

University of Piraeus – Department of Informatics

Postgraduate Program

«Advanced Information Systems»

Master Thesis

 Thesis Title Browser fingerprinting and countermeasures

Student Name Evangelos Deirmentzoglou

Father’s Name Andreas Deirmentzoglou

Student ID MPSP/13027

Supervisor Constantinos Patsakis

Submission Date June 2015

Thesis Jury

Constantinos Patsakis

Lecturer

Panayiotis Kotzanikolaou

Lecturer

Efthimios Alepis

Lecturer

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 1

Abstract

Internet is generally considered an anonymous place where people can communicate, interact

and exchange goods and ideas. Certainly, this is a common misconception and there is a lot of

research focusing on the providing users with their fundamental right to privacy. Many

companies have huge monetary interest in removing the veil of anonymity as for instance they

are interested in targeted advertisement. Therefore, they are constantly trying to trace users

traffic and depending on the web pages they visit create a profile. Tracing which websites a

specific IP is visiting is does provide an inaccurate measurement as many users could be using

the same IP. To counter this problem browser fingerprinting techniques have been deployed

allowing someone to trace a user from his browser, which means that she can be traced even if

her IP is changed. In this work we discuss current state of the art in browser fingerprinting and

propose measures to combat many of them. Additionally, we present Brownymity an

experimental tool we have developed to illustrate the efficacy of our methodologies.

1.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 2

Table of Contents

Abstract .. 1

Introduction .. 3

Related Work .. 7

The Brownymity Tool ... 10

Main actors and desiderata ... 10

Functionality ... 10

The implementation ... 12

Discussion ... 13

Conclusions ... 14

Appendix ... 15

Chrome Extension ... 15

LocalServer ... 20

Network Server ... 35

References .. 38

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 3

Introduction

Users navigating to the internet everyday are facing different kinds of advertisement. Each of

them has his own advertisement model which will be exposed to and most likely that model will

be adaptable to his likings. It’s quite possible that most of the ads presented will be future or

current purchases of his. Sometimes a user might wonder how come all the ads presented to

her were exactly what she wanted. The answer to that is clear and it’s called user tracking.

 From the beginning of the advertisement world every ad company was trying to show

advertisements to potential future customers. At first marketing was being conducted by

exposing the same ad to huge masses of people like the television or a certain part of the town.

This tactic was costly and messy, no one can predict the needs of a customer only by a show

he’s watching or by living on a specific neighborhood. It will certainly attract some customers but

not all of them.

 As time passed by ads became more personalized as the technology around us became more

advanced. Today most if not all of the internet users have been a victim of user-tracking. A user

can surf the internet and all of her actions will be recorded, all the clicks made will be noted and

all the web history will be registered in a database somewhere around the globe for further

processing. Searching the web for a particular product will force that product to be the main ad

of most of the services you currently use and it will stuck there for weeks.

 21st century advertisement is so personalized that sometimes it can be creepy. One of the

best examples of today’s advertisement is the Target pregnancy case. In order to increase sales

most of the online services will perform data mining techniques to all the data they have

gathered about their users and try to make sense of it. Data derived from such processes can

lead to future purchases, more accurate advertisement and thus an increase in their revenue.

As such if you search on Amazon for a series of products, like camping gear it will let Amazon to

believe that you are planning to go for camping and it will start presenting you with the most

popular to your needs camping equipment.

 This happened to a young girl who was searching Target about pregnancy related stuff. It
came out that according to her searches Target’s data mining results believed that she was
pregnant. Target had a new program running at that time helping parents to be to find the
equipment they needed in lower prices. As a result Target sent a few coupons to that teenager
for baby clothes and cribs. That mail infuriated her father and made complains to Target. Once
Target tried to apologize to her father he responded that his daughter was indeed pregnant and
she was due in August. This is just an example of how personal and creepy advertisement can
be. Since then some precautions are being made from companies like Target in their
advertisement.

 Ads should be personal because if they weren’t they would be a waste of capital and ad
companies wouldn’t be profitable but they can’t be too personal, at least we shouldn’t believe
they are. Online advertisement has pushed a lot the research in user tracking, and in
combination with some other suspects who will be presented below have developed tools and
techniques which make it nearly impossible to opt-out from them. As it will be discussed in this
research every move we’re making in the web is leaving a trail of footprints which are easily

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 4

connected together and will lead back to us. Trying to avoid a detection by using various tools
will not secure our anonymity and it is quite possible that it will make us more unique than
before.

 Currently, user tracking methods are widely being adopted by many websites. The reasons
behind this trend may vary from service improvement; as the service provider wants to know
how users navigate to his website, how they respond to content and changes etc., to user
profiling, where the web page tries to monetize its visibility by selling usage statistics and user
preferences to e.g. advertising companies or detect whether the user has recently visited the
site of a competitor. Regardless of the motive of the service provider, these methods introduce
many privacy issues as the browsing history reveals a lot of sensitive information and can lead
to the identification of individuals.

 While the most widely used method to track users is with cookies, webpages may also use

third parties' services to learn about their users [1] enabling them to add advanced features

such as advertising, analytics, social network integration. Features like that is possible that they

will try to acquire information by the user and sent it to another service like Facebook or Google.

 By including a third party service your website will probably reveal your information to that

service as well. This might not affect you right away but in the long run it’ll certainly do. Imagine

using 15-20 services everyday where all of them are using Google Analytics and you are

connected to them through Facebook. It is quite possible that both of them will know that you

visited those sites and for how long, hopefully they’ll only know that much. The fun fact about

these examples is that those services won’t even need to perform any fingerprinting technique.

They already know who you are. As for all the other services they might need to perform some

cool tricks, some of which will be presented in this research.

 Most of the fingerprinting techniques used in today’s web wouldn’t be feasible 10-15 years

ago. This is true due to the fact that the majority of the exploited features are fairly new like

canvas in HTML5 or the computing power and bandwidth needed for these tricks would be

easily noticeable. User tracking existed back then but it wasn’t so robust and accurate, it was

mostly done by single cookies and they were mostly used for carrying sessions.

 Currently, there is a growing increase towards browser fingerprinting methods. These

methods exploit the information that is provided by browsers such as installed fonts, screen

resolution and available plugins, to create an identifier for the browser. What is important about

these fingerprints is that even if the fingerprint changes (i.e. the user updates his software), it is

fairly easy to find from which fingerprint it was derived. Some of these techniques have been

recently discussed [2] [3] [4] [5] and several countermeasures have been proposed [4] [6] trying

to prevent this activity, but none of them seems to be working in full capacity.

 A browser fingerprint is a series of bread-crumbs which will uniquely identify a user browser.

