

Πανεπιστήµιο Πειραιώς – Τµήµα Πληροφορικής
Πρόγραµµα Μεταπτυχιακών Σπουδών

«Προηγµένα Συστήµατα Πληροφορικής»

Μεταπτυχιακή Διατριβή

 Τίτλος Διατριβής Ανάπτυξη Διαδικτυακής Εφαρµογής στη µεριά του χρήστη,
συµβατής µε desktop, mobile και tablet συσκευών, για τη
διαχείριση αθλητικών δεδοµένων αθλητών στίβου, µε
χρήση της µεθοδολογίας Scrum Agile για την ανάπτυξη
λογισµικού.

Implementation of a cross-device client-side web
application for managing and analyzing personal
performances for track and field, using Scrum Agile
software development methodology.

Ονοµατεπώνυµο Φοιτητή ΜΑΘΙΟΥΔΑΚΗΣ ΘΕΟΔΩΡΟΣ
Πατρώνυµο ΧΡΗΣΤΟΣ
Αριθµός Μητρώου ΜΠΣΠ 12039
Επιβλέπων Ευθύµιος Αλέπης, Επίκουρος Καθηγητής

Ηµεροµηνία Παράδοσης Σεπτέµβριος 2015

Τριµελής Εξεταστική Επιτροπή

(υπογραφή)

(υπογραφή) (υπογραφή)

Ευθύµιος Αλέπης
Επίκουρος Καθηγητης

Μαρία Βίρβου
Καθηγητρια

Κωνσταντίνος Πατσάκης
Λέκτορας

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

Abstract
1. Introduction

1.1 Purpose Of The Thesis
1.2 Purpose Of The Application
1.3 Structure Of This Document

2. Decisions
2.1 General Decisions:
2.2 Why We Choose Agile
2.3 Why Only Javascript
2.4 Why Mongodb
2.5 Why We Choose A Web Version Over A Native One (Or
More)
2.6 Why Mobile Support
2.7 Why Clear Separation Of Back-End And Front-End

3. Agile Software Development Methodology
4. Technologies And Architecture

4.1 Javascript
4.2 Angularjs
4.3 Node.Js
4.4 Express And Connect
4.6 Mongodb
4.7 Less (Css, Transitions)
4.8 Jade
4.9 Bootstrap
4.10 Charts Libraries (Google Charts And C3/D3)
4.11 System Architecture

5. Requirements Analysis
5.1 Functionality
5.2 Terms Definition
5.2.1 Activities
5.3 Personas
5.4 Devices Support

6. Software Development Process
6.1 Sprint 1
6.2 Sprint 2
6.3 Sprint 3

Development of a cross platform web-based-application, using Agile Methodology. 52

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.4 Sprint 4
6.5 Sprint 5
6.6 Sprint 6
6.7 Sprint 7
6.8 Sprint 8
6.9 Sprint 9
6.10 Sprint 10
6.11 Sprint 11
6.12 Sprint 12
6.13 Sprint 13
6.14 Final User Interface

Conclusions And Future Work
Bibliography

Development of a cross platform web-based-application, using Agile Methodology. 53

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

ABSTRACT
Σε αυτή την πτυχιακή εργασία υλοποιήθηκε µια διαδικτιακή εφαρµογή, που σκοπό έχει να
βοηθάει αθλητές του κλασσικού αθλητισµού (στίβος) να αποθηκεύουν και να αναλύουν τις
επιδόσεις τους σε βάθος χρόνου. Η εφαρµογή θα προσφέρεται σε οποιαδήποτε συσκευή έχει
πρόσβαση στο ίντερνετ και έναν περιηγητή ιστού (web browser). Θεωρήσαµε σηµαντικό να
καλυφθεί µε σύγχρονο τρόπο µια βασική ανάγκη των συγκεκριµένων αθλητών και να
δηµιουργηθει και η βάση για µια πλατφόρµα που µελλοντικά θα µπορεί να υποστηρίζει
επιπλέον λειτουργίες στον συγκεκριµένο χώρο. Επίσης θελήσαµε να ακολουθήσουµε τις πιο
σύγχρονες µεθολογίες ανάπτυξης λογισµικού µε σκοπό να δούµε στην πράξη που αυτές
υπερτερούν, και που όχι, συγκριτικά µε τις συµβατικές µεθοδολογίες που ακολουθούνται
σήµερα στις µεγάλες και µικρές εταιρίες ανάπτυξης λογισµικού. Η εφαρµογή υλοποιήθηκε
εξ’ολοκλήρου µε τεχνολογίες open Web (HTML, CSS, Javascript, web APIs), δίνοντας µας την
δυνατότητα να προσφέρουµε ουσιαστικά κάτι που τρέχει σε όλες τις σύγχρονες πλατφόρµες
ανεξαρτήτου λειτουργικού συστήµατος ή τύπου συσκευής. Ακολουθώντας την Scrum Agile
Software Development Methodology είδαµε στην πράξη τα πλεονεκτήµατα που εχει το Agile
σαν προσέγγιση, συγκριτικά µε τις συµβατικές µεθολογίες ανάπτυξης, αναφορικά µε την
ταχύτητα και την προσαρµοστικότητα, σε σηµαντικές ή µη, αλλαγές στο περιβάλλον και στις
ανάγκες της εφαρµογής ή των χρηστών.

In this thesis we implemented a web application, in order to help track and field athletes to keep
track and analyse their performances through time. This application is offered to any device that
has internet access, through a web browser. We believe that is important to cover this need for
these specific athletes, in a modern technological way, and create the base for a platform which
can support additional functionality in the future, helping the specific sports area to change and
innovate. We, also, wanted to see in practice how latest software development methodologies
are applied, in comparison with the older ones, which are widely used.
 The application has been implemented with open Web technologies(HTML, CSS,
Javascript, web APIs), giving us the possibility to offer a service that runs on all modern
platforms, independent of Operating System or type of device. Following Scrum Agile Software
development methodology we saw the advantages of such a methodology, compared to older
legacy methods, in speed and adaption to big or small changes, in general environment and
requirements of application or users.

Development of a cross platform web-based-application, using Agile Methodology. 54

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

1. INTRODUCTION

1.1 Purpose of the thesis
In this thesis I will show the agile methodology of software development as it is applied on the
development process of a cross-device web application. I will focus on the iterations between
defining the specifications of the application and its development. These phases will be called
“Sprints” of the application, and will have as a final result a fully functional version of the
application according to the agile methodology. The flexibility and the efficiency of the agile
methodology will be shown in multiple cases by changing the specifications in different stages
during the development process and by adding completely new features in phases which were
not planned in the previous steps. The selected software engineering method will prove its
flexibility as these changes will have little effect on the speed of the development and the quality
of the final outcome of the current iteration.
 Since it’s a thesis about software engineering, there will be a wide range of diagrams,
showing the different states of the application in each phase, the decisions taken before each
phase and how the application was designed before it was developed. Also there will be a lot of
User Interfaces Designs describing the whole process and evolution of the application.
 Since a big part of the philosophy behind the agile methodology is the efficient
cooperation of the team which is developing the application, the back-end development has be
done by my colleague Georgiοs Balasis, whose thesis is referenced in this document and who
designs the code that will run in the server side, complementing the parts of the front-end that I
will design and develop. In each phase, it will be clear how the communication between the
browser and the server takes place, and which are the API endpoints that make this
communication happen, essentially showing the cooperation of the team in accordance to the
agile guidelines.
 The parts of the application that will be designed and developed by me will be the User
Interface design, the User Testing and all the code required for the logic on web-client in order
to connect with back end and serve the information to the end user. All these parts will be
described as parts of the software implementation in each iteration of Agile methodology.
 Finally, after the end of the analysis of the development process of the application,
there will be a review of the steps followed and the strong and weak points of the agile
methodology will be pointed out, for each of these steps.

1.2 Purpose of the application
The main goal of the application is to keep various data of the performances of athletes, and
display them in a way which can help them get useful deductions that will eventually help them
improve. It also helps athletes keep an archive of all their performances so that they can track
their progress.
 Our users need to enter raw data in a form, related to the performance. That data is
saved in a database and then it can be displayed as distinct activities which can be filtered or as
graphs with various functionalities.
 The application also has a variation of settings, regarding the users profiles and the
accounts. Users can search for other users, using a search input field, visit their profiles and
view their performances, if specific permissions allow that. Also, the API of the application
allows it to be integrated in other devices like mobile phones or, later, accessories.

1.3 Structure of this document
This introduction is followed by 7 sections. On the first one I will analyse the decisions we had to
take, about technologies and methodology we wanted to follow. On the second one I’ll describe
the “Scrum Agile software development methodology”, and how it is compared with older and
most common software development methodologies. After that, on the fourth section I will
describe the technologies, the frameworks and the libraries we used and the overall architecture
of the application. On the fifth section I will describe the requirements analysis and then on the
sixth I will analyse in depth all the software development phases, using the Scrum agile

Development of a cross platform web-based-application, using Agile Methodology. 55

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

methodology. Finally on the seventh section I make a conclusion and describe some future work
that can be made.

2. DECISIONS

2.1 General decisions:
We decided to use technologies for the development of the application that are all web-based.
The server is node.js, a web server running JavaScript on the V8 engine that Google uses in its
Chrome web browser. On top of node.js we implemented the MVC so that the models and the
interaction of the database is clearly separated from the controllers and the logic of the
application. The framework used for this purpose on node.js is called Express. Express takes
care of the routes of the application, the sessions, the controllers and binds all the logic of the
back-end system.
 For the model part of the MVC, we choose to use a module named Mongoose, which
forms the schemas of the databases and takes care of all the queries. Q module is handling the
asynchronous database calls. The database used is mongoDB which is a NoSQL database that
has features that fit, conveniently, into the application.
 The HTML that will be displayed in the browser is generated by the JADE template
engine from backend and AngularJS in front-end. Cascade Style Sheets (CSS) are generated
using the LESS framework, which helps us to keep a more structured code for this kind of files.
On the web client, the logic is implemented with the AngularJS JavaScript framework, which
helps us to clearly separate the view part, from the logic one and the connection to the backend.
For the responsive design, the Bootstrap CSS framework is used in parallel with our custom css
files.
 These are the technologies we finally choose to use in our application. At initial point we
started with a different stack. We started with PHP as our choice for server side logic and
common HTML, javascript, CSS in web-client side. This stack change in two different pivot
points in our process, as will explained in detailed in our sprint analysis in later chapter.

2.2 Why we choose Agile
The agile methodology was chosen because of its flexibility. It’s obvious that most of our
decisions, were affected by the nature of the application.The application is developed using the
latest web technologies which by the time seemed suitable for the application but we, as
developers, were not entirely familiar with them. In addition, the functionality and the features of
the application is driven by athletes who were asked to test it. Flexibility regarding the changes
of the specifications, the agile methodology is perfect for this case.
 Since the application is functional between the iterations, athletes can have the demos
and test if the features suit their needs and expectations. This allows us to adapt in changes
and be fast in case we need to change completely, or partially, our direction. This happened
twice in the whole process, where we need to change the implementation in web-client side
where we replaced standard html-javascript with AngularJS framework, and in server side,
replacing PHP with node.js.

2.3 Why only JavaScript
In our application everything is JavaScript. Even the database. Being able to read and
understand your colleague's code is very important. This allows the better collaboration
between all developers (front and back end) and even semi-technical designers.
 The application is written in JavaScript, both on the front-end and on the back-end.
There aren’t many choices for writing the front-end of the application, so JavaScript was an
easy choice, but there were many choices for the language of the back-end. Having JavaScript
both on the front-end and on the back-end makes the communication of the browser and the
server seamless. JSON objects are supported by default on both ends, so this is the format
used for the communication between them, instead of XML. Also, when the logic of the front-
end and the back-end is similar, code can be easily reused, following the don't repeat yourself
(DRY) principle.
Development of a cross platform web-based-application, using Agile Methodology. 56

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

2.4 Why MongoDB
JSON objects are similar to the BSON objects supported by MongoDB, so the next step of
communicating without converting any data is using MongoDB. NoSQL databases have a good
performance advantage in certain cases. The application doesn’t have data that require a
relational database (table merge scenarios), so in this case MongoDB is the perfect database
and it can scale really well, since it has been implement with scalability in mind.

