

Detecting Malicious Insider Threat in Cloud Computing

Environments

Nikolaos Pitropakis

University of Piraeus

Systems Security Laboratory

Department of Digital Systems

University of Piraeus

Ph.D. Thesis

Piraeus, 2015

Abstract

Driven by the lack of focus on attacks, launched by malicious users, against modern

Intrusion Detection Systems (IDSs) for Cloud Infrastructures, a real-time cloud observation

mechanism is being proposed along with an augmented authenticator. The authenticator

enhances the protection level of the data involved in cloud-based services, while the observation

mechanism forms a novel detection method of malicious acts by Cloud insiders and incorporates

a new implementation of the Smith Waterman algorithm based on CUDA technology. The

proposed mechanisms have been evaluated in terms of the overhead that they introduce,

justifying that proper execution, without exhausting the cloud infrastructure’s computational

resources, is possible.

Field of Science: Cloud Computing Security

Key Words: Cloud Computing, Malicious Insider, System Calls, Intrusion Detection System,

Authentication, Steganography, Smith Waterman, Hypervisor, XEN, KVM

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 5 of 99

Περίληψη

Η συγκεκριμένη διδακτορική διατριβή πραγματεύεται την αντιμετώπιση των επιθέσεων

σε νεφοϋπολογιστικά συστήματα, οι οποίες προέρχονται από χρήστες με αυξημένα προνόμια.

Προκειμένου να απαλειφθούν οι εν λόγω κίνδυνοι υλοποιήθηκε κατά πρώτον ένα σύστημα

ενισχυμένης αυθεντικοποίησης, το οποίο προστατεύει τα δεδομένα των νεφοϋπολογιστικών

συστημάτων, αφού αυξάνει σημαντικά την ασφάλειά τους. Κατά δεύτερον, δημιουργήθηκε ένα

πρότυπο σύστημα ασφάλειας το οποίο κάνει χρήση της υλοποίησης του αλγορίθμου Smith

Waterman σε τεχνολογία CUDA. Και οι δύο προσεγγίσεις αξιολογήθηκαν όσον αφορά τον

πρόσθετο φόρτο και παρατηρήθηκε ότι λειτουργούν άρτια, ενισχύοντας την ασφάλειας ενός

νεφοϋπολογιστικού συστήματος, χωρίς βέβαια να σπαταλούν υπολογιστικούς πόρους.

Θεματική Περιοχή: Ασφάλεια Νεφοϋπολογιστικών Συστημάτων

Λέξεις Κλειδιά: Νεφοϋπολογιστικά Συστήματα, Εκ των έσω απειλή, Κλήσεις συστήματος,

Σύστημα Ανίχνευσης Παρεισφύσεων, Αυθεντικοποίηση, Στεγανογραφία, Smith Waterman,

Επόπτης (Hypervisor), XEN, KVM

To all the people

who try every day for the impossible

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 8 of 99

Security is mostly a superstition. It does not exist in nature,

nor do the children of men as a whole experience it.

“Hellen Keller”

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 9 of 99

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 10 of 99

Acknowledgements

At this moment, I would like to thank the people who contributed greatly to the success of this

research. Firstly, I would like to thank my supervisor Costas Lambrinoudakis for his guidance, as

well as his scientific and moral support during my research. His valuable advice has not been only

inspirational but also determinant in this research.

Additionally, I would like to thank Lecturer Dimitris Geneiatakis for his invaluable contribution

and support to the completion of this work. Appreciation also goes to the members of my advisory

committee, Professors Sokratis Katsikas, Dimitris Gritzalis and Christos Xenakis for their

directions and significant advice for keeping me up with the Ph.D.’s objectives.

My special thanks go to my friends and colleagues Dr. Nikos Vrakas, Eleni Darra and Nikolaos

Yfantopoulos for their care and moral support and also for their accurate comments and advice. I

am indebted to my colleagues Vasilis Stavrou, Miltiadis Kandias and Nikos Virvilis for providing

a pleasant and fun environment, full of interesting discussions. I wish them to complete their

research with success.

This Ph.D. would not have been possible without the invaluable support of my family. Their love

and encouragement has given me strength and inspiration throughout my research.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 11 of 99

(Signature)

...................................

PITROPAKIS NIKOLAOS

Ph.D. Thesis, University of Piraeus, Department of Digital Systems.

© 2015 – All rights reserved

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 13 of 99

Contents
List of figures .. 15

List of tables .. 16

Nomenclature .. 17

Acronyms .. 17

Chapter 1: Introduction ... 18

1.1 Problem Identification ... 19

1.2 Goals and Contribution ... 20

Chapter 2: Threats In Cloud Environments .. 24

2.1 Classification of Cloud Computing Threats ... 24

2.2 Threat assessment... 34

Chapter 3: Literature Review ... 36

3.1. Introduction .. 36

3.2. Steganography and Cloud Computing Authentication Schemes ... 36

3.3. Cloud Computing IDSs .. 37

Chapter 4: Enhancing the Cloud Security ... 41

4.1. The Authentication Problem ... 41

4.2. The Proposed Authentication Method .. 42

4.2.1. The Architecture ... 42

4.2.2. Cloud Authenticator ... 42

4.2.3. Case Study: A Healthcare Scenario .. 43

4.3. Evaluation of the Proposed Schema in Cloud-Based Threat Scenarios 44

4.4. Complexity Analysis ... 46

4.5. Overhead Evaluation And Discussion .. 46

Chapter 5: Detecting Malicious Insider Threat ... 49

5.1. Introduction .. 49

5.2. “Co-residency” and Network Attacks .. 50

5.3. Detection Method ... 51

5.3.1. Algorithm .. 51

5.3.2. Proposed Method .. 53

5.4. Test-bed Environments and Results of the Experiments .. 54

5.4.1. Setup the Environments ... 54

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 14 of 99

5.4.2. Automating the attack and system calls auditing procedure 55

5.4.3. Launching the attack .. 56

5.4.4. Results.. 57

5.5. Discussion .. 62

Chapter 6: Improving the Detection Performance .. 64

6.1 Introduction .. 64

6.2 Threat Model .. 65

6.3 Cloud Realtime Observation Wards ... 66

6.3.1 Overview.. 66

6.3.2 Attack Signature Generation ... 66

6.4 Detection Module .. 68

6.5 Algorithm Implementation and Performance ... 69

Chapter 7: Conclusions and Future Work ... 72

7.1 Conclusion ... 72

7.2 Future Work ... 73

References ... 74

Appendix ... 81

Source Code .. 81

Smith Waterman Matlab Implementation ... 81

Smith Waterman Cuda Implementation .. 83

TSL Script ... 93

Authenticator Windows Implementation ... 94

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 15 of 99

List of figures
Figure 1: The contribution of the proposed method ... 22

Figure 2: A high level approach of the proposed authenticator. The key is encrypted and incorporated

into the audio file during its compression. .. 43

Figure 3: Patient’s authentication in a cloud-based medical DB .. 44

Figure 4: Threat scenarios on cloud computing environment under the auspices of cloud

authenticator ... 45

Figure 5: TXT files of 7 kilo bytes have been encrypted and then embedded into WAV files of 13319

kilo bytes. ... 47

Figure 6: TXT files of 7 kilo bytes have been extracted from the audio file and have been decrypted 48

Figure 7: Xen Test-Bed environment ... 54

Figure 8: KVM Test-bed Environment ... 55

Figure 9: Time periods for the execution of the three attack steps (blue) and the respective time

periods that the system was kept idle (green) (XEN server) ... 56

Figure 10: Time periods for the execution of the three attack steps and the respective time periods

that the system was kept in normal state (KVM server) ... 57

Figure 11: Time periods for the execution of the smurf attack and the respective time periods that

the system was kept in normal state (KVM server) ... 57

Figure 12: Graph depicting similarity between attacks and between attacks and normal system state

for gp 1/3 and 1/5 respectively. Lower Gp offers greater similarity (KVM) 62

Figure 13: The CROW Architecture ... 66

Figure 14: The segments of the attack pattern are found through the system call sequence 68

Figure 15: Time comparison between sequential and Cuda parallel execution of Smith Waterman.

Sequential scales a lot along with the system calls while Cuda parallel reaches 0 seconds for

any number of given system calls. ... 71

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 16 of 99

List of tables
Table 1 Thesis Contribution ... 23

Table 2: Classification of Cloud Computing Threats .. 34

Table 3: Evaluation Scenarios for Authenticator ... 47

Table 4: Comparison of methods .. 48

Table 5: Comparison of the six log files (one for each execution round) of the first attack step for Gp

equal to 1/3 and 1/5 (XEN) .. 58

Table 6: Comparison of the six log files (one for each execution round) of the first attack step for Gp

equal to 1/3 and 1/5 (XEN) .. 58

Table 7: Comparison of the six log files (one for each execution round) of the second attack step for

Gp equal to 1/3 and 1/5 (XEN) ... 58

Table 8: Comparison of the six log files (one for each execution round) of the second attack step for

Gp equal to 1/3 and 1/5 (XEN) ... 59

Table 9: Comparison of the six log files (one for each execution round) of the third attack step for Gp

equal to 1/3 and 1/5 (XEN) .. 59

Table 10: Comparison of the six log files (one for each execution round) of the third attack step for

Gp equal to 1/3 and 1/5 (XEN) ... 59

Table 11: Comparison of the six log files (one for each execution round) of the first attack step for Gp

equal to 1/3 and 1/5 (KVM) ... 59

Table 12: Comparison of the six log files (one for each execution round) of the first attack step for Gp

equal to 1/3 and 1/5 (KVM) ... 60

Table 13: Comparison of the six log files (one for each execution round) of the second attack step for

Gp equal to 1/3 and 1/5 (KVM).. 60

Table 14: Comparison of the six log files (one for each execution round) of the second attack step for

Gp equal to 1/3 and 1/5 (KVM).. 60

Table 15: Comparison of the six log files (one for each execution round) of the third attack step for

Gp equal to 1/3 and 1/5 (KVM).. 60

Table 16: Comparison of the six log files (one for each execution round) of the third attack step for

Gp equal to 1/3 and 1/5 (KVM).. 61

Table 17: Comparison of the six log files (one for each execution round) of the smurf attack step for

Gp equal to 1/3 and 1/5 (KVM).. 61

Table 18: Comparison of the six log files (one for each execution round) of the smurf attack step for

Gp equal to 1/3 and 1/5 (KVM).. 61

Table 19: Comparison of the two log files for each attack step with normal execution with generated

noise from network operations for Gp equal to 1/3 (KVM) .. 61

Table 20: nslookup command’s sample signature .. 68

Table 21: Time spent for Sequential and Parallel execution of the Smith Waterman Algorithm 71

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 17 of 99

Nomenclature
Acronyms
ALU Arithmetic Logic Unit

CUDA Compute Unified Device Architecture

CROW Cloud Realtime Observation Wards

FPU Floating Point Unit

GPU Graphics Processing Unit

IDS Intrusion Detection System

OS Operating System

SM Streaming Multiprocessor

VM Virtual Machine

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 18 of 99

Chapter 1: Introduction

The ongoing financial crisis and the increasing computational and storage needs, have

imposed severe changes to modern Information Technology (IT) infrastructures. IT cost

reduction is achieved by offloading data and computations to cloud computing. In general, cloud

services vary from data storage and processing to software provision, posing requirements for

high availability and on-demand commitment-free provision of services. Even though this

economic model has found versatile ground attracting a lot of investments, many people and

companies are reluctant to use cloud services because of several security and privacy violation

threats that have emerged.

The main characteristics of the Cloud Computing model are: (1) Scale: In order to achieve

significant savings, the cloud model supports massive concentrations of hardware resources for

the provision of the supported services, (2) Architecture: Although customers who share

hardware and software resources are typically unrelated, they rely on logical isolation

mechanisms to protect their data. Computing, content storage and processing are massively

distributed. This tendency towards global distribution and redundancy, means that resources are

usually managed in bulk, both physically and logically [8].

Cloud Computing can be classified into four categories which are: (1) Software as a

Service (SaaS): this is the model where applications are hosted and delivered online via a web

browser offering traditional desktop functionality, (2) Platform as a Service (PaaS): this refers to

the model where the cloud provides the software platform for systems (as opposed to just

software), (3) Infrastructure as a Service (IaaS): this is the model where a set of virtualized

computer resources, such as storage and computing capacity are hosted in the cloud and

customers deploy and run their own software stacks to obtain services and finally, (4) Hardware

as a Service (HaaS): this refers to the model in which the cloud provides access to dedicated

firmware via the Internet [9].

Moreover, cloud systems can be categorized to: (1) Public Clouds that are publicly

available and any organization can subscribe to, (2) Private Clouds that are only accessible

within a private network and services are built according to cloud computing principles, (3)

Hybrid Clouds, in which an organization provides and manages some resources in-house and has

others provided externally and (4) Partner Cloud that is offered by a provider to a limited and

well-defined number of parties [8].

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 19 of 99

Existing attempts to classify threats identified in cloud environments are either based on

major cloud components (such as the network or the shared memory of the virtual machines) or

on the use of various risk assessment tools [8], like CRAMM and Octave [25][26]. Enisa in [8]

allows an informed assessment of the security risks and benefits of using cloud computing by

providing security guidance for potential and existing users. Grobauer et.al in [17] define

indicators based on sound definitions of risk factors and cloud computing. They discuss about

cloud computing security but they fail to distinguish general security issues from cloud-specific

issues. Finally, the authors in [19] tackle the most common security challenges that cloud

computing faces.

The classification method, presented in this thesis in section 2.1, uses three distinct

categories: Threats related to the infrastructure; Threats related to the service provider; and

Generic Threats. The key objective of the proposed classification is to ease the burdens of cloud

administrators on security related issues, by highlighting the major problems that emerge and

thus saving them time and money. Thus, the proposed classification of cloud threats extends the

work presented in [8] in the aforementioned direction.

1.1 Problem Identification

Compared to traditional IT services, cloud attack surface has been expanded not only

because of the shared resources, but also due to the additional attacking points that an adversary

may utilise for exploiting a potential vulnerability in the VM, or in the cloud management

platform, or in any other component of the cloud infrastructure. As a result the “Malicious

Insider Threat”, as described in Chapter 2, has evolved to one of the greatest security challenges

in cloud computing environments.

According to [48], the term “insider”, for an information system, applies to anyone with

approved access, privilege or knowledge of the information system and its services and missions.

On the other hand, a “malicious insider” is someone motivated to adversely impact an

organization’s mission through a range of actions that compromise information confidentiality,

integrity, and/or availability taking advantage of his/her privileges. In a similar way, for cloud

computing “insider” is considered to be an entity who:

 Works for the cloud host

 Has privileged access to the cloud resources

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 20 of 99

 Uses the cloud services

Consequently, cloud insiders are mostly privileged users, who may be motivated to

compromise the cloud infrastructure’s security. Their actions may result in a temporary break or

even in permanent interruption of the provided services, or in the violation of legitimate users’

privacy, depending on their privileges. It is stressed that VM related information, such as the

structure of the virtual network being set up for the internal communication among the provided

VMs, can be only extracted by privileged users and exploited during the later steps of an attack.

To this direction, a malicious user may try to map all available virtual machines and also extract

other VM related information [49], in order to overcome cloud security or violate users’ privacy.

 For instance, a malicious user may combine various utilities such as the nslookup, and the

ping commands, or the nmap tool, to capture publicly accessible information for a specific

domain of VMs. Even though each one of the above actions is legitimate, the extraction of such

information can be utilized for future attacks (e.g. exploiting a vulnerability in a specific

operating system). Furthermore, these actions may collectively result in launching an attack

known as “co-residence” or “co-tenancy” attack [33]. Alternatively, an internal malicious user

may try to affect directly the availability of a virtual network by congesting the corresponding

public and private interfaces with numerous ping requests. Network stressing can be also

launched through smurf attacks [50].

In addition to the above, the fact that cloud infrastructures lack physical isolation can lead

to memory leakages among different VMs. For instance, a malicious VM may try to get access

to the shared memory (cache or main memory) and retrieve personal information for the users of

the co-resident VMs. In this context, Ristenpart et. al., [33] perform cross VM side channel

attack on Amazon EC2 and measure the cache activity of other users, while Rochsa and Correia

[51] prove that any malicious privileged user can use the memory dumps of a VM to acquire

information about its users, such as passwords, social security number and other personal

information.

1.2 Goals and Contribution

The major security threats against Cloud Computing environments are briefly described in

Chapter 2. The majority of them cannot be prevented by employing existing countermeasures.

As a result, soon after identifying them and understanding that a malicious insider is one of the

major threats in a cloud computing environment, the aim was to propose specific new methods

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 21 of 99

for addressing this threat and thus contributing to the scientific community of cloud computing

security. Specifically the goals were prioritized as follows:

i. Review of existing methods that identify and counter the malicious insider

threat either in conventional systems or in cloud computing systems.

ii. Identification of the source of the malicious insider threat.

iii. Formulation of a methodology that would detect and counter the malicious

insider threat.

iv. Application of the proposed methodology and evaluation of its performance and

accuracy.

The main contribution of this thesis is the design and development of an adjustable

Intrusion Detection System (IDS) that can detect or/and prevent every known attack launched by

a malicious insider, as well as other types of existing or future attacks (Figure 1). More

specifically, the scientific contribution of the can be summarized as follows:

i. Detailed review of all existing threats against cloud computing systems and

mechanisms that have been proposed for addressing them.

ii. The creation of an augmented authentication mechanism versatile enough to

prevent most infrastructures from potential dangers.

iii. The identification and customization of an algorithm that will be able to

generate and compare attack signatures to a series of system calls generated by

any cloud VM or infrastructure.

iv. The creation of a framework that will track any procedure generated into a

cloud computing environment either in host OS kernel level or in VM kernel

level.

v. The implementation of this algorithm and its evaluation as matters accuracy and

overhead.

vi. The further improvement of the algorithm as matters its performance.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 22 of 99

Threats

Attack Detection and Prevention

Outsider Threats

Malicious Insider Threats

Figure 1: The contribution of the proposed method

To be specific in this Ph.D. thesis after reviewing all existing threats and their known

solutions, the malicious insider was identified as one of the major threats in a cloud computing

environment. Furthermore, it was concluded that all existing solutions willing to counter this

threat would not meet either the global effectiveness or the proper performance, which comes

along with the manifestation of attack scenarios generated by malicious insiders. As a result an

augmented authentication was created, depending not only on cryptographic but on

steganographic methods too. This mechanism is used as an one time authenticator, using mp3

files as stego carrier to transfer the appropriate pieces of information undetectable. In addition to

that a lot of algorithms were tested as matters the attack generation and the similarity checks

between series of system calls that would offer us the opportunity to identify attacks in a real

time environment. This effort resulted in the conclusion that Smith Waterman [52] would be

appropriate as for our purpose the behaviour of system calls matches the elements of a DNA

sequence, the problem that the algorithm was initially created for. Therefore, a version of this

algorithm was implemented in matlab environment in order to generate patterns and test its

accuracy. As soon as confidence on the effectiveness of the algorithm was established, a CUDA

[53] version of the algorithm was implemented that would greatly reduce the estimated overhead

and mitigate into the GPU of a cloud infrastructure instead of its main computational sources.

