

Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής
Πρόγραμμα Μεταπτυχιακών Σπουδών

«Προηγμένα Συστήματα Πληροφορικής»

Μεταπτυχιακή Διατριβή

 Τίτλος Διατριβής Ανάπτυξη Διαδικτυακής Εφαρμογής στη μεριά του

εξυπηρετητή, συμβατής με desktop, mobile και tablet

συσκευών, για τη διαχείριση αθλητικών δεδομένων

αθλητών στίβου, με χρήση της μεθοδολογίας Scrum Agile

για την ανάπτυξη λογισμικού.

Implementation of a cross-device server-side web

application for managing and analyzing personal

performances for track and field, using Scrum Agile

software development methodology.

Ονοματεπώνυμο
Φοιτητή

ΜΠΑΛΑΣΗΣ ΓΕΩΡΓΙΟΣ

Πατρώνυμο ΑΘΑΝΑΣΙΟΣ

Αριθμός Μητρώου ΜΠΣΠ 12048

Επιβλέπων Ευθύμιος Αλέπης, Επίκουρος Καθηγητής

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 2

Ημερομηνία
Παράδοσης

Σεπτέμβριος 2015

Τριμελής Εξεταστική Επιτροπή

(υπογραφή)

(υπογραφή) (υπογραφή)

Ευθύμιος Αλέπης
 Επίκουρος Καθηγητης

Μαρία Βίρβου
 Καθηγητρια

Κωνσταντίνος Πατσάκης
 Λέκτορας

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 3

Abstract

1. Introduction

1.1. Purpose of the thesis

1.2. Purpose of the application

1.3. Technologies used and general decisions

2. Agile Software Development Methodology

2.1. Overview

2.2. Origins

2.3. Philosophy

2.4. Why Scrum?

2.5. Scrum roles

2.5.1. Product owner

2.5.2. Scrum Master

2.5.3. Development team

2.6. Scrum activities

2.6.1. Roles linked to activities

2.6.2. The product backlog

2.6.3. Sprints

2.6.4. Sprint Planning

2.6.5. Sprint Execution

2.6.6. Daily Scrum

2.6.7. Sprint Results

2.6.8. Sprint Review

2.6.9. Sprint Retrospective

2.7. Agile compared to plan-driven processes

2.7.1. Plan-driven processes

2.7.2. Similarities

2.7.3. Differences

2.7.4. Variability and Uncertainty

2.7.5. Prediction and adaptation

3. Technologies and Architecture

3.1. JavaScript

3.2. Node.js

3.3. Express

3.4. MongoDB

3.5. LESS

3.6. JADE

3.7. AngularJS

4. Requirement Analysis

4.1. Term Definitions

4.1.1. Activities

4.1.2. Statistics

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 4

4.1.3. Discipline

4.1.5. Filtering

4.2. Functionality

4.2.1. Login

4.2.2. Register

4.2.3. Email validation

4.2.4. Automatic detection of user’s preferences

4.2.5. Forgot password

4.2.6. Profile

4.2.7. Add activity

4.2.8. Edit activity

4.2.9. Delete activity

4.2.10 Activity filtering

4.2.11. User search

4.2.12. Visiting profiles

4.2.13. Statistics

4.2.14. Profile settings

4.2.15. Account settings

4.2.16. Privacy

4.2.17. API

4.2.18. Responsive design

4.3. Devices

4.3.1. Desktops

4.3.2. Tablets

4.3.3 Mobile

4.3.4. Wearables (Usage of API)

5. Development Process

5.1. Sprint 1

5.1.1. Aim

5.1.2. Requirement Analysis

5.2. Sprint 2

5.2.1. Sprint planning

5.2.2. Stand up

5.2.4. Diagrams

5.2.5. Sprint review

5.3. Sprint 3

5.3.1. Sprint planning

5.3.2. Stand up

5.3.3. Diagrams

5.3.4. Sprint review

5.4. Sprint 4

5.4.1. Sprint planning

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 5

5.4.2. Stand up

5.4.3. Sprint review

5.5. Sprint 5

5.5.1. Sprint planning

5.5.2. Stand up

5.5.3. Diagrams

5.5.4. Sprint review

5.4. Sprint 6

5.6.1. Sprint planning

5.6.2. Stand up

5.6.3. Sprint review

5.7. Sprint 7

5.7.1. Sprint planning

5.7.2. Stand up

5.7.3. Sprint review

5.8. Sprint 8

5.8.1. Sprint planning

5.8.2. Stand up

5.8.3. Sprint review

5.9. Sprint 9

5.9.1. Sprint planning

5.9.2. Stand up

5.9.3. Diagrams

5.9.4. Sprint review

5.10. Sprint 10

5.10.1. Sprint planning

5.10.2. Stand up

5.10.3. Diagrams

5.10.4. Sprint review

6. Results

6.1. Agile contribution

6.2. The application

6.3. The API

6.4. The schema of the database

7. Conclusion

8. Bibliography

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 6

Abstract

This thesis is about developing a web application that keeps statistics about track and field athletes.
For the development, the nowadays popular software engineering methodology, agile, will be used,
and more specifically scrum. Scrum promotes teamwork, so I will develop the application with
another programmer. I will write the code on the server side, create and manage the schema of the
database and handle the API. The other programmer will work on the front-end of the application.
Agile will be used in every part of the development process - coding, decisions, feedback.

 The development process will be described in parts, called sprints, according to scrum.
Every sprint will be the description of a week’s work. The first part of the sprint will be the sprint
planning, where the goals of the sprint will be set, and there will be a short description of the
desired outcome that we should have by the end of the week. The second part is called stand up,
which is a sum of all the daily stand ups. This is where I declare what I did each day, while working
on the application. Usually some decisions that I took, along with the other programmer, are
mentioned. Stand ups are also used in order to describe the difficulties that are faced. The third part
of the sprints is the sprint review, where there is a report of what worked and what didn’t during the
sprint. The outcome is presented and the plans of the next sprint may be revealed.

 By using technologies which are not very familiar to us, developing an application from
scratch, and getting feedback from users, we expect agile to be suitable for our case, making
communication the main aspect that will help us release a full product.

 After finishing the development of the application, it is proven that indeed agile greatly
helped in the development process. The application got developed in time, all the developed
features are useful for its users, and the quality of the service is very good. The small iterations that
had a working application as the outcome, every time, helped us get feedback early on, and
improve fast. Overall, the agile methodology proved to be appropriate for our case, and quite
possibly, much more suitable than any plan-driven process.

Περίληψη

Αυτή η πτυχιακή αναφέρεται στην ανάπτυξη μίας διαδικτυακής εφαρμογής που κρατάει στατιστικά
για αθλητές στίβου. Για την ανάπτυξή της θα χρησιμοποιηθεί η δημοφιλής μεθοδολογία ανάπτυξης
λογισμικού agile, και πιο συγκεκριμένα scrum. Το scrum προωθεί την ομαδικότητα, οπότε η
ανάπτυξη θα γίνει σε συνεργασία με έναν άλλο προγραμματιστή. Εγώ θα γράψω τον κώδικα για τον
server, το σχήμα της βάσης δεδομένων και το API. Ο άλλος προγραμματιστής θα αναπτύξει τον
client της εφαρμογής. Η μεθοδολογία agile θα χρησιμοποιηθεί σε κάθε τμήμα της διαδικασίας
ανάπτυξης - στον προγραμματιστμό, στην λήψη αποφάσεων και στην ανατροφοδότηση.

 Η διαδικασία της ανάπτυξης θα περιγραφεί σε τμήματα, τα οποία αποκαλούνται sprints στο
scrum. Κάθε sprint στο κείμενο θα είναι η περιγραφη της δουλειάς μίας εβδομάδας. Το πρώτο
μέρος από κάθε sprint θα είναι ο σχεδιασμός του, όπου θα γίνεται ο προσδιορισμός των στόχων και
θα υπάρχει μία σύντομη περιγραφή του επιθυμητού αποτελέσματος το οποίο αναμένεται στο τέλος
της εβδομάδας. Το δεύτερο μέρος του sprint λέγεται stand up, και στο κείμενο θα είναι μία σύνοψη
όλων των ημερήσιων stand up. Σε αυτό μέρος θα περιγράφεται το τι κινήσεις έγιναν για την
ανάπτυξη της εφαρμογής κάθε μέρα, τα προβλήματα που αντιμετωπίστηκαν και οι αποφάσεις που
λήφθηκαν. Το τρίτο μέρος του sprint είναι η ανασκόπησή του, όπου θα γίνεται μία αναφορά στο τι
δούλεψε και τι όχι, κατά τη διάρκεια της εβδομάδας. Επίσης θα παρουσιάζεται το αποτέλεσμα και
θα γίνεται μία σύντομη αναφορά στο τι θα ακολουθήσει την επόμενη εβδμάδα.

 Χρησιμοποιώντας τεχνολογίες με τις οποίες δεν είμαστε πολύ εξοικειωμένοι,
αναπτύσσοντας μία εφαρμογή από την αρχή και παίρνοντας σχόλια από χρήστες, περιμένουμε
πως η μεθοδολογία agile θα είναι κατάλληλη για την περίπτωσή μας, κάνοντας την επικοινωνία τον
κύριο παράγοντα που θα μας κάνει να παραδώσουμε ένα ολοκληρωμένο προϊόν.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 7

Μετά την ολοκλήρωση της ανάπτυξης της εφαρμογής, είναι φανερό ότι όντως η μεθοδολογία agile
βοήθησε στη διαδικασία ανάπτυξης. Η εφαρμογή ολοκληρώθηκε έγκαιρα, όλα τα χαρακτηριστικά
της είναι χρήσιμα για τους χρήστες της, και η ποιότητά της είναι πολύ καλή. Οι μικροί κύκλοι
εργασίας που είχαν ως αποτέλεσμα ένα δείγμα εφαρμογής που δούλευε κάθε φορά, μας βοήθησε
να πάρουμε σχόλια από χρήστες, νωρίς, έτσι ώστε να βελτιώσουμε την εφαρμογή γρήγορα. Γενικά,
η μεθοδολογία agile αποδείχτηκε κατάλληλη για την περίπτωσή μας, και πιθανότατα πολύ πιο
κατάλληλη από ότι θα ήταν κάποια προσχεδιασμένη διαδικασία.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 8

1. Introduction

1.1. Purpose of the thesis

The purpose of the thesis is to show the agile methodology of software development as it is applied
on the development process of the back-end of a web application. It will focus on the frequent
iterations between defining the specifications of the application and its development. These
iterations will be called “phases” of the application, and according to the agile methodology, these
phases will have as a final result a fully functional version of the application.

The flexibility and the efficiency of the agile methodology will be shown in multiple cases by
changing the specifications in different stages during the development process and by adding
completely new features in phases which were not planned in the previous steps. The selected
software engineering method will prove its flexibility as these changes will have little effect on the
speed of the development and the quality of the final outcome of the current iteration.

Being a thesis about software engineering, there will be a wide range of diagrams, showing
the different states of the application in each phase, how the application was designed before it was
developed and the decisions taken before each phase.

Since a big part of the philosophy behind the agile methodology is the efficient cooperation
of the team which is developing the application, the front-end development is done by my colleague
Theodore Mathioudakis, whose thesis is referenced in this document and who designs the code
that will run in the browser, complementing the parts of the back-end that I will design and develop.
In each phase, it will be clear how the communication between the browser and the server takes
place, and which are the API endpoints that make this communication happen, essentially showing
the cooperation of the team in accordance to the agile guidelines.

The parts of the application that will be designed and developed by me will be the code
required for the server to run, the logic of the application that exists server-side, the API endpoints
and the database. Through the diagrams and the code supplied, it will be clear which features have
been implemented on the back-end and which is the schema of the database in each iteration of
the methodology.

Finally, after the end of the analysis of the development process of the application, there
will be a review of the steps followed and the strong and weak points of the agile methodology will
be pointed out, for each of these steps.

1.2. Purpose of the application

The main goal of the application is to keep various data of the performances of track and field
athletes, and display them in a way which can help them make useful deductions that will eventually
make them improve. It also helps athletes keep an archive of all their performances so that they can
track their progress.

Users have to enter raw data in a form, related to the performance. That data is saved in a
database and then it can be displayed as distinct activities which can be filtered, or as graphs with
various functionalities.

The application also has various settings, regarding the profiles and the accounts. Users
can search for other users, using a search input, visit their profiles and view their performances, if
their profile permissions allow that. Also, the API of the application allows it to be integrated in other
devices like mobile phones or, later, accessories.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 9

1.3. Technologies used and general decisions

The technologies used for the development of the application are all web-based. The server is
node.js, a web server running JavaScript on the V8 engine that Google Chrome uses. The MVC
pattern is followed so that the models and the interaction of the database is clearly separated from
the controllers and the logic of the application. The framework used on node.js is called Express.
Express takes care of the routes of the application, the sessions, the controllers and binds all the
logic of the back-end system.

For the model part of the MVC, the module name Mongoose is used, which takes care of all
the queries and forms the database schemata. The Q module is used for handling the
asynchronous database calls. The database used is mongodb which is a NoSQL database that has
features that conveniently fit into the application.

The HTML that will be displayed in the browser is generated by the JADE template engine.
CSS is generated from the LESS framework. On the front-end, the logic is implemented with the
AngularJS JavaScript framework. For the responsive design, the Bootstrap CSS framework is used.

Most of the decisions made, were affected by the nature of the application. The agile
methodology was chosen because of its flexibility. The application is developed using the latest web
technologies which by the time seemed suitable for the application but we, as developers, were not
entirely familiar with them. Also, the functionality and the features of the application is driven by
athletes who were asked to test it. Being forgiving to the changes of the specifications, the agile
methodology is perfect for this case. Also, since the application is functional between the iterations,
athletes can have the demos and test if the features suit their needs.

The application is written in JavaScript, both on the front-end and on the back-end. There
aren’t many choices for writing the front-end of the application, so JavaScript was an easy choice,
but there were many choices for the language of the back-end. Having JavaScript both on the
front-end and on the back-end makes the communication of the browser and the server seamless.
JSON objects are supported by default on both ends, so this is the format used for the
communication between them, instead of XML. Also, when the logic of the front-end and the back-
end is similar, code can be reused, which follows the don't repeat yourself (DRY) principle of
software engineering.

JSON objects are similar to the BSON objects supported by MongoDB, so the next step of
communicating without converting any data is using MongoDB. NoSQL databases have a good
performance advantage in certain cases. The application doesn’t have data that require a relational
database, there are no table that need to be joined, so in this case MongoDB is the perfect
database and it can scale really well.

There is no native version of the application, just a web version. That’s because one of the
requirements was that it should be platform free. Not only it should run on desktops running
different operating systems, but it should run on tablets and mobile phones as well. The application
is about recording the performances of athletes, which do not always have a computer nearby. A
web application can run on every platform, as long as there is a browser and the application has a
responsive design.

Another decision made is the clear separation between the front-end and the back-end. The
application is designed with third-party interfaces and devices in mind. In order to give the
opportunity to others to create their own interface and access the API of the application, the back-
end should be completely independent from front-end.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 10

2. Agile Software Development Methodology

2.1. Overview

The agile software development is a general method for developing software, which promotes
teamwork in small, autonomous teams and makes it easy for them to adapt to the sudden changes
of the requirements of the project. Some well-known agile methods are Scrum, Kanban, Lean
software development and Extreme Programming. Agile processes of all kinds, share one thing:
they embrace change, approaching it as an opportunity for growth, rather than an obstacle [3, 323].
Scrum is the most popular method and it will be the method that will be mainly used during the
development process of our application.

No matter which of these methodologies you adopt, you have to do the following: testing in
every interval, deliver the product early and often, documentation in every interval, existence of
cross-functional teams.

Scrum is a lightweight framework designed to help small, close-knit teams of people
develop complex products [1]. It consists of some predefined steps that the team should take every
day, in order to organize work, improve communication in the team and achieve its goals. With an
agile approach in SCRUM, you begin by creating a product backlog which is a prioritized list of
features and other capabilities needed in order to develop a successful product. By following the
backlog, you always work on the most important or highest-priority items first. [2, 1078].

A scrum team usually has five to ten people who work in short periods of activity called
sprints. The sprints usually range from a week to a calendar month in length. During that period,
each independent team does all the work, such as designing, developing and testing, required to
produce completed features that can be put into production.

At the end of the sprint, the team reviews the results and gets feedback, which is later used
in order to change what must be done in the future and in which way it must be done. An important
feature of Scrum is that by the end of the sprint, the team should have a potentially shippable
product. Then, the whole process starts all over, and the next iteration is planned.

2.2. Origins

Scrum is not an acronym, it’s a term borrowed from rugby, where it refers to a way of restarting a
game after an accidental infringement or when the ball has gone out of play [2, 1089]. The first
appearance of Scrum was in the article “The New Product Development Game” (Takeuchi and
Nonaka 1986) which describes how big companies managed to produce world-class results using a
scalable, team-based approach.

