
Table of Contents

ABSTRACT...3

1. INTRODUCTION..4

2. BACKGROUND..7

 2.1 Sample gathering and analysis..9

3.CUSTOM MECHANISM DEVELOPMENT...15

 3.1 Android source modification...15

 3.1.1 Dialing CAPTCHA..15

 3.1.2 SMS CAPTCHA...18

4. LIMITATIONS...22

5. FUTURE WORK...23

6. CONCLUSIONS..23

REFERENCES...24

Index of Figures

Figure 1: Normal outgoing call sequence...7

Figure 2: Normal SMS sending from third party apps...8

Figure 3: Normal SMS sending from built-in “Messaging” app..8

Figure 4: SMS sending with malware present..14

Figure 5: Outgoing call with malware present...14

Figure 6: User actions for solving a CAPTCHA puzzle when making a call....................................17

Figure 7: User actions for solving a CAPTCHA puzzle when sending an SMS from the built-in app

..19

Figure 8: User actions for solving a CAPTCHA puzzle when sending an SMS from a third-party

app..21

Index of Tables

Table 1: Malgenome samples categorization..12

Table 2: Contagio Mini Dump samples categorization..13

1

2

ABSTRACT
The most famous mobile operating system to date is Android. It is used by millions of

people worldwide and subsequently is the most targeted platform of all, by malicious users. A

multitude of new viruses and pieces of malware or variants of existing ones is discovered every day

by security companies, that vary – in relation to how much dangerous they are – from just popping

up advertisements to stealing credentials and wiping a device completely.

This thesis deals with a category of malware that charges users without their knowledge by

sending SMS messages or initiating calls to premium rate numbers, known as premium-rate dialers

and SMS fraudsters.

In order to mitigate the risks stemming from this type of malicious programs, a custom

mechanism is proposed that compels the user to perform some action before every attempt to send

an SMS or place a call so that he is protected against any covert try to do so.

The contribution of this master's thesis is a protective system that is composed of a random

CAPTCHA puzzle that a user must solve correctly before the aforementioned attempts finish.

Additionally, users can shift through the destination numbers of their actions and store them in

databases so the next time they encounter any of these stored numbers, they are made aware that

they are potentially dangerous or not.

3

1. INTRODUCTION

Android Operating System made its first appearance on September, 2008. It was one of the

first OSs for smart devices and since then, it managed to evolve to the leading OS in the market,

largely because of its open source nature. IDC reports that Android leads the smartphone market

with almost 85% of the market share in the second quarter of 2014 [1].

As history has shown, the more popular something is, the more people will try to take

advantage of it, for their own personal gain. Android was not an exception to this generic rule. Since

its debut, the presence of malware affecting it that was detected in the wild, has grown

exponentially. Cisco mentions in its 2014 Annual Security Report that of all mobile malware in

2013, 99% targeted Android devices [2]. Mirroring this, F-Secure states in its Mobile Threat Report

for the first quarter of 2014 [3], that 99% of its findings for that period of time were designed to run

on the Android platform. More specifically, they discovered 275 new threat families (or new

variants of known families) as opposed to just 1 new threat family each on iOS and Symbian

platforms. Also, security experts from Kaspersky Lab estimate that about 98% of all mobile

malware targets users of Android devices as reported in their joint Mobile Cyber Threats report with

INTERPOL in October, 2014 [4].

This continuous increase in Android malware is based on the fact that it's easy to develop an

Android application (one can just download the Android SDK and start working), among other

reasons. There is also no need for a developer to pass any kind of validation if he doesn't intend to

upload his work to Google Play Store. A download link pointing to the application is all that is

needed for distribution.

According to [5] and [6], these malicious applications have personal information gathering,

remote control of the device or financial gain among others as an ulterior motive for their malicious

behavior.

One class of malware, that can cause financial loss to Android users, is consisted of SMS

fraudsters and premium dialers. FakePlayer, HippoSMS, Jifake and MouaBad are just a few

examples of this category of malware.

 FakePlayer: Discovered in August 2010, AndroidOS.FakePlayer (also known as

AndroidOS/Fakeplayer.A [F-Secure], ANDROIDOS_DROIDSMS.A [TrendMicro]) is a

Trojan that masquerades as a video player and attempts to send premium-rate SMS

messages containing the text 798657 to the numbers 3353 and 3354 [7].

