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I. Introduction 
 
Following the seminal work of Mandelbrot (1963) and Fama (1965), many researchers 
have found that the empirical distribution of stock returns is significantly non-normal, 
such as Hsu et al. (1974), Hagerman (1978), Lau et al. (1990), Kim and Kon (1994). 
They found that (1) the kurtosis of the stock returns time series is obviously larger than 
the kurtosis of the normal distribution, in other words, the time series of stock returns are 
leptokurtic; (2) the distribution of stock returns is skewed, either to the right (positive 
skewness) or to the left (negative skewness); (3) the variance of the stock returns is not 
constant over time or the volatility is clustering. Some researchers regarded this as the 
persistency of the stock market volatility and the financial analyst called this uncertainty 
or risk. This uncertainty is crucially important in modern financial theory. Before the 
seminal paper by Engle (1982), the uncertainty of speculative prices, changing over time 
(Mandelbrot, 1963; Fama, 1965) measured by the variances and covariance has been 
accepted for decades. 
  Many conventional time series and econometric models work only if the variance is 
constant. Until lately, the financial and economic researchers have started modeling time 
variation in second- or higher-order moments. Engle (1982) has characterized the 
changing variances using the Autoregressive Conditional Heteroskedasticity (ARCH) 
model and its extensions as well as its modifications. Since then, hundreds of researchers 
have applied these models to financial time series data. In many applications, the linear 
ARCH (p) model requires a long length of p. The alternative and more flexible lag 
structure is the generalized ARCH (GARCH) introduced by Bollerslev (1986). It is 
proven that a small lag as GARCH (1, 1) is sufficient to model the variance changing 
over long sample periods (French et al., 1987; Franses and Van Dijk, 1996). According to 
the paper of Choo Wei Chong (1999), who studies the performance of the GARCH 
model by using the rate of returns from daily stock market indices of the Kuala Lumpur 
Stock Exchange (KLSE) including Composite Index, Tins Index, Plantation Index, 
Properties Index and Finance Index, a very high order ARCH model is needed to model 
the heteroskedasticity. The basic ARCH (p) model is short-memory process in that only 
the most recent p-squared residuals are used to estimate the changing variance. Contrary 
to the short-memory ARCH (p), the GARCH model allows long-memory processes, 
which use all the past squared residuals to estimate the current variance. The statistical 
criteria that he utilizes, Q-statistic and LM test, suggest the use of the GARCH model 
instead of the ARCH model. The efficiency of a small lag in describing daily data of 
stock return time series is the basic reason for the selection of the GARCH (1, 1) in our 
study.  
   Even though the vast majority of earlier studies relied on the GARCH framework, there 
is recently a large and diverse time series literature on volatility modeling. Almost 
universally, reported results towards a very high degree of intemporal volatility 
persistence. In spite of highly significant in-sample parameter estimates, numerous 
studies find that standard volatility models explain little of the variability in ex-post 
squared returns. This has led to the suggestion that these models may be of limited 
practical value. 
   West, Edison and Cho (1993) evaluate the out-of sample forecasting performance of 
some univariate models for exchange rate volatility, using bilateral weekly data for the 
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dollar versus the currencies of other five countries, from 1973-1989. They suggest that in 
the first three weeks horizon of this period, GARCH (1, 1) model seems to do a poorer 
job, judging by a mean squared prediction error criterion. During the next four weeks, it 
is hard to say which of the models perform best. Philip Hans Franses and Dick van Dijk 
report the skeptics that follow the forecasting performance of the GARCH models. 
According to the findings from forecast competitions, GARCH models seem to provide 
seemingly poor volatility forecasts and explain only little of the variability of asset 
returns in the sense that the MSPE (or any other measure of forecast accuracy) is very 
large. Kenneth D. West (1994) compares the out-of sample forecasting performance of 
univariate homoskedastic, GARCH, autoregressive and nonparametric models for 
condition variances, using five bilateral weekly exchange rates for the dollar versus 
currencies of other countries, for the period 1973-1989. He concludes to the fact that the 
GARCH models tend to provide slightly more accurate forecasts, but with 
disappointment he reports the results for longer time periods, where it is not so obvious 
which model performs best. 
   The purpose of this study is to examine the forecasting performance of the GARCH (1, 
1) model in an attempt to answer to the findings of several forecasts competitions that 
present the GARCH models as poor forecast predictors. We compare the forecast 
accuracy of the GARCH (1, 1) model with that of a homoskedastic one, by using as 
statistical criterion the mean squared prediction error. We utilize bilateral daily data for 
the dollar versus the currencies of other ten countries and bilateral daily data of stock 
market returns for ten financial markets. We compare the out of sample performance 
realization of the squared of the daily change in an exchange of stock return rate with the 
value predicted by a model of the conditional variance 
   The results reported by our empirical application are slightly confusing. At a one-day 
till one-week horizon, it seems that for some time series the GARCH model has a slight 
edge over the homoskedastic one. For longer periods, it is not apparent which model 
performs best. On the other hand, there are series where the forecasting performance of 
the homoskedastic model appears to be superior for the entire time period.   
   Motivated by these findings and due to the existing skeptics, we decide to investigate 
the forecasts of the GARCH (1, 1) model in juxtaposition with those of a homoskedastic 
one, through a Monte Carlo experiment. The results are of great interest; the basic 
advantage of the Monte Carlo experiments is the availability of the true conditional 
volatility, ht+j. Its utilization in the computation of the squared prediction error, instead of 
an estimator such as the squared shock, provides us with a direct measure for judging 
which of the two models performs better. We conclude to the fact that the seemingly poor 
forecasting accuracy of the GARCH (1, 1) model is not attributed to its inequality to 
perform good forecasts for the true volatility, a necessary and significant measure of 
financial risk. The Monte Carlo results lead us to the conclusion that the problem is 
pinpointed in the statistical criterion that we utilize. 
Section II describes the autoregressive conditional heteroskedasticity model (ARCH) and 
its generalization (GARCH). Section III gives the necessary conditions for stationarity in 
the GARCH (1, 1) model and Section IV presents a survey of application and extensions. 
In Section IV we describe data and methodology (a) and the results of the empirical 
application (b). Section VI includes the Monte Carlo experiment and section VII its 
results. Finally section VIII concludes.       
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II.  The ARCH, GARCH And IGARCH Models 
 
Given the importance of predicting volatility in many asset pricing and portfolio 
management problems, many approaches of forecasting volatility have been proposed in 
the literature. The most popular one is the class of autoregressive conditional 
heteroskedasticity (ARCH) models originally introduced by Engle (1982). In a survey by 
Bollerslev et al. (1992) more than 200 papers are cited applying ARCH and related 
models to financial time series. 
   Let Rt be the rate of return of a particular stock from time t-1 to time t. Also, let Ft-1 be 
the past information set containing the realized values of all relevant variables up to time 
t-1. Since investors know the information in Ft-1 when they take their investment decision 
at time t-1, the relevant expected return and volatility to the investors are the conditional 
expected value of Rt, given Ft-1, and the conditional variance of Rt, given Ft-1. We denote 
these by mt, and ht respectively. That is, mt  E(Rt\ Ft-1) and ht  Var(Rt\ Ft-1). Given these 
definitions, the unexpected return at time t is et ≡ yt - mt. We treat et as a collective 
measure of news at time t. A positive et (an unexpected increase in price) suggests the 
arrival of good news, while a negative et (an unexpected decrease in price) suggests the 
arrival of bad news. Further, a large value of 1te  implies that the news is “significant” or 
“big” in the sense that it produces a large unexpected change in price. 
   We assume that the conditional variance of Rt and et varies over time, so the et is 
conditionally heteroskedastic. A convenient way to express this in general is  

 
 

et = zt th     (1) 

                                                             
where zt is the dependent and the identically distribution with zero mean and unit 
variance. For convenience, we assume that zt has a standard normal distribution.  
   From (1) and the properties of zt it follows immediately that the distribution of et 
conditional upon the history Ft-1 is normal with mean zero and variance ht. also note that 
the unconditional variance of et is still assumed to be constant. By using the law of 
iterated expectations,  

σ2 =E[ 2
te ] = E[E[ 2

te /Ft-1]]=E[ht] 
 

(2) 

Hence, we assume that the unconditional expectation of ht is constant. To complete the 
model, we need to specify how the conditional variance of et evolves over time.  
   Engle (1982) introduced the class of the Autoregressive Conditionally heteroskedastic 
(ARCH) models to capture the volatility clustering of financial time series (even though 
the first empirical applications did not deal with high frequency financial data). In the 
basic ARCH model, the conditional variance of the stock that occurs at time t is a linear 
function of the squares of past shocks. For example, in the ARCH model of order 1, ht is 
specified as 

ht = αo + α1
2

1te  
 

(3) 

Obviously, the conditional variance needs to be nonnegative. In order to guarantee that 
this is the case for the ARCH (1) model, the parameters in (3) have to satisfy the 
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conditions αo  > 0 and α1 ≥ 0. Where α1 = 0, the conditional variance is constant, hence 
the series et is conditionally homoskedastic. 
   To understand why the ARCH model can describe the volatility clustering, observe that 
model (1) with (3) basically states that the conditional variance of et is an increasing 
function of the square of the shock that occurred in the previous time period. Therefore, if 
et-1 is large (in absolute value), et is expected to be large (in absolute value) as well. In 
other words, large (small) shocks tend to be followed by large (small) shocks, of either 
sign. 
   An alternative way to see the same thing is to note that the ARCH (1) model can be 
written as an AR (1) model for 2

te . Adding 2
te  to (3) and subtracting ht from both sides 

gives 
2
te  = αo + α1

2
1te  + vt 

 
(4) 

 
where vt = 2

te - ht = ht( 2
tz -1). Notice that E[vt/Ft-1] = 0. Using the theory for AR models, it 

follows that (4) is covariance-stationary if α1 < 1. In that case the conditional mean of 2
te , 

or the conditional variance of et, can be obtained as 
 

σ2 = E[ 2
te ] = αo/1-α1 (5) 

 
furthermore, (5) can be rewritten as 
 

2
te  = tt

o vea
a

a
a 


 

2
11

1
1 1
)1(  

= tt veaa  
2

11
2

1 )1(   
= tt vea   )( 22

11
2   

(6) 

 
Assuming that 0 ≤ α1 < 1, (6) shows that if 2

1te  is larger (smaller) than its unconditional 
expected value σ2, 2

te  is expected to be larger (smaller) than σ2 as well. 
   The ARCH model cannot only capture the volatility clustering of financial data, but 
their excess kurtosis. From (1) it can be seen that the kurtosis of et always exceeds the 
kurtosis of zt,  

 
E[ 2242444 ][][][][][][] ttttttt eEzEhEzEhEzEe   (7) 

 
Which follows from Jensen’s inequality. As shown by Engle (1982), for the ARCH (1) 
model with normally distributed zt the kurtosis of et is equal to  
                                    

Ke = 3
31

)1(3
][
][

2
1

2
1

22

4






a
a

eE
eE

t

t  
(8) 
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which is finite if 3 .12
1 a  Clearly, Ke is always larger than the normal value of 3. 

   Another characteristic of the ARCH (1) model, which is worthwhile noting, is the 
implied autocorrelation function for the squared shocks 2

te . From the AR (1) 
representation in (4), it follows that the kth order autocorrelation of 2

te  is equal to ka1 . 
The small first order autocorrelation would imply a small value of α1 in the ARCH (1) 
model, but this in turn would imply that the autocorrelations would become close to zero 
quite quickly. Thus it appears that the ARCH (1) model cannot describe the two 
characteristic features of the empirical autocorrelations of the return series 
simultaneously.  
   To cope with the extended persistence of the empirical autocorrelation function, one 
may consider generalizations of the ARCH (1) model. One possibility to allow for more 
persistent autocorrelations is to include additional lagged squared shocks in the 
conditional variance function. The general ARCH (p) model is given by 
 

22
22

2
11 ... ptpttot eaeaeaah    (9) 

 
 to guarantee nonnegativeness of the conditional variance, it is required that αo > 0 and αi 
≥ 0 for all i = 1,…, p. The ARCH (p) model can be written as an AR (p) model for 2

te in 
exactly the same fashion as writing (3) as (4), that is,  

 
22

11
2 ... ptptot eaeaae    (10) 

 
It follows that the unconditional variance of et is equal to 

                 

p

o

aaa
a




...1 21

2  
(11) 

 
while the ARCH (p) model is covariance stationary if all roots of the lag polynomial 1-
α1L-…-αpLp are outside the unit circle. 
   To capture the dynamic patterns in conditional volatility adequately by means of an 
ARCH (p) model, p is often needs to be taken quite large. It turns out that it can be quite 
cumbersome to estimate the parameters in such a model, because of the nononegative and 
stationarity conditions that need to be imposed. To reduce the computational problems, it 
is common to impose some structure on the parameters in the ARCH (p) model, such as 
αi = α(p+1-i)/(p(p+1)/2), i = 1,…, p, which implies that the parameters of the lagged 
squared shocks decline linearly and sum to α (see Engle, 1982, 1983). As an alternative 
solution, Bollerslev (1986) suggested adding lagged conditional variances to the ARCH 
model instead. For example, adding ht-1 to the ARCH (1) model results in the Generalized 
ARCH (GARCH) model of order (1, 1) 

11
2

11   ttot heaah   (12) 
 

The parameters in this model should satisfy αo > 0, α1 ≥ 0 and 01   to guarantee that ht 
≥ 0, while α1 must be strictly positive for 1  to be identified. To see why the lagged 
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conditional variance avoids the necessity of adding many lagged squared residual terms 
to the model, notice that (12) can be rewritten as 

       
)( 21

2
211

2
11   ttotot heaaeaah   (13) 

 
or, by continuing the recursive substitution, as  

      
2

1

1
11

1
1 it

i

i
o

i

i
t eaah 









    

(14) 

 
this show that the GARCH (1, 1) model corresponds to an ARCH ( ) model with a 
particular structure for the parameters of the lagged 2

te  terms. 
Alternatively, by adding 2

te  to both sides of (12) and moving ht to the right hand side, the 
GARCH (1, 1) model can be written as an ARMA (1, 1) model for 2

te  as  
 

11
2

111
2 )(   tttot vveaae   (15) 

 
where again vt = 2

te - ht. Using the theory for ARMA models, it follows that the GARCH 
(1, 1) model is covariance stationary if and only if 1a 1  < 1. In that case the 
unconditional mean of 2

te -or equivalent the unconditional variance of et- is equal to 
 

11

2

1 





a
ao  

(16) 