In 2001, seventeen software engineers gathered to discuss the future of software
development. Part if the discussion was methodologies like scrum, extreme programing and some
other development methodologies. They agreed on the name “Agile” and they created the “Agile
manifesto” which is a brief set of statements that maps the common philosophical ground of their
discussions during that meeting [3, 280].

Highsmith, one of the developers who took part in this meeting, stated “The agile movement
is not anti-methodology, in fact, many of us want to restore credibility to the word methodology. We
want to restore a balance. We embrace modeling, but not in order to file some diagram in a dusty
corporate repository.” From that point, agile as a set of methodologies, which can be treated as
general guidelines, all aiming towards efficient work and fast reaction to changes, was established.

2.3. Philosophy

Agile has some principles, which is its main philosophy, as stated in the Agile manifesto. [3, 442]

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 11

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project
5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers and users

should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity - the art of maximizing the amount of work not done - is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjust its behavior accordingly.

Taking the bullets one by one, we can see which are the main guidelines of the agile method, how
they can help us achieve our goals in the project and make it successful, and how they can be
applied to our own specific project.

1. This signifies that the main priority is the customer, and all actions should be taken
according to that. So, actions should not be taken because one manager told so, time
should not be lost in business meetings that do not related to the product directly, or
working on features that may be used in the future, or creating tools that may be needed.
Work should always be aimed at delivering the most basic features the customer needs as
soon as possible, and all the actions that do not lead to that, should be avoided. In our
project, we have a feedback form that will let us hear the opinion of the users as the product
grows. Also, we will develop the most basic features first, so that we can make changes to
the old features based on users’ opinions while we are working on new features.

2. One of the main reasons agile was created, is to make the changes of the requirements
during development something which is essential in the life of the product. When PayPal
was founded, the aim of the product was to be able to transfer money from one palm-top
device to another, and as a secondary feature, it should allow users to send payments by
email. That secondary feature became popular, and the company had to adjust and change
the whole product to serve this reason. If the team is not so “agile”, opportunities may be
lost. During the development of our application, we will have one-week long sprints so that
if there is an opportunity or a change of plans in one sprint, the context of the work can
change in the next sprint.

3. It is essential to deliver working software as often as possible, not only for the customer, but
also for the team. The shortest the interval, the shortest the deadlines, and with short
deadlines, productivity increases. Automatically all the non-productive procedures like
bureaucracy, get removed from the plans. We will have one week intervals for our project,
forcing ourselves to work as often as possible, due to the lack of time.

4. When business people communicate with the developers, the have a better idea of how the
product is evolving, what problems emerge, which features take more time, so they can
adjust parameters like time and money during development. When developers
communicate with business people, they can better understand the vision and the
philosophy of the product, thus leading to a better result, which will satisfy the former. In the

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 12

case of our application, we do not have any business people but communication between
the two members of the team will be frequent.

5. Usually developers are already motivated and like what they do. They should just feel that
the company will help them even more and make their job even more enjoyable, so that
they can be more productive and create high quality software. For this project, we plan to
visit and work from different places, to keep things interesting. Also, we will have a
“hackathon” atmosphere, working closely and in a good mood to achieve the next goals.

6. Communicating face-to-face is not very common in IT companies. Sometimes employees
talk by emails or chat, even though they are located in the same floor or even in the same
room. But it has been proven that it’s much more possible to misunderstand something in
written form. Also, writing to each other is much more slower than speaking. An agile team
doesn’t have to always communicate face-to-face, but it’s always better that week. The
team of this project will meet regularly each week in order to achieve the goals faster.

7. Working software is everything. Productivity, funds, good communication, skills etc, mean
nothing if by the end of the sprint there is no working software. We will do our best to have
working software every week.

8. The development process should have a constant pace. That means that having periods
with a lot of work and periods with little work should be avoided. Working long hours has
been proven to make the developers more likely to make mistakes, which result in bugs in
the software.

9. Taking the time to create code that is more maintainable and better structured, will help the
project be more agile than writing code in twice the speed, but with poor structure. Because
due to the nature of agile, written code will be revisited quite often, so having written it well
the first time, will help the developers work on it faster later. We have separated the tasks of
the front-end and the back-end for that reason. There will be no conflicts and we can take
the time to think of the whole architecture of the server/client, in order to create clean and
maintainable code.

10. Surveys have shown that only 7% of the features of the software projects are always used,
13% of the features are used often and 45% are never used. This is eliminated with agile,
by working on the most important features first. In this way, the less important features are
naturally removed from the product backlog, and usually they get never implemented. All
the unplanned features that may be needed can be added to the project very easily, in the
same way.

11. The project should be divided to independent teams that is responsible for what they do as
a whole and not as individuals. The result of the team should not be the result of one good
member but good work of the whole team equally. In our project, we are only two people so
we will divide the work this way, making it easier to find out what works for us and what
doesn’t.

12. One of the ways for the whole team to improve is to review the work done and fine tune it.
With agile, this happens at the retrospective phase, which is one of the most important
phases of the agile process. During the development of our application, we will review each
other’s code and we will discuss the problems we met while coding, in order to learn from
each other and improve.

2.4. Why Scrum?

Scrum has the power to transform project management across every industry, every business, and
even across life in general. By using Scrum, you’ll become more Agile, discovering how to react
more quickly and respond more accurately to the inevitable change that comes your way. And by
staying focused, collaborating, and communicating, success can be easily achieved.

It is used by major organizations instead of the waterfall method, which is not that efficient
in most use cases of the projects. When there is a big up-front design, there is no feedback during

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 13

the development process, to make the product better, and this leads to many changes after the
release of the product, which means that the product owner will have to pay extra money and the
really final version of the software will be delayed.

By prioritizing the work of the project, leads to releasing a fully functional product every one
or two weeks, which is a project that has much higher chances to evolve to something better than a
project designed up-front. Also, this method speeds up all the processes and makes the team more
agile to changes in the environment.

2.5. Scrum roles

2.5.1. Product owner

The product owner is the empowered central point of product leadership. He is the single authority
responsible for deciding which features and functionality to build and the order in which to build
them. The product owner maintains and communicates to all other participants a clear vision of
what the Scrum team is trying to achieve. As such, the product owner is responsible for the overall
success of the solution being developed or maintained.

It doesn’t matter if the focus is on an external product or an internal application, the product
owner still has the obligation to make sure that the most valuable work possible, which can include
technically focused work, is always performed. To ensure that the team rapidly builds what the
product owner wants, the product owner actively collaborates with the Scrum Master and
development team and must be available to answer questions soon after they are posed.

2.5.2. Scrum Master

The Scrum Master helps everyone involved understand and embrace the Scrm values, principles
and practices. He acts as a coach, providing process leadership and helping the Scrum team and
the rest of the organization develop their own high-performance, organization-specific Scrum
approach. At the same time, the Scrum Master helps the organization through the challenging
change management process that can occur during a Scrum adoption.

As a facilitator, the Scrum Master helps the team resolve issues and make improvements to
its use of Scrum. He is also responsible for protecting the team from outside interference and takes
a leadership role in removing obstacles that inhibit team productivity (when the individuals
themselves can not reasonable resolve them). The Scrum Master has no authority to exert control
over the team, so this role is not the same as the traditional role of project manager or development
manager. The Scrum Master functions as a leader, not a manager.

2.5.3. Development team

Traditional software development approaches discuss various job types, such as architect,
programmer, tester, database administrator, UI designer, and so on. Scrum defines the role of a
development team, which is simply a diverse, cross-functional collection of these types of people
who are responsible for designing, building and testing the desired product.

The development team self-organizes to determine the best way to accomplish the goal set
out by the product owner. The development team is typically five to nine people in size, its members
must collectively have all the skills needed to produce good-quality, working software. Of course,
Scrum can be used on development efforts that require much larger teams. However, rather than
having one Scrum team with, for example, 35 people, there would more likely be four or more
Scrum teams, each with a development team of nine or fewer people.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 14

2.6. Scrum activities

2.6.1. Roles linked to activities

The product owner has a vision of what he wants to create. Because the project can be large,
through an activity called grooming it is broken down into a set of features that are collected into a
prioritized list called the product backlog.

A sprint starts with sprint planning, encompasses the development work during the sprint
(called sprint execution), and ends with the review and retrospective. The number of items in the
product backlog is likely to be more than a development team can complete in a short-duration
sprint. For that reason, at the beginning of each sprint, the development team must determine a
subset of the product backlog items it believes it can complete, an activity called sprint planning.

As a brief aside, in 2011 a change in the “Scrum Guide” generated a debate about whether
the appropriate term for describing the result of sprint planning is a forecast or a commitment [2,
1323]. Advocates of the word forecast like it because they feel that although the development team
is making the best estimate that it can at the time, the estimate might change as more information
becomes known during the course of the sprint. Some also believe that a commitment of the part of
the team will cause the team to sacrifice quality to meet the commitment or will cause the team to
“under-commit” to guarantee that the commitment is met.

All development teams should generate a forecast (estimate) of what they can deliver each
sprint. However, many development teams would benefit from using the forecast to derive a
commitment. Commitments support mutual trust between the product owner and the development
team as well as within the development team. Also, commitments support reasonable short-term
planning and decision making within an organization. And, when performing multi-team product
development, commitments support synchronized planning, one team can make decisions based
on what another team has committed to do.

To acquire confidence that the development team has made a reasonable commitment, the
team members create a second backlog during sprint planning, called the sprint backlog. The sprint
backlog describes, through a set of detailed tasks, how the team plans to design, build, integrate
and test the selected subset of features from the product backlog during that particular sprint.

Next is print execution, where the development team performs the tasks necessary to
realize the selected features. Each day during sprint execution, the team members help manage
the flow of work by conducting a synchronization, inspection and adaptive planning activity known
as the daily scrum. At the end of sprint execution the team has produced a potentially shippable
product increment that represents some, but not all, of the product owner’s vision.

The scrum team completes the sprint by performing two inspect-and-adapt activities. In the
first, called the sprint review, the stakeholders and Scrum team inspect the product being built. In
the second, called the sprint retrospective, the Scrum team inspects the scrum process being used
to create the product. The outcome of these activities might be adaptations that will make their way
into the product backlog or be included as part of the team’s development process.

At this point, the scrum sprint repeats, beginning anew with the development team
determining the next most important set of product backlog items it can complete. After an
appropriate number of sprints have been completed, the product owner’s vision will be realized and
the solution can be released.

2.6.2. The product backlog

Using Scrum, we always do the most valuable work first. The product owner with input from the rest
of the Scrum team and stakeholders, is ultimately responsible for determining and managing the
sequence of this work and communicating it in the form of a prioritized (or ordered) list known as the

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 15

product backlog. On new-product development the product backlog items initially are features
required to meet the product owner’s vision. For ongoing product development, the product backlog
might also contain new features, changes to existing features, defects needing repair, technical
improvements, and so on.

The product owner collaborates with internal and external stakeholders to gather and define
the product backlog items. He then ensures that product backlog items are placed in the correct
sequence (using factors such as value, cost, knowledge and risk) so that the high-value items
appear at the top of the product backlog and the lower-value items appear toward the bottom. The
product backlog is a constantly evolving artifact. Items can be added, deleted, and revised by the
product owner as business conditions change, or as the Scrum team’s understanding of the product
grows (through feedback on the software produced during each sprint).

Overall the activity of creating and refining product backlog items, estimating them and
prioritizing them is know as grooming. Before prioritizing, ordering or otherwise arranging the
product backlog, the size of each item in the product backlog should be known. Size equates to
cost, and product owners need to know an item’s cost to properly determine its priority. Scrum does
not dictate which, if any, size measure to use with the product backlog items. In practice, many
teams use a relative size measure such as story points or ideal days. A relative size measure
expresses the overall size of an item in such a way that the absolute value is not considered, but
the relative size of an item compared to other items is considered.

2.6.3. Sprints

In Scrum, work is performed in iterations or cycles of up to a calendar month called sprints. The
work completed in each sprint should create something of tangible value to the customer or user.

Sprints are timeboxed so they always have a fixed start and end date, and generally they
should all be of the same duration. A new sprint immediately follows the completion of the previous
sprint. As a rule we do not permit any goal altering changes in scope or personnel during a sprint.
However, business needs sometimes make adherence to this rule impossible.

2.6.4. Sprint Planning

A product backlog may represent many weeks or months of work, which is much more than can be
completed in a single, short sprint. To determine the most important subset of product backlog
items to build in the next sprint, the product owner, development team, and Scrum Master perform
sprint planning.

During sprint planning, the product owner and development team agree on a sprint goal
that defines what the upcoming sprint is supposed to achieve. Using this goal, the development
team reviews the product backlog and determines the high-priority items that the team can
realistically accomplish in the upcoming sprint while working at a sustainable pace, a pace at which
the development team can comfortably work for an extended period of time.

To acquire confidence in what it can get done, many development teams break down each
targeted feature into a set of tasks. The collection of these tasks, along with their associated
product backlog items, forms a second backlog called the sprint backlog.

The development team then provides an estimate (typically in hours) of the effort required
to complete each task. Breaking product backlog items into tasks is a form of design and just-in-
time planning for how to get the features done.

Most Scrum teams performing sprints of two weeks to a month in duration try to complete
sprint planning in about four to eight hours. A one-week sprint should take no more than a couple of
hours to plan (and probably less). During this time there are several approaches that can be used.
One popular approach follows a simple cycle: Select a product backlog item (whenever possible,
the next most important items as defined by the product owner), break the item down into tasks,

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 16

and determine if the selected item will reasonable fit within the sprint (in combination with other
items targeted for the same sprint). If it does fit and there is more capacity to complete work, repeat
the cycle until the team is out of capacity to do any more work.

And alternative approach would be for the product owner and team to select all of the target
product backlog items at one time. The development team alone does the task breakdowns to
confirm that it really can deliver all of the selected product backlog items.

2.6.5. Sprint Execution

Once the Scrum team finishes sprint planning and agrees on the content of the next sprint, the
development team, guided by the Scrum Master’s coaching, performs all of the task-level work
necessary to get the features done, where “done” means there is a high degree of confidence that
all of the work necessary for producing good-quality features has been completed.

Exactly what tasks the team performs depends of course on the nature of the work (for
example, are we building hardware, or is this marketing work?).

Nobody tells the development team in what order or how to do the task-level work in the
sprint backlog. Instead, team members define their own task-level work and then self-organize in
any manner they feel is best for achieving the sprint goal.

2.6.6. Daily Scrum

Each day of the sprint, ideally at the same time, the development team members hold a timeboxed
(15 minutes or less) daily scrum. This inspect-and adapt activity is sometimes referred to as the
daily stand-up because of the common practice of everyone standing up during the meeting to help
promote brevity.

A common approach to performing the daily scrum has the Scrum Master facilitating and
each team member taking turns answering three questions for the benefit of the other team
members:

● What did I accomplish since the last daily scrum?
● What do I plan to work on by the next daily scrum?
● What are the obstacles or impediments that are preventing me from making progress?

 By answering these questions, everyone understands the big picture of what is occurring,
how they are progressing toward the sprint goal, any modifications they want to make to their plans
for the upcoming day’s work, and what issues need to be addressed. The daily scrum is essential
for helping the development team manage the fast, flexible flow of work within a sprint.

 The daily scrum is not a problem-solving activity. Rather, many teams decide to talk about
problems after the daily scrum and do so with a small group of interested people. The daily scrum
also is not a traditional status meeting, especially the kind historically called by project managers so
that they can get an update on the project’s status. A daily scrum, however, can be useful to
communicate the status of sprint backlog items among the development team members. Mainly, the
daily scrum is an inspection, synchronization, and adaptive daily planning activity that helps a self-
organizing team do its job better.

 Although their use has fallen out of favor, Scrum has used the terms “pigs” and “chickens”
to distinguish who should participate during the daily scrum versus who simply observe. The farm
animals were borrowed from an old joke (which has several variants): “In a ham-and-eggs
breakfast, the chicken is involved, but the pig is committed.” Obviously the intent of using these
terms in Scrum is to distinguish between those who are involved (the chickens) and those who are
committed to meeting the sprint goal (the pigs). At the daily scrum, only the pigs should talk. The
chickens, if any, should attend as observers.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 17

 It is most useful to consider everyone on the Scrum team a pig and anyone who isn’t, a
chicken. Not everyone agrees. For example, the product owner is not required to be at the daily
scrum, so some consider him to be a chicken (the logic being, how can you be “committed” if you
aren’t required to attend?). This seems wrong to me, because I can’t imagine how the product
owner, as a member of the Scrum team, is any less committed to the outcome of a sprint than the
development team. The metaphor of pigs and chickens breaks down if you try to apply it within a
Scrum team.