 HippoSMS: Android/HippoSMS.A was discovered in July 2011 and is a cracked version of

4

a legitimate application, found in third-party alternative chinese app markets. This malware

is responsible for sending an SMS message to a premium number and deleting incoming

SMS messages from certain numbers [8], [9].

 Jifake: Android.Jifake was first uncovered in July 2012 and is a Trojan horse that, when

executed, installs Jimm – a popular messaging app in Russian-speaking countries. When the

app is launched it tries to send SMS messages that contain the body 48876374538 to the

premium rate number 5537 [10].

 MouaBad: MouaBad.P is a Trojan, variant of the malware family labeled Mouabad by

Lookout security team, which gives to remote attackers the ability to make phone calls or

send SMS messages to premium rate numbers, without any user intervention. This variant,

also, tries to avoid detection employing a clever technique. It waits for a period of time after

the screen is locked and then it places the call. If it detects any user interaction (e.g. unlock),

it ends the call [11].

While malware presence is still growing especially in third party app stores, the majority of simple

users can't recognize the danger they might be in. So they have, at best, a basic understanding of

what they could do to mitigate the risk of being infected and have their personal data stolen or their

bills overcharged. Thus, it becomes imperative that the companies involved with mobile platforms

in general, develop mechanisms to protect users.

Currently, users can be protected against these attacks only by themselves, if they take a

number of steps.

✔ All apps distributed by Google Play are verified, so it's a good idea to download apps only

from there. Installing apps from third-party app stores is best to be avoided.

✔ There are several applications that scan a device for unclosed vulnerabilities, which users

can use every once in a while.

✔ Using a security solution (anti-malware, anti-virus etc.) that can scan files on-the-fly is

always a plus for anyone concerned with the security of his device (smartphone, tablet,

computer etc.)

✔ Applications and firmware should be updated regularly in order for new patches and fixes be

applied and security holes closed.

✔ Extra caution must be exercised when installing an app, in terms of permissions. Users must

pay attention to what an app requires to run, so they can ensure that realistic demands are

being made on a device's features.

Even if someone has implemented all possible security measures, he might still be at risk. In 2011,

5

malware called DroidDream managed to infiltrate the official Google Play Store [12]. In addition,

many malware samples can avoid detection from security applications which base their efforts on

signature recognition. Furthermore, a malicious app can circumvent the listed permissions.

The purpose of this thesis is to develop a system that can protect mobile users against this

type of malware at real time, a built-in mechanism for the Android platform, that intercepts any

attempt made to send an SMS or make a phone call and prompt the user to solve a CAPTCHA

puzzle before proceeding.

6

2. BACKGROUND

After careful research, three files were recognized as responsible for the outgoing call

sequence:

• /packages/services/Telephony/src/com/android/phone/CallController.java

• /packages/services/Telephony/src/com/android/phone/SipCallOptionHandler.java

• /packages/services/Telephony/src/com/android/phone/OutgoingCallBroadcaster.java

Figure 1 shows the typical sequence of an outgoing call in normal conditions.

Text-based SMS messages can be sent by one of two ways: either launch the built-in

“Messaging” app (standalone or from a third party app), or use SmsManager class and specifically

sendTextMessage() or sendMultipartTextMessage() methods.

7

Figure 1: Normal outgoing call sequence

The following figures 2 and 3 show how a message is sent under normal circumstances.

In many countries, there are legitimate premium services – via either SMS or phone calls –

from where users can obtain specific content (e.g. a theme etc.) or be provided certain services and

for which, charges higher than normal occur. When someone wants a particular type of content,

they can simply send a text to a special number called short code, get the content they want and be

charged for this purchase on their phone bill. Very common premium-rate calls are adult chat lines

and technical support. Calling numbers like these induces extra charges beyond the normal cost of a

phone call.

Cyber criminals have used premium-rate numbers since the beginning, to defraud

unsuspecting users. For them, these types of services are a very easy target to make money off of.

The reason theses scams are so common is because of how simple they are. One can just go to

various premium services providers around the world, register for a short code or a premium-rate

number and if the malware is deployed, start making money easily and quickly.