 
The ARMA representation in (15) also makes clear why α1 needs to be strictly positive 
for identification of 1 . If α1 = 0, the AR and MA polynomials both are equal to 1- 1 L. 
Rewriting the ARMA (1, 1) model for 2

te  as an MA ( ), these polynomials cancel out, 
 

ttt vv
L
Le 





1

12

1
1




 
(17) 

 
which shows that 1  then is not identified. 
   As shown by Bollerslev (1986), the unconditional fourth moment of et is finite if 
( 1a 1 )2 + 2 2

1a < 1. If in addition the zt are assumed to be normally distributed, the 
kurtosis of et is given by 

2
1

2
11

2
11

2)(1
])(1[3
aa

aKe 





  
(18) 

 
which again is always larger than the normal value of 3. Notice that if 1  = 0, (18) 
reduces to (8). 
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   The autocorrelations are derived in Bollerslev (1988) and are found to be 
 

2
111

1
2
1

11 21 






a
aa  

(19) 

 
1

1
11 )(   k

k a  for k = 2,3,… (20) 
 

even though the autocorrelations still decline exponentially, the decay factor in this case 
is 11 a . If the sum is close to one the autocorrelations will decrease only very 
gradually. When the fourth moment of et is not defined, the autocorrelations of 2

te  are 
time-varying. Of course, one can still compute the sample autocorrelations in this case. 
As shown by Ding and Granger (1996), if 11 a < 1 and ( 11 a )2 +2 2

1a ≥ 1, such that 
the GARCH (1, 1) model is covariance stationary but with infinite fourth moment, the 
autocorrelations of 2

te  behave approximately as 
 

3111   a  (21) 
 

1
1

11 )(   k
k a , for k=2,3,… (22) 

 
   The parameter restriction ( 11 a )2 +2 2

1a = 1 is equivalent to 1- 2 11a - 2
1 =3 2

1a , from 
which it follows that (21) is identical to (19) where this restriction is satisfied. Therefore, 
the autocorrelation of 2

te  can be considered as continuous functions of 1a  and 1 , in the 
sense that their behavior does not suddenly change when these parameters take values for 
which the condition for existence of the fourth moment is no longer satisfied. 
   The general GARCH (p,q) model is given by 

 

   ht = αo+ 2
1

1



 t

p

i
iea  + it

q

i
ih 




1

  

= αo + α(L) 2
te  + β(L)ht 

(23) 

 
where α(L)= α1L +…+αpLp and β(L)= β1L +…+ βqLq. Assuming that all the roots of 1- 
β(L) are outside the unit circle, the model can be rewritten as an infinite order ARCH 
model  

2

11

2

...1

)(1
)(

)(1

it
i

i
q

o

t
o

t

ea

e
L

La
L

ah




















 

(24) 

 
For nonnegativeness of the conditional variance it is required that all δi in (24) are 
nonnegative. Nelson and Cao (1992) discuss the conditions this implies for the 
parameters αi, i = 1, …, p and βi, i = 1, …, q, in the original model (23). 
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   Alternatively, the GARCH (p, q) can be interpreted as an ARMA (m, q) model for 2
te  

given by 
 

tit

q

i
iiti

m

i
iot vveaae  







1

2

1

2 )(   
(25) 

 
where m= max (p, q), αi = 0, for i > p and βi = 0 for i > q. It follows that the GARCH (p, 
q) model is covariance-stationary if all the roots of 1-α (L) –β (L) are outside the unit 
circle. 
   To determine the appropriate orders p and q in the GARCH (p, q) model, one can use a 
general- to-specific procedure by starting with a model with p and q set equal to large 
values, and testing down using likelihood-ratio-type restrictions (see Akgiray, 1989; Cao 
and Tsay, 1992). Alternatively, one can use modified information criteria, as suggested 
by Brooks and Burke (1997, 1998). Even though the general GARCH (p, q) model might 
be of theoretical interest, the GARCH (1, 1) often appears adequate in practice (see also 
Bollerslev, Chou and Kroner, 1992). 
   In applications of the GARCH (1, 1) model (12) to high-frequency financial time series, 
it is often found that the estimates of α1 and β1 are such that their sum is close or equal to 
one. Following Engle and Bolerslev (1986), the model that results when α1 + β1 = 1 is 
commonly referred to as Integrated GARCH (IGARCH). The reason for this is that the 
restriction α1 + β1 = 1 implies a unit root in the ARMΑ (1, 1) model for 2

te  given in (15), 
which then can be written as 
 

11
2)1(  ttot vvaeL   (26) 

 
The analogy with a unit root in an ARMA model for the conditional mean of a time series 
is however rather subtle. For example, from (16) it is seen that the unconditional variance 
of et is not finite in this case. Therefore, the IGARCH model is not covariance- 
stationary. However, the IGARCH (1, 1) model may still be strictly stationary, as shown 
by Nelson (1990). This can be illustrated by rewriting (12) as 

21
2

211
2

111
2

11

21
2

211
2

11

11
2

11

))(())(1(

))()((

)(













tttto

ttoto

ttot

hzazazaa
hzaazaa

hzaah







 

(27) 

 
and continuing the substitution for ht-i, it follows that 

 

oit

t

i
jt

t

i

i

j
ot hzazaah )())(1( 1

2

1
11

2
1

1 1
1   






 
  

(28) 

 
as shown by Nelson (1990), a necessary condition for the strict stationary of the GARCH 
(1, 1) model is .0)][ln( 1

2
1  itzaE  If this condition is satisfied, the impact of ho 

disappears asymptotically. As expected, the autocorrelations of 2
te  for an IGARCH 
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model are not defined properly. However, Ding and Granger (1996) show that the 
approximate autocorrelations are given by  

 
2/2 )21)(21(

3
1 k

k aa   
(29) 

 
 

   Hence, the autocorrelations still decay exponentially. This is in sharp contrast with the 
autocorrelations for a random walk model, for which the autocorrelation are 
approximately equal to 1.  
 
III. Stationarity In The GARCH (1, 1) Model 
 
This section establishes necessary and sufficient conditions for the stationarity and of the 
GARCH (1, 1) model. We have already defined the GARCH (1, 1) model as: 

 

1
2

11

1][,deg,~
,

 





ttot

tt

ttt

heh
zPeneratenoniidz

hze



 

(30) 

 
where αo ≥0, α1 > 0, β ≥ 0. In most papers using GARCH (1, 1), a further restriction has 
been placed on {zt], namely that  

E[zt] = 0, E[ 2
tz ] = 1 

 
(31) 

 
Under restriction (31), ht is the conditional variance of et, given the history of the system. 
If we assume E[ 2

tz ]=1 but allow E[zt] ≠ 0, then ht is the conditional moment of zt. If we 
allow the second moment of zt to be infinite or undefined, then ht is the conditional scale 
parameter. Since the restrictions play no role in the main results of this paper, we adopt 
the less stringent condition, 

1][,deg,~  tt zPeneratenoniidz  
(32) 

  
along with the requirement that 

E[ln(β+α1
2
tz )] 

 
(33) 

 
exists. Note that (33) does not require that E[ln (β+α1

2
tz )] be finite, only that the 

expectations of the positive and negative parts of  ln (β+α1
2
tz ) are not both infinite. 

Relation (33) holds trivially for β > 0. 
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We also define as the conditional model the {ht, et}t=0,∞ and as the unconditional model 
the process { tu h , tu e }t=-∞,∞.  If we denote as B the Borel sets on [0, ∞), we define as μt, 
the probability measure for ht : μt(Γ)=P[htΓ] ,  ΓΒ. 
The results concerning the stationarity of the GARCH (1, 1) model rely on the relation 
between the coefficients α1, β of the model. So different combinations of α1, β provide 
different stationarity characteristics and different moment results for the unconditional 
process. The analysis below comes directly from Nelson (1990). 
 
Theorem 2. Let αo >0. If E [ln(β+α1

2
tz )]<0 then: 

 
αo /(1-β)≤ tu h <∞  for all t a.s , (34) 

 
and tu h  is strictly stationary and ergodic with a well-defined probability measure 
 

μ∞ on [αo /(1-β),∞]   t, (35) 
tu h -ht 0 a.s, (36) 

μt → μ∞ and (37) 
μ∞ is nondegenerate (38) 

 
Corollary of theorem 3. Let αo >0, p>0 and E [ln (β+α1

2
tz )] <0. 

  
 ][ 2 p

thE   t≥1 (39) 

 ][ 2 p
tu hE  for all t (40) 

][ 2 p
thE  iff ][ 2 p

ohE  and E [(β+α1
2
tz )p ] <∞ (41) 

][ 2 p
tu hE    iff E [(β+α1

2
tz )p ] <1 (42) 

lim sup ][ 2 p
thE   iff ][ 2 p

ohE   and E [(β+α1
2
tz )p ] <1 (43) 

lim ][ 2 p
thE = ][ 2 p

tu hE   if ][ 2 p
ohE  (44) 

 

Theorem 4. (a) Let αo >0 and E [ln (β+α1
2
tz )] <0. If 2[ ]q

tE z   for some q>0, then there 

exists a p, 0<p<q, such that E [(β+α1
2
tz )p ] <1.(b) If, in addition, E [(β+α1

2
tz )r ] <1 for 

0<r<q, then exists a δ>0 such that E [(β+α1
2
tz )r+δ ] <1. 

  Theorem 4(a) says that if tu h  is strictly stationary and zt
2 has a finite moment of some 

(arbitrarily small, possibly fractional) order, then tu h  has a finite (possibly fractional) 
moment as well. The existence of such a finite fractional moment implies, for example, 
that E[ln( tu h )]<∞ . In addition we notice that in order for E [(β+α1

2
tz )p ] <1 to hold for 

p=1, the iid innovation must have at least a fractional moment of order larger than 2. Part 
(b) gives a condition for  ][ 2 p

tu hE  for some δ>0, given that ][ 2 p
tu hE . It says, for 
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example, that if E [(β+α1
2
tz )1/2 ] <1 and 2[ ]p

tE z   for some p> 1
2

, then not only is  

E[ tu e ] <  , but there is also a δ>0 with E[ 1
tu e ] <  . 

Summarizing the above results Nelson (1991) produced the following figure for the case 
that zt~NIID(0,1) : 

Z~N(0,1)
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 Region 1: E [ln(β+α1

2
tz )] > 0 and ht is explosively nonstationary. 

Region 2:  E [ln(β+α1
2
tz )] < 0 and tu h , tu e are strictly stationary and ergodic 

Region 3: E [ln(β+α1
2
tz )] < 0, E [(β+α1

2
tz )]1/2 < 1 and tu h , tu e  are strictly 

stationariy and ergodic and E[ tu e ] = 0, E[ 2
tu e ] =      

Region 4:  E [ln(β+α1
2
tz )] < 0, E [(β+α1

2
tz )]1/2 < 1, E [(β+α1

2
tz )] < 1 and tu h , tu e  

are strictly stationary and ergodic and E[ tu e ] = 0, E[ 2
tu e ] =<  . 

We have to note that for region 4 the first and second moments exist, and for some 
combinations of α1 and β there is also fourth moment. For region 3 there is only 
unconditional mean and for region 2, even though the unconditional process is strictly 
stationary, no moments exist.    
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IV. Survey Of Applications And Extensions 
 