2.6.7. Sprint Results

In Scrum, we refer to the sprint results as a potentially shippable product increment, meaning that
whatever the Scrum team agreed to do is really done according to its agreed-upon definition of
done. This definition specifies the degree of confidence that the work completed is of good quality
and is potentially shippable. For example, when developing software, a bare-minimum definition of
done should yield a complete slice of product functionality that is designed, built, integrated, tested
and documented.

An aggressive definition of done enables the business to decide each sprint if it wants to
ship (or deploy or release) what got built to internal or external customers.

To be clear, “potentially shippable” does not mean that what got built must actually be
shipped. Shipping is a business decision, which is frequently influenced by things such as “Do we
have enough features or enough of a customer workflow to justify a customer deployment?” or “Can
our customers absorb another change given that we just gave them a release two weeks ago?”

Potentially shippable is better thought as a state of confidence that what got built in the
sprint is actually done, meaning that there isn’t materially important undone work (such as important
testing or integration and so on) that needs to be completed before we can ship the results from the
sprint, if shipping is our business desire.

As a practical matter, over time some teams may vary the definition of done. For example,
in the early stages of game development, having features that are potentially shippable might not
be economically feasible or desirable (given the exploratory nature of early game development). In
these situations, an appropriate definition of done might be a slice of product functionality that is
sufficiently functional and usable to generate feedback that enables the team to decide what work
should be done next or how to do it.

2.6.8. Sprint Review

At the end of the sprint there are two additional inspect-and adapt activities. One is called the sprint
review. The goal of this activity is to inspect and adapt the product that is being built. Critical to this
activity is the conversation that takes place among its participants, which include the Scrum team,
stakeholders, sponsors, customers, and interested members of other teams. The conversation is
focused on reviewing the just-completed features in the context of the overall development effort.
Everyone in attendance to help guide the forthcoming development to ensure that the most
business-appropriate solution is created.

A successful review results in bidirectional information flow. The people who aren’t on the
Scrum team get to sync up on the development effort and help guide its direction. At the same time,
the Scrum team members gain a deeper appreciation for the business and marketing side of their
product by getting frequent feedback on the convergence of the product toward delighted
customers or users. The sprint review therefore represents a schedules opportunity to inspect and
adapt the product. As a matter of practice, people outside the Scrum team can perform intra-sprint
feature reviews and provide feedback to help the Scrum team better achieve its sprint goal.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 18

2.6.9. Sprint Retrospective

The second inspect-and-adapt activity at the end of the sprint is the sprint retrospective. This
activity frequently occurs after the sprint review and before the next sprint planning.

Whereas the sprint review is a time to inspect and adapt the product, the sprint
retrospective is an opportunity to inspect and adapt the process. During the sprint retrospective the
development team, Scrum Master and product owner come together to discuss what is and is not
working with Scrum and associated technical practices. The focus is on the continuous process
improvement necessary to help a good Scrum team become great. At the end of a sprint
retrospective the Scrum team should have identified and committed to a practical number of
process improvement actions that will be undertaken by the Scrum team in the next sprint.

After the sprint retrospective is complicated, the whole cycle is repeated again. Starting with
the next sprint-planning session, held to determine the current highest-value set of work for the
team to focus on.

2.7. Agile compared to plan-driven processes

2.7.1. Plan-driven processes

One pure form of traditional, plan-driven development frequently goes by the term waterfall.
However, that is just one example of a broader class of plan-plan driven processes (also known as
traditional, sequential, anticipatory, predictive, or prescriptive development processes).

Plan-driven processes are so named because they attempt to plan for and anticipate up
front all the features a user might want in the end product, and to determine how best to build those
features. The idea here is that the better the planning, the better the understanding, and therefore
the better the execution. Plan-driven processes are often called sequential processes because
practitioners perform, in sequence, a complete requirements analysis followed by a complete
design followed in turn by coding/building and then testing.

Plan-driven development works well if you are applying it to problems that are well defined,
predictable and unlikely to undergo any significant change. The problem is that most product
development efforts are anything but predictable, especially at the beginning. So, while a plan
driven process gives the impression of an orderly, accountable and measurable approach, that
impression can lead to a false sense of security. After all, developing a product rarely goes as
planned.

For many, a plan-driven, sequential process just makes sense, understand it, design it,
code it, test it, and deploy it, all according to a well-defined, prescribed plan. There is a belief that it
should work. If applying a plan-driven approach doesn’t work, the prevailing attitude is that we must
have done something wrong. Even if a plan-driven process repeatedly produces disappointing
results, many organizations continue to apply the same approach, sure that if they just do it better,
their results will improve. The problem, however is not with the execution. It’s that plan driven
approaches are based on a set of beliefs that do not match the uncertainty inherent in most product
development efforts.

Scrum, on the other hand, is based on a different set of beliefs - ones that do map well to
problems with enough uncertainty to make high levels of predictability difficult.

2.7.2. Similarities

Plan-driven and Agile processes share the same goal. What is sometimes lost in Traditional
World/Agile World discussions is the fact that both groups have the same goal—to deliver a quality
product in a predictable, efficient and responsive manner. Both worlds do the same “types” of
things—define, gather, analyze, design, code, test, release, maintain, retire. It’s how they do these

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 19

things that are different. However, we want to point out that while there are similarities, there are
significant differences. The two methods cannot be thought of as the same.

The plan-driven and the agile processes use many of the same principles. The traditional
plan-driven process grew out of the perception that the best way to manage the “software crisis”
was to:

● plan the work out completely before beginning
● lock down requirements early
● institute multiple reviews
● move forward in a step-by-step, sequential manner
● move forward only when all parts of the previous steps were complete
● capture all details with extensive documentation

Taken individually, it’s difficult to argue with these if they are appropriate (you really can
state all your requirements up front) and they are done wisely. For example, gold-plating should be
avoided, progress reviews are reasonable management tools, senior leaders do need to be kept
informed of progress and issues, designs should be documented to support future work, etc.
Because these principles have value, they are used in the Agile World as well.

The plan-driven and the agile processes use the same basic building blocks. They both
work with the same basic programmatic building blocks:

● scope
● cost
● schedule
● performance

In its simplest form, the plan-driven process sets the scope up front (through requirements)
and then allows cost, schedule, and performance to vary. Again in its simplest terms, the Agile
process sets the cost, schedule, and performance up front and then allows the scope to vary.

In addition, both the plan-driven and the agile process use the same technical or
development building blocks:

● analyze the requirement
● design a capability to satisfy the requirement
● build the capability
● test the capability to ensure the requirement is met
● deploy the capability

2.7.3. Differences

The most important difference, especially in dynamic environments is that the waterfall method
struggles to deliver as it constantly looks back at long-fixed requirements and priorities while the
agile method adapts as it delivers by constantly looking forward at evolving requirements and
priorities.

The following table points out the most important differences between the traditional
development, like the waterfall methodology, and the agile. [8, 8]

Traditional development Agile development

Fundamental
hypothesis

Systems are fully specifiable,
predictable and are developed
through extended and detailed

planning

High quality adaptive software is
developed by small teams that
use the principle of continuous

improvement of design and

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 20

testing based on fast feedback
and change

Management style Command and control Leadership and collaboration

Knowledge
management

Explicit Tacit

Communication Formal Informal

Development model
Life cycle model

(waterfall, spiral or modified
models)

Evolutionary-delivery model

Organizational
structure

Mechanic (bureaucratic, high
formalization), targeting large

organization

Organic (flexible and
participative, encourages social

cooperation), targeting small and
medium organizations

Quality control
Difficult planning and strict

control. Difficult and late testing

Permanent control or
requirements, design and

solutions. Permanent testing

User requirements
Detailed and defined before

coding/implementation
Interactive input

Cost of restart High Low

Development
direction

Fixed Easily changeable

Testing After coding is completed Every iteration

Client involvement Low High

Additional abilities
required from
developers

Nothing in particular
Interpersonal abilities and basic

knowledge of the business

Appropriate scale of
the project

Large scale Low and medium scale

Developers
Oriented on plan, with adequate

abilities, access to external
knowledge

Agile, with advanced
knowledge, co-located and

cooperative

Clients
With access to knowledge,

cooperative, representative and
empowered

Dedicated, knowledgeable,
cooperative, representative and

empowered

Requirements Very stable, known in advance Emergent, with rapid changes

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 21

Architecture
Design for current and

predictable requirements
Design for current requirements

Remodeling Expensive Not expensive

2.7.4. Variability and Uncertainty

Plan-driven processes treat product development like manufacturing. They shun variability and
encourage conformance to a defined process. The problem is that product development is not at all
like product manufacturing. In manufacturing our goal is to take a fixed set of requirements and
follow a sequential set of well-understood steps to manufacture a finished product that is the same
every time.

In product development, however, the goal is to create the unique single instance of the
product, not to manufacture the product. This single instance is analogous to a unique recipe. We
don’t want to create the same recipe twice. If we do, we have wasted our money. Instead, we want
to create a unique recipe for a new product. Some amount of variability is necessary to produce a
different product each time. In fact, every feature we build within a product is different from every
other feature within that product, so we need variability even at this level. Only once we have the
recipe do we manufacture the product, in the case of software products, as easily as copying bits.

Plan-driven, sequential development assumes that we will get things right up front and that
most or all of the product pieces will come together late in the effort.

Scrum, on the other hand, is based on iterative and incremental development. Although
these two terms are frequently used as if they were a single concept, iterative development is
actually distinct from incremental development.

Iterative development acknowledges that we will probably get things wrong before we get
them right and that we will do things poorly before we do them well (Goldberg and Rubin 1995). As
such, iterative development is a planned rework strategy. We use multiple passes to improve what
we are building so that we can converge on a good solution. For example, we might start by
creating a prototype to acquire important knowledge about a poorly known piece of the product.
Then we might create a revised version that is somewhat better, which might in turn be followed by
a pretty good version that is somewhat better, which might in turn be followed by a pretty good
version.

Iterative development is an excellent way to improve the product as it is being developed.
The biggest downside to iterative development is that in the presence of uncertainty it can be
difficult up front to determine how many improvement passes will be necessary.

Incremental development is based on the age-old principle of “Build some of it before you
build all of it” [2]. We avoid having one large, big-bang-style event at the end of development where
all the pieces come together and the entire product is delivered. Instead, we break the product into
smaller pieces so that we can build some of it, learn how each piece is to survive in the environment
in which it must exist, adapt based on what we learn, and then build more of it.

Incremental development gives us the important information that allows us to adapt our
development effort and to change how we proceed. The biggest drawback to incremental
development is that by building in pieces, we risk missing the big picture (we see the trees but not
the forest).

Scrum leverages the benefits of both iterative and incremental development, while negating
the disadvantages of using them individually. Scrum does this by using both ideas in an adaptive
series of timeboxed iterations called sprints.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 22

During each sprint we perform all of the activities necessary to create a working product
increment (some of the product, not all of it). This all-at-once approach has the benefit of quickly
validating the assumptions that are made when developing product features. For example, we
make some design decisions, create some code based on those decisions, and then test the design
and the code, all in one sprint. By doing all of the related work within one sprint, we are able to
quickly rework features, thus achieving the benefits of iterative development, without having to
specifically plan for additional iterations.

A misuse of the sprint concept is to focus each sprint on just one type of work, for example,
sprint 1 (analysis), sprint 2 (design), sprint 3 (coding), sprint 4 (testing). Such an approach attempts
to overlay Scrum with a waterfall-style work breakdown structure. This approach is often referred to
as scrummerfall.

In Scrum, we don’t work on a phase at a time, we work on a feature at a time. So, by the
end of a sprint we have created a valuable product increment (some but not all of the product
features). That increment includes or is integrated and tested with any previously developed
features, otherwise, it is not considered done. At the end of the sprint, we can get feedback on the
newly completed features within the context of already completed features. This helps us view the
product from a more of a big-picture perspective than we might otherwise have.

We receive feedback on the sprint results, which allows us to adapt. We can choose
different features to work on in the next sprint or alter the process we will use to build the next set of
features. In some cases, we might learn that the increment, though it technically fits the bill, isn’t as
good as it could be. When that happens, we can schedule rework for a future sprint as part of our
commitment to iterative development and continuous improvement. This helps overcome the issue
of not knowing up front exactly how many improvement passes we will need. Scrum does not
require that we predetermine a set number of iterations. The continuous stream of feedback will
guide us to do the appropriate and economically sensible number of iterations while developing the
product incrementally.

Plan-driven processes and Scrum are fundamentally different along several dimensions. A
plan-driven, sequential development development process assumes little or no output variability. It
follows a well-defined set of steps and uses only small amounts of feedback late in the process. In
contrast, Scrum embraces the fact that in product development, some level of variability is required
in order to build something new. Scrum also assumes that the process necessary to create the
product is complex and therefore would defy a complete up-front definition. Furthermore, it
generates early and frequent feedback to ensure that the right product is built and that the product
is built right.

At the heart of Scrum are the principles of inspection, adaptation and transparency (referred
to collectively by Schwaber and Beedle 2001 as empirical process control). In Scrum, we inspect
and adapt not only what we are building but also how we are building it.

To do this well, we rely on transparency: all of the information that is important to producing
a product must be available to the people involved in creating the product. Transparency makes
inspection possible, which is needed for adaptation. Transparency also allows everyone concerned
to observe and understand what is happening. It leads to more communication and it establishes
trust (both in the process and among the team members).

Developing new products is a complex endeavor with a high degree of uncertainty. That
uncertainty can be divided into two broad categories:

● End uncertainty (what uncertainty): uncertainty surrounding the features of the final product.
● Means uncertainty (how uncertainty): uncertainty surrounding the process and technologies

used to develop a product.
In particular environments or with particular products there might also be customer uncertainty (who
uncertainty)[2]. For example, start-up organizations (including large organizations that focus on

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 23

novel products) may only have assumptions as to who the actual customers of their products will
be. This uncertainty must be addressed or they might build brilliant products for the wrong markets.

 Traditional, sequential development processes focus first on elimination al end uncertainty
by fully defining up front what is to be built, and only the addressing means uncertainty.

 This simplistic, linear approach to uncertainty reduction is ill suited to complex domain of
product development, where our actions and the environment in which we operate mutually
constrain one another. For example:

● We decide to build a feature (our action).
● We then show that feature to a customer, who, once he sees it, changes his mind about

what he really wants, or realizes that he did not adequately convey the details of the feature
(our action elicits a response from the environment).

● We make design changes based on the feedback (the environment’s reaction influences us
to take another unforeseen action).

In Scrum, we do not constrain ourselves by fully addressing one type of uncertainty before we
address the next type. Instead, we take a more holistic approach and focus on simultaneously
reducing all uncertainties (end, means, customer and so on). Of course, at any point in time we
might focus more on one type of uncertainty than another. Simultaneously addressing multiple
types of uncertainty is facilitated by iterative and incremental development and guided by constant
inspection, adaptation, and transparency. Such an approach allows us to opportunistically probe
and explore our environment to identify and learn about the unknown unknowns (the things that we
don’t yet know that we don’t know) as they emerge.

2.7.5. Prediction and adaptation

When using Scrum, we are constantly balancing the desire for prediction with the need for
adaptation. The five agile principles related to this topic are:

● Keep options open
● Accept that you can’t get it right up front
● Favor an adaptive, exploratory approach
● Embrace change in an economically sensible way
● balance predictive up-front work with adaptive just-in-time work

 These principles make Agile differ a lot from the traditional plan-driven methodologies.
Plan-driven, sequential development requires that important decisions in areas like requirements or
design be made, reviewed and approved within their respective phases. Furthermore, these
decisions must be made before we can transition to the next phase, even if those decisions are
based on limited knowledge.

 Scrum contends that we should never make a premature decision just because a generic
process would dictate that now is the appointed time to make one. Instead, when using Scrum, we
favor a strategy of keeping our options open. Often this principle is referred to as the last
responsible moment (LRM) (Poppendieck and Poppendieck 2003), meaning that we delay
commitment and do not make important and irreversible decisions until the last responsible
moment. And when is that? When the cost of not making a decision becomes greater than the cost
of making a decision. At that moment, we make the decision.

To appreciate this principle, consider this. On the first day of a product development effort
we have the least information about what we are doing. On each subsequent day of the
development effort, we learn a little more. Why, then, would we ever choose to make all of the most
critical, and perhaps irreversible decisions on the first day or very early on? Most of us would prefer
to wait until we have more information so that we can make a more informed decision. As we
acquire a better understanding regarding the decision, the cost of deciding declines (the likelihood
of making a bad decision declines because of increasing market or technical certainty). That’s why
we should wait until we have better information before committing to a decision.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 24

Plan-driven processes not only mandate full requirements and a complete plan, they also
assume that we can “get it right” up front. The reality is that it is very unlikely that we can get all of
the requirements, or the detailed plans based on those requirements, correct up front. What’s worse
is that when the requirements do change, we have to modify the baseline requirements and plans
to match the current reality.