Gathering all that information about the user’s browser can generate a lot of information about

him. A user can be recognized along various websites without having a session in any of them

or any cookies in general. No sessions, no cookies, no local storage data. Even if the user

select to clear the browser history and delete its cache he will still be recognized as a unique

user.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 5

 Taking it a step further, let’s say that a user decides to format his system and make a clean

install of his favorite operating system. This will force his current fingerprint to stop developing

and will create a second one. It is very important to note that the first fingerprint will not

disappear but it will simply stop developing, meaning that it will still exist for processing. Now the

second fingerprint will never be the same as the first one because this is nearly impossible to

accomplish but it will behave in the same way as the first one. The user might clean his system

but he will continue to operate in the web with the same habits e.g. every morning he will visit

google to search for his favorite newspaper and shortly after he will open Spotify to listen to his

favorite music. As his habits are the same, the models for the first fingerprint and the second will

be tied as one and eventually the user will be identified again as the one with the first

fingerprint. It is redundant to say that connecting your devices with the major providers like

Google will tie your fingerprint immediately with the ones from your other devices.

 What’s of equal interest as a research topic with fingerprint recreation which was discussed

above is fingerprint evolvement. A fingerprint in the digital world derived by the web browser is

not static but dynamic. The browser elements keep evolving and a power user might evolve his

fingerprint very fast. In most cases the fingerprint evolves in a linear way but yet again it’s fairly

difficult to track it and merge it with another fingerprint. This being more of a data mining

problem it’s very difficult to identify two different fingerprints as one being evolved or

distinguishing them as two completely different fingerprints.

 In Panopticlick [3], researchers collected the following information: User Agent strings, other

browser headers, cookie and supercookie blocking status, timezone, screen size, browser

plugins (with their versions) and system fonts from approximately 1 million users. Then, using

this dataset they tried to see how random this dataset was. From their findings, 94.2% of the

browsers had more than 18.8 bits of entropy, which means that someone could easily be

identified. More interestingly, the elements of a browser with the highest entropy are plugins,

system fonts and user agent with 15.4, 13.9 and 10 bits of entropy respectively. While the above

research was mainly used as a proof-of-concept, it has been shown that this has been used

widely on the Internet [7] [2].

 This research consists just the tip of the iceberg as a lot more elements and ways to

fingerprint a web browser have been discovered. The most sophisticated of those will render an

invisible image with a text or a 3D graphic and then target site will try to read the canvas and

find information about the system. Rendering graphics will make use of the GPU and consist a

unique fingerprint for the browser and the system itself. Another way to fingerprint a user is by

enumerating its fonts. This can be done by displaying an invisible text on the user and then

calculating the size of each letter displayed and since each font has its own unique

measurements a list of installed fonts is created. These methods are canvas fingerprinting and

font enumeration respectively.

 Apparently, by minimizing the entropy of the above elements, one would make the browser

fingerprint less unique and provide users more anonymization. In this regard, we introduce

Brownymity, a tool for mitigating browser fingerprint, without breaking the usability of the target

website. The concept of Brownymity is to create a pool of commonly used browser attributes

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 6

and then provide the most compatible ones to the clients who requests them. Therefore, a

server keeps track of ``browser profiles'' and recommends some profiles that are used by others

having obfuscated the font list, the list of plugins, user-agents and window information.

Therefore, Brownymity does not learn anything about the sites that the user is visiting and

provides him with a 𝑘 − anonymous ``browser profile''.

 The rest of the paper is organized as follows. In Section 2 we provide an overview of current

literature on web tracking and browser fingerprinting. Then, Section 3 introduces Brownymity, its

architecture and features. Section 4 discusses the applicability and efficacy of the tool and

compares it to other solutions. Finally, Section 5 concludes the article and proposes some

thoughts, ideas about future work. The source code for the Brownymity will be listed in the

Appendix.

2.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 7

Related Work

While cookies can easily be removed, it was shown that they could be recovered using the so-

called respawning method, either using Adobe Flash [8], or using ETags and the HTML5

localStorage API [9].

 What is more impressive is that even a passive network observer could use third-party HTTP

tracking cookies to identify users [10].

 Canvas fingerprinting is a technique introduced by Mowery and Shacham [11]. Depending on

the underlying operating system, font library, graphics card, graphics driver and browser, a text

or an image is rendered differently. Therefore, an attacker would write an invisible text and

display a hidden image in order to derive a browser fingerprint. The importance of fingerprinting

through font metrics was further studied recently indicating that they can offer more information

than User-Agent strings, and that they can be used to uniquely identify or significantly narrow

down the search for individual users [12]. Canvas fingerprinting was introduced with HTML 5

and till today there isn't an efficient way to counter it.

 It has also been proven that the browser's JavaScript execution characteristics can be used to

fingerprint devices [13]. JavaScript may disclose browser version, operating system and

microarchitecture or by checking whether particular domains exist in a user's NoScript
1
 whitelist.

By timing browser performance on different operations of the JavaScript language browser

version can be distinguished and microarchitectural features. Due to the architecture of each

browser and version timing their performance can derive fruitful results.

 A lot of work has been done for device fingerprinting and especially for smartphones [14] [15]

[16]. In those works it was demonstrated that a unique fingerprint can be derived by the use of

accelerometers, speakers and microphones through inaudible sounds. An attacker can

theoretically force a device to play sounds via its speakers and record them using the

microphone. An analysis on the captured data can provide the attacker with enough information

to render a device unique. This is due to the fact that every device's components are unique in

their own way due to damage, time decay, misconfigurations of the component and factory

assembling. This leads to the conclusion that even a mass production of a certain product can

lead to uniquely distinguishable devices.

 Firegloves [6] browser extension returns randomized values when queried for certain browser

attributes. However since the same attributes can be retrieved via different browser APIs, the

users of Firegloves become more uniquely identifiable than users who do not install this

extension. On top of that Firegloves would allow each tab to load only a certain number of fonts

reducing that way the amount of identifiable information a browser would give to a service.

Unfortunately the project got discontinued.

1
 https://noscript.net/

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 8

 Mor et al. introduced the concept of Bloom cookies, a special type of cookies, which as the

name suggests, exploits the features of Bloom filters and is used by the client every time he

makes a service request [17]. The user can easily inject bits in the filter to obfuscate his profile,

however, the size of the exchanged cookie is quite small.

 Privad [18] a tool made based on security concerns of existing advertising tools uses a semi-

trusted proxy called the dealer to which it sends limited information about the user profile and

discard irrelevant results. This tool requires a specific behavior not only by the user but from the

server as well. Modifying the existing plan of advertisement companies into taking into

consideration a third party like the semi-trusted proxy will not work very well at least any time

soon.

 Besson et al. formalize the problem web tracking and fingerprinting through information theory

and propose a randomization mechanism for the user configurations which can provide him

specific privacy guarantees [19]. This work consists the first appearance of the k-anonymity and

e-differentially concepts by the term t-privacy in the browser-based fingerprinting literature. Even

though they investigate the distinctively between browsers their research does make a lot more

sense if used against one single browser. Trying to change the settings of a Firefox browser to

match an Opera will definitely create a lot of problems but if you try and make one Firefox user

to match another Firefox user then the possibilities of this happening have increased by a

tenfold.