The following table summarizes the contribution of this Ph.D. thesis:

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 23 of 99

Table 1 Thesis Contribution

 Short description Contribution

i The complete review of all existing threats as matters

cloud computing systems and their known solutions.

[55]

ii Creation of an augmented authentication mechanism

depending on steganography.

[54], [122]

iii, v Implementation of Smith Waterman algorithm in XEN

and KVM hypervisor based cloud systems.

[56], [125]

iv, v,

vi

Creation of the framework and implementation of

Smith Waterman in CUDA environment.

[123]

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 24 of 99

Chapter 2: Threats In Cloud

Environments

2.1 Classification of Cloud Computing Threats

In order to facilitate the analysis of the security risks faced in Cloud Computing Systems, it

is necessary to classify the identified threats [8] into distinct categories. The following sections

present the proposed classification, utilizing three main categories: (1) threats against the cloud

infrastructure and hosts (2) threats against the service providers that may affect clients who seek

a service in the cloud and (3) generic threats that may affect both the infrastructure and the

service providers/clients.

2.1.1. Threats against the Cloud Infrastructure and Hosts

Natural disasters that can harm critical infrastructure: Earthquakes, floods, hurricanes,

fire and other natural disasters can be regarded as serious threats that can harm the entire cloud

infrastructure. As a result, they can have devastating effects on the system and, in several

occasions, on human life. Risk assessment tools have been developed, such as CRAMM and

Octave [25][26], which can be utilized for minimizing the consequences of natural disasters [8].

Unauthorized physical access to facilities or equipment: Unauthorized users may try to

access the facilities of cloud systems. Such an unauthorized physical access can threaten

system’s devices and equipment and can lead to Denial of Service (DoS) for a prolonged period

of time. Risk assessment tools like CRAMM and Octave [25], [26], can prevent such problems

and must be considered during the initial stage of the Cloud System development [8].

Deficient training/negligence of employees: In many occasions, the employees can pose

a serious threat to the cloud system. Deficient training or negligence are heavily concerned with

erratic and unpredictable actions of the average employee. Such actions may involve the

accidental loss or deletion of the backup data and operational or security logs. A risk

management plan in conjunction with the development of a thorough security policy can

contribute in avoiding similar events. These measures aid the employees to follow a series of

procedures, significantly minimizing in this way the probability of making critical or/and

unrecoverable mistakes.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 25 of 99

Dumpster diving: Dumpster diving is the risk that each organization or individual takes to

discard possible useful information. Sometimes this information that is extracted from the trash

can be valuable for anyone who wants to attack the cloud system. Such trashed information may

include passwords, phone and credit card numbers. There is no limit in exploiting information

found in the trash. Such an information leak can be utilized by malicious users, in order to launch

social engineering attacks or to facilitate more threatening scenarios. Each organization must

adopt/establish a certain policy regarding the life cycle and the protection of secret information

and shall dictate that this policy must be followed by the employees without any exceptions [19].

Password guessing: By employing social engineering or other tools, like Social

Engineering Toolkit and TrustedSec [27], [28], malicious users can make educated guesses

regarding the passwords used. This kind of attack needs a lot of attempts (brute force attack) and

thus it is rather easy to prevent it by setting a limit of invalid password attempts [19].

Unauthorized access to data or information technology systems: This kind of access

can be illegally granted by launching social engineering or hacking attacks. In a social

engineering attack, the attacker can grant access by simply eliciting the required information,

such as users’ credentials. Otherwise, privilege escalation techniques may provide the malicious

user with the required clearance to access these data. An example of this problem is the SYSRET

exploit, where malicious third parties took advantage of AMD’s instruction set on Intel platforms

[29]. In order to avoid such scenarios, it essential to employ the appropriate and up-to-date

security countermeasures and strict access control [8].

Compromisation of operational security logs: Every action, in a large scale Information

System, is monitored and stored into detailed security logs. These logs, which are mainly used

by system administrators and auditors, provide critical pieces of information that malicious

parties can use to launch attacks. Furthermore these logs can expose the identity of the users as

they contain sensitive and private data. Protection of security logs must be a matter of high

importance, since once compromised they may affect the entire Information System or its users

[8], [30], [31].

Network breaks: Each information system and especially a cloud infrastructure provides

access to its services through different networks. Every network, depending on its characteristics

such as topology and hardware, has known vulnerabilities. Malicious users may use these

vulnerabilities in order to either compromise the security of the network or to stop its proper

function. These network breaks can pose a serious threat to the provision of cloud services.

Thousands of customers may be affected at the same time and the cloud provider (CP) will

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 26 of 99

become untrustworthy to its current and to the potentially new customers [8], [9], [10], [11],

[12]. IDS usually reduce such kind of risks. Maybe the solution of Cheng F., Roschke S. and

Meinel C., suggesting the installation of IDS mechanisms in Virtual Machines, may reduce the

specific threats [41], [42], [43].

Privilege escalation: A malicious user may utilize a virtual machine (VM) in order to

attack another VM, escalating his access rights. This can be achieved either by using the

hypervisor of the cloud host or the shared memory of the virtual machines. An up-to-date version

of hypervisor and countermeasures for privilege escalation are necessary for every cloud

provider in order to prevent such acts [8], [32].

Insecure or ineffective data deletion: In a Cloud Computing Infrastructure it may be

necessary to delete a recourse. Most operating systems do not fully wipe the data while, in other

cases, timely data deletion may also be unavailable. A cloud provider may need to perform

several modifications to its architecture, such as changing the location of the server, making a

hardware reallocation or even destroying older hardware. During these changes the data might

not be transferred or destroyed correctly, due to technical reasons, leaving them exposed. In

several occasions, the physical destruction of hard disks may affect clients’ data that should not

be deleted [35].

Malicious scanning or observation: Malicious parties, in order to acquire information

about the Cloud System, use network probing tools such as hping [22], nmap [23] and wget [24],

to monitor the network of the cloud infrastructure. They often install malware that collects

information for mapping the Cloud System. When a user knows his current position, either in the

network or the physical machine of the Cloud Infrastructure, he can use it in order to escalate his

privileges and gain access to other Virtual Machines. In such an occasion, the malicious user can

illegally retrieve information that would not have been allowed to access [33].

Insecure or obsolete cryptography: Cryptanalysis advances can render any cryptographic

mechanism or algorithm insecure. On the other hand, it is a common phenomenon that many

Cloud Systems do not accurately implement the encryption/cryptographic protocols or, in the

worst case, encryption does not exist at all. Thus, a thorough implementation of contemporary

cryptographic techniques must always comprise a high priority since it can protect the system

from numerous malicious acts [17].

Economic Denial of Service (EDoS) and exhaustion of resources: Economic denial of

service can be recognized in several different scenarios. The most important of them are:

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 27 of 99

• Identity theft: An attacker may steal the account and the resources of a customer, in

order to use them for his own benefit. In such a scenario, the attacker can have access to services

for free while the victim’s account is charged for these services. Also, the attacker may use the

stolen identity and by acting maliciously to threat victim’s reputation.

• The Cloud Customer (CC) may have no effective limits on the use of paid resources. As a

result he may impose unexpected loads on these resources.

• An attacker may use a public channel so as to use the customers' metered resources. An

example is a DDoS attack, when the customer pays per HTTP.

 In these scenarios, services may not be available to customers and access control may be

compromised. In addition to that, the trustworthiness of the cloud provider is inevitably

threatened. EDoS attacks have as their primary target the cloud provider and as a secondary

target the clients [8]. Kaliski Jr, B. S., and Pauley, W. suggest risk assessment as a way to avoid

EDoS [47].

Isolation malfunction: The infrastructure provider must be able to isolate services from

each other. The term 'isolation' refers to performance and security isolation. As a result, the

execution of one service must not interfere with another. Typically, isolation can be achieved

either by using unique physical machines or isolated network infrastructures. However, when it

comes to cloud computing it is rather difficult to have complete isolation, as the Virtual

Machines share resources. As a result, in case of isolation malfunction someone who has access

to shared resources will be able to retrieve confidential information [8], [34].

Billing fraud: Billing data manipulation and billing evasion is one of the most important

vulnerabilities in cloud environments. Cloud services have a metering capability, at an

abstraction level appropriate to the service type, such as storage and processing. The metering

data is used for service delivery and billing support [17]. An approach has been proposed from

Widder, A., Ammon, R. V., Schaeffer, P., & Wolff, that suggests the use of Complex Event

Processing Engine [46].

Insufficient logging and monitoring: No standard mechanisms have been proposed to

enable logging and monitoring services concerning the cloud resources. This can raise significant

concerns. As the existent logging mechanisms usually monitor users and services of an

infrastructure, the retrieval of information that affects a single user or service becomes rather

difficult. Until efficient monitoring and logging mechanisms are implemented, it is appropriate

to consider security controls in Cloud computing [17]. Several tools have been proposed for

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 28 of 99

logging, monitoring and provisioning services such as OpenQRM [36], Cobbler [37], Crowbar

[38], Spacewalk [39] and Cloudaudit [45], but no one offers a complete solution.

Cloud Service failure or termination: In addition to DoS attacks that may turn cloud

services unavailable for a short period of time, it is also possible to experience service failure or

termination. Service failure or termination indicates a permanent inability of the Cloud

Infrastructure to provide its services. That may be due to malicious acts of users that have earned

elevated privileges into the infrastructure and consequently access to mechanisms that can

disturb or disable the functionality of the offered services [8]. The installation of multiple type of

IDSs in several Virtual Machines, as Cheng F., Roschke S. and Meinel C. suggest, can

significantly reduce that threat [41], [42], [43].

Failure of third party suppliers: Cloud computing providers often outsource several

tasks to third party suppliers. That means that the cloud infrastructure’s security depends on the

security mechanisms utilized by the third party. Suppliers are not always trustworthy. Keeping

low security standards or not paying attention to the security policy of the cloud infrastructure

may result either to exposing several segments of the infrastructure or even making aspects of

the system available to malicious users. Any partner can severely damage the cloud integrity,

availability and confidentiality with further impact to its viability. As a result, the cloud provider

must be cautious with its partners and preferably have alternate choices in matters of outsourcing

[8].

Lock in: Several problems occur when the cloud infrastructure changes ownership and/or

policy, while existing users remain as customers. A difficulty of great importance appears when

customers cannot easily transfer either their services or their data from one cloud provider to

another. In this case we have a variety of 'lock in' problems depending on the architecture of the

cloud system. In all three architectures SaaS, PaaS and IaaS the data lock in problem is evident.

It is extremely difficult to extract the data of each customer due to technical or legal reasons.

Concerning the SaaS architecture, the problem of services lock in can emerge. This means that

every cloud provider uses different tools for provisioning and monitoring like openQRM [36],

Cobblerd [37], Crowbar [38] and Spacewalk [39]. In PaaS architecture, the problem exists on the

API layer since every cloud provider does not use the same virtualization platform. Customers

should check whether the new provider uses the same platforms or compatible ones. IaaS lock in

varies depending on the infrastructure that is used by each customer. In order to avoid such

circumstances, the selection of the appropriate cloud provider must be decided after extensive

research, while special attention must be paid to any change in the Cloud Policy [8], [20].

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 29 of 99

Compliance problems: It is common, that several companies and organizations can

migrate into cloud systems for several reasons. Since these companies have been utilizing

security certificates and other standards before the migration, compliance problems may emerge.

This is mainly because the cloud provider may not utilize the same security standards or policies,

or even because the security schemes may not be compatible with each other. It is therefore

necessary for the clients to check if the cloud provider can offer services that are compatible with

their deployments and can host their services according to their needs. Otherwise, this may lead

to denial of service for a prolonged period of time, while the users’ disappointment will

inevitably threaten operator’s reputation [8].

Cloud data provenance, metadata management and jurisdiction: This is an open issue

which includes:

• Cloud Process Provenance: Dynamics of control flows and their progression, execution

information, code performance tracking, etc.

• Cloud Data Provenance: Dynamics of data and data flows, files' locations, application

input/output information, etc.

• Cloud Workflow Provenance: Structure, form, evolution, etc., of the workflow itself.

• System (or Environment) Provenance: System information, O/S, compiler versions,

loaded libraries, environment variables, etc.

Considering these issues, it can be concluded that there are a lot of open challenges

concerning data provenance. That creates a high degree of uncertainty to the cloud customers,

who need to know the provenance of the data they are using. Every cloud provider should form

its own provenance system, in order to guarantee the quality of the provided services and protect

data confidentiality and users’ privacy. In cases that these requirements are threatened,

jurisdiction problems may be raised concerning the data and their storage [8], [18].

Infrastructure’s modifications: As the technology develops, better and contemporary

hardware and software solutions are introduced. Cloud providers may update or upgrade their

software/equipment. This can result in extra charge for each customer, even if the latter

continues to use the same number of resources through the cloud. Furthermore, the intellectual

property of the stored/exchanged data may be at risk, if they are not adequately protected by the

appropriate security mechanisms. Cloud providers should care about these matters and put

special effort to develop strict rules and security policies concerning the proper use of their

systems, in order to avoid legal issues. In addition, the development of risk assessment

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 30 of 99

procedures, through the utilization of the appropriate tools [25], [26], can offer to cloud

customers even more secure services [45].

Data processing: In addition to data provenance, another serious concern in cloud

computing is data processing. A customer cannot be sure how his data are manipulated by the

cloud system and if the processing complies with the legal framework of the country he resides

in. Some cloud providers describe the procedures they follow and the certifications they may

have. But even if the data are protected against malicious users, it cannot be assured whether the

users’ stored data have been lawfully obtained or not. That raises another issue: how can these

data be evaluated in terms of legality and (at the same time) be protected from disclosure,

without violating users’ privacy [8].

Administrative and ownership changes: It is possible that a cloud provider may change

its administrative personnel (e.g. network or system administrators) or even the whole cloud

system may be sold to another company. This can raise many security concerns due to the fact

that the security requirements of the former owner/administrator are not always satisfied by the

new one. This may have consequences on the data confidentiality, integrity and availability and

consequently on the cloud provider’s reputation. Thus, it is essential to maintain the previously

established security measures for a period of time until the new administration decides to change

them. This can prevent malicious entities from taking advantage of such situations.

Denial of service to co-tenants due to misjudgment or misallocation of resources:

Since cloud systems provide resource sharing, malicious activities carried out by one tenant may

have impact on another. For example, if an IP is banned or blocked to prevent security incidents

(e.g. this IP has been used for initiating attacks), some users who have not been involved in

malicious acts may still not be able to use the cloud services. Furthermore, a customer may not

be able to access a specific service because some other user may have reserved the available

resources. This may turn to a major problem since it significantly degrades company’s reputation

due to the customers’ dissatisfaction (they cannot have access to the services they pay for).

Therefore, cloud providers shall consider and preserve the customer's right to access the

provided services [8].

Subpoena and e-discovery: Every country has a different legal framework on the

protection of privacy and processing of personal data. The centralization of storage as well as

shared tenancy of physical hardware, put many clients’ data at risk since the disclosure of private

information does not comprise a punishable action in every country. It is therefore very difficult

for each agency of each country to take special care of every cloud system hosted under their

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 31 of 99

jurisdiction. Consequently, customers shall consider the legal framework of the cloud provider in

order to avoid privacy related issues.

2.1.2. Threats against the Service Providers

Replay Attacks: During a replay attack, an attacker intercepts and saves the transmitted

messages. After spoofing these messages, the attacker re-sends them to the service,

impersonating one of the communicating participants. The use of fresh and randomly generated

alphanumeric strings (nonces), in the message, can adequately tackle this problem. Other

countermeasures may only include a timestamp which indicates the time when the message was

sent [19].

Data interception: It consists a group of attacks, which contains:

• Man in the middle: In this type of attack the attacker can impersonate the victim by

changing the public key/user association. As a result, the sender encrypts the message with the

attacker’s public key while the latter can receive, decrypt and modify it. Finally, the attacker

encrypts the forged message with the actual victim’s public key and forwards it to the latter [19].

• Eavesdropping: Data scavenging, traffic or trend analysis, social engineering, economic

or political espionage, sniffing, dumpster diving, keystroke monitoring, and shoulder surfing are

all types of eavesdropping. Their purpose is to gain information or to create a foundation for a

later attack.

• Side channel attack: The use of side channels in shared hardware enables attackers to

infiltrate into sensitive data, across virtual machines of the cloud infrastructure [19].

Browser security: One of the most common risks in cloud systems is the browser security

level. Generally, a computer client in cloud is only used for I/O, authentication and

authorization. Cloud providers do not develop browsers suitable and safe for this purpose.

Consequently, computer clients use a variety of browsers with security features that mainly

depend on their software version. Thus, whenever a security breach or exploit emerges on a

specific browser it will have impact on the whole Cloud Infrastructure [14].

XML signature element wrapping: It is an attack on protocols using XML signature for

authentication or integrity protection. This type of attack applies to web services as well as to

cloud systems. It has been only in theory, until 2008, when it was discovered that Amazon’s EC2

services were vulnerable to wrapping attacks. The specific vulnerability was a soap architecture

exploitation that was used in conjunction with this technique. This group of attacks cannot be

easily detected and it still remains a great threat for the Cloud [14], [15], [16].

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 32 of 99

Injection vulnerabilities: This kind of vulnerabilities are exploited by manipulating

service or application inputs. Such a manipulation can force the interpretation and consequently

the execution of illegal code. Characteristic examples are the SQL injection, command injection

and cross site scripting attacks. Since these attacks are very popular and in most cases easily

exploitable, cloud providers shall consider deploying countermeasures and protection schemes

even from the first stages of their establishment [17].

Customer’s negligence and Cloud Security: Cloud customers fail or neglect to properly

secure their cloud environments, enabling malicious users to attack the cloud platform.

Customers must realize that they have the responsibility to protect their data and resources. In

some cases, cloud customers wrongly assume that the provider is responsible to ensure the

security of their data. This kind of risk cannot be addressed through auditing or other techniques.

Each company should always keep a high security standard even if their customers do not follow

the appropriate procedures [8].

Management interface exposure: Malicious parties can take advantage of internet

browsers’ and remote access’s vulnerabilities in order to have access to several controlling

interfaces of the cloud system. This includes customer interfaces that control a number of virtual

machines and the operation of the overall cloud system [8]. Frequent browser updates and

installation of different kinds of IDS in multiple Virtual Machines, as Cheng F., Roschke S. and

Meinel C. Suggest, can reduce this threat [41], [42], [43].

