proposed models.   

 

Subsequently, ex-ante forecasts are produced for seven periods ahead, using as 

starting values the last known values of the resized samples. It is worth noting that 

each model generates ex-post and ex-ante forecasts for the same sample size and over 

the same horizon. This ensures consistency across the different modelling approaches.  

 

7.6.1. Ex-post forecasts 

In ex-post forecasts, the values of the series are known throughout the selected period. 

Hence, the forecasted values can be checked against existing data so that the historical 

fit and the predictive ability of the model can be evaluated. Specifically, the models 

produce one step-ahead static in-sample forecasts and the relevant error is calculated 

for each step, so that the forecasting performance of the model can be evaluated.  

 

The following figures (35 – 46) depict the ex-post forecasts for ARIMA, VAR/VECM 

and VARX approaches. It should be noted that the vertical axis of both ex-post and 

ex-ante forecasts of VAR/VECM and ARIMA models measure logarithms. 

Furthermore, the ARIMA forecast results have been transformed from first 

differences into levels, and so they are presented. The precise time interval for each 

case is as follows: [10/2002 – 07/2014] for Capesize spot rates, [12/2002 – 07/2014] 

for Capesize period rates, [10/2002 – 07/2014] for Panamax spot rates and [03/2002 – 

07/2014] for Panamax period rates.    
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7.6.1.1. ARIMA models 
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Figure 35: Capesize 6m t/c ex-post (ARIMA) 
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Figure 36: Capesize spot ex-post (ARIMA) 



163 

 

 

8.5

9.0

9.5

10.0

10.5

11.0

11.5

99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

PMX_6M_75K PMX_6M_75K (Forecast)
 

Figure 37: Panamax 6m t/c ex-post (ARIMA) 

 

 

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

PMX_AVG_SPOT

PMX_AVG_SPOT (Forecast)
 

Figure 38: Panamax spot ex-post (ARIMA) 
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7.6.1.2. VAR / VECM Models 
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Figure 39: Capesize 6m t/c ex-post (VAR) 
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Figure 40: Capesize spot ex-post (VAR) 
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Figure 41: Panamax 6m t/c ex-post (VECM) 
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Figure 42: Panamax spot ex-post (VAR) 
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7.6.1.3. VARX Models 
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Figure 43: Capesize 6m t/c ex-post (VARX) 
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Figure 44: Capesize spot ex-post (VARX) 
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Figure 45: Panamax 6m t/c ex-post (VARX) 
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Figure 46: Panamax spot ex-post (VARX) 
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7.7.1. Ex-ante forecasts 

Ex-ante forecasts require the specification of a sub-sample of the dataset and the 

remaining observations are considered unknown. Thus the data of the resized sample 

can be used to generate forecasts and then compare the forecasted values with the 

actual ones (which had been regarded as out-of-sample). This technique allows the 

evaluation of the forecasting accuracy of the model.  

 

This analysis takes sub-samples of each dependent variable which end on December 

2013 and uses them to produce ex-ante forecasts for seven months ahead.  

 

The following figures depict the ex-ante forecasts for the dependent variables of this 

study.  

 

7.7.1.1. ARIMA models 
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Figure 47: Capesize 6m t/c ex-ante (ARIMA) 
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Figure 48: Capesize spot ex-ante (ARIMA) 
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Figure 49: Panamax 6m t/c ex-ante (ARIMA) 
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Figure 50: Panamax spot ex-ante (ARIMA) 

 

 

7.7.1.2. VAR / VECM Models 
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Figure 51: Capesize 6m t/c ex-ante (VAR) 
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Figure 52: Capesize spot ex-ante (VAR) 
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Figure 53: Panamax 6m t/c ex-ante (VECM) 

 

 



172 

 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

I II III IV I II III

2013 2014

DPMX_AVG_SPOT

DPMX_AVG_SPOT (Forecast)  

Figure 54: Panamax spot ex-ante (VAR) 

 

7.7.1.3. VARX Models 

 

 

-.4

-.3

-.2

-.1

.0

.1

.2

.3

.4

.5

I II III IV I II III

2013 2014

DC_6M_170K DC_6M_170K (Forecast)
 

Figure 55: Capesize 6m t/c ex-ante (VARX) 
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Figure 56: Capesize spot ex-ante (VARX) 
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Figure 57: Panamax 6m t/c ex-ante (VARX) 
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Figure 58: Panamax spot ex-ante (VARX) 

 

 

7.8. Forecasting Evaluation and Comparison of Forecasts 

Table 41 presents the forecast errors of ex-post forecasts and Table 42 the errors 

pertaining to ex-ante forecast. The values of the two tables measure the predictive 

accuracy and thus provide evidence for the forecasting performance of each approach.    

 

 

  ARIMA VAR / VECM VARΧ / VECMΧ 

  RMSE MAE RMSE MAE RMSE MAE 

Capesize             

avg spot 0.448270 0.309264 0.449230 0.312504 0.446092 0.311693 

6-m tc 170k 0.236236 0.264612 0.224556 0.163695 0.205470 0.157780 

              

Panamax             

avg spot 0.275938 0.193055 0.277866 0.194738 0.275371 0.192302 

6-m tc 75k 0.156628 0.110822 10.555840 10.543080 0.172130 0.114670 

Table 41: Forecast Errors (ex-post static forecasts) 
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  ARIMA VAR / VECM VARX / VECMX 

  RMSE MAE RMSE MAE RMSE MAE 

Capesize             

avg spot 1.485375 1.433201 0.683148 0.611073 0.680953 0.608044 

6-m tc 170k 0.517611 0.499697 0.298708 0.243342 0.300645 0.249803 

              

Panamax             

avg spot 0.810306 0.718781 0.277466 0.210927 0.278017 0.206066 

6-m tc 75k 0.485598 0.435513 11.170430 11.170230 0.107667 0.090387 

Table 42: Forecasting Errors (ex-ante dynamic forecasts) 

 

 

The above results are indicative of the superiority of the VARX approach compared 

both to VAR/VECM and to ARIMA. The values of most relevant criteria are much 

lower for the VARX models, revealing a higher level of accuracy. This can be 

attributed to their suitability for this kind of forecasts, which is enhanced by the 

incorporation of a new composite index, the DBECI, which reflects the economic 

conditions pertinent to the dry bulk market (DBECI). Moreover, the performance of 

VARX models is further improved by the utilization of the average bunker prices as a 

second exogenous variable. On top of that, as discussed in 7.5.3.4, the R-squared 

values are consistently higher in the case of VARX models than in the two alternative 

approaches (with only one exception). 

 

Starting with the ex-post forecasting results, it is noticeable from Table 41 that the  

VARX model performs better than both the VAR/VECM and the ARIMA models in 

the prediction of spot Capesize rates, period Capesize rates and spot Panamax rates.  

 

In contrast, while VARX easily outperforms the VECM in terms of Panamax period 

rates, the ex-post results indicate that the ARIMA model provides more accurate 

forecasts for this particular case. However, this is not confirmed by the ex-ante 

results, which reveal that ARIMA yields the largest forecast errors.  Indeed, the values 

of both criteria are more than three time higher than the respective values for VAR 

and VARX models.  

 

Table 42 presents the ex-ante results, which confirm the superiority of VARX models, 

as they yield the lowest forecast errors in all cases except the Capesize period rates, 

which are better predicted by VAR models. Also, there is a conflict between the 

RMSE and MAE in the case of Panamax spot rates, as the former criterion is in 

favour of VAR, while the latter points to VARX. Other than that, the VAR models 

perform better than their ARIMA counterparts. It should be noted that the predictive 

power of ARIMA models is significantly lower in all ex-ante forecasts. Given that the 



176 

 

forecast horizon is 7 months, it appears that ARIMA models are not well suited for 

medium term forecasts.   

 

Another important remark is that both ex-post and ex-ante forecasts, in all three 

modeling frameworks, yield more accurate predictions for the period than for the spot 

market. This is consistent with theory, considering that period rates are more reliant 

on future expectations than spot rates. The latter are also more volatile, as indicated 

by the descriptive statistics. Therefore, the formation of the current values of period 

rates embodies elements of market expectations, which ultimately facilitate their 

prediction. This also explains the relatively good performance of ARIMA models in 

the case of period rates, considering that this framework relies solely on its own past 

values for future predictions. The most notable example is the superiority of this 

approach for ex-post forecasts of Panamax period rates.   