In a series of papers, the ARCH model has been analyzed, generalized, extended to the 
multivariate context, and used to test for time varying risk premia in the term structure of 
interest rates and in other financial markets. These papers include Engle (1983) and Engle 
and Kraft (1983) where a measure of the variance of inflation is given. The ARCH model 
is extended to a multivariate framework in Kraft and Engle (1982). In Engle, Granger and 
Kraft (1984) and Granger, Robins and Engle (1984) bivariate ARCH models of inflation 
with changing covariances as well as variances are constructed. Engle, Brown and Stern 
(1984) and granger and Engle (1984) examine the effectiveness of ARCH models for 
forecasting purposes. The power of ARCH tests and the finite sample properties of 
various estimators, are analyzed in Engle, Hendry and Trumble (1985) by means of 
Monte Carlo methods. In Bollerslev (1985a, 1985b) the Generalized ARCH model or 
GARCH model is developed, and the GARCH model with conditionally Student-t 
distributed errors is studied in Bollerslev (1985c). Engle, Lilien and Robins (1985) and 
Bollerslev, Engle and Wooldridge (1985) examine the term Structure of interest rates and 
a three asset Capital Asset Pricing Model (CAMP) to determine whether risk premia are 
varying over time. These papers introduce the ARCH in mean or ARCH-M model in a 
univariate and multivariate context respectively. Engle and Watson recast the GARCH-M 
model in a full information state space form.   
   In addition to this work, a variety of papers have begun to appear from different parts of 
the world. Particularly interesting are the papers by Milhøj (1985) who develops far more 
general moment conditions than those in the original Engle (1982) paper. Linnel-Nemec 
(1984a, 1984b) establishes stationarity and ergodicity of ARCH models. Pantula (1984) 
and Weiss (1982) derive the limiting distribution of ARCH estimators in more general 
contexts. Pagan, Hall and Trivedi (1983), Weiss (1984) and Coulson and Robins (1985) 
provide empirical time series examples of ARCH and related models of changing 
variances. Domowitz and Hakkio (1985), Diebold and Pauly (1985), Diebold and 
Nerlove (1985), Milhøj (1985b), Hsieh (1985) and McCurdy and Morgan (1985), apply 
the ARCH, the ARCH-M and the GARCH model to the foreign exchange market. 
Amsler (1984a, 1984b) investigated whether using the risk premia estimated by ARCH 
models will make long bonds satisfy the Shiller variance bounds. Poterba and Summers 
(1984) derive a pricing formula for stock market prices in the spirit of the asset pricing 
formulas presented in this paper. The price is related to its own variance, which is 
modeled as a simple AR (1) process. Similar ideas are employed in the paper by French, 
Schwert and Stambaugh (1985). Blanchard and Watson (1984) and Bodie, Kane and 
Mcdonald (1983, 1984) present evidence that macroeconomic and financial time series 
models can usefully be reformulated as a form of multivariate ARCH processes. 
   Engle and Bollerslev (1986) introduce a new class of models defined to be integrated in 
variance. This new class of models includes the variance analogue of a unit root in the 
mean as a special case. The models are argued to be both empirically important for the 
asset pricing models and empirically relevant. The conditional density is then generalized 
from a normal to a Student-t with unknown degrees of freedom. By estimating the 
degrees of freedom, implications about the conditional kurtosis of these models and time 
aggregated models can be drawn. By using a further generalization, they allow the 
conditional variance to be a non-linear function of the squared innovations. They 
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conclude to the fact that the integrated GARCH models constitute an interesting 
development, judging from an empirical and theoretical point of view, and by utilizing 
Monte Carlo evidence they find that the knife edge properties while estimating and 
testing for unit root in the mean might not be as severe in the integrated variance models. 
   Nelson (1991) points some major drawbacks of the GARCH models and introduced a 
new form of ARCH that not suffer from these problems. He wishes the existence ARCH 
models that allow the same degree of simplicity and flexibility in representing conditional 
variances as ARIMA and related models have allowed in representing conditional mean. 
Bollerslev (1987) presents the correlation structure for the squares from the generalized 
autoregressive conditional heteroskedastic (GARCH) process. It is shown that the 
behaviour of the correlations for the squares mimics the usual correlations of an 
appropriately defined ARMA process, although the admissible regions for the 
correlations are somewhat more restrictive. Pagan and Schwert (1990) compare several 
statistical models for monthly stock return volatility. They use U.S data from 1834-1925, 
in an attempt to examine the ex-1926 data since the post–1926 have been analyzed in 
more detail. They point down that the Great Depression had levels of stock volatility that 
are inconsistent with stationary models for conditional heteroskedasticity. They 
demonstrate the importance of non-linearities in stock return behavior that are not 
captured by conventional ARCH or GARCH models. Ray Chou (1988) investigates 
issues of volatility and the changing risk premium in the stock market by using the 
GARCH estimation techniques. He claims that the persistence of shocks to the stock 
return volatility is so high that the data cannot distinguish whether the volatility process is 
stationary or not. Assuming stationarity the half-life of volatility shocks is about 1 year. 
The parameter estimates and the non-stationary test result are both robust to changes in 
the frequency of data measurements. By using monthly data the persistency result is also 
maintained for a longer sample period. He also claims that his findings are very different 
from that of Poterba and Summers (1986) who suggest that shocks to volatility are 
transitory and hence cannot have much impact on the market. He claims that the 
deviation stems from the difference in estimation methodologies and supports the fact 
that their methodology is limited in its nature and hence may give misleading results.  
   David Hsieh estimates ARCH and GARCH models for five foreign currencies, using 10 
years of daily data. He utilizes a variety of ARCH and GARCH specifications, a number 
of nonlinear error densities, and a comprehensive set of diagnostic checks. He finds that 
ARCH and GARCH models can usually remove all heteroskedasticity in price changes in 
all five currencies. By using goodness-of-fit diagnostics indicate that exponential 
GARCH with certain nonnormal distributions fits the Canadian dollar extremely well and 
the Swiss franc and the Deutsche mark reasonably well. Baillie and Bollerslev  (1989) 
use formal testing procedures to confirm the presence of a unit root in the autoregressive 
polynomial of the univariate time series representation of daily exchange-rate data. The 
first differences of the logarithms of daily spot rates are approximately uncorrelated 
through time, and a generalized autoregressive conditional heteroskedasticity model with 
dummy variables and conditionally t-distributed errors is found to provide good 
representation to the leptokurtosis and time-dependent conditional heteoskedasticity. 
From their close statistical examination on daily foreign exchange market data, many 
facts emerge; apart from similar day-of-the-week effects across currencies, the short run 
movements in daily log spot rates are well approximated by a martingale difference 
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model with severe excess kurtosis and time- dependent heteroskedasticity. The 
conditional heteroskedasticity in daily spot rates is well represented by a GARCH (1,1) 
process with near unit roots. Distinctive daily seasonality and vacation effects are present 
in the conditional variance, which can be partly explained by differing information flows. 
ARCH effects are still very string in weekly data, less than on fortnight data, and minimal 
on monthly data. After taking account of any ARCH effects, the assumption of 
conditional normality is reasonable approximation on monthly and fortnight data, 
whereas for weekly data the validity of the assumption seems to vary across currencies. 
   Changli He and Timo Terasvirta (1999) present a complete characterization of the 
fourth moment structure of a general GARCH (p, q) process. By using these results, any 
investor is able to see what an estimated GARCH model implies about the second and the 
fourth moments, kurtosis, and the autocorrelation function of the centered and squared 
observations. Even though such considerations have previously been possible in the case 
of GARCH (1, 1), they manage to extend this possibility to other GARCH processes that 
are generalizations of the original GARCH (p, q) process. For example, some GARCH 
processes allowing for asymmetric effects to shocks belong to this category. Nelson 
(1990) establishes the necessary and sufficient conditions for the stationarity and 
ergodicity of the GARCH (1,1) process. As a special case, he shows that the IGARCH (1, 
1) process with no drift converges almost surely to zero, while IGARCH (1, 1) with drift 
is strictly stationary and ergodic. He examines the persistence of shocks to conditional 
variance in the case of GARCH (1, 1) model, and shows that whether the shocks 
persistence or not depends on the definition of persistence. He also develops necessary 
and sufficient conditions for the finiteness of absolute moments of any order. 
   Robin Lumsdaine (1995) compares the GARCH (1, 1) and the IGARCH (1, 1) models 
via a Monte Carlo study of the finite sample properties of the maximum likelihood 
estimator and related test statistics. In all models considered, Lumsdaine finds that this 
estimator has a normal limiting distribution and constant covariance matrix. Although the 
asymptotic distribution is, for the most part, well approximated by the estimated t 
statistics, other commonly used statistics such as the Lagrange multiplier, likelihood 
ratio, and Wald do not behave as well in small samples. She also notices that the 
estimators themselves are skewed in small samples, particularly those of the ARCH 
parameters. Finally, a pileup effect at the boundary of the parameter values is also 
apparent; this pileup decreases as the sample size becomes larger. The tails of the small 
sample distributions are fatter than those of a normal distribution. Lumsdaine (1996) also 
provides the proof of the consistency and asymptotic normality of the quasi-maximum 
likelihood estimator in GARCH (1, 1) and IGARCH (1, 1) models. In contrast to the case 
of a unit root in the conditional mean, the presence of a “unit root” in the conditional 
variance does not affect the limiting distribution of the estimators; in both models, 
estimators are normally distributed. In addition, a consistent estimator of the covariance 
matrix is available, enabling the use of standard test statistics for inference.                 
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V. An Empirical Application Of GARCH (1, 1) 
 

a. Data and Methodology 
 
Our focus is to compare the forecasting performance of two models for a univariate 
conditional variance, using bilateral daily data of stock market indices for the United 
States, Mexico, United Kingdom, France, Germany, Belgium, Switzerland, Australia, 
Singapore and Japan. We also use bilateral daily data for the dollar versus the currencies 
of Canada, France, Germany, Japan, United Kingdom, Spain, Singapore, Netherlands, 
Australia and Switzerland. This data are collected for ten years, from 1 January 1992 to 
31 December 2001, and we consider the daily closing prices as the daily observations. 
This sample is divided into two different periods of five years each, and each period is 
examined separately. After an initial observation was lost due to differencing, the sample 
for each country in the case of the exchange rates includes 1258 observations for the first 
period, from 1 January 1992 to 31 December 1996, and 1256 observations for the second 
period, from 1 January 1997 to 31 December 2001. In the case of stock market indices 
the sample in each country is diversified (see appendix VII). 
   Prior to our formal analysis, we use logarithmic differences of the series. So, our stock 
return and exchange return series are defined as the natural logarithm of values relative.  

 

)log(
1


t

t
t S

S
R  

(45) 

 
For small values of Rt, such as in the case of daily data, this definition is very similar to 
the arithmetic rate of return. 
   Our empirical application, as well as our Monte Carlo experiment, is divided in two 
parts; the first part, in which we perform the estimation of the parameters of the GARCH 
(1, 1) model, selected for the description of the data, and the second one in which by 
utilizing the estimated parameters we perform forecasts of the conditional variance. It is 
important to state that before the estimation part, we choose an ARMA (p, q) model for 
the suitable representation of the conditional mean. This representation is thought as 
necessary in order to remove all the linear dependence of the original data. The selection 
of the appropriate order of the ARMA (p, q) model is done based on the serial correlation 
that the residuals present after the selection of an ARMA process upon the data. It is not 
surprising that for all our time series the appropriate ARMA (p, q) model that is chosen to 
remove the serial correlation of the data is the AR (1). 
   Vedat Akgiray in his article, “Conditional Heteroskedasticity In Time Series Of Stock 
Returns”, supports the idea that any realistic probability model of daily stock-price 
movements must be consistent with at least two empirical facts: (1) time series of returns 
exhibit significant first-lag autocorrelation, and (2) time series of absolute and squared 
returns are autocorrelated even at very long lags. A reasonable strategy to construct such 
a model may start with transforming the original return series so that the new series will 
no longer be correlated. Then the model to be fitted to this new series would be required 
to satisfy only the second property above. 
    
 



 17

 
   One possible way of generating an uncorrelated sequence from the series {Rt} is to 
obtain the ordinary least squares residuals of the following regression: 
 

ttot eRR  11  (46) 
 

The residuals series {et} can be expected to be uncorrelated since second-order or higher-
order autocorrelation is not observed in the return series. 
   By concluding to the fact that the daily return series Rt can be modeled as a AR (1)- 
GARCH (1, 1) process, we perform estimation upon the following model: 

 
Rt/Ft-1~ D (mt,ht) 
mt = φo + φ1Rt-1 

ht = αo+ α1
2
te +β1ht-1 

et = Rt - φo - φ1Rt-1 

(47) 

 
To estimate the parameters θ=(φo, φ1, αo, α1, β1) of the above model, it is necessary to 
specify the conditional distribution function of D (mt, ht). In all applications, a normal 
distribution function is assumed. For lack of a good reason for another distribution, this 
assumption is adopted in this study, although the model is flexible enough to admit other 
laws. Given a sample of daily returns R1, …, RT the log-likelihood function is then given 
by 

),(log),/( tt

T

rt
hmfqpL 



  
(48) 

 
            where p,q = 1, r=max(p,q)=1. Numerical maximization gives the maximum likelihood 

estimates of the parameters for the AR (1)-GARCH (1, 1) model. We find that all of the 
parameters are statistically significant (except from very few cases), and the sum of the 
parameters of the GARCH (1, 1) model (α1 + β1) is substantially smaller than unity and 
dominated by β, something that indicates that changes in market volatility tend to be 
persistent. The fact that the sum is smaller than unity ensures also the existence of second 
moment.   

            After the estimation part and since estimations of the parameters obtained for each time 
series (see appendix VI), we can move to the forecasting part where we will compare the 
forecasting performance of the AR (1)-GARCH (1, 1) model with the autoregressive 
conditional heteroskedasticity model of order 1, AR (1) (we have repeated the estimation 
part for this model too).  
   There are two alternative ways for forecasting with lagged dependent variables: the 
dynamic forecasting and the static forecasting. In the case of a dynamic forecasting, we 
have multi-step forecasts starting from the first period of the forecast sample. In the static 
forecast, a sequence of one-step-ahead forecasts is calculated, using actual, rather than 
forecasted values for lagged dependent variables.  
   The selection of the start of the forecast sample is very important for dynamic 
forecasting. The dynamic forecasts are true multi-step forecasts (from the start of the 
forecast sample), since they use the recursively computed forecast of the lagged values of 
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the dependent variables. These forecasts may be interpreted as the forecasts for 
subsequent periods that would be computed using information available at the start of the 
forecast sample. Dynamic forecasting requires that data for the exogenous variables be 
available for every observation in the forecast sample, and that values for any lagged 
dependent variables be observed at the start of the forecast sample.  
   Static forecasting requires that the data for both the exogenous and any lagged 
endogenous variables be observed for every observation in the forecast sample. Both 
methods will always yield identical results in the first period of a multi-period forecast. 
Thus, two forecast series, one dynamic and the other static, should be identical for the 
first observation in the forecast sample. We decide to perform forecasts for the 
conditional variance by utilizing both methods and to compare the MSPE, computed as 

22
^

)()( jtjt ehEjMSPE   , with this obtained by the AR (1) model. Since the true 
volatility, ht+j, is unobserved we choose to use as an unbiased estimator of it the squared 
shock, 2

jte  , since E[ 2
jte  ]=E[ 2

jtz  ht+j]= jth 1 . The ĥt+j is the future conditional variance as 
it is forecasted through the AR (1)-GARCH (1, 1) model. As to the simple AR (1) 
process ttot RffR  11 , the conditional variance of Rt is equal to the conditional 
variance of εt, )/var()/var( 11   tttt FFR  =σ2, and the statistical criterion that we utilize 
is the MSPE computed as ][ 22

jtEMSPE   . The right approximation for the true 

unobserved conditional variance is considered to be again the squared shock 2
jte  . 

The entire procedure was programmed in Eviews 4.0 software.   
 