Loss of governance: Frequently the security methods that cloud customers employ

significantly deviate from cloud providers’ directions. Such a contradiction may lead to loss of

governance and control which can have a determinant impact to the cloud system and of course

to its data. To this end, every cloud provider shall keep its customers up-to-date with clear and

strict security procedures and directions while, in cases of outsourcing, the partners’ service must

be compatible to these directions/policies [8].

2.1.3. Generic Threats

Social engineering attacks: Classified data and other critical information can be disclosed

by users or employees due to inadequate education, negligence or social pressure. An attacker

can impersonate (e.g. though a phone call or e-mail) a supervisor, a chief technician or other

important entities in order to elicit confidential data, that can be used for attacking the system

directly or indirectly. Such information may include passwords, networking topologies, utilized

software’s and hypervisor’s version and others, which can provide the attacker with the

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 33 of 99

appropriate knowledge to launch an attack. That proves that people are the weakest link in such

occasions. Social engineering can be mitigated through strict procedures and of course by

auditing, which has an essential role in avoiding such attacks [10][45].

Distributed Denial of Service (DDoS): The DDoS attack is an advanced form of DoS

attacks. The difference from other attacks is its ability a) to deploy its weapons in a

‘‘distributed’’ way over the Internet and b) to aggregate these forces to create overwhelming

traffic. The main goal of a DDoS attack is to cause damage on a victim either for personal

reasons, or for material gain or for popularity. DDoS attacks have become more powerful

because they have taken advantage of the Cloud architecture which has inherited the distributed

systems advantages and disadvantages [21]. However a solution is proposed by Aman B. and

Yogesh B. which suggests the implementation of an IDS into a Virtual Machine [40].

Encryption keys exposure or loss: In this type of attack, employees’ negligence or lack

of security policies, make the secret keys (file encryption, SSL, customer private keys)

vulnerable to malicious users who are neither authorized, nor authenticated to use those [8]. Such

negligence can give access to unauthorized users who may launch attacks against the cloud

infrastructure or other customers.

Service engine exposure: The service engine is developed and supported by the cloud

platform vendors and, in some cases, by the open source community. Specifically, the service

engine code is prone to attacks or unexpected failure which means that it can be vulnerable to

different malicious operations. For instance, an attacker can manipulate the service engine and

gain access to the data contained inside the customer environment [8]. Frequent security updates

of the service engine will be able to partially solve the problem. Furthermore, this threat should

be considered throughout the risk assessment process [25], [26], [45].

Malware and Trojan horses: Malware and Trojan horses are malicious codes, hidden

inside a useful program, that attack the workstation, the server or network or allow unauthorized

access to those devices. Trojan horses can be carried via Internet traffic, such as FTP downloads

or downloadable applets from websites, or can be distributed through e-mail. Some Trojans are

programmed to open specific ports to illegally allow access to attackers or for possible

exploitation of systems vulnerabilities [19]. The installation of multiple IDSs on the Virtual

Machines connected through an event manager, as Cheng F., Roschke S. and Meinel C.

suggested, may be an excellent counter measure [41], [42], [43]. Due to the fact that malware

and Trojan horses increase and advance every day, addressing them is not a trivial task.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 34 of 99

Malicious Insider of Cloud Provider: The activities of a malicious insider can threaten

the confidentiality, integrity and availability of cloud’s system data and services. This makes a

malicious insider one of the greatest threats of information systems and especially cloud

computing, since cloud architectures necessitate certain roles (system administrators and

auditors, managed security service providers) which are considered extremely high-risk [8].

2.2 Threat assessment

Table 2 depicts the threats against cloud systems, divided into the three distinct categories

presented in the previous section. The two columns in the middle of the table, provide

information on whether the specific threat can be addressed either through some technical

countermeasures (technical solution) or through some organizational or/and procedural

countermeasures (non-technical solution). The proposed solution itself is given in the last

column.

Table 2: Classification of Cloud Computing Threats

Solutions

Threats Technical Non-Technical Known Solutions

In
fr

as
tr

u
ct

u
re

 a
n

d
 H

o
st

Natural disasters
 ● CRAMM, Octave, CloudAudit

Unauthorized physical access ● CRAMM, Octave, CloudAudit

Deficient training/negligence of employees ○ CRAMM, Octave, CloudAudit

Dumpster diving ● CRAMM, Octave, CloudAudit

Password guessing ● Limit invalid password attempts

Unauthorized data access ○ CloudAudit, Multilayer IDS on VMs

Security logs compromisation ● CRAMM, Octave, CloudAudit

Network breaks ○ Multilayer IDS on VMs

Privilege escalation ○ Access control, Hypervisor update

Ineffective data deletion ● CRAMM, Octave, CloudAudit

Malicious scanning/observation – --

Insecure/obsolete cryptography ○ Contemporary Cryptographic techniques

EDoS and resources exhaustion ○ Risk assessment as a service

Isolation malfunction – --

Billing fraud ○ Complex event processing engine

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 35 of 99

Solutions

Threats Technical Non-Technical Known Solutions

Insufficient logging/monitoring ○ OpenQRM, Cobblerd, Crowbar, Spacewalk, CloudAudit

Cloud Service failure/termination ○ Multilayer IDS on VMs

Third party suppliers’ failure ○ Flexible Security Policy

Lock in ○ OpenQRM, Cobblerd, Crowbar, Spacewalk

Compliance problems ● Migration compatibility check

Data provenance and jurisdiction – Provenance Policy for CPs

Infrastructure’s modifications ○ CRAMM, Octave, CloudAudit

Data processing ○ – Destruction strategies on Service-level Agreements

Administrative/ownership changes ○ – Maintenance of established security measures

DoS to co-tenants ○ – Customer’s access rights preservation

Se
rv

ic
e

 P
ro

vi
d

er

Replay ● Timestamps, fresh nonces

Data interception ○
SSL support, jam the emitted channel with noise,

Homomorphic encryption

Browser security ○ Browser updates, WS-security

XML signature element wrapping ○ Digital certificates

Injection vulnerabilities ○
Validate length, range, format, and type. Constrain,

reject, and sanitize input. Encode output

Customer’s negligence and Cloud Security ○ Effective Security Policy

Management interface exposure ○ Browser update, IDS on VMs

Loss of governance ○
Security procedures for handling human factor and

outsourcing impact

G
e

n
e

ri
c

Social engineering ○ CloudAudit

DDoS ○ IDS on VMs

Encryption key exposure/loss ○ ○
Key management techniques, proven platform-provided

cryptography

Service engine exposure ○ Service engine updates, CRAMM, Octave, CloudAudit

Malware and trojan horses ○ Multilayer IDS on VMs

Malicious insider of Cloud Provider – --

●: Covered –: Not Covered ○: Partially Covered

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 36 of 99

Chapter 3: Literature Review

3.1. Introduction

Since the research work presented in this thesis focuses on several aspects of a cloud

computing systems, the literature review has been divided into two distinct categories so as to

match the contribution directions. The first subsection addresses the related work on

steganography and the authentication schemes employed in cloud computing systems, while the

second one discusses the use of IDS in cloud environments and their performance issues.

3.2. Steganography and Cloud Computing

Authentication Schemes
Several methods of utilizing steganography have been proposed in the past. The methods

that matter most this work are the ones focussing on digital files. When we refer to digital files

what comes to our mind is text, image, sound and video files. However, text files are not a

common choice due to their structure. More specifically, hiding a message into a text file [57] is

easily achieved but it suffers from a significant and visible overhead to the original file. This fact

causes suspicions and increase the chance someone to retrieve the hidden message.

The most common method employed in steganography for sound, image and video files is

the LSB [58] (Least Significant Bit) method. The LSB has several implementations in various

different steganographic algorithms. One of the methods used in images is the spatial domain

method [59] where the steganographer modifies the secret data and the cover medium in the

spatial domain, an action involving encoding at the level of the least significant bits. However,

this method has a large impact on the quality of the file. Another method that has been proposed

is to use the LSB into the frequency domain [57] of the files. An evolution of the two former

methods gave birth to the adaptive steganography, also known as “Statistics –aware

Embedding”, “Masking” or “Model-Based”. The revolution in this method is that it collects

statistical global features [60] of the image in order to decide where to apply the LSB method,

achieving maximum efficiency.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 37 of 99

More or less the same methods are used in sound files, depending on their encoding. Video

files are a combination of sound and pictures. Pictures change rapidly while sound is being

reproduced. As a result steganography can be applied separately into pictures and sound at the

same time. The methods used to apply steganography into videos vary, depending again on the

codec used.

Through the past few years several applications have been presented with the purpose

either to hide some pieces of information through the use of the former methods, or to make their

existence revealed to public with applied steganalysis. Some of them, like invisible secrets, have

commercial use[61]. There are also tools aiming only for steganography in pictures such as

EzStego [62], S-Tools [63], Jsteg [66], Jphide and Jpseek1 [63]. Few academic efforts are in the

direction of hiding information into high quality video files. The main problem that they faced

was the size of the files. It is not easy to transfer large files through the internet in order to hide a

few pieces of information. However, a very good effort regarding FLV files and high definition

video has been made by Pro-Chyi Su, Ming-Tse Lu and Ching-Yu Wu, who succeeded in

embedding information using the H.264 Advance Video Coding and proved that it is possible to

have such files for steganographic purposes [64].

What all efforts, either academic or commercial, have in common is that they make use of

the least significant bit algorithm. Up to now no one has tried some alternative method.

Furthermore, there are a lot of file types that have not attracted the attention of steganography

[65].

A lot of research work has utilized steganography for enhancing cloud security. Wange and

Rathod [67] describe a method that uses multiple image steganography to hide confidential data.

In another approach Hemaanand and Varalakshmi [68] propose to hide data into images that can

be later converted into Jar files. Furthermore, Mahale and Sonale [69] combine cryptography and

steganography aiming to enhance data security.

3.3. Cloud Computing IDSs
Over the last years there have been several attempts to track, disable or counter the

malicious insider threat. The majority of these solutions achieve their goal by focusing on a very

specific aspect of the cloud, such as the employees or the network, while only a minority of them

aim to provide a general purpose solution.

Spring suggests that a firewall at the cloud border that blocks troublesome packets can

reduce, but not eliminate, the risk of known malicious entities to gain access [70]. Alzain,

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 38 of 99

Pardede, Soh and Thom suggest that moving from “single-clouds” to “multi-clouds” will greatly

reduce the malicious insider’s threat as the information is spread among the interclouds and

cannot be retrieved from a single Cloud Infrastructure [71]. Another approach focuses on

employing logistic regression models to estimate false positive/negatives on intrusion detection

and identification of malicious insiders. Furthermore, it insists on developing new protocols that

cope with denial of service and insider attacks and ensure predictable delivery of mission critical

data [72].

Magklaras, Furnell and Papadaki [73] propose an audit engine for logging user actions in

relational mode, named LUARM, which attempts to solve two fundamental problems of the

insider’s IT misuse domain. The first one is the lack of data repositories for insider misuse cases,

which could be utilized by post-case forensic examiners to aid incident investigations. The

second area highlighted is how information security researchers can enhance their ability to

accurately specify insider threats at system level.

Tripathi and Mishra [74] insist that cloud providers should provide tools to the customers,

which can detect and defend against the malicious insiders threats. They also mention that

malicious insider threats can be mitigated by specifying human resources requirements as part of

legal contracts, conducting a comprehensive supplier assessment. This procedure would lead to

reporting and determining security breach notification processes.

“Fog computing” [75] suggests an approach totally different from the others. Each user’s

data access log is monitored in the cloud and a sort of profiling is maintained. This type of

monitoring facilitates the detection of abnormal behavior. An alternative approach is that of

Cuong Hoang H. Lee [76], which achieves security in a Xen based hypervisor [77] by trapping

hypercalls since they are fewer than system calls. The hypercalls are checked before their

execution and thus malicious ones can be detected and countered. Combining the last two

approaches, [78] takes advantage of the system calls and classifies them into ‘normal’ and

‘abnormal’ through binary weighted cosine metric and k-nearest neighbor classifier.

Paying special attention to access control mechanisms, Kollam and Sunnyvale [79] present

a mechanism that generates immutable security policies for a client and then propagates and

enforces them at the provider’s infrastructure. This mechanism is one of the very few methods

that aim directly at malicious insiders and especially system administrators.

The term “co-residency” (or “co-tenancy”) means that multiple independent customers

share the same physical infrastructure [49]. It is therefore possible to have Virtual Machines

(VMs) owned by different customers being placed on the same physical machine. Since there are

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 39 of 99

several methods to discover neighboring VMs on a Cloud infrastructure, it is necessary to

employ countermeasures for this specific attack.

Adam Bates [80], through his approach reveals that “co-residency” detection is also

possible through network flow watermarking. This is a type of network converting timing

channel, capable of breaking anonymity by tracing the path of the network flow. It can also

perform a variety of traffic analysis tasks. However, many drawbacks exist in this method, with

the most important being the introduction of a considerable network delay.

Ristenpart [33] presents the “co-residency” attack on Amazon EC2, one of the largest

Cloud Infrastructures. His methodology employs network tools such as nmap [23], hping [22]

and wget [24], which are utilized in order to create network probes that will acquire the

addresses of the potential targets. Additionally, the addresses are used to make a hypothetic map

of the cloud network. In the manifestation of the method he explores whether two instances are

“co-resident” or not through a series of checks that depend on (a) matching Dom0 (host OS of a

cloud infrastructure) IP address, (b) small packet round trip times, or (c) numerically close

internal IP address. Project “Silverline” [81], aims to achieve both data and network isolation.

“Pseudo” randomly-allocated IP address are used for each VM, hiding the actual IP addresses

provided by the cloud provider. There are numerous attempts to protect Cloud Infrastructures not

only from the “co-residency” attack but also from various other network stressing threats, by

employing IDS. Most of them make employ multiple agents installed on different Virtual

Machines and collect the data into a central point. The disadvantage is that most of these

approaches introduce considerable overhead to the Cloud infrastructure since they consume

significant resources [82]-[83]. An interesting approach is that of Bakshi and Yogesh [40], who

transfer the targeted applications to VMs hosted in another data center when they pick up grossly

abnormal spike in inbound traffic.

Alarifi and Wolthusen [84] propose to monitor the system calls in every VM host of an

IaaS environment based on KVM hypervisor [85], and then to invoke statistical analysis for

classifying the system calls after having collected a large amount of data that includes both

normal operation and malicious actions. Rawat with Gulati, Pujari and Vemuri [78] and Sharma

with Pujari and Paliwal [86] in their work utilize the kNN classifier and the binary weighted

cosine metric in order to achieve a similar goal and classify the processes into normal or

malicious using DARPA-1998 database. The ancestor of the latter techniques is the work of

Fofmeyr, Forrest and Somayaji [87] who suggested the separation of system calls into normal

and malicious using the profiling of the operation of a system. A further extension of their

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 40 of 99

methodology came from Eskin, Lee and Stolfo [88] who implemented dynamic window sizes as

the length of the subsequence of a system call trace which is used as the basic unit for modelling

program or process behavior.

Kang, Fuller and Honavar [89] further improve the above suggestions by introducing

machine learning techniques using the “bag of system calls” representation in system call

sequences. Machine learning techniques are also used by Azmandian et.al. [90] and Fatemeh

et.al. [91].

Although recent research efforts have significant contribution in the area of intrusion

detection mechanisms, a decade ago Coull and his team [92] inspired what we have adopted in

CROW. They used the system calls as a series of genes and used the Smith Waterman algorithm.

However they did not use whole patterns something that has resulted in many false positives and

false negatives. Furthermore, their idea has been implemented in an isolated system and has

nothing to do with distributed systems or cloud computing.

Not too long ago Sotiris Ioannidis and his team [93] made use of the CUDA architecture

for executing Snort [94], a modern network intrusion detection system (NIDS), calling their

system Gnort. They managed to transfer large portion of the overhead to the GPU, thus speeding

up the efficiency of the NIDS, reducing at the same time the overhead on the CPU.

During the past few years the continuous evolution of the CUDA technology and the

power enhancement of GPUs, have attracted the attention of researchers who have done

numerous attempts to parallelize and implement genetic algorithms into CUDA versions. A well-

known effort is the CUDASW++ [95], a project which accelerates the Smith Waterman

algorithm through the GPU. However, this implementation focusses on protein database searches

and does not take into consideration system calls sequences or other intrusion detection models.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 41 of 99

Chapter 4: Enhancing the

Cloud Security

4.1. The Authentication Problem

The unique cloud computing characteristics, such as elasticity, scalability and the pay-as-

you-go model, can offer cost-savings and rapidly available virtual resources for the easy

deployment of different types of services. In case of services that handle sensitive data, like

personal healthcare records (PHRs) and e-government services, security and privacy

requirements, according to the corresponding legislation, should be also considered. For

instance, in USA a healthcare provider must comply with the Health Insurance Portability and

Accountability Act (HIPAA) rules [96]. Thus, important challenges that must be faced before the

migration of data on a cloud infrastructure are both entity authentication, as well as retention of

sensitive data processed in a healthcare scenario.

In that context, various approaches have been proposed to enhance users’ authentication

and confidentiality of “sensitive” data. One aspect for enhancing cloud security is the utilization

of steganographic techniques. Mahale and Sonale [69] combine cryptography and steganography

aiming to achieve better data security. Similarly, Hemaanand and Varalakshmi [68] propose to

hide data into images that can be later converted into compressed files. In addition, Wange and

Rathod [67] describe a method that uses multiple image steganography to hide data, creating

multilevel security. Finally, Liu [97] has developed a mechanism to counter attacks based on the

steganography of audio files in cloud environments.

Though such approaches can enhance the security of cloud-based environments, none of

them focuses on the enhancement of users’ identification and the preservation of users’ sensitive

data. In this thesis, an authentication scheme for cloud-based environments that employs two-

factor authentication through a password and a one-time secret key hidden on a stego is

introduced. Despite the fact that encryption by itself is a secure layer, the stego layer is added in

order to significantly improve the security level with the introduction of only minimum

overhead. Moreover, this extra security layer may further enhance the power of the

cryptographic key that cloud providers, with low security awareness, employ for the encryption

of all their users’ data. Its usability is tested by considering a healthcare service scenario offered

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 42 of 99

through the cloud. The proposed scheme exploits the advantages of Steganographic

Cryptographic Algorithm Reallocating Available Bytes (SCARAB) presented in [54].

The proposed method has been evaluated in terms of the overhead introduced when it hides

a message in different file formats such as TEXT, WAV and MP3. Results demonstrate that this

overhead depends on the file size of the stego-cover and can range from one to three seconds.

4.2. The Proposed Authentication Method
4.2.1. The Architecture

To address the aforementioned security and privacy challenges a solution that enhances

users’ authentication and enables the protection of the confidentiality of the stored data is

presented. In particular, the proposed architecture consists of two main components namely the

client authenticator and the database confidentiality protector.