In Scrum, we acknowledge that we can’t get all of the requirements or the plans right up
front. In fact, we believe that trying to do so could be dangerous because we are likely missing
important knowledge, leading to the creation of a large quantity of low-quality requirements.

When using a plan-driven, sequential process, a large number of requirements are
produced early on when we have the least cumulative knowledge about the product. This approach
is risky, and because there is an illusion that we have eliminated end uncertainty. It is also
potentially very wasteful when our understanding improves or things change.

With Scrum, we still produce some requirements and plans up front, but just sufficiently and
with the assumption that we will fill in the details of those requirements and plans as we learn more
about the product we are building. After all, even if we think we’re 100% certain about what to build
and how to organize up front the work to build it, we will learn where we are wrong as soon as we
subject our early incremental deliverables to the environment in which they must exist. At that point,
all of the inconvenient realities of what is really needed will drive us to make changes.

Plan-driven, sequential processes focus on using what is currently know and predicting
what isn’t known. Scrum favors a more adaptive trial-and error approach based on appropriate use
of exploration.

Exploration refers to times when we choose to gain knowledge by doing some activity, such
as building a prototype, creating a proof of concept, performing a study or conducting an
experiment. In other words, when faced with uncertainty, we buy information by exploring.

Our tools and technologies significantly influence the cost of exploration. Historically
software product development exploration has been expensive, a fact that favored a more
predictive, try-to-get-it-right-up-front approach.

Fortunately, tools and technologies have gotten better nowadays and the cost of exploring
has come way down. There is no longer an economic disincentive to explore. In fact, nowadays, it’s
often cheaper to adapt to user feedback based on building something fast than it is to invest in
trying to get everything right up front. Good thing, too, because the context in which our solutions
must exist is getting increasingly more complex.

In Scrum, if we have enough knowledge to make an informed, reasonable step forward with
our solution, we advance. However, when faced with uncertainty, rather than trying to predict it
away, we use low-cost exploration to buy relevant information that we can then use to make an
informed, reasonable step forward with our solution. The feedback from our action will help us
determine if and when we need further exploration.

When using sequential development, change, as we have all learned, is substantially more
expensive late than it is early on. As an example, a change made during analysis might cost $1.
That same change made late during testing might cost $1000. Why is this so? If we make a mistake
during analysis and find it during analysis, it is an inexpensive fix. If that same error is not found
until design, we have to fix not only the incorrect requirement, but potentially parts of our design
based on the wrong requirement. This compounding of the error continues through each
subsequent phase, making what might have been a small error to correct during analysis into a
much larger error to correct in testing or operations.

To avoid late changes, sequential processes seek to carefully control and minimize any
changing requirements or designs by improving the accuracy of the predictions about what the
system need to do or how it is supposed to do it.

Unfortunately, being excessively predictive in early-activity phases, often has the opposite
effect. It not only fails to eliminate change, it actually contributes to deliveries that are late and over

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 25

budget as well. Why this paradoxical truth? First, the desire to eliminate expensive change force us
to overinvest in each phase, doing more work than is necessary and practical. Second, we’re forced
to make decisions based on important assumptions early in the process, before we have validated
these assumptions with feedback from our stakeholders based on our working assets. As a result,
we produce a large inventory of work products based on these assumptions. Later, this inventory
will likely have to be corrected or discarded as we validate (or invalidate) our assumptions, or
change happens (for example, requirements emerge or evolve), as it always will. This fits the
classic pattern of a self-fulfilling prophecy.

In Scrum, we assume that change is the norm. We believe that we can’t predict away the
inherent uncertainty that exists during product development by working longer and harder up front.
Thus, we must be prepared to embrace change. And when that change occurs, we want the
economics to be more appealing than with traditional development, even when the change happens
later in the product development effort. Our goal, therefore is to keep the cost-of-change curve flat
for as long as possible, making it economically sensible to embrace even late change.

We can achieve that goal by managing the amount of work in process and the flow of that
work so that the cost of change when using Scrum is less affected by time than it is with sequential
projects.

Regardless of which product development approach we use, we want the following
relationship to be true: a small change in requirements should yield a proportionally small change in
implementation and therefore in cost (obviously we would expect a larger change to cost more).
Another desirable property of this relationship is that we want it to be true regardless of when the
change request is made.

With Scrum, we produce many work products (such as detailed requirements, designs and
test cases) in a just-in-time fashion, avoiding the creation of potentially unnecessary artifacts. As a
result, when a change is made, there are typically far fewer artifacts or constraining decisions based
on assumptions that might be discarded or reworked, thus keeping the cost more proportional to the
size of the requested change.

Using sequential development, the early creation of artifacts and push from premature
decision making ultimately mean that the cost of a change rises rapidly over time as inventory
grows. When developing with Scrum, there does come a time when the cost of change will no
longer be proportional to the size of the request but this point in time occurs later.

A fundamental belief of plan-driven development is that detailed up-front requirements and
planning are critical and should be completed before moving on to later stages. In Scrum, it is
believed that up-front work should be helpful without being excessive.

With Scrum, we acknowledge that it is not possible to get requirements and plans precisely
right up front. Does that mean we should do no requirements or planning work up front? Of course
not. Scrum is about finding balance, between predictive up-front work and adaptive just-in-time
work.

When developing a product, the balance point should be set in an economically sensible
way to maximize the amount of ongoing adaptation based on fast feedback and minimize the
amount of up-front prediction, while still meeting compliance, regulatory and/or corporate objectives.

Exactly how that balance is achieved is driven in part by the type of product being built, the
degree of uncertainty that exists in both what we want to build (end uncertainty) and how we want
to build it (means uncertainty), and the constraints placed on the development. Being overly
predictive would require us to make many assumptions in the presence of great uncertainty. Being
overly adaptive could cause us to live in a state of constant change, making our work feel inefficient
and chaotic. To rapidly develop innovative products we need to operate in a space where
adaptability is counterbalanced by just enough prediction to keep us from sliding into chaos. The
Scrum framework operates well at this balance point of order and chaos.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 26

3. Technologies and Architecture

3.1. JavaScript

This project uses JavaScript both on the front-end and on the back end. JavaScript is a scripting
programming language that is used mainly on the web, and it is the main programming language
ran by the browsers.

JavaScript is a prototype-based, multi-paradigm scripting language that is dynamic, and
supports object-oriented, imperative, and functional programming styles. It was created in 1995 in
order to add some programming logic in the web pages displayed in Netscape Navigator browser.

After its adoption outside of Netscape, a standard document was written to describe the
way the JavaScript language should work to make sure the various pieces of software that claimed
to support JavaScript were actually talking about the same language. This is called the ECMAScript
standard, after the Ecma International organization that did the standardization. In practice, the
terms ECMAScript and JavaScript can be used interchangeably—they are two names for the same
language.

There have been several versions of JavaScript. ECMAScript version 3 was the widely
supported version in the time of JavaScript’s ascent to dominance, roughly between 2000 and
2010. During this time, work was underway on an ambitious version 4, which planned a number of
radical improvements and extensions to the language. Changing a living, widely used language in
such a radical way turned out to be politically difficult, and work on the version 4 was abandoned in
2008, leading to the much less ambitious version 5 coming out in 2009. We’re now at the point
where all major browsers support version 5 and version 6 is in the process of being finalized, and
some browsers are starting to support new features from this version.

Web browsers are not the only platforms on which JavaScript is used. Some databases,
such as MongoDB, which will be used for this project, and CouchDB, use JavaScript as their
scripting and query language. Several platforms for desktop and server programming, most notably
the Node.js, which again will be used for this project, are providing a powerful environment for
programming JavaScript outside of the browser.

Using JavaScript both on the client and on the server has many advantages. First of all, the
same libraries can be used on both ends, which makes us, the developers, feel familiar with the
code on both sides. Also, code that has the same functionality on the server can be reused in the
browser and vice versa. In addition to that, communication between the client and the server is
made easy, by transferring JSON objects, which are natively supported by JavaScript.

JSON, the data format that will be used in our application, stands for JavaScript Object
Notation. JSON objects is a human readable format of text for data transmission, like XML. They
resemble JavaScript objects, but of course do not support methods. It was created for JavaScript
but now it is language independent data format.

3.2. Node.js

Node.js is many things, but mostly it’s a way of running JavaScript outside the web browser.
Node.js allows this popular programming language to be applied in many more contexts, in
particular on web servers. There are several notable features about Node.js that make it worthy of
interest. Node is a wrapper around the high-performance V8 JavaScript runtime from the Google
Chrome browser. Node tunes V8 to work better in contexts other than the browser, mostly by
providing additional APIs that are optimized for specific use cases. For example, in a server context,
manipulation of binary data is often necessary. This is poorly supported by the JavaScript language
and, as a result, V8. Node’s Buffer class provides easy manipulation of binary data. Thus, Node

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 27

doesn’t just provide direct access to the V8 JavaScript runtime. It also makes JavaScript more
useful for the contexts in which people use Node.

V8 itself uses some of the newest techniques in compiler technology. This often allows
code written in a high-level language such as JavaScript to perform similarly to code written in a
lower-level language, such as C, with a fraction of the development cost. This focus on performance
is a key aspect of Node. JavaScript is an event-driven language, and Node uses this to its
advantage to produce highly scalable servers. Using an architecture called an event loop, Node
makes programming highly scalable servers both easy and safe. There are various strategies that
are used to make servers performant. Node has chosen an architecture that performs very well but
also reduces the complexity for the application developer. This is an extremely important feature.
Programming concurrency is hard and fraught with danger. Node sidesteps this challenge while still
offering impressive performance.

To support the event-loop approach, Node supplies a set of “nonblocking” libraries. In
essence, these are interfaces to things such as the filesystem or databases, which operate in an
event-driven way. When you make a request to the filesystem, rather than requiring Node to wait for
the hard drive to spin up and retrieve the file, the nonblocking interface simply notifies Node when it
has access, in the same way that web browsers notify your code about an onclick event. This model
simplifies access to slow resources in a scalable way that is intuitive to JavaScript programmers
and easy to learn for everyone else.

Although not unique to Node, supporting JavaScript on the server is also a powerful
feature. Whether we like it or not, the browser environment gives us little choice of programming
languages. Certainly, JavaScript is the only choice if we would like our code to work in any
reasonable percentage of browsers. To achieve any aspirations of sharing code between the server
and the browser, we must use JavaScript. Due to the increasing complexity of client applications
that we are building in the browser using JavaScript (such as Gmail), the more code we can share
between the browser and the server, the more we can reduce the cost of creating rich web
applications. Because we must rely on JavaScript in the browser, having a server-side environment
that uses JavaScript opens the door to code sharing in a way that is not possible with other server-
side languages, such as PHP, Java, Ruby, or Python. Although there are other platforms that
support programming web servers with JavaScript, Node is quickly becoming the dominant platform
in the space.

Aside from what you can build with Node, one extremely pleasing aspect is how much you
can build for Node. Node is extremely extensible, with a large volume of community modules that
have been built in the relatively short time since the project’s release. Many of these are drivers to
connect with databases or other software, but many are also useful software applications in their
own right.

The last reason to celebrate Node, but certainly not the least important, is its community.
The Node project is still very young, and yet rarely have we seen such fervor around a project. Both
novices and experts have coalesced around the project to use and contribute to Node, making it
both a pleasure to explore and a supportive place to share and get advice. [4, 3]

In our application we chose to use node because there will be a big part of the logic on the
front-end, written in JavaScript, so having to write the back-end in JavaScript as well, is much more
convenient. Also, for the purpose of the thesis, we wanted to learn a new technology and
experiment with it, so node.js was the right choice.

3.3. Express

Express is a node.js framework that includes a small set of common web application features, kept
to a minimum in order to maintain the node.js style. It is built on top of the Connect (which is a
middleware) and makes use of its middleware architecture. Its features extend Connect to allow a
variety of common web applications’ use cases, such as the inclusion of modular HTML template

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 28

engines, extending the response object to support various data format outputs, a routing system,
and much more. [5, 1129]

When express is used, it helps you have a better project structure, proper configurations
and it also helps you break the application logic into different modules. Express organizes the
routes of the application as well, using methods for every request type (get, post, put, delete). In the
application we will have one file where all the routes will be declared, making it easier to manage.
This is where the RESTful API will be formed.

3.4. MongoDB

MongoDB is an open-source document database that provides high performance, high availability,
and automatic scaling.

A record in MongoDB is a document, which is a data structure composed of field and value
pairs. MongoDB documents are similar to JSON objects. The values of fields may include other
documents, arrays, and arrays of documents.

The advantages of using documents are:

● Documents (i.e. objects) correspond to native data types in many programming languages.
● Embedded documents and arrays reduce need for expensive joins.
● Dynamic schema supports fluent polymorphism

MongoDB provides high performance data persistence. In particular,

● Support for embedded data models reduces I/O activity on database system.
● Indexes support faster queries and can include keys from embedded documents and

arrays.
● High Availability

MongoDB has the same concept of a database with which you are likely already familiar.
Within a MongoDB instance you can have zero or more databases, each acting as high-level
containers for everything else.

A database can have zero or more collections. A collection shares enough in common with
a traditional table that you can safely think of the two as the same thing. Collections are made up of
zero or more documents. Again, a document can safely be thought of as a row. A document is
made up of one or more fields, which are a lot like columns.

Indexes in MongoDB function mostly like their RDBMS counterparts. Cursors are different
than the other five concepts but they are important enough, and often overlooked, that I think they
are worthy of their own discussion. The important thing to understand about cursors is that when
you ask MongoDB for data, it returns a pointer to the result set called a cursor, which we can do
things to, such as counting or skipping ahead, before actually pulling down data. [6, 4]

One of the main reasons we chose MongoDB is that it uses a data format named BSON
(Binary JSON), which resembles json and JavaScript objects. In this way, we avoid converting our
data in order to store them in the db, as JavaScript dates, key-value objects, JavaScript arrays, are
all accepted without any conversions. Also, MongoDB has very good drivers and support by the
Node.js community. We will use one plugin named “mongoose” in order to handle models and
queries for MongoDB.

3.5. LESS

Less is a dynamic style sheet language that can be compiled into CSS, or can run on the client-side
and server-side. Less is influenced by Sass and has influenced the newer "SCSS" syntax of Sass,
which adapted its CSS-like block formatting syntax. Less is open source. Its first version was written

https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Sass_%28stylesheet_language%29

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 29

in Ruby, however in the later versions, use of Ruby has been deprecated and replaced by
javascript. The indented syntax of Less is a nested metalanguage, as valid CSS is valid Less code
with the same semantics. Less provides the following mechanisms: variables, nesting, mixins,
operators and functions. The main difference between Less and other CSS precompilers being that
Less allows real-time compilation via less.js by the browser.

We will compile less on the browser while the application works in development mode, in
order to avoid compiling it often. Later we will use grunt tasks that will compile less to CSS on the
server-side, in order to avoid the compilation time in every request.

3.6. JADE

JADE is a template engine used by node and the express framework that we will use. It generates
HTML documents dynamically, and it injects variables inside, and also supports conditions, loops
and nesting templates into other templates.

We will use JADE for the core of the application, so that only the main page will be written
in it, because AngularJS will handle the variables, loops and conditions in the page, since we want
live updates in the data. The templates that AngularJS will use will be plain HTML documents, there
is no need to compile them from JADE.

3.7. AngularJS

Back in 2009, while building their JSON as platform service, developers Misko Hevery and Adam
Abrons noticed that the common JavaScript libraries weren’t enough. The nature of their rich web
applications raised the need for a more structured framework that would reduce redundant work
and keep the project code organized. Abandoning their original idea, they decided to focus on the
development of their framework, naming it AngularJS and releasing it under an open source
license. The idea was to bridge the gap between JavaScript and HTML and to help popularize
single-page application development. [5, 2915]

AngularJS is a front-end JavaScript framework designed to build single-page applications
using the MVC architecture. The AngularJS approach is to extend the functionality of HTML using
special attributes that bind JavaScript business logic with HTML elements. The AngularJS ability to
extend HTML allows cleaner DOM manipulation through client-side templating and two-way data
binding that seamlessly synchronizes between models and views. AngularJS also improves the
application’s code structure and testability using MVC and dependency injection.

The core module of AngularJS is loaded with all the tools needed to create an application.
The angular global object contains a set of methods that can be used to create and launch our
application. It also wraps a leaner subset of jQuery, called jqLite, which enables Angular to perform
basic DOM manipulation. Another key feature of the angular object is its static methods, which can
be used in order to create, manipulate and edit the basic entities of the application, including the
creation and retrieval of modules.

With AngularJS, everything is encapsulated in modules. Whether you choose to work with a
single application module or break your application into various modules, your AngularJS
application will rely on at least one module to operate. This core module is usually called application
module. The method “module” attached to the angular object, is used in order to retrieve and create
modules, and set its dependencies. Our application is relatively small, so we will use just one
module, the application module, for the whole application.