2.5 Why we choose a web version over a native one (or more)
There is just a web version of the application. That is because, one of the requirements was to
be platform independent . Not only it should be accessible on desktops running different
operating systems (iOS, Android, etc), but it should also be on tablets and mobile phones. Make
our application web based has the advantage that it can be used from every device that has a
web browser. This means that with this kind of implementation we can have direct access to
100% of the market share, without needed to write code for different platforms and
environments.
 For example, if we wanted to support natively iOS and Android mobile device, which
currently have more than 92% of market share combined, we would needed to build a server
and a database system in the way we build it now, and also an application in Java for Android
and one in Objective-C for iOS. Of course for supporting natively these platforms we should test
more than 100 devices and more than 10 different versions of these operating systems. Even
with this scenario there would be no support for desktop version. Today web usage is shared as
desktop: 41%, mobile: 52%, tablets: 7% [https://mixpanel.com/trends/#report/
desktop_vs_mobile_vs_tablet]. So not supporting desktop computers would be a great miss for
our users.

2.6 Why mobile support
As mentioned before mobile devices (cellular phones and tablets combined) are causing about
50% of web usage today. This makes these devices’ support crucial for the usability and
publicity of our application.
 Also the application is about recording the performances of athletes. Track and field
athletes travel all the time, around the world joining competitions in different countries. This
means, of course, that there is not always a computer nearby. And of course there is not a
computer in the stadium where the athletes compete. So we think that it’s crucial to give them
the opportunity to add their performance on the fly, from everywhere they are, with their mobile.

2.7 Why clear separation of back-end and front-end
Another decision made is the clear separation between the front-end and the back-end. The
application is designed with third-party interfaces and devices in mind. In order to give the
opportunity to others to create their own interface and access the API of the application, the
back-end should be completely independent from front-end. This means that now we can create
any native application we want, just by interact with the existing API we use in our current app.

3. AGILE SOFTWARE DEVELOPMENT METHODOLOGY

3.1 WHAT IS AGILE AND HOW IS COMPARED WITH WATERFALL

In 1970, Dr. Winston Royce presented a paper entitled “Managing the Development of Large
Software Systems,” which criticised sequential development. He asserted that software should
not be developed like an automobile on an assembly line, in which each piece is added in
sequential phases, each phase depending on the previous. Dr. Royce recommended against
the phase based approach in which developers first gather all of a project’s requirements, then
complete all of its architecture and design, then write all of the code, and so on. Royce

Development of a cross platform web-based-application, using Agile Methodology. 57

https://mixpanel.com/trends/#report/desktop_vs_mobile_vs_tablet

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

specifically objected to the lack of communication between the specialised groups that complete
each phase of work.
 It’s easy to see the problems with the waterfall method. It assumes that every
requirement can be identified before any design or coding occurs. Could you tell a team of
developers everything that needed to be in a software product before any of it was up and
running? Or would it be easier to describe your vision to the team if you could react to functional
software? Many software developers have learned the answer to that question the hard way: At
the end of a project, a team might have built the software it was asked to build, but, in the time it
took to create, business realities have changed so dramatically that the product is irrelevant.
The company has spent time and money to create software that no one wants. Couldn’t it have
been possible to ensure the end product would still be relevant before it was actually finished
 There are many challenges that waterfall has to face. We can visualise the waterfall’s
software development phases in the following diagram.

image 0.1 : Waterfall’s software development phases

Traditional Waterfall treats analysis, design, coding, and testing as discrete phases in a
software project. This worked fine when the cost of change was high. But now that it's low it
hurts us in a couple of ways. First off, when the project starts to run out of time and money,
testing is the only phase left. This means good projects are forced to cut testing short and
quality suffers. Secondly, because working software isn't produced until the end of the project,
you never really know where you are on a Waterfall project. That last 20% of the project always
seems to take 80% of the time. When design, the second of four phases, is completed it doesn’t
mean you are half way! Thirdly you've got schedule risk because you never know if you are
going to make it until the end. You've got technical risk because you don't actually get to test
your design or architecture until late in the project. And you've got product risk because don't
even know if you are building the right until it's too late to make any changes. Finally, most
importantly, it's just not a great way for handling change.
 The Agile movement proposes alternatives to traditional project management. Agile
approaches are typically used in software development to help businesses respond to
unpredictability. Agile development provides opportunities to assess the direction throughout the
development lifecycle. This is achieved through regular cadences of work, known as Sprints or
iterations, at the end of which teams must present a potentially shippable product increment. By
focusing on the repetition of abbreviated work cycles as well as the functional product they
yield, agile methodology is described as “iterative” and “incremental.” In waterfall, development
teams only have one chance to get each aspect of a project right. In an agile paradigm, every
aspect of development — requirements, design, etc. — is continually revisited. When a team
stops and re-evaluates the direction of a project every two weeks, there’s time to steer it in
another direction.
 This “inspect-and-adapt” approach to development reduces development costs and
time to market. Because teams can develop software at the same time they’re gathering
requirements, “analysis paralysis” is less likely to impede a team from making progress. And
because a team’s work cycle is limited to two weeks, stakeholders have recurring opportunities
to calibrate releases for success in the real world. Agile development helps companies build the
right product. Instead of committing to market a piece of software that hasn’t been written yet,
agile empowers teams to continuously re-plan their release to optimise its value throughout
development, allowing them to be as competitive as possible in the marketplace. Agile

Development of a cross platform web-based-application, using Agile Methodology. 58

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

development preserves a product’s critical market relevance and ensures a team’s work doesn’t
wind up on a shelf, never released.

image 0.2 : Visualise the difference of one-off activities of waterfall, to continuous activities of Agile.

3.2 SCRUM FRAMEWORK

The Agile Manifesto doesn’t provide concrete steps. Organisations usually seek more specific
methods within the Agile movement. These include Crystal Clear, Extreme Programming,
Feature Driven Development, Dynamic Systems Development Method (DSDM), Scrum, and
others. Scrum’s simple definitions gave our team the autonomy we needed to do our best work
while helping us get the business results he wanted.
 Scrum is the most popular way of introducing Agility due to its simplicity and flexibility.
Scrum emphasises empirical feedback, team self management, and striving to build properly
tested product increments within short iterations. Doing Scrum as it’s actually defined usually
comes into conflict with existing habits at established non-Agile organisations.
Scrum has only three roles: Product Owner, Team, and Scrum Master. The responsibilities of
the traditional project manager role are split up among these three Scrum roles. Scrum has five
meetings: Backlog Grooming (aka Backlog Refinement), Sprint Planning, Daily Scrum (aka 15-
minute standup), the Sprint Review Meeting, and the Sprint Retrospective Meeting.
 Scrum uses fixed-length iterations, called Sprints, which are typically 1-2 weeks long
and never more than 30 days. Scrum teams attempt to build a potentially shippable (properly
tested) product increment every iteration.

3.3 COMPARISON BETWEEN AGILE AND RUP

As noticed before there are a lot of methodologies that are Agile. One of them is RUP which is
commonly used in big corporation and is widely recognised from software engineers. Thus we
found meaningful to notice the differences between SCRUM and RUP. Both methodologies are
considered to be Agile and approach project activities in the iterative way. However, RUP
methodology calls for a formal definition of scope and major project milestones are associated
with specific dates. SCRUM methodology uses project backlog instead of scope and allows the
backlog to be redefined at the end of each iteration (usually about every 4 weeks).
 In addition, RUP subdivides the project lifecycle into 4 major phases (Inception,
Elaboration, Construction, Transition). Even though it encourages concurrent workflows across
the entire cycle, the general understanding is that certain activities will peak during certain
phases (for instance, requirements analysis will spike during the elaboration phase). On the
contrary, SCRUM dictates that the entire “traditional” lifecycle fits into one iteration. In other
words, a workload for one iteration at a time is determined and then the entire cycle occurs
within one iteration (e.g. the requirements for a particular feature are collected, documented as
a user story, then coded, tested and presented for the user review).

Development of a cross platform web-based-application, using Agile Methodology. 59

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 0.3 : Comparison between Scrum and RUP Agile process.

3.4 USABILITY EVALUATION METHODS

Before starting implementing functionality and design our application we had to take a fast
feedback from real users of how our application should look. We need to answer questions like
what design is more familiar and which functionality is important for an MVP(minimum value
product).
 As interfaces become ever more complex and development schedules seem to get
shorter and shorter, is very useful to give up the user-interface modelling software for awhile in
favour of something simpler. So in order to achieve our target, we used paper prototypes for
many different User Interface concepts. All we were needed was paper, pens and scissors.
Users run through a set of existing paper mock-ups or are given blank paper and asked to
represent a concept by sketching it. The prototyping stage is the right time to catch design flaws
and change directions, and the flexibility and disposability of paper encourages experimentation
and speedy iteration. Instead of “deleting” hours worth of layout code you’ve used to position a
column in the right place, you can draw a prototype, throw away the ideas that don’t work, and
move on.
 A paper usability-testing session works much like any other usability-testing session.
Begin by selecting a range of testers who represent your expected audience. Have scenarios
ready for the user to perform. Document the testing sessions with video to review the users’
emotional state when using your mocked-up interface. Debrief users afterward to measure

RUP SCRUM

Approach Iterative Iterative

Cycle Formal Cycle is defined across 4
phases, but some workflows can be
concurrent.

Each sprint (iteration) is a complete
cycle.

Planning Formal project plan, associated with
multiple iterations, is used. The plan
is end-date driven and also has
intermediate milestones.

No end-to-end project plan. Each
next iteration plan is determined at
the end of the current iteration (NOT
end-date driven). Product Owner
(Key Business User) determines
when the project is done. In general
‘Definition of Done’ defines when a
task is complete.

Scope Scope is predefined ahead of the
project start and documented in the
Scope document. Scope can be
revised during the project, as
requirements are being clarified, but
these revisions are subject to a
strictly controlled procedure.

Instead of scope, SCRUM uses a
Project Backlog, which is re-
evaluated at the end of each
iteration (sprint).

Artifacts Vision/Scope Document, Formal
functional requirements package,
system architecture document,
development plan, test plan, test
scripts, etc.

The only formal artifact is the
operational software.

Type of Project Recommended for large, long- term,
enterprise-level projects with
medium-to-high complexity.

Recommended for quick
enhancements and organizations
that are not dependent on a
deadline.

Development of a cross platform web-based-application, using Agile Methodology. 510

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

interface recall. With paper, you can also allow users to mock up ideas they think would solve a
problem, mark on the prototype where a user attempted to “click” or otherwise interact with the
interface, ask users to draw what they expect to happen next and keep going even if you don’t
have access to a testing lab or if computers, networks, or high-tech prototypes don’t work as
expected.
 Most of the prototypes will be shown in chapter 6, in which we analyse the whole
software development process.

4. TECHNOLOGIES AND ARCHITECTURE

4.1 JavaScript
JavaScript® (often shortened to JS) is a lightweight, interpreted, object-oriented language with
first-class functions, most known as the scripting language for Web pages, but used in many
non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based,
multi-paradigm scripting language that is dynamic, and supports object-oriented, imperative,
and functional programming styles.The JavaScript standard is ECMAScript. As of 2012, all
modern browsers fully support ECMAScript 5.1. A 6th major revision of the standard is in the
works and is expected to be finished around mid 2015. JavaScript can function as both a
procedural and an object oriented language. JavaScript's dynamic capabilities include runtime
object construction, variable parameter lists, function variables, dynamic script creation, object
introspection, and source code recovery (JavaScript programs can decompile function bodies
back into their source text). Intrinsic objects are Number, String, Boolean, Date, RegExp, and
Math.