During the “client authenticator procedure” the user provides her username/password into

the authenticator in order to produce an audio file that is being saved locally in her device and

which contains a stego-key message. Afterwards, the user connects to the application server,

located in the cloud, requesting a service and providing her two-factor authentication credentials

(username, password and the stego key message). The application server validates the

username/password and connects to a reverse authenticator in order to decrypt the hidden stego-

message, matching the stego-key.

In the “database confidentiality protector procedure” the application server, through the

reverse authenticator, produces the database encryption/decryption key from the decryption of

the stego-key. The database can then be decrypted providing the appropriate information to the

user’s request.

4.2.2. Cloud Authenticator
 The proposed authenticator procedure is based on the SCARAB method [54] and consists

of two distinct phases. In the first phase, the stego-message, which is the database encryption

key, containing the value of the expression “(user_id+year)%hour + password”, is encrypted

using AES [98]. In this way if a malicious user identifies the existence of a hidden stego-

message, he will not be able to read it since it is in encrypted form. As for the encryption key the

expression “(user_id+month)%minutes + password” is utilized. In this way a single usage key is

created that lasts one minute, depending on the user’s credentials and on the current date. By

using the same expression the key can be decrypted at the server side.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 43 of 99

At the second phase, the encrypted message is hidden into a random audio file, exploiting

the capabilities of MP3Stego [99]. During the encoding process the new audio file that

incorporates the encrypted message, is compressed and encrypted with triple-DES [124]. The

passphrase used as an encryption key during this step is the expression “password + (user_id+

day)%minutes”. Following the reverse procedure and the same passphrases, the encrypted text

can be extracted from the compressed audio file and eventually decrypted in order to acquire the

encryption key.

Encryption

Key

Cryptography

Encrypted

key

Random

Audio File

Audio Ripping

Mp3 Audio file

Figure 2: A high level approach of the proposed authenticator. The key is encrypted and incorporated
into the audio file during its compression.

4.2.3. Case Study: A Healthcare Scenario
In order to evaluate the authentication procedure and the data processing in a cloud-based

database, we illustrate the proposed approach to a healthcare scenario.

Firstly, if a patient wants to enjoy the provided medical services he should register to the

medical cloud provider. As soon as the patient completes the registration form he receives a

notification message (e.g. email) to prove his identity and receive the two-factor authentication

credentials (username/password and the authenticator).

a. The patient uses the authenticator and after providing his username/password, an

audio file which contains the hidden stego-message with the database encryption

key, encrypted with AES [98], is produced and saved locally in his device.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 44 of 99

b. He connects to the cloud-based medical application, through his local or mobile

device and sends a request for a healthcare service using his username/password

and uploading the extracted audio file.

c. The application server checks the patient’s request and connects to a reverse

authenticator in order to decrypt the hidden stego-message and thus recover the

decryption key of the medical DB.

d. In case of changes in the patient record, the corresponding hospital (Hospital A,

B, C) upgrades the “central” medical database with the new data, using the same

encryption key that is provided by the patient himself. Data processing and data

allocation procedures are upon patient’s request and only he can authorize other

hospital entities like physician and laboratory personnel to access his medical

record, according to the implemented access control policy.

e. The medical DB is decrypted with the database key providing the appropriate

information to the patient request.

Figure 3: Patient’s authentication in a cloud-based medical DB

4.3. Evaluation of the Proposed Schema in

Cloud-Based Threat Scenarios
In order to evaluate our approach in terms of confidentiality, integrity and accountability,

we facilitate five threat scenarios on cloud computing environment. First, we tested our approach

against infrastructure and host related threats, second against service provider threats and third

against generic threats. In particular, two types of threats were chosen from the first category;

password guessing/cracking and unauthorized data access, two types from the second; replay and

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 45 of 99

data interception and one type from the last category; encryption key exposure/loss. A detailed

analysis and terminology of the above threats is given in [55], [100], [101].

Figure 4 depicts four threat scenarios against a service provider, a cloud provider and a

user. The red line represents the three threat categories and the blue line represents the normal

flow on the cloud and between the user, the service provider and the cloud provider (user-service

provider-cloud provider).

Figure 4: Threat scenarios on cloud computing environment under the auspices of cloud authenticator

Initially the password guessing threat was evaluated and it was derived that for a complex

username/password (i.e. containing eight alphanumeric characters with special symbols) an

attacker will need in average three hours to crack it. In contrast, the utilization of the propose`d

two factor authentication, an attacker must first ensure that the container of the message is useful

for him, he must then decrypt the stego-message and finally he has to find the decryption keys

from the stego-message. As a result, the additional security layer (steganography) introduces

more complexity to the attacker and an additional estimated time of twelve hours in order to find

the keys.

The evaluation of unauthorized data access includes a check on the correct implementation

of the access control policy as well as the effectiveness of the authentication process.

Considering the second aspect, since the access control policy is a working hypothesis scenario,

the proposed approach is certainly more robust, since someone requires a two factor

authentication in order to access any kind of information.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 46 of 99

Considering the second threat type, replay and data interception, the proposed approach is

almost tolerant to those since data is communicated through the network, between the user, the

service provider and the cloud provider, in encrypted form. The key lasts one minute, depending

on the user’s credentials and on the current date.

Finally, for the third threat type, the proposed mechanism is evaluated against encryption

key exposure/loss. It has been demonstrated that the additional security layer (steganography) is

an efficient solution, since the encryption keys is encrypted in the stego-message, providing a

higher level of security without adding a considerable extra time (this is justified in the following

chapters).

4.4. Complexity Analysis
As already mentioned, the proposed approach consists of two passphrases: one for

steganography using triple DES and one for cryptography using AES. According to our initial

assumption the method introduces considerable overhead to the potential attacker while, as it is

proved in the next chapter, it does not add considerable overhead to our system.

AES encryption can be broken using biclique attack [102]. Results show that the

computational complexity of breaking AES encryption through this attack are 2126.1 for AES-128,

2189.7 for AES-192 and 2254.4 for AES-256 respectively. Related-key attacks [103] can break

AES-192 and AES-256 with complexities 2176 and 299.5, respectively. As matters DES, a

bruteforce attack can break it [104], having a complexity of 243, while in the case of triple DES

the complexity is raised to 2112. As a result it is easily proved that the co-existence of triple DES

and AES strengthens the security of our key as it enlarges the complexity of breaking it for

potential attackers. Furthermore, by the time the key will be retrieved it will not be useful to the

attackers.

4.5. Overhead Evaluation And Discussion
We have evaluated the proposed scheme in a test-bed system with one Dell PowerEdge

T410 Server with the following configuration: Intel Xeon E5607 as Central Processing Unit, 8

Gigabytes of memory running at 1333 MHz and 300 Gigabytes SAS HDD @1000rpms. The

openSUSE [105] distribution was utilized as a cloud platform, accompanied by the Xen

Hypervisor [77]. Furthermore, a virtual machine containing windows 2008 acts as the database

server hosting an Oracle database 12C suitable for multitenant environment and scalable and

secure deployment. For the AES [98] encryption the cryptopp library [106] has been employed.

For launching attacks against the cloud, the security tools of Kali Linux were used.

http://en.wikipedia.org/wiki/Related-key_attack

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 47 of 99

Three different scenarios (Table 3) have been executed for the evaluation of the cloud

authenticator’s overhead. For each test different audio files with different sizes have been used

and the average time required for completing the procedure and for the reverse procedure has

been monitored.

 Table 3: Evaluation Scenarios for Authenticator

Test Case Description

1st In the first scenario we embed a secret message

of 1kb to an audio file of 1781kbs.

2nd In the second scenario we embed a secret

message of 2kbs to an audio file of 2501kbs.

3rd In the third scenario we embed a secret message

of 4kbs to an audio file of 9037kbs.

Summary In the summary scenario we embed secret

message of 7kbs to audio files of 13319kbs.

Although the proposed authenticator utilizes file sizes that mostly match the first scenario,

in order to estimate the overhead two more scenarios have been designed in which the size of the

files has been significantly increased. The results of the tests performed appear in Figures 5 and

6. Particularly, during the first step, the size of the text file made no difference in the normal

procedure or the reverse one, as the time needed to encrypt or decrypt was in all cases

approximately one second. Overhead was mainly introduced during the second step and

specifically from the procedure of steganography and steganalysis. The steganography of the

encrypted file into the uncompressed audio file required one to four seconds and the steganalysis

for the extraction of the encrypted file required from one to six seconds. It should also be noted

that the average encryption of the entire database took 88.8 seconds while the average decryption

about 90 seconds.

Figure 5: TXT files of 7 kilo bytes have been encrypted and then embedded into WAV files of 13319
kilo bytes.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 48 of 99

Figure 6: TXT files of 7 kilo bytes have been extracted from the audio file and have been decrypted

The proposed method, as depicted in Table 2, has a lot in common with the former

techniques, but it also exhibits unique characteristics. It makes use of the referred methods and at

the same time combines them in order to achieve a deeper file hiding, not easily traceable by

common tools and steganalytic methods.

Table 4: Comparison of methods

Method Cryptography Steganography Steganographic

Container

Multilayer

Mahale and
Sonale

√ √ Image √

Hemaanand

and

Varalakshmi

− √ Image √

Wange and

Rathod
− √ Image √

EzStego − √ Image −

S-Tools − √ Image −

Jsteg − √ Image −

Jphide and

Jpseekl
− √ Image −

Mp3stego − √ Sound √

Proposed
method

√ √ Sound √

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 49 of 99

Chapter 5: Detecting

Malicious Insider Threat

5.1. Introduction

Distributed systems have caused an important renovation in Information Technology (IT)

infrastructures. Their continuation is the Cloud Computing. Despite a modern trend and a new

economic model, Cloud Computing has made its statement turning into the technological model

employed by the majority of large companies and organizations for facilitating their everyday

needs. It is well known however that every novelty, despite offering a lot of advantages, also

brings several disadvantages. The latter usually remains hidden, until a “horror story” appears.

We refer to the security threats that the new technology has raised. They can be classified as:

related to the service provider or to the infrastructure or to the host of the Cloud System.

Several of them are well known from conventional IT infrastructures: Distributed Denial of

Service [21] came with distributed systems and still draws the attention of security experts, while

social engineering attacks [10], malware and Trojan horses [19] are also popular for their impact

on modern IT infrastructures. Despite the inherited threats, there are newly generated risks that

need confrontation. The most important of them are Loss of governance [8], data interception

[19] and replay attacks [19].

Our work focuses on the older and most unpredictable threat that exists even before IT

systems were born: the human factor. We refer to the Malicious Insiders [8] [107] of a Cloud

Computing Infrastructure. Their activities can harm the confidentiality, integrity and availability

of the data and services of a cloud system. The most common role that a malicious insider has in

a cloud infrastructure is that of the administrator; either the administrator of the host or one of

the administrators of the virtual machines (VM). The privileges of an administrator allow several

kinds of attacks to be launched. However, our work focuses on the network attacks and

especially the stressing of the host network and the “co-residency” attack [33]. To be specific the

stressing of the network is the basic component of DOS and DDOS attacks [108] , where packets

are continuously sent to the target in order to stop it from behaving properly and eventually deny

its services to others. In the case of “co-residency” attack [33], we talk about the detection of

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 50 of 99

neighboring VMs and the retrieval of information about them such as their operating system. The

leakage of so important information can seriously harm the cloud infrastructure.

There have been numerous attempts to counter networking stressing attacks [108], [109] in

their DOS and DDOS form. There are also attempts aiming to handle the activities of a malicious

insider through the implementation of several different IDSs, connected through an event

gatherer [110]. However, none of these attempts has managed to successfully prevent the actions

of malicious insiders.

This work, presents a novel method for identifying network based attacks on a cloud

infrastructure. To this respect a XEN [77] and a KVM-based [111] system have been employed

with their host OS Dom0 having direct access to all I/O functions of the system. This access is

materialized by monitoring the system calls made by the kernel of the Dom0 operating systems.

The proposed method has utilized the Smith-Waterman algorithm [52] to prove that by

monitoring the system calls, the malicious actions of a potential cloud insider can be detected.

5.2. “Co-residency” and Network Attacks
It can be deduced that the majority of attacks that can be launched by insiders for detecting

neighboring virtual machines or just stressing the network of a Cloud Infrastructure, are based on

simple network attacks. In a similar fashion the attacks that have been utilized for demonstrating

the proposed detection method are very simple. Before explaining the attacks it should be

stressed that in order to launch them the attacker should know the ip address of the virtual

machine. In our scenario the attacker is the administrator of a virtual machine with the Kali

Linux Operating System [112], the ancestor of Backtrack Operating System [113], which offers

to our hypothetic malicious insider a variety of tools.

In the case of the “co-residecny” attack, the attacker after obtaining the ip address of his

virtual machine, is working on finding the Domain Name System (DNS) address. This can be

easily retrieved through the command “nslookup” followed by the ip address of the Virtual

Machine (VM). This command, executed in the Kali Linux kernel, will return the DNS address.

After obtaining the DNS address, the attacker can use the “nmap” command to acquire the ip

addresses of all virtual machines (including host) utilizing the specific DNS. Specifically the

command executed is “nmap –sP DNS_Adress/24”. Having the ip addresses of all virtual

machines that use the same DNS, the attacker can identify the Operating System of either the

Host or of the other Virtual Machines, by executing the command “nmap –v –O Ip_address”.

Through the aforementioned three distinct steps, all co-residents can be identified along with

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 51 of 99

additional information about their operating systems, something that can allow the attacker to

launch further attacks harming the Cloud Infrastructure.

Network stress is achieved by launching a smurf attack [50] on a specially configured

virtual network. In order to perform a smurf attack, the attacker needs the IPv6 address of the

victim. The victim can be the Host or any other Virtual Machine on the same network. His IPv6

address can be obtained using two methods. The first one is via the ipconfig command, which

can be executed on the Host. The second method is detecting IPv6-active hosts on the same

network via the ping6 command [114]. The attacker can easily ping the link-local all-node

multicast address ff02::1 from any virtual machine by executing the command "ping6 -I

<interface> ff02::1". After obtaining the IPv6 address, the attacker can use the smurf6 tool to

perform the attack, executing the command "smurf6 <interface> victim_ipv6_address". Through

this method the attacker VM (or the Host) will flood the Virtual Network with spoofed ICMPv6

echo request packets, the source address of which is the IPv6 address of the victim machine and

destination address is the link-local all-node multicast address ff02::1. Then the remaining

machines on the same network will flood the victim with ICMPv6 echo replies, thus stressing the

virtual network even more.

5.3. Detection Method

5.3.1. Algorithm
The proposed detection scheme has adopted the standard Smith-Waterman algorithm

which was originally introduced in the context of molecular sequence analysis [52]. This was

possible because the data streams under study consist of symbols drawn from a finite discrete

alphabet. A minor modification introduced has to do with two parameters which refer to the

number of horizontal and vertical predecessors which are allowed to be scanned in order to

determine the accumulated cost at each node of the similarity grid. In other words, these two

parameters define the maximum allowable gap length, both horizontally and vertically. This type

of minor modification causes a significant improvement in response times and it is also in

accordance with the nature of the data that are processed. The values of these two parameters,

along with the gap penalty have been the result of extensive experimentation. Next the adopted

Smith-Waterman algorithm is presented.

First of all, the pair wise (local) similarity between the individual elements of the two

symbol sequences must be defined. To this end, let A and B be the two symbol sequences and

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 52 of 99

A(i),i=1,...M, B(j), j=1,...N, be the i-th symbol of A and j-th symbol of B, respectively. The local

similarity, S(i,j), between A(i) and B(j) is then defined as:

𝑆(𝑖, 𝑗) = +1, 𝑖𝑓 𝐴(𝑖) = 𝐵(𝑗)

𝑎𝑛𝑑

where Gp is the penalty for dissimilarity (a parameter to our method).

Initialization

A similarity grid, H, is created with its first row and column being initialized to zeros, i.e.:

𝑎𝑛𝑑

As a result, the dimensions of the similarity grid are (M+1)x(N+1), with its rows indexed

0,..,M and its columns indexed 0,...N.

Iteration

For each node, (i,j), i>=1, j>=1, of the grid, the accumulated similarity cost is computed

according to the equation:

where Pv and Ph are the maximum allowable vertical and horizontal gaps (measured in number

of symbols) respectively and Gp is the previously introduced dissimilarity penalty (which in this

case also serves as a gap penalty).

The above equation is repeated for all nodes of the grid, starting from the lowest row (i=1)

and moving from left to right (increasing index j). It can be seen that vertical and horizontal

transitions (third and fourth branch of the equation) introduce a gap penalty, i.e., reduce the

accumulated similarity by an amount which is proportional to the number of nodes that are being

skipped (length of the gap).

In addition, if the accumulated similarity, H(i,j), is negative, then it is set to zero (first

branch of the equation) and the fictitious node (0,0) becomes the predecessor of (i,j). If, on the

other hand, the accumulated similarity is positive, the predecessor of (i,j) is the node which

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 53 of 99

maximizes H(i,j). The coordinates of the best predecessor of each node are stored in a separate

matrix. Concerning the first row and first column of the grid, the predecessor is always the

fictitious node (0,0).

Backtracking

After the accumulated cost has been computed for all nodes, the node which corresponds

to the maximum detected value is selected and the chain of predecessors is followed until a (0,0)

node is encountered. This procedure is known as backtracking and the resulting chain of nodes is

the best (optimal alignment) path.

In the experiments performed, different values of the parameters Pv, Ph and Gp have been

used and finally the values that provided the most satisfactory performance have been selected.

5.3.2. Proposed Method
The “work” of a malicious insider on a KVM-based cloud system, is performed with

system calls of the host operating system. In order to investigate the type and sequence of system

calls employed, the Linux Audit [115] tool has been used for capturing them.

The procedure that has been followed is the following:

 The system calls engaged during the execution of the “nslookup” command (first

step of the “co-residency” attack), “nmap –sP DNS_Adress/24” command (second

step of the “co-residency” attack), “nmap –v –O Ip_address” (third step of the “co-

residency” attack) and smurf6 <interface> victim_ipv6_address (smurf attack) are

captured.

 The system calls engaged during the same time period of normal system operation

(no attack is being launched) are captured.

 The above log files have been processed with the use of regular expressions and the

"sed" command [116], leaving only the ID of each system call.

 Finally, the Smith-Waterman algorithm has been employed to compare the logs

(every system call ID is being used by the algorithm as a DNA element).

Initially, the similarity between multiple executions of each attack step, at different time

periods, was calculated with the use of an automated system that reduced the errors because of

the human responsiveness. Then the similarity between an attack step and the respective time

period of normal operation was derived. Ideally, this approach would facilitate the identification

of specific system call patterns that will form the attack signature.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 54 of 99

5.4. Test-bed Environments and Results of the

Experiments

5.4.1. Setup the Environments

In order to launch the attack and monitor the system logs, two minimal Cloud

Infrastructures were built using two Dell PowerEdge T410 server with the following

configuration: Intel Xeon E5607 as Central Processing Unit, 8 Gigabytes of memory running at

1333 MHz and 300 Gigabytes SAS HDD @10000rpms. The servers were running OpenSuse

Linux 12.1 [117]. Also the Linux audit [115] tool was installed; this tool has a configuration file

that stores a list of rules that specify which type of system calls will be logged. To avoid losing

valuable information during our experiments all system calls were captured. Specifically the rule

used was “-a entry, always –s all”. Finally, in the XEN [77] based server one VM was installed

with Backtrack Linux [113] (see Figure 7) while in the KVM based two VMs were installed with

Kali Linux [112], containing the majority of the tools used for penetration testing and attacks,

were set up on the server (see Figure 8).