 
Tables for the group of stock indices, for the periods 1992-1996 and 1997-2001 
 

USA1 MSE(1) MSE(2) MSE(3) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,008828 0,00491 0,006272 0,00652 0,011404 0,0296 0,049759 

Static 0,008828 0,00506 0,006214 0,0066 0,011576 0,03033 0,04836 
AR(1) 0,01191 0,00618 0,007879 0,00774 0,012796 0,02977 0,049229 

 
USA2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,1086 0,05595 0,047995 0,06055 0,048603 0,11136 0,150934 0,15989 
Static 0,1086 0,05455 0,043253 0,05 0,040399 0,11275 0,161557 0,17011 
AR(1) 0,2261 0,12709 0,121093 0,13585 0,111246 0,15142 0,193034 0,19157 

 
Ausrtalia1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,01558 0,0081 0,033856 0,0309 0,027025 0,02061 0,531789 0,41384 

Static 0,01558 0,00832 0,034987 0,03283 0,02871 0,02 0,54437 0,42039 
AR(1) 0,02193 0,011 0,030751 0,03 0,026992 0,02204 0,523631 0,40515 

 
Australia2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,00874 0,02564 0,02221 0,02141 0,02457 0,03366 0,03854 0,03981 

Static 0,00874 0,02362 0,01869 0,01657 0,01767 0,01884 0,01829 0,02029 
AR(1) 0,02197 0,03874 0,03224 0,03213 0,0356 0,04159 0,04418 0,04367 
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UK1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,01318 0,00951 0,00731 0,00799 0,10101 0,05512 0,18204 0,15732 
Static 0,01318 0,00902 0,00664 0,00688 0,10507 0,05816 0,18691 0,15836 
AR(1) 0,0316 0,02515 0,02123 0,02224 0,09817 0,05843 0,17662 0,15043 

 
UK2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,09728 0,13459 0,13636 0,18322 0,19688 0,18915 0,24055 0,23598 
Static 0,09728 0,12539 0,118393 0,15022 0,15116 0,11765 0,19137 0,2044 
AR(1) 0,02259 0,04395 0,049917 0,08311 0,09205 0,09642 0,17617 0,1849 

 
France1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,02175 0,02821 0,03555 0,02746 0,02216 0,02734 0,20333 0,18483 

Static 0,02175 0,02745 0,033703 0,02656 0,02163 0,02565 0,2045 0,18677 
AR(1) 0,07279 0,08527 0,097047 0,07366 0,06033 0,06648 0,19542 0,18057 

 
France2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

 Dynamic 1,66 1,6295 1,188367 0,93235 0,94988 0,88045 1,06318 0,96243 
Static 1,66 1,5175 1,060133 0,80634 0,77563 0,59085 0,84405 0,71924 
AR(1) 0,4927 0,487 0,324927 0,245 0,2464 0,25087 0,62218 0,54532 

 
Germany1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,04587 0,027489 0,038706 0,04091 0,03971 0,03915 0,02894 1,60487 

Static 0,04587 0,026585 0,040433 0,04212 0,03989 0,03807 0,02786 1,55609 
AR(1) 0,06034 0,037775 0,039077 0,04463 0,04486 0,04467 0,03335 1,54477 

 
Germany2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 2,246 1,8425 1,685333 1,26838 1,02782 1,28075 1,38243 2,86809 

Static 2,246 1,6665 1,3862 1,09785 0,8785 0,77112 0,92705 2,8896 
AR(1) 0,6695 0,4588 0,387433 0,4615 0,39166 0,42334 0,62535 2,56251 

 
Japan1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,05363 0,048285 0,032317 0,05961 0,07341 0,09627 0,625207 0,48335 
Static 0,05363 0,044965 0,030797 0,05367 0,06188 0,07669 0,647679 0,50669 
AR(1) 0,2227 0,1962 0,142513 0,19356 0,21743 0,23093 0,663869 0,52708 

 
Japan2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 17,68 8,84846 6,000873 4,50748 3,67314 3,27015 2,663657 2,66189 
Static 17,68 8,86288 6,156953 4,65582 3,84073 3,36984 2,724611 2,63066 
AR(1) 18,1 9,072995 6,159663 4,63778 3,79264 3,3518 2,696975 2,61153 

 
Mexico1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,1017 0,0783 0,094667 0,07214 0,06492 0,09542 0,160894 0,17033 

Static 0,1017 0,070345 0,076563 0,06375 0,05386 0,06222 0,159475 0,1671 
AR(1) 0,8206 0,7429 0,770767 0,64015 0,61386 0,62285 0,581527 0,5516 
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Mexico2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,6551 0,366295 0,497163 0,54387 0,6096 0,67107 0,774651 0,82734 

Static 0,6551 0,337185 0,394323 0,37242 0,36489 0,2804 0,405102 0,3564 
AR(1) 1,463 1,0102 1,173133 1,2201 1,27508 1,19231 1,20244 1,16646 

 
Switzerland1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,01493 0,023145 0,02289 0,01819 0,01692 0,01823 0,116753 0,09327 
Static 0,01493 0,020725 0,018463 0,01398 0,01219 0,01472 0,119466 0,09836 
AR(1) 0,02872 0,03657 0,035417 0,02873 0,02623 0,02382 0,11682 0,09324 

 
Switzerland2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,000207 0,012059 0,052806 0,05527 0,05563 0,06243 0,065354 0,07348 
   Static 0,000207 0,012369 0,057879 0,06363 0,06177 0,04958 0,052556 0,05719 

AR(1) 0,07547 0,142685 0,096064 0,14322 0,16534 0,20231 0,189693 0,18826 
 

Singapore1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,05751 0,03838 0,049123 0,0533 0,05023 0,04631 0,043823 0,04459 

Static 0,05751 0,04723 0,055037 0,05104 0,04297 0,03218 0,032654 0,03067 
AR(1) 0,06091 0,035388 0,050165 0,05634 0,05404 0,04935 0,045941 0,04669 

 
Singapore2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
 Dynamic 1,794 0,9609 1,5966 1,61045 1,68376 1,59857 1,547387 1,73224 

Static 1,794 0,90116 1,27344 1,09388 0,9853 0,62278 0,980686 0,92449 
AR(1) 0,159 0,22705 0,404233 0,35233 0,35488 0,32708 0,69524 0,68611 

 
Belgium1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,00014 0,00678 0,00664 0,00614 0,00688 0,00656 0,007702 0,00965 

Static 0,00014 0,006725 0,006366 0,0057 0,00619 0,00553 0,005913 0,00887 
AR(1) 0,00099 0,009925 0,00998 0,00937 0,01029 0,0094 0,010481 0,01155 

 
Belgium2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,2799 0,2469 0,185217 0,17236 0,20049 0,18861 0,184186 0,21982 

Static 0,2799 0,2093 0,142615 0,11679 0,11927 0,09252 0,088927 0,07642 
AR(1) 0,1885 0,16235 0,112627 0,10138 0,11835 0,1109 0,102926 0,11473 

 
Tables for the group of foreign exchange rates, for the periods 1992-1996 and 1997-
2001 
 
Australia1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,001514 0,003546 0,097764 0,07437 0,06031 0,48944 0,32916 0,25586 

Static 0,001514 0,003708 0,097138 0,07512 0,06161 0,48885 0,332583 0,25813 
AR(1) 0,001981 0,003549 0,098866 0,07539 0,06129 0,4812 0,323791 0,25159 
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Australia2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,01329 0,009624 0,012096 0,01106 0,00938 0,00868 0,011275 0,0139 

Static 0,01329 0,009159 0,010952 0,00955 0,00784 0,00644 0,007123 0,0102 
AR(1) 0,01874 0,013898 0,017065 0,01579 0,01359 0,01218 0,014768 0,01677 

 
Canada1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,0008859 0,000515 0,000387 0,00029 0,00026 0,00018 0,000283 0,00048 

Static 0,0008859 0,000532 0,000404 0,0003 0,00028 0,00019 0,000289 0,00045 
    AR(1) 0,0002063 0,000442 0,000503 0,00041 0,00047 0,00041 0,000375 0,00045 

 
Canada2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,00348 0,002857 0,001906 0,00153 0,0013 0,00313 0,002209 0,00355 

Static 0,00348 0,002729 0,001837 0,00153 0,00127 0,00298 0,002172 0,00347 
AR(1) 0,002419 0,002058 0,001448 0,00132 0,00106 0,00269 0,001982 0,00323 

 
Japan1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,01191 0,010422 0,009474 0,00972 0,01025 0,01706 0,012943 0,01152 
Static 0,01191 0,00996 0,00867 0,00852 0,00863 0,01714 0,012536 0,01046 
AR(1) 0,01821 0,016255 0,015017 0,01525 0,01584 0,01991 0,015668 0,01432 

 
Japan2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,0001905 0,001656 0,011681 0,01139 0,01208 0,00831 0,008975 0,00987 
Static 0,0001905 0,00161 0,012057 0,01197 0,01256 0,00827 0,007909 0,00775 
AR(1) 0,01292 0,01635 0,013818 0,01971 0,02471 0,02126 0,024053 0,02571 

 
Singapore1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 7,168E-05 8,14E-05 5,82E-05 8,9E-05 0,00011 0,00018 0,000194 0,00023 
Static 7,168E-05 5,94E-05 3,99E-05 5,6E-05 5,9E-05 5,1E-05 5,24E-05 5,2E-05 
AR(1) 0,0002656 0,000254 0,000193 0,00021 0,00022 0,00023 0,000207 0,00021 

 
Singapore2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 1,009E-05 0,00032 0,000452 0,00036 0,00044 0,00043 0,00047 0,00052 
Static 1,009E-05 0,000314 0,000417 0,00032 0,00037 0,00033 0,000338 0,00032 
AR(1) 0,002587 0,003904 0,004371 0,00404 0,00431 0,00405 0,004025 0,00415 

 
Switzerland1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,0361 0,020523 0,014328 0,01308 0,01205 0,02954 0,025346 0,02915 
Static 0,0361 0,02128 0,015005 0,01372 0,01247 0,03073 0,026013 0,03002 
AR(1) 0,009009 0,017645 0,017773 0,02183 0,02358 0,03134 0,026196 0,02988 

 
Switzerland2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,0134 0,008396 0,005788 0,00741 0,00898 0,00959 0,008133 0,00838 
Static 0,0134 0,008517 0,005877 0,00747 0,00893 0,00967 0,008071 0,00822 
AR(1) 0,01272 0,008111 0,00559 0,00733 0,00895 0,00955 0,008109 0,00837 
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U.K1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,0009558 0,000737 0,001643 0,00219 0,00183 0,00238 0,261191 0,19665 

Static 0,0009558 0,0007 0,001509 0,00228 0,00192 0,0024 0,262935 0,20095 
AR(1) 0,007422 0,007083 0,009292 0,00698 0,00575 0,00719 0,247576 0,18843 

 
U.K2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,0001039 0,003395 0,002863 0,00354 0,00444 0,00531 0,004644 0,00443 
Static 0,0001039 0,003423 0,002823 0,00339 0,00414 0,00476 0,004032 0,00381 

     AR(1) 0,0006591 0,002498 0,001905 0,00231 0,00297 0,00404 0,003568 0,00351 
 

France1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,0002711 0,000364 0,000805 0,0006 0,0005 0,01202 0,01232 0,01136 

Static 0,0002711 0,000381 0,000825 0,00062 0,00052 0,01196 0,011664 0,01099 
AR(1) 0,004361 0,007606 0,005593 0,0059 0,0063 0,01195 0,010744 0,01104 

 
France2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,0000248 0,000423 0,005719 0,00494 0,00729 0,00846 0,008691 0,0087 

Static 0,0000248 0,00042 0,005647 0,00479 0,00693 0,00825 0,008076 0,00783 
AR(1) 3,966E-06 0,000296 0,005281 0,00453 0,00677 0,00812 0,008317 0,00835 

 
Germany1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,00098 0,001085 0,001185 0,00152 0,00123 0,01517 0,030262 0,02325 

Static 0,00098 0,001147 0,001234 0,00161 0,00129 0,01571 0,029973 0,02372 
AR(1) 0,003646 0,009603 0,007346 0,01027 0,00989 0,01808 0,028322 0,02468 

 
Germany2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 7,877E-05 0,00057 0,00618 0,0054 0,00788 0,00886 0,009181 0,00922 

Static 7,877E-05 0,000566 0,006114 0,00527 0,00757 0,00864 0,008575 0,00834 
AR(1) 7,891E-06 0,000325 0,005384 0,00463 0,0069 0,00821 0,008425 0,00846 

 
Netherlands1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,0007321 0,001087 0,001416 0,00148 0,00118 0,01002 0,02296 0,02039 
Static 0,0007321 0,001146 0,001479 0,00157 0,00125 0,01031 0,022474 0,02025 
AR(1) 0,004389 0,0107 0,007869 0,01019 0,00965 0,01344 0,021718 0,02045 

 
Netherlands2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 7,831E-05 0,000559 0,006142 0,00536 0,00784 0,00883 0,009142 0,00918 
Static 7,831E-05 0,000554 0,006069 0,00522 0,0075 0,00859 0,008497 0,00825 
AR(1) 1,148E-05 0,000347 0,005438 0,00468 0,00696 0,00825 0,008482 0,00852 

 
Spain1 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 

Dynamic 0,001405 0,00164 0,001504 0,00183 0,0015 0,00993 0,015003 0,01281 
Static 0,001405 0,001782 0,001619 0,00198 0,00163 0,01027 0,014823 0,01315 
AR(1) 0,004119 0,013025 0,009911 0,01334 0,01229 0,0137 0,015427 0,01542 
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Spain2 MSE(1) MSE(2) MSE(3) MSE(4) MSE(5) MSE(10) MSE(15) MSE(20) 
Dynamic 0,0002789 0,001007 0,007192 0,00638 0,0091 0,00974 0,010257 0,01034 