4.2 AngularJS
HTML is great for declaring static documents, but it falters when we try to use it for declaring
dynamic views in web-applications. AngularJS lets us extend HTML vocabulary for our
application. The resulting environment is extraordinarily expressive, readable, and quick to
develop. Other frameworks deal with HTML’s shortcomings by either abstracting away HTML,
CSS, and/or JavaScript or by providing an imperative way for manipulating the DOM. Neither of
these address the root problem that HTML was not designed for dynamic views.
 AngularJS is a toolset for building the framework most suited to our application
development. It is fully extensible and works well with other libraries. Every feature can be
modified or replaced to suit our unique development workflow and feature needs.Data-binding is
an automatic way of updating the view whenever the model changes, as well as updating the
model whenever the view changes. This is very important because it eliminates DOM
manipulation from the list of things we have to worry about. Controllers are the behaviour
behind the DOM elements. AngularJS lets us express the behaviour in a clean readable form
without the usual boilerplate of updating the DOM, registering callbacks or watching model
changes.
 Unlike other frameworks, there is no need to inherit from proprietary types in order to
wrap the model in accessors methods. Angular models are plain old JavaScript objects. This
makes our code easy to test, maintain, reuse, and again free from boilerplate.Client-side form
validation is an important part of great user experience. AngularJS lets us declare the validation
rules of the form without having to write JavaScript code. AngularJS provides built-in services
on top of XHR as well as various other backends using third party libraries. Promises further
simplify your code by handling asynchronous return of data.

4.3 Node.js
Node.js is event based and asynchronous/non-blocking. Events, like an incoming HTTP
connection will fire off a JavaScript function that does a little bit of work and kicks off other
asynchronous tasks like connecting to a database or pulling content from another server. Once
these tasks have been kicked off, the event function finishes and Node.js goes back to sleep.
As soon as something else happens, like the database connection being established or the

Development of a cross platform web-based-application, using Agile Methodology. 511

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

external server responding with content, the callback functions fire, and more JavaScript code
executes, potentially kicking off even more asynchronous tasks (like a database query). In this
way, Node.js will happily interleave activities for multiple parallel workflows, running whatever
activities are unblocked at any point in time. This is why Node.js does such a great job
managing thousands of simultaneous connections.
 Node.js is single threaded and lock free. Node.js, as a very deliberate design choice
only has a single thread per process. Because of this, it's fundamentally impossible for multiple
threads to access data simultaneously. Thus, no locks are needed. Eliminating locks and multi-
threading makes one of the nastiest classes of bugs just go away. This might be the single
biggest advantage of node.
 Some advantages are that web development in a dynamic language (JavaScript) on a
VM that is incredibly fast (V8). It is much faster than Ruby, Python, or Perl. The ability to handle
thousands of concurrent connections with minimal overhead on a single process. The fact that
JavaScript is perfect for event loops with first class function objects and closures. Using
JavaScript on a web server as well as the browser reduces the impedance mismatch between
the two programming environments which can communicate data structures via JSON that work
the same on both sides of the equation. Duplicate form validation code can be shared between
server and client, etc.

4.4 Express and Connect
Node.js itself offers an http module, whose createServer method returns an object that you can
use to respond to HTTP requests. That object inherits the http. Server prototype. Connect also
offers a createServer method, which returns an object that inherits an extended version of
http.Server. Connect's extensions are mainly there to make it easy to plug in middleware. That's
why Connect describes itself as a "middleware framework". Express does to Connect what
Connect does to the http module: It offers a createServer method that extends Connect's Server
prototype. So all of the functionality of Connect is there, plus view rendering and a handy DSL
for describing routes.

4.6 MongoDB
MongoDB is an open-source, document-oriented database designed for ease of development
and scaling. A record in MongoDB is a document, which is a data structure composed of field
and value pairs. MongoDB documents are similar to JSON objects. The values of fields may
include other documents, arrays, and arrays of documents. Some of the advantages of using
documents are that documents (i.e. objects) correspond to native data types in many
programming languages. Embedded documents and arrays reduce need for expensive joins.
Dynamic schema supports fluent polymorphism.
 Some key features are the high performance(embedded data models reduces I/O,
Indexes support faster queries and can include keys from embedded documents and arrays),
the high availability(automatic failover, data redundancy) and the automatic scaling(automatic
sharding distributes data across a cluster of machines, replica sets can provide eventually-
consistent reads for low-latency high throughput deployments)

4.7 LESS (CSS, transitions)
Less is a CSS pre-processor, meaning that it extends the CSS language, adding features that
allow variables, mixins, functions, operations and many other techniques that allow us to make
CSS more maintainable, them-able and extendable. Variables are actually constants that can
be defined once and used across the whole implementation. Mixins are a way of including
("mixing in") a bunch of properties from one rule-set into another rule-set. This is very helpful
and convenient when we need to support attributes that are not well defined and have different
syntax between the famous browsers we support.

4.8 Jade

Development of a cross platform web-based-application, using Agile Methodology. 512

http://nodejs.org/docs/v0.4.2/api/all.html#hTTP
http://senchalabs.github.com/connect/
https://github.com/senchalabs/connect/wiki
http://expressjs.com/

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

Jade is a high performance template engine heavily influenced by Haml and implemented with
JavaScript for node and browsers. Jade is a terse language for writing HTML templates. It
produces HTML, supports dynamic code and also reusability (DRY).

4.9 Bootstrap
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile
first projects on the web.Bootstrap makes front-end web development faster and easier. It's
made for devices of all shapes, and projects of all sizes. Bootstrap easily and efficiently scales
our websites and applications with a single code base, from phones to tablets to desktops with
CSS media queries. We used bootstrap in parallel with our code, for User Interface elements in
LESS (CSS) and logic in AngularJS.

4.10 Charts Libraries (Google Charts and C3/D3)
When we started the project we choose Google Charts as a good option that is provided and
supported from Google. It provides a good way to visualise data on your website. From simple
line charts to complex hierarchical tree maps, the chart gallery provides a large number of
ready-to-use chart types. The most common way to use Google Charts is with simple
JavaScript that you embed in your web page. This is what we also did in our application at first
stages and before we choose AngularJS as the framework on the web-client side. Charts are
highly interactive and expose events that let you connect them to create complex dashboards or
other experiences integrated with your webpage. Charts are rendered using HTML5/SVG
technology to provide cross-browser compatibility (including VML for older IE versions) and
cross platform portability to iPhones, iPads and Android.
 After the addition of AngularJS at front end we decided to make a transition to D3.js.
D3.js (or just D3 for Data-Driven Documents) is a JavaScript library that uses digital data to
drive the creation and control of dynamic and interactive graphical forms which run in web
browsers. It is a tool for data visualisation in W3C-compliant computing, making use of the
widely implemented Scalable Vector Graphics (SVG), JavaScript, HTML5, and Cascading Style
Sheets (CSS3) standards.
 C3 is a library on top of D3 which makes it easy to generate D3-based charts by
wrapping the code required to construct the entire chart. We don't need to write D3 code any
more. It gives some classes to each element when generating, so you can define a custom style
by the class and it's possible to extend the structure directly by D3. C3 provides a variety of
APIs and callbacks to access the state of the chart.

4.11 System Architecture
Our system architecture changed rapidly through the development process due to new
decisions and requirements that raised. On our initial implementation we started with a software
stack that had three completely different environments from end-to-end. It had plain JavaScript,
HTML and pure CSS in the web client side. PHP on the server and MongoDB as a storage.
 As described in more details inside the whole process analysis, this stack had some
limitations, mainly in scalability and maintenance. The following architecture diagram shows
how the layers of our application are positions one over the other

Development of a cross platform web-based-application, using Agile Methodology. 513

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 0.3 : Initial Software Architecture Diagram, with MongoDB-PHP-JavaScript-HTML-CSS

 After implementing almost all the basic functionality we decided to move to a more
scalable solution, which will help us use only one programming language avoiding in this way
the object transformation and mapping between components. For these reasons we replaced
PHP with Node.js on server. So after this change the new architecture diagram looks like the
following.

Development of a cross platform web-based-application, using Agile Methodology. 514

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 0.4 : Software Architecture Diagram, with MongoDB - Node.js - JavaScript - CSS

 After the successful transformation of server-side from PHP to Node.js, we made one
more pivot. This time on web client. The main idea of our final stack is that server will
implements a pure REST API that will be interact with multiple clients (web or natives). This
means that we have to implement all the business logic on client side, which is something
obvious for native applications but not for web applications, till now.
 Introducing AngularJS on web client side allows us to build the business logic there and
use pure HTTP and AJAX request for communication between web client and server. We also
replace pure CSS with LESS library in order to keep our styling assets and code more
structured and make it easier to maintain them. So the final architecture is as seen on the
following diagram.

Development of a cross platform web-based-application, using Agile Methodology. 515

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 0.5 : Software Architecture Diagram, with MongoDB - Node.js - AngularJS - LESS

5. REQUIREMENTS ANALYSIS

5.1 Functionality
Before designing the application, the requirements of the sections and the overall functionality is
defined. The final version of the application should be a fully functional tool for the athletes, with
all the settings and functionalities that will make the process of tracking their progress easy and
satisfying.

5.1.1. Login

Since our application will be accessed by individual users, there’s a need for a login section.
Because the email address is needed in many cases by the application, the login credentials
are an email address and a password, avoiding unnecessary values like usernames, names
etc. The login section should create a session for the user and keep them logged in, until they

Development of a cross platform web-based-application, using Agile Methodology. 516

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

decide to logout. It should also be simplistic and look similar to the registration section. There
should also be a link to the “Forgot password” section.

5.1.2. Register

There should be a page where the users are creating their accounts. The registration section
should be simple, and similar with login section and after a validated registration phase, records
of the new users should be added to the database. The required fields of the registration section
should be five: a first name, a last name, an email, a password and the same password
repeated for safety reasons. The first name and the last name are required because they should
be displayed in the user’s profile which makes the user easier to find and be recognised by
other users. They also make the application feel more personal, which may work as a self
inspiration for their progress. The password is used for the login process and it should repeated
in order to avoid typographical errors. The email is used for the registration process and for
email notifications.

5.1.3. Email validation

The email address that the user submitted during the registration process should be validated.
Right after they have registered, an email should be sent to the given address, providing a
unique link, created specifically for this user. If they click on this link, the application can assume
that it was clicked from the existing email address of the user, that they have access to that
address, and therefore it will complete the registration process, allowing the user to use the
application. After the validation of the email address, the user should be immediately logged in,
since there is no reason to ask for the password when the link is clicked in the user’s own email
client.

5.1.4. Forgot password

Following the “Forgot password” link should lead the users to a page where they can enter their
email address, making a request for a new password. After submitting the form, an email should
be sent to the given email address and that email should include a unique link to a page where
the user can enter a new password and repeat it once for safety reasons. After submitting this
form, the password of the user should have changed to the new one and the user should be
logged in without using the login form.

5.1.5. Automatic detection of user’s preferences

When the user logs in for the first time (after their email address has been validated), some
preferences should be preselected. The country of the user should be detected and, using this
information, the “country” setting and the “unit system” setting, should be preselected by the
name of the country of the user and the unit system that is used in this country respectively, and
they should be saved as the default settings of their account. Also, the profile will be private by
default, meaning that other users won’t be able to access it at all. This will be preselected for all
users after registration.
 When these settings get set automatically, a notification will be showing the values of
these settings to the user, stating that if these settings are not correct or if the user wants to
change them, they can visit the settings page and do that manually, and a link of that page
should be provided in the notification.