 Fiore et al. [20] have followed a similar trail of thought as ours, allowing the user to create fake

Chrome profiles and chose which one to use each time. Fiore's et al. approach could be

considered only as theoretical since they created a Chrome extension which provides the user

with hardcoded settings and there is no communication with the proxy server or even an

implementation of that server thus their timing results are misleading. The proposal of having a

proxy on the other hand which can control the amount of information provided to a server is

indeed significant. As it is going to be discussed, most of these limitations are countered from

our solution.

 Pan et al. have recently introduced a new web browser called TrackingFree which isolates

unique identifiers into different browser principals managing to resist tracking from all the 647

trackers found in Alexa Top 500 web sites [21]. TrackingFree consists of a Chromium's modified

version.

 Acar et al. [5] presented in their study the first real-world study of canvas fingerprinting and

discovered that this method is the most common technique used for tracking users in the web.

Alongside to this contribution their study reveals solid information that evercookies and cookie

respawning techniques are still being used in the wild. As outlined in their work the most

responsible factor for user fingerprinting in the web via cookies is Flash. Most of these

techniques can be performed with the current state of Flash and in order to avoid it the user

must disable Flash altogether. Regarding the effect of opt-out only 5% reduction in the number

of participants was observed at the cookie syncing technique while for techniques like canvas

fingerprinting and cookie reviving the results were unmodified.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 9

 In another work of Acar et al. [7] a new framework called FPDetective was developed

specially designed for web privacy studies. The primary focus of this framework is font

detection. FPDetective consists of a crawler which will visit various sites and it will keep logs of

any website trying to load more than a handful fonts, accessing specific browser properties or

even trying to transfer Flash objects. For this purpose a proxy was used intercepting suspicious

packets and decompiling Flash objects. All of this information is later stored in a database for

further analysis.

 Mayer and Mitchell [1] expressed their concerns on third party tracking and its privacy

implications in a document with vast information ranging from theoretical to technical, from

legislative to moral and from constructive advertisement to destructive. Apart from that a

research tool was developed, the FourthParty tool, a FireFox extension whose purpose was

analysing traffic from third party sites, mainly advertisements.

 Nikiforakis et al. [4] in his work about PriVaricator developed a new web browser from a fork of

Chromium which could mislead fingerprinters by providing false font measurements. Designed

to spoof font measurements the specially crafted browser will have the functions offsetHeight,

offsetWidth and getBoundingClientRect modified into providing one of the three following

values. They will either result into zero, a random value between 0 and 100 or a variation of +-

5% of the initial value. All of these options could disrupt font enumeration but other problems

arise. By providing only the zero value as a result for those functions would indeed eliminate

font enumeration but it would give the information of using PriVaricator to the attacker since this

is a very distinctive characteristic of this browser. Apart from that this technique and the random

output between the values 0 and 100 often resulted to website breakage. Adding noise to the

result eliminates font enumeration and it's still reliable as a fingerprint which means that the

attacker won't find out anytime soon that he's being spoofed and the breakage of the website is

in acceptable levels.

 In another work of Nikiforakis et al. [2] an extensive research on browser fingerprinting was

presented. By presenting commercial fingerprinting the fact that advertisement usually ignores

ethics and takes advantage of the web vulnerabilities is undeniable. Nikiforakis et al. will go in

depth presenting all the web fingerprinting methods used wildly in the web from font detection to

system fingerprinting plugins. Most importantly of all their work introduced the notion that the

more you try to avoid fingerprinting by using third party mechanisms like plugins, extensions or

system proxies the more you are being identified as a unique user. This can happen due to the

incompleteness of the tools used, the breakage or the unique fingerprints they leave at the

system.

3.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 10

The Brownymity Tool

As already discussed, Eckersley [3] through Panopticlick
2
 found that the browser characteristics

that had the most randomness were the user agent, and the lists of fonts and plugins. Following

this trail of thought, we argue that by making this set less random, the browser is more

anonymous. The question that arises from this assumption is what this less random browser

fingerprint is going to be and whether this fingerprint is going to compromise user experience. In

the following paragraphs, we present Brownymity and its architecture, a research tool that has

been developed to resolve these issues.

Main actors and desiderata

In our model we have three main entities, the User, the WebPage and the Pool of Profiles

(PoP). Initially, the user wants to visit WebPage, but he wants to remove as much traces as

possible from his browser as he knows that WebPage applies several methods for browser

fingerprinting. To counter this threat, the User forwards his browser fingerprint to PoP, a semi-

trusted server which takes as input the browser fingerprint and outputs a compatible one with

less randomization, or one that has been used several times before. The provided fingerprint

bears many characteristics in common with the original and is then used by the User's browser

to visit WebPage. On receiving the browser fingerprint, WebPage queries her database and

finds at least 𝑘 − 1 more instances of the same fingerprint so she cannot tell whether the

fingerprint belongs to a new browser or not.

 In our model we assume that PoP does not collude with WebPage; telling him when User

contacted him and what profile was given to him; and does not behave maliciously; it does not

provide identifiable fingerprints. The general overview of Brownymity's architecture is illustrated

in Figure 1.

Functionality

Once the user navigates to a website the chrome extension will stall the first packet and query

its local database to determine whether the URL is blacklisted. If it is not blacklisted, the process

will terminate and the packet will resume its normal operation. However, if the URL is

blacklisted, Chrome will collect vital information about the client's browser; shown in Table 1 and

sent them to PoP. We denote this set of information as 𝛢.

2
 https://panopticlick.eff.org/browser-uniqueness.pdf

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 11

Figure 1 The general overview of our architecture.

Obfuscated elements

Fonts aa

Plugins aa

Screen resolution bb

User agent cc

Table 1 Collected browser attributes by Brownymity.

 On receiving 𝛢 PoP will query its database to find similar records. PoP collects anonymous

information from other clients and returns to the chrome extension the common elements that

were found closer to the client's browser characteristics. This means that PoP will respond with

a new set of information which is a subset of 𝛢 which is denoted as 𝛢′.

 By the time the central authority has responded to the chrome extension's initial request the

extension will make the appropriate changes according to PoP's response. The spoofing of the

plugins and other various elements is currently achieved by overriding the ‘’getter''. Regarding

font management, the Chrome extension sends sets 𝐹 and 𝐹′ the font lists of 𝛢 and 𝛢′

respectively to the daemon using a synchronous call to handle font spoofing.