 

Overall, the lower forecast errors of VARX models manifest the influential role of the 

proposed index as a leading indicator of dry cargo freight rates. 

 

 

7.9. Concluding Remarks 

This chapter formulates three different modelling approaches and then evaluates the 

forecasting results using appropriate criteria. The ARIMA framework mainly serves 

as a benchmark for purposes of comparison. Co-integration tests determine the choice 

between VAR and VECM, and Granger causality analyses validate the selection of 

suitable explanatory variables. In this setting, each model is used to generate ex-post 

and ex-ante forecasts for the same sample size and over the same time horizon. 

According to the results, it arises that period rates can be predicted with significantly 

higher accuracy than spot rates. A further comparison of the forecast errors, points to 

the superiority of the VARX models in almost all cases. VAR models also outperform 

ARIMA, but they are less powerful than VARX. Those findings, combined with the 

higher R-squared values of VARX models, are a clear indication of the beneficial role 

of DBECI and average bunker prices as exogenous variables in forecasting models. 

All in all, it is evident that the addition of those two newly constructed variables 

enhances the robustness and the predictive success of the proposed models. 
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8.  OPTIMAL CHARTERING DECISIONS  

 

8.1. Introduction 

The aim of this chapter is to investigate strategic chartering decisions in the spot 

market. In this respect, it studies the historical return performance of trip charters in 

comparison with their corresponding voyage charters using technical analysis rules. 

Considering first some of the most representative dry bulk t/c trip routes, the 

corresponding voyages are identified. In this context, a technical trading strategy is 

developed and then examined in terms of its ability to generate excess returns. The 

results show that the proposed approach outperforms the ‘naïve’ strategy of always 

chartering in vessels on t/c trip charters and perform the underlying voyage charters. 

Overall, the results reveal the existence of excess return opportunities in the spot 

market. This analysis can be used by ship operating companies as a guide to select 

voyages with the highest probability of excess returns and adapt their strategies 

accordingly. 

  

It is worth noting, that the present analysis is performed under the assumption of 

semi-strong market efficiency, as it is assumed that the historical rates and all publicly 

available information are known. At this point a contradiction arises, since the 

existence of excess profit opportunities is not consistent with the EMH. Yet, as it is 

discussed in the EMH section of this thesis (2.12 – 2.15), it can be considered that 

market efficiency is restored in the long-run, if a long-term equilibrium exists. In this 

regard, it is of paramount importance to test for co-intergration and check if there are 

any equilibrium relationships.  

 

According to the relevant literature review (3.3 -3.4), there have not been any studies 

investigating the relationship between trip charters and their underlying voyages. The 

body of the literature makes no distinction between trip charters and the Time Charter 

Equivalent (TCE) of voyages. They are rather used interchangeably to represent the 

spot market rates for purposes of comparison with the time charter period rates and 

FFAs (see 3.3). However, they constitute two different ways of chartering a vessel 

and it is interesting to study their dynamics. Hence this study extends the analysis to a 

new area of research, attempting to fill a gap in the literature. 

 

As discussed in Chapter 2, a trip t/c is a short time charter, where the vessel is 

employed for a specified route only. On the contrary, under a standard (or period) t/c 

the operator is free to trade the vessel for an agreed period of time within specified 
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trading areas. In general, under time charters (both trip and period) the ship owner 

hires out the vessel and remains responsible for paying the crewing costs, the 

maintenance costs and so on. In exchange, the shipowner receives a daily hire 

payment. On the other side, the time charterer (who becomes the operator) takes over 

the commercial control of the vessel and pays the voyages costs, such as bunker 

expenses, port disbursement accounts and so on.  

 

A voyage charter occurs when a vessel is employed for a voyage between a load and a 

discharge port. The ship operator incurs the voyage expenses, while the charterer pays 

the operator an agreed freight on a per-ton basis. Some operators, described as 

‘Disponent Owners’, hire in ships on a period t/c or a trip t/c from ship owners and try 

to secure a profit by trading them in the spot market, entering into voyage charter 

contracts. This study concentrates on those operators who charter in vessels for a 

single t/c trip and perform voyage charters. 

 

The chapter begins with an extensive discussion of the characteristics of spot and 

period rates, including their formation mechanism and their relationship. Then the 

attention is turned to the spot market, which is the focal point of the current analysis. 

In this context, a technical trading method is developed and applied to some selected 

routes. The last step involves the evaluation of the proposed methodology and the 

analysis of the results.  

 

 

8.2. Formation of spot freight rates 

The dry bulk freight rates are determined by the balance between supply and demand. 

In turn, each of these functions is driven by several factors which have been identified 

and analyzed in the previous sections. The important point here is that freight rates are 

formed by this dynamic relationship. Therefore, in order to obtain a more solid picture 

of the freight rate mechanism, it is essential to look into the precise manner in which 

the supply and demand interact with each other.  

 

This idea is illustrated by the supply and demand curves in Figure 59 below. To begin 

with, the demand for shipping services is inelastic. The shape of the demand curve 

reflects that higher freight rates may push down the demand, due to postponements of 

shipments or modifications of parcel sizes so that they can be carried by alternate 

vessel categories. In general, high transport cost is a significant disincentive for 

shippers.  
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The supply of ships has a characteristic “J shape” which represents the carrying 

capacity at different levels of freight rates. This particular shape implies that supply is 

elastic at low freight rates (within the interval specified by points A and B) and turns 

into inelastic when rates skyrocket (beyond point B). The elastic part of the supply 

curve is attributed to the overcapacity during periods of stagnating freight rates. In 

such periods, any increase in demand (for example from D1 to D2) is instantly 

absorbed by the available tonnage and limits the upside potential of freight rates. On 

the other hand, a possible shift of demand from D3 to D4, is expected to trigger a 

steep rise in freight rates, followed by a relatively small increase in supply. This 

inelastic behavior can be explained by the notion of full capacity utilization. The 

rising demand leads to high utilization rates of vessels and this enhances the 

negotiating power of shipowners. Therefore, when the demand keeps rising, 

charterers are usually compelled to concede to much higher freight rates. This creates 

the almost vertical supply line which is shown in the graph.  

 

Finally, an increase in demand triggers an automatic rise in freight rates, which 

ultimately leads to surging supply in the short term. The latter is owed to the tendency 

of shipowners to speed up when rates are high in order to get the most out of the 

favorable market conditions, as well as to their possible decision to reactivate the laid-

up vessels. The long term supply is also poised to be affected, since the cash that 

shipowners accumulate during the aforementioned market boom is likely to be 

invested in newbuilding vessels; especially when shipowners are driven by a positive 

sentiment. At the same time the scrapping rate drops, since even the old ships are able 

to cover their operating expenses. The combination of those factors leads to a sharp 

increase in supply over the long run, which is not easy to be absorbed by the market 

demand. 
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Figure 59: Supply – demand framework 

           Source: Alizadeh and Nomikos (2009) 

 

 

8.3. Formation of time charter rates 

Unlike voyage or spot freight rates, which are shaped by the interplay between 

demand and supply and are affected by various factors, in the case of time charter 

rates the market expectations about the future values of spot rates play a more 

important part. For instance, the 6-month t/c contract reflects the agents’ expectations 

about the levels of spot rates over the duration of the charter.  

 

In congruence with what was discussed in 2.12 - 2.15 and 3.3 – 3.4, it will be 

attempted to approach the formation of t/c rates within the spectrum of the term-

structure relationship. The latter is connected with the no-arbitrage principle and the 

efficiency of the freight market.  

 

This relationship implies that in an efficient market the present value of t/c rates 

equals the present value of the difference between the expected values of spot 

earnings and voyage expenses over the contract duration. This is mathematically 

represented by the following equation:  
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where TC is the time charter rate, E(Rt) denotes the expected earnings in the spot 

market, E(Ct) are the expected voyage costs, T is the maturity of the contract and  i is 

the discount rate. 
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Drawing on the discussion about the existence of a time-varying risk premium which 

emanates from various risk factors (see 2.16), the risk premium, φt, is incorporated 

and equation 8.1 takes the form:  
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where φt is the time-varying risk premium.  

 

 

8.4. Time Charter Equivalent (TCE) 

Voyage rates are converted into Time Charter Equivalents (TCE) so as to be 

comparable with the spot t/c rates which are measured in $/day. The TCE is 

calculated on the basis of standard ship types by deducting from the total net 

revenues: [freight rate x cargo intake x (1 – commission)] the total voyage expenses: 

(bunker cost + port charges + canal dues) and divide by the number of voyage days. 