Figure 7: Xen Test-Bed environment

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 55 of 99

Figure 8: KVM Test-bed Environment

5.4.2. Automating the attack and system calls auditing

procedure
During our effort to automate the attack and the system call auditing procedure, a script

was written in Expect [118]. Expect is an extension to the Tcl scripting language and it's used to

automate interactions with programs that expose a text terminal interface. This feature can be

installed through the expect package. Our script focuses on waiting for expected output with the

use of the "expect" command, sending proper input with the use of the "send" command and

eventually execute the necessary bash commands with the use of the "system" command.

Initially, a directory in which the system calls are going to be saved, was created. Next, the

"spawn" command to open the Virsh console [119] and connect to the virtual machine via a

configured serial console, was executed. Virsh is a command line interface tool, used for the

management of guests and the hypervisor. Then the Linux auditing system was enabled and the

attack command was sent to the virtual machine that will be executed. Knowledge about when

the attack is finished is acquired by waiting for a specific output of the “expect” command.

Finally, the Linux auditing system is disabled and the saved system calls are extracted.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 56 of 99

5.4.3. Launching the attack
Having setup the environment, each one of the three steps of the “co-residency” attack

(“nslookup”, “nmap” and “nmap –v –O Ip_address” commands) were executed in both servers

and the step of smurf attack (smurf6 <interface> victim_ipv6_address) in the KVM server. The

attack steps were executed six times, each time capturing all system calls engaged.

After every single execution of a command (attack step), the system was left working in

normal state for a time period equal to the execution time of the command, capturing again all

the system calls engaged during that period. The time periods for the attack and the respective

normal state periods are depicted in Figure 9 for XEN server and in Figures 10 and 11 for KVM

server.

Figure 9: Time periods for the execution of the three attack steps (blue) and the respective time
periods that the system was kept idle (green) (XEN server)

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 57 of 99

Figure 10: Time periods for the execution of the three attack steps and the respective time periods
that the system was kept in normal state (KVM server)

Figure 11: Time periods for the execution of the smurf attack and the respective time periods that the
system was kept in normal state (KVM server)

5.4.4. Results
 The results of the log files comparison are presented in the following tables. As

illustrated in Figures 9-11, the logs of the first attack step are referred as firststep, the logs of the

second attack step as secondstep, the logs of the third one as thirdstep and the logs of the smurf

attack as smurfstep. Furthermore, the logs corresponding to normal system operation for a time

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 58 of 99

period equal to that of the first attack step are referred as fnormal, of the second attack step are

referred as snormal, of the third attack step are referred as tnormal and of the smurf attack as

smnormal. The estimated similarity numbers that appear in the Gp columns represent the longest

subseries of system calls that ware found similar using the Smith Waterman algorithm. It is

expected from the training procedure that the similarity values will be larger when comparing the

logs of the attack steps, and smaller when comparing the logs of an attack step and the respective

log of normal system operation; i.e. it is expected that for the same Gp the firstep 1-2 will have

larger similarity from the similarity of firstep1-fnormal1. This assumption is strengthened with

the results of our last matrix where we compare the execution of each step of the attack with the

noisy normal operation of a system which performs continuous network operations greatly

increasing the system calls.

 Table 5: Comparison of the six log files (one for each execution round) of the first attack step for Gp
equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

firststep 1-2 10471 10627.200000

firststep 2-3 9292 9393

firststep 3-4 9136,333333 9221.800000

firststep 4-5 8255,333333 8448.800000

firststep 5-6 8693,333333 8935.600000

Table 6: Comparison of the six log files (one for each execution round) of the first attack step for Gp
equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

firststep1 –fnormal1 1783 1807.400000

firststep2 –fnormal2 1993 2020.200000

firststep3 –fnormal3 1983.333333 2005.200000

firststep4 –fnormal4 2601 2688

firststep5 –fnormal5 2297 2326.400000

firststep6 –fnormal6 1721.666667 1740.200000

Table 7: Comparison of the six log files (one for each execution round) of the second attack step for
Gp equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

secondstep 1-2 12433.666667 12607

secondstep 2-3 12442 12608

secondstep 3-4 16093 16310.400000

secondstep 4-5 13762 13937.200000

secondstep 5-6 13617 13818

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 59 of 99

Table 8: Comparison of the six log files (one for each execution round) of the second attack step for
Gp equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

secondstep1 –snormal1 7281.666667 7379.400000

secondstep2 –snormal2 847.333333 1236.200000

secondstep3 –snormal3 5693.666667 5919.400000

secondstep4 –snormal4 7755.666667 7863.800000

secondstep5 –snormal5 7247.666667 7360.200000

secondstep6 –snormal6 7411.666667 7558.800000

Table 9: Comparison of the six log files (one for each execution round) of the third attack step for Gp
equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

thirdstep 1-2 10054.666667 10330.800000

thirdstep 2-3 12834 13008.600000

thirdstep 3-4 10699.666667 10972.200000

thirdstep 4-5 10606.666667 10892.000000

thirdstep 5-6 9751.666667 9905.600000

Table 10: Comparison of the six log files (one for each execution round) of the third attack step for Gp
equal to 1/3 and 1/5 (XEN)

Log File Comparison Gp =1/3 Gp =1/5

thirdstep1 –tnormal1 5602 5687.400000

thirdstep2 –tnormal2 6070 6137.200000

thirdstep3 –tnormal3 5812.666667 5891.600000

thirdstep4 –tnormal4 6175.666667 6333.000000

thirdstep5 –tnormal5 6391.666667 6476.800000

thirdstep6 –tnormal6 4263 4332.400000

Table 11: Comparison of the six log files (one for each execution round) of the first attack step for Gp
equal to 1/3 and 1/5 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

firststep 1-2 1697.000000 1783.800000

firststep 2-3 2065.000000 2160.600000

firststep 3-4 2116.333333 2212.600000

firststep 4-5 1825.000000 1939.400000

firststep 5-6 1805.333333 1898.600000

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 60 of 99

Table 12: Comparison of the six log files (one for each execution round) of the first attack step for Gp
equal to 1/3 and 1/5 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

firststep1 –fnormal1 571.333333 630.800000

firststep2 –fnormal2 1180.666667 1261.400000

firststep3 –fnormal3 1162.666667 1227.800000

firststep4 –fnormal4 1107.666667 1189.000000

firststep5 –fnormal5 1198.000000 1261.200000

firststep6 –fnormal6 144.000000 247.000000

Table 13: Comparison of the six log files (one for each execution round) of the second attack step for
Gp equal to 1/3 and 1/5 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

secondstep 1-2 2419.333333 3103.000000

secondstep 2-3 1870.666667 2662.200000

secondstep 3-4 1907.666667 2816.600000

secondstep 4-5 2477.333333 3276.600000

secondstep 5-6 1668.000000 2351.200000

Table 14: Comparison of the six log files (one for each execution round) of the second attack step for
Gp equal to 1/3 and 1/5 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

secondstep1 –snormal1 171.333333 174.400000

secondstep2 –snormal2 452.333333 889.200000

secondstep3 –snormal3 1004.666667 1343.800000

secondstep4 –snormal4 562.000000 977.600000

secondstep5 –snormal5 787.000000 1123.400000

secondstep6 –snormal6 595.000000 1051.800000

Table 15: Comparison of the six log files (one for each execution round) of the third attack step for Gp
equal to 1/3 and 1/5 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

thirdstep 1-2 2024.000000 2776.000000

thirdstep 2-3 2739.666667 3691.000000

thirdstep 3-4 2486.666667 3447.000000

thirdstep 4-5 3226.000000 4222.800000

thirdstep 5-6 3129.333333 4140.600000

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 61 of 99

Table 16: Comparison of the six log files (one for each execution round) of the third attack step for Gp
equal to 1/3 and 1/5 (KVM)

Table 17: Comparison of the six log files (one for each execution round) of the smurf attack step for
Gp equal to 1/3 and 1/5 (KVM)

Log File Comparison

 Gp =1/3 Gp =1/5

smurfstep 1-2 3155.333333 3277.000000

smurfstep 2-3 2758.333333 2891.400000

smurfstep 3-4 3093.333333 3179.800000

smurfstep 4-5 3230.666667 3304.800000

smurfstep 5-6 2712.666667 2838.400000

Table 18: Comparison of the six log files (one for each execution round) of the smurf attack step for
Gp equal to 1/3 and 1/5 (KVM)

Table 19: Comparison of the two log files for each attack step with normal execution with generated
noise from network operations for Gp equal to 1/3 (KVM)

Log File Comparison Gp =1/3 Gp =1/5

thirdstep1 –tnormal1 536.666667 559.200000

thirdstep2 –tnormal2 573.666667 1042.400000

thirdstep3 –tnormal3 688.666667 1269.000000

thirdstep4 –tnormal4 478.666667 970.600000

thirdstep5 –tnormal5 878.000000 1323.400000

thirdstep6 –tnormal6 562.333333 973.200000

Log File Comparison Gp =1/3 Gp =1/5

smurfstep1 –smnormal1 217.000000 443.600000

smurfstep2 –smnormal2 176.666667 403.400000

smurfstep3 –smnormal3 641.333333 791.600000

smurfstep4 –smnormal4 695.666667 922.400000

smurfstep5 –smnormal5 106.000000 265.000000

smurfstep6 –smnormal6 738.333333 1052.800000

Log File Comparison Gp =1/3

firststep1 –fnormal1 422.000000

firststep2 –fnormal2 449.000000

secondstep1 –snormal1 529.666667

secondstep2 –snormal2 556.333333

thirdstep1 –snormal1 218.666667

thirdstep2 –snormal2 259.666667

smurfstep1-smnormal1 126.333333

smurfstep2-smnormal2 211.666667

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 62 of 99

Figure 12: Graph depicting similarity between attacks and between attacks and normal system state
for gp 1/3 and 1/5 respectively. Lower Gp offers greater similarity (KVM)

5.5. Discussion
Let’s recall the main objective of identifying an attack through the sequences of the system

calls. The results, which were presented in the previous section, have indeed verified that

approach, since the comparison of the system calls triggered during the attack steps exhibits a

much larger similarity than that produced when comparing the logs from some attack step and

the respective logs for normal system operation. This assumption came true for all three steps of

the “co-residence” attack and the smurf attack.

It would be a common query whether the results are accurate or not, and how can we verify

their correctness. This question can be easily answered through the error parameter, Gp, which

was used. To be specific, Gp is a variable that offers flexibility to the algorithm and defines how

tolerant the algorithm will be during the comparison of the data sets. If we use the error value of

1/3, we have a less tolerant algorithm than when we use the value 1/5. This assumption leads to

greater similarity figures being produced with a Gp of 1/5 than with a Gp of 1/3. Of course this is

proved with our results, which were presented in the previous section.

In addition to that, attention must be paid to the fact that the more tolerant the algorithm is,

the better the similarity that we get among the logs of the attack steps. However, this is not the

case for the comparison of logs produced during an attack step and the respective normal

operation; specifically, even though the similarity is better for bigger values of Gp, the scaling is

not the same.

0

500.000.000

1.000.000.000

1.500.000.000

2.000.000.000

2.500.000.000

3.000.000.000

3.500.000.000

4.000.000.000

4.500.000.000

1 3 5 7 9 11 13 15 17 19

Similarity of attacks versus normal state

attack with gp 1/3

normal with gp 1/3

attack with gp 1/5

normal with gp 1/5

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 63 of 99

Another important issue that should be considered is the workload of the system. During

our experimentations we used three Virtual Machines and none of them had any permanent jobs

other than those corresponding to the attack steps. In a real time environment, which has extra

load on the virtual machines, the number of system calls would be much larger, with results on

the time required for processing the log files (as described earlier). Furthermore, the tracking of

the attack in this workload would be more difficult as the algorithm compares identities without

being able to recognize whether or not a specific element is useful or not. Nevertheless, an initial

set of experiments performed with increased workload indicate that the accuracy and

effectiveness of the proposed detection method remains unaltered.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 64 of 99

Chapter 6: Improving the

Detection Performance

6.1 Introduction

Cloud Computing cannot offer physical isolation among virtual machines (VMs), since its

resources are shared by design. Various attack vectors have been developed to identify shared

resources and gain unauthorized access to them. Shared memory vulnerabilities [33], privilege

escalation [8], and co-residency [33] are only a few examples of attack vectors harming cloud’s

confidentiality, integrity and availability. Compared to the traditional IT services, cloud attack

surface has been expanded not only because of the shared resources, but also due to the

additional attacking points that an adversary may utilise in order to exploit a vulnerability, e.g., a

VM, a cloud management platform, or any other component of the cloud infrastructure.

Current approaches inherit methods from conventional information systems in order to

reduce the effects of malicious actions performed through the VMs. Spreading the information

into multiple parts in the cloud [71], creating multiple ids [82] or audit mechanisms [73], are a

few of the solutions currently being proposed. In other approaches a network or data isolation is

employed for securing the cloud infrastructure [81]. Others monitor the system calls in order to

detect malicious activities [84], [120], [86].

The aforementioned approaches can be effective in detecting attacks launched on

conventional information systems, but they are not appropriate to detect attacks launched against

cloud infrastructures from privileged users; the reason being that the majority of them may be

executed from separate VMs and do not appear as a threat to conventional IDS systems.

The CROW (Cloud Realtime Observation Wards) methodology is a new proposal for

detecting malicious activities against the VMs and the cloud infrastructure. The principle of the

proposed methodology is to monitor the system calls of each VM independently, in a way

similar to a host based IDS, and then to combine the gathered information in order to detect

attacks not only against individual VMs but also against the infrastructure through various

compromised VMs.

The proposed solution operates on the cloud infrastructure as a service layer, in a

transparent manner – meaning that no modifications to the underlying layers are required.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 65 of 99

Specifically, we make use of the ‘strace’ command [121] to monitor the system calls of each VM

and we then process them in order to generate the attack patterns and detect abnormal behaviors.

In contrast to other cloud IDSs [108] that use machine learning classifiers as black-box, the

proposed system generates attack patterns using the Smith-Waterman algorithm [52] and

performs similarity tests between the attack patterns and the data (system calls) collected, in

order to decide if an attack has been launched or not. The similarity tests are performed through

a parallel implementation of the Smith Waterman algorithm on NVIDIA CUDA technology [53],

which offers a significant improvement of performance in comparison to the sequential

execution of the algorithm. On top of that, this approach frees the main resources of the system

(CPU and memory) transferring the processing to the Graphic Processor Unit (GPU).

6.2 Threat Model
According to [48], the term “insider”, for an information system, applies to anyone with

approved access, privilege, or knowledge of the information system and its services and

missions. On the other hand, a “malicious insider” is someone motivated to adversely impact an

organization’s mission through a range of actions that compromise information confidentiality,

integrity, and/or availability taking the advantage of his/her privileges. Similarly, in the case of

cloud computing we define an insider as an entity who:

 Works for the cloud host

 Has privileged access to the cloud resources

 Uses the cloud services

Consequently, cloud insiders are mostly privileged users, who may be motivated to

compromise the cloud infrastructure’s security. Their actions may result in a temporary break,

permanent interruption of the provided services, or in legitimate users’ privacy violation,

depending on their privileges. Note that there is VM related information that can be extracted

only by privileged users, such as the structure of the virtual network build up for the internal

communication, and exploited during attack’s next steps. In this direction, a malicious user may

try to cartography all the available virtual machines and extract other VM related information

[49] in order to achieve his aim that is to violate cloud security or users’ privacy.

 For instance, malicious users may combine various utilities such as nslookup, ping

commands and the nmap tool, to identify publicly accessible information for a specific domain

of VMs. These actions will result in launching an attack named “co-residence” or “co-

tenancy”[33]. Even though these “scans” are harmless, the extraction of such information can be

used for future attacks (e.g. exploiting vulnerability in a specific operating system).

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 66 of 99

Alternatively, an internal malicious user may try to affect directly the availability of a virtual

network by congesting the corresponding public and private interfaces with numerous ping

requests. Network stressing can also be launched through smurf attacks [50].

Furthermore, the fact that cloud infrastructures lack physical isolation can lead to memory

leakages among different VMs. For instance, a malicious VM might try to get access to the

shared memory (cache or main memory) and retrieve personal information for the users of the

co-resident VMs. In this context, Ristenpart et.al. [33] perform cross VM side channel attack on

Amazon EC2 and measure the cache activity of other users, while Rochsa and Correia [51] prove

that any malicious privileged user can use the memory dumps of a VM to acquire information

about its users, such as passwords, social security number and other personal information.

6.3 Cloud Realtime Observation Wards
6.3.1 Overview

A novel scheme, namely CROW, that specifically aims at detecting malicious privileged

users in the cloud and also provides IDS functionality for the entire infrastructure by individually

monitoring the health of each employed VM, is presented. To the best of our knowledge CROW

is the first of its kind. Its high level architecture is depicted in next Figure

Cloud Hardware

Virtualization

VM1 VM2 VMNAudit VM

signat.

detect

Figure 13: The CROW Architecture

The audit sub-system monitors the health of each of the provided VMs and is responsible

for generating new attack signatures, based on the system call patterns of the attacks. The initial

attack signatures have been generated through the analysis of well-known attacks. The detection

module monitors each VM and utilizes the attack signatures for computing their similarity with

the system calls issued by the VM.

6.3.2 Attack Signature Generation
The attack signature generation process consists of two steps. During the first step, the

strace [121] command is used for recording the system calls produced during the execution of

the attack. Having collected a significant number of system call patterns, following multiple

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 67 of 99

executions of the same attack, they are processed with the Smith-Waterman algorithm [52]. The

choice of this specific algorithm has been based on the fact that the data set (system call patterns)

that we need to process consists of symbols drawn from a finite discrete alphabet.

The Smith-Waterman algorithm is a dynamic programming algorithm which relies on the

construction of a similarity grid between two data sequences that are aligned. The goal of the

algorithm is to extract a part of grid nodes which reveal the optimal sequence alignment. To

achieve this goal, the algorithm processes the grid iteratively and accumulates a similarity score

at each node. During this mode of operation, a node is examined with respect to a possible set of

predecessors and the best predecessor is selected. The transition from a predecessor to the target

node has the effect of increasing or decreasing the accumulated similarity on the target node,

depending on the geometry of the transition. In our work we run the Smith-Waterman algorithm

in pairs of two sequences of system calls for the same attack and in each run we reduce the

number of our sequences to half, taking the best similarity match. Continuing this iteration for a

number of times, we end up with the best similarity match for system calls after having

processed all of our results, creating a pattern of the attack.