Static 0,0002789 0,001 0,00713 0,00627 0,00887 0,00952 0,00972 0,00956 
AR(1) 3,012E-07 0,000257 0,005121 0,00436 0,00655 0,00799 0,008154 0,00818 

 
b. Results From The Empirical Application 
 
The results obtained from our empirical application seem to confirm the skeptics about 
the forecasting performance of the GARCH models. In the majority of the time series that 
we examine it is hard to conclude surely which of the two models performs more 
accurately.  There is a number of time series from the stock indices as well as from the 
foreign exchange rates in which the AR (1)- GARCH (1, 1) model provides forecasts of 
the conditional variance better than those of the simple AR (1) model. In particular, the 
AR (1)-GARCH (1, 1) model is appeared to have a slight edge over the other model at 
the one-week horizon, for some of the time series. This superiority of the GARCH model 
doesn’t seem to hold at longer horizons, even though we don’t observe a tendency for the 
MSPE to increase as we move forward in time. In most cases, where the GARCH model 
appears to have more accurate predictive ability, it ends to lose its superiority at the one-
month horizon. There are also many cases in which the simple AR (1) model performs 
better for the entire forecast sample. 
   For the group of the stock indices, USA, United Kingdom, France, Germany and 
Switzerland for the first period, 1992-1997, configure the fact that the forecasts of the 
GARCH (1, 1) model are better than that of the AR (1) for the one-week horizon, but for 
longer periods its MSPE takes values larger than that of the second model. For the 
majority of time series of this group, and for the second period, 1997-2001, the GARCH 
model appears slight better behavior. But there are also significant exceptions as 
Germany, France, United Kingdom, Belgium, Singapore and Japan in which the 
superiority of the AR (1) process in describing and forecasting the conditional variance of 
the data seems to be unquestionable. 
   As for the group of the foreign exchange rates, for the currencies of Switzerland, 
United Kingdom, France and Spain versus dollar, for the first period, as well as for the 
currencies of Canada, Switzerland, United Kingdom, and France for the second period, 
the AR (1) model performs more accurately, for the short and also for the long-term 
horizons. In the case of Australia (first and second period), Canada (first period), Japan 
(first and second period) and Singapore (first and second period) the results are 
confusing; it is not obvious which of the models manage to conclude to more accurate 
forecasts for the entire forecast sample. 
   Motivated by these findings as well as by the existing literature which finds that the 
GARCH models explain little of the variability in ex-post squared returns and for this 
reason may be of limited practical value, we decide to perform a Monte Carlo experiment 
in order to examine if the utilization of GARCH models may be considered as 
inappropriate in comparison with other models. In or empirical experiment we compare 
an AR (1)-GARCH (1, 1) model with a simple AR (1). In the following section we 
evaluate a MD-GARCH (1, 1) in contrast with a homoskedastic one.             
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 VI. Monte Carlo Design And Data Generating Process 
 
Although estimated with growing frequency, autoregressive conditional 
heteroskedasticity (ARCH)- related models have experienced relatively few theoretical 
developments. Our goal in this part is to investigate the forecasting performance of a MD 

- GARCH (1, 1) model and to compare it with this of a homoskedastic one. We focus on 
three alternative models from the GARCH (1, 1) family. In particular, we examine the 
following pairs of values for (α, β): 

 
 Model 1 Model 2 Model 3 
α 0.20 0.40 0.15 
β 0.55 0.50 0.85 

 
The selected values in models 1-3 were chosen for their empirical and theoretical 
relevance. Models 1 and 2 are GARCH (1, 1) models, which differ in a very special 
point; model 1 is a typical GARCH (1, 1) model with finite second and fourth moment, 
while model 2 is a GARCH (1, 1) model, selected for its potential theoretical interest, 
since in its case the assumption for the existence of a fourth moment is violated. 
Bollerslev (1986, theorem 2) provided necessary and sufficient conditions on the 
parameters for the existence of higher moments of the et’s. In particular, the condition for 
the existence of a finite fourth moment in the GARCH (1, 1) model is given by 
kα2+2αβ+β2 < 1, where k is the kurtosis of the innovation process zt. Even though the 
existence of the fourth moment is not necessary in order the estimators to be consistent 
and asymptotically normal (see Lumsdaine (1991)), we choose to consider this special 
case in order to examine whether or not the absence of the unconditional fourth moment 
has an effect in the forecasting performance of the GARCH (1, 1) model. Model 3 is 
considered in order to evaluate how accurate is the forecasts that we get from the 
GARCH (1, 1) model when α + β = 1 (IGARCH (1, 1)). Keep in mind that under this 
restriction we are trying to forecast the future conditional variance under the absence of 
an unconditional one. For each of these three models, we perform a dynamic and a static 
way of forecasting and we consider alternative measures for the evaluation of the 
forecasting performance (see below). 
   The data are generating according to the following recursions: 

yt = et,  et/Ft-1~D(mt,ht) 
where mt = 0 and ht=  +

2
1te +ht-1 

or yt = et = ztht 
ht=  +

2
1te +ht-1 

where zt~ iid (0,1) 

(49) 

 
The innovation process zt is drawn from a normal random-number generator, ho, as well 
as yo, is supposed to be equal to 0.5, and the initial 50 observations are eliminated in 
order to minimize the effects of the initial values.  The fact that the zt is normally 
distributed is not required by the asymptotic theory but is often assumed in applied work. 
In addition, although the zt’s have finite unconditional moments of all orders, since they 
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are drawn from a normal distribution, there is no guarantee that the compound term, et = 
ztht, will have even finite fourth moments as discussed previously. The selection of 0.5 as 
the initial value of the ht is considered to be asymptotically negligible. This asymptotic 
negligibility was shown by Lumsdaine (1993, lemma 6) for the likelihood, its first and 
second derivatives, and the components of the covariance matrices. Implicitly, all results 
reported here are conditioned on this initial choice. Engle and Bollerslev (1986) proposed 

using the sample mean of the squared estimated residuals,  

T

t te
T 1

21 . In the IGARCH (1, 

1) model, however, the analogous population mean does not exist. Alternatively, an 
initial value for the ht can be drawn from the asymptotic distribution of the filtering error 
of Nelson and Foster (1994), or the method of Foster and Nelson (1993) may be 
employed. Diebold and Schuermann (1992) considered finite-sample properties of ARCH 
estimators with respect to different choices of initial conditions. 
   We could say that our Monte Carlo experiment is divided into two parts; the first one 
has to do with the estimation of the parameters of the GARCH model, while the second 
one involves making forecasts for the future unconditional variance under the assumption 
of a GARCH (1, 1) structure. Utilizing quasi-maximum likelihood estimators, we make 
the estimation of the parameters of the GARCH process. Conventionally, the quasi-
maximum likelihood estimators involve maximizing a normal likelihood function even 
though the true underlying distribution may not be normal. Maximum likelihood 
estimators refer to estimators computed under the assumption that the likelihood being 
maximized is indeed the true likelihood function; this is often taken to be normal. Thus 
quasi-maximum likelihood estimation is a generalization of maximum likelihood 
estimation to the case in which the true underlying distribution is unknown.   
   Results are reported for T=1000, using 1000 replications. In order to estimate the 
parameters of the GARCH (1, 1) models, we use a sample of 500 observations and the 
others 500 observations are used to carry out forecasts of the conditional variance. These 
samples were chosen to be representative of the sizes of daily data sets commonly used 
empirically. The size of the estimation sample is chosen with respect to our goal to report 
as good estimations as possible, while the large size of the forecasting sample is due to 
our aim to run three different regressions (see below). 
   We have already mentioned that for each model we consider three different expressions 
of a statistical criterion. In particular, we calculate the mean square prediction error under 
the availability or not of the true future conditional variance. The basic difference in the 
case of the Monte Carlo experiments is the fact that the future conditional variance is 
observed since it is generated, through the above data generating process, for the entire 
sample of 1000 observations. This offers us the capability to compare, under a different 
point of view, the GARCH (1, 1) (in all its alternatives forms) with the homoskedastic 
model, where we assume that the conditional variance is stable and indifferent of time t. 
The three alternative expressions of the MSPE for the case of the GARCH (1, 1) model 
are 

                            22
^

)()( jtjt ehEjMSPE    

2
^

)()( jtjt hhEjMSPE    
22 )()( jtjt ehEjMSPE    

(50) 
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The first expression of the MSPE is the one that we use in our empirical application in 
order to evaluate the forecasting performance of a GARCH (1, 1) model. In the case of 
the empirical application, in order to make the forecast evaluation criteria operational, we 
use the squared shock jtjtjt hze   22  as a good approximation of the true unobserved 

volatility ht+j. As 1][ 2  jtzE , 2
jte   is an unbiased estimate of ht+j, 

jtjtjtjtjt hhhzEeE   1][][ 22 . In the other two expressions of the statistical 
criterion MSPE, we observe the appearance of the true conditional volatility ht+j. The 

MSPE, which is computed as 2
^

)()( jtjt hhEjMSPE   , is the expression that we would 
prefer to have available for all our experiments. It offers us a direct and accurate measure 
of the forecasting performance of a GARCH (1, 1) model, since it compares the true 
conditional volatility ht+j with the one that we get by assuming that the shock, et, is well 
represented by a GARCH (1, 1) process. The last expression of MSPE is used as a 
criterion for the comparison of the true volatility ht+j with its approximation, 2

jte  , in 
order to find out, if apart from the theoretical point of view, the use of the squared shock 
is well used for replacing ht+j, when the true conditional variance is unobserved. For the 
homoskedastic model, where var(et/Ft-1) = σ2 for every t, we use as a statistical criterion 
the mean squared prediction error which is computed as 

][)( 2  jthEjMSPE  for j=1, 2, 3, 5, 10 (51) 

 
Our goal, as in the case of the empirical application, is to compare this mean squared 
prediction error with those of the GARCH (1, 1) model and to examine if the predictions 
that we acquire when we suppose a homoskedastic structure for the conditional variance 
are better or not. 
   In our attempt to study the relation between the true volatility and each one of its 
approximations, ĥt+j and 2

jte  , as well as their relation between, we are running three 
different regressions: 

Regression #1: jtjtjt nhbae 



 2  

Regression #2: jtjtjt khbah 



   

Regression #3: jtjtjt mbhae  2  

(52) 

 
These three regressions provide us an alternative way to examine all these issues that are 
of great interest for us as in the case of the different expressions of mean squared 
prediction error. In particular, for the third regression, 2

jte   would be an unbiased 
estimator of the true volatility ht+j, if α = 0, b = 1 and E(mt+j) = 0. For the same reason we 
would prefer for the second regression values 0, 1 and 0 for α, b and E(kt+j) respectively, 
in order the future conditional variance ĥt+j that we get from a GARCH process to be an 
unbiased estimator of ht+j. 
 
 
 



 27

 
VII. Results From The Simulations      
 
a. Model 1: Forecasting With GARCH (1,1) Under The Presence Of Finite Second 
And Fourth Unconditional Moments  

  
DYNAMIC FORECASTING 
 
i) MSPE(j)=E(ĥt+j -e 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  3.6185895  4.3982382  2.7426020  3.3740240  2.7294505 

std.dev.  39.107599  67.111446  20.001897  18.817564  15.135565 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  0.0253691  0.1757629  0.2579264  0.1868534  0.2189938 

std.dev.  0.1038183  1.6830446  2.4053255  0.8743073  0.8618254 
 
iii) MSPE=E( 2

jte  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  3.5758804  4.3471522  2.3778222  3.1369081  2.6622436 

std.dev.  39.072997  68.110079  16.509856  16.312038  14.852504 


Homoskedastic Model: MSPE(j)=E(ht+j -

^
2 )2  for j=1,2,3,5,10

 
obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 

mean 0.2394041 0.3060065 0.3834270 0.2214123 0.2180635 
std.dev. 1.2131117 2.7615450 5.1997577 1.2499291 0.8574242 

 
Regression #1: 2

jte  =a + bĥt+j + mt+j , j=1,2,… 
Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 
 

size=500,rep=1000 regression #2 regression #3 regression #1 
a  8.5467578  0.1170924  35.671989 
b -6.9623708  0.8770900 -32.501735 
R2  0.0071891  0.0711726  0.0040225 
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STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  3.6185895  4.3133973  2.4385192  3.0537318  2.6793063 

std.dev.  39.107599  65.748945  16.220567  15.221363  14.664600 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10  

 
obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 

mean  0.0253691  0.0330035  0.0308944  0.0303579  0.0263431 
std.dev.  0.1038183  0.2841047  0.1658193  0.1633472  0.1439892 

 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  3.5758804  4.3471522  2.3778222  3.1369081  2.6622436 

std.dev.  39.072997  68.110079  16.509856  16.312038  14.852504 
 

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10    
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  0.2394041  0.3060065  0.3834270  0.2214123  0.2180635 

std.dev.  1.2131117  2.7615450  5.1997577  1.2499291  0.8574242 
 
Regression #1: 2

jte  =a + bĥt+j + mt+j , j=1,2,… 
Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 
 

size=500,rep=1000 regression #2 regression #3 regression #1 
a -0.0718274  0.1170924  0.0495819 
b  1.0907753  0.8770900  0.9627832 
R2  0.9547408  0.0711726  0.0682077 
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In the first Model where α + β < 1 and 3α2 + 2αβ + β2 <1, we observe that the quasi-
maximum estimators of the parameters αo, α1, β, are very close to their theoretical 
values, since we examine a case where the second and the fourth order moment exist. 
So the estimators that we get are consistent and asymptotically normal (see appendix 
I.1). 
   After the estimation part, we examine the forecast results provided from the 
utilization of Model 1 when we perform dynamic and static forecast. Let us repeat 
that the first observation in the forecast sample will be identical for both methods and 
the difference between these two approaches will be obvious for subsequent periods 
since in a GARCH (1, 1) model there are lagged dependent variables. In the case of 
the dynamic forecast, it seems that among the three different expressions of the mean 
squared prediction error we manage to ensure better results when we utilize the true 
conditional variance and not an approximation of this and we compare it with the 
forecast that we get from a GARCH (1, 1) model. The mean squared prediction error, 

computed as 2
^

)()( jtjt hhEjMSPE   , presents the smallest standard deviation and 
an apparent better behavior as it is kept in relatively small values even in the case of 
ten steps ahead forecast. When we use as an unbiased estimator of ht+j, the squared 
shock, et+j, and calculate the MSPE as 22 )()( jtjt ehEjMSPE   , it is obvious that 
the approximation we use is not the best possible but it seems to be the only one when 
the true volatility is unobserved. 