 The daemon will remove 𝐹, the core operating system (OS) fonts needed for the OS to

function, that we denote as 𝐶 Note that each OS has a number of fonts which come with the

installation of the OS. Therefore, the system will not allow the removal of those fonts. From the

remaining of the 𝐹 set the 𝐹′ will be removed as well as the set 𝐵 which is the set of the fonts

needed for the target site to render successfully. To summarize, the resulting set 𝐹′′ is 𝐹′′ =

 𝐹 − 𝐹′ − 𝐶 − 𝐵. The set 𝐹′′ is the set of fonts needed to be removed from the system to make it

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 12

less random, as the set 𝐹′′ is the set of fonts which render a user unique while all the other fonts

the client has are much more common to the target website.

 The removal of the fonts will take place in the registry of the Windows operating system and

the overhead added of such an operation is proportional to the size of 𝐹′′, typically close to 2-3

seconds. Once this action is performed the daemon will send a message to the chrome

extension that the connection to the target website can be continued.

Figure 2 The general overview of our architecture

The implementation

The current version of Brownymity consists of three elements: the Brownymity extension, the

Brownymity daemon and the PoP server.

The Brownymity extension is built for the Chrome browser and the extension as well as the

daemon are built for Windows OSes, the reason for this last constraint is going to be discussed

in the next section. The daemon as well as PoP were implemented in Python, using the Flask

framework.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 13

Discussion

Instead of spoofing the current fonts we decided to remove them completely from the system.

This was done due to the appearance of many sophisticated ways to recover the font list even if

the browser was trying to spoof the malicious site [5] [2]. As of that we decided that instead of

spoofing those elements we could just modify them and thus make use of a more drastic

measure. By using another browser like Tor [7] or a special crafted one in order to prevent font

enumeration as stated in [4] might work but the use of fixed values as in Tor will alert the target

site that the user is using a Tor browser and thus render the client more unique as this happens

to most of the spoofing technologies [2]. Using a more dynamically and unpredictable method

will make the new appearance of the client's browser reliable and will successfully spoof the

target site.

 Our approach is aligned with the recent findings of Fifield and Egelman [12] who propose that

the whitelisting of a set of standard font files could provide further user anonymity.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 14

Conclusions

In this work we’ve discussed the current literature and the problems we’re faced with. Web
fingerprinting is a huge area of research and most of the tools we use aren’t even mature and
cannot compare with the capabilities of the tools the attackers have in their possession. The
attack surface is vast and research on this subject is in its infancy.

 This huge difference might be that the first part of the equation, the “attackers” are motivated
advertisement, governmental, military and other agencies trying to protect their products by
identifying copyright violations or by providing a personalized ad model or by trying to identify
potential terrorists. The funding on this side is huge and that’s because their results are
profitable for those organizations. On the other hand preventing fingerprinting carries little to no
interest to most for-profit organizations and thus the funding for such research is limited to non-
existent.

 A new model for tools providing web anonymity was presented and developed. A user visiting
a website would have to choose from a pool of profiles to present to the target website hiding
this way its true identity. By providing a neutral intermediate to establish the communications
with the website the user can hide certain elements which the browser doesn’t need and
shouldn’t know. This way browser based fingerprinting is eliminated.

 Our methodology proposes that every user visiting a certain website will share to it only his
common elements with the other users and this way each user will only be present a subset of
his browser’s elements.

 Apart from the theory a more practical conversation has been made where all the sensitive
elements of our browser were presented and discussed ways to hide them. This part consisted
of simply overriding their getter while a new novel method was presented as well in order to
counter font enumeration. Uninstalling dynamically fonts from the system proved to be more
efficient than trying to find a counter measure for every technique discovered for font
enumeration.

 All of those methodologies and techniques were implemented in a new experimental tool
named Brownymity whose source code is available in the Appendix of this research.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 15

Appendix

In this section the source code of Brownymity will be listed.

Chrome Extension

Manifest.js

1. {
2. "name": "Brownymity",
3. "description": "A browser anonymity tool - preventing others from finding out impor

tant information about your browser",
4. "version": "0.1",
5. "background": {
6. "scripts": ["background.js"]
7. },
8. "browser_action": {
9. "name": "Demo"
10.
11. },
12. "permissions":[
13. "tabs",
14. "webRequest",
15. "webRequestBlocking",
16. "<all_urls>",
17. "activeTab",
18. "fontSettings",
19. "unlimitedStorage"
20.],
21. "manifest_version": 2
22. }

Background.js

1. var min = 1;
2. var max = 5;
3. var current = min;
4. var currentTabId;
5. var currentUrl;
6. var fonts = [];
7. var intersected_fonts;
8. var plugins_temp = navigator.plugins; //Get plugins
9. var windowInfo; //Get window info
10. var userAgent = navigator.userAgent; //Get useragent
11. var date = new Date();
12. var timezone = date.getTimezoneOffset(); //Get timezone offset

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 16

13. var screenscreenheight = screen.height;
14. var screenscreenwidth = screen.width;
15. var screenscreendepth = screen.colorDepth;
16. var cookieEnabled = navigator.cookieEnabled;
17. var productSub = navigator.productSub;
18. var vendor = navigator.vendor;
19. var appVersion = navigator.appVersion;
20. var plugins = [];
21. var tablink;
22. var all_tabs;
23. var temp_tab;
24. var start;
25. var flag = 0;
26. var should_block = false;
27.
28. for (var i = 0; i < plugins_temp.length ; i++) {
29. plugins.push({
30. name: plugins_temp[i].name,
31. filename: plugins_temp[i].filename,
32. description: plugins_temp[i].description
33. });
34. };
35.
36. function errorHandler(e) {
37. console.log(e);
38. }
39.
40. function maincall(details) {
41. if(details && details.tabId >= 0 &&
42. details.method === 'GET' &&
43. details.type === 'main_frame'){// tabId=-

1 is a call from an extension
44. chrome.tabs.getSelected(null,currentTab);
45. chrome.windows.getLastFocused(null, WindowInfo);
46. sendRequest();
47. }
48. }
49.
50. function parseURL(url) { //Function to parse the url. Aquiring the hostname of the vi

siting url.
51. var parser = document.createElement('a'),
52. searchObject = {},
53. queries, split, i;
54. // Let the browser do the work
55. parser.href = url;
56. // Convert query string to object
57. queries = parser.search.replace(/^\?/, '').split('&');
58. for(i = 0; i < queries.length; i++) {
59. split = queries[i].split('=');
60. searchObject[split[0]] = split[1];