Specifically the generated attack signature is the sequence of the system calls invoked

during the execution of the attack commands. For instance, every time that the nslookup

command is executed it produces a series of system calls with some of them being consistently

present, while others appearing only occasionally. The latter system calls actually represent

“produced noise” and they do not belong into the command pattern. The use of the Smith-

Waterman algorithm aims to diminish that noise and thus keep only the pattern of system calls

that clearly represent the execution of the specific command, in our example the nslookup

command.

Let’s assume that we need to create a signature for “co-residency” detection. In order to do

that, we should first load a test OS on the test VM and then proceed with the execution of the

attack in three distinct steps.

During the first step the “nslookup” command is executed and the systems calls invoked

are recorded with the help of the “strace” command. The command should be executed several

times (let’s assume x times) in order to be statistically correct, storing every time the generated

system calls. After the x sequences of system calls have been collected, the Smith-Waterman

algorithm will be invoked x/2 times, as it is necessary to compare sequence 1 with sequence 2,

sequence 3 with sequence 4, etc. In this way x/2 sequences of system calls will be generated by

the similarity of the x initial ones. Then we shall be able to produce x/4 sequences of system

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 68 of 99

calls etc. until we reach the final sequence which has no other to be compared with. This

sequence will form the signature for the first part of the attack, which is the “nslookup”

command. A sample of the “nslookup” signature is illustrated in Table 1.

Then the same procedure will be followed for the remaining two steps of the attack

(commands “nmap –sP DNS_address/24” and “nmap –v –O target_ip_address”). When the

signatures for the three distinct attack steps have been generated, they can be combined to form

the signature of the “co-residency” attack.

Table 20: nslookup command’s sample signature

11 45 33 91 33 5 28 91 6 33 5 3 28

6.4 Detection Module
The attack signatures can now be utilized for the detection of potential malicious acts. A

detection example is illustrated in Figure 14. On the right of the picture a possible pattern is

depicted which has been stored in the signature database of the audit VM. This specific signature

represents an attack consisting of three different parts (segments). On the left side of the picture

the system calls generated by the VM are shown. The VM detection module aims to identify the

attack segments into the entire sequence of system calls, avoiding the possible noise that has

been created by various other irrelevant system calls. Following the identification of all attack

segments, an alert is being sent to the audit station describing the attack match. Then the

operators of the audit station will take action contacting the Host VM, which has the authority to

do whatever necessary for protecting the entire infrastructure.

Segment 1

R
a

w
 s

y
s
te

m
s
 c

a
ll

Segment 2

Segment 3 P
a

tt
e

rn

Noise

Segment 1

Noise

Noise

Segment 2

Noise

Segment 3

A
n

alysis A
lgo

rith
m

Figure 14: The segments of the attack pattern are found through the system call sequence

As already mentioned, the “co-residency” attack consists of three distinct steps, the

nslookup command and two different executions of the nmap command. These three commands

when executed in sequence implement the “co-residency” attack. Having the signature of the

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 69 of 99

“nslookup” command, which is harmless in solo execution, will not cause a false alarm

consuming unnecessarily time and useful resources. The alarm will be triggered only when all

three steps of the attack have been detected in sequence. As the network of a cloud infrastructure

is continuously redefined, the solo execution of the “nslookup” or even the “nmap” commands

will not bring great results to potential attackers as they have to be performed in sequence and

soon enough to earn the pieces of information needed.

To avoid any potential actions that will lead in hiding an attack from the audit station every

two seconds the audit station initiates a handshake with each of the VMs to clarify that the

communication is good between them.

6.5 Algorithm Implementation and

Performance
As already mentioned the comparison between the attack patterns and the sets of system

calls is performed through a parallel CUDA-based [53] implementation of the Smith Waterman

algorithm [52]. In [56] we have provided generic tests of sequential Smith Waterman

implementation. There it was proved that even if we loosen the error gap or even increase the

noise inside the data sequence the algorithm was still able to prove itself capable of detecting the

similarity. In these tests we used a matlab implementation of the algorithm, simplified to our

needs as matters comparison of system calls sequences. The matlab pseudo code is listed in the

appendix section.

It can be easily noticed that this version of the algorithm is sequential and thus it cannot be

employed in real time due to performance limitations. An option for accelerating it would be to

implement the algorithm in C language. This is something that we did try, but again the heavy

needs of the Smith Waterman algorithm for computing resources didn’t allow for significant

improvement.

Aiming not only to improve the security level of a Cloud infrastructure but also minimize

the overhead of the algorithm’s execution, we have capitalized on the work of Ioannidis and his

team [93] for transferring the computational overhead to the GPU. In terms of Cloud Computing

systems, GPUs are rarely used autonomously by the VMs although this function can be

supported by hypervisors such as XEN [77].

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model created by NVIDIA and implemented by the graphics processing

units (GPUs) that they produce. CUDA gives program developers direct access to the

virtual instruction set and memory of the parallel computational elements in CUDA GPUs. Each

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/NVIDIA
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Instruction_set

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 70 of 99

CUDA GPU depending on the CUDA compute capability (a measure for CUDA computational

power), architecture and memory, can manage different number of threads at the same time. For

example a Fermi architecture GPU consists of 512 CUDA cores. These 512 CUDA cores are

split across 16 Streaming Multiprocessors (SM). Each streaming multiprocessor (SM) has 32

CUDA cores. Each CUDA core consists of an integer arithmetic logic unit (ALU) and a floating

point unit (FPU). Additionally, each GPU has a maximum number of threads per block, blocks

per grid and of course grid blocks. These values can give us the measures for the maximum

capacity of threads we can use. Fermi technology and later support 1024 threads per block.

In order to transform the previous algorithm into CUDA capable we had to make a few

adjustments. First of all we reduced the size of matrixes used from 2d to 1d, in order to load only

one matrix each time to the GPU memory and execute all the procedures needed in a parallel

mode. Then, each coordinate used in the algorithm was transformed into 1d coordinate so as to

select the exact same element as in our original version. Before each execution we transferred

the matrix information onto the GPU memory to lighten the burden of our main system and free

the resources. Then, the final step was to merge each sequence of “for loop” with each next one

in order to achieve maximum parallelism and execute initialization, horizontal scan and parallel

scan in parallel and not sequentially as shown in the upper algorithm.

Thus, the algorithm listed before has been implemented in two versions: (i) one sequential

in C and (ii) a parallel version (included in appendix) that employs the CUDA multiprocessors to

do the job instead of our CPU. In the tests we have used two separate data sets: one for the

pattern of the attack (signature) and the sequence of the system calls produced by the VM, so as

to find the similarity among them and thus compare the time spent. The results are shown in the

table and figure below.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 71 of 99

Table 21: Time spent for Sequential and Parallel execution of the Smith Waterman Algorithm

NUMBER OF SYSTEM
CALLS PER DATA SET

TIME IN SECONDS

Attack
Signature

VM System
Calls

Sequential
Execution

CUDA parallel

10 10 0,156 0,091

20 30 0,357 0,099

80 150 4,268 0,117

334 334 46,919 0,445

500 600 120,365 0,812

1000 1000 401,937 3,209

Figure 15: Time comparison between sequential and Cuda parallel execution of Smith Waterman.
Sequential scales a lot along with the system calls while Cuda parallel reaches 0 seconds for any

number of given system calls.

The results clearly prove our initial assumption that a parallel execution of the algorithm

will greatly improve the performance during the similarity comparison procedure. As

demonstrated, while the number of system calls used is increased the sequential method needs

more and more time resulting in a practically unusable implementation. Furthermore, the

sequential implementation is insecure since the system will need to wait a couple of minutes

before deciding if someone performs an attack or not. On the contrary the parallel

implementation seems to work significantly faster, reducing the execution time to almost one

second for smaller numbers and to 3 seconds for larger numbers of system call sequences.

Furthermore, the algorithm is able to work in parallel for different patterns of attacks (because

each VM wont contain only one pattern) and does not offer significant overhead to the CPU and

main memory as the modern GPUs with their memory and compute capability can support a

large number of threads and large scaled matrixes in their memory.

0

500

1 2 3 4 5 6

Time comparison between
Sequential and Cuda

Sequential CUDA parallel

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 72 of 99

Chapter 7: Conclusions and

Future Work

7.1 Conclusion

In the introduction of this thesis we prioritized our goals as matters the contribution to

science and strategic moves during our research. Our first objective was fully covered as we

have completed a detailed review [55] of existing threats in cloud computing environments and

have identified the malicious insider threat as one of the major ones, without sufficient counter

measures.

Because of the new form of malicious insiders that was introduced along with the cloud

computing we identified that this kind of attacker, which has multiple roles and of course more

attack points than an outsider, imposes the need to investigate a cloud infrastructure in depth in

order to check whether a potential attack can be detected. Our effort met the kernel level of the

host OS, where the hypervisor is attached. We implemented a mechanism that would try and

detect any anomaly coming from every VM, installed in the same infrastructure, using the

system calls sequences. As we proved [56] our assumption was true, but in case of heavy

workload the detection of the attacks would be more and more difficult.

As a result we came to the conclusion that we should import our method into an upper

level, that of every VM. Each attacker would perform an attack either in a single VM, or by

using multiple attack positions, depending on the severity of the damage he would like to cause.

This is the reason why we thought that we could not detach one VM from another as matters the

attacks, and a unified IDS framework would be appropriate to detect and deflect any type of

attack. Consequently we created an augmented authentication mechanism that would reassure

that only authorized users would have access to the infrastructure and then we implemented the

SW algorithm running at the background of every VM.

Having deep knowledge of the overhead that the algorithm would offer to a potential cloud

environment we did search for alternatives to either reduce and/or mitigate the overhead.

Advance GPU technology, which makes use of large numbers of microprocessors emerged as

the perfect solution for our problem. CUDA technology not only reduced the large overhead,

caused by the use of our genetic algorithm but it also mitigated it in a part of a cloud

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 73 of 99

infrastructure that has not drawn the attention of most security experts yet. Thus performance

and security met each other, resulting in a framework intelligent enough to allow everyday use

and expel any point that would harm the infrastructure.

7.2 Future Work
 Driven by the lack of focus on malicious privileged user attacks in modern IDS systems

for Cloud Infrastructures, we have proposed CROW along with an augmented authenticator. The

one-time authenticator enhances the security of the data involved in cloud-based services. It

consists of two distinct steps that have been evaluated, through test scenarios, in terms of

security and overhead that they introduce. The results have demonstrated that the summarized

encryption of TXT files of 7kbs required 3 seconds. The insertion of those encrypted messages

into WAV files, during their compression to MP3, elapsed 8 seconds. As a result the stego-

carrier’s size greatly affects the introduced overhead of the proposed method.

CROW, is a novel detection method of malicious acts by Cloud insiders and a novel

implementation of Smith Waterman algorithm based on CUDA technology. This new parallel

implementation results into significant reduction of the overhead as compared to its sequential

sibling. Furthermore, a sample creation of insider attacks has been presented as a guide for the

creation of the attack signatures databases.

Currently, we focus on adding extra layers of either cryptography or steganography to the

authenticator, in order to increase the security level without significantly increasing the overhead

introduced, and we are experimenting with different Cloud Infrastructure setups and algorithm

tweaks in order to achieve stability and maximum efficiency of the CROW method. Also we test

the behavior and results of alternative pattern recognition algorithms that may support real time

detection of attacks.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 74 of 99

References

[1] Fischer-Hübner S.: IT-Security and Privacy. Lecture Notes in Computer Science 1958,

Springer-Verlag (2001)

[2] Gritzalis D., Mitrou N., Skoularidou B.: Protecting Critical Information and Communication

Infrastructure of Public Administration: Strategic Planning. eGovernment Forum-CICIP-D1-

v2.3 (2008)

[3] Rinaldi S. M., Peerenboom J. P., Kelly T. K.: Identifying Understanding and Analysing

Critical Infrastructure Interdependencies. IEEE control systems magazine, Vol. 21, pp. 11-25

(2001)

[4] Moteff J.: Risk Management and Critical Infrastructure Protection: Assessing, Integrating

and Managing Threats, Vulnerabilities and Consequences. Congressional Research Service

Report to Congress (2005)

[5] American Petroleum Institute/National Petrochemical and Refiner’s Association (NPRA):

Security Vulnerability Assessment Methodology for the Petroleum and Petrochemical

Industries. (2004)

[6] Federal Register, Department of Homeland Security, Coast Guard: Implementation of

National Maritime Security Initiatives. Vol. 68, No. 126 (2003)

[7] Latora V., Marchiori M.: Vulnerability and protection of infrastructure networks. Physical

Review E. APS, (2005)

[8] Enisa, “Cloud Computing – Benefits, risks and recommendations for information security”

(2009)

[9] Robinson N., Valeri L., Cave J., Starkey T., Graux H., Creese S., Hopkins P.: The Cloud:

Understanding the Security, Privacy and Trust Challenges. Prepared for the Unit F.5,

Directorate- General Information Society and Media, European Commission (2010)

[10] Orgill G.L., Romney G.W., Bailey M.G., Orgill P.M.: The Urgency for Effective User

Privacy-education to Counter Social Engineering Attacks on Secure Computer Systems.

Proceedings of the Conference on Information Technology Education, CITC5 (2004)

[11] Mirkovic J., Reiher P.: A Taxonomy of DDoS Attack and DDoS Defence Mechanisms.

ACM SIGCOMM Computer Communication Review, Vol. 34, Issue 2 (2004)

[12] Ritchey R.W., Ammann P.: Using Model Checking to Analyze Network Vulnerabilities.

Proceedings in Security and Privacy, IEEE (2000)

[13] Maybury M., Chase P., Cheikes B., Brackney D., Matzner S., Hetherington T., Wood B.,

Sibley C., Marin J., Longstaff T., Spitzner L., Haile J., Copeland J., Lewandowski S.:

Analysis and Detection of Malicious Insiders. International Conference on Intelligence

Analysis (2005)

[14] Jensen M., Schwenk J., Gruschka N., Lo Iacono L.: On Technical Security Issues in Cloud

Computing. International Conference on Cloud Computing, IEEE (2009)

[15] MCintosh M., Austel P.: XML signature element wrapping attacks and countermeasures.

Proceedings of the workshop on Secure web services, ACM, pp. 20-27 (2005)

[16] Gruschka N., Lo Iaocono L.: Vulnerable Cloud: SOAP Message Security Validation

Revisited. International Conference on Web Services, IEEE (2009)

[17] Grobauer B., Walloshek T., Stöcker E.: Understanding Cloud Computing Vulnerabilities.

IEEE Security and Privacy, Vol. 9, Issue 2, pp. 50-57 (2011)

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 75 of 99

[18] Vouk M.A.: Cloud Computing – Issues, Research and Implementation. International

Conference on Information Technology Interfaces, pp. 31-40 (2008)

[19] Krutz R.L., Vines R.D.: Cloud Security: A comprehensive guide to secure Cloud Computing.

Wiley Publishing Inc. (2010)

[20] Cloud Business Review, http://www.cloudbusinessreview.com/2011/05/11/three-types-of-

cloud-lock-in.html

[21] Douligeris C., Mitrokotsa A.: DDoS attacks and defense mechanisms: classification and

state-of-the-art. Computer Networks, pp. 643–666 (2004)

[22] Hping, http://www.hping.org/

[23] Nmap, http://nmap.org/

[24] GNU Operating System, http://www.gnu.org/software/wget/

[25] CRAMM, http://www.cramm.com/

[26] Cert, http://www.cert.org/octave/

[27] Computer Based Social Engineering: Social Engineer Toolkit (SET), http://www.social-

engineer.org/framework/Computer_Based_Social_Engineering_Tools:_Social_Engineer_To

olkit_(SET)

[28] TrustedSec, https://www.trustedsec.com/downloads/social-engineer-toolkit/

[29] Xen, http://blog.xen.org/index.php/2012/06/13/the-intel-sysret-privilege-escalation/

[30] Saripalli P., Walters B.: Quirc: A quantitative impact and risk assessment framework for

cloud security. IEEE, Cloud Computing (2010)

[31] Subashini S., Kavitha V.: A survey on security issues in service delivery models of cloud

Computing. Journal of Network and Computer Applications, Elsevier, Vol. 34, Issue 1

(2011)

[32] Agarwal A., Agarwal A.: The Security Risks Associated with Cloud Computing.

International Journal of Computer Applications in Engineering Sciences, Vol. 1, Special

Issue on CNS (2011)

[33] Ristenpart T., Tromer E., Shacham H., Savage S.: Hey, You, Get of My Cloud: Exploring

Information Leakage in Third-Party Compute Clouds. Proceedings of the conference on

Computer and communications security, ACM (2009)

[34] Raj H., Nathuji R., Singh A., England P.: Resource Management for isolation Enhanced

Cloud Services. Proceedings of the workshop on Cloud computing security, pp.77-84, ACM

(2009)

[35] Jamil D., Zaki H.: Cloud Computing Security. International Journal of Engineering and

Technology, IJEST, Vol. 3 No. 4 (2011)

[36] openQRM, http://www.openqrm-enterprise.com/community/

[37] Cobblerd, http://www.cobblerd.org/

[38] Crowbar, http://simile.mit.edu/wiki/Crowbar

[39] Spacewalk, http://spacewalk.redhat.com/

[40] Bakshi A., Yogesh B. :Securing Cloud from DDOS Attacks using Intrusion Detection

System in Virtual Machine, ICCSN ’10 Proceeding of the 2010 Second International

Conference on Communication Software and networks, pp. 260-264, 2010, IEEE Computer

Society, USA, 2010

[41] Roschke S, Cheng F., Meinel C. :An Advanced IDS Management Architecture, Journal of

Information Assurance and Security 5 2010

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 76 of 99

[42] Cheng, F., Roschke, S., & Meinel, C. (2009). Implementing IDS Management on Lock-

Keeper. In Information Security Practice and Experience (pp. 360-371). Springer Berlin

Heidelberg.

[43] Roschke, S., Cheng, F., & Meinel, C. (2009, December). Intrusion detection in the cloud.

In Dependable, Autonomic and Secure Computing, 2009. DASC'09. Eighth IEEE

International Conference on (pp. 729-734). IEEE.

[44] Mazzariello, C., Bifulco, R., & Canonico, R. (2010, August). Integrating a network ids into

an open source cloud computing environment. In Information Assurance and Security (IAS),

2010 Sixth International Conference on (pp. 265-270). IEEE.

[45] CloudAudit, http://cloudaudit.org/CloudAudit/Home.html

[46] Widder, A., Ammon, R. V., Schaeffer, P., & Wolff, C. (2007, June). Identification of

suspicious, unknown event patterns in an event cloud. InProceedings of the 2007 inaugural

international conference on Distributed event-based systems (pp. 164-170). ACM.