5.1.6. Profile

The profile has to be the main section of our web application. The registration process and the
login process should take the user here. In this section, the data of the user should be visible
and the activities can be shown, edited, created, deleted, and they can also be filtered.

The profile section should display the user’s profile picture, the first and last name, the discipline
and the country. There should also be a list of all the activities previously submitted, which

Development of a cross platform web-based-application, using Agile Methodology. 517

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

should be editable and deletable, and a form to submit new activities. There should also be a
way to filter the activities shown in the list.

5.1.7 Edit activity

Each activity in the list, in the profile page, should have a way to make the activity editable. The
activity should turn into a form, similar to the one that is used to submit new activities, and the
data of the activity should be in the appropriate fields. The user should be able to change the
values and submit the form. After the form is submitted, the activity should change to its initial
state, not editable anymore, with the new data.

5.1.8 Add activity

In the profile page, it should be possible to create new activities. There should be a form where
a user can select their discipline, and according to their selection, several more fields should
appear. In case the user has chosen a main discipline in the settings, that discipline should be
preselected.
 There should be one or multiple fields that accept the user’s performance. Other fields
needed are the date of the activity, a field showing whether the activity is training or not, a field
showing the location it took place, a text area for notes, and if the activity is a competition, there
should also be fields of the name of the competition and the place that the athlete came.
 Since the form is big for the page, and not always needed, the fields should be hidden,
when the page is accessed, and the should be shown when the user clicks on the “add activity”
option. When the user has submitted the form, the form should close again and the new activity
should be added to the list of the activities, in the correct place, according to the date of the
activity.

5.1.9 Delete activity

In a similar way that an activity can be turned to editable, an activity should be deleted. When
the user chooses to delete an activity, a confirmation message should be shown, and if the user
confirms the deletion, the activity should be removed from the list. Otherwise, the message
should disappear and the list should remain intact.

5.1.10 Activity filtering

It should be possible to filter the activities in the profile. There should be a way to display all the
activities or the activities of only one discipline.

5.1.11 User search

When a user is logged in, on every page of the application, there should be a field that can be
used in order to search for others who use the application. The search should require a first
name or a last name or both, the server should search for the users on every user’s key press,
and the top five results should be displayed right below the search area. Clicking on one of the
results should lead the user to the profile of the selected user.

5.1.12 Visiting profiles

Users should be able to visit the profiles of other users, when they are not private. The profile
should have the same interface as when its owner visits it, but there should not be any options
to add, edit or delete activities. The whole form used to add activities should be missing, and the
options to remove or edit individual activities should not appear on them as well. There should
still be a way to filter the activities. Also, in the same way, the statistics of the user should be
available for visiting.

5.1.13 Statistics

Development of a cross platform web-based-application, using Agile Methodology. 518

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

The data entered in the profile should be displayed as graphs in the “statistics” section. The
graphs should have the performance on the y axis and the dates on the x axis. There should be
a way to change the discipline shown in the graph and there should be a way to focus on a
certain timespan.

5.1.14 Profile settings

There should be a section where the settings and the information that will appear in the profile
can be edited. The section of the profile settings, should have as editable fields the user’s first
name, last name, main discipline, gender, birthday, country, profile picture, privacy and a short
text about themselves.
 Changing the first name, last name, profile picture, country or discipline, should change
the relevant information in the profile page. Also, changing the first and last name should
change the way that particular user can be found using the search functionality. The old first and
last name shouldn’t be used as search parameters anymore.
 Changing the privacy of the profile to public should make the profile visible to others,
while changing it to private should remove it from the search results and visiting that profile by
its url should show a page stating that this profile does not exist.

5.1.15 Account settings

In the same page as the profile settings, there should be a section with editable fields that affect
values related to the user’s account. These are the password, the language, the date format,
the system of measurement and the url of the user’s profile.
 When the user selects to change the password, three fields should appear, one that will
require the old password, and two that will require the new one for safety reasons. Entering the
correct old password and the exact same password twice as a new password, should
immediately take effect.
 Changing the language setting should change the language used for the whole
interface of the application. The value preselected when the user first accesses the application,
should be the default language of the user’s country. The files of the translated values should be
separated from the rest of the application, so that changes applied to them will affect all
occurrences of the value throughout the application.
 The date format input should have two options: day-month-year and month-day-year.
Changing this setting should change they way the dates are shown throughout the application,
even when visiting profiles of other users, regardless of their settings.
 There should be two systems of measurement, the metric and the imperial. A user
should have one of them preselected after registration, based on the country they live in. All the
units should be displayed in the selected system, even the units shown in other profiles.
 The initial url of a user’s profile should be the user’s id in the database. In the account
settings, can be set a new url for the profile, one that a user can choose. Changing the url
shouldn’t make the profile inaccessible by the user’s id.

5.1.16 Privacy

Privacy should be divided into two sections. Profile privacy and activity privacy. Setting a profile
to private, makes the profile visible only to its owner. It should not appear in the search results
and when it will be visited by its URL, it should display a message stating that the profile was
not found. Accessing an activity of a private profile by using the API should fetch no data.
 Activity privacy should be applied when a profile is public. Each of the activities should
be either public or private. The public activities should be visible by anyone who can view that
user's profile, including the users who are not currently logged in. Private activities should be
visible only to its owner, and the other users shouldn’t be able to see them on the profile page or
access them using the API.

5.1.17 API

Development of a cross platform web-based-application, using Agile Methodology. 519

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

Our API is RESTful and the application itself should use it. It should mainly interact with the user
and activity entities. The GET method should be used for getting data, POST for creating new
data, PUT for updating data and DELETE for deleting data.

5.1.18 Responsive design

The application should be displayed correctly on desktop computers, mobiles and tablets, both
in portrait and landscape mode. The controls should be easily accessible for both platforms and
the interface should be change in order to adapt to each screen, and possible hide or collapse
features in smaller screens.

5.2 Terms definition

5.2.1 Activities
I will refer to the performances of the athletes at competitions as activities. They will have
several parameters such as the performance, the discipline, the date, the location of the event,
the name of the event, the place the athlete got in the event, notes, and whether it is a private
activity or not.

5.2.2 Statistics

The diagrams that show statistics of the athletes’ performances through time and the respective
section of the application will be referred to as “statistics”.

5.2.3 Discipline

A discipline is the sport that an athlete does. An athlete, as user of the application, has a main
discipline, the discipline that they prefer and possibly have most records of.

5.2.5 Filtering

Filtering would be the process of narrowing down the results of the activities or the data that are
used in order to create the statistics. Filtering may be applied by discipline or by date.

5.3 Personas
In order to better know our users and the features we need to implement, we had to create
personas. A persona is a way to model, summarise and communicate research about people
who have been observed or researched in some way. A persona is depicted as a specific
person but is not a real individual; rather, it is synthesised from observations of many people.
Each persona represents a significant portion of people in the real world and enables the
designer to focus on a manageable and memorable cast of characters, instead of focusing on
thousands of individuals. Personas aid designers to create different designs for different kinds of
people and to design for a specific somebody, rather than a generic everybody. Personas are an
essential part of goal-directed design. Each group of users researched is represented by a
persona, which in turn is represented by a document. Several personas are not uncommon in a
typical project.
The components of goal directed design that support personas are the following two:
 1. End goal(s) : This is an objective that a persona wants or needs to fulfil by using
software. The software would aid the persona to accomplish their end goal(s) by enabling them
to accomplish their tasks via certain features.
 2. Scenario(s) : This is a narrative that describes how a persona would interact with
software in a particular context to achieve their end goal(s). Scenarios are written from the
persona’s perspective, at a high level, and articulate use cases that will likely happen in the
future.
 Personas, end goals and scenarios relate to one another in the same way that the main
character in a novel or movie goes on a journey to accomplish an objective. The classic “hero’s
Development of a cross platform web-based-application, using Agile Methodology. 520

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

journey” narrative device and its accompanying constructs have been appropriated for the
purpose of designing better software.

Anna Chicherova (RUSSIA)

“ I use trafie as a tool. It makes it very easy for my to visualise my
progress and find out things that affects my performance.” ~ Anna

Anna is a 28 years old High Jump Olympic Champion, with many
achievements the last decade in world class Championships.
She competes in about twenty to thirty competitions around the world per
year. And she wants to see her progress during the year, and easily

understand how her training affects her competition.
	 She adds the performances from it’s mobile device (iPhone 5S, iOS, 4” screen size),
exactly after the competition, because she needs to remember how the competition went and
keep notes about it. This means that most of the times this is happening at night and on the way
back to hotel or any other area of the competition venue.
	 For Anna a mobile device that allows her to keep track of performance and notes
chronically close to the event is very important.

Tomasz Majewski (POLAND)

“ I use trafie as an archive. I keep track of my progress through the
years.” ~ Tomasz

Tomasz Majewski is a 33 years old Polish Olympic Gold medalist in Shot
Put. He competes in about thirty competitions around the world per year.
He rarely uses his smartphone for adding performances because it’s very

hard for him to use them, due to his big hand size. He is 2.05m height
and weights 145Kg!
	 For this reason he uses our application from his laptop (Dell, Windows 7 OS, 15” screen
size). He wants to just to keep an archive with his performances in time. For Tomasz an easy to
use desktop application is all that he needs.

Sanya Richards-Ross (USA)

“ I use trafie as a performance archive. I like the way that visualise my
performances and show how they changed in time.” ~ Sanya

Sanya Richards-Ross of the United States she won the gold in the
Women's 400 Metres Final during the 14th IAAF World Indoor
Championships. She has many achievements the last decade in 400m
and 200m. She competes in about thirty to forty events around the world

per year. She loves technology and she mainly uses her smartphone (LG Nexus, Android Lollipop,
4.5” screen size) and her tablet (iPad mini, iOS, 7” screen size). She always has these devices with
her.

Development of a cross platform web-based-application, using Agile Methodology. 521

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

	 She may use our application in many different ways. She uses it on the way to stadiums or
back to hotel, in the bus after the competition or in cafes while she relaxes between trainings. She
wants to have instant access to their performances and see how their affected by her training, diet
etc.

5.4 DEVICES SUPPORT

5.4.1 Desktop

The user interface of the application should adapt to the screens of almost all devices. On
desktop computers and laptops with medium and large screens, it should reach its maximum
size (around 1000 pixels) and not expand more than that. All the elements of the application
should occupy 100% of the width of that size, so that there is no empty space.

5.4.2 Tablet

On tablets and laptops with small screens, the width of the application should match the width of
the screen. All the options and the features should be available but possible some of them can
be grouped into a single option that has to be activated in order to reveal the full set of options,
in order to save some space. It should work on both landscape and portrait mode.

5.4.3 Mobile

On mobile phones, the width of the application should match the width of the screen again, and
the features should be reduced to the minimum required just for user input. Parts of the
application (for example the section of the statistics) should not be available at all. Options
should be grouped in order to save space and the application should work in both landscape
and portrait mode.

5.4.4 Wearables (usage of APIs)

Wearable devices should be able to access the application using the available API. All the
features regarding manipulating the data of the activities, should be available using the API, so
that users can track their performances using the sensors of their device.

6. SOFTWARE DEVELOPMENT PROCESS

6.1 Sprint 1

6.1.1 Aim

In this first sprint, we will make a requirement analysis and analysis of the technologies that
should be used. Also prototypes and mockups will be designed, but no code will be written.
Everything will be prepared in order to start the second sprint by developing the actual
application. This sprint should have a duration of one week.