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 17

61. }
62. return {
63. protocol: parser.protocol,
64. host: parser.host,
65. hostname: parser.hostname,
66. port: parser.port,
67. pathname: parser.pathname,
68. search: parser.search,
69. searchObject: searchObject,
70. hash: parser.hash
71. };
72. }
73. function sendtoflask(){
74. //Sending to the flask framework in order to update the fonts
75. var xhr2 = new XMLHttpRequest();
76. var url2 = "http://localhost:5000/fonts";
77. xhr2.open("POST", url2, false); // False for synchronous
78. xhr2.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
79. xhr2.onreadystatechange = function() {
80. if (xhr2.readyState === 4) {
81. //Upon receiving the response from the flask framework
82. chrome.fontSettings.getFontList(giefFonts);
83. var res = xhr2.responseText;
84. var success_count = JSON.parse(res).success_count;
85. var fail_count = JSON.parse(res).fail_count;
86. var python_elapsed_time = JSON.parse(res).elapsed_time;
87. console.log('Fonts successfully removed: ' + success_count);
88. console.log('Fonts failed to be removed: ' + fail_count)
89. var end = performance.now();
90. var time = end - start;
91. console.log('Execution time: ' + time/1000 + ' seconds');
92. console.log('Font removal time: ' + python_elapsed_time + ' seconds')
93. }
94. };
95. //Send only the plugins and the fonts. At the moment plugins are useless / no need

to send them.
96. xhr2.send("plugins=" + encodeURIComponent(JSON.stringify(plugins))
97. //TODO Change plugins to received plugins and not the initial value
98. + "&fonts=" + encodeURIComponent(JSON.stringify(fonts))
99. + "&common_fonts=" + encodeURIComponent(JSON.stringify(intersected_fonts))

100.);
101. }
102.
103. function call_remote_server(open_ports){
104. var xhr = new XMLHttpRequest();
105. // Preparing request to the peer network
106. var url = "http://localhost:3001";
107. xhr.open("POST", url, true);

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 18

108. xhr.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");

109. xhr.onreadystatechange = function() {
110. if (xhr.readyState === 4) {
111. var serverResponse = xhr.responseText;
112. //Receiving the data from the peer network and override the getters

113. // with the appropriate data
114. //Change the user agent by modifying the navigator object
115. navigator.__defineGetter__('userAgent', function(){
116. return JSON.parse(serverResponse).userAgent;
117. });
118.
119. //Change the plugins by modifying the navigator object
120. navigator.__defineGetter__('plugins', function(){
121. return JSON.parse(serverResponse).plugins;
122. });
123.
124. //Change the cookieEnabled option by modifying the navigator object

125. navigator.__defineGetter__('cookieEnabled', function(){
126. return JSON.parse(serverResponse).cookieEnabled;
127. });
128.
129. navigator.__defineGetter__('productSub', function(){
130. return JSON.parse(serverResponse).productSub;
131. });
132.
133. navigator.__defineGetter__('vendor', function(){
134. return JSON.parse(serverResponse).vendor;
135. });
136.
137. navigator.__defineGetter__('appVersion', function(){
138. return JSON.parse(serverResponse).appVersion;
139. });
140.
141. screen.__defineGetter__('width', function(){
142. return JSON.parse(serverResponse).screenwidth;
143. })
144.
145. screen.__defineGetter__('depth', function(){
146. return JSON.parse(serverResponse).screendepth;
147. })
148. screen.__defineGetter__('height', function(){
149. return JSON.parse(serverResponse).screenheight;
150. })
151. // Resetting the window name in case of window.name monitoring
152. window.name = ""
153. console.log("Initiating font call to local server");
154. intersected_fonts = JSON.parse(serverResponse).fonts;

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 19

155. sendtoflask();
156. }
157. };
158. xhr.send("plugins=" + encodeURIComponent(JSON.stringify(plugins))
159. + "&userAgent=" + encodeURIComponent(JSON.stringify(userAgent))
160. + "&timezone=" + encodeURIComponent(JSON.stringify(timezone))
161. + "&cookieEnabled=" + encodeURIComponent(JSON.stringify(cookieEnabled

))
162. + "&vendor=" + encodeURIComponent(JSON.stringify(vendor))
163. + "&productSub=" + encodeURIComponent(JSON.stringify(productSub))
164. + "&appVersion=" + encodeURIComponent(JSON.stringify(appVersion))
165. // + "&windowInfo=" + encodeURIComponent(JSON.stringify(windowInfo))

166. + "&screendepth=" + encodeURIComponent(JSON.stringify(screendepth))

167. + "&screenwidth=" + encodeURIComponent(JSON.stringify(screenwidth))

168. + "&screenheight=" + encodeURIComponent(JSON.stringify(screenheight))

169. + "&fonts=" + encodeURIComponent(JSON.stringify(fonts))
170. + "&ports=" + encodeURIComponent(JSON.stringify(open_ports))
171.);
172. }
173.
174. function sendRequest(){
175. chrome.tabs.getSelected(null,function(tab) {
176. tablink = parseURL(tab.url);
177. if(tablink.hostname === 'google.com' || tablink.hostname === 'www.google.gr'

 || tablink.hostname === 'www.google.com'){
178. flag = 0;
179. for (var i = 0; i < aβ€˜ll_tabs.length; i++) {
180. temp_tab = parseURL(all_tabs[i].url);
181. if(temp_tab.hostname === 'google.com' || temp_tab.hostname === 'www.goo

gle.gr' || temp_tab.hostname === 'www.google.com')
182. flag = 1;
183. };
184.
185.
186. if (!flag){ //if flag = 0 meaning that the url google.com is not opened al

ready
187. start = performance.now();
188. // Removing the port scanning technique for now
189. // open_ports will be a null variable
190. open_ports = 0;
191. call_remote_server(open_ports);
192. }
193. should_block = false;
194.
195. }
196. else {

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 20

197. should_block = true;
198. console.log(tablink.hostname);
199. }
200.
201. });
202. chrome.tabs.query({},function(tabs){
203. all_tabs = tabs;
204. });
205. chrome.fontSettings.getFontList(giefFonts);
206. return should_block;
207. }
208.
209. function currentTab(tab){
210. currentTabId = tab.id;
211. currentUrl = tab.favIconUrl;
212. }
213.
214. function giefFonts(FontName){
215. fonts = FontName;
216. }
217.
218. chrome.tabs.query({},function(tabs){
219. all_tabs = tabs;
220. });
221.
222. chrome.webRequest.onBeforeRequest.addListener(
223. maincall,
224. {urls: ["<all_urls>"]},
225. ["blocking"]);
226. chrome.fontSettings.getFontList(giefFonts); // Get fonts
227. function WindowInfo(e){
228. windowInfo = e;
229. }

LocalServer

Daemon2.py

1. from flask import Flask
2. from flask import request
3. from flask import jsonify
4. app = Flask(__name__)
5. import ast
6. import time
7. import csv
8. import os
9. from font_helper import f_helper
10. import shutil

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 21

11. import timeit
12. first_key = 'name'
13. second_key = 'registry_name'
14. cheat = [{first_key: 'Bodoni MT Condensed', second_key: ['Bodoni MT Condensed (TrueTy

pe)',
15. 'Bodoni MT Condensed Bold (T

rueType)',
16. 'Bodoni MT Condensed Bold It

alic (TrueType)',
17. 'Bodoni MT Condensed Italic

(TrueType)']},
18. {first_key: 'Stencil', second_key: ['Stencil (TrueType)']},
19. {first_key: 'Arial Unicode MS', second_key: ['Arial Unicode MS (TrueType)']}