The AngularJS team has decided to support the continuous development of the framework
by breaking Angular’s functionality into external modules. These modules are being developed by
the same team that creates the core framework and are being installed separately to provide extra
functionality that is not required by the core framework to operate. We will use the “router” external
module that we will use in order to create all the routes in the front-end of the application.

https://en.wikipedia.org/wiki/Operator_%28programming%29
https://en.wikipedia.org/wiki/Operator_%28programming%29

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 30

In the same way the AngularJS team supports its external modules, it also encourages
outside vendors to create third-party modules, which extend the framework functionality and provide
developers with an easier starting point. We will use an external module in order to create charts in
the “statistics” section of our application.

One of the most popular features of AngularJS is its two-way data binding mechanism.
Two-way data binding enables AngularJS applications to always keep the model synchronized with
the view and vice versa. This means that what the view renders is always the projection of the
model.

Most templating systems bind the model with templates in one direction. This is also the
case with the JADE template engine that we will use only for the core of the application, because
we need the two-way data binding that AngularJS provides, for the rest of the application.
AngularJS uses the browser to compile HTML templates, which contain special directive and
binding instructions that produce a live view. Any events that happen in the view automatically
update the model, while any changes occurring in the model immediately get propagated to the
view. This means the model is always the single source of data for the application state, which
substantially improves the development process.

A dependency injection is a software design pattern popularized by a software engineer
named Martin Fowler. [5, 2962] The main principle behind dependency injection is the inversion of
control in a software development architecture. This principle helps the developers create code and
modules that are more testable.

4. Requirement Analysis

4.1. Term Definitions

4.1.1. Activities

I will refer to the performances of the athletes at competitions as activities. They will have several
parameters such as the performance, the discipline, the date, the location of the event, the name of
the event, the place the athlete got in the event, notes, and whether it is a private activity or not.

4.1.2. Statistics

The diagrams that show statistics of the athletes’ performances through time and the respective
section of the application will be referred to as “statistics”.

4.1.3. Discipline

A discipline is the sport that an athlete does. An athlete, as user of the application, has a main
discipline, the discipline that they prefer and possibly have most records of.

4.1.5. Filtering

Filtering would be the process of narrowing down the results of the activities or the data that are
used in order to create the statistics. Filtering may be applied by discipline or by date.

4.2. Functionality

The final version of the application should be a fully functional tool for the athletes, with all the
settings and functionalities that will make the process of tracking their progress easy and satisfying.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 31

Before designing the application, the requirements of the sections and the overall functionality is
defined.

4.2.1. Login

As the application will be accessed by individual users, there should be a login section. Since an
email address is needed in many cases by the application, the login credentials are an email
address and a password, avoiding unnecessary values like usernames. The login section should
create a session for the user and keep them logged in, until they decide to logout. It should also be
simplistic and look similar to the registration section. There should also be a link to the “Forgot
password” section.

4.2.2. Register

There should be a section where the users can create their accounts. The registration section
should be simple, look like the login section and after a validated registration, records of the new
users should be added to the database. The required fields of the registration section should be
five: a first name, a last name, an email, a password and the same password repeated for safety
reasons. The first name and the last name are required because they should be displayed in the
user’s profile which makes the user easier to find and be recognised by other users. They also
make the application feel more personal, which may work as a self inspiration for their progress.
The email is used for the registration process and for email notifications. The password is used for
the login process and it should repeated in order to avoid typographical errors.

4.2.3. Email validation

The email address that the user submitted during the registration process should be validated.
Right after they have registered, an email should be sent to the given address, providing a unique
link, created specifically for this user. If they click on this link, the application can assume that it was
clicked from the existing email address of the user, that they have access to that address, and
therefore it will complete the registration process, allowing the user to use the application. After the
validation of the email address, the user should be immediately logged in, since there is no reason
to ask for the password when the link is clicked in the user’s own email client.

4.2.4. Automatic detection of user’s preferences

When the user logs in for the first time (after their email address has been validated), some
preferences should be preselected. The country of the user should be detected and, using this
information, the “country” setting and the “unit system” setting, should be preselected by the name
of the country of the user and the unit system that is used in this country respectively, and they
should be saved as the default settings of their account.

Also, the profile will be private by default, meaning that other users won’t be able to access
it at all. This will be preselected for all users after registration.

When these settings get set automatically, a notification will be showing the values of these
settings to the user, stating that if these settings are not correct or if the user wants to change them,
they can visit the settings page and do that manually, and a link of that page should be provided in
the notification.

4.2.5. Forgot password

Following the “Forgot password” link should lead the users to a page where they can enter their
email address, making a request for a new password. After submitting the form, an email should be

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 32

sent to the given email address and that email should include a unique link to a page where the
user can enter a new password and repeat it once for safety reasons. After submitting this form, the
password of the user should have changed to the new one and the user should be logged in without
using the login form.

4.2.6. Profile

The profile should be the main section of the application. The registration process and the login
process should lead here. In this section, the profile data of the user should be visible and the
activities can be created, deleted, edited, and they can be shown and filtered.

The profile section should display the user’s profile picture, the first and last name, the
discipline and the country. There should also be a list of all the activities previously submitted, which
should be editable and deletable, and a form to submit new activities. There should also be a way
to filter the activities shown in the list.

4.2.7. Add activity

In the profile page, it should be possible to create new activities. There should be a form where a
user can select their discipline, and according to their selection, several more fields should appear.
In case the user has chosen a main discipline in the settings, that discipline should be preselected.

There should be one or multiple fields that accept the user’s performance. Other fields
needed are the date of the activity, a field showing whether the activity is training or not, a field
showing the location it took place, a text area for notes, and if the activity is a competition, there
should also be fields of the name of the competition and the place that the athlete came.

Since the form is big for the page, and not always needed, the fields should be hidden,
when the page is accessed, and the should be shown when the user clicks on the “add activity”
option. When the user has submitted the form, the form should close again and the new activity
should be added to the list of the activities, in the correct place, according to the date of the activity.

4.2.8. Edit activity

Each activity in the list, in the profile page, should have a way to make the activity editable. The
activity should turn into a form, similar to the one that is used to submit new activities, and the data
of the activity should be in the appropriate fields. The user should be able to change the values and
submit the form. After the form is submitted, the activity should change to its initial state, not
editable anymore, with the new data.

4.2.9. Delete activity

In a similar way that an activity can be turned to editable, an activity should be deleted. When the
user chooses to delete an activity, a confirmation message should be shown, and if the user
confirms the deletion, the activity should be removed from the list. Otherwise, the message should
disappear and the list should remain intact.

4.2.10 Activity filtering

It should be possible to filter the activities in the profile. There should be a way to display all the
activities or the activities of only one discipline.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 33

4.2.11. User search

When a user is logged in, on every page of the application, there should be a field that can be used
in order to search for others who use the application. The search should require a first name or a
last name or both, the server should search for the users on every user’s key press, and the top five
results should be displayed right below the search area. Clicking on one of the results should lead
the user to the profile of the selected user.

4.2.12. Visiting profiles

Users should be able to visit the profiles of other users, when they are not private. The profile
should have the same interface as when its owner visits it, but there should not be any options to
add, edit or delete activities. The whole form used to add activities should be missing, and the
options to remove or edit individual activities should not appear on them as well. There should still
be a way to filter the activities. Also, in the same way, the statistics of the user should be available
for visiting.

4.2.13. Statistics

The data entered in the profile should be displayed as graphs in the “statistics” section. The graphs
should have the performance on the y axis and the dates on the x axis. There should be a way to
change the discipline shown in the graph and there should be a way to focus on a certain timespan.

4.2.14. Profile settings

There should be a section where the settings and the information that will appear in the profile can
be edited. The section of the profile settings, should have as editable fields the user’s first name,
last name, main discipline, gender, birthday, country, profile picture, privacy and a short text about
themselves.

Changing the first name, last name, profile picture, country or discipline, should change the
relevant information in the profile page. Also, changing the first and last name should change the
way that particular user can be found using the search functionality. The old first and last name
shouldn’t be used as search parameters anymore.

Changing the privacy of the profile to public should make the profile visible to others, while
changing it to private should remove it from the search results and visiting that profile by its url
should show a page stating that this profile does not exist.

4.2.15. Account settings

In the same page as the profile settings, there should be a section with editable fields that affect
values related to the user’s account. These are the password, the language, the date format, the
system of measurement and the url of the user’s profile.

When the user selects to change the password, three fields should appear, one that will
require the old password, and two that will require the new one for safety reasons. Entering the
correct old password and the exact same password twice as a new password, should immediately
take effect.

Changing the language setting should change the language used for the whole interface of
the application. The value preselected when the user first accesses the application, should be the
default language of the user’s country. The files of the translated values should be separated from
the rest of the application, so that changes applied to them will affect all occurrences of the value
throughout the application.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 34

The date format input should have two options: day-month-year and month-day-year.
Changing this setting should change they way the dates are shown throughout the application, even
when visiting profiles of other users, regardless of their settings.

There should be two systems of measurement, the metric and the imperial. A user should
have one of them preselected after registration, based on the country they live in. All the units
should be displayed in the selected system, even the units shown in other profiles.

The initial url of a user’s profile should be the user’s id in the database. In the account
settings, can be set a new url for the profile, one that a user can choose. Changing the url shouldn’t
make the profile inaccessible by the user’s id.

4.2.16. Privacy

Privacy should be split into two sections, profile privacy and activity privacy. Setting a profile to
private, makes the profile visible only to its owner. It should not appear in the search results and
when it will be visited by its URL, it should display a message stating that the profile was not found.
Accessing an activity of a private profile by using the API should fetch no data.

When a profile is public, activity privacy should apply. Each of the activities should be either
public or private. Private activities should be visible only to its owner, and the other users shouldn’t
be able to see them on the profile page or access them using the API. The public activities should
be visible by anyone who can view that user's profile, including the users who are not currently
logged in.

4.2.17. API

The API should be RESTful and the application itself should use it. It should mainly interact with the
user and activity entities. The GET method should be used for getting data, POST for creating new
data, PUT for updating data and DELETE for deleting data.

4.2.18. Responsive design

The application should be displayed correctly on desktop computers and tablets, both in portrait and
landscape mode. The controls should be easily accessible for both platforms and the interface
should be change in order to adapt to each screen, and possible hide or collapse features in
smaller screens.

4.3. Devices

4.3.1. Desktops

The user interface of the application should adapt to the screens of almost all devices. On desktop
computers and laptops with medium and large screens, it should reach its maximum size (around
1000 pixels) and not expand more than that. All the elements of the application should occupy
100% of the width of that size, so that there is no empty space.

4.3.2. Tablets

On tablets and laptops with small screens, the width of the application should match the width of the
screen. All the options and the features should be available but possible some of them can be
grouped into a single option that has to be activated in order to reveal the full set of options, in order
to save some space. It should work on both landscape and portrait mode.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 35

4.3.3 Mobile

On mobile phones, the width of the application should match the width of the screen again, and the
features should be reduced to the minimum required just for user input. Parts of the application (for
example the section of the statistics) should not be available at all. Options should be grouped in
order to save space and the application should work in both landscape and portrait mode.

4.3.4. Wearables (Usage of API)

Wearable devices should be able to access the application using the available API. All the features
regarding manipulating the data of the activities, should be available using the API, so that users
can track their performances using the sensors of their device.

5. Development Process

5.1. Sprint 1

5.1.1. Aim

In this sprint, there will be a requirement analysis, analysis of the technologies that should be used,
prototypes will be designed and mockups. No code will be written but everything will be prepared in
order to start the next sprint by developing the actual application. This sprint should have a duration
of one week.

5.1.2. Requirement Analysis

The application should help track and field athletes, keep track of their performances and visualise
their data in a way that they can find out how much they have improved and extract additional data
in an easy and fast way. Therefore there are some feature that the application should definitely
have and some others that can improve the users’ experience and the interaction of each user with
the other users. We will use the agile development method, so while the application is being
developed, we will be getting feedback from the users and change the requirements accordingly.

The most important feature is the form where users can create, edit and delete activities.
The activities are the main data that the application will handle, so this form should be easy to
complete so that users can generate data in the application often and without hesitation. This raw
data will be the source of all the visualisations and diagrams in the application. So another
important feature that should be implemented are the diagrams. The should use the data inserted
by the user and display line charts of time spans selected by the user. They should also filter data
by discipline. Apart from the diagrams, the profile page should show a list of all the activities that
should also be filtered by discipline or year of the activity.

There will be social features so the profile should resemble that of a social network. There
should be a profile picture, search input that searches for users, the profile and the individual
activities should be set to private, hiding them from the other users and also the diagrams of the
users who have their profiles set to public, should be accessible.

An API should be implemented. The client of the application should use it but also it should
allow other, future platforms for the client, to access it. All the operations for creation, editing and
deletion of activities and user management should happen using the restful API.

The agile development method is flexible towards requirements which are likely to change,
and the analysis for the first sprints of the project should be done only for the features that will be
implemented in the few next sprints. In this sprint we will discuss the requirements that will likely be

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 36

the foundations for the upcoming features, so they will include ideas that may affect the way
features are implemented in the future.

The most important feature that should be implemented in the next sprints is the page
where the athlete can record and view their activities. This is the core feature of the application.
Without activities, there is no content and the application offers nothing to the user. Therefore, the
feature that should be implemented in the next sprint, as a prototype, is the way that athletes will
record their activities.

Another important feature is the user as an entity in the application. There should be a
system for creating users and a system that discerns individual users that use the application,
namely, a registration and a login system with user sessions.

Both features require records in the database, so the design process should include the db
schema and its interaction with the application.

When the prototype is ready, the core features should be enhanced and more features
should be added in the next sprints.

Apart from the features, the architecture, the technologies and the frameworks that will be
used will be decided in this sprint. For the front-end, we chose AngularJS, because it’s a framework
that represents data in the ui in a very convenient way. It’s fast and it updates its values
automatically, something that is needed for an application like ours. The models that can be used in
AngularJS can match the models that I will use on the server, making it even more appropriate for
our use-case.

For the server, we will use node.js, a server that runs JavaScript. The framework we chose
to use is called Express. It makes managing the requests, sending responses, managing sessions
and combining all the other modules, an easy job. In combination with express, I will use Connect, a
middleware that handles user sessions.

For the models and the queries to the database, I will use Mongoose, as it can be used in
order to define objects that will keep our database schema consistent, it’s queries are similar to the
native MongoDB queries and it’s extensible. Consequently, we will use MongoDB as our database,
which is a NoSQL database that stores BSON objects. Since the whole application will be written in
JavaScript, storing our data as BSON objects will make things really easy, as we won’t have to

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 37

convert types while retrieving or inserting data. We will store the sessions in the memory.

Fig 5.1.1 System Architecture

5.2. Sprint 2

5.2.1. Sprint planning

The features that should be implemented in this sprint are the login page, the registration page, the
profile page that allows only creating new activities and simple graphs. I will set the fields for the
users and the activities in the database and I will create the server logic for the login and
registration functionality, that will also keep the sessions of the users on the server. Then I will
create the routes and the functionality for activity creation and retrieval. I will also add a route for the
graph, that will just serve the markup.

In order to have the complete functionality, on the front-end, a colleague will implement the
functionality and the user interface for all these screens, including the statistics page, that doesn’t
have any functionality on the server, it only displays some basic graphs, using the data of the
activities from the API.

This sprint can be split in 4 stories: the login functionality, the registration functionality, the
activities API and sending markup for the 4 pages (login, register, profile, statistics).

The server, should expect from the registration page five parameters: the user’s first name,
last name, email address, password and the password one more time for verification. The first
name and last name values should have only characters and no symbols. The email address
should have a valid format and there should be no other such email in the database. The
passwords should be at least 6 characters long and they should match.

Nothing more should be implemented regarding the registration process at this time. After
registering successfully, the user should be redirected to the profile page. The user’s submitted
data should be stored in the database as they were given, apart from the passwords which should
be encrypted with the sha-1 hash function.

For the login process, the email address and the user’s password should be asked. These
two pieces of information should match a record in the database in order to let the user login,
otherwise, a message should be shown, stating that the credentials were wrong. After submitting
the credentials successfully, a session should be created for the users, which should be stored in
the memory for the time being, and a cookie should be sent to the browser, allowing the user to
browse the private pages without any other authentication.

Sending the markup for the four pages is fairly simple, there will be four routes that will
compile jade files and send html to the client. There should be no data from the server on the files,
as all the variable will be populated by AngularJS on the front-end.

The API that manages the activities should only support two methods, GET and POST. The
resources should be on the route /user/{user_id}/activities. A GET request on this route will fetch all
the activities of the user with the given user_id, and if an id is given for an activity, only that activity
should be fetched. An example route is GET /user/5/activities/10, which should fetch the activity
with id 10 of the user with id 5. When a POST request is made on the resource route, a new activity
should be created, according to the posted data. Whenever the API is accessed, the user should be
authenticated by their session data. Also, when a user posts an activity, the posted data should be
validated before they get stored in the database.