The calculations do not include allowance for unforeseen expenses, waiting time at 

port and off-hire time. However they do account for the ballast trips in the estimation 

of the total voyage days. (Clarkson Research Services Limited, 2014) 

 

 

8.5. Excess returns in the spot market 

 

8.6. Motivation 

The figures below (Figure 60 – 64) provide a graphical representation of the 

relationship between representative t/c trips and some of their corresponding voyages 

for different vessel sizes. It is illustrated that the respective pairs of variables co-

fluctuate in the long run, while they are characterized by distinct deviations at some 

specific points in time over the short run. Therefore, it is essential to statistically 

confirm their co-integrating relationship and then develop a strategy in order to 

exploit the deviations and increase the excess returns.  

 

In this respect, the series are first examined in terms of their stationarity, using two 
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different tests, i.e. the Augmented Dickey Fuller (ADF) and the Kwiatkowski–

Phillips–Schmidt–Shin (KPSS) tests. If the series are found non-stationary Johansen 

test will be employed to test for co-integration. 
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Figure 60: Supramax S1A and USG-Japan TARV 
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Figure 61: Panamax P1A_03 and Maracaibo-Rotterdam 
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Figure 62: Panamax P1A_03 and Hampton Roads-ARA 
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Figure 63: Capesize C8_03 and Tubarao-Rotterdam 

 

 



184 

 

$-50,000

$0

$50,000

$100,000

$150,000

$200,000

$250,000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

C8_03:GibraltarHamburg_transAtlanticRV

CapesizeTCE_PCartier_Rdam
 

Figure 64: Capesize C8_03 and Port Cartier-Rotterdam 

 

 

In essence, the figures show that there are signals at some specific times, emanating 

from the distinct (positive) divergence of voyage rates from t/c trip rates. The prime 

goal is to develop a new methodology which will be able to identify the optimal 

timing for entering the spot market. 

 

 

8.7. Chartering Strategy Formulation 

Subsequent to the establishment of the existence of a long-term relationship between 

spot t/c and voyages rates, the centre of attention shifts to the short run deviations and 

to the formulation of a chartering strategy based on technical trading rules. The main 

objective is to set up a new method and exploit the short-term opportunities as they 

arise. For this purpose, a new methodology is introduced, the Modified Momentum 

Trading Model (MMTM). 

 

Widler (1978) was the first to introduce price momentum and RSI as a technical 

analysis tool. Furthermore, many other books dealing with technical analysis discuss 

both momentum and RSI; for example, Murphy (1999) and Kahn (2006). 
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In physics, momentum depends on the velocity of an object. Likewise, market 

momentum is the measurement of the velocity or speed of price movements. 

Momentum trading is a technical analysis method, employed to set up a chartering 

strategy. It is based on an index (the RSI), which reflects the momentum of upward 

and downward movements. The basic idea is the continuation of established trends in 

the market.  

 

In the framework of the Momentum Trading methods, generally, when the RSI 

crosses some specified threshold values, indicates a decision signal. However, these 

barriers vary from case to case. Thus, this analysis takes as threshold the Moving 

Average MA(4). This modification makes the MMTM more aligned to the volatile 

nature of shipping freight markets, compared to the conventional Momentum Trading 

methods. The goal is to capture - as much as possible - the fluctuations and the market 

shocks of the dry bulk freight market, without compromising the flexibility of the 

methodology.  

 

This model is based on the concept of the Momentum Trading model with necessary 

modifications in terms of the definition of its components and its thresholds. More 

specifically, a measure of the momentum (Mt+1) is defined as: 
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where ut represents a positive spread at time t, namely voyage TCE > t/c trip rate and 

dt a negative spread (TCE < t/c trip). 

 

On this basis, the Relative Strength Index at time t+1 (RSIt+1) is constructed using the 

following formula: 

 

1 1100 100 / (1 )t tRSI M     

 

A move of the RSI above its 4-week Moving Average MA(4) is an indication of an 

upward momentum, as the recent sum of voyage TCEs is surpassing the respective 

sum of t/c trip rates. Hence, in this case, an operator should select this voyage as 

profitable. Conversely, a level below its MA(4) corresponds to a lack of excess return 

opportunities on voyage charters; Thus there will be no voyage in the latter case. 
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8.8. Data Description 

This study employs weekly data from the Clarkson’s Research Services Ltd (CRLS) 

database, which cover the period starting from January 2003 to January 2014. The 

dataset considers three separate sizes: Capesize, Panamax and Supramax. There were 

no historical data available on CRLS for voyage freight rates of the Hadysize-

Handymax category, as these vessels perform various and usually short-distance 

voyages.   

 

The freight rate data collection is carried out by Clarkson’s Research team through a 

pro-forma where various brokers report last week’s fixtures and then the data are 

crosschecked with published sources. Voyage rates are converted into Time Charter 

Equivalents (TCE) so as to be comparable with the spot t/c rates which are measured 

in $/day. The calculations do not include allowance for unforeseen expenses, waiting 

time at port and off-hire time. However they do account for the ballast trips in the 

estimation of the total voyage days. 

 

The analysis focuses on the following t/c trips: the BSI S1A: 52,454 mt 

Antwerp/Skaw trip to Far East, the BPI P1A_03: 74,000mt trans-Atlantic round 

voyage and the BCI C8_03: 172,000mt Gibraltar/Hamburg trans-Atlantic round 

voyage. On this basis, the following corresponding voyages are identified: the US 

Gulf (USG) – Japan grain voyage for a 49,000dwt Supramax, the Maracaibo – 

Rotterdam coal voyage for a 70,000dwt Panamax, the Hampton Roads – Antwerp, 

Rotterdam or Amsterdam (ARA) coal voyage for a 70,000dwt Panamax, the Tubarao 

- Rotterdam iron ore voyage for a 165,000dwt Capesize and finally the Port Cartier – 

Rotterdam iron ore voyage for a 150,000dwt Capesize. 

 

 

8.9. Descriptive Statistics 

The data analysis begins with the descriptive statistics, as shown in Table 43 below.  
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  Mean  Min Max 

Standard 

Deviatio

n 

Skewnes

s 
Kurtosis J-B 

Supramax        

TC trip:        

S1A 10.1201 8.55256 11.3614 0.55078 0.04656 3.11129 0.386041 

       [0.824465] 

Voyage TCE:        

USG - Japan 
10.21325 8.683724 

11.4193

9 0.572859 0.23501 2.576107 6.109208 

       [0.047141] 

Panamax        

TC trip:        

P1A_03  9.94924 7.051856 

11.5935

7 0.743091 -0.26554 3.077472 6.829129 

       [0.032891] 

Voyage TCE:        

Maracaibo - 

Rdam 9.999021 7.549083 

11.6997

5 0.714825 

-

0.045568 2.886465 0.507825 

       [0.775759] 

        

HRds-ARA 9.861387 6.267201 

11.6025

4 0.831001 

-

0.511187 3.546481 32.029340 

       

 [0.00000

0] 

Capesize        

TC trip:        

C8_03  
10.39242 7.286192 

12.3605

9 1.059044 

-

0.593499 2.65294 36.259920 

 
      

 [0.00000

0] 

Voyage TCE:        

Tubarao-Rdam 10.51904 4.488636 

12.3621

1 1.092755 

-

1.499845 7.009585 

530.75220

0 

       

 [0.00000

0] 

Port Cartier - 

Rdam 10.49787 7.23201 

12.2658

2 0.935939 

-

0.522867 3.038819 26.099040 

       

 [0.00002

0] 

                

Notes:        

Figures in [.] are p-values 

The Jarque-Bera (J-B) test is used to check for normality. The J-B statistic is asymptotically χ²(2)-

distributed  

Table 43: Descriptive Statistics 

 

 

According to Table 43, the historical mean voyage return of every route of the current 

analysis exceeds the respective t/c trip earnings, indicating the existence of excess 

return opportunities on voyage charters.  

 

The unconditional volatility (standard deviation) of the majority of voyage charters is 
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higher than the corresponding standard deviation of the respective t/c trips (e.g. 

Supramax USG – Japan, Panamax HRds – ARA and Capesize Tubarrao-Rotterdam 

routes). This suggests that the voyage rates generally fluctuate more than the t/c trip 

rates in all vessel sizes.  