Typically, malicious users make an app that looks like a very popular, legitimate one or

crack an official app and repackage it with malicious code to attract as many users as possible to

download it. The trojanised app is very often packaged alongside the legitimate one and requests a

lot more permissions than it, when a user tries to install it. The malicious app, then, does all the

work in the background. It sends an SMS message or places a call to a premium-rate number

8

Figure 2: Normal SMS sending from third party apps Figure 3: Normal SMS sending from built-in
“Messaging” app

without the user's knowledge or intervention and the phone bill is overcharged.

 2.1 Sample gathering and analysis
Before developing the custom CAPTCHA mechanism it was imperative to gather as many

malware samples as possible. As a sample pool, all relevant samples from the combination of the

Android Malware Genome Project [13] along with Contagio Mobile Malware Mini Dump [14]

were used.

To compartmentalize the procedure, it was necessary to identify which of all the available

samples were relative to the custom mechanism (the ones that actually send an SMS or make a

phone call in the background). To that end, Google's droidbox was used to dynamically analyze the

samples and single out the pertinent ones. Droidbox [15] is a tool that displays information about

the incoming/outgoing network data, file read/write operations, started services and loaded classes,

information leakage through network, file and SMS, circumvented permissions, cryptography

operations performed, broadcast receivers listed, sent SMS messages and placed calls of the

Android application being analyzed.

Table 1 was the result of the analysis, displaying the sample family, number of samples in

each family, month of discovery, its category and a brief description. All this information is supplied

by Google's malware repository [16] and is compared against the results of the sample pool

analysis.

9

Family Number of
samples

Month of
discovery

Category Description

ADRD 23 (22 in
malgenome)

02/2011 Trojan sending out device info

AnserverBot 187 09/2011 Trojan install payload and
retrieve commands from

C&C

Asroot 8 09/2011 Root exploit

BaseBridge 124 (122 in
malgenome)

06/2011 Trojan sending out IMSI and
OS info, send and

remove SMS

BeanBot 8 10/2011 Trojan sending out IMEI, IMSI
and phone number, send

SMS to a premium
number

Bgserv 10 (9 in
malgenome)

03/2011 Trojan sending out IMEI,
device info

CoinPirate 1 08/2011 Trojan sending out device
model, SDK version,

IMEI, IMSI

CruseWin 2 07/2011 Trojan delete itself, delete
SMS, send SMS to
premium number

DogWars 1 08/2011 Trojan send SMS to all contacts

DroidCoupon 1 09/2011 Malware root exploit; remote
C&C server

DroidDeluxe 1 09/2011 Trojan sending out account
name, authtoken,

contacts, etc.

DroidDream 18 (16 in
malgenome)

03/2011 Trojan sending out IMEI,
device info

DroidDreamLight 46 05/2011 Trojan sending out IMEI, IMSI,
model, etc.

DroidKungFu1 34 06/2011 Trojan sending out IMEI,
phone info, data on SD

card

DroidKungFu2 31 (30 in
malgenome)

07/2011 Trojan sending out IMEI,
phone info, data on SD

card

DroidKungFu3 309 08/2011 Trojan sending out IMEI,
phone info, data on SD

card

DroidKungFu4 96 10/2011 Trojan sending out IMEI,

10

phone info, data on SD
card

DroidKungFuSapp 3 10/2011 Trojan sending out IMEI,
phone info, data on SD

card

DroidKungFuUpdate 5 (1 in
malgenome)

10/2011 Trojan sending out IMEI,
phone info, data on SD

card

Endofday 1 05/2011 File infector

FakeNetflix 1 10/2011 Trojan steal log-in details

FakePlayer 6 08/2010 Trojan send SMS to a premium
number

GamblerSMS 1 07/2011 Spyware sending out
incoming/outgoing

SMS, outgoing phone
call

Geinimi 69 12/2010 Trojan sending out device info,
geolocation, connect to

C&C

GGTracker 2 (1 in
malgenome)