[47] Kaliski Jr, B. S., & Pauley, W. (2010, June). Toward risk assessment as a service in cloud

environments. In Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing (pp. 13-13). USENIX Association.

[48] Maybury, Mark, et al. Analysis and detection of malicious insiders. MITRE CORP

BEDFORD MA, 2005.

[49] Xiao Z., Xiao Y., “Security and Privacy in Cloud Computing”, Communications Surveys &

Tutorials, IEEE, vol. PP no.99, pp.1-17, 2012

[50] Smurf attack, http://www.ciscopress.com/articles/article.asp?p=1312796

[51] Krutz, Ronald L., and Russell Dean Vines. Cloud security: A comprehensive guide to secure

cloud computing. John Wiley & Sons, 2010.

[52] Smith T., Waterman M., “Identification of Common Molecular subsequences”, J. Mol. Biol.

(1981)

[53] http://www.nvidia.com/object/cuda_home_new.html

[54] Pitropakis N., Lambrinoudakis C., Geneiatakis D., Gritzalis D., "A Practical Steganographic

Approach for Matroska based High Quality Video files", 7th International Symposium on

Security and Multimodality in Pervasive Environment (SMPE-2013), pp. 684-688, IEEE

Computer Society Press Barcelona, Spain, March 2013.

[55] Pitropakis N., Darra E., Vrakas N., Lambrinoudakis C., "It’s all in the Cloud: Reviewing

Cloud Security ", Proceedings of the 10th IEEE International Conference on Autonomic and

Trusted Computing (ATC 2013), pp. 355-362, IEEE Xplore, Vietri sul Mare, Italy,

December 2013.

[56] Pitropakis, N., Pikrakis, A., & Lambrinoudakis, C. (2014). Behaviour reflects personality:

detecting co-residence attacks on Xen-based cloud environments.International Journal of

Information Security, 1-7.

[57] Neil F. Johnson, Sushil Jajodia, “Exploring Steganography: Seeing the Unseen”, George

Mason University, Computing Practises

[58] M. U. Gelik, G. Sharma, A. M. Tekalp, and E. Saber. Lossless generalized LSB data

embedding, IEEE Transactions on Image Processing, 14(2):253-266, February 2005

[59] Ira S. Moskowitz, Patricia A. Lafferty, Farid Ahmed, “On LSB Spatial Domain

Steganography and Channel Capacity,” March 21 2008

[60] N. F. Johnson S. C. Katzenbeisser, “A Survey of steganographic techniques. Information

Hiding techniques for steganography and digital watermarking”, Norwood. Artech House

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 77 of 99

[61] “Invisible Secrets 4”, http://www.invisiblesecrets.com/

[62] Romana Machado, EzStego, http://www.securityfocus.com/tools/586

[63] S-Tools 4.0, http://www.spychecker.com/program/stools.html

[64] Pro-Chyi Su, Ming-Tse Lu, Ching-Yu Wu, “A practical design of high-volume

steganography in digital video files”, Springer, 19 April 2011

[65] Abbas Cheddad, Joan Condell, Kevin Curran, Paul Mc Kevitt, “Digital Image

Steganography: Survey and analysis of current methods”, Elsevier 2009

[66] JSteg, http://zooid.org/~paul/crypto/jsteg/

[67] Wawge, P. U., and A. R. Rathod. "Cloud computing security with Steganography and

Cryptoghrapy AES algorthm Technology." World Research Journal of Computer

Architecture, ISSN (2012): 2278-8514.

[68] Hemaanand, M., and K. Varalakshmi. "Enhancement of Security for Data Storage in

Cloud." International Journal (2013).

[69] Mahale, S. B., and Patil Sonal. "A Survey on various patterns regarding Encryption, a

efficient based Method Regarding Cryptography and Steganography."

[70] Spring, Jonathan. "Monitoring cloud computing by layer, part 1." Security & Privacy,

IEEE 9.2 (2011): 66-68.

[71] AlZain, Mohammed Abdullatif, et al. "Cloud computing security: from single to multi-

clouds." System Science (HICSS), 2012 45th Hawaii International Conference on. IEEE,

2012.

[72] Sandhu, Ravi, et al. "Towards a discipline of mission-aware cloud computing."Proceedings

of the 2010 ACM workshop on Cloud computing security workshop. ACM, 2010.

[73] Magklaras, G., Furnell, S., and Papadaki, M. 2011. LUARM: An audit engine for insider

misuse detection. International Journal of Digital Crime and Forensics. 3, 3, 37-49.

[74] Tripathi, Alok, and Abhinav Mishra. "Cloud computing security considerations."Signal

Processing, Communications and Computing (ICSPCC), 2011 IEEE International

Conference on. IEEE, 2011.

[75] Stolfo, Salvatore J., Malek Ben Salem, and Angelos D. Keromytis. "Fog computing:

Mitigating insider data theft attacks in the cloud." Security and Privacy Workshops (SPW),

2012 IEEE Symposium on. IEEE, 2012.

[76] Hoang C., “Protecting Xen hypercalls”, MSC thesis, University of British Columbia, July

2009

[77] http://www.xenproject.org/developers/teams/hypervisor.html

[78] Rawat, S., Gulati, V. P., Pujari, A. K., & Vemuri, V. R. (2006). Intrusion detection using text

processing techniques with a binary-weighted cosine metric. Journal of Information

Assurance and Security, 1(1), 43-50.

[79] Sundararajan, Sudharsan, et al. "Preventing Insider attacks in the Cloud."Advances in

Computing and Communications. Springer Berlin Heidelberg, 2011. 488-500.

[80] Bates A., “Dtecting Cloud Co-Residency with network flow watermarking techniques”, MSC

Thesis, University of Oregon, September 2012

[81] Mundada Y., Ramachndran A., Feamster N., “SilverLine: Data and network isolation for

cloud services”, In Proceedings of the USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud) 2011

http://www.invisiblesecrets.com/

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 78 of 99

[82] Mazzariello C., Bifulco R., Canonico R., “integrating a Network IDS into an Open Source

Cloud Computing Environment”, Sixth International Conference on Information Assurance

and Security, 2010

[83] Bharadwaja S., Sun W., Niamat M., Shen F., “Collabra: Axen Hypervisor based

Collaborative Intrusion Detection System”, Proceedings of the 8th International Conference

on Information Technology: New Generations (ITNG ‘11), pp. 695-700, Las Vegas, Nev,

USA, 2011

[84] Alarifi, Suaad S., and Stephen D. Wolthusen. "Detecting anomalies in IaaS environments

through virtual machine host system call analysis." Internet Technology And Secured

Transactions, 2012 International Conferece For. IEEE, 2012.

[85] http://www.linux-kvm.org/

[86] Sharma, Alok, Arun K. Pujari, and Kuldip K. Paliwal. "Intrusion detection using text

processing techniques with a kernel based similarity measure." computers & security 26.7

(2007): 488-495.

[87] Hofmeyr, Steven A., Stephanie Forrest, and Anil Somayaji. "Intrusion detection using

sequences of system calls." Journal of computer security 6.3 (1998): 151-180.

[88] Eskin, Eleazar, Wenke Lee, and Salvatore J. Stolfo. "Modeling system calls for intrusion

detection with dynamic window sizes." DARPA Information Survivability Conference

& Exposition II, 2001. DISCEX'01. Proceedings. Vol. 1. IEEE, 2001.

[89] Kang, Dae-Ki, Doug Fuller, and Vasant Honavar. "Learning classifiers for misuse and

anomaly detection using a bag of system calls representation."Information Assurance

Workshop, 2005. IAW'05. Proceedings from the Sixth Annual IEEE SMC. IEEE, 2005.

[90] Azmandian, Fatemeh, et al. "Virtual machine monitor-based lightweight intrusion

detection." ACM SIGOPS Operating Systems Review 45.2 (2011): 38-53.

[91] Azmandian, Fatemeh, et al. "Securing cloud storage systems through a virtual machine

monitor." Proceedings of the First International Workshop on Secure and Resilient

Architectures and Systems. ACM, 2012.

[92] Coull, S., Branch, J., Szymanski, B., & Breimer, E. (2003, December). Intrusion detection: A

bioinformatics approach. In Computer Security Applications Conference, 2003. Proceedings.

19th Annual (pp. 24-33). IEEE.

[93] Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E. P., & Ioannidis, S. (2008,

January). Gnort: High performance network intrusion detection using graphics processors.

In Recent Advances in Intrusion Detection (pp. 116-134). Springer Berlin Heidelberg.

[94] https://www.snort.org/

[95] http://cudasw.sourceforge.net/homepage.htm#latest

[96] Wu, Ruoyu, Gail-Joon Ahn, and Hongxin Hu. "Towards HIPAA-Compliant Healthcare

Systems in Cloud Computing." International Journal of Computational Models and

Algorithms in Medicine (IJCMAM) 3.2 (2012): 1-22.

[97] Liu, Bo, et al. "Thwarting audio steganography attacks in cloud storage systems." Cloud and

Service Computing (CSC), 2011 International Conference on. IEEE, 2011.

[98] “Announcing the ADVANCED ENCRYPTION STANDARD (AES)”, Federal Information

Processing Standards Publication 197, November 26, 2001

[99] Fabien Petitcolas, “mp3stego” http://www.petitcolas.net/fabien/steganography/mp3stego/

[100] Marinos, L. "ENISA Threat Landscape 2013." Heraklion: European Union Agency for

Network and Information Security (ENISA). DOI 10 (2013): 14231.

http://cudasw.sourceforge.net/homepage.htm#latest

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 79 of 99

[101] Prislan, Kaja. "Efficiency of Corporate Security Systems in Managing Information

Threats: An Overview of the Current Situation." Varstvoslovje: Journal of Criminal Justice

& Security 16.2 (2014).

[102] Bogdanov, A., Khovratovich, D., & Rechberger, C. (2011). Biclique cryptanalysis of the

full AES. In Advances in Cryptology–ASIACRYPT 2011 (pp. 344-371). Springer Berlin

Heidelberg.

[103] Schneier, Bruce. "New Attack on AES." Schneier on Security, A blog covering security

and security technology. Archived from the original on 8 (2010).

[104] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., & Whiting, D.

(2001, January). Improved cryptanalysis of Rijndael. In Fast software encryption (pp. 213-

230). Springer Berlin Heidelberg.

[105] OpenSUSE, https://en.opensuse.org/Main_Page

[106] “Crypto++”, http://www.cryptopp.com/

[107] Kandias M., Virvilis N., Gritzalis D., "The Insider Threat in Cloud Computing", in Proc.

of the 6th International Conference on Critical Infrastructure Security (CRITIS-2011),

Wolthusen S., et al (Eds.), pp. 95-106, Springer, Switzerland, September 2011.

[108] Bakshi, Aman, and B. Yogesh. "Securing cloud from ddos attacks using intrusion

detection system in virtual machine." Communication Software and Networks, 2010.

ICCSN'10. Second International Conference on. IEEE, 2010.

[109] Liu, Huan. "A new form of DOS attack in a cloud and its avoidance

mechanism." Proceedings of the 2010 ACM workshop on Cloud computing security

workshop. ACM, 2010.

[110] Roschke S., Cheng F., Meinel C., “An Advanced IDS Management Architecture”,

Journal of Information Assurance and Security 5 (2010)

[111] http://www.linux-kvm.org/page/Main_Page

[112] http://www.kali.org/

[113] http://www.backtrack-linux.org/

[114] http://www.tldp.org/HOWTO/Linux%2BIPv6-HOWTO/x811.html

[115] http://doc.opensuse.org/products/draft/SLES/SLES-

security_sd_draft/cha.audit.comp.html

[116] http://linux.die.net/man/1/sed

[117] http://www.opensuse.org/

[118] http://www.tcl.tk/man/expect5.31/expect.1.html

[119] https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-

Virtualization_Administration_Guide-Managing_guests_with_virsh.html

[120] Rawat, Sanjay, et al. "Intrusion detection using text processing techniques with a binary-

weighted cosine metric." Journal of Information Assurance and Security 1.1 (2006): 43-50.

[121] Strace, http://unixhelp.ed.ac.uk/CGI/man-cgi?strace+1

[122] Pitropakis N., Yfantopoulos N., Geniatakis D., Lambrinoudakis C., "Towards an

augmented authenticator in the Cloud", Proceedings of the 14th IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT 2014), IEEE Xplore,

Noida, India, December 2014.

https://en.opensuse.org/Main_Page
http://www.cryptopp.com/

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 80 of 99

[123] Pitropakis N. , Geniatakis D., Lambrinoudakis C., “Till all are one: Towards a unified

Cloud IDS”, submitted to Trustbus 2015

[124] Andreas Westfeld, “Detecting Low Embedding Rates”, Springer, 2003

[125] Pitropakis, N., Anastasopoulou, D., Pikrakis, A., & Lambrinoudakis, C., "If you want to

know about a hunter, study his prey: detection of network based attacks on KVM based

cloud environments."Journal of Cloud Computing 3.1 (2014): 1-10.

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 81 of 99

Appendix

Source Code

Smith Waterman Matlab Implementation

penalty=1/3;

LA=length(A);

M=LA+1;

LB=length(B);

N=LB+1;

% Initialization

D=zeros(M,N);

for i=1:LA

 for j=1:LB

 if A(i)==B(j)

 D(i+1,j+1)=1;

 else

 D(i+1,j+1)=-penalty;

 end

 end

end

% eo initialization

acc_cost=zeros(M,N);

% start grid processing

for i=2:M %for every row (remember the first row is all zeros and stays like that till the end)

 for j=2:N %for every column (remember the first column is all zeros and stays like that till the end)

 temp_max=D(i,j);

% Diagonal transition

 if acc_cost(i-1,j-1)+ D(i,j)>temp_max

 temp_max=acc_cost(i-1,j-1)+ D(i,j);

 end

% Vertical scan: nodes (1,j),(2,j),...,(i-1,j)

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 82 of 99

 if i-Lver>=1

 rowstart=i-Lver;

 else

 rowstart=1;

 end

 for row=rowstart:i-1

 if acc_cost(row,j)-(1+(penalty)*(i-row))>temp_max

 temp_max=acc_cost(row,j)-(1+(penalty)*(i-row)); % the second term is the penalty term for the

vertical transition

 end

 end

% Horizontal scan: nodes (i,1),(i,2),...,(i,j-1)

 if j-Lhor>=1

 colstart=j-Lhor;

 else

 colstart=1;

 end

 for col=colstart:j-1

 if acc_cost(i,col)-(1+(penalty)*(j-col))>temp_max

 temp_max= acc_cost(i,col)-(1+(penalty)*(j-col)); % the second term is the penalty term for the

horizontal transition

 end

 end

% Finished (i,j).There only remains to store the winner

 if temp_max>0

 acc_cost(i,j)=temp_max;

 end

 end

end

% eo grid processing

maxv=max(max(acc_cost)); % maximum accumulated similarity

if maxv==0

 bp=[];

 return;

end

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 83 of 99

[xc,yc]=find(acc_cost==maxv); % where maxv is located

Smith Waterman Cuda Implementation

#include "cuda_runtime.h"

#include "device_launch_parameters.h"

#include <stdio.h>

#include <time.h>

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

#include <thrust/copy.h>

#include <thrust/fill.h>

#include <thrust/sequence.h>

#include <thrust/transform_reduce.h>

#include <thrust/functional.h>

_global__ void insertKernel(int *a)

{

 int x = blockDim.x * blockIdx.x + threadIdx.x;

 a[x] = x;

}

__global__ void initKernel(int *a, int *b, double penal, double *Di, int column, int laa, int lbb)

{

 int x = blockDim.x * blockIdx.x + threadIdx.x;

 //int x =threadIdx.x;

 int i,j;

 i = x % lbb;

 j = x / lbb;

 if ((i < laa) && (j < lbb))

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 84 of 99

 {

 if (a[i] == b[j])

 {

 Di[((i + 1)*column) + j + 1] = 1;

 }

 else

 {

 Di[((i + 1)*column) + j + 1] = -penal;

 }

 }

}

__global__ void verticalscanKernel(double *acc_cst, int column, double Lh, double Lv, double penal, int

roww, double *temp_maxx, int ii, int jj, int *bestpredii,int *bestpredijj)

{

 int x = blockDim.x * blockIdx.x + threadIdx.x;

 //Vertical scan: nodes (1,j),(2,j),...,(i-1,j)

 //for (row = rowstart; row < i - 1; row++)

 if ((x >= roww) && (x<ii - 1))

 {

 if ((acc_cst[(x*column) + jj]) - (1 + (penal)*(ii - x)) > *temp_maxx)

 {

 *temp_maxx = (acc_cst[(x*column) + jj]) - (1 + (penal)*(ii - x)); //the second

term is the penalty term for the vertical transition

 *bestpredii = x;

 *bestpredijj = jj;

 }

 }

}

__global__ void horizontalscalscanKernel(double *acc_cst, int column, double Lh, double Lv, double penal,

int roww,int coluu, double *temp_maxx, int ii, int jj, int *bestpredii, int *bestpredijj)

{

 int x = blockDim.x * blockIdx.x + threadIdx.x;

 //Horizontal scan: nodes (i,1),(i,2),...,(i,j-1)

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 85 of 99

 //for (col = colstart; col < j - 1; col++)

 if ((x >= coluu) && (x<jj - 1))

 {

 if ((acc_cst[(ii*column) + x]) - (1 + (penal)*(jj - x)) > *temp_maxx)

 {

 *temp_maxx = (acc_cst[(ii*column) + x]) - (1 + (penal)*(jj - x)); //the second term is the

penalty term for the vertical transition

 *bestpredii = ii;

 *bestpredijj = x;

 }

 }

}

__global__ void gridKernel(double *Di,double *acc_cst, double *row_pre, double *col_pre, int column,

double Lh, double Lv, double penal, int roww)

{

 int x = blockDim.x * blockIdx.x + threadIdx.x;

 int i, j, bestPredi, bestPredj,rowstart, row, col, colstart;

 double temp_max;

 i = x % column;

 j = x / column;

 if ((i >= 1) && (j >= 1) && (i < roww) && (j < column))

 {

 temp_max = Di[(i*column) + j];

 bestPredi = 0;

 bestPredj = 0;

 //Diagonal transition

 if ((acc_cst[((i - 1)*column) + j - 1] + Di[(i*column) + j]) > temp_max)

 {

 temp_max = acc_cst[((i - 1)*column) + j - 1] + Di[(i*column) + j];

 bestPredi = i - 1;

 bestPredj = j - 1;

 }

 //Vertical scan: nodes (1,j),(2,j),...,(i-1,j)

 if ((i - (int)Lv) >= 1)

 rowstart = i - Lv;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 86 of 99

 else rowstart = 1;

 for (row = rowstart; row < i - 1; row++)

 {

 if ((acc_cst[(row*column) + j]) - (1 + (penal)*(i - row)) > temp_max)