   As for the MSPE that is denoted as 22
^

)()( jtjt ehEjMSPE   , and which is also 
utilized when we perform our empirical application, it presents the largest values. The 
basic comparison that we have to state and which is of great interest is that between 
the above MSPE and that based on the homoskedastic model. This will give us the 
answer to the basic question if the utilization of a GARCH model can provide us with 
better forecasts of the conditional volatility than a simple homoskedastic model. It is 
obvious that the forecasts that we get by using the GARCH (1, 1) model are more 
accurate than that of the homoskedastic. But what are the results for the static 
forecasting? 
   When we use the static way in order to make forecasts, true values are used for the 
lagged dependent variables, and not the estimated ones as in the case of the dynamic 
forecasting, something that we expect to ameliorate the forecasting accuracy of the 
model as we move forward to time. The results are the same with those of the 
dynamic forecast for the MSPE in the cases where we don’t utilize the forecast 
provided from the GARCH (1, 1) model, ĥt+j. But we observe that the first MSPE is 
slightly better in the case of the static forecasting, while the difference is more 
apparent in the case of the second MSPE. It is even more ameliorated and much 
smaller than that which we get when we suppose homoskedasticity, something that 
leads us to support the idea that the utilization of GARCH models for describing and 
forecasting the conditional variance of the process is correctly chosen. 
   Finally, we present the results of the regressions 1-3. We have already mentioned 
that the regression jtjtjt mbhae  2  is used as a way to test if the squared shock 
is an unbiased estimator of ht+j. The results for this regression are the same for the 
dynamic and the static forecast, and give values for a and b that are close to 0 and 1 
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respectively, but with a low value for R2 (in appendix II we present the results for this 
regression for samples of 250, 500, 1000 and 1500 observations). For the other two 
regressions the difference between the two ways of performing forecasting, static and 
dynamic, is obvious; while in the dynamic forecast the results from the regressions 
two and three are disappointing, since there is a large divergence from the desired 
values 0 and 1 for a and b respectively and apparently low value for R2, the static 
forecasting seems to restore the problem. We could say that the utilization of true 
values for the lagged dependent variables manage the amelioration of the results and 
proves the actual superiority of the GARCH model in forecasting the future 
conditional variance, since we don’t only get good values for a and b, but also a large 
value for R2 = 0.9547.       
 

b) Model 2: Forecasting With GARCH (1,1) When The Condition For Finite Fourth 
Unconditional Moment Is Violated  

 
   

DYNAMIC FORECASTING 
 
i) MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  80.668638  111.86317  25.553032  60.340054  64.028742 

std.dev.  1741.0094  2656.0445  176.97057  746.54478  608.66737 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  0.8016463  10.552774  25.070144  13.208372  41.542258 

std.dev.  15.202150  174.57808  564.21450  134.98120  563.15405 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  88.612593  104.60611  43.293193  47.397305  35.243020 

std.dev.  2057.8727  2223.0670  536.07211  656.88319  366.53120 
  

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10    
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  27.560681  46.381565  42.679526  24.397172  37.970445 

std.dev.  373.88486  907.72325  715.30982  344.63263  533.45504 
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Regression #1: 2
jte  =a + bĥt+j + mt+j , j=1,2,… 

Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 
 

size=500,rep=1000 regression #2 regression #3 regression #1 
a  1.9965772  0.6544921  3.7856035 
b  0.5484549  0.7214938 -0.3008501 
R2  0.0130141  0.1940555  0.0075855 

 
STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  80.668638  123.91531  43.590545  48.404911  33.263833 

std.dev.  1741.0094  2512.7331  529.36415  647.24492  316.50426 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
  

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  0.8016463  2.5929391  0.8426444  0.5217397  0.4086858 

std.dev.  15.202150  75.687200  20.689248  6.9038796  5.1702376 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  88.612593  104.60611  43.293193  47.397305  35.243020 

std.dev.  2057.8727  2223.0670  536.07211  656.88319  366.53120 

 
Homoskedastic Model: MSPE(j)=E(ht+j -

^
2 )2  for j=1,2,3,5,10    

 
obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 

mean  27.560681  46.381565  42.679526  24.397172  37.970445 
std.dev.  373.88486  907.72325  715.30982  344.63263  533.45504 

 
Regression #1: 2

jte  =a + bĥt+j + mt+j , j=1,2,… 
Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 
size=500,rep=1000 regression #2 regression #3 regression #1 

a -0.0432144  0.6544921  0.6216329 
b  1.0468756  0.7214938  0.7545969 
R2  0.9905956  0.1940555  0.1924521 
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Model 2 is considered for its potential theoretical interest as it is a GARCH (1, 1) 
model in which the assumption for the existence of fourth-moment is violated.  Even 
though the existence of the fourth moment is not required for the results obtain by 
Lumsdaine (1999) in order the estimators to be consistent and asymptotically normal, 
we decide to include this special case in order to examine what consequences, if any, 
would have this absence of finite fourth moment in the forecasting performance of 
GARCH (1, 1) model. The results from the estimation part (see appendix) verify the 
claims of Lumsdaine. 
   As to the dynamic way of forecasting, the forecasts which we get from GARCH (1, 
1), when we use as a measure of the forecasting accuracy the 

22
^

)()( jtjt ehEjMSPE   , are again better than those of the homoskedastic one, and 
we observe that the difference between these two alternative models has become 
more apparent now. The utilization of the squared shock as an unbiased estimator of 
the true volatility is not again the best possible solution, especially in this case where 
the fourth moment does not exist, but seems to be the only one when the true 
volatility is unobserved. But what is of great importance is the fact that even though 
the absence of finite-fourth moment does not affect the performance of the quasi-
maximum estimators, it seems to influence greatly the forecasts that we get by using a 
GARCH representation for the conditional variance as well as those of a 

homoskedastic model. If we compare the MSPE, 22
^

)()( jtjt ehEjMSPE   , of model 
1 and that of model 2 in the dynamic forecasting we conclude to the fact that the 
absence of fourth unconditional moment has an effect on the forecasting performance 
of the GARCH process.  
  In the case of the static forecast, the results are ameliorated, for the reasons we 
mention in section VII(a), since we obtain smaller values for the 

2
^

)()( jtjt hhEjMSPE     and for the 22
^

)()( jtjt ehEjMSPE    , but again inferior 
to those from the static forecasting when the values of a and b ensure the existence of 
fourth moment. The static forecasting makes the superiority of the GARCH model in 
comparison to the homoskedastic one to seem more apparent, and confirms for 
another time the fact the utilization of an autoregressive conditional 
heteroskedasticity process for the presentation of our data instead of an 
homoskedastic one has a logical basis. 
    We also present the results of the regressions 1-3. As to the previous model 1, the 
regression jtjtjt mbhae  2  is used as a way to test if the squared shock is an 
unbiased estimator of ht+j. The results for this regression are the same for the dynamic 
and the static forecast, and give values for a and b that are close to 0 and 1 
respectively but worse than that of model 1, and again with low value for R2. For the 
other two regressions the difference between the two ways of performing forecasting, 
static and dynamic, is obvious; while in the dynamic forecast the results from the 
regressions two and three are disappointing, since there is a large divergence from the 
desired values 0 and 1 for a and b respectively and apparently low value for R2, the 
static forecasting seems to restore the problem, since we acquire good values for a 
and b and also a large value for R2.       



 33

 
c) Model 3: Estimation And Forecasting With IGARCH (1, 1)   

 
DYNAMIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  391422.92  1144521.9  102382.56  537467.46  621682.52 

std.dev.  9380616.1  23299264.  1413662.8  11999283.  13979675. 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  9436.6144  34616.334  80389.270  104901.07  367885.78 

std.dev.  168339.32  760657.67  1642085.2  2289493.0  7406276.8 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  309326.88  1034787.9  224269.15  246701.24  376322.23 

std.dev.  7226838.7  23819070.  3616018.4  4129965.0  5910741.2 
 

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10     
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  320089.48  258546.11  261948.97  237957.78  132427.63 

std.dev.  5935422.1  4428775.4  3899712.9  3633540.4  1910334.1 

 
Regression #1: 2

jte  =a + bĥt+j + mt+j , j=1,2,… 
Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 

 
 

size=500,rep=1000 regression #2 regression #3 regression #1 
a  9.3131519  19.028689  13.230903 
b  4.6523193  0.7530529  4.4693883 
R2  0.1050917  0.1701713  0.0315440 
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STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  391422.92  1066060.5  206819.72  267777.03  392185.66 

std.dev.  9380616.1  23057798.  3166010.8  4839952.1  5965857.7 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10  

 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  9436.6144  7413.5839  3601.4398  7133.7798  3107.0126 

std.dev.  168339.32  128722.43  53880.252  144930.69  39127.625 
 

iii) MSPE=E( 2
jty  - ht+j)2 for j=1,2,3,5,10 

 
obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 

mean  309326.88  1034787.9  224269.15  246701.24  376322.23 
std.dev.  7226838.7  23819070.  3616018.4  4129965.0  5910741.2 

  

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10    
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  320089.48  258546.11  261948.97  237957.78  132427.63 

std.dev.  5935422.1  4428775.4  3899712.9  3633540.4  1910334.1 
 
Regression #1: 2

jte  =a + bĥt+j + mt+j , j=1,2,… 
Regression #2: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression #3: 2

jte  =a + bht+j + nt+j , j=1,2,… 

 
 

size=500,rep=1000 regression #2 regression #3 regression #4 
a -1.3454663  19.028689  18.064829 
b  1.1145113  0.7530529  0.8383891 
R2  0.9895509  0.1701713  0.1686106 
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Model 3 is considered for its theoretical interest, since it belongs to the family of the 
Integrated GARCH model, where α + β = 1. This model founded on the boundary 
between regions 3 and 4, where the et is strongly stationary but not covariance stationary, 
since )( 2

teE . It is well known that the IGARCH (1, 1) model has often been 
employed in empirical applications, and for this reason it is of great interest to see how 
good are the estimators that we acquire as well as the forecasting performance of the 
process. The results obtained from the estimation part are consistent with the argues of 
Lumsdaine (1999), since the quasi-maximum estimators are found to be consistent and 
asymptotically normal. As to the forecasting part, we observe that the absence of finite 
second unconditional moment influence the forecasting accuracy of the two utilized 
models. It is obvious that the presence of an infinite second moment prevents us from 
performing accurate forecasts of the conditional variance regardless of the model or the 
way we use to make the forecasts. 
 
 
 
 
     
VIIΙ. Conclusion 
 
 The empirical evidence of this study indicates that it is difficult to lead up to a 
unambiguous conclusion about the forecasting performance of a GARCH (1, 1) model. It 
seems to confirm the suggestions of many studies that present the GARCH models as of 
limited practical value. If we accept this idea, what is the reason of utilizing these 
volatility models in order to describe and forecast the progress of the conditional 
variance? It would be much more convenient for us, by using a simple homoskedastic 
model, to acquire more accurate forecasts for this measure of risk which considered so 
crucially important in modern financial theory. 
   The Monte Carlo experiment provides answers to the above question; the superiority of 
the GARCH model in forecasting the volatility of financial markets is unquestionable. Its 
seemingly poor performance is attributed to the way that we choose to compute the 
statistical criteria utilized for evaluating the forecasts. Since the true future volatility is 
unobserved, we are forced to replace it by an unbiased estimator. If we had available the 
future conditional variance, the evaluation of the GARCH forecasts would have been 
fairly straightforward. The suggestion of this study is that we must support, utilize and 
rely on the forecasts provided by a GARCH (1, 1) model even though the statistical 
criteria indicate the opposite.     
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I. Estimation and forecasting with GARCH(1,1)  
 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
1. Region 4: αo =0.25, ar=0.20, gar=0.55, with α + β <1 and 3(α)2+ (β)2+2αβ <1 
 

size=500,rep=1000 mean std.dev kurtosis skewness 
ct  0.2675275  0.1223969  4.498484  1.013952 
ar  0.1972171  0.0669083  2.967004  0.207329 

gar  0.5341571  0.1574780  3.187160 -0.415760 
bias(ct) -0.0175275  0.1223969  4.498484 -1.013952 
bias(ar)  0.0027829  0.0669083  2.967004 -0.207329 

bias(gar)  0.0158429  0.1574780  3.187160  0.415760 
ct-std  0.1110228  0.0534020  11.11731  2.067713 
ar-std  0.0614420  0.0126273  3.285509  0.012769 

gar-std  0.1430812  0.0583783  12.64773  2.285053 
ct-tstat  2.4786209  0.6605983  3.802455  0.497911 
ar-tstat  3.1682354  0.7536319  3.178489 -0.034082 

gar-tstat  4.5186224  2.8684324  13.95792  2.397806 
 
 
 
2. Estimation and forecasting with GARCH(1,1)  

 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
Region 4: αo =0.25, ar=0.40, gar=0.50, with α + β <1 and 3(α)2+ (β)2+2αβ >1 

 
size=500,rep=1000 mean std.dev kurtosis skewness 

ct  0.2607709  0.0790535  5.456581  0.919623 
ar  0.3917348  0.0824681  3.028552  0.045670 

gar  0.4968328  0.0824677  3.777029 -0.047017 
bias(ct) -0.0107709  0.0790535  5.456581 -0.919623 
bias(ar)  0.0082652  0.0824681  3.028552 -0.045670 

bias(gar)  0.0031672  0.0824677  3.777029  0.047017 
ct-std  0.0755805  0.0201940  3.923819  0.698307 
ar-std  0.0771361  0.0120335  3.246350  0.252237 

gar-std  0.0773831  0.0169607  4.133701  0.851328 
ct-tstat  3.4571809  0.5355649  3.052485  0.111826 
ar-tstat  5.0899790  0.8206897  3.053394 -0.058311 

gar-tstat  6.7765080  2.1304871  17.18134  1.859803 
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3. Estimation and Forecasting with IGARCH(1,1)  
 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
Boundary between region 4-3: αo =0.25, ar=0.15, gar=0.85, with ar+gar=1 
 

size=500,rep=1000 mean std.dev kurtosis skewness 
ct  0.5072511  0.5290977  94.41957  7.486729 
ar  0.1445523  0.0385753  4.359916  0.315433 

gar  0.8416084  0.0391908  7.402882 -1.018063 
bias(ct) -0.2572511  0.5290977  94.41957 -7.486729 
bias(ar)  0.0054477  0.0385753  4.359916 -0.315433 

bias(gar)  0.0083916  0.0391908  7.402882  1.018063 
ct-std  0.2963402  0.3142643  155.4544  10.22950 
ar-std  0.0366587  0.0073464  3.914720  0.581948 

gar-std  0.0387541  0.0131591  26.39838  3.230288 
ct-tstat  1.6642779  0.4135621  3.256002  0.042451 
ar-tstat  3.9434362  0.7438163  3.463494 -0.091024 

gar-tstat  23.691012  6.7990543  3.497347  0.326659 
 
 
4. Estimation and forecasting with IGARCH(1,1)  

 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
Boundary between region 4-3: αo =0.25, ar=0.05, gar=0.95, with ar+gar=1 
 

size=500,rep=1000 mean std.dev kurtosis skewness 
ct  0.7411126  2.0809651  509.7877  20.34789 
ar  0.0468959  0.0217278  13.69141  1.658200 

gar  0.9412446  0.0580046  150.7336 -10.74200 
bias(ct) -0.4911126  2.0809651  509.7877 -20.34789 
bias(ar)  0.0031041  0.0217278  13.69141 -1.658200 

bias(gar)  0.0087554  0.0580046  150.7336  10.74200 
ct-std  0.4471428  0.7910514  186.6749  11.52652 
ar-std  0.0191397  0.0063578  21.92162  2.891867 

gar-std  0.0240478  0.0236603  170.0274  10.92713 
ct-tstat  1.6457272  0.7104495  5.018102  0.833293 
ar-tstat  2.3921006  0.6799367  3.582909 -0.307886 

gar-tstat  49.183341  18.858864  4.436135  0.554258 
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DYNAMIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  40031.543  76026.108  66226.573  183166.96  101169.88 

std.dev.  186615.42  894936.92  778712.01  2386574.4  1391835.7 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  2267.4030  2439.5551  3399.3123  5887.1796  12603.057 

std.dev.  52211.724  53452.228  78891.893  141856.91  311786.14 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  41326.310  63654.609  52415.475  159316.71  65961.156 

std.dev.  202047.44  547752.57  395644.21  2108058.4  511657.65 

 