06/2011 Trojan send SMS to a premium
number, sending out
phone number, SMS

GingerMaster 4 08/2011 Trojan sending out device id,
phone numbers, cpuinfo

GoldDream 47 07/2011 Trojan sending out
incoming/outgoing

SMS, phone call, device
id, subscriber id

Gone60 9 09/2011 Trojan sending out contacts,
SMS, call list, visited

URLs

GPSSMSSpy 6 08/2010 Spyware sending out location

HippoSMS 4 07/2011 Trojan send out SMS to a
premium number, delete
incoming SMS from a

certain number

Jifake 1 10/2011 Trojan send SMS to premium
numbers

jSMSHider 16 06/2011 Trojan open a back door

KMin 52 10/2011 Trojan sending out IMSI, phone
number, OS version

(sending SMS without
any report from Google)

11

LoveTrap 1 07/2011 Trojan sending out IMSI and
geolocation

NickyBot 1 08/2011 Spyware executing commands via
SMS

NickySpy 2 08/2011 Trojan sending out call list,
GPS, SMS

Plankton 22 (11 in
malgenome)

06/2011 Trojan sending out device id,
etc.

Pjapps 58 02/2011 Trojan sending out IMEI,
device id, etc.(sending

SMS without any report
from Google)

RogueLemon 2 10/2011 Trojan send SMS and subscribe
service

RogueSPPush 9 08/2011 Trojan monitor SMS

SMSReplicator 1 11/2010 Trojan transmit incoming SMS
to another device

Zsone 12 05/2011 Trojan intercept SMS and send
SMS

SndApps 10 07/2011 Trojan sending out phone
number, email address

Spitmo 1 09/2011 Trojan sending out SMS

Tapsnake 2 08/2010 Trojan sending out GPS info

Walkinwat 1 03/2011 Trojan sending out name,
phone number, IMEI

YZHC 22 06/2011 Trojan send SMS to a premium
number

zHash 11 03/2011 Root exploit root exploit

Zitmo 2 (1 in
malgenome)

07/2011 Trojan send out SMS

Table 1: Malgenome samples categorization

Table 2 is the result of the same process for the samples gathered from Contagio mobile malware

mini dump.

12

Family Number of
samples

Month of
discovery

Category Description

FakeFlash 2 Q4 2013 Trojan attempt to charge a fee
for downloading and

installing the free
Adobe Flash Player

Mouabad.P 1 Dialer / SMS
Trojan

premium dialer

Qicsomos 1 01/2012 SMS Trojan send SMS

Tetus 4 01/2013 Trojan steal information

VoiceChanger 1 01/2012 Dialer premium dialer

Dropdialer 2 07/2012 Dialer premium dialer

Fakebank 5 Trojan steal information

Fakedaum 1 07/2013 Trojan steal information

Jollyserv 1 SMS Trojan send SMS

Roidsec 1 05/2013 Trojan steal information

Trahanie_ofisnyih_rabot 1 SMS Trojan send SMS

FakeInst 1 12/2011 SMS Trojan send SMS

Flash fake installer 1 04/2014 SMS Trojan send SMS

Fakemart 1 08/2012 SMS Trojan send SMS

FakeNotify 1 12/2011 SMS Trojan send SMS

OpFake 20 02/2012 SMS Trojan send SMS

Xxshenqi 2 08/2014 SMS Trojan send SMS

Simhosy 3 11/2013 Trojan steal information

Skullkey 1 07/2013 Trojan steal information

Table 2: Contagio Mini Dump samples categorization

For the sample families in blue letters no result could be drawn, because no sample was

executed. The families in yellow background are the ones that were of interest to this paper (sent an

SMS). Some samples weren't executed at all (no activity or failed to execute in droidbox). Also, the

majority of apps was in Chinese, which was an inhibitory factor. Furthermore, even if it was

reported as malicious activity, nothing concerning outgoing calls was observed.

The next flowchart diagram depicts how the normal sequence of sending an sms is

differentiated when there is malware present.

13

In a corresponding manner, the sequence is changed when the malware tries to place a call. Figure 5

shows how this is carried out.

14

Figure 4: SMS sending with malware present

Figure 5: Outgoing call with malware present

3. CUSTOM MECHANISM DEVELOPMENT

The logic behind the design of the custom system that was developed is that all outgoing

SMS messages and calls are intercepted before being completed, so that the user can detect all these

actions and then decide if an app is malicious or not and proceed accordingly. When an app tries to

send an SMS or place a call to a premium-rate number without the user's knowledge, a CAPTCHA

[17] is used to prevent this type of malicious behavior of such apps.