6.1.2 Requirement Analysis

The main target of the application is to help track and field athletes, to keep track of their
performances and visualise their data in a way that they can find out how much they have
improved and extract additional data in an easy and fast way. Therefore there are some feature
that the application should definitely have and some others that can improve the users’
experience and the interaction of each user with the other users. We will use the agile
development methodology, so while the application is being developed, we will be getting
feedback from the users and change the requirements accordingly.

Development of a cross platform web-based-application, using Agile Methodology. 522

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

 The most important element is the form where users can add, edit and remove
activities. The activities are the main data that our application will handle. For this reason it
should be easy to complete and change, so our users can import and manipulate their data
often and without hesitating. This raw data will be the source for all the visualisations and
diagrams in the application. So diagrams is another important feature that should be
implemented. Diagrams should use the user’s data and display line charts of time spans
selected by the user. They should also filter data by discipline. Apart from the diagrams, another
way to view your activities is in a list view at profile page. Activities should also be filtered by
discipline or year of the activity.
 There will be social features so the profile should resemble that of a social network.
There should be a profile picture, search input that searches for users, the profile and the
individual activities should be set to private, hiding them from the other users and also the
diagrams of the users who have their profiles set to public, should be accessible.
 The agile software development method is flexible towards requirements which are
likely to change, and the analysis for the first sprints of the project should be done only for the
features that will be implemented in these and have detail analysis for final product. In this sprint
we will discuss the requirements that will likely be the foundations for the upcoming features, so
they will include ideas that may affect the way features are implemented in the future.
 The most important feature that should be implemented in the next sprints is the page
where the athlete can record and view their activities. This is the core feature of the application.
Αctivities, is the main content of the application and without them it offers nothing to the user.
Therefore, the feature that should be implemented in the next sprint, as a prototype, is the way
that athletes will record their activities.
 The second core feature is the user as an entity in the application. There should be a
system for creating users and a system that discerns individual users that use the application,
namely, a registration and a login system with user sessions.
 Both core features require records in the database, so the design process should
include the db schema and its interaction with the application. When the prototype is ready, the
core features should be enhanced and more features should be added in the next sprints.

6.1.3 User Interface prototypes and evaluation

Ιn this Sprint we need to take some basic decisions about our User Interface and Interaction
design. How our pages and our main flows should look and work. Because of the small
timeframes we use in Agile we were needed a fast evaluation method that evolve real users, in
order to get a first feedback about our design. Thus we choose Paper Prototypes and User
Walkthroughs. Combining the information of our users, with design principles that are followed
in web application design, lead us to our first design. In order to create many different User
Interfaces we split the total UI in partials and for each one we create a lot of variations. With this
technique we could easily generate a lot of different User Interfaces and let our users interact
with them. On the following images are shown different variations of the basic pages and
elements of our design.

Development of a cross platform web-based-application, using Agile Methodology. 523

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.0: Paper prototypes for login pages

image 1.1: Paper prototypes for application header

Development of a cross platform web-based-application, using Agile Methodology. 524

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.2: Paper prototypes for profile header

Development of a cross platform web-based-application, using Agile Methodology. 525

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.3: Paper prototypes for activities timeline (initially we named this timeline ‘history’)

Development of a cross platform web-based-application, using Agile Methodology. 526

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.4: Paper prototypes for settings pages

Development of a cross platform web-based-application, using Agile Methodology. 527

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.5 : Full application’s page flow

Development of a cross platform web-based-application, using Agile Methodology. 528

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 1.6 : Backlog status for Sprint Planning of Sprint 1

6.2 Sprint 2

6.2.1 Sprint planning

The features that should be implemented in this sprint are the login page, the registration page
and the profile page that allows only creating new activities. My colleague will set the fields for
the users and the activities in the database and I will create the user interface for the login and
registration functionality. On the server side we will also keep the sessions of the users. Then
we will create the routes and the functionality for activity creation and retrieval.
 This sprint can be split in 3 stories: the login functionality, the registration functionality,
the activities API(login, register, profile).
 The server, should expect from the registration page five parameters for registration:
the user’s first name, last name, email address, password and the password one more time for
verification. The first name and last name values should have only characters and no symbols.
The email address should have a valid format and there should be no other such email in the
database. The passwords should be at least 6 characters long and they should match.

Development of a cross platform web-based-application, using Agile Methodology. 529

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.1 User Interface of registration page with an error message visible

 Nothing more should be implemented regarding the registration process at this time.
After registering successfully, the user should be redirected to the profile page. The user’s
submitted data should be stored in the database as they were given, apart from the passwords
which should be encrypted with the sha-1 hash function.
 For the login process, the email address and the user’s password should be asked.
These two pieces of information should match a record in the database in order to let the user
login, otherwise, a message should be shown, stating that the credentials were wrong. After
submitting the credentials successfully, a session should be created for the users, which should
be stored in the memory for the time being, and a cookie should be sent to the browser,
allowing the user to browse the private pages without any other authentication.

Development of a cross platform web-based-application, using Agile Methodology. 530

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.2: User Interface of Login page

 All data are computed in backend with PHP and added inside the markup before they
will be send to the web client.
 The API that manages the activities should only support two methods, GET and POST.
The resources should be on the route /user/{user_id}/activities. A GET request on this route will
fetch all the activities of the user with the given user_id, and if an id is given for an activity, only
that activity should be fetched. An example route is GET /user/1/activities/1, which should fetch
the activity with id 1 of the user with id 1. When a POST request is made on the resource route,
a new activity should be created, according to the posted data. Whenever the API is accessed,
the user should be authenticated by their session data. Also, when a user posts an activity, the
posted data should be validated before they get stored in the database.

Development of a cross platform web-based-application, using Agile Methodology. 531

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.3: User Interface of Profile page with and without the add activity form

6.2.2 Stand up

Our initial point is the registration and login page where our users have the first contact with our
app. On the registration section, the user will have to fill 5 fields. We tried to have only
necessary fields in order to ensure security,prevent errors and get as less as data are needed in
order to initiate our user profile. The fields we finally ask from user to fill are first name, last
name, email address, password and repeat password. When these fields are submitted, a
POST request is made, on the “/register” route. We check the validity of the values on server
side. If we get invalid data from client, the same markup should be sent back with additional
informing messages that will help the user enter the correct values. If they are valid, the
first_name, last_name, email and the password(hashed by the sha256 algorithm) are stored in
the database.
 The login page has two fields, email and password. When the user submits the form,
the server gets the posted data, hash the password with the sha-1 algorithm and perform a
query, searching for a record in the “users” table, that corresponds to this data. If a result is not
found, the server should return a message, stating that the credentials entered was wrong. If a
data match then a session is created, cookie data should be sent to the browser and the user
should be redirected to the profile page. The user should be authorised to access his profile and
his statistics page, plus the routes that fetch and alter the activities. The sessions are stored in
memory, using the middleware named “connect”. Whenever a request is made to the server that
includes the cookie data, the server will be able to check if the session data in the cookie is the
same as the data in the memory and verify the user as logged in. Otherwise, it should redirect
them to the login page.
 In the database schema there are two tables where the users’ data are stored. The
“users” table, which stores data that is related to the user’s account, and the “profile” table,
which stores data related to the users’ profile pages. The first name and last name values will
be stored to the profile page, while the email address and the password will be stored in the
users table. Of course as the development continues, in later sprints, new values will be added
in these tables in order to extend users’ profiles. Since there is no email validation, a session is
created in the memory of the server, and a cookie with the session id is sent back to the client.
 When the user requests the profile page, the data from the table of the database
“profile” (first_name, last_name) should be sent to the browser, personalising the page. Then
we will request the activities of the user, from the API route /users/#user_id/activities. The table
“activities” should be queried and the activities with the user’s id should be fetched and returned
in order to create the page with the correct data and return them to the client.

Development of a cross platform web-based-application, using Agile Methodology. 532

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

 A main problem that will also be faced is the validation of the activities when they get
posted to the server. In order to handle easier the different activities we had to categorise them.
The criterion, with which we categorised them, is the performance unit, so there will be three
categories. The first category includes the disciplines that are measured with time, which are
races. The second one the disciplines, the performances of which are measured by distance,
like jumps or throws. The last category includes the disciplines that are measured by points,
which are the combined events(pentathlon, decathlon etc).
 When a user posts an activity, the first step of the validation process would be to check
if the posted discipline is a valid discipline. Then, based on the type of the discipline, the
performance should be checked for validity. Performances counted in points should be integer
numbers, distances should be float numbers and time should be a time-formatted String. Also
when posting an activity we get a value for the date, which should also be validated for its
format and it should be a past date. After we receive the date value we convert it to the format
that the database accepts.
 After the validations have passed and the activity is considered valid, a new record
should be created in the “activities” table, with all the posted data plus the user’s id. A JSON
object with the formatted activity data should be returned to the clients, in order to update the
view with the new activity. In case the data is not well formatted or not valid, a message should
be sent to the client stating where the error is located. In this sprint, the activities can only be
created and not deleted nor edited.
 The last feature that will be implemented is the page of the graph. When user navigates
to the graph’s page, web client sends a request to the server using user ID in order to get back
the activities of the user and rendered them as graphs using Google Charts library. When the
request is done the server side just queries the database for the activities of the user and sends
them back to the client.
 The development stack we are going to implement is mongoDB as a database
management system, PHP for backend in order to handle logic and html templating, HTML-
Javascript-CSS in client side in order to render the UI pages.

image 2.4: Backlog State for Sprint Planning of Sprint 2

Development of a cross platform web-based-application, using Agile Methodology. 533

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.2.3 Diagrams

image 2.5: User Interface of Login page

image 2.6: Login Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 534

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.7: Login State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 535

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.8: Register User Interface

image 2.9: Register Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 536

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.10: Register State Diagram

image 2.11: Login and Register Use Case

Development of a cross platform web-based-application, using Agile Methodology. 537

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.12: Profile User Interface

image 2.13: User Interface for Add Activity in Profile page

Development of a cross platform web-based-application, using Agile Methodology. 538

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.14: Add Activity Wireframe

image 2.15: Add Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 539

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 2.16: Add Activity State Diagram

6.2.4 Sprint review

In this sprint there where some delays because we were needed sometime to learn and
understand how mongoDB works and how it’s differentiated from common SQL DBMS. Using a
backend that needs to handle all the information, the logic of the UI and page navigation was
the first issue we faced in the JS-PHP-MongoDB stack.