,
20. {first_key: 'Perpetua Titling MT', second_key: ['Perpetua Titling MT Bold (T

rueType)',
21. 'Perpetua Titling MT Light (

TrueType)']},
22. {first_key: 'Haettenschweiler', second_key: ['Haettenschweiler (TrueType)']}

,
23. {first_key: 'Matura MT Script Capitals', second_key: ['Matura MT Script Capi

tals (TrueType)']},
24. {first_key: 'Lucida Sans Typewriter', second_key: ['Lucida Sans Typewriter B

old (TrueType)',
25. 'Lucida Sans Typewriter B

old Oblique (TrueType)',
26. 'Lucida Sans Typewriter O

blique (TrueType)',
27. 'Lucida Sans Typewriter R

egular (TrueType)']},
28. {first_key: 'Brush Script Std', second_key: ['BrushScriptStd (OpenType)']},

29. {first_key: 'Trajan Pro', second_key: ['Trajan Pro',
30. 'TrajanPro-Bold (TrueType)',
31. 'TrajanPro-Regular (OpenType)',
32. 'TrajanPro-Regular (TrueType)']},
33. {first_key: 'Arial Narrow', second_key: ['Arial Narrow (TrueType)',
34. 'Arial Narrow Bold (TrueType)',
35. 'Arial Narrow Bold Italic (TrueType

)',
36. 'Arial Narrow Italic (TrueType)']},

37. {first_key: 'Nueva Std', second_key: ['NuevaStd-Bold (OpenType)',
38. 'NuevaStd-BoldCond (OpenType)',
39. 'NuevaStd-

BoldCondItalic (OpenType)',
40. 'NuevaStd-Cond (OpenType)',
41. 'NuevaStd-CondItalic (OpenType)',
42. 'NuevaStd-Italic (OpenType)']},
43. {first_key: 'Adobe Arabic', second_key: ['AdobeArabic-Bold (OpenType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 22

44. 'AdobeArabic-Bold (TrueType)',
45. 'AdobeArabic-

BoldItalic (OpenType)',
46. 'AdobeArabic-

BoldItalic (TrueType)',
47. 'AdobeArabic-Italic (OpenType)',
48. 'AdobeArabic-Italic (TrueType)',
49. 'AdobeArabic-Regular (OpenType)',
50. 'AdobeArabic-

Regular (TrueType)']},
51. {first_key: 'Rosewood Std Regular', second_key: ['RosewoodStd-

Regular (OpenType)']},
52. {first_key: 'Elephant', second_key: ['Elephant (TrueType)',
53. 'Elephant Italic (TrueType)']},
54. {first_key: 'HelvLight', second_key: ['HelvLight Regular (TrueType)']},
55. {first_key: 'Open Sans', second_key: ['Open Sans (TrueType)',
56. 'Open Sans Bold (TrueType)',
57. 'Open Sans Bold Italic (TrueType)',
58. 'Open Sans Extrabold (TrueType)',
59. 'Open Sans Extrabold Italic (TrueType)

',
60. 'Open Sans Italic (TrueType)',
61. 'Open Sans Light (TrueType)',
62. 'Open Sans Light Italic (TrueType)',
63. 'Open Sans Semibold (TrueType)',
64. 'Open Sans Semibold Italic (TrueType)'

]},
65. {first_key: 'Hobo Std', second_key: ['HoboStd (OpenType)']},
66. {first_key: 'Perpetua', second_key: ['Perpetua (TrueType)',
67. 'Perpetua Bold (TrueType)',
68. 'Perpetua Bold Italic (TrueType)',
69. 'Perpetua Italic (TrueType)',
70. 'Perpetua Titling MT Bold (TrueType)',

71. 'Perpetua Titling MT Light (TrueType)']

},
72. {first_key: 'Myriad Hebrew', second_key: ['Myriad Hebrew (OpenType)',
73. 'Myriad Hebrew Bold (OpenType)',
74. 'Myriad Hebrew Bold Italic (OpenTy

pe)',
75. 'Myriad Hebrew Italic (OpenType)']

},
76. {first_key: 'Adobe Caslon Pro', second_key: ['ACaslonPro-

Italic (OpenType)',
77. 'ACaslonPro-

Regular (OpenType)',
78. 'ACaslonPro-

Semibold (OpenType)',
79. 'ACaslonPro-

SemiboldItalic (OpenType)']},

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 23

80. {first_key: 'Mesquite Std', second_key: ['MesquiteStd (OpenType)']},
81. {first_key: 'Adobe Kaiti Std R', second_key: ['AdobeKaitiStd-

Regular (OpenType)']},
82. {first_key: 'Kozuka Gothic Pr6N R', second_key: ['KozGoPr6N-

Regular (OpenType)']},
83. {first_key: 'Tekton Pro', second_key: ['TektonPro-Bold (OpenType)',
84. 'TektonPro-BoldCond (OpenType)',
85. 'TektonPro-BoldExt (OpenType)',
86. 'TektonPro-BoldObl (OpenType)']},
87. {first_key: 'Bell MT', second_key: ['Bell MT (TrueType)',
88. 'Bell MT Bold (TrueType)',
89. 'Bell MT Italic (TrueType)']},
90. {first_key: 'Lucida Sans', second_key: ['Lucida Sans Demibold Italic (TrueTy

pe)',
91. 'Lucida Sans Demibold Roman (TrueTyp

e)',
92. 'Lucida Sans Italic (TrueType)',
93. 'Lucida Sans Regular (TrueType)',
94. 'Lucida Sans Typewriter Bold (TrueTy

pe)',
95. 'Lucida Sans Typewriter Bold Oblique

 (TrueType)',
96. 'Lucida Sans Typewriter Oblique (Tru

eType)',
97. 'Lucida Sans Typewriter Regular (Tru

eType)',
98. 'Lucida Sans Unicode (TrueType)']},

99. # Gothic
100. {first_key: 'Kozuka Gothic Pr6N B', second_key: ['KozGoPr6N-

Bold (OpenType)']},
101. {first_key: 'Kozuka Gothic Pr6N M', second_key: ['KozGoPr6N-

Medium (OpenType)']},
102. {first_key: 'Kozuka Gothic Pr6N L', second_key: ['KozGoPr6N-

Light (OpenType)']},
103. {first_key: 'Kozuka Gothic Pr6N H', second_key: ['KozGoPr6N-

Heavy (OpenType)']},
104. {first_key: 'Kozuka Gothic Pr6N EL', second_key: ['KozGoPr6N-

ExtraLight (OpenType)']},
105. # Mincho
106. {first_key: 'Kozuka Mincho Pr6N M', second_key: ['KozMinPr6N-

Medium (OpenType)']},
107. {first_key: 'Kozuka Mincho Pr6N L', second_key: ['KozMinPr6N-

Light (OpenType)']},
108. {first_key: 'Kozuka Mincho Pr6N B', second_key: ['KozMinPr6N-