 

In addition, Table 1 reports that almost all rates are right-tailed (positive skew). The 

only exception is the P1A_03 t/c trip which is negatively skewed. A positively 

skewed distribution implies a large number of small losses and a few extreme gains, 

while the reverse occurs with negative skewness.  

 

As far as the kurtosis is concerned, Table 1 indicates that most of the variables are 

leptokurtic (kurtosis greater than 3). This class includes the S1A t/c trip, the P1A_03 

t/c trip, the Panamax HRds – ARA voyage charter, the Capesize Tubarrao - 

Rotterdam voyage and finally the Capesize Port Cartier-Rotterdam voyage charter. 

Therefore their distribution is characterised by heavy tails, which implies that there 

are it is more likely to come across values which fall quite far from their mean.  

 

Lastly, the Jarque-Bera test suggests the data of Supramax S1A and Panamax 

Maracaibo – Rotterdam are normally distributed, whilst the low p-values of the 

Jarque-Bera reveal significant departures from normality for all other variables. 

 

 

8.10. Empirical Results 

 

8.10.1. Unit Root tests 

The unit root tests are performed in the log-levels and log-differences of the voyage 

TCEs and t/c trip rates alike. The KPSS test examines the null hypothesis of 

stationarity under two different assumptions: First, the series have an intercept and, 

second, a constant and a linear trend. The results, which are presented in Table 45, 

reject the null hypothesis in all cases of level forms suggesting that the series are non-

stationary.  In contrast, the test shows that the log-first differences of the series are 

stationary, suggesting that the series are integrated of order 1 or I(1). In addition to 

KPSS, the ADF unit root test is also employed and the results confirm that all of the 

variables are integrated of order 1. The results are reported in Table 44. Therefore, it 

is essential to check the existence of a co-integration relationship between the time 

series. 

 



189 

 

 

 

 

 

 

 

  Log-Levels   Log-first differences 

  
Intercept 

Const. & 

trend 
None   Intercept 

Const. & 

trend 
None 

Supramax         

TC trip:         

S1A -2.659634* -3.086494  0.364146  
-

8.766217*** 

-

8.754385*** 

-

8.767417*** 

          

Voyage TCE:         

USG - Jpn -2.151210 -2.815897 
-

0.260193 
 

-

11.76167*** 

-

11.74577*** 

-

11.77688*** 

          

Panamax         

TC trip:         

P1A_03  

-

2.903449** 

-

3.423322** 0.298413  

-

9.633108*** 

-

9.623158*** 

-

9.626778*** 

          

Voyage TCE:         

Maracaibo - 

Rdam -2.764329* -3.276459* 

-

0.033592  

-

13.45650*** 

-

13.45446*** 

-

13.46732*** 

HRds - ARA -1.761125 -2.560573 

-

0.420973  

-

16.59231*** 

-

16.59578*** 

-

16.61070*** 

          

Capesize         

TC trip:         

C8_03  
-

3.049059** -3.51147** 0.299807  

-

10.71809*** 

-

10.71624*** -10.7093*** 

          

Voyage TCE:         

Tubarao - 

Rdam -2.25417 -2.979141 

-

0.305744  

-

12.32811*** 

-

12.20271*** 

-

12.38802*** 

Port Cartier - 

Rdam -2.246797 3.083134 

-

0.479262  

-

9.675934*** 

-

9.672725*** 

-

9.685169*** 

                

Notes:         

*** indicates rejection of the null at 1% level, **at 5% and * at 10% 

H0: the series is non stationary, H1: the series is stationary 

Table 44: ADF Unit Root Test 
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  Log-Levels   Log-first differences 

  
Intercept Const. & trend   Intercept 

Const. & 

trend 

Supramax       

TC trip:       

S1A  0.732645**  0.185000**   0.034879  0.035711 

        

Voyage TCE:       

USG - Jpn  1.204081***  0.064859   0.054382  0.054275 

        

Panamax       

TC trip:       

P1A_03   0.981690*** 0.292773***   0.058846 0.039725 

        

Voyage TCE:       

Maracaibo - Rdam 
0.884206*** 0.319406***   0.063982  0.041485 

HRds - ARA  1.237135***  0.361492***  0.042382  0.031735 

        

Capesize       

TC trip:       

C8_03  1.418374*** 0.312576***   0.035584*  0.035260 

        

Voyage TCE:       

Tubarao - Rdam  1.394660***  0.323697***   0.240541 0.096436 

Port Cartier - Rdam 
 1.431077***  0.326051***  0.037684 0.03247 

            

Notes:       

*** indicates rejection of the null at 1% level, **at 5% and * at 10% 

H0: the series is stationary, H1: the series is non stationary 

The bandwidth for each test is chosen on the basis of the Newey-West selection using Berlett kernel 

Table 45: KPSS Unit Root Test 
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8.10.2. Co-integration tests 

 

 

Pair of variables Lags 

Hypothesize

d No. of 

CE(s) 

Trace 
0.05 CV 

(trace) 

Max 

Eigenvalu

e 

0.05 CV 

(Max Eigen.) 

Supramax        

S1A - USG/Jpn 
5 None* 

 26.5822

0 

 20.2618

4 
 21.95234  15.89210 

    [0.0059]  [0.0049]   

   At most 1 

 4.62985

7 

 9.16454

6 
 4.629857  9.164546 

    [0.3265]   [0.3265]   

Panamax        

P1A_03 - 

Marac/Rdam 5 None* 44.0479  20.2618  35.9685  15.8921 

     [0.0000]  [0.0000]   

   At most 1 8.07943  9.1646  8.0794 9.1646 

     [0.0800]   [0.0800]   

P1A_03 - 

Hrds/ARA 5 None*  25.4389  20.2618  18.0416  15.8921 

     [0.0088]  [0.0227]   

   At most 1 7.397308  9.1646 7.3973  9.1646 

    [0.1070]  [0.1070]   

         

Capesize        

C8_03 - Tub/Rdam 5 None*  47.7464 20.2618  29.6836 15.8921 

     [0.0000]  [0.0002]   

   At most 1* 18.06278  9.1646 18.06278 9.1646 

     [0.0009]  [0.0009]   

C8_03 - 

Pcartier/Rdam 4 None* 52.3159  20.2618 41.8916 15.8921 

    [0.0000]  [0.0000]   

   At most 1* 10.4243 9.1646  10.4243  9.1646 

    [0.0287]  [0.0287]   

              

Notes:        

* denotes rejection of the hypothesis at the 0.05 level. 

Figures in [.] are MacKinnon-Haug-Michelis (1999) p-values. 

The tests assume a restricted intercept in the co-integrating equation and no deterministic trends in the 

series   

The trace statistic tests H0: r cointegrating relations against H1: k cointegrating relations.  

The max eigenvalue statistic tests H0: r cointegrating relations against H1: r+1 cointegrating relations. 

Table 46: Johansen Co-integration test for log - tc trips and log - voyage tce 

 

 

Based on various lag selection criteria (see Appendix D), the Johansen Co-integration 
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test investigates the existence of equilibriums and the results are presented in Table 

46. Both the trace and the max eigenvalue statistics show that there exists at least one 

co-integrating relation in all cases. This suggests that the t/c trip and the voyage TCE 

rates are linked through a long-term equilibrium relationship. In the short term 

though, there are deviations which are brought back to their equilibrium condition in 

the long run. 

 

8.10.3. Performance of Chartering Strategy 

Table 47 reports the overall excess return of each strategy when it is applied to the 

historical data of each individual route. The results are indicative of the superiority of 

the proposed methodology relative to the benchmark strategy. Specifically, it is 

shown that the MMTM can even double the excess return, i.e. on the Capesize Port 

Cartier - Rotterdam route where it yields a 30.9% return versus 14.9%. Similarly, it 

increases the return of the Panamax Maracaibo/Rotterdam route from 6.2% to 10.0%. 

Another striking characteristic of this method is its ability to reverse a negative return 

and turn it into positive. This is illustrated in Table 47, which demonstrates that the 

return for the Capesize Tubarao - Rotterdam route increased from a negative rate (-

28.6%) to a positive (3.6%) and for the Panamax Hampton Roads - ARA route from -

8.7% to 1.1%. 