6.3 Sprint 3

6.3.1 Sprint planning

In this sprint, the essential feature we will try to implement is the deletion and editing of the
existing activities. Also we will add an alternate view for existed activities, through graphs. This
will add one more page in our total page flow.
 Editing an activity should happen on the activity itself. The element that represents the
activity in the client should have an icon, indicating that the activity is editable, which will
transform all elements of the activity to input fields when clicked, creating a form. When the form
is submitted, the changes should be sent to the server through an ajax call and the client should
update the activity element with the data from the response.]
 There should also be an element that when clicked, will delete the activity, by sending a
delete request to the server and then updating the client. When user choose to delete an activity

Development of a cross platform web-based-application, using Agile Methodology. 540

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

a pop up will be shown, asking the user to verify their action of deletion, protecting the activities
from being accidentally deleted.
 One new page will be added in order to have a different type of view for activities. This
page will be called “Statistics”. For this functionality we will use Google Charts library in order to
create the graphs in client side, just by using the same data we have for activities in profile
page. For get the data from server we will request the activities of the user, from the API route /
users/#user_id/activities, exactly in the same way we have in the profile page.

image 3.0: Backlog State for Sprint Planning of Sprint 3

6.3.2 Stand up
When the user has submitted the changes for an activity, the data should be parsed and
validated by the server, the same way they are validated when a new activity is being created.
Same validations apply here. The main difference here is that the request should be a PUT
request this time, and not a POST request which is the case in the activity creation. Also, the
activity_id value of the existing activity, that should be edited, must be included in the data sent.
After the values have been validated, a query should find the existing record and change all the
values according to the new data. If everything goes as expected, a JSON object should be
sent back to the client, which will update the view. If something goes wrong, a message should
be sent, stating where the error happened, and if the data was not valid, the user should be
prompted to correct the data in the form.
 Clicking the icon that deletes the activity, and confirming the action in the pop up,
should send a DELETE request to the server, along with the id of the activity that should be
deleted. The server should check if the activity exists, and if it does, it should delete the activity
from the database. If everything goes as expected, a JSON object should be sent back to the
client, so that the view can be updated, removing the element that represented the activity. If
there was an error in the process, an error message should be sent, again in a JSON object.
 Both actions of editing and deleting activities, should be validated by the server,
regarding user permissions. This functionality may cause vulnerabilities when future
functionality will be added, thus we implement validations in server side from now. Users can
only edit and delete their own activities, so the id of the user to whom the activity belongs
should match the id of the user in the user’s session and cookie. If the user tries to edit or delete
an activity that doesn’t belong to them, the server should not proceed with the requested action

Development of a cross platform web-based-application, using Agile Methodology. 541

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

and no message should be sent back to the browser, as these actions are not permitted using
the interface, so the user has used other means to do achieve it.
 In order to visualise user’s activities in charts we need to manipulate the response with
activities we get from the server, because different types of activities needs different type of
charts and different type of axis. (meters, time, points)
 This sprint has specific difficulties that rely mainly in different types of input data that
has to be checked in front and back end. Also the usage of an unknown charts library in
combination with different measurement units adds an extra difficulty in our time planning and
committing for these features.

6.3.3 Diagrams

image 3.1: Profile page User Interface with edit option available

image 3.2: Edit activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 542

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 3.3: Profile page edit activity State Diagram

image 3.4: Profile page edit activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 543

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 3.5: Delete Activity Wireframe

image 3.6: Delete Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 544

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 3.7: Delete Activity State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 545

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 3.8: Statistics page User Interface

image 3.9: View Activities as graphs Use Case

6.3.4 Sprint review

Deleting and editing activities implemented on time. The same thing happened with our
statistics page although there were difficulties in manipulating all these data in the client side.
 In this sprint arouse the need of having a more structured application in the front-end,
considering of introduce an MVC framework in the future for client-side, and remove the heavy
logic of data manipulation and UI rendering from server side. We decided to implement also the
settings page using the existing software stack and then reconsider if worthing to make a pivot
and change the technologies we use.

6.4 Sprint 4

6.4.1 Sprint planning

Development of a cross platform web-based-application, using Agile Methodology. 546

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

It’s time to create a new section of the application where the user can personalise more their
profile page, change his personal and contact data and also, in a later sprint, manage the
privacy of their profile. This is the “settings page”
 Inside the settings page the user can change their first and last name, a short
description about itself and password. More options will be added in later sprint. Changes made
to the above elements, will affect the data instantly and the UI will be updated accordingly.

image 4.0: Backlog status for Sprint Planning of Sprint 4

6.4.2 Stand up

The settings page is actually two forms with data that should always be validated by the server.
New fields should be added to the database. Settings are separated in two different categories.
Profile Settings and Account Settings.
 Profile Settings tab will contain first and last name, and also the description. Account
Settings tab will contain password change. All the data should be edited inline, on the form
itself, made editable by clicking an icon, like the form shown and hide in edit activity. All data
update request will be done with AJAX request which will add complexity and logic in client side.
 Other than that it’s expected to implement this functionality without any special
difficulties.

6.4.3 Diagrams

image 4.1: User Interface for Settings page with and without editable field

Development of a cross platform web-based-application, using Agile Methodology. 547

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 4.2: Navigate and Edit Activity Wireframe

image 4.3: Account and Profile Settings Use Case

Development of a cross platform web-based-application, using Agile Methodology. 548

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 4.4: State diagrams for change a setting in account and profile tabs.

6.4.4 Sprint review

This Sprint had no special difficulties, but again we need to take the logic in the client side in
order to make changes in UI without overloading the server with unnecessary work. One other
thing that adds work load on the server is the conversion from different types of objects between
our components. Client sends JSON objects to server, which manipulates the data in their
internal object to be understandable from PHP and then converted again to JSONs for sending
to mongoDB. For the above reasons we decided to replace PHP, on server side, with nodeJS.
This change has some great advantages. First of all it will give us the consistency in using json
objects end-to-end. Secondly nodeJS is more scalable than PHP and it will give us a
technological advantage when the need for more computation power will arise. An other
advantage that nodeJS will give us is that it will allow us to use only one programming language
in our app. This is great for a small team like ours. We can easily work in full stack and avoid
rewriting code and validations in both sides, for different languages. So the following two Sprints
will have changes mainly in server side and some UI enhancements in order to follow the
changed UI and logic that served from back-end.

Development of a cross platform web-based-application, using Agile Methodology. 549

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.5 Sprint 5

6.5.1 Description

In this Sprint we decided to move from PHP to node.js at server side. The reasons we choose
nodeJS have been described in Chapter 2. In this section I’m going to describe a little more
about the decision to abandon PHP over node.js. First of all, mixing code with content is a thing
that can end up adding a lot of complexity. Although it's fun to mix code in with HTML, soon your
code base becomes a tangled mess of logic. As developers we need to add structure and
separate the cosmetic layer from the logical layer. It's cleaner for new programmers to
understand the existed code and easier to maintain it in the future. The frameworks running on
Node.js are built based on the logic that is better view, and controller layers to be separate.
 While AJAX-based HTML5 Web apps can have too many moving parts, they are very
efficient. Once the JavaScript code is in the browser cache, the only thing that moves along the
wires is the new data. There's not a ton of HTML markup, and there are no repeated trips to
download the entire page. Only the data has changed. Node.js is optimised to deliver the data
and only the data through Web services. If your app is complex and data-rich, it's a good
foundation for efficient delivery. Node.js also speaks JSON, the lingua franca for interacting with
many of the latest NoSQL databases (like mongoDB we use). Of course we could use
mongoDB with PHP stack, but it’s much more fluid and simple to work with JSON when using
JavaScript. It's one syntax from browser to Web server to database. The colons and the curly
brackets work the same way everywhere. That alone will save us from hours of frustration. The
callback mechanism is brilliant because it saves us from implementing, handling and managing
multiple threads. The core is well-built and designed to do all that for us.

6.5.2 Sprint planning

In this and next Sprints the main job we have to do is to transform our backend, replacing PHP
implementation with one of node.js. Having already implement a REST API on server side allow
us to complete change the backend with only some changes in web client and its request-
response logic. Working as team, and since this Sprint doesn’t have a big work load for my
technical part, allow me to work on backend. Since User Interface’s decisions and design is my
job I worked on the part on the backend that affects the HTML templating. The difference that
affects my job is that now the HTML templates are build with Jade, which means that we have
to implement again all the pages and embed inside them the data that come from node.js

image 5.0: Backlog status for Sprint Planning of Sprint 5

Development of a cross platform web-based-application, using Agile Methodology. 550

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.5.3 Stand up

In JADE we create different types of document in comparison with HTML, which in continue are
translated into HTML. What we have to do is to convert all pages in JADE’s format. Our

image 5.1: Register form in JADE template

templates are now easier to read and edit, without messing with all the HTML tags. Following
two screenshots of the same part of User Interface in HTML and JADE.

image 5.2: Register form in classic HTML

Development of a cross platform web-based-application, using Agile Methodology. 551

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.3: Part of Profile page in JADE template

More specific, in this Sprint we tried to transfer our basic pages in our new logic. Our initial point
is the registration and login page where our users have the first contact with our app. We also
updated the basic profile and the simple graphs page. All these pages are the same as
described in Sprint 2 and 3. Thus we don’t need to describe them again. Following one more
example of our pages in JADE and HTML versions

image 5.4: Part of Profile page in classic HTML

Development of a cross platform web-based-application, using Agile Methodology. 552

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.5.4 Diagrams

image 5.5: Register form User Interface

image 5.6: Register and Login Use Case

Development of a cross platform web-based-application, using Agile Methodology. 553

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.7: Register page Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 554

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.8: Register page State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 555

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.9: Login Page User Interface

image 5.10: Login Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 556

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.11: Login State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 557

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.12: Statistics page User Interface

image 5.13: View Activities as graphs Use Case

Development of a cross platform web-based-application, using Agile Methodology. 558

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.14: Profile Page in normal state and with add activity form open

image 5.15: Add activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 559

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 5.16: Add Activity State Diagram

image 5.17: Add Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 560

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.5.5 Sprint review

This sprint took more time than expected, because me and my colleague were learning new
frameworks and libraries that used for the implementation. There were delays because we
needed time to become familiar with a new end-to-end stack of software, with a non-blocking
style on server-side. We weren’t familiar with nodeJS, express, Google Charts and MongoDB
database. In the end, all the required features were implemented. This is a good pivot point for
the project, because there are a lot of advantages we gain from these changes.

6.6 Sprint 6

6.6.1 Sprint planning

In this Sprint we will try to complete the transformation of the server side. The functionality that
is missing is edit and remove activity, and also the settings. We also decided to add more
information for the user in this page. So now user’s profile has first name, last name, biography ,
main discipline, country, profile pic and password. Each field should have its own validation
rules as before.
 The main discipline should have the same accepted values as the disciplines in the
profile page. There should be a list of valid countries in the server, that will be used in order to
validate the user’s country choice. The password should be validated based on the validation
rules that were used during the registration process and there should be a second field,
ensuring that the user has entered the password that they intended to use.
 Uploading a profile picture is a different process than posting the rest of the data in the
form. There should be several steps that should be followed during the upload process. First the
MIME type and the file extension should be checked, in order to verify the file type. Only jpeg
and png files should be accepted. Then the file size should be checked. If the image is too big, it
should be rejected. The user is allowed to have only one profile picture, so if there is another
picture posted by them, it should be replaced. Then the new file should be renamed to be the
user’s id, for fast file retrieval. Then the image should be copied to the file system of the server,
the path to the file should be stored in the database, in the profile table and a json object should
be sent back to the client, stating the the process was completed successfully. If something
went wrong, a detailed error message should be sent to the client. When a new profile picture is
uploaded, the image preview and the image in the profile should be refreshed, and the new
image should be shown.
 There is no need to validate the user in the settings page, as the users can not view the
settings page of the others users. The user_id of the values is automatically set to the id of the
user in the session. After all the validations, messages should be sent stating if the process was
completed successfully or not.

Development of a cross platform web-based-application, using Agile Methodology. 561

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.0: Backlog status for Planning of Sprint 6

6.6.2 Stand up

There are not a lot of things to mention here because this Sprint didn’t have special difficulties.
After Sprint5 we already had overcome the problems and have the knowledge on managing
these kind of issues.

6.6.3 Diagrams

image 6.1: Edit Activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 562

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.2: Edit Activity Use Case

image 6.3: Edit Activity State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 563

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.4: Delete Activity Wireframe

image 6.5: Delete Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 564

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.6: Delete Activity State Diagram

image 6.7: Settings Page User Interface with and without editable field

Development of a cross platform web-based-application, using Agile Methodology. 565

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.8: Edit Setting Wireframe

image 6.9: Edit Settings Use Case

Development of a cross platform web-based-application, using Agile Methodology. 566

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 6.10: Edit Setting in Account and Profile tab State Diagram

6.6.4 Sprint review

This sprint was relatively easy to do, but there was a lot of content that should be written, so it
was still time consuming. The only challenge was the file uploading process, for which, the fs
library of node was needed. The page of the profile is almost complete. Now users can create
and manage activities, so the application is functional and can be released to a close circle of
users for testing and a first feedback. From this sprint and on, the application can be released in
the end of each sprint, as it can help the users in some way, every time with more tools and
functionality, which is the idea behind the agile methodology.