 3.1 Android source modification
After identifying all the relative samples, the actual coding began. All the tests and

modifications were made in Android version 4.4.3.2.1.000.000 (as per the emulator) compiled by

the source code following Google's instructions [18] in January, 2014. The CAPTCHA mechanism

was divided into two subcategories:

 3.1.1 Dialing CAPTCHA

The most typical outgoing call sequence is as follows:

1. OutgoingCallBroadcaster receives a CALL intent and sends the NEW_OUTGOING_CALL

broadcast

2. Then SipCallOptionHandler is launched which decides for the type of the call (or lets the

user choose) and ultimately calls CallController and the method placeCall() in particular.

3. In CallController.placeCall() the actual call is initiated and the in-call user interface is

displayed.

In the custom mechanism, from SipCallOptionHandler.java a dialog is displayed where the user

must pass a CAPTCHA puzzle in order to continue with the call. In case of emergency calls, there is

no need for a CAPTCHA.

The logic behind this part of the mechanism is that there is a database storing all the

whitelisted/blacklisted/emergency numbers. When an outgoing call is initiated, then depending on

the type of the called number, a CAPTCHA dialog is displayed or not.

➢ If the call is characterized as emergency (the called number is an emergency number) then

the call goes through without any further user interaction.

➢ If the called number is whitelisted, the user can either delete the number from the whitelist

or continue with the call.

➢ If the number is blacklisted, the user can delete the number from the blacklist (after solving

15

a CAPTCHA) or cancel the dialog which ends the call .

➢ If neither of the above is the case, the user can add the unlisted number to the whitelist or the

blacklist, or continue with the call without storing the number (decide later, if the number

isn't called very often). Of course these actions also require the solving of a CAPTCHA

puzzle.

The following diagram depicts the flow of actions from the user's perspective in order to place a

call.

16

17

Figure 6: User actions for solving a CAPTCHA puzzle when making a call

 3.1.2 SMS CAPTCHA

There are two ways of sending a text-based SMS from a third party app. One can either

invoke the SmsManager class and use the sendTextMessage() / sendMultipartTextMessage()

functions, or launch the built-in Messaging app which can be pre-populated with the destination

number(s) and the message body. Of course all malware use the first approach, which sends the

SMS in the background and doesn't display anything to the user.

So, there were two approaches for the development of the CAPTCHA mechanism,

depending on what way of sending an SMS was used. Due to the fact that a dialog cannot be

displayed from within the SmsManager class, a custom built-in system app was created that is

launched whenever there is an attempt to send an SMS using this way. The customization of the

Messaging app was that a dialog is displayed when the user taps on the “Send” button.

• In the case of the “Messaging” app, a database was created where all the blacklisted /

whitelisted numbers are stored and it's private to and accessible only from this app.

◦ When an SMS is about to be sent, all the numbers are fetched from the database and are

compared against the SMS destination numbers. If all these numbers are

whitelisted, then a dialog is displayed where the user can choose between deleting one or

more of them from the whitelist (using checkboxes) and sending the SMS. These actions

are performed without the need to solve a CAPTCHA.

◦ If there is no blacklisted number, the user has four choices. He/ she can add an unlisted

number to the whitelist or the blacklist (two choices), delete a number from the whitelist,

or decide later (send the SMS). The choosing of numbers to add / delete is made using

checkboxes in this case, too. Of course, it is necessary to solve a CAPTCHA so that

these actions take place.

◦ If the destination number is blacklisted, the user can only delete it from the blacklist,

after passing a CAPTCHA challenge.

◦ When solving the CAPTCHA, if what the user has typed is incorrect, then the

CAPCTHA image is refreshed without taking into account if the user has made a choice

from the ones available. If the typed CAPTCHA is correct and no choice is selected, a

pop-up message is displayed informing the user to make a choice.

The sequence of user interactions with the system is shown in the following diagram.