 

On the Supramax front, the proposed methodology spurs an equally meaningful 

increase in the excess return. Although the naïve strategy provides a positive return 

(7.8%), the MMTM based strategy fosters the anticipated performance and can lead to 

a remarkable 11.7% excess return in the case of the USG – Japan route.   
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  Benchmark Strategy MMTM 

Supramax   

Route:   

USG - Jpn 7.8% 11.7% 

   

Panamax   

Route:   

Maracaibo - Rdam 6.2% 10.0% 

HRds-ARA -8.7% 1.1% 

   

Capesize   

Route:   

Tubarao-Rdam -28.6% 3.6% 

Port Cartier - Rdam 14.9% 30.9% 

Table 47: Overall return of chartering strategies 

 

 

At the same time, it appears that the two Capesize iron ore routes have substantial 

differences with regard to the respective excess returns of their benchmark strategy. 

The Tubarao - Rotterdam route realizes a negative return of -28.6%, implying that an 

operator may incur enormous losses if they decide to charter in a vessel for a 

Transatlantic Round Voyage (TARV) and then perform continuous voyages on the 

Tubarao - Rotterdam route. Yet the proposed strategy, which determines the 

momentum of this type of chartering decisions and considers only the voyages with 

positive expectations, enhances the total excess return for this route (3.6%). On the 

other hand, as mentioned, the Port Cartier / Rotterdam route provides positive excess 

returns, even under the benchmark strategy, but the MTMM is able to provide a 

further boost and raise the expected return to 30.9%. The difference in returns 

between these two iron ore routes can be attributed to the fact that Tubarao generally 

exports much larger quantities of iron ore than Port Cartier and this creates port 

congestion in periods of high demand. In general, when the waiting time for a berth to 

become available is too long, the demurrages do not always cover the ‘hidden’ costs 

arising out of operational needs at the waiting anchorages, such as bottom fouling 

cleaning costs, crew repatriation expenses for seamen with expiring contract, cost for 

launch boats and costs for additional supplies and provisions. Therefore, even though 

congestion has a positive effect on the levels of freight rates, when considering the 

relative return between t/c trip and voyage charters, it seems to have a negative 

impact. At times, the freight earnings (even after the addition of demurrages) cannot 

counterbalance the extra running costs (coming from congestion), and this usually 
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makes the original shipowners to factor them in and seek higher t/c trip rates. This 

eventually results in lower profit margins for ship operators, due to the narrower 

differential between t/c trip and voyage rates. Yet, Table 47 demonstrates that 

operators who will act as dictated by the MTMM strategy stand a good chance to 

generate a positive return of about 3.6% for this particular route.   

 

The standard deviations in Table 43 suggest that in all three sectors, voyage rates are 

more volatile than t/c trip rates. This justifies the practice discussed in this study, 

whereby an operator charters in a vessel on the less volatile t/c trip market and then 

trades it on the riskier market of voyage charters hoping to make profit.    

 

Furthermore, the two Panamax coal routes of this analysis are characterized by similar 

differences. While the Hampton Roads - ARA route is subject to severe losses under 

the benchmark strategy, the Maracaibo - Rotterdam route realizes gains. In a similar 

fashion, a combination of various factors such as weather conditions, strikes and 

waiting time, interact in such a way as to lead to overvalued voyage rates. The results 

show that the presence of such opportunities is more evident on the Maracaibo - 

Rotterdam route, where the benchmark strategy yields a total excess return of 6.2%. 

In contrast, the respective return for the Hampton Roads - ARA route is negative, 

revealing much fewer excess return opportunities. In both cases, the proposed 

methodology manages to identify the periods of mispricing and boost the excess 

returns.   

 

Finally, it is worth noting that the proposed methodology provides higher margins for 

the Capesize than for the Panamax and Supramax vessels. This can be explained by 

the higher volatility of Capesize freight rates relative to the other two sectors. This is 

demonstrated in Table 43 which reports much greater standard deviations in the case 

of Capesize rates. The Panamax standard deviations come second and the Supramax 

rates appear the most stable across the three vessel categories. These particular 

findings are in line with the theoretical expectations, as they are presented in Chapter 

2. The volatile nature of Capesizes increases the possibility of higher returns but also 

of bigger losses. Overall, the results indicate that the proposed strategy is capable of 

detecting positive spreads in the spot market and use them to foster the profitability of 

ship operators 
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8.11. Concluding Remarks 

This chapter investigates the excess freight return dynamics between trip charters and 

their underlying voyage charters in the dry bulk spot market. It first establishes co-

integrating relations between time charter (t/c) trip and their underlying voyage 

charters reflecting the existence of long-run equilibriums. On this basis, it focuses on 

the short-term deviations and describes the construction of a new chartering strategy 

in the context of technical analysis. In particular, it introduces the Modified 

Momentum Trading Model and uses it to form an appropriate chartering strategy. 

Finally, it tests the robustness of this approach against the simple rule of entering into 

a voyage charter every week. The results show that the proposed methodology 

outperforms the benchmark strategy, suggesting that the appropriate exploitation of 

rate deviations in the spot market can yield considerable excess returns. Overall, this 

approach intends to improve the decision making techniques in the spot freight 

market. The analysis of this chapter is of interest to academics and maritime 

practitioners alike. It can be used by ship operating companies as a guide to select 

voyages with the highest probability of excess returns and adjust their chartering 

strategies accordingly. 
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9.  CONCLUSIONS  

 

9.1. Summary of results and managerial implications 

The present study aims to fathom the dry bulk sector, providing an unwavering 

picture of the underling market dynamics. Drawing on an in-depth analysis of the dry 

market fundamentals, the thesis develops appropriate forecasting models and 

eventually proposes a novel chartering strategy.  

 

The analysis begins with a thorough investigation of the key determinants of the dry 

bulk freight market. This leads to the identification of several variables which 

frequently attract the attention of chartering decision makers, but the exact impact of 

most of those factors has never been documented at an empirical level. Thus, this 

study undertakes to examine the lead-lag relationship between the selected variables 

and various Baltic Exchange indices using causality and impulse response analysis. 

The findings confirm the hypothesis for Chinese steel production, DBECI, average 

bunker prices, congestion and some selected commodity prices. Notably the DBECI 

and the average bunker prices exhibit the strongest causality with each of the Baltic 

indices (1%). This justifies their utilization as explanatory variables in the 

multivariate forecasting model developed in Chapter 8.  

 

This particular study is of  interest  to  academics  and  market  practitioners  for  a  

variety  of  reasons. First, the impact analysis of major bulk prices contributes to the 

understanding of the dynamics between commodity prices and freight rate 

movements. At the same time, it can support decision making in freight and 

commodity markets. Furthermore, at the practical level, this study sheds some light on 

the dynamic relationship between freight rates and several external factors, such as 

Chinese steel production, bunker fuel prices and congestion. Thereby it can 

considerably improve operational management and budget planning decisions. 

 

Importantly, the preceding analysis also constitutes the groundwork for the ensuing 

forecasting methods. Chapter 7 formulates VAR/VECM and VARX models, by 

drawing on the findings and of the theoretical discussion of the previous sections. The 

building blocks of those models involve explanatory variables which are perceived to 

be intrinsically significant. The latter point is empirically illustrated by means of 

pertinent causality tests. Additionally, ARIMA models are developed for the same 

dependent variables and sample size, and primarily serve as benchmarks for 

comparison purposes. Eventually, the relative performance of those forecasting 
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models is assessed using appropriate criteria, which reveal that the VARX approach 

provides the most accurate results and is followed by the VAR/VECM models that 

outperform the ARIMA framework in most ex-post and ex-ante forecasts.  

 

The construction of the DBECI intends to summarize several dimensions of the 

economic environment revolving around the dry cargo market. In other words, the 

development of this new composite indicator aspires to capture the overarching 

impact of various economic factors that affect the dry market. The empirical analysis 

provides evidence that there is significant causality between the DBECI and each of 

the Baltic Exchange indices under consideration. Furthermore, as the comparison of 

forecast errors illustrates, the incorporation of the DBECI in a VARX model results in 

a substantial improvement of the forecasting accuracy. Overall, it turns out that the 

novel idea to construct a new index tailored to the dry bulk freight market enhances 

the reliability of forecasting models and adds value to their role as a decision support 

tool.  