6.7 Sprint 7

6.7.1 Sprint planning

In this sprint we want to enhance the information that is stored for each activity. Till now
activities only had the fields of discipline, performance and date. Now we are going to add also
location, place, competition and notes. We will also need to update the functionality for edit
activity in order to cover the new fields.
 There will be need changes in profile page where the activities are shown, in add
activity form and in edit activity form. New fields will be added and also all the validations that
are required for them.

Development of a cross platform web-based-application, using Agile Methodology. 567

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.0: Backlog status for Planning of Sprint 7

6.7.2 Stand up

The input types we wanted to add didn’t have any specialties. So we need to take some
decisions about the length of input and the characters that are allowed on each of them. New
fields will be added and also all the validations that are required for them. There will be a
validation function for each one of them at javascript level, before the ajax request will be send
for update or creation.
 We had to create abstract validation functions in order to avoid writing multiple times the
same code and increase the maintenance’s difficulty. So we had to create validations in inputs
for strings with limited set of characters, for numerical input with different and limited lengths
and for dates.

6.7.3 Diagrams

Development of a cross platform web-based-application, using Agile Methodology. 568

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.1: Add Activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 569

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.2: Add Activity State Diagram

image 7.3: Add Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 570

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.4: User Profile (with Edit and Delete options visible), and Edit Activity User Interface

image 7.5: Edit Activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 571

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.6: Edit Activity State Diagram

image 7.7: Edit Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 572

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.8: Delete Activity Wireframe

image 7.9: Delete Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 573

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 7.10: Delete Activity State Diagram

6.7.4 Sprint review
This sprint went as expected. We were on time, without any special difficulties. Working in
parallel the client and the server allowed us to implement fast the functionality end-to-end. Also
working both in the same programming language make all transactions easier, without heavy
transformations and mapping between different formats. Having same validations in back-end
and front-end saved us time and a lot of lines of code. But still the need for a more structured
front-end seems very important.

6.8 Sprint 8

6.8.1 Sprint planning

In this sprint we want to enhance the information that is stored in settings page. Till now Profile
Settings tab only had the fields of first and last name, and also the description. Now we are
going to add also language, username, birthday, date format, gender. We will also need to

Development of a cross platform web-based-application, using Agile Methodology. 574

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

update the functionality for edit these settings in order to cover the new fields. There will be
need changes only in Profile Settings. New fields will be added and also all the validations that
are required for them.

image 8.0: Backlog status for Planning of Sprint 8

6.8.2 Stand up

The input types we wanted to add had a lot of specialties. Language of the user should be
selected from a list with existed languages. We also need to implement the logic for supporting
multilingual User Interface and also the easy addition of new languages in the future. Thus we
created some dictionaries. One for each language we want to support. This gives us the ability
to easily duplicate and create new dictionaries for new languages. The username also had
difficulties because we wanted to use it as an id in the url, for sharing purposes in the future. For
example visit the profile with username ‘mathiou’ with the url : www.domain.com/mathiou. The
birthday field was one of date type, so we reuse the date input we use in activity form. Here
there was some different checks, because we were needed to add dates in different range. We
allow users that were born after 1900 and before 2010. Gender was easy to implemented
because it were needed just a boolean variable to store the two different values. We set male as
true for this.
 In this Sprint we decided to change our tabs from vertical to horizontal in order to have
a better screen management, and also keep the UI consistent in the future between different
devices. Having a vertical menu only in this page would create confusion, in some cases, to our
users because there is no other vertical navigation menu or element in our app. Thus we
change the design, to keep consistency in our designs.

6.8.3 Diagrams

Development of a cross platform web-based-application, using Agile Methodology. 575

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 8.1: Settings Page with and without editable field

image 8.2: Edit Settings Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 576

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 8.3: Change Password and Profile Picture State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 577

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 8.4: Edit Setting in Account or Profile tab State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 578

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.8.4 Sprint review

This Sprint had no special difficulties, but again the logic in the client side in order to make
changes in UI without overloading the server with unnecessary work makes the code complex
and hard to maintain. So we decided from the next Sprint to move the front-end implementation
to AngularJS MVC framework. This will allow us to use two-way data binding between our User
Interface and Business logic in client side.

6.9 Sprint 9

6.9.1 Sprint planning

In this Sprint we will make two great changes in web-client side of our app. The first one is that
we will introduce AngularJS, an MVC framework that supports two-way data-binding, and also
BootstrapJS, a javascript-css framework that will help us to design and implement, in an easier
way, a responsive UI for different screen-size devices. Because these changes requires
massive changes in client side we will spent all this Sprint in designing the MVC logic for
AngularJS and prototyping our application in three different device categories. The categories
we support are desktops, tablets and mobiles.

image 9.0: Backlog status for Planning of Sprint 9

Development of a cross platform web-based-application, using Agile Methodology. 579

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.9.2 Stand up

We start form UI design because it will define, more or less, the whole information architecture
of our application. Not all types of devices will support the same functionality, because there are
restrictions in usage. We can separate our application in 4 main areas.
1. Login - Register
2. User Profile - Activities
3. Statistics
4. Settings

 We decided to support the whole functionality for desktops and tablets, and only the
Login-Register and User Profile - Activities in mobiles. There are two main reasons for this. The
first one is the nature of mobiles. Mobiles are used mainly on the way and in short time blocks.
So we need to support only the basic functionality which is the add and view activity. Obviously
the login and register functionality are necessary. The second reason is that it is hard for our
users to navigate and manipulate the data graphs, which are a different way to view your
activities, in a small touch screen. Also Settings have information that is rarely change. In
addition we wanted to avoid all the errors in the settings form, that are easier to happen in a
mobile.
 For supporting the same information architecture on business logic we need to create 4
different Controllers. The mainController which will handle all the logic that is shared along the
whole application, and profileController, settingsController and statisticsController for handling
all the logic that is required in each one page. The business logic for login and registration will
not be implemented in AngularJS, since it is required before our user enter our application. This
part of business logic will stay in server side and will be handled by nodeJS and vanilla
Javascript on web client side.

6.9.3 Diagrams

image 9.1: Application Data Flow Level 0

Development of a cross platform web-based-application, using Agile Methodology. 580

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.2: Application Data Flow Level 1

Development of a cross platform web-based-application, using Agile Methodology. 581

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.3: Desktop version of Login, Register and Profile page

Development of a cross platform web-based-application, using Agile Methodology. 582

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.4: Desktop version of Settings and Statistics page

Development of a cross platform web-based-application, using Agile Methodology. 583

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.5: Tablet version of Login, Register and Profile page

Development of a cross platform web-based-application, using Agile Methodology. 584

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.6: Tablet version of Settings and Statistics page

Development of a cross platform web-based-application, using Agile Methodology. 585

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 9.7: Mobile version of Login, Register and Profile page

6.9.4 Sprint review

The main difficulties on this Sprint was that we were needed to take some decisions without
having exact knowledge of how the application will be in it’s final version. Basically in this Sprint,
we set an initial point and we will adapt all necessary changes on an agile way, as the
implementation moves on.

6.10 Sprint 10

6.10.1 Sprint planning

In this Sprint we will transform the client-side implementation for create, edit and delete
activities, replacing all the javascript logic and UI manipulation with AngularJS. This should not
affect the User Interface and all these changes should be seamless to the end user.

Development of a cross platform web-based-application, using Agile Methodology. 586

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.0: Backlog status for Planning of Sprint 10

6.10.2 Stand up

The controllers we need to implement are mainController and profileController. Given that, this
is the first time we create controllers for our app, we need to initialise the app and support some
more generic actions.
 In mainController we inject all the required services that will be available across the
whole application, and also we will initialise and instantiate some variables and functions. We
need a variable that will store the information about the type of our device, touch or not, in order
to know how to interact with our user. For example in touch devices we should not have hover
effects in our elements. In addition we need to store here all the validation patterns, which also
will be used across our app. MainController initialise the controllers, thus must be the first
controller that is loaded.
 In profileController we initialise our user. On initProfile function we request from the
server the user’s profile data calling the ‘/users/userID’ route, in getProfile function, with the
specific userID. Using the same userID we request from the server all activities of the user with
a GET request through ‘/users/userID/activities’, in getActivities function. For all returned data,
we have create bindings between controller and HTML page. So when all these data will be
returned, they will automatically appeared in our page.
 SubmitNewActivity gets the data inserted by user, make some transformations (i.e date)
to specific formats and makes a POST request to route ‘'/users/userID/activities'’on the server,
in order to create a new activity. After a successful response the new activity will be created in
UI and will be appeared in activities list without affecting the rest User Interface.

Development of a cross platform web-based-application, using Agile Methodology. 587

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

 DeleteActivity will first call the ModalSvc in order to create a modal that will ask user to
confirm the deletion of this specific activity. If user confirm then a DELETE request will be done
to server through route ‘/users/userID/activities/activityID’, where userID is the ID of the specific
user and activityID is the id of the specific activity. A confirmation message will be appeared
after the deletion.

6.10.3 Diagrams

image 10.1: Add activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 588

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.2: Add Activity State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 589

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.3: Add Activity Use Case

image 10.4: Add Activity Data Flow Diagram

Development of a cross platform web-based-application, using Agile Methodology. 590

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.5: Delete Activity Wireframe

image 10.6: Delete Activity Use Case

Development of a cross platform web-based-application, using Agile Methodology. 591

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.7: Delete Activity State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 592

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.8: Delete Activity Data Flow Diagram

image 10.9: Edit Activity Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 593

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.10: Edit Activity Use Case

image 10.11: Edit Activity State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 594

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 10.12: Edit Activity Data Flow Diagram

6.10.4 Sprint review

This Sprint had a lot of difficulties because it was our first hands on experience with AngularJS,
two-way data binding and MVC logic in the web client. Except of that the benefits from this
transition is visible already from this early point. We get rid a lot of code, the business logic is
much clearer now, and the whole app is more maintainable and easy to understand.

6.11 Sprint 11

6.11.1 Sprint planning

In this Sprint we will transform the client-side implementation for Settings page, replacing all the
javascript logic and UI manipulation with AngularJS. This should not affect the User Interface
and all these changes should be seamless to the end user. In this Sprint we also implemented
the change password functionality, which requires a confirmation step via email link that is send
to the user.

Development of a cross platform web-based-application, using Agile Methodology. 595

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.0: Backlog status for Planning of Sprint 11

6.11.2 Stand up

We had to change two different tabs with all their functionality. All the given fields are editable
and follow the same interaction design pattern. All of them become editable inside the area
where there already exists, and user can insert new data, choose between options or upload
files per case.
 The first tab is the Profile Settings tab. The options that are given to user to edit, in this
tab, are the profile picture, the first and the last name, the main discipline, the gender, the
birthday, the country and ‘about me’ text. We are expecting to have difficulties on image upload
through angularJS, but he rest of the fields are seems easy to implemented.
 The second tab is the Account Settings tab. Here we have the option to change
password, the language of our application, the format in which we, as users, want to see the
dates the username. Here we expect to have difficulties with username in backend because it
should be unique, and also be used in urls in user’s page. This is very handy for the user’s, in
order to visit each other’s profiles, or share theirs in other social media, but we want to
implement this functionality without compromise our system’s security.