 {

 temp_max = (acc_cst[(row*column) + j]) - (1 + (penal)*(i - row)); //the second

term is the penalty term for the vertical transition

 bestPredi = row;

 bestPredj = j;

 }

 }

 //Horizontal scan: nodes (i,1),(i,2),...,(i,j-1)

 if ((j - (int)Lh) >= 1)

 colstart = j - Lh;

 else colstart = 1;

 for (col = colstart; col < j - 1; col++)

 {

 if ((acc_cst[(i*column) + col]) - (1 + (penal)*(j - col)) > temp_max)

 {

 temp_max = (acc_cst[(i*column) + col]) - (1 + (penal)*(j - col)); //the second

term is the penalty term for the vertical transition

 bestPredi = i;

 bestPredj = col;

 }

 }

 //Finished (i,j).There only remains to store the winner

 if (temp_max > 0)

 {

 acc_cst[(i*column) + j] = temp_max;

 row_pre[(i*column) + j] = bestPredi;

 col_pre[(i*column) + j] = bestPredj;

 }

 }

}

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 87 of 99

int main()

{

 int counter1, patterncounter, i, LA, M, LB, N, size, size2, x, j, bestPredi,

bestPredj,rowstart,colstart,row,col;

 int data_to_read;

 FILE *data1; FILE *pattern;

 int *temp_memory; int *temp_pattern; int *device_vector1; int *device_pattern;

 double penalty, Lhor, Lver,maxv,temp_max;

 double *H; double *D; double *temp_acc_cost; double *acc_cost; double *temp_row_pred; double

*row_pred;

 double *temp_col_pred; double *col_pred;

 //number initiallizations

 counter1 = 0; patterncounter = 0;

 i = 0;

 maxv = 0.0;

 clock_t tic = clock();

 /*files opening and reading size*/

 if ((data1 = fopen("data1.txt", "r")) == NULL)

 {

 fprintf(stderr, "error in opening file:%s", "data1.txt");

 exit(-1);

 }

 while (!feof(data1))

 {

 fscanf(data1, "%d", &data_to_read);

 counter1++;

 }

 fclose(data1);

 if ((pattern = fopen("pattern.txt", "r")) == NULL)

 {

 fprintf(stderr, "error in opening file:%s", "pattern.txt");

 exit(-1);

 }

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 88 of 99

 while (!feof(pattern))

 {

 fscanf(pattern, "%d", &data_to_read);

 patterncounter++;

 }

 fclose(pattern);

 // temp memory vector has storage for counter1 integers

 temp_memory = (int*)malloc(counter1*sizeof(int));

 temp_pattern = (int*)malloc(patterncounter*sizeof(int));

 std::cout << "temp_memory has size " << counter1 << std::endl;

 std::cout << "temp_pattern has size " << patterncounter << std::endl;

 //filling temp_memory with systemcall id

 if ((data1 = fopen("data1.txt", "r")) == NULL)

 {

 fprintf(stderr, "error in opening file:%s", "data1.txt");

 exit(-1);

 }

 i = 0;

 while (!feof(data1))

 {

 fscanf(data1, "%d", &temp_memory[i]);

 //std::cout <<temp_memory[i] << std::endl;

 i++;

 }

 fclose(data1);

 if ((pattern = fopen("pattern.txt", "r")) == NULL)

 {

 fprintf(stderr, "error in opening file:%s", "pattern.txt");

 exit(-1);

 }

 i = 0;

 while (!feof(pattern))

 {

 fscanf(pattern, "%d", &temp_pattern[i]);

 i++;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 89 of 99

 }

 fclose(pattern);

 //device_vector1 for pattern and data_set1

 cudaMalloc((void**)&device_vector1, counter1*sizeof(int));

 cudaMemcpy(device_vector1, temp_memory, counter1*sizeof(int), cudaMemcpyHostToDevice);

 cudaMalloc((void**)&device_pattern, (int)patterncounter*sizeof(int));

 cudaMemcpy(device_pattern, temp_pattern, patterncounter*sizeof(int), cudaMemcpyHostToDevice);

 //smith waterman start

 Lver = 5.0;

 Lhor = 5.0;

 penalty = 1.0 / 3.0;

 LA = counter1;

 M = LA + 1;

 LB = patterncounter;

 N = LB + 1;

 size = N*M;

 size2 = LA*LB;

 H = (double*)malloc(size*sizeof(double));

 cudaMalloc((void**)&D, size*sizeof(double));

 for (i = 0; i < size; i++)

 {

 H[i] = 0;

 }

 cudaMemcpy(D, H, N*M*sizeof(double), cudaMemcpyHostToDevice);

 // print contents of D

 printf("%f \n", penalty);

 //system("pause");

 int threadsPerBlock = 1024;

 int blocksPerGrid = (size2 + threadsPerBlock - 1) / threadsPerBlock;

 initKernel <<<blocksPerGrid, threadsPerBlock >>>(device_vector1, device_pattern, penalty, D, N, LA,

LB);

 cudaMemcpy(H, D, size*sizeof(double), cudaMemcpyDeviceToHost);

 temp_acc_cost = (double*)malloc(size*sizeof(double));

 cudaMalloc((void**)&acc_cost, size*sizeof(double));

 for (i = 0; i < size; i++)

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 90 of 99

 {

 temp_acc_cost[i] = 0;

 }

 cudaMemcpy(acc_cost, temp_acc_cost, size*sizeof(double), cudaMemcpyHostToDevice);

 temp_row_pred = (double*)malloc(size*sizeof(double));

 cudaMalloc((void**)&row_pred, size*sizeof(double));

 for (i = 0; i < size; i++)

 {

 temp_row_pred[i] = 0;

 }

 cudaMemcpy(row_pred, temp_row_pred, size*sizeof(double), cudaMemcpyHostToDevice);

 temp_col_pred = (double*)malloc(size*sizeof(double));

 cudaMalloc((void**)&col_pred, size*sizeof(double));

 for (i = 0; i < size; i++)

 {

 temp_col_pred[i] = 0;

 }

 cudaMemcpy(col_pred, temp_col_pred, size*sizeof(double), cudaMemcpyHostToDevice);

 //start grid processing

 for (x = 0; x < size;x++)

 {

 i = x % N;

 j = x / N;

 if ((i >= 1) && (j >= 1) && (i < M) && (j < N))

 {

 temp_max = H[(i*N) + j];

 bestPredi = 0;

 bestPredj = 0;

 //Diagonal transition

 if ((temp_acc_cost[((i - 1)*N) + j - 1] + H[(i*N) + j]) > temp_max)

 {

 temp_max = temp_acc_cost[((i - 1)*N) + j - 1] + H[(i*N) + j];

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 91 of 99

 bestPredi = i - 1;

 bestPredj = j - 1;

 }

 //Vertical scan: nodes (1,j),(2,j),...,(i-1,j)

 if ((i - (int)Lver) >= 1)

 rowstart = i - Lver;

 else rowstart = 1;

 cudaMemcpy(acc_cost, temp_acc_cost, size*sizeof(double),

cudaMemcpyHostToDevice);

 cudaMemcpy(row_pred, temp_row_pred, size*sizeof(double),

cudaMemcpyHostToDevice);

 cudaMemcpy(col_pred, temp_col_pred, size*sizeof(double),

cudaMemcpyHostToDevice);

 blocksPerGrid = (size + threadsPerBlock - 1) / threadsPerBlock;

 verticalscanKernel << <blocksPerGrid, threadsPerBlock >> >(acc_cost, N, Lhor, Lver,

penalty, rowstart, &temp_max, i, j, &bestPredi, &bestPredj);

 cudaMemcpy(temp_acc_cost, acc_cost, size*sizeof(double),

cudaMemcpyDeviceToHost);

 cudaMemcpy(temp_row_pred, row_pred, size*sizeof(double),

cudaMemcpyDeviceToHost);

 cudaMemcpy(temp_col_pred, col_pred, size*sizeof(double),

cudaMemcpyDeviceToHost);

 //Horizontal scan: nodes (i,1),(i,2),...,(i,j-1)

 if ((j - (int)Lhor) >= 1)

 colstart = j - Lhor;

 else colstart = 1;

 cudaMemcpy(acc_cost, temp_acc_cost, size*sizeof(double),

cudaMemcpyHostToDevice);

 cudaMemcpy(row_pred, temp_row_pred, size*sizeof(double),

cudaMemcpyHostToDevice);

 cudaMemcpy(col_pred, temp_col_pred, size*sizeof(double),

cudaMemcpyHostToDevice);

 blocksPerGrid = (size + threadsPerBlock - 1) / threadsPerBlock;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 92 of 99

 horizontalscalscanKernel << <blocksPerGrid, threadsPerBlock >> >(acc_cost, N, Lhor,

Lver, penalty, rowstart, colstart, &temp_max, i, j, &bestPredi, &bestPredj);

 cudaMemcpy(temp_acc_cost, acc_cost, size*sizeof(double),

cudaMemcpyDeviceToHost);

 cudaMemcpy(temp_row_pred, row_pred, size*sizeof(double),

cudaMemcpyDeviceToHost);

 cudaMemcpy(temp_col_pred, col_pred, size*sizeof(double),

cudaMemcpyDeviceToHost);

 //Finished (i,j).There only remains to store the winner

 if (temp_max > 0)

 {

 temp_acc_cost[(i*N) + j] = temp_max;

 temp_row_pred[(i*N) + j] = bestPredi;

 temp_col_pred[(i*N) + j] = bestPredj;

 }

 }

 }

 //eo grid processing

 maxv = temp_acc_cost[0];

 for (i = 1; i < size; i++)

 {

 if (temp_acc_cost[i] > maxv)

 maxv = temp_acc_cost[i];

 }

 //printf("gia na doume an ftanei mexri edw \n");

 printf("the similarity is %f \n", maxv);

 clock_t toc = clock();

 printf("Elapsed: %f seconds\n", (double)(toc - tic) / CLOCKS_PER_SEC);

system("pause");

 // empty the vector

 cudaFree(device_vector1);

 cudaFree(device_pattern);

 free(temp_memory);

 free(temp_pattern);

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 93 of 99

 cudaFree(device_vector1);

 cudaFree(device_pattern);

 cudaFree(acc_cost);

 cudaFree(col_pred);

 cudaFree(row_pred);

 free(temp_acc_cost);

 free(temp_col_pred);

 free(temp_row_pred);

 return 0;

}

TSL Script

#!/usr/bin/expect -f

set timeout 10

set machine kali

set attack <attack string>

set terminator <terminator string>

system {mkdir -p metriseis/first/unclean}

system {mkdir -p metriseis/first/clean}

system {rm --f /var/log/audit/audit1.log}

system {rm --f metriseis/first/unclean/file1.txt}

system {rm --f metriseis/first/clean/clean_file1.txt}

spawn virsh

expect "virsh #"

send "console $machine\r"

expect "Escape character is ^]\r"

send "\r"

expect "#"

system {rcauditd start}

sleep 2

system {auditctl -e 1}

send attack

expect terminator

system {auditctl -e 0}

sleep 2

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 94 of 99

system {rcauditd stop}

system {mv /var/log/audit/audit.log /var/log/audit/audit1.log}

system {sed -n "s/.* \(syscall=[0-9]*\).*/\1/p" /var/log/audit/audit1.log >metriseis/first/unclean/file1.txt}

system {sed 's/syscall=//g' metriseis/first/unclean/file1.txt > metriseis/first/clean/clean_file1.txt}

Authenticator Windows Implementation

<Window x:Class="First_Step.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Key generator" Height="350" Width="525" Icon="/First_Step;component/Images/key2.png">

 <Window.Background>

 <ImageBrush ImageSource="/First_Step;component/Images/music.jpg" />

 </Window.Background>

 <Grid>

 <Grid.Background>

 <ImageBrush />

 </Grid.Background>

 <Label Background="White" Content="Please insert the input and the output filename for the text

encryption or decryption" FontWeight="Bold" Height="25" HorizontalAlignment="Left" Margin="10,10,0,0"

Name="label1" VerticalAlignment="Top" Width="494" />

 <Button Content="Encryption" Height="23" HorizontalAlignment="Left" Margin="271,42,0,0"

Name="button2" VerticalAlignment="Top" Width="75" Click="button2_Click" />

 <TextBox DataContext="{Binding}" Height="23" HorizontalAlignment="Left" Margin="154,217,0,0"

Name="textBox3" VerticalAlignment="Top" Width="120" TextChanged="textBox3_TextChanged" />

 <Label Background="White" Content="Welcome to your key generator! Insert your user id and

password!" FontWeight="Bold" Height="25" HorizontalAlignment="Left" Margin="10,10,0,0" Name="label2"

VerticalAlignment="Top" Width="494" />

 <Button Content="Decryption" Height="23" HorizontalAlignment="Left" Margin="19,172,0,0"

Name="button5" VerticalAlignment="Top" Width="75" Click="button4_Click" />

 <Button Content="Browse Input File" Height="23" HorizontalAlignment="Right"

Margin="0,217,392,0" Name="button6" VerticalAlignment="Top" Width="106" Click="button6_Click" />

 <TextBox DataContext="{Binding}" Height="23" HorizontalAlignment="Left" Margin="99,42,0,0"

x:Name="textBox1" VerticalAlignment="Top" Width="137" TextChanged="textBox1_TextChanged" />

 <TextBox DataContext="{Binding}" Height="23" HorizontalAlignment="Left" Margin="99,87,0,0"

x:Name="textBox2" VerticalAlignment="Top" Width="137" TextChanged="textBox4_TextChanged" />

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 95 of 99

 <Label Background="White" Content="User Id" FontWeight="Bold" Height="25"

HorizontalAlignment="Left" Margin="19,40,0,0" x:Name="label2_Copy" VerticalAlignment="Top" Width="56"

/>

 <Label Background="White" Content="Password" FontWeight="Bold" Height="25"

HorizontalAlignment="Left" Margin="19,85,0,0" x:Name="label2_Copy1" VerticalAlignment="Top" Width="68"

/>

 <Button Content="Steganography" Height="23" HorizontalAlignment="Left" x:Name="button2_Copy"

VerticalAlignment="Top" Width="97" Click="button1_Click" Margin="271,85,0,0" />

 <Button Content="Steganalysis" Height="23" HorizontalAlignment="Left" x:Name="button2_Copy1"

VerticalAlignment="Top" Width="75" Click="button3_Click" Margin="304,217,0,0" />

 </Grid>

</Window>

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;

using System.Diagnostics;

using System.Windows.Forms;

namespace First_Step

{

 /// <summary>

 /// Interaction logic for MainWindow.xaml

 /// </summary>

 public partial class MainWindow : Window

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 96 of 99

 {

 string filename;

 public MainWindow()

 {

 InitializeComponent();

 }

 private void textBox4_TextChanged(object sender, TextChangedEventArgs e)

 {

 }

 private void textBox3_TextChanged(object sender, TextChangedEventArgs e)

 {

 }

 private void textBox1_TextChanged(object sender, TextChangedEventArgs e)

 {

 }

 private void button2_Click(object sender, RoutedEventArgs e)

 {

 //creation of passphrase

 int userid = Convert.ToInt32(textBox1.Text);

 int year = DateTime.Today.Year;

 int month = DateTime.Today.Month;

 int day = DateTime.Today.Day;

 int result = (userid + year) % month;

 string charresult = result.ToString();

 string passphrase = charresult + textBox2.Text;

 System.IO.File.WriteAllText(@"code.txt", passphrase);

 //creation of encryption passphrase

 result = (userid + month) % day;

 charresult = result.ToString();

 passphrase = charresult + textBox2.Text;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 97 of 99

 Process proc = new Process();

 proc.StartInfo.FileName = @"cryptest.exe";

 proc.StartInfo.Arguments = "e " + "code.txt" + " " + "enc_code.txt " + passphrase;

 proc.Start();

 }

 private void button6_Click(object sender, RoutedEventArgs e)

 {

 //Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();

 //System.Windows.Forms.OpenFileDialog dlg = new System.Windows.Forms.OpenFileDialog();

 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Filter = "All files (*.*)|*.*";

 dlg.InitialDirectory = "tests";

 dlg.Title = "Select file to steganalyse";

 dlg.ShowDialog();

 //filename = dlg.FileName.ToString();

 filename = dlg.SafeFileName.ToString();

 textBox3.Text = filename;

 //MessageBox.Show(dlg.FileName.ToString());

 //MessageBox.Show(textBox3.Text);

 }

 private void button4_Click(object sender, RoutedEventArgs e)

 {

 //creation of passphrase

 int userid = Convert.ToInt32(textBox1.Text);

 int year = DateTime.Today.Year;

 int month = DateTime.Today.Month;

 int day = DateTime.Today.Day;

 int result = (userid + month) % day;

 string charresult = result.ToString();

 string passphrase = charresult + textBox2.Text;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 98 of 99

 //creation of encryption passphrase

 Process proc = new Process();

 proc.StartInfo.FileName = @"cryptest.exe";

 proc.StartInfo.Arguments = "d " + textBox3.Text + " " + "code_decoded.txt " + passphrase;

 proc.Start();

 }

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 //creation of passphrase

 int userid = Convert.ToInt32(textBox1.Text);

 int year = DateTime.Today.Year;

 int month = DateTime.Today.Month;

 int day = DateTime.Today.Day;

 int result = (userid + day) % month;

 string charresult = result.ToString();

 string passphrase = textBox2.Text + charresult;

 //pick a random number of wav file from 1-20

 Random rnd = new Random();

 int number_of_wav = rnd.Next(1, 20);

 //make it string

 string wavnumber = number_of_wav.ToString();

 string song = wavnumber + ".wav";

 Process proc = new Process();

 proc.StartInfo.FileName = @"encode.exe";

 proc.StartInfo.Arguments = "-E " + "enc_code.txt" + " -P " + passphrase + " " + song + " " +

wavnumber + "stega.mp3";

 proc.Start();

 }

 private void button3_Click(object sender, RoutedEventArgs e)

 {

 //creation of passphrase

 int userid = Convert.ToInt32(textBox1.Text);

 int year = DateTime.Today.Year;

Detecting Malicious Insider Threat in Cloud Computing Environments

Nikolaos Pitropakis 99 of 99

 int month = DateTime.Today.Month;

 int day = DateTime.Today.Day;

 int result = (userid + day) % month;

 string charresult = result.ToString();

 string passphrase = textBox2.Text + charresult;

 //System.Windows.MessageBox.Show(textBox3.Text);

 Process proc = new Process();

 proc.StartInfo.FileName = @"Decode.exe";

 //

 //System.Windows.MessageBox.Show("-X -P " + passphrase + " " + textBox3.Text);

 proc.StartInfo.Arguments = "-X -P " + passphrase + " " + textBox3.Text;

 //string arguments="-X -P " + passphrase + " " + textBox3.Text;

 //System.Windows.MessageBox.Show(arguments);

 //System.Diagnostics.Process.Start("Decode.exe",arguments);

 proc.Start();

 }

 }

}