 

Another important finding of this study is that period rates can be predicted with 

greater accuracy than spot rates. To this point, the analysis puts under scrutiny both 

the spot and the period freight market. Next, the focus is placed on the spot market 

and the aim is to identify excess return opportunities. Given that this would be 

inconsistent with the EMH, the freight market is assumed semi-strong efficient. This 

perspective calls for co-integration tests between the rates of some selected t/c trips 

and the rates of the corresponding voyage charters. In this setting, a new technical 

trading method is developed (i.e. the Modified Momentum Trading Model), which 

lays the foundation for the subsequent formulation and implementation of a pertinent 

chartering strategy.  

 

The results show that the proposed chartering strategy is able to identify excess return 

opportunities in the short term and increase the profitability of ship operators who 

engage in the spot freight market. Furthermore, the tests support the existence of a co-

integrating relation (for each pair of variables), which translates into a long term 

equilibrium. The latter, combined with the presence of short-term deviations, 

confirms the initial hypothesis of semi-strong efficiency in the spot freight market. 

The same analysis is applied to three different sectors (Capesize, Panamax and 

Supramax) and the outcomes are consistent in all respects. All in all, the empirical 

results suggest that the appropriate exploitation of rate deviations in the spot market 

can yield considerable excess returns. 
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This last part of the thesis is of interest to academics and maritime practitioners alike. 

In particular, it can be used by ship operating companies as a guide to select voyages 

with the highest probability of excess returns and adjust their chartering strategies 

accordingly. After all, the very existence of many ship operating companies relies on 

this kind of speculative opportunities in the spot market. Overall, the proposed 

approach intends to improve the decision making techniques in the spot freight 

market. 

 

 

9.2. Limitations  

A major limitation stems from the route assessments of the Baltic Exchange. Even 

though the reporting panels strive to ensure an objective valuation of the current 

freight rates for each route, at times it is inevitable to exercise some personal 

judgment. This is particularly prevalent in cases of routes with little activity at a given 

point in time, and as a result they cannot base their assessments on factual 

information.  

 

In addition, it should be taken into consideration that the agreed terms usually vary 

from fixture to fixture, even if the underlying route and vessel type are the same. 

Thus, the panellists resort to averaging.  

 

The Baltic Exchange indices, as well as the freight rate and t/c rate time series 

correspond to typical vessels of each category. Given that even ships belonging to the 

same category vary with respect to age, technical specification and so forth, it is 

impossible to obtain data that reflect the prevailing rates of every single vessel in the 

market. Thus the present thesis relies on the assessment of data providers, who select 

the most representative ships from each category.  

 

Along these lines, there is a mismatch between the appropriate size categorization of 

bulk carriers and the classification of Clarksons. Owing to the unavailability of 

sufficient historical data for certain sizes, such as Ultramax and Kamsarmax, they 

provide aggregate data and include those types under the umbrella of Supramax and 

Panamax respectively.  

 

In general, the studies involving secondary data, such as the current one, are subject to 

severe data limitations. The agencies collecting data could not possibly provide a high 

degree of customization, so that they can suit the needs of each individual study. 
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Therefore, the researchers often have to make compromises and adjust their analysis 

to the existing dataset. 

 

 

9.3. Recommendations for Future Research 

The thesis raises several issues for further research. First of all, more determinants of 

the freight market could be identified and then undergo a similar causality analysis. 

However, this is subject to data availability and it is unfortunate that there are serious 

data limitations. Provided that pertinent data become available, a future study could 

shed more light on the critical factors affecting freight rates and ultimately lead to 

even more accurate forecasting models. Along these lines, a potential study could also 

factor in FFAs, but again this requires sufficient data.  

 

In light of the findings, it would be interesting to develop alternative modelling 

frameworks, such as Artificial Neural Networks, and evaluate their predictive success 

against the approach of this thesis.   

 

Another possible avenue for future investigation is to apply the proposed 

methodology to specific trade routes and generate freight rate forecasts. In that case, it 

would be useful to attempt to embed certain regional characteristics of each route. 

This could lead to more targeted forecasts, but it entails the danger of model 

overfitting. Therefore, the selection and inclusion of additional variables should be 

very careful and in line with the process adopted in the current thesis.  

 

Furthermore, the methodology of Chapter 9 can be extended to include more routes 

and support strategic chartering decisions in the entire dry bulk market. Therefore, a 

suggestion for future research is to use this approach and conduct a comparative 

analysis of the profitability of the proposed technical-based strategy for all major 

trade routes. 

 

Finally, the methods of the thesis can potentially be expanded to a fleet scale and 

analyze the dynamics of arbitrary fleets rather than individual vessels. This will also 

allow the investigation of diversification strategies. 
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APPENDICES 

 

Appendix A 

VAR Residual Portmanteau Tests for Autocorrelations (Chapter 6) 

 

 

 BCI and Steel Production (China) 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 181    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.026324 NA*  0.026471 NA* NA* 

2  0.566120 NA*  0.572298 NA* NA* 

3  1.376115 NA*  1.395944 NA* NA* 

4  17.88538  0.0013  18.27830  0.0011 4 

5  19.97333  0.0104  20.42557  0.0088 8 

6  25.91078  0.0111  26.56658  0.0089 12 

7  31.32998  0.0122  32.20380  0.0094 16 

8  41.64606  0.0031  42.99692  0.0020 20 

9  42.59837  0.0111  43.99906  0.0076 24 

10  49.10144  0.0081  50.88243  0.0051 28 

11  56.47184  0.0048  58.72974  0.0027 32 

12  117.5787  0.0000  124.1755  0.0000 36 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BPI and Steel Production (China) 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 184    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.071095 NA*  0.071484 NA* NA* 

2  1.377088 NA*  1.391829 NA* NA* 

3  2.024006  0.9585  2.049469  0.9571 7 

4  13.82358  0.2429  14.11125  0.2269 11 

5  15.01852  0.4501  15.33957  0.4272 15 

6  20.71040  0.3530  21.22331  0.3246 19 

7  22.91198  0.4659  23.51196  0.4312 23 

8  26.84465  0.4722  27.62339  0.4306 27 

9  27.14042  0.6651  27.93437  0.6246 31 

10  31.65311  0.6305  32.70641  0.5793 35 

11  41.61542  0.3576  43.30217  0.2928 39 

12  97.33266  0.0000  102.9067  0.0000 43 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BSI and Steel Production (China) 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 105    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.084600 NA*  0.085413 NA* NA* 

2  2.430557 NA*  2.476923 NA* NA* 

3  3.269860 NA*  3.340912 NA* NA* 

4  12.56322  0.0136  13.00233  0.0113 4 

5  14.64439  0.0664  15.18755  0.0556 8 

6  17.68157  0.1257  18.40880  0.1038 12 

7  20.48384  0.1992  21.41124  0.1632 16 

8  23.36331  0.2713  24.52819  0.2201 20 

9  30.39515  0.1720  32.21926  0.1216 24 

10  31.48053  0.2962  33.41889  0.2207 28 

11  41.94624  0.1121  45.10931  0.0621 32 

12  60.84659  0.0060  66.44843  0.0015 36 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BCI and DBECI 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 176    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.331726 NA*  0.333622 NA* NA* 

2  1.163052 NA*  1.174503 NA* NA* 

3  2.614704 NA*  2.651328 NA* NA* 

4  4.743147 NA*  4.829270 NA* NA* 

5  5.311848 NA*  5.414600 NA* NA* 

6  5.593686 NA*  5.706385 NA* NA* 

7  7.384775 NA*  7.571661 NA* NA* 

8  9.552778 NA*  9.842902 NA* NA* 

9  12.06163  0.0169  12.48696  0.0141 4 

10  14.47853  0.0701  15.04946  0.0582 8 

11  25.77645  0.0115  27.10057  0.0075 12 

12  52.68168  0.0000  55.97448  0.0000 16 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BPI and DBECI 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 178    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.139201 NA*  0.139987 NA* NA* 

2  0.460673 NA*  0.465113 NA* NA* 

3  1.939380 NA*  1.969169 NA* NA* 

4  6.396127 NA*  6.528369 NA* NA* 

5  6.767946 NA*  6.910935 NA* NA* 

6  6.855454 NA*  7.001495 NA* NA* 

7  8.922323 NA*  9.152974 NA* NA* 

8  9.587998 NA*  9.849974 NA* NA* 

9  12.18988  0.0160  12.59042  0.0135 4 

10  17.32509  0.0269  18.03129  0.0210 8 

11  27.15724  0.0073  28.51108  0.0047 12 

12  52.35313  0.0000  55.52835  0.0000 16 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BSI and DBECI 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 103    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.240977 NA*  0.243339 NA* NA* 