6.11.3 Diagrams

Development of a cross platform web-based-application, using Agile Methodology. 596

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.1: Settings Page User Interface with and without editable form

image 11.2: Edit Setting Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 597

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.3: Edit Settings Use Case

image 11.4: Change Password and Profile picture State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 598

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.5: Change Setting in Profile or Account tab State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 599

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.6: Change Image Data Flow Diagram

image 11.7: Change Password Data Flow Diagram

Development of a cross platform web-based-application, using Agile Methodology. 5100

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.8: User Interface of Request and Change password

image 11.9: Reset password State diagram

Development of a cross platform web-based-application, using Agile Methodology. 5101

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 11.10: Reset Password Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 5102

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.11.4 Sprint review

Although the difficulties with special options such as profile picture update and username, we
completed this Sprint on time. Now we have almost implement our whole application with the
software stack we want, completing and the second important pivot, and for the next two Sprints
we are going to implement new functionality and make some optimisations.

6.12 Sprint 12

6.12.1 Sprint planning

In this Sprint we will implement two very important features that will enhance the usability of our
app. The first one is the graphs, which already existed but know we need to transfer their logic
in AngularJS implementation. The second one is the filtering of our data. Our data will be filtered
by discipline and year, and filtering will apply in profile page’s activities but also in graphs.

image 12.0: Backlog status for Planning of Sprint 12

6.12.2 Stand up

For graphs charts we will replace Google Charts with C3.js library which is based on D3.js
library and is more lightweight, flexible and has more options which is a great thing for future
use and feature additions. Our Statistics controller will request all activities’ data exactly in the
same way we do in Profile controller.
 After we get the response from the server we will group them in arrays, creating in
parallel the required variables for filtering. Then we show them using our charts library. The
filtering variables are the user’s disciplines and the year in which the user has saved activities.
We can also filter our data chronically from a sub-chart which visualise all our data. We can
select a time period on them just by click and drag our cursor on it. This functionality also
support touch events and can be used by our users in a tablet.

Development of a cross platform web-based-application, using Agile Methodology. 5103

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

 We follow the same logic in Profile controller in order to create the filters for the
activities. After fetching all the data we algorithmically get the dates and the disciplines that
appeared in them and create the variables that are going to filter our activities list.

6.12.3 Diagrams

image 12.1: User Interface of Profile Page with filtering options in discipline and year

Development of a cross platform web-based-application, using Agile Methodology. 5104

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 12.2: Filtering activities in profile page Data Flow Diagram

image 12.3: Show and filtering activities Use Case

Development of a cross platform web-based-application, using Agile Methodology. 5105

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 12.4: Filtering activities in Profile page Data Flow Diagram

image 12.5: Filtering statistics Data Flow Diagram

Development of a cross platform web-based-application, using Agile Methodology. 5106

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 12.6: User Interface of Statistics page with filtering discipline and year option

Development of a cross platform web-based-application, using Agile Methodology. 5107

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 12.7: Show activities as graphs Data Flow Diagram

image 12.8: Filtering statistics page State Diagram

6.12.4 Sprint review

This was a very useful and important Sprint. We finalise the implementation of our app with the
software stack and also add filtering which is a very important feature that enhances the overall
user experience. Although we had to use one more time a new library, we deliver on time. This
happened because with AngularJS the data manipulation has become very easy and let us time
to work on more demanding task.

Development of a cross platform web-based-application, using Agile Methodology. 5108

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.13 Sprint 13

6.13.1 Sprint planning

In this Sprint we are going to implement a kind of social feature. This is the public pages, which
means that a user can search and visit some other’s user profile page and see it’s activities and
charts. This functionality rise the need to define some privacy options and also create a search
field in order to allow users to search each other. We will implement privacy settings for user
profile and also for each activity. So a user can have a public profile but not show all of it’s
activities.

image 13.0: Backlog status for Planning of Sprint 13

6.13.2 Stand up

Firstly we created a search field that will search users, as we type, and brings us the top 10
results that matches their search. The search parameters is the name and last name, but in the
results’ list we also see the users’ main discipline and country. This makes easier for the user
who makes the search to recognise the athlete whom actually search for.
 Public pages is a feature that allows user page to be visible to every one, even if he is
not a registered member of our app. So if the user allows to make his profile public, everyone
can visit it via a specific url like ‘www.domain.com/username'. If a username hasn’t been defined
the profile is still visible using the user’s id instead of it. If user chooses to have a private profile,
it isn’t visible neither by application’s visitors, nor by registered users. Also if the user has a
private profile, he doesn’t appeared in the search results.
 Each activity has a boolean field which defines the privacy of the specific activity. In this
way even if a profile is public, each activity is visible to public only if the user chooses that.
 The privacy option for the profile can be changed from Settings page, in Profile Settings
tab. The privacy option for each activity can changed inside each activity in profile page. We
think that this setting is very import, so we allow users to change them without edit the whole
activity.

6.13.3 Diagrams

Development of a cross platform web-based-application, using Agile Methodology. 5109

http://www.domain.com/username'

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.1:User Interface for profile privacy in settings page

image 13.2: Change privacy for profile Data Flow Diagram

Development of a cross platform web-based-application, using Agile Methodology. 5110

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.3: Change privacy in settings Use Case

image 13.4: Change Privacy for profile Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 5111

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.5: Change Profile Privacy State Diagram

Development of a cross platform web-based-application, using Agile Methodology. 5112

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.6: Change privacy in activity Wireframe

image 13.7: Change privacy for activity Data Flow Diagram

Development of a cross platform web-based-application, using Agile Methodology. 5113

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.8: Change privacy in activity Use Case

image 13.9: User Interface of search User

Development of a cross platform web-based-application, using Agile Methodology. 5114

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.10: Search User Data Flow

image 13.11: Search user State diagram

Development of a cross platform web-based-application, using Agile Methodology. 5115

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 13.12: Search User State Diagram

image 13.13: Search User Wireframe

Development of a cross platform web-based-application, using Agile Methodology. 5116

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

6.13.4 Sprint review

In this Sprint we added a very important functionality that allow users to share their
performances and profile, taking care of privacy issues, and also search for other users. With
this functionality we believe that we have a first version of a complete product, that has meaning
and can be launched to end users.

6.14 Final User Interface
During the whole process the user interface followed the UI design that appeared in previous
Sprints. After all iterations the final design, (for desktop, tablet and mobiles) of our application is
as shown in the following images.

Desktop

image 14.1 : Profile page on desktop version.

Development of a cross platform web-based-application, using Agile Methodology. 5117

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.2 : Search users on desktop version through search field, using autocomplete suggestion

feature.

image 14.3 : Add new activity on desktop version.

Development of a cross platform web-based-application, using Agile Methodology. 5118

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.4 : Error shown instantly inside add activity form on desktop version.

image 14.5 : Calendar picker for easy selection of a date in add activity form on desktop version.

Development of a cross platform web-based-application, using Agile Methodology. 5119

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.6 : Confirmation pop-up for deletion of an activity on desktop version

image 14.7 : Form for editing an existing activity on desktop version

Development of a cross platform web-based-application, using Agile Methodology. 5120

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.8 : The profile of an other user in our system on desktop version. ‘View User Statistics’ option is
visible in this case.

image 14.9 : Statistics page on desktop version, with ‘all’ years selected as an option for time filtering. Also
a tooltip is visible while the mouse is hover one activity.

Development of a cross platform web-based-application, using Agile Methodology. 5121

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.10 : Statistics page on desktop version, with ‘all’ years selected as an option for time filtering.
User has select a specific time-window in order to zoom in and see activities in bigger detail.

image 14.11 : Settings page (profile tab) for desktop version.

Development of a cross platform web-based-application, using Agile Methodology. 5122

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.12 : Settings page for desktop page (profile tab) with ‘last name’ option in editable state.

image 14.13 : Settings page for desktop page (account tab) with ‘change password’ option in editable state

Development of a cross platform web-based-application, using Agile Methodology. 5123

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.14 : Login and Registration pages on tablet version

image 14.15 : Registration page on the left. With an error message visible. And a prompt message for
user, after the successful registration, to check his email and confirm his registration.

Development of a cross platform web-based-application, using Agile Methodology. 5124

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.16 : Profile page (left) and search users through search field using autocomplete feature (right)
on tablet version

image 14.17 : Add new Activity Form (left) and Edit Existing Activity Form (right) on tablet version.

Development of a cross platform web-based-application, using Agile Methodology. 5125

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.18 : Statistics page without filtering (left) and with filtering and time-window selected (right).

image 14.19 : Settings page with option in editable state on tablet version.

Development of a cross platform web-based-application, using Agile Methodology. 5126

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.20 : Settings page(profile tab) on tablet version.

image 14.21 : Login (left) and Profile (right) pages, on mobile version.

Development of a cross platform web-based-application, using Agile Methodology. 5127

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

image 14.22 : Add New (left) and Edit Existing (right) Activity on mobile version.

image 14.23 : Confirmation pop-up for deletion of an activity on mobile version

Development of a cross platform web-based-application, using Agile Methodology. 5128

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

CONCLUSIONS AND FUTURE WORK
In this thesis we have build an infrastructure with a clean REST API over a noSQL database
system and a web application which consumes this API, offering to our end users a simple way
to keep track and analyse their data through a clean and intuitive User Interface, using every
device they have, with internet access.
 After running the Scrum Agile Software Development methodology for building an end-
to-end web application, and comparing with our experience in other software development
mythologies like “Waterfall” and “RUP”, we saw in practice how efficient this methodology is and
how flexible we can become, when big or small changes are needed in our implementation. We
needed to make major architecture changes in many different levels of the software stack, in
order to improve the scalability and maintainability of our software, and also easily change and
prioritise features per case, even if we need to change our backlog in every Sprint.
 We have many great ideas, that we want to implement in the future, starting by building
native applications for iOS and Android devices taking advantage of their hardware for tracking
human activity and automatically generate data for our application. Using the geolocation
sensors these devices contains, will help us socialise our application and creating a social
network of athlete through the world. Of course we can implement more mainstream features,
connecting existing social networks with our application and bring existing athletes’ communities
in our application.
 We can enhance our REST API and build applications for smart-watches, that will
consume it, and will take advantage of their unique property to following our end-users
everywhere, tracking his health and other important body metrics. This will help them to
understand and analyse in more detail their overall progress.
 Finally providing an open SDK(software development kit) to everyone will allow other
developers, who also love “track and field”, to build their own applications for different devices
and offer their ideas and services to athletes of our network.

Development of a cross platform web-based-application, using Agile Methodology. 5129

Μεταπτυχιακή διατριβή Μαθιουδακης Θεόδωρος

BIBLIOGRAPHY

1. “Distributed Scrum: Agile Project Management with Outsourced Development Teams” - J.
Sutherland, A. Viktorov, J. Blount, & N. Puntikov, IEEE HICSS 40th Hawaii International
Conference on Software Systems, 2007.

2. “The Future of Scrum: Parallel Pipelining of Sprints in Complex Projects” - J. Sutherland, in
Agile 2005, Denver, CO: IEEE, 2005.

3. “The First Scrum” - Jeff Sutherland, Ph.D. PatientKeeper, Inc., 2004

4. “Scrum- A Pattern Language for Software Development” - M. Beedle, M. Devos, Y. Sharon, K.
Schwaber, and J. Sutherland, vol. 4, N. Harrison, Ed. Boston: Addison-Wesley, 1999, pp.
637-651.

5. http://agileatlas.org

6. http://scrumguides.org/scrum-guide.html

7. http://scrumfoundation.com/library

8. https://www.scrumalliance.org

9. https://www.samrantech.com/methodologies-comparison-between-agile-and-rup-2.html

10. http://www.agilemodeling.com/essays/agileModelingRUP.htm

11. http://docs.mongodb.org/

12. https://nodejs.org/documentation/

13. https://docs.angularjs.org/guide

Development of a cross platform web-based-application, using Agile Methodology. 5130

http://34slpa7u66f159hfp1fhl9aur1.wpengine.netdna-cdn.com/wp-content/uploads/2014/05/The-First-Scrum.pdf