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10     
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  23242.794  23492.085  22152.731  19989.855  19657.401 

std.dev.  362425.93  375613.63  334855.19  265664.13  182929.13 
 
Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 
 
Regression 3: 2

jty  =a + bĥt+j + mt+j , j=1,2,… 
 
 

size=500,rep=1000 regression #1 regression #2 regression #3 
a -165.86617  50.069687 -411.73364 
b  9.0475207  0.7018961  14.847259 
R2  0.2481897  0.0623202  0.0301118 
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STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  40031.543  76639.940  62428.055  168593.30  69293.852 

std.dev.  186615.42  897635.17  662976.66  2198015.7  593438.61 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10  

 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  2267.4030  2278.1251  1902.7438  1452.8953  1067.5152 

std.dev.  52211.724  53716.087  43551.397  28249.971  12950.933 
 

iii) MSPE=E( 2
jty  - ht+j)2 for j=1,2,3,5,10 

 
obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 

mean  41326.310  63654.609  52415.475  159316.71  65961.156 
std.dev.  202047.44  547752.57  395644.21  2108058.4  511657.65 

 

Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10     
 

obs=500,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  23242.794  23492.085  22152.731  19989.855  19657.401 

std.dev.  362425.93  375613.63  334855.19  265664.13  182929.13 
 
 

obs=500,rep=1000 Q(0,025) Q(0,975) 
ctt-stat  0.4022022  3.1680457 
art-stat  0.8160819  3.6357066 

gart-stat  15.181642  89.472387 
 
Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 

Regression 3: 2
jty  =a + bĥt+j + mt+j , j=1,2,… 

 
 

size=500,rep=1000 regression #1 regression #2 regression #3 
a -10.665480  50.069687  42.746027 
b  1.2992949  0.7018961  0.9142442 
R2  0.9571414  0.0623202  0.0603788 
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II.  Running the regression 2

jty  =a + bht+j + nt+j in order to examine if the squared 
shock 2

te  is an unbiased estimator of true conditional variance ht+j 

 a) GARCH (1,1) with zt ~ N(0,1) 
Regression 2: 
               2

jty  =a + bht+j + nt+j , j=1,2,… 
 

size=500,rep=1000 regression #2 
a  0.1339942 
b  0.8572372 
R2  0.0679507 

 
 

size=1000,rep=1000 regression #2 
a  0.0853890 
b  0.9092759 
R2  0.0731900 

 
 

size=1500,rep=1000 regression #2 
a  0.0656341 
b  0.9294964 
R2  0.0757475 

 
b) IGARCH(1,1) with zt~N(0,1) 
 

size=250,rep=1000 regression #2 
a  8.0575266 
b  0.6291477 
R2  0.1840895 

 
 

size=500,rep=1000 regression #2 
a  5.1440961 
b  0.6886564 
R2  0.2320105 

 
 

size=1000,rep=1000 regression #2 
a  5.3656582 
b  0.7148060 
R2  0.2575208 
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size=1500,rep=1000 regression #2 

a  5.7160072 
b  0.7256345 
R2  0.2687411 

 

c) GARCH(1,1) with zt~ t-student(5) 

 
size=250,rep=1000 regression #2 

a  0.8890817 
b  0.9677933 
R2  0.0873648 

 
size=500,rep=1000 regression #2 

a  0.8333022 
b  1.0830922 
R2  0.1045488 

 
size=1000,rep=1000 regression #2 

a  0.7729615 
b  1.1175269 
R2  0.1084866 

 
size=1500,rep=1000 regression #2 

a  0.7431182 
b  1.1621180 
R2  0.1173120 

 
 
 
 
 
 
 
 
 
 

                                                 
 The procedure was programmed in Eviews 4.0 software 
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III. Estimation and forecasting with GARCH(1,1)  
 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α* 2

1t +β*ht-1. We denote αo = ct, α = ar and β = gar   
 

1. Region 4:ct=0.25, ar=0.20, gar=0.55, with ar+gar<1 
 

Obs=250,rep=1000 mean std.dev kurtosis skewness 

Ct  0.2571869  0.1346345  3.860012  0.883402 
Ar  0.1971130  0.0881009  2.950798  0.383942 

Gar  0.5421934  0.1833839  2.762591 -0.330645 
bias(ct) -0.0071869  0.1346345  3.860012 -0.883402 
bias(ar)  0.0028870  0.0881009  2.950798 -0.383942 

bias(gar)  0.0078066  0.1833839  2.762591  0.330645 
Ctstd  0.1831536  0.2222933  361.9820  16.45374 
Atstd  0.0950457  0.0243695  2.868855 -0.036091 
garstd  0.2431243  0.3156860  608.1393  22.33379 
cttstat  1.5732194  0.5568174  3.421150  0.556468 
artstat  2.0248224  0.6758899  3.184052  0.167051 

gartstat  3.1540871  2.6534869  54.74312  4.617296 
 

i)MSE(j)=E(
^

jth  - y 2
jt )2  for j=1,2,3,5,10  

 

Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 

Mean  2.0465730  2.5901899  2.3979843  2.5588621  2.8044210 
std.dev.  9.9343670  10.983790  10.281098  13.326115  14.729544 

ii)MSE(j)=E(
^

jth  - ht+j)2  for j=1,2,3,5,10  

 
Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 

Mean  0.0871942  0.1734569  0.2129174  0.2606958  0.2417653 
std.dev.  1.1506904  1.4520915  0.9022505  1.1363094  1.3666689 

iii)MSE(j)=E(
^

jth  - 2 )2  for j=1,2,3,5,10    where σ2=var(yt)  
 

Obs=250,rep=1000 sSE(1) SE(2) SE(3) SE(5) SE(10) 

Mean  0.4352040  0.2817778  0.1926262  0.1007509  0.0312036 
std.dev.  4.1997542  2.8626751  1.9773807  0.9868167  0.2560636 

 
Obs=250,rep=1000 Q(0,025) Q(0,975) 

ctt-stat  0.6124124  2.8030052 
art-stat  0.7041731  3.4191523 

gart-stat  0.4442922  9.9420232 
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2. Region 3: ct=0.20, ar=0.9, gar=0.3 
 

 

i)MSE(j)=E(
^

jth  - y 2
jt )2  for j=1,2,3,5,10  

 

 

ii)MSE(j)=E(
^

jth  - ht+j)2  for j=1,2,3,5,10  

 
Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 

mean  64.979189  1424.3399  2769.3529  21300.342  1979194.1 
std.dev.  240.38371  5211.3687  9006.0333  67224.917  6198692.2 

 

iii)MSE(j)=E(
^

jth  - 2 )2  for j=1,2,3,5,10    where σ2=var(yt)  
 
Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 

mean  11568.682  10193.151  9091.4947  15984.556  1794852.9 
std.dev.  31618.170  30302.835  29831.016  35055.908  5595722.1 

 
 

obs=250,rep=1000 Q(0,025) Q(0,975) 
Ctt-stat  1.1868372  9.530E+99 

Art-stat  3.0868374  6.1282282 
gart-stat  1.2213135  6.0359799 

 
 
 
 

Obs=250,rep=1000 mean std.dev kurtosis skewness 
ct  0.2468819  0.1274965  5.385927  1.661366 
ar  0.8242672  0.2685130  2.552783  0.555143 

gar  0.3165695  0.1216023  2.309952 -0.209870 
bias(ct)  0.0031181  0.1274965  5.385927 -1.661366 
bias(ar)  0.0757328  0.2685130  2.552783 -0.555143 

bias(gar) -0.0165695  0.1216023  2.309952  0.209870 
ctstd  0.0995610  0.0442733  2.799231  0.102214 
atstd  0.1823869  0.0399483  3.173673  0.239382 

garstd  0.0880977  0.0297703  4.537377  0.857531 
cttstat  4.560E+98  2.139E+99  4.143861  0.690305 

artstat  4.4756256  0.8430296  1.744590  0.093090 
gartstat  3.8000364  1.4413690  1.915304 -0.281739 

Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  938.28805  984.04592  4600.1326  23048.868  1984500.8 

std.dev.  3212.5596  2873.7170  15567.235  76373.098  6214474.7 
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3. Region 2: ct=0.20, ar=1.6, gar=0.2 
 

Obs=250,rep=1000 mean std.dev kurtosis skewness 
ct  3.5100588  8.0414661  4.198858  1.788218 
ar  1.5948339  0.5891584  2.700197  0.568705 

gar  0.2209408  0.1227167  2.065807  0.508506 
bias(ct) -3.2600588  8.0414661  4.198858 -1.788218 
bias(ar)  0.0051661  0.5891584  2.700197 -0.568705 

bias(gar) -0.0209408  0.1227167  2.065807 -0.508506 
ctstd  0.1694709  0.1316415  3.070260  0.756251 
atstd  0.2867853  0.1200670  3.896286  1.609410 

garstd  0.0548274  0.0237659  2.415298  0.445639 
cttstat  3.061E+99  7.497E+99  1.688411 -0.171308 

artstat  5.6208482  0.9367395  2.068602 -0.745793 
gartstat  3.8519838  0.6251948  1.504515  0.436313 

 

i)MSE(j)=E(
^

jth  - y 2
jt )2  for j=1,2,3,5,10  

 
Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 

mean  1.532E+11  1.257E+12  4.877E+10  3.724E+13  9.511E+15 

std.dev.  3.418E+11  2.785E+12  1.041E+11  8.317E+13  2.066E+16 

 

ii)MSE(j)=E(
^

jth  - ht+j)2  for j=1,2,3,5,10  
 

Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  805643700  3.350E+11  3.374E+12  5.771E+12  9.491E+15 

std.dev.  1.730E+09  7.476E+11  7.478E+12  1.196E+13  2.060E+16 

 

iii)MSE(j)=E(
^

jth  - 2 )2  for j=1,2,3,5,10     
  

Obs=250,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  4.231E+11  1.314E+12  4.040E+12  3.751E+13  9.575E+15 

std.dev.  9.448E+11  2.923E+12  8.947E+12  8.252E+13  2.078E+16 
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IV.  Estimation and forecasting with GARCH(1,1)  
 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
Region 4: αo =0.25, ar=0.20, gar=0.55, with ar+gar<1 
 

size=100,rep=1000 mean std.dev kurtosis skewness 
ct  0.2907009  0.1801373  7.084218  1.558221 
ar  0.3930813  0.1786923  3.266706  0.518824 

gar  0.4716926  0.1823276  2.674364 -0.171429 
bias(ct) -0.0407009  0.1801373  7.084218 -1.558221 
bias(ar)  0.0069187  0.1786923  3.266706 -0.518824 

bias(gar)  0.0283074  0.1823276  2.674364  0.171429 
ct-std  0.1778979  0.1048984  7.203551  1.739290 
ar-std  0.1651514  0.0532704  4.537564  0.791025 

gar-std  0.1814675  0.0913725  10.03950  2.209989 
ct-tstat  1.6628670  0.5184004  3.836052  0.622864 
ar-tstat  2.3424549  0.7432170  3.062458  0.254599 

gar-tstat  3.2245406  2.0744254  6.092882  1.371826 
 
DYNAMIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  79.743701  197.53269  220.22468  538.62784  3738.1506 

std.dev.  1094.7634  4205.5551  5517.0447  14080.574  113316.57 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  31.879944  69.673552  170.98586  312.52266  3916.1930 

std.dev.  906.00898  1728.4832  4550.3962  8549.7739  112179.81 

 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  60.560830  69.079768  31.842275  66.140612  219.87954 

std.dev.  1047.5148  920.16474  222.15404  1064.1300  6240.1131 
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Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10   
 

Obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  30.401096  36.968015  26.228826  44.846236  305.39274 

std.dev.  449.73015  532.82261  334.97981  707.80932  7982.4615 
   

Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 
 
Regression 3: 2

jty  =a + bĥt+j + mt+j , j=1,2,… 
 

size=100,rep=1000 regression #1 regression #2 regression #3 
a -18.468704  2.9323788 -6.4077171 
b  10.387543 -0.1602969  8.5373952 

R2  0.3143456  0.1018420  0.1513578 
 
 
 
STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  79.743701  128.21615  37.478151  153.19704  376.98617 

std.dev.  1094.7634  1990.5099  233.58284  3575.4345  10680.751 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10  

 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  31.879944  20.896053  4.4559801  39.024444  32.014842 

std.dev.  906.00898  403.54340  51.327063  1100.0512  679.29214 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  60.560830  69.079768  31.842275  66.140612  219.87954 

std.dev.  1047.5148  920.16474  222.15404  1064.1300  6240.1131 
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Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10     
 

obs=100,rep=1000 SPE(1) SPE(2) SPE(3) SPE(5) SPE(10) 
mean  30.401096  36.968015  26.228826  44.846236  305.39274 

std.dev.  449.73015  532.82261  334.97981  707.80932  7982.4615 

 
obs=100,rep=1000 Q(0,025) Q(0,975) 

ctt-stat  0.7539936  2.8151181 
art-stat  1.0138856  3.8688775 

gart-stat  0.3476028  8.3467788 

 
Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 

Regression 3: 2
jty  =a + bĥt+j + mt+j , j=1,2,… 

 
size=100,rep=1000 regression #1 regression #2 regression #3 

a -0.2470597  2.9323788  3.1922213 
b  1.2956111 -0.1602969 -0.4034980 
R2  0.9372535  0.1018420  0.1047704 
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V. Estimation and forecasting with GARCH(1,1)  
 We assume yt=εt, where εt/It-1~D(0,ht) 
 E(εt/It-1)=0 and var(εt/It-1)=ht  
  with ht=ω+α 2