2  0.325806 NA*  0.329849 NA* NA* 

3  1.070149 NA*  1.096522 NA* NA* 

4  2.128588 NA*  2.197725 NA* NA* 

5  2.505522 NA*  2.593892 NA* NA* 

6  4.039532  0.7752  4.222788  0.7538 7 

7  7.587972  0.7497  8.029969  0.7106 11 

8  16.55470  0.3462  17.75179  0.2759 15 

9  19.78454  0.4076  21.29087  0.3210 19 

10  23.46053  0.4342  25.36213  0.3319 23 

11  25.91282  0.5234  28.10763  0.4054 27 

12  31.97765  0.4178  34.97222  0.2849 31 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BCI and iron ore price 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 126    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.147234 NA*  0.148412 NA* NA* 

2  0.767543 NA*  0.778725 NA* NA* 

3  1.368896 NA*  1.394746 NA* NA* 

4  3.495569  0.4786  3.591146  0.4642 4 

5  6.693460  0.5700  6.921181  0.5452 8 

6  20.92636  0.0515  21.86573  0.0391 12 

7  33.13138  0.0071  34.78869  0.0042 16 

8  34.81142  0.0211  36.58263  0.0131 20 

9  42.76108  0.0106  45.14381  0.0056 24 

10  48.98384  0.0084  51.90301  0.0039 28 

11  57.26284  0.0040  60.97391  0.0015 32 

12  58.52371  0.0102  62.36751  0.0041 36 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BCI and coal price 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 182    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.173190 NA*  0.174147 NA* NA* 

2  2.147619 NA*  2.170514 NA* NA* 

3  4.737426  0.3153  4.803726  0.3080 4 

4  17.17979  0.0283  17.52569  0.0251 8 

5  22.49524  0.0323  22.99130  0.0278 12 

6  24.33442  0.0825  24.89317  0.0717 16 

7  31.31324  0.0512  32.15115  0.0417 20 

8  53.33125  0.0005  55.18148  0.0003 24 

9  58.90758  0.0006  61.04791  0.0003 28 

10  61.26900  0.0014  63.54662  0.0007 32 

11  64.92112  0.0022  67.43367  0.0012 36 

12  69.56227  0.0026  72.40243  0.0013 40 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BSI and coal price 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 106    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.004110 NA*  0.004149 NA* NA* 

2  0.321639 NA*  0.327785 NA* NA* 

3  5.846642  0.5578  6.013710  0.5381 7 

4  15.72430  0.1517  16.27873  0.1311 11 

5  16.72135  0.3358  17.32513  0.2998 15 

6  18.58853  0.4835  19.30434  0.4375 19 

7  22.28458  0.5031  23.26173  0.4456 23 

8  32.36558  0.2188  34.16568  0.1613 27 

9  38.24838  0.1735  40.59430  0.1162 31 

10  42.05800  0.1918  44.80075  0.1240 35 

11  48.26776  0.1468  51.72954  0.0834 39 

12  60.76258  0.0383  65.81944  0.0141 43 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BPI and wheat price 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 184    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.005819 NA*  0.005851 NA* NA* 

2  0.023414 NA*  0.023640 NA* NA* 

3  1.023503  0.9062  1.040304  0.9036 4 

4  5.285539  0.7267  5.397052  0.7144 8 

5  7.874085  0.7949  8.057904  0.7806 12 

6  8.862741  0.9190  9.079885  0.9101 16 

7  15.22881  0.7632  15.69772  0.7352 20 

8  20.79275  0.6509  21.51457  0.6082 24 

9  25.03388  0.6260  25.97381  0.5745 28 

10  33.21887  0.4076  34.62921  0.3435 32 

11  35.50763  0.4918  37.06349  0.4197 36 

12  44.01707  0.3054  46.16662  0.2325 40 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BCI and AVG_IFO 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 181    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.041958 NA*  0.042191 NA* NA* 

2  0.357495 NA*  0.361254 NA* NA* 

3  1.394476 NA*  1.415712 NA* NA* 

4  8.002142  0.0915  8.172703  0.0855 4 

5  9.722843  0.2850  9.942288  0.2691 8 

6  11.44908  0.4909  11.72771  0.4678 12 

7  15.63573  0.4787  16.08279  0.4472 16 

8  26.63254  0.1459  27.58812  0.1195 20 

9  27.37686  0.2872  28.37138  0.2447 24 

10  30.38712  0.3450  31.55768  0.2929 28 

11  38.17430  0.2092  39.84874  0.1605 32 

12  42.45916  0.2126  44.43785  0.1579 36 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BPI and AVG_IFO 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 182    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.002237 NA*  0.002249 NA* NA* 

2  0.130061 NA*  0.131493 NA* NA* 

3  0.288601 NA*  0.292691 NA* NA* 

4  0.523341 NA*  0.532706 NA* NA* 

5  1.540875  0.8194  1.578984  0.8126 4 

6  2.947486  0.9376  3.033547  0.9322 8 

7  4.673844  0.9680  4.828960  0.9634 12 

8  9.188274  0.9055  9.550949  0.8890 16 

9  9.773559  0.9721  10.16668  0.9650 20 

10  15.54236  0.9039  16.27088  0.8781 24 

11  23.51420  0.7069  24.75552  0.6411 28 

12  24.48044  0.8265  25.78997  0.7728 32 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BSI and AVG_IFO 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 106    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.806741 NA*  0.814425 NA* NA* 

2  6.826260 NA*  6.949703 NA* NA* 

3  11.17927  0.1310  11.42950  0.1210 7 

4  22.22125  0.0227  22.90450  0.0182 11 

5  26.26481  0.0353  27.14824  0.0276 15 

6  27.15336  0.1011  28.09010  0.0817 19 

7  30.41044  0.1380  31.57748  0.1093 23 

8  33.84844  0.1705  35.29613  0.1315 27 

9  39.86636  0.1321  41.87241  0.0920 31 

10  40.37457  0.2448  42.43356  0.1812 35 

11  45.55345  0.2181  48.21210  0.1480 39 

12  57.76784  0.0655  61.98577  0.0304 43 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BCI and Cong_Cape 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 53    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.053390 NA*  0.054417 NA* NA* 

2  0.881992  0.9965  0.915513  0.9961 7 

3  3.687345  0.9782  3.889188  0.9730 11 

4  8.473598  0.9034  9.066154  0.8740 15 

5  16.80680  0.6030  18.26740  0.5046 19 

6  21.79854  0.5324  23.89638  0.4096 23 

7  29.07205  0.3574  32.27673  0.2220 27 

8  36.44550  0.2301  40.96102  0.1088 31 

9  38.22174  0.3253  43.10057  0.1634 35 

10  41.09025  0.3791  46.63618  0.1872 39 

11  42.32029  0.5006  48.18838  0.2710 43 

12  47.63625  0.4467  55.06023  0.1960 47 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BPI and Cong_Pmx 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 53    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.366726 NA*  0.373779 NA* NA* 

2  3.611805  0.8232  3.746116  0.8085 7 

3  6.962507  0.8021  7.297860  0.7745 11 

4  7.964586  0.9252  8.381741  0.9076 15 

5  11.52768  0.9048  12.31599  0.8717 19 

6  11.90414  0.9719  12.74051  0.9574 23 

7  15.85489  0.9557  17.29246  0.9237 27 

8  17.96038  0.9701  19.77226  0.9406 31 

9  24.35850  0.9112  27.47908  0.8137 35 

10  25.85624  0.9475  29.32514  0.8696 39 

11  29.61077  0.9400  34.06300  0.8331 43 

12  33.63207  0.9287  39.26127  0.7814 47 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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 BSI and Cong_Hmx 

 

Null Hypothesis: no residual autocorrelations up to lag h  

Sample: 1999M01 2014M07    

Included observations: 53    

      
      Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1  0.029173 NA*  0.029734 NA* NA* 