Bold (OpenType)']},
109. {first_key: 'Kozuka Mincho Pr6N R', second_key: ['KozMinPr6N-

Regular (OpenType)']},
110. {first_key: 'Kozuka Mincho Pr6N EL', second_key: ['KozMinPr6N-

ExtraLight (OpenType)']},

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 24

111. {first_key: 'Kozuka Mincho Pr6N H', second_key: ['KozMinPr6N-
Heavy (OpenType)']},

112. # mincho PRO
113. {first_key: 'Kozuka Mincho Pro B', second_key: ['KozMinPro-

Bold (TrueType)']},
114. {first_key: 'Kozuka Gothic Pro L', second_key: ['KozGoPro-

Light (OpenType)']},
115. {first_key: 'Kozuka Gothic Pro R', second_key: ['KozGoPro-

Regular (OpenType)']},
116. {first_key: 'Kozuka Gothic Pro B', second_key: ['KozGoPro-

Bold (OpenType)']},
117. {first_key: 'Kozuka Gothic Pro M', second_key: ['KozGoPro-

Medium (OpenType)']},
118. {first_key: 'Kozuka Gothic Pro H', second_key: ['KozGoPro-

Heavy (OpenType)']},
119. {first_key: 'Franklin Gothic Heavy', second_key: ['Franklin Gothic He

avy (TrueType)',
120. 'Franklin Gothic He

avy Italic (TrueType)']},
121. {first_key: 'Franklin Gothic Demi', second_key: ['Franklin Gothic Dem

i (TrueType)',
122. 'Franklin Gothic De

mi Cond (TrueType)',
123. 'Franklin Gothic De

mi Italic (TrueType)']},
124. {first_key: 'Franklin Gothic Book', second_key: ['Franklin Gothic Boo

k (TrueType)',
125. 'Franklin Gothic Bo

ok Italic (TrueType)']},
126. {first_key: 'Vivaldi', second_key: ['Vivaldi Italic (TrueType)']},
127. {first_key: 'Myriad Pro Light', second_key: ['MyriadPro-

Light (OpenType)']},
128. {first_key: 'Adobe Gothic Std B', second_key: ['AdobeGothicStd-

Bold (OpenType)']},
129. {first_key: 'Agency FB', second_key: ['Agency FB (TrueType)',
130. 'Agency FB Bold (TrueType)']},

131. {first_key: 'Adobe Naskh Medium', second_key: ['Adobe Naskh Medium (O

penType)']},
132. {first_key: 'Orator Std', second_key: ['OratorStd (OpenType)',
133. 'OratorStd-

Slanted (OpenType)']},
134. {first_key: 'Adobe Song Std L', second_key: ['AdobeSongStd-

Light (OpenType)']},
135. {first_key: 'Lucida Calligraphy', second_key: ['Lucida Calligraphy It

alic (TrueType)']},
136. {first_key: 'Tekton Pro Cond', second_key: ['TektonPro-

BoldCond (OpenType)']},
137. {first_key: 'Adobe Devanagari', second_key: ['AdobeDevanagari-

Bold (OpenType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 25

138. 'AdobeDevanagari-
BoldItalic (OpenType)',

139. 'AdobeDevanagari-
Italic (OpenType),'

140. 'AdobeDevanagari-
Regular (OpenType)']},

141. {first_key: 'Gill Sans MT', second_key: ['Gill Sans MT (TrueType)',
142. 'Gill Sans MT Bold (TrueType

)',
143. 'Gill Sans MT Bold Italic (T

rueType)',
144. 'Gill Sans MT Condensed (Tru

eType)',
145. 'Gill Sans MT Ext Condensed

Bold (TrueType)',
146. 'Gill Sans MT Italic (TrueTy

pe)',
147. 'Gill Sans Ultra Bold (TrueT

ype)',
148. 'Gill Sans Ultra Bold Conden

sed (TrueType)']},
149. {first_key: 'Charlemagne Std', second_key: ['CharlemagneStd-

Bold (OpenType)']},
150. {first_key: 'Tekton Pro Ext', second_key: ['TektonPro-

BoldExt (OpenType)']},
151. {first_key: 'Letter Gothic Std', second_key: ['LetterGothicStd (OpenT

ype)',
152. 'LetterGothicStd-

Bold (OpenType)',
153. 'LetterGothicStd-

BoldSlanted (OpenType)',
154. 'LetterGothicStd-

Slanted (OpenType)']},
155. {first_key: 'Nueva Std Cond', second_key: ['NuevaStd-

BoldCond (OpenType)',
156. 'NuevaStd-

BoldCondItalic (OpenType)',
157. 'NuevaStd-

Cond (OpenType)',
158. 'NuevaStd-

CondItalic (OpenType)']},
159. {first_key: 'Adobe Myungjo Std M', second_key: ['AdobeMyungjoStd-

Medium (OpenType)']},
160. {first_key: 'Stencil Std', second_key: ['StencilStd (OpenType)']},
161. {first_key: 'Berlin Sans FB Demi', second_key: ['Berlin Sans FB Demi

Bold (TrueType)']},
162. {first_key: 'Minion Pro', second_key: ['MinionPro-Bold (OpenType)',
163. 'MinionPro-

BoldIt (OpenType)',
164. 'MinionPro-It (OpenType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 26

165. 'MinionPro-
Regular (OpenType)']},

166. {first_key: 'Minion Pro Med', second_key: ['MinionPro-
Medium (OpenType)',

167. 'MinionPro-
MediumIt (OpenType)']},

168. {first_key: 'Minion Pro SmBd', second_key: ['MinionPro-
Semibold (OpenType)',

169. 'MinionPro-
SemiboldIt (OpenType)']},

170. {first_key: 'Minion Pro Cond', second_key: ['MinionPro-
BoldCn (OpenType)',

171. 'MinionPro-
BoldCnIt (OpenType)',]},

172. {first_key: 'Chaparral Pro Light', second_key: ['ChaparralPro-
LightIt (OpenType)']},

173. {first_key: 'Cooper Std Black', second_key: ['CooperBlackStd (OpenTyp
e)']},

174. {first_key: 'Lithos Pro Regular', second_key: ['LithosPro-
Regular (OpenType)']},