5.2.2. Stand up

Starting from the registration section, the user will have to fill in 5 fields, first name, last name, email
address, password and repeat password. Then these fields are submitted, a POST request is

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 38

made, on the route /register. The server then checks the validity of the values. If they are not valid,
the same markup should be sent back to the browser with messages that will help the user enter
the correct values next time. If they are valid, the first_name, last_name, email and the password,
hashed by the sha256 algorithm, are stored in the database. There are two tables where the users’
data is stored, the “users” table which stores data that is related to the user’s account, and the
profile table, which stores data related to the users’ profile pages. The first name and last name
values will be stored to the profile page, while the email address and the password will be stored in
the users table. Since there is no email validation, a session is created in the memory of the server,
and a cookie with the session id is sent back to the client.

The user should be authorised to access the profile and statistics page, plus the routes that
fetch and alter the activities. The sessions are stored in memory, using the middleware named
“connect”. Whenever a request is made to the server that includes the cookie data, the server will
be able to check if the session data in the cookie is the same as the data in the memory and verify
the user as logged in. Otherwise, it should redirect them to the login page.

The login page should have two fields, email and password. When the user submits the
form, the server should get the posted data, hash the password with the sha1 algorithm and
perform a query, searching for a record in the “users” table, that corresponds to this data. If a result
is not found, the server should return a message, stating that the credentials entered are wrong. If a
match is found, a session should be created, cookie data should be sent to the browser and the
user should be redirected to the profile page.

When the user requests the profile page, the data from the table of the database “profile”
(first_name, last_name for the time being) should be sent to the browser, personalizing the page.
Then, when the front end framework loads, it will request the activities of the user, from the API
route /users/{user_id}/activities. The table “activities” should be queried and the activities with the
user’s id should be fetched and returned to the client as a JSON object.

A big problem that will also be faced is the validation of the activities when they get posted
to the server. In the application, activities will be categorised by the performance unit, so there will
be three categories. The first category includes the disciplines which are races and therefore they
are measured with time. The second category includes the disciplines, the performances of which
are measured by distance, like high jump or javelin. The last category includes the disciplines that
are measured by points, like the decathlon.

When a user posts an activity, the first step of the validation process would be to check if
the posted discipline is a valid discipline. Then, based on the type of the discipline, the performance
should be checked for validity. Performance counted in points should be an integer number,
distance should be a float number and time should be a string. The last accepted and required
value when posting an activity is the date, which should also be validated for its format and it should
not be a future date. Then it should be formatted to the format that the database accepts.

After the validations have passed and the activity is considered valid, a new record should
be created in the “activities” table, with all the posted data plus the user’s id. A JSON object with the
formatted activity data should be returned to the clients, in order to update the view with the new
activity. In case the data is not well formatted or not valid, a message should be sent to the client
stating where the error is located. In this sprint, the activities can not be deleted or edited.

The last feature that will be implemented is the page of the graph. The server side of this
page just queries the database for the activities of the user and sends them to the client in order to
be rendered as graphs.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 39

5.2.4. Diagrams

Fig 5.2.1 Login - Activity diagram

Fig 5.2.2 Register - Activity diagram

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 40

Fig 5.2.3. Profile - Activity diagram

5.2.5. Sprint review

This sprint took a bit more time than expected, as I wasn’t very familiar with node, but in the end, all
the required features were implemented. As a developer, I became more familiar with MongoDB
database and with the node.js server, particularly with the callbacks and the non-blocking style of
the server. This is a good starting point for the project, as the database has been set up and the
most basic features have already been implemented, so functionality can be added just by working
on the existing features.

5.3. Sprint 3

5.3.1. Sprint planning

In this sprint, an essential feature that should be implemented is the deletion and editing of the
existing activities. Also, a new section of the application should be created, the settings page,
where the user can personalise more his profile page, change his user and contact data and also,
in a later sprint, manage the privacy of their profile.

Editing an activity should happen on the activity itself. The element that represents the
activity in the client should have an icon, indicating that the activity is editable, which will change the
data of the activity to input fields when clicked. When the form is submitted, the changes should be
sent to the server and the client should update the activity element with the new data.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 41

There should also be an element that when clicked, will delete the activity, by sending a
delete request to the server and then updating the client. Also there should be a pop up, asking the
user to verify their action of deletion, protecting the activities from being deleted by mistake.

The settings page should allow the user to change their first name, last name, biography,
main discipline, country, profile picture and password. More options will be added in another sprint.
Changes made to the first name, last name, main discipline and profile picture, will affect the data
visible in the profile immediately. All the data should be edited inline, on the form itself, made
editable by clicking an icon, similar to the one used for editing the activities.

5.3.2. Stand up

When the user has submitted the changes to an activity, the data should be parsed and validated
by the server, the same way they are validated when a new activity is being created. The request
should be a PUT request this time, and not a POST request which is the case in the activity
creation. Also, the activity_id value of the existing activity that should be edited should be included
in the data sent. After the values have been validated, a query should find the existing record and
change all the values according to the new data. If everything goes as expected, a JSON object
should be sent back to the client, which will update the view. If something goes wrong, a message
should be sent, stating where the error happened, and if the data was not valid, the user should be
prompted to correct the data in the form.

Clicking the icon that deletes the activity, and confirming the action in the pop up, should
send a DELETE request to the server, along with the id of the activity that should be deleted. The
server should check if the activity exists, and if it does, it should delete the activity from the
database. If everything goes well, a JSON object should be sent back to the client, so that the view
can be updated, removing the element that represented the activity. If there was an error in the
process, an error message should be sent.

Both actions of editing and deleting activities, should be validated by the server, regarding
user permissions. Users can only edit and delete their own activities, so the id of the user to whom
the activity belongs should match the id of the user in the user’s session and cookie. If the user tries
to edit or delete an activity that doesn’t belong to them, the server should not proceed with the
requested action and no message should be sent back to the browser, as these actions are not
permitted using the interface, so the user has used other means to do achieve it.

The settings page is actually a big form with data that should always be validated by the
server. New fields should be added to the database. In the table “profile” the fields “biography”,
“country”, “main_discipline”, “profile_pic” should be added, and the model for the profile in
mongoose should be changed accordingly. Each field should have its own validation rules. The
rules for validating the first name and last name are the same as the rules for their validation in the
registration page. The first name and last name should only allow latin characters, apostrophes and
spaces. The biography should accept any text but the number of total characters should be limited.
The limitation should be stored in a config value in the application so that it can be easily found and
changed, depending on the specifications.

The main discipline should have the same accepted values as the disciplines in the profile
page. There should be a list of valid countries in the server, that will be used in order to validate the
user’s country choice. The password should be validated based on the validation rules that were
used during the registration process and there should be a second field, ensuring that the user has
entered the password that they intended to use.

Uploading a profile picture is a different process than posting the rest of the data in the
form. There should be several steps that should be followed during the upload process. First the
MIME type and the file extension should be checked, in order to verify the file type. Only jpeg and
png files should be accepted. Then the file size should be checked. If the image is too big, it should
be rejected. The user is allowed to have only one profile picture, so if there is another picture

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 42

posted by them, it should be deleted. Then the new file should be renamed to be the user’s id, for
fast file retrieval. Then the image should be copied to the file system of the server, the path to the
file should be stored in the database, in the profile table and a json object should be sent back to
the client, stating the the process was completed successfully. If something went wrong, a detailed
error message should be sent to the client. When a new profile picture is uploaded, the image
preview and the image in the profile should be refreshed, and the new image should be shown.

There is no need to validate the user in the settings page, as the users can not view the
settings page of the others users. The user_id of the values is automatically set to the id of the user
in the session. After all the validations, messages should be sent stating if the process was
completed successfully or not.

This sprint doesn’t have very difficult parts, apart from the image upload which had to be
planned carefully. The validations of the fields are not hard to be implemented but they require a lot
of time and testing in order to get them right. Also some of the limitations in user input should be put
in configuration files in the server, for consistency across the application.

5.3.3. Diagrams

Fig 5.3.1. Settings - Activity diagram

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 43

Fig 5.3.2. Edit activity - Activity diagram

Fig 5.3.3. Delete activity - Activity diagram

5.3.4. Sprint review

This sprint was relatively easy to do, but there was a lot of content that should be written, so it was
still time consuming. The only challenge was the file uploading process, for which, the fs library of
node was needed. The page of the profile is almost complete. Now users can create and manage
activities, so the application is functional and can be released. From this sprint and on, the
application can be released in the end of the sprint, as it can help the users in some way, every
time with more tools and functionality, which is the idea behind the agile methodology.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 44

5.4. Sprint 4

5.4.1. Sprint planning

In this sprint, more data about the activities will be introduced and there will be functionality for its
manipulation and display. Specifically, that data will be, the user’s location, the date of the activity,
the name of the competition, the place the athlete got in the competition and some notes. These
data should be posted when the activity is being created and there should be a way to alter them
later. Also, all this information should be available when displaying the list of the user’s activities
and the date of the activity should be used for sorting and filtering that list.

The main challenge that will be faced in the sprint is the validation of the posted data. Also,
the date should be a required field, along with the performance and the discipline.

5.4.2. Stand up

New activity entries should be added in the database with POST requests. The most important
piece of information in this sprint, is the date of the activity, and many upcoming features will be
based on it. When a date is posted, it should be checked in order to make sure that it’s a valid date,
and then it should be stored in the database as a date object. When it will be returned to the client,
it should be sent as a timestamp as well, since it is UTC time and therefore not related to any
timezones.

In order to make sure that the date has a format that is not related to time zones, so that
other users can read it correctly in other countries, the date should be converted to a unix
timestamp. When the timestamp is sent to the server it should be checked for validity. It should not
be a future date and it should be a valid timestamp. Then it should be converted to a javascript date
object and it should be stored in the database.

Almost all the other data are just string values that do not need special manipulation. They
can also be omitted without causing any problems. The user’s location, the name of the
competition, and the notes can be stored as they are, by just escaping all the characters that can
lead to cross-site scripting attacks. The place that the user got in the competition should be parsed
as an integer number, even when values like “1st” or “2nd” are posted. If the values can not be
parsed as integers, the process of storing the data should stop and an error message should be
sent back to the client indicating that the submitted data was invalid. After creating the new activity,
its data, as it’s formatted in the server, should be returned to the client which should create a new
HTML element in order to display the newly created activity in the markup.

Updating the data should work in a similar way. It should be done with PUT requests and
the data that will be sent with it should have the same format as the data in the POST request. The
same fields are required, so existing required values can not be deleted, only replaced. After
updating the record, the data should be sent back to the client as it got formatted in the server, and
the existing HTML element that represents the activity, should be updated with the new values.

 Since there is a date in every post now, the data can be displayed sorted in the front-end.
There are plans to implement synchronizations of multiple devices later, which means that they will
try to access only the data that have been altered lately, so the existing and the newly fetched data
should be sorted in the client, for consistency. When the date of an activity has been updated, the
server will send the formatted activity as it has been stored in the database back, and the client
should move the element that represents the activity in the markup, in the appropriate place in the
list of the activities.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 45

5.4.3. Sprint review

This sprint didn’t have any challenging tasks, but it was time consuming because of all the data
validations and the date parsing. The new data that have been introduced in this sprint, apart from
the date, won’t play a big role to the next sprints, but the date of the activities is crucial for the
functionality and a valuable piece of information for the users.

5.5. Sprint 5

5.5.1. Sprint planning

In this sprint, additional fields will be placed in the settings page, personalizing the application. The
new data of the users that will be collected in the settings page are the language in which the user
wants to view the application, the username that the user wants to use that will make their profile
accessible more easily, the user’s birthday, the date format that will be used for the dates displayed
throughout the application, and the user’s gender.

Changing the language of the application should change all the displayed text in the client -
in buttons, labels, inputs, field descriptions, menus and other components of the interface. The
application should be in english and there can be a greek version initially, just in order to check if
the setting works after the sprint. The username, is not a required field. If it’s not set, the default
identifier of the user is the id field of the user’s record in the database. If a username is set, the
user’s profile should be accessible by entering the username in the url in the browser, right after the
domain name. The user’s profile should still be accessible by the user’s id of the database record.
Changing the date format should change the way the dates of the activities and the dates in the
user’s profile are displayed. There should be two options, one that shows day/month/year and one
that shows month/day/year. Changing this setting, should change the format of all the dates
immediately. The birthday and the gender of the user won’t play a big role yet, but they will be used
later for the general statistics of the athletes that use the application and they can also be used as
filters in the search field.

Another task that should be done in this sprint is the verification of users’ email during the
registration process. When a user submits the data of the registration form, after validating the
format of the email address, an email message should be sent to this address, including a link to a
unique page that the user can use in order to verify that the account that they created is linked to
that email. After validating the account, the user should get automatically logged in. User’s that
haven’t verified their emails, shouldn’t be able to login using their credentials.

5.5.2. Stand up

Starting from the settings page, all the types of request in the setting’s route should be changed in
order to accept / fetch the new values. The client has been designed to let the users change the
values of the settings one by one, so there should be cases in the back end, which should match
the changed setting and apply that change for only one field in the database.

In order to make the setting of the language of the application functional, translations
should be added. The values of the translation and the mapping of the values to the variables
should happen using javascript objects in the server. There should be one object for each
language, and each object should have the variable names in its keys and the translated values in
the object values. And the objects of all languages should be placed in one object that maps the
languages to the translations. So, for example, accessing the greek translation of the text “cancel”
should be accessible in this way: tr.gr.cancel.

Changing the setting value, should post the two-letter combination of the language to the
server. After validating that the combination exists in the object of the translations, the new

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 46

language setting should be stored in the database, again, as a two-letter combination. When
markup is requested later, the two-letter combination can be used in order to access the correct
object of the chosen language and populate the strings in the markup with the values of the
requested text. Also, this object of the selected language should be accessible in a route, in order to
give access to it to the client.

There were considerations to have the translations in the database instead of an object. If
the translations are in the database, they do not occupy space in the memory but they would have
to be fetched from the database with each requests, which would affect performance. Also, having
the translations hard-coded as objects in the code, makes them easier to manage. New languages
can be added more easily and new translations can be entered by just altering the file of the object.
The file of the translations should be included in every other file that returns markup. After changing
the setting of the language, a success notice should be sent to the client so that it can refresh the
browser in order to display the settings page in the new language.

User’s profiles are accessed by visiting the domain of the application followed by the id that
the record of the user has in the database. By choosing a username in the settings page, the profile
of the user can be accessed by entering the username instead of the user’s id. So a new route
should be created in the server that accepts one parameter after the domain which can be anything,
apart from the other routes that the application has.

After a new username has been posted, there should be a check that it is not used by any
other users and that there is no route with the same text. Also the usernames should only have latin
characters, numbers, dots and underscores. If it’s valid, it should be stored in the database. Every
time a profile is accessed, there will be an attempt to find the profile by the id. If the id is not found,
a query searching for the username should be made. If no profile is found again, a message should
be displayed that the profile doesn’t exist, otherwise, the profile data should be returned.

When the user posts a new value for the date format, it should be checked if it has one of
the two values ‘dd-mm-yyyy’ or ‘mm-dd-yyyy’. If it’s valid, it should be stored in the database. Each
time markup is requested by the client, all the dates should be formatted and printed in the
document according to the selected format. A helper function should accept the date object, parse
it, get the day, month and year values and put the in the correct order, as it was chosen by the user,
and the return it. Changing the value of the setting should automatically change all the dates in all
the pages.

The posted values of the user’s birthday will be received by the server as three separate
values, day, month, year, and it should be stored this way in the database. All three values should
be checked for validity. The user’s gender should be true or false, true for male and false for female.
If the value of the gender is valid, it should be stored in the db. Both the values of the birthday
setting and the gender setting are not used anywhere else in the application, so for the time being
the GET request should populate the fields in the settings page.

The email validation, done later in this sprint, requires changes to the already implemented
registration process. There should also be a new collection in the database, that will store unique
hashes for all the users. These hashes should be generated during user creation, and they should
be used in order to generate unique URLs that the users will follow in order to validate their
account. When a user submits the registration data, after validating that all the values are correct,
the “valid” field of the newly created profile record should be set to “false”. A unique has should be
created and stored in the database. The hash should be an sha256, and the hashed data should be
a combination of the user’s id with the current timestamp.

An HTML template will be used for the templates of the emails that will be sent to users.
The email should contain the user’s first name and last name, to make it appear a legitimate email
of our application, and a link to a unique page of the application, that when visited, will set the
user’s profile record “valid” flag to true. For sending emails, we used the nodemailer library. After
sending the email, the user should be notified that an email has been sent to the email address that
was used during registration, and there should be a button that re-sends the email, in case the user

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 47

didn’t receive it. In order to make this work, the functions of the registration process should be split,
and the function that sends the email invitations should be autonomous, in order to work during the
registration and as a stand-alone function. That function should check if the hash has been created.
It it exists, it should use the existing hash, otherwise, it should generate a new one.