2  1.204679  0.9908  1.251338  0.9897 7 

3  3.774654  0.9761  3.975512  0.9706 11 

4  4.836533  0.9934  5.124075  0.9910 15 

5  9.050452  0.9726  9.776944  0.9582 19 

6  11.91562  0.9718  13.00787  0.9518 23 

7  13.52689  0.9855  14.86434  0.9713 27 

8  14.41450  0.9951  15.90975  0.9886 31 

9  16.99186  0.9955  19.01429  0.9873 35 

10  18.64041  0.9976  21.04623  0.9916 39 

11  24.73660  0.9885  28.73904  0.9532 43 

12  28.73181  0.9836  33.90358  0.9238 47 

      
      *The test is valid only for lags larger than the VAR lag order. 

df is degrees of freedom for (approximate) chi-square distribution 
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Appendix B 

Lag order Selection Criteria (Chapter 6) 

 

 

Pair of variables LR FPE AIC SC HQ 

BCI - Stl_Prd_Ch 7 8 8 2 3 

BPI - Stl_Prd_Ch 3 3 3 2 3 

BSI - Stl_Prd_Ch 3 3 3 3 3 

 

 

Pair of variables LR FPE AIC SC HQ 

BCI - DBECI 8 8 8 2 2 

BPI - DBECI 8 5 5 2 2 

BSI - DBECI 5 5 5 2 3 

 

 

Pair of variables LR FPE AIC SC HQ 

BCI - Coal_Aus 5 3 3 2 2 

BCI - Iron_Aus 5 3 3 2 3 

BPI - Wheat 2 2 2 2 2 

BSI - Coal_Aus 2 2 2 2 2 

 

 

Pair of variables LR FPE AIC SC HQ 

BCI - AVG_IFO 3 3 3 4 3 

BPI - AVG_IFO 4 4 4 2 4 

BSI - AVG_IFO 4 4 4 2 4 
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Pair of variables LR FPE AIC SC HQ 

BCI - Cong_Cape 8 8 8 1 1 

BPI - Cong_Pmx 1 1 1 1 1 

BSI - Cong_Hmx 1 1 1 1 1 
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Appendix C 

ARIMA Specification 

 

 

Dependent Variable: D(CP_AVG_SPOT)  

Method: ARMA Conditional Least Squares (Marquardt - EViews legacy) 

Sample (adjusted): 1999M03 2014M07  

Included observations: 185 after adjustments  

Convergence achieved after 3 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000105 0.032951 0.003191 0.9975 

AR(1) 0.105426 0.073543 1.433544 0.1534 

     
     R-squared 0.011105     Mean dependent var 0.000219 

Adjusted R-squared 0.005701     S.D. dependent var 0.402079 

S.E. of regression 0.400931     Akaike info criterion 1.020699 

Sum squared resid 29.41652     Schwarz criterion 1.055514 

Log likelihood -92.41467     Hannan-Quinn criter. 1.034809 

F-statistic 2.055049     Durbin-Watson stat 1.956568 

Prob(F-statistic) 0.153409    

     
     Inverted AR Roots       .11   
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Dependent Variable: D(C_6M_170K)  

Method: Least Squares   

Sample (adjusted): 2002M02 2014M07  

Included observations: 150 after adjustments  

Convergence achieved after 8 iterations  

MA Backcast: 2002M01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.003721 0.022486 0.165465 0.8688 

AR(1) -0.604204 0.095345 -6.337037 0.0000 

MA(1) 0.904643 0.049325 18.34038 0.0000 

     
     R-squared 0.125455     Mean dependent var 0.004124 

Adjusted R-squared 0.113557     S.D. dependent var 0.246455 

S.E. of regression 0.232040     Akaike info criterion -0.064017 

Sum squared resid 7.914854     Schwarz criterion -0.003804 

Log likelihood 7.801272     Hannan-Quinn criter. -0.039554 

F-statistic 10.54372     Durbin-Watson stat 1.871490 

Prob(F-statistic) 0.000053    

     
     Inverted AR Roots      -.60   

Inverted MA Roots      -.90   
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Dependent Variable: D(PMX_AVG_SPOT)  

Method: ARMA Conditional Least Squares (Marquardt - EViews legacy) 

Sample (adjusted): 1999M04 2014M07  

Included observations: 184 after adjustments  

Convergence achieved after 3 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.003676 0.017811 -0.206409 0.8367 

AR(1) 0.080401 0.073882 1.088228 0.2779 

AR(2) -0.113515 0.074822 -1.517142 0.1310 

     
     R-squared 0.017616     Mean dependent var -0.004056 

Adjusted R-squared 0.006761     S.D. dependent var 0.250428 

S.E. of regression 0.249580     Akaike info criterion 0.078096 

Sum squared resid 11.27452     Schwarz criterion 0.130513 

Log likelihood -4.184808     Hannan-Quinn criter. 0.099341 

F-statistic 1.622865     Durbin-Watson stat 1.966458 

Prob(F-statistic) 0.200190    

     
     Inverted AR Roots  .04-.33i      .04+.33i  
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Dependent Variable: D(PMX_6M_75K)  

Method: Least Squares   

Sample (adjusted): 2001M06 2014M07  

Included observations: 158 after adjustments  

Convergence achieved after 10 iterations  

MA Backcast: 2001M05   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.000997 0.020461 -0.048750 0.9612 

AR(1) -0.264438 0.193559 -1.366190 0.1739 

AR(2) 0.201452 0.128965 1.562069 0.1203 

MA(1) 0.763274 0.168657 4.525610 0.0000 

     
     R-squared 0.208705     Mean dependent var -0.001106 

Adjusted R-squared 0.193290     S.D. dependent var 0.172755 

S.E. of regression 0.155163     Akaike info criterion -0.863691 

Sum squared resid 3.707634     Schwarz criterion -0.786157 

Log likelihood 72.23160     Hannan-Quinn criter. -0.832204 

F-statistic 13.53924     Durbin-Watson stat 1.980342 

Prob(F-statistic) 0.000000    

     
     Inverted AR Roots       .34          -.60  

Inverted MA Roots      -.76   
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Lag order Selection Criteria (Chapter 7) 

 

 

 VAR / VECM 

 

Pair of variables LR FPE AIC SC HQ 

        

Capesize       

Avg spot vs 

7 7 7 2 3 {Cp fleet devel 

Ch_steel prod} 

        

6-m tc 170k vs 

5 5 5 3 3 {Cp fleet devel 

Ch_steel prod} 

        

Panamax       

Avg spot vs 

7 5 5 3 3 {Pmx fleet devel 

Ch_steel prod} 

        

6-m tc 75k vs 

5 5 5 2 3 {Pmx fleet devel 

Ch_steel prod} 

            

Notes: 

LR: sequential modified LR test statistic (each test at 5% level) 

FPE: Final prediction error 

AIC: Akaike information criterion 

SC: Schwarz information criterion 

HQ: Hannan-Quinn information criterion 
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 VAR X 

  

Pair of variables LR FPE AIC SC HQ 

        

Capesize       

Avg spot vs 

7 7 7 2 3 

{Cp fleet devel 

Ch_steel prod} 

{DBECI 

IFO_avg} 

        

6-m tc 170k vs 

7 7 7 3 3 

{Cp fleet devel 

Ch_steel prod} 

{DBECI 

IFO_avg} 

        

Panamax       

Avg spot vs 

7 5 5 1 3 

{Pmx fleet devel 

Ch_steel prod} 

{DBECI 

IFO_avg} 

        

6-m tc 75k vs 

5 5 5 2 3 

{Pmx fleet devel 

Ch_steel prod} 

{DBECI 

IFO_avg} 

        

            

Notes: 

LR: sequential modified LR test statistic (each test at 5% level) 

FPE: Final prediction error 

AIC: Akaike information criterion 

SC: Schwarz information criterion 

HQ: Hannan-Quinn information criterion 
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Appendix D 

Lag order Selection Criteria (Chapter 8) 

 

 

VAR Lag Order Selection Criteria 

  LR FPE AIC SC HQ 

Supramax       

Route:       

USG - Jpn 5 5 5 4 5 

        

Panamax       

Route:       

Maracaibo - Rdam 5 5 5 2 3 

HRds-ARA 5 5 5 2 2 

        

Capesize       

Route:       

Tubarao-Rdam 5 5 5 5 5 

Port Cartier - Rdam 4 4 4 2 2 

Notes:       

LR: sequential modified LR test statistic (each test at 5% level)    

FPE: Final prediction error    

AIC: Akaike information criterion    

SC: Schwarz information criterion       

HQ: Hannan-Quinn information criterion     

 

 

 

 

 

 

 