18

• In the case of the SmsManager class, if the application that tries to send the SMS is

“Messaging”, then if the CAPTCHA is solved correctly, the SMS is sent normally. The same

logic applies if the app is the custom built-in system app. In any other case, the custom

system app is launched.

19

Figure 7: User actions for solving a CAPTCHA puzzle when sending an SMS from the built-in app

Custom system app: The “Solve CAPCTHA” custom system app is launched every time an

app besides the built-in tries to send an SMS. The thinking here is the same as the

“Messaging” app's, with the sole difference that in this case it is not possible to send an

SMS to multiple destination numbers at once (this can be done indirectly with consecutive

calls of sendTextMessage or sendMultipartTextMessage functions) and so there are no

checkboxes when performing add / delete functions to the database.

Again, there is a private database to store all the white/black listed numbers. If the

destination number is whitelisted, the choices presented are for deleting the number from the

whitelist or sending the SMS. If the number is blacklisted, the only available choice is to

delete it from the database after solving a CAPTCHA puzzle. If the number is unlisted then

the choices are 1) add to whitelist, 2) add to blacklist and 3) decide later (send the SMS). All

this, also, requires solving a CAPTCHA.

Following the logic of the “Messaging” app, if the CAPTCHA is incorrect its

image is renewed. If it's correct and the user hasn't tapped on a choice, he is informed to do

so.

The next flowchart shows these actions in a graphical manner.

20

21

Figure 8: User actions for solving a CAPTCHA puzzle when sending an SMS from a third-party
app

4. LIMITATIONS
These modifications / additions of code increase the level of security users can have on their

mobile devices by intercepting all attempts made “behind their backs” by malware, to incur high

charges to their bills. However, it is still a software “patch” that can be circumvented / tampered

with given the right circumstances.

One possible limitation of the proposed CAPTCHA system is tampering with the databases

where the whitelisted / blacklisted numbers are stored. Under normal conditions, an app's database

is private to and accessible only from that app, unless stated otherwise programmatically by a flag,

during the creation of the database. Of course, for the needs of this custom system all the databases

are private. Nevertheless, if the Android device is rooted – which means that the user can have root

access to the underlying Linux core – there is a possibility that a malicious app could modify the

blacklist / whitelist databases.

Rooting a device is performed for customizing that device for optimum use. Root

applications are applications that run on rooted phones. There are legitimate root apps that can

extend battery life, make the device run faster and smoother and customize the internal systems to

increase performance. In order that these applications run, they require root access that a user can

give or not. If malicious code is packaged along with a legitimate root app and the app requests and

is given root access from the user, then inadvertently root access would also be given to the

malware part of the app. Then the malware could insert a number to the whitelist, fooling the user

into believing that this number has already been processed and whitelisted, or delete a number from

the blacklist so the user doesn't recognize that number as dangerous.

For demonstration purposes, two apps where created. The first one (CreateDB) simply stores

some numbers in a database (in correspondence with the private whitelists / blacklists). The second

one (ReadDB) is a root app (in correspondence with a malicious app) that tries to access the

database of the first one and insert a number. If the user grants root access to the app, then the

private database is modified, storing a number that it was not supposed to.

22

5. FUTURE WORK
As explained in the previous section, one possible limitation is that on a rooted phone when a

legitimate root app is given root access to run, the malware that is possibly packaged along with it is

also given root access and is free to modify the databases and insert or delete numbers from them.

However, the root access that this requires is given by the user explicitly. When a root app

asks permission to run, a dialog is displayed where the user must grant access to it by tapping on an

“OK” button. If the malware is standalone and not packaged within a legit app, it could simulate the

pressing of the “OK” button to get root access even without the user's approval.

The custom CAPTCHA mechanism could be modified so that the user must solve a puzzle

before granting root access to an app in order to prevent the malicious ones from getting root

permissions automatically.

6. CONCLUSIONS
For the purposes of this thesis a custom CAPTCHA system for the Android platform was

developed, that intercepts all attempts made by built-in or third-party apps to initiate an outgoing

call or send an SMS message and displays a dialog where the user must solve a CAPTCHA puzzle

in order to continue.

Firstly, all the relevant samples from Android Malware Genome Project along with

Contagio Mobile Malware Mini Dump were gathered and analyzed for malicious behavior that was

pertinent to the scope of this paper.