1t +βht-1. We denote αo = ct, α = ar and β = gar   
Region 4: αo =0.25, ar=0.20, gar=0.55, with ar+gar<1 
 

size=200,rep=1000 mean std.dev kurtosis skewness 
ct  0.2833091  0.1402242  5.590914  1.254727 
ar  0.3892930  0.1269543  2.999718  0.221250 

gar  0.4843046  0.1411477  3.686637 -0.280975 
bias(ct) -0.0333091  0.1402242  5.590914 -1.254727 
bias(ar)  0.0107070  0.1269543  2.999718 -0.221250 

bias(gar)  0.0156954  0.1411477  3.686637  0.280975 
ct-std  0.1221314  0.0533597  4.847657  1.129881 
ar-std  0.1158418  0.0282987  3.759125  0.479177 

gar-std  0.1216340  0.0434987  6.962421  1.614211 
ct-tstat  2.3234060  0.5638368  4.394722  0.605743 
ar-tstat  3.3523982  0.7734613  3.319101  0.116745 

gar-tstat  4.5503899  2.4397224  15.49686  2.202699 
 
DYNAMIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  32.695700  31.881659  32.468159  65.677475  74.465816 

std.dev.  274.33955  287.19066  281.50295  733.64902  1189.0803 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10 
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  1.9221152  8.8521407  13.648998  19.884119  35.052824 

std.dev.  28.588099  108.73787  153.21482  225.58891  298.72846 
 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  24.637105  21.333108  26.051453  36.117133  46.913594 

std.dev.  148.86740  189.99543  234.97502  370.09850  568.03660 
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Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10   
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  16.848112  13.370022  14.738813  15.277296  25.710358 

std.dev.  120.34677  65.681473  88.651022  136.60129  208.41977 

 
Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 
 
Regression 3: 2

jty  =a + bĥt+j + mt+j , j=1,2,… 
 

size=200,rep=1000 regression #1 regression #2 regression #3 
a  3.0037112  2.5558005  6.8318703 
b  1.2737369 -0.1321762 -0.2284874 
R2  0.3127950  0.0982598  0.1594447 

 
STATIC FORECASTING 
 
i)MSPE(j)=E(ĥt+j -y 2

jt )2  for j=1,2,3,5,10 
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  32.695700  24.926600  26.829581  34.250988  46.972709 

std.dev.  274.33955  217.64286  226.18220  331.12045  653.08234 
 
ii) MSPE(j)=E(ĥt+j  -ht+j)2  for j=1,2,3,5,10  
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  1.9221152  1.0475305  0.6032094  0.7152167  1.8479474 

Std.dev.  28.588099  11.695660  3.6903530  7.8569616  19.395147 

 
iii) MSPE=E( 2

jty  - ht+j)2 for j=1,2,3,5,10 
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  24.637105  21.333108  26.051453  36.117133  46.913594 

std.dev.  148.86740  189.99543  234.97502  370.09850  568.03660 
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Homoskedastic Model: MSPE(j)=E(ht+j -
^

2 )2  for j=1,2,3,5,10     
 

obs=200,rep=1000 SE(1) SE(2) SE(3) SE(5) SE(10) 
mean  16.848112  13.370022  14.738813  15.277296  25.710358 

std.dev.  120.34677  65.681473  88.651022  136.60129  208.41977 

 
 

Regression 1: ht+j= a+ bĥt+j + et+j , j=1,2,… 
Regression 2: 2

jty  =a + bht+j + nt+j , j=1,2,… 

Regression 3: 2
jty  =a + bĥt+j + mt+j , j=1,2,… 

 
size=200,rep=1000 regression #1 regression #2 regression #3 

a -0.1157436  2.5558005  2.6019644 
b  1.1355933 -0.1321762 -0.1956672 
R2  0.9624140  0.0982598  0.1010572 

 
obs=200,rep=1000 Q(0,025) Q(0,975) 

ctt-stat  1.3444653  3.5528893 
art-stat  1.8898639  4.9710594 

gart-stat  1.1567196  10.023322 
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VI. Results Of The Empirical Application As To The Estimation Part 
 

A. Group of stock indices for the period 1992-1996 
 

 
Period 1992-1996  

Parameter USA Australia UK France Germany 
φ 0 0,0005353 0,0002724 0,0004215 0,0003459 0,0005624 
  (3,18) (1,38) (2,20) (1,23) (2,42) 
φ 1 0,0495651 0,1368127 0,0628113 0,0208194 0,0236227 
  (1,66) (4,68) (1,97) (0,73) (0,78) 
α o 0,001867 0,0002417 0,00117 0,00009611 0,01083 

(thousands) (1,55) (2,02) (2,27) (1,43) (1,23) 
α 1 0,0454314 0,0607002 0,0567073 0,0277248 0,0455234 
  (2,58) (3,02) (2,43) (2,66) (3,07) 
β 0,9088276 0,8693317 0,9183651 0,9637298 0,9270001 
  (21,51) (18,42) (2,43) (71,24) (27,85) 

Sum (α 1 +β) 0,954259 0,9300319 0,9750724 0,9914546 0,9725235 
            

 
 
 

  
  

Period 1992-1996 
Parameter Japan Mexico Switzerland Singapore Belgium 

φ 0 0,0001665 0,0010553 0,0007783 0,0003258 0,0003708 
  (0,51) (2,64) (3,79) (1,50) (2,11) 
φ 1 -0,0270145 0,2127678 0,0741209 0,1692701 0,1558048 
  (-0,83) (6,05) (2,28) (4,81) (4,70) 
α o 0,00113 0,001261 0,0006736 0,0007456 0,0002022 

(thousands) (1,79) (2,44) (2,80) (4,24) (0,99) 
α 1 0,0719849 0,1160533 0,1175407 0,2206441 0,0369301 
  (3,26) (4,37) (3,86) (3,24) (2,40) 
β 0,9005538 0,8597108 0,7430872 0,5848359 0,9056419 
  (32,32) (28,21) (11,06) (9,44) (13,17) 

Sum (α 1 +β) 0,9725387 0,9757641 0,8606279 0,80548 0,942572 
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B. Group of the foreign exchange rates for the period 1992-1996 
 

  
  

Period 1992-1996 
Parameter Australia Canada Japan Singapore Switzerland 

φ 0 -0,00009651 0,00006991 -0,00006691 -0,0001846 -0,000021 
  (-0,72) (0,97) (-0,39) (-3,14) (-0,11) 
φ 1 0,0649609 0,0534766 0,028723 -0,0863582 0,0483358 
  (2,01) (1,72) (0,92) (-2,25) (1,47) 
α o 0,001427 0,00007624 0,001032 0,001054 0,001459 

(thousands) (2,63) (0,90) (1,75) (4,42) (1,90) 
α 1 0,0564306 0,0443004 0,044946 0,3182965 0,0533131 
  (3,30) (3,18) (2,66) (4,32) (3,03) 
β 0,8816753 0,9466472 0,9300238 0,5137332 0,9197578 
  (26,54) (59,20) (33,94) (6,05) (38,58) 

Sum (α 1 +β) 0,9381059 0,9909476 0,9749698 0,8320297 0,9730709 
           

 
 
 

  
  

Period 1992-1996  
Parameter UK France Germany Netherlands Spain 

φ 0 -0,0001258 -0,00002463 0,0000321 0,00002909 0,00007397 
  (-0,92) (-0,16) (0,20) (0,18) (0,47) 
φ 1 -0,0110547 0,0430463 0,0343821 0,0266658 -0,0201411 
  (-0,36) (1,36) (1,07) (0,83) (-0,64) 
α o 0,0003505 0,0005845 0,000751 0,0007178 0,001054 

(thousands) (2,61) (2,26) (2,57) (2,27) (3,27) 
α 1 0,0530538 0,0505505 0,0569718 0,0576719 0,0864645 
  (3,74) (4,00) (3,84) (3,92) (3,21) 
β 0,934803 0,9322209 0,9240472 0,9239626 0,8902507 
  (71,37) (83,22) (57,86) (57,87) (34,47) 

Sum (α 1 +β) 0,9878568 0,9827714 0,981019 0,9816345 0,9767152 
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C. Group of stock indices for the period 1997-2001 
 

 
 

Period 1997-2001 
Parameter USA Australia UK France Germany 

φ 0 0,0007089 0,0006069 0,0004292 0,0008342 0,001062 
  (2,25) (2,41) (1,39) (2,19) (2,86) 
φ 1 0,023838 0,0024938 0,0669532 0,0523914 0,0374018 
  (0,79) (0,06) (2,22) (1,75) (1,33) 
α o 0,01146 0,007999 0,003953 0,008318 0,008118 

(thousands) (2,39) (3,39) (2,69) (2,51) (3,27) 
α 1 0,1068279 0,1073489 0,0765809 0,0715773 0,1054873 
  (2,81) (1,74) (4,47) (3,14) (4,38) 
β 0,8252824 0,7988642 0,8962559 0,8908385 0,8647521 
  (15,16_ (11,17) (42,58) (28,09) (34,38) 

Sum (α 1 +β) 0,9321103 0,9062131 0,9728368 0,9624158 0,9702394 
           

 
 

 
 

Period 1997-2001 
Parameter Japan Mexico Switzerland Singapore Belgium 

φ 0 -0,0002212 0,001077 0,0007353 0,00009399 0,0005471 
  (-0,52) (2,47) (2,51) (0,21) (2,08) 
φ 1 -0,0345512 0,1563182 0,0611619 0,1019504 0,1763467 
  (-1,15) (4,66) (1,94) (2,17) (4,84) 
α o 0,01173 0,02286 0,006833 0,02015 0,003456 

(thousands) (2,38) (2,74) (3,52) (1,22) (3,03) 
α 1 0,0805748 0,1725854 0,1341482 0,1902965 0,1687616 
  (4,10) (2,93) (5,51) (2,83) (4,58) 
β 0,8735663 0,7789435 0,8245226 0,7692546 0,8208543 
  (28,77) (13,09) (32,59) (8,30) (26,09) 

Sum (α 1 +β) 0,9541411 0,9515289 0,9586708 0,9595511 0,9896159 
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D. Group of foreign exchange rates for the period 1997-2001 
 

  
  

Period 1997-2001 
Parameter Australia Canada Japan Singapore Switzerland 

φ 0 0,0003721 0,0001561 0,0002403 0,0001561 0,0001878 
  (1,94) (1,68) (1,12) (1,98) (1,00) 
φ 1 0,0286006 0,0594204 0,0145078 0,0052902 0,0141088 
  (0,94) (2,08) (0,44) (0,17) (0,48) 
α o 0,001867 0,0002417 0,00117 0,00009611 0,01083 

(thousands) (1,53) (1,52) (1,93) (1,00) (0,50) 
α 1 0,0570788 0,0475935 0,048168 0,0664324 0,0171447 
  (2,52) (3,23) (2,50) (2,89) (0,61) 
β 0,9081525 0,9316964 0,933967 0,930774 0,7375541 
  (23,49) (56,64) (40,16) (45,60) (1,46) 

Sum (α 1 +β) 0,9652313 0,9792899 0,982135 0,9972064 0,7546988 
      

 
 

  
  

Period 1997-2001  
Parameter UK France Germany Netherlands Spain 

φ 0 0,0001061 0,0002953 0,0002939 0,00029 0,0003144 
  (0,77) (1,64) (1,63) (1,60) (1,83) 
φ 1 0,0405397 0,0242735 0,0254094 0,0249137 0,0230327 
  (1,36) (0,87) (0,92) (0,89) (0,85) 
α o 0,00113 0,001261 0,0006736 0,0007456 0,0002022 

(thousands) (1,45) (2,17) (1,81) (1,58) (0,83) 
α 1 0,0292726 0,024092 0,0177131 0,0194922 0,0106421 
  (2,00) (2,27) (2,40) (2,03) (1,85) 
β 0,9242562 0,9438958 0,9653695 0,9618378 0,9843453 
  (21,32) (44,70) (75,54) (49,87) (116,29) 

Sum (α 1 +β) 0,9535288 0,9679878 0,9830826 0,98133 0,9949874 
      

Note: Numbers in parentheses are t-statistics 
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VII.  
a. 
 

  
 

Group of stock indices 
Country Sample Period Country Sample Period 

usa 1265 1992-1996 Japan 1236 1992-1996 
usa 1257 1997-2001 Japan 1229 1997-2001 

Australia 1268 1992-1996 Mexico 1244 1992-1996 
Australia 1260 1997-2001 Mexico 1247 1997-2001 
England 1265 1992-1996 Switzerland 1259 1992-1996 
England 1260 1997-2001 Switzerland 1320 1997-2001 
France 1249 1992-1996 Singapore 1254 1992-1996 
France 1258 1997-2001 Singapore 1248 1997-2001 

Germany 1256 1992-1996 Belgium 1243 1992-1996 
Germany 1254 1997-2001 Belgium 1184 1997-2001 

 
 
b. 
 

 
 

Group of foreign exchange rates 
Country Sample Period Country Sample Period 
Australia 1259 1992-1996 U.K 1259 1992-1996 
Australia 1257 1997-2001 U.K 1257 1997-2001 
Canada 1259 1992-1996 France 1259 1992-1996 
Canada 1257 1997-2001 France 1257 1997-2001 
Japan 1259 1992-1996 Germany 1259 1992-1996 
Japan 1257 1997-2001 Germany 1257 1997-2001 

Singapore 1259 1992-1996 Netherlands 1259 1992-1996 
Singapore 1257 1997-2001 Netherlands 1257 1997-2001 

Switzerland 1259 1992-1996 Spain 1259 1992-1996 
Switzerland 1257 1997-2001 Spain 1257 1997-2001 
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