After visiting the link in the email, the user should be taken to a link with no interface. That
URL should make the profile valid and immediately login the user and redirect to the profile page.
This route should first check if the hash in the URL exists in the database. It should match the hash
with the user’s id (which should be another field in the same collection) and then find the user’s
profile and update the “valid” field to true. This should enable the user to access the application.
The session of the user should be created automatically, following the same process just as if the
user has used the login screen to enter the application, and they should be redirected to the profile
screen. The record in the database that includes the hash should be deleted, as it will no longer be
used.

While the field “active” of the profile record is false and the user tries to visit the profile
page, they should be redirected to the login screen with a message that their profile is not valid yet,
and a button that re-sends the email with the validation link. There are plans to add another field in
the record of the hashes, a timestamp that shows when was the last time the email was sent. A
cron job can be ran regularly, checking if there are invitations that were created long ago, and
delete their records from the database. A use case for this scenario is when a user tries to create an
account with an non-existing email address, so there is no possibility to enable this account. In
order to avoid having such permanent and useless records in the database, there should be a
regular clean-up of the table.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 48

5.5.3. Diagrams

Fig 5.5.1 Register - Activity diagram

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 49

5.5.4. Sprint review

Since most of the core features of the applications have been implemented, we could work on
features that will improve user experience, without adding anything that changes the workflow too
much. Also the validation of the email addresses, prevents users from creating fake accounts.

This sprint was challenging, mainly because it needed to be well planned. Data flow
diagrams were mandatory and there were many changes to the class diagrams as well. After all,
the email validations took more time than expected, so this sprint took a little longer than planned.
Also, managing the routes, because of the new feature of the usernames, added to the complexity
of the sprint.

This is why agile suits our needs, this iteration only improved the application, without adding
any core functionality. If we had to do this with the waterfall model, it would be a waste of time, as
these features should be implemented when the respective sections were developed, but at that
there, the application would be functional, and users wouldn’t be able to test use it and give us
feedback. With these iterations, we can work on new minor features while users use the actual
application and provide meaningful feedback for the core features, allowing a better time allocation
of work on the bugs, errors and generally for the changes that should be done to the already
developed features.

5.4. Sprint 6

5.6.1. Sprint planning

In this sprint, the front-end of the application will be refactored so less decisions should be taken in
the back-end, which will have just one change, standardization of the API. Specifically, in this sprint,
there will be a shift from vanilla JavaScript to a JavaScript framework named AngularJS. All the
functionality of the front-end will be completely detached from the server. Each page will contain no
data when it will be fetched. The new API of the server should be able to provide any kind of data
and in any format the front-end needs it, free of any markup. So, the browser will ask for HTML files
with no data, and data in JSON format and it will populate the data in the markup and make the
bindings by itself.

In order to make this work, the API should be designed carefully. Also the translations
should be applied to the responses of the requests of the browser, since the markup will be
independent now. There should be only one route that returns markup and validate that the user is
logged in, the route that is the home of the application. All the other markup should be static files,
that are sent to the client without any validations, since they will contain no user data inside. The
rest of the routes should be RESTful API routes, with responses to GET, POST, PUT and DELETE
requests that manage all the resources of the application.

Since the whole API should be designed, the implementation will be split in several sprints.
In this sprint, the design of the API will be done and we will make sure to cover all the cases in
order to start developing it and make it secure and consistent. Also the format of the requests and
the responses should be finalized.

5.6.2. Stand up

The biggest change in this sprint is that the data should be independent of the markup. All the
markup should be plain HTML files with data bindings for AngularJS inside and the data should be
sent as JSON objects exclusively. The structure of the data and the types of requests should also
not depend on any pages. The API should be autonomous so that it can be used by third parties as
well and the format of the URLs should be according to REST. All the requests should send replies

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 50

that include meaningful response codes, and when there are errors, the error message should be
included in the response JSON object.

For most of the resources, there should be get, post, put and delete requests. The get
requests should be used to get all the resources described in the url, a get request with a resource
id should return the chosen resource, a post request on a resource should create a new item, a put
request with an id should update an item and a delete request with an id should delete the chosen
item. Normally, making a delete request without an id should delete all the resources, but since it’s
dangerous sometimes, and there are not many use cases in our application, it will be avoided.

All the data depend on the users, they are bound to individual persons, so almost all the
routes of the API should start with the user. Keeping it simple, the routes should start with
/users/:user_id. A get request to the route /users should return a list of all the users, and it will be
used with filter parameters for the search functionality of the application. So a get request to
/users?first_name=George&last_name=Balasis should search for a user named George Balasis
and return all the matching results. A get request with an id should fetch the user that has the given
id. For example, a get request to the url /users/54fc5e13946e0a111335070f should return the user
that has the given has as the id key in the database.

A post request to the route /users should create a new user, but all the required submitted
data should be correct. The submitted data should be similar to the ones sent during registration,
and the validations are the same for this route as well. A put request is available for the same route,
but it should include the id of the user in the url. The data sent with the put request should have the
same format as the data in the post request, and if all the parameters are correct, the record should
be updated with the new value. After creating or altering a resource with a post or put request, the
record as it was stored in the database should be sent back, confirming that the record was created
or updated successfully and the new data can now populate the application with their new formatted
values. A delete request to the route /users/:user_id should delete the user that has the given
user_id. A delete request to the /users route should not be available, as it is too dangerous and it
doesn’t provide any useful functionality.

Not all the routes should be available to all the users. Users who are not logged in should
be able only to make get requests on the /users route in order to search for users or get the data of
one user who has their profile public, and they should be able to make post requests on the same
route that will let them create new users. Users who are logged in should be able to use all the
routes, but routes that include a user_id should be available for them only if the user_id belongs to
them. This way, they won’t be able to alter, create or delete data for other users. Also, the get
requests to routes of users that have their profile set to private, should return a result similar to the
one returned when the resource is not found.

The routes to the activities should follow the same rules, again starting from the users, as
there are no activities that do not belong to any users. Generally the routes to the activities should
follow the pattern /users/:user_id/activities/:activity_id. A get request to the route
/users/:user_id/activities should return all the activities of the user with id :user_id. A get request to
the route /user/:user_id/activitιes/:activity_id should return the activity that has this activity_id. A post
request to the route /user/:user_id/activities should create a new activity according to the posted
data. A put request to the route /user/:user_id/activities/:activity_id should alter the data of the
activity with id activity_id, according to the posted data. A delete request to the route
/user/:user_id/activities/:activity_id should delete the activity with id activity_id. There should be no
batch create, batch update and batch delete of activities. The data accepted and the required data
of the post and put requests should be the same.

Only logged in users should have access to these routes for the users that have set their
profile to private. Only the owners of the activities should be able to make post, put and delete
requests to those routes, otherwise the server should return the error code that corresponds to
“forbidden” in http if the user has no access, or the code that states that this record doesn’t exist at
all, if the profile is private.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 51

One route that will accept only get requests is the /users/:user_id/disciplines. This will be
used to return all the disciplines for which the user has records of activities. The returned data of
this route should not come straight from the database, but they should be generated by parsing the
activities.

For the time being, there are no more resources, so the rest of the routes will not follow the
RESTful approach. A get request to the route /settings_data should return the settings that the user
who followed the route has stored in the database. So there will be no way and no available route to
check the settings of other users. A post request to the same route should alter the settings, but it
should accept only one setting at a time.

This separation of the routes that return only data, in json format, from the routes that return
markup, will later help us create a friendly API for third-party developers that want to create
applications that will use data from our database.

5.6.3. Sprint review

In this sprint, the basics of the API have been designed. In the next sprints, it will be implemented,
along with other features. Working on the back-end from now on, would be easier because the data
will be clearly separated from the markup, and some of the logic will go to the front-end of the
application. This sprint may not seem as hard as the others, since there was no coding involved,
but it is very important, as it will be the base for the architecture of the server code in the next
sprints.

5.7. Sprint 7

5.7.1. Sprint planning

The new API will be implemented on the profile page first, the most important page that will also
access the most API endpoints. The markup should be populated by data fetched from the server,
after the page has loaded, and they should not be hardcoded in the page like it was before. This will
provide a clear separation of the data in the pages from the page itself, so the data will be
manipulated more easily. Also, this means that the same templates can be used for the new
activities, the existing activities and the “edit activity” forms, since they will be completely detached
from the data they show.

Showing how the data change will be easier as well, since the templates will serve as a
visual representation of the array of activities stored in memory now, therefore, when an item of the
array is deleted, the view will change automatically, without having code that searches for elements
in HTML to do the same work. All these changes will be applied automatically by the newly
implemented framework, AngularJS. What has to be done in this sprint is to implement the API in
the server and the methods that access it in the client.

5.7.2. Stand up

The markup of the page should not contain any data related to the activities. It should only work as
a template that can be populated by the data that will come from the server. So, when the profile
page loads, the markup should be shown empty to the user, along with an indication that the
application is loading data. The front-end code should make a GET request to the server, asking for
all the activities of the user. It should also return a promise that will run again when the results have
been returned from the server. The route of the request of the user with id “userid” should look like
GET /users/userid/activities. This should return an array filled with JSON objects that represent the
activities in the application. Afterwards, this data should populate the template and appear in the

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 52

markup as a list of all the activities, and the loader should be removed. An example response with
two activities should look like this:

[
 {
 "_id": "5468cfa8cf56785d14b6d798",
 "discipline": "discus",
 "performance": "600900",
 "date": "2014-11-16T01:00:00.000Z",
 "place": 1,
 "location": "Saint Petersburg",
 "competition": "Olympic Games",
 "private": false,
 "notes": "I did my best!",
 "formatted_performance": "60.09μ",
 "formatted_discipline": "Δισκοβολία",
 "formatted_date": "16-11-2014"
 },
 {
 "_id": "54564eeb619f4da335000004",
 "discipline": "100m",
 "performance": "00:00:09.25",
 "date": "2014-11-02T18:34:03.436Z",
 "place": 1,
 "location": "Athens",
 "competition": "",
 "private": false,
 "notes": "",
 "formatted_performance": "09.25",
 "formatted_discipline": "100μ",
 "formatted_date": "2-11-2014"
 }

]

 Every JSON object should be used in the ng-repeat directive of angular in order to populate
the profile page, and turn this array of raw data in a nice representation of the user’s activities, in a
way that our users can easily extract useful information from it. The keys of the json object are:

_id: the id that the activity has in the database

discipline: the discipline of the activity

performance: the performance value as it is stored in the database

date: the date as it is stored in the database. It should be UTC.

place: the place that the user achieved in the competition

location: the location where the competition took place

competition: the name of the competition where the activity happened

private: if the activity is visible to other users. This functionality has not been implemented yet, so
the API should always return “false”

notes: additional notes about the activity. It should be plain text, with escaped HTML, CSS, and
JavaScript entities, in order to avoid XSS attacks.

formatted_performance: the performance value as it should be displayed in the browser

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 53

formatted_discipline: the discipline value, translated into the language the user chose

formatted_date: the date in the format that the user has chosen in the settings page

 On the top of the list of the activities, there should be a button that makes a form appear.
The form should be used in order to create new activities, and it should make a POST request to
the server, with the new activity data. For a user with id userid, the post request should be done to
the route POST /users/userid/activities. The data sent with the request should have the format:

{

"selected_discipline":"200m",

"private":false,

"performance": {

"seconds":"19",

"centiseconds":"70"

},

"date":"Thu Apr 02 2015",

"place":"2",

"location":"Athens",

"competition":"Olympic games",

"discipline":"200m"

}

 These values are actually the form converted to JSON format. The JSON object will be
parsed by the server, it will be validated and the saved in the database. Then the newly saved
values will be formatted in the way the server formats the activities before sending them to the
client, and then the activity should be passed to the response of the request. A sample response for
the previous request should be:

{
 "_id": "552145dad19dba060e4203d9",
 "discipline": "200m",
 "performance": "00:00:19.70",
 "date": "2015-04-02T00:00:00.000Z",
 "place": 2,
 "location": "Athens",
 "competition": "Olympic games",
 "notes": "",
 "private": false,
 "formatted_performance": "19.70",
 "formatted_discipline": "200м",
 "formatted_date": "2-4-2015"
}

 Here the formatted data have been translated to Russian, the language the user chose.
This json should generate a new element in HTML, and it should be appear to the appropriate
position in the list of the activities, based on the date value.

 Each element of the activities, should have an “edit” button or icon. When pressed, the
activity should turn into an editable form again, allowing the user to edit the data. When this form is

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 54

submitted, a PUT request should be sent to the server. The PUT request for user id userid and the
activity with id 5468cfa8cf56785d14b6d798, should be PUT
/users/userid/activities/5468cfa8cf56785d14b6d798. The response should be the new data of the
activity as they have been saved in the server. The data of the request should have the format:

{

"performance": {

"distance_1":"60",

"distance_2":"9"

},

"date":"Tue Nov 11 2014",

"location":"Saint Petersburg",

"competition":"Olympic Games",

"notes":"I did my best!",

"private":false,

"discipline":"discus"

}

 A sample response could be:

{
 "_id": "5468cfa8cf56785d14b6d798",
 "discipline": "discus",
 "performance": "600900",
 "date": "2014-11-16T01:00:00.000Z",
 "place": 2,
 "location": "Saint Petersburg",
 "competition": "Olympic Games",
 "notes": "I did my best!",
 "private": false,
 "formatted_performance": "60.09м",
 "formatted_discipline": "Метание диска",
 "formatted_date": "16-11-2014"
}

 After an activity has been updated, the element that represents the activity should be
shown, hiding the editable form, and the new data should populate the element. If the “edit” button
gets clicked again, the form should contain the new data.

 Also, on every activity element, there should be a “delete” icon or button that should be
used in order to access the DELETE method of the API. A DELETE request to the server that can
be used in order to delete the activity with id 5468cfa8cf56785d14b6d798 for the user with id userid
should be done on the url DELETE /users/userid/activities/5468cfa8cf56785d14b6d798. A sample
response should look like this:

{

 success: true,

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 55

 errors: []

}

The success boolean value should show if the deletion was successful or not, and the
errors array should contain any string values, giving details about the errors that happened, if any. If
the success value is true, the client should remove the element that represents the deleted activity,
from the list of the activities. Also a message should be shown, indicating that the activity was
successfully deleted.

5.7.3. Sprint review

The implementation of the API didn’t require many changes on the back-end, as most of the
validation checks existed. Security was the main concern, as all the rules that applied before should
be applied to each individual route of the API. Also the JSON objects sent to the client should be
consistent. All requests should return the same format of activities. Of course, changes to the routes
of the application were made. The most important part of this sprint was the decisions taken,
regarding the format of the successful and failed requests, and also the format that the urls of the
API have.

5.8. Sprint 8

5.8.1. Sprint planning

In this sprint, the API of the settings will be implemented. The settings, until now, used a POST
request that forced a refresh. The POST request was sending the whole form, so the server was
parsing everything and it was storing all the values when the whole form was valid. Now, since it will
be changed to requests that will not refresh the page, only the changed data should be sent to the
server. So, each field should have its own “submit” button that will send the data of the field to the
server, and when a response is received, the setting should be updated.

5.8.2. Stand up

The first thing that has to be changed is the form. This is a change on the front-end, but it affects
how the back-end will work. Every form row in the settings page should be a different form, sending
only its own data. The row should be initially non-editable and there should be an “edit” button or
icon. When the button is clicked, an editable field should appear, with the value of the setting
entered. Also, the “edit” button should be replaced by “save” and “cancel” buttons.

When the “save” button is clicked, a POST request should be sent to the server. Here, we
don’t use PUT for update because settings can not be created, they exist since the user got
created, so a POST request means “alter data” in this case.

The server should find out which data got changed, check if the value of the field is
acceptable and then store it in the database. If the setting is the profile picture, it should check its
size, its mime time, and its extension for validity. After validating and updating the value, a response
should be sent back to the browser, stating that the settings have changed successfully. All the
requests to the api of the settings should be sent to the route /settings. There is no reason to use
the id of the user in this request, as there is no way to alter or access the settings of another user. A
GET request to the same route should fetch all the settings of the user. Settings can not be
accessed by id like the activities, because they do not have their own id, they belong to the record
of the user. Also, there is no DELETE request for this route. The POST request should simply look
like this:

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 56

{"first_name":"George"}

 A POST request with that data should change the first name of the user to George. A
sample response to such a request should look like this:

{
 "value": "George",
 "translated_value": "",
 "message": "Data was updated successfully"
}

 The first parameter, with the key “value” is the new value of the setting. The
“translated_value” shows the same value translated into the language that the user has shown. In
this case, it’s a name so it won’t be translated. This parameter is meaningful only in the settings
“country” or “main discipline” for which the translated values are needed in order to display the
result to the user.