Then, the development of the custom system took place. All the Android components

responsible for placing a call or sending an SMS were recognized and modified accordingly and a

custom system app was developed for the case where a third-party app invokes the SmsManager

class.

Closing, to demonstrate that on a rooted device a malicious root app can interfere and

tamper with the databases where the whitelisted / blacklisted numbers are stored, two simple

applications were created – one that stores some numbers in its own private database and a second

one that modifies the contents of the first app's database.

Even though the custom CAPTCHA system is safe and secure on a non-rooted device, the

security of this mechanism can be circumvented on a rooted one. It still lies in the hands of the user

to grant root access to a root app, so extreme caution must be exercised when downloading and

installing apps, especially the ones that require root access to run.

23

REFERENCES
1. http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2. Cisco, “Cisco 2014 Annual Security Report”, 2014

https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf

3. F-Secure, “Mobile Threat Report”, Q1 2014 https://www.f-

secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf

4. Kaspersky Lab and INTERPOL , “Mobile Cyber Threats”, 2014

http://25zbkz3k00wn2tp5092n6di7b5k.wpengine.netdna-

cdn.com/files/2014/10/report_mobile_cyberthreats_web.pdf

5. Y. Zhou, X. Jiang, “Dissecting Android Malware: Characterization and Evolution”,

http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf

6. C. A. Castillo, “Android Malware Past, Present, and Future – McAfee White Paper”,

http://www.mcafee.com/us/resources/white-papers/wp-Android-malware-past-present-

future.pdf

7. http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-

99&tabid=2

8. http://www.csc.ncsu.edu/faculty/jiang/HippoSMS/

9. http://home.mcafee.com/virusinfo/virusprofile.aspx?key=544065#none

10. http://www.symantec.com/security_response/writeup.jsp?docid=2012-073021-4247-

99&tabid=2

11. https://blog.lookout.com/blog/2013/12/09/mouabad-p-pocket-dialing-for-profit/

12. https://blog.lookout.com/blog/2011/03/01/security-alert-malware-found-in-official-android-

market-droiddream/

13. http://www.malgenomeproject.org/

14. http://contagiominidump.blogspot.com/

15. https://code.google.com/p/droidbox/

16. https://sites.google.com/site/androidmalrepo/

17. https://github.com/floydfix/Android-Easy-Captcha

18. https://source.android.com/source/initializing.html

24

https://source.android.com/source/initializing.html
https://github.com/floydfix/Android-Easy-Captcha
https://sites.google.com/site/androidmalrepo/
https://code.google.com/p/droidbox/
http://contagiominidump.blogspot.com/
http://www.malgenomeproject.org/
https://blog.lookout.com/blog/2011/03/01/security-alert-malware-found-in-official-android-market-droiddream/
https://blog.lookout.com/blog/2011/03/01/security-alert-malware-found-in-official-android-market-droiddream/
https://blog.lookout.com/blog/2013/12/09/mouabad-p-pocket-dialing-for-profit/
http://www.symantec.com/security_response/writeup.jsp?docid=2012-073021-4247-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2012-073021-4247-99&tabid=2
file:///home/warmaster/Desktop/9.%20http://home.mcafee.com/virusinfo/virusprofile.aspx%3Fkey=544065#none
http://www.csc.ncsu.edu/faculty/jiang/HippoSMS/
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99&tabid=2
http://www.mcafee.com/us/resources/white-papers/wp-Android-malware-past-present-future.pdf
http://www.mcafee.com/us/resources/white-papers/wp-Android-malware-past-present-future.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf
http://25zbkz3k00wn2tp5092n6di7b5k.wpengine.netdna-cdn.com/files/2014/10/report_mobile_cyberthreats_web.pdf
http://25zbkz3k00wn2tp5092n6di7b5k.wpengine.netdna-cdn.com/files/2014/10/report_mobile_cyberthreats_web.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Sample gathering and analysis

	3. CUSTOM MECHANISM DEVELOPMENT
	3.1 Android source modification
	3.1.1 Dialing CAPTCHA
	3.1.2 SMS CAPTCHA

	4. LIMITATIONS
	5. FUTURE WORK
	6. CONCLUSIONS
	REFERENCES