 Also, a decision has been taken, to separate the settings in “Profile settings” and “Account
settings”. The account settings are the user’s password, the language of the application, the date
format and the username. The rest of the settings are account settings. This separation exists in the
database as well, so the account settings change values that are stored in users table of the
database, while the profile settings change the values of the table “profiles”.

5.8.3. Sprint review

This sprint was easy, since the API didn’t change the functionality much, but now the settings page
is more easier to maintain, since the fields have been separated and if something goes wrong in the
form in one field, that doesn’t affect the other fields of the form. The functions for the validations
have been reused so only the code of the controller and route handling has been changed. The
decisions for the front-end and the way the settings page would work was the most important part of
this sprint, by keeping in mind the effort to make the whole application more maintainable and
friendly to 3rd party developers.

5.9. Sprint 9

5.9.1. Sprint planning

In this sprint, the page of the graphs will be implemented in angular, plus, filtering of the activities
will be introduced. The graphs use a third-party library, so this won’t change. That library should
now get the data from the api though, and also the filters are necessary for the graphs, and it will be
much better if they are implemented on the back-end. So changes will be made to the API of the
activities, so that it receives parameters that filter the activities. Applying filters should immediately
change the graph, and when they are applied to the profile page, they should remove the elements
that represent activities that do not match the required filters.

5.9.2. Stand up

Starting from the page of the statistics, the API of the library of the graphs, will remain the same, but
it should get the data from the new API of the activities. There is no need for changes to the data
that come from the server. Since there is no need to refresh the page in order to get new data now,

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 57

the graphs should use a “redraw” method, that will accept the new data and it will draw the graph
again.

Previously the server was formatting the data according to what the graphs needed. Now,
the data have the same format as the data sent to the profile page, so there should be some
formatting/manipulation on the front-end, in order to make the data that come from the API
accepted by the library of the graphs.

Both the graphs and the activities in the profile page should be filtered by the server,
according to the filters selected by the user on the front-end. For the time being, there should be
filters for the start date, end date and the discipline. Choosing a start date, should show all the
activities that happened after that date. Choosing an end date, should show all the activities that
happened before that date. Choosing a discipline should show only the activities of that discipline.

These parameters should be passed as queries to the GET request. If the user wants to
see the activities of the discipline 100 meters sprint, that happened since the beginning of 2015 until
the 1st of May of 2015, the request should look like this:

GET /users/54fc5e13946e0a111335070e/activities?discipline=100m&from=2015-01-01&to=2015-
05-01

This should return the activities as an array of JSON objects, as usual, but it should filter
out the activities that do not match these filters. Any of the parameters can be omitted, leading to
different results. Filtering works only for GET requests.

The profile page should have predefined filters on the top, that can be clicked and applied
by the users. The main filters should be the years. So, if a user has activities in the year 2014 and
2015, these years should appear as links on the top of the profile page. When, for example, the
year 2014 is selected, a request will be sent to the server, with the from parameter set to 2014-01-
01 and the to parameter to 2014-12-31, essentially asking from the server the activities of the year
2014.

For the implementation of these filters, the query to the database should be split into
several pieces of code. The parameters should be parsed, and based on whether there is value or
not, a piece of the query should be added. If the parameter “from” exists, for example, a “where”
clause should be added to the query, checking the values “date” to be $gt (greater than) the given
date. In the same way, the “to” date and the discipline should be compared.

5.9.3. Diagrams

Fig 5.9.1 Activity filtering - Activity diagram

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 58

5.9.4. Sprint review

With these changes to the API starts to become more flexible, regarding various use cases in the
client-side. Filters like that can be easily used in graphs, search, profiles and also, much later, they
will be used in order to load and cache changes in devices that were not yet synchronized. This
hasn’t been implemented yet, but this feature is planned.

When the user is using the application on different devices, and there are offline data, all
the devices should be synchronized. If the user was using the device A for a certain period and then
the device B for another period, when he gets back to device A, the client should make a request
for the activities, setting a “from” filter set to the last activity it had cached, so that it can synchronize
all the changes made from the other device.

Generally, having a powerful API and giving many options to the clients, makes the
application easier to develop and extend, and also it gives a great tool to third party developers.

5.10. Sprint 10

5.10.1. Sprint planning

In this sprint, a very important feature will be developed, that will improve the social features of the
application: user permissions and visiting other profiles. The permissions will be split to permissions
of the profile and permissions of activities. Profiles and activities should be toggled as private or
public by the users. Using these features, users should be able to access the profiles of other users
who have their profiles set to public.

In order to make these features complete, the search API will be developed, that will be
used in order to search for other users, making it easier to find other users and access their data.
The search API should also use filters, just like the API of the activities. Of course, by letting users
to access data of other users, raises concerns about security and data privacy, so certain actions
will be taken in order to prevent users from accessing data that should be private.

Finishing this sprint will make the application fully usable and it will be ready to be released
as a fully-featured web application.

5.10.2. Stand up

In order to implement the functionality of the privacy, there should be a setting, so that users can
set their privacy settings. The first section that should be protected, is the profile of the users and its
setting should be found in the settings page, in the profile tab. Changing the setting, which should
be simply a checkbox, should switch the “private” flag in the database, in the “profile” collection.

 When a profile is private, it shouldn’t be visible at all, to all other users. When a user tries to
access a private profile, they should be shown the “Page not found” default page, with a 404
response code. In order to achieve this, whenever a user tries to access a profile, a check should
be made. The first condition should check if the profile belongs to the user who tries to access it. If
that’s true, then the profile should be displayed no matter if it’s private or not. If the profile doesn’t
belong to the user, the “private” flag should be checked. If the profile is private, the “page not found”
static page should be explicitly sent to the client and the process should stop there.

The same check should be perform when the user is using the /users route, in order to
search the application. The api of this route will be implemented later in this sprint. Also, all of the
user’s data, the profile page, the activities, should be inaccessible to anyone, by using the same
check, before proceeding to any other queries.

 Each activity should have it’s own “private” flag that can be set to true when the activity is
created or edited. When a user tries to get the list of one user’s activities, first a check should be

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 59

made, to see if the user who makes the request is the user who created the activities. If that’s true,
then all the activities, private and public, should be returned. If the user is not the owner, only the
public activities should be returned. That will be implemented by altering the query, by adding a
where clause, restricting the results to not include entries with the flag “private” set to true. The
same restrictions to the query should be used when filters are applied. Each element that
represents an activity in the markup, should have a switch, that when clicked, sends a put request
to the server, and updates the activity, setting the private flag to true or false.

 After implementing profile privacy, the functionality of visiting profiles of others can be
refactored. The first action that should be performed when a user requests a profile, is to check if
the profile belongs to them or to another user. As mentioned before, if the profile belongs to them, it
should be sent back to the user regardless of the privacy settings. If the profile belongs to another
user, data should be returned only if the profile is public, otherwise, the default “page not found”
should be sent back to the user. User profiles can be fetched by id or username, from the url. There
is a restriction when creating usernames, that doesn’t allow them to be longer than a maximum
length, so the id hashes in the database are always longer than usernames. When the server gets a
request for a profile, the length of the string should be checked, and it should be determined if it’s a
username or and id. Then the appropriate field in the database should be queried, searching for the
profile. If the profile is found, all the data of the profile should be sent back to the user. If not, the
“page not found” static markup should be returned. The returned data should be formatted
according to the user’s language settings.

 The functionality of the search, should work like the rest of the API. It should be a search for
profiles/users, and it should work with a GET request. So, the url that should be used will be /users
and it should be followed by a query string. The query string, in case we are looking for users
named “George” should look like this /users?keywords=George. The search functionality should
work with keywords, because people may have more than two names, and later, we will need to
have the names available in different language, show a search for George should be a result when
searching the same name in Greek. In order to achieve it, there should be a new field in the
database, named “keywords” that will be only used for profile searches. This field should be an
array of all the names, and all the variants of them, that when matched, will return the profile of the
user. A sample response for the above search could be:

[

 {

 "_id": "54fc5e13946e0a1113350710",

 "first_name": "George",

 "last_name": "Balasis",

 "discipline": "",

 "country": "",

 "username": "george",

 "formatted_country": "",

 "formatted_discipline": ""

 }

]

 This is an array with only one result in it, the user George Balasis. This data should be used
in order to populate the dropdown with the options in the front-end. When clicked, the _id value
should be used in the url, so that the user can be redirected to the profile that they were searching
for.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 60

5.10.3. Diagrams

Fig 5.10.1 Search - Activity diagram

5.10.4. Sprint review

This sprint concluded the development of the application. Now the application is ready to be
released. It has all the planned features and it’s designed in such a way that it will make further
expansion and maintenance easier. It also makes it very easy for other users to use the API and
access the resources existing in the database.

6. Results

6.1. Agile contribution

The agile methodology, even though it works better in bigger teams, greatly improved our
productivity, our motivation and made the project adapt to what the users wanted, really fast, thus
resulting in a better product. If we hadn’t use agile while developing, quite possibly the application
would have been what we thought that the users needed and not what actually the users needed.

First of all, it improved communication. Using stand-ups and reviews made always clear
what each one of us was working on, and what is worth working on during each iteration. By the
end of each sprint, it was made clear what is necessary to work on during the next one.
Communication between us, the developers, was not the only part that agile improved, but it also
help us communicate better with people who are relevant to our target group - the athletes. By
contacting them personally and by implementing a feedback form, we got all the information we
needed to adapt the project to their needs, to the real users.

We almost achieved having a working product by the end of every sprint which helped a lot
since the application was partly shaped by our users. They had something to try, since the
application was working with every release, and not only they could use it in order to tell their
opinion but they could also use it as a tool that helps them track their performances, even before it
was ready. It also helped us to find what is working and what is not working from the point of view of
user experience and usability.

During the development process, there were some phases that required changes to the
specifications, like implementing date formats for different users or having a search input that we
didn’t include in the initial specifications. Working with the agile methodology made us accept these
changes as improvements rather than time consuming tasks that would change the way that we
were working, the existing code of the project or throw us off schedule. They were all implemented
as if they were part of the initial specifications, and even better.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 61

6.2. The application

The final outcome was close to our expectations. The good communication that was achieved by
using the agile methodology, the regular reviews of our work and the short development cycles led
to a complete application that is secure, with a client and a server that can be completely detached
but still communicate really well, a fast responsive user interface and most importantly, the outcome
is a tool that is useful for our users, who contributed while it was being shaped.

These are some screenshots from the latest version of the application.

Fig 6.2.1. The login screen

Fig 6.2.2. The profile page

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 62

Fig 6.2.3. The settings

Fig 6.2.4. The statistics

 The user interface, which was created by the second member of the team, is fully
responsive, showing the same information on tablets and mobile phones. The elements have be
placed with the ease of accessibility in mind.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 63

6.3. The API

All the routes with their methods and a short description of what they do, are shown in the following
table. The api does not include routes of settings or routes that fetch html documents, as these are
not included in the standard format of responses from the server.

API

Route Method Description Parameters

/users GET Returns users, filtered
by the parameters. If
there is a "keywords"
parameters, a search
will be performed based
on the words separated
by spaces. Only public
users will be returned.

firstName, last_name,
discipline, country,
keywords

/users/:userId GET Returns the user by id.
Only public users will
be returned unless a
logged in user tries to
access themselves.

-

/users/me GET The logged in user. If
the user is not logged
in, nothing is returned.

-

/users/:userId/activities GET Returns all the public
activities of the user.

from, to, discipline

/users/:userId/activities/
:activityId

GET Returns the activity by
id. Only public activities
will be returned unless
a logged in user tries to
access their activity.

-

/users/:userId/activities/
:activityId

POST Creates a new activity. -

/users/:userId/activities/
:activityId

PUT Edits the data of an
existing activity.

-

/users/:userId/activities/
:activityId

DELETE Deletes an activity. -

/users/:userId/discipline
s

GET Returns all the
disciplines that the user
has recorded.

-

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 64

6.4. The schema of the database

The schema of the database is shown in the following tables. Each table represents a different
collection in the mongodb. Each row is the attribute or “column” in the database.

users

Field Type Required Index Description

_id id object true true The id of the
record, which is
automatically set
by the database.

email string true true The email that the
account of the
user is bound. It
must be unique
and there should
be an index on it,
to make searches
faster.

password string true false The password that
users use in order
to log in. They are
required.

valid boolean true false A flag that shows
if the user has
validated their
account by email.

profiles

Field Type Required Index Description

_id id object true true The id of the
record, which is
automatically set
by the database.

first_name string true false The user’s first
name.

last_name string true false The user’s last
name.

username string false false A username,

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 65

chosen by the
user in case they
want to have a
personalized url.

male boolean true false The user’s sex. It’s
true if he’s male.

birthday object false false The user’s
birthday. It’s an
object with three
attributes, day,
month, year, all
integers.

discipline string false false The user’s main
discipline.

about string false false A short description
of the user.

country string false false The name of the
country where the
user lives.

picture string false false The filename of
the image that the
user has uploaded
as their profile
picture.

date_format string false false The date format
that the user has
chosen. It formats
all the dates in the
application. The
default value is “d-
m-y”.

language string false false The language that
the user has
chosen in the
settings. The
default value is
“en” for english.

private boolean false false A flag that shows
whether the profile
is private (hidden
by other users) or
not. The default
value is false.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 66

keywords array false false An array of
keywords for the
user, that makes
search faster. The
keywords are
strings.

activities

Field Type Required Index Description

_id id object true true The id of the
record, which is
automatically set
by the database.

user_id string true true This field
corresponds to the
_id fields of the
user table.

discipline string true false The discipline of
the activity
performed.

performance string true false The performance
of the activity.

date date object true false The date that the
activity took place.
The default value
is the current date.

place string false false The place that the
user achieved, if
the activity took
place in a
competition.

location string false false The location
where the activity
took place.

competition string false false The name of the
competition that
the activity took
place.

notes string false false Notes that the
user keeps about

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 67

the activity.

private boolean true false If the activity is
private or not. The
default value is
false.

user_hashes

Field Type Required Index Description

_id id object true true The id of the
record, which is
automatically set
by the database.

user_id string true true This field
corresponds to the
_id fields of the
user table.

hash string true false The unique hash
stored for the user

type string true false The type of the
hash. There are
two types, one for
the forgot
password
functionality and
one for the email
validation.

7. Conclusion

With the application ready and working, it can be safely said that agile worked and was very
suitable for our case. The project was ready on time, the build quality is very high, and all the
features that got developed are needed by the users, since there was feedback from early on.

One of the main aspects of agile that helped to successfully finish the application, was the
requirement that by the end of every sprint, there should be a product that works and serves at
least the basic purpose of the existence of the application. By the end of sprint 2, which was 2
weeks after starting the project, we had a tool that was working and it could already help some track
and field athletes in some way. As the time went by, there was a more clear view of the application
and its possibilities. Giving these “complete” products to users, helped us get feedback faster and
improve the application, without losing much time fixing problems later on.

Another aspect that helped, was the communication part. Before each sprint, there was a
discussion that included prioritization of the development time of the features, changes of plans,
setting goals, solving problems of the previous iterations and generally planning the current sprint.

Μεταπτυχιακή διατριβή Μπαλάσης Γεώργιος

Development of a web application using Agile 68

This kind of discussions helped us focus on what is important to work on, every time. In every
sprint, it was clear what should be done, and which is the most important task that should be
finished by the end of the week, so the quality of the service of the application was really good,
compared to the time it had been spent on its development, even during development.

Finally, changes had been made during the development process, to the frameworks used,
to some of the decisions taken and for some features. Agile helped us adapt to those changes and
coordinate our work and implement them smoothly.

All in all, agile proved to be a great choice for this case, making the development a success
in every aspect. Changes were smooth, time got spent to features that matter, the project was done
one time, the users are satisfied, and the quality of the application is good.

8. Bibliography

[1] Chris Sims & Hillary Louise Johnson. (2012) Scrum: A breathtakingly brief and agile introduction.
Dymaxion.

[2] Kenneth S. Rubin. (2013) Essential Scrum: A practical guide to the most popular agile process

[3] Chris Sims, Hillary Louise Johnson. (2011) The elements of Scrum

[4] Tom Hughes-Coucher & Mike Wilston. (2012) Node: Up and Running

[5] Amos Q. Haviv. (2014) Mean Web Development

[6] Karl Seguin. The Little MongoDB Book

[7] M. Steven Palmquist, Mary Ann Lapham, Suzanne Miller, Timothy Chick, Ipek Ozkaya. Parallel
Worlds: Agile and Waterfall Differences and Similarities

[8] Marian Stoica, Marinela Mircea, Bogdan Ghilic-Micu. (2013) Software Development: Agile vs.
Traditional