175. {first_key: 'Myriad Arabic', second_key: ['Myriad Arabic Bold (OpenTy
pe)',

176. 'Myriad Arabic Bold Italic
(OpenType)',

177. 'Myriad Arabic Italic (Open
Type)',

178. 'Myriad Arabic (OpenType)']
},

179. {first_key: 'High Tower Text', second_key: ['High Tower Text (TrueTyp
e)',

180. 'High Tower Text Italic (
TrueType)']},

181. {first_key: 'Salina', second_key: ['Salina (TrueType)',
182. 'Salina Regular (TrueType)']}, {fi

rst_key: ''},
183. {first_key: 'Bodoni MT Black', second_key: ['Bodoni MT Black (TrueTyp

e)',
184. 'Bodoni MT Black Italic (

TrueType)']},
185. {first_key: 'Lucida Handwriting', second_key: ['Lucida Handwriting It

alic (TrueType)']},
186. {first_key: 'Myriad Pro Cond', second_key: ['MyriadPro-

BoldCond (OpenType)',
187. 'MyriadPro-

BoldCondIt (OpenType)',
188. 'MyriadPro-

Cond (OpenType)',
189. 'MyriadPro-

CondIt (OpenType)']},
190. {first_key: 'Myriad Pro', second_key: ['MyriadPro-Bold (OpenType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 27

191. 'MyriadPro-
BoldIt (OpenType)',

192. 'MyriadPro-It (OpenType)',
193. 'MyriadPro-

Regular (OpenType)',
194. 'MyriadPro-

Semibold (OpenType)',
195. 'MyriadPro-

SemiboldIt (OpenType)']},
196. {first_key: 'Adobe Heiti Std R', second_key: ['AdobeHeitiStd-

Regular (OpenType)']},
197. {first_key: 'Garamond', second_key: ['Garamond (TrueType)',
198. 'Garamond Bold (TrueType)',
199. 'Garamond Italic (TrueType)']},

200. {first_key: 'Brush Script MT', second_key: ['Brush Script MT Italic (

TrueType)']},
201. {first_key: 'Blackoak Std', second_key: ['BlackoakStd (TrueType)',
202. 'BlackoakStd (OpenType)']},

203. {first_key: 'Adobe Ming Std L', second_key: ['AdobeMingStd-

Light (OpenType)']},
204. {first_key: 'Adobe Caslon Pro Bold', second_key: ['ACaslonPro-

Bold (OpenType)',
205. 'ACaslonPro-

BoldItalic (OpenType)']},
206. {first_key: 'Tw Cen MT Condensed', second_key: ['Tw Cen MT Condensed

(TrueType)',
207. 'Tw Cen MT Condensed

Bold (TrueType)',
208. 'Tw Cen MT Condensed

Extra Bold (TrueType)']},
209. {first_key: 'Open Sans Light', second_key: ['Open Sans Light (TrueTyp

e)',
210. 'Open Sans Light Italic (

TrueType)']},
211. {first_key: 'Adobe Fangsong Std R', second_key: ['AdobeFangsongStd-

Regular (OpenType)']},
212. {first_key: 'Giddyup Std', second_key: ['GiddyupStd (OpenType)',
213. 'GiddyupStd (TrueType)']},
214. {first_key: 'Magneto', second_key: ['Magneto Bold (TrueType)']},
215. {first_key: 'Tw Cen MT', second_key: ['Tw Cen MT (TrueType)',
216. 'Tw Cen MT Bold (TrueType)',
217. 'Tw Cen MT Bold Italic (TrueTyp

e)',
218. 'Tw Cen MT Italic (TrueType)']}

,
219. {first_key: 'Lucida Bright', second_key: ['Lucida Bright (TrueType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 28

220. 'Lucida Bright Demibold (Tr
ueType)',

221. 'Lucida Bright Demibold Ita
lic (TrueType)',

222. 'Lucida Bright Italic (True
Type)']},

223. {first_key: 'Open Sans Extrabold', second_key: ['Open Sans Extrabold
(TrueType)',

224. 'Open Sans Extrabold
Italic (TrueType)']},

225. {first_key: 'Poplar Std', second_key: ['PoplarStd (OpenType)']},
226. {first_key: 'Adobe Garamond Pro Bold', second_key: ['AGaramondPro-

Bold (OpenType)',
227. 'AGaramondPro-

BoldItalic (OpenType)']},
228. {first_key: 'Rockwell Condensed', second_key: ['Rockwell Condensed (T

rueType)',
229. 'Rockwell Condensed Bo

ld (TrueType)']},
230. {first_key: 'Adobe Hebrew', second_key: ['AdobeHebrew-

Bold (OpenType)',
231. 'AdobeHebrew-

BoldItalic (OpenType)',
232. 'AdobeHebrew-

Italic (OpenType)',
233. 'AdobeHebrew-

Regular (OpenType)']},
234. {first_key: 'Chaparral Pro', second_key: ['ChaparralPro-

Bold (OpenType)',
235. 'ChaparralPro-

BoldIt (OpenType)',
236. 'ChaparralPro-

Italic (OpenType)',
237. 'ChaparralPro-

LightIt (OpenType)',
238. 'ChaparralPro-

Regular (OpenType)']},
239. {first_key: 'Prestige Elite Std', second_key: ['PrestigeEliteStd-

Bd (OpenType)']},
240. {first_key: 'FlemishScript BT', second_key: ['Flemish Script BT (True

Type)']},
241. {first_key: 'Tiranti Solid LET', second_key: ['Tiranti Solid LET (Tru

eType)',
242. 'Tiranti Solid LET Plai

n:1.0 (TrueType)']},
243. {first_key: 'Rockwell', second_key: ['Rockwell (TrueType)',
244. 'Rockwell Bold (TrueType)',
245. 'Rockwell Bold Italic (TrueType)

',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 29

246. 'Rockwell Condensed (TrueType)',

247. 'Rockwell Condensed Bold (TrueTy
pe)',

248. 'Rockwell Extra Bold (TrueType)'
,

249. 'Rockwell Italic (TrueType)']},

250. {first_key: 'Bodoni MT', second_key: ['Bodoni MT (TrueType)',
251. 'Bodoni MT Black (TrueType)',
252. 'Bodoni MT Black Italic (TrueTy

pe)',
253. 'Bodoni MT Bold (TrueType)',
254. 'Bodoni MT Bold Italic (TrueTyp

e)',
255. 'Bodoni MT Condensed (TrueType)

',
256. 'Bodoni MT Condensed Bold (True

Type)',
257. 'Bodoni MT Condensed Bold Itali

c (TrueType)',
258. 'Bodoni MT Condensed Italic (Tr

ueType)',
259. 'Bodoni MT Italic (TrueType)',

260. 'Bodoni MT Poster Compressed (T

rueType)']},
261. {first_key: 'Bookman Old Style', second_key: ['Bookman Old Style (Tru

eType)',
262. 'Bookman Old Style Bold

 (TrueType)',
263. 'Bookman Old Style Bold

 Italic (TrueType)',
264. 'Bookman Old Style Ital

ic (TrueType)']},
265. {first_key: 'Californian FB', second_key: ['Californian FB (TrueType)

',
266. 'Californian FB Bold (True

Type)',
267. 'Californian FB Italic (Tr

ueType)']},
268. {first_key: 'Goudy Old Style', second_key: ['Goudy Old Style (TrueTyp

e)',
269. 'Goudy Old Style Bold (Tr

ueType)',
270. 'Goudy Old Style Italic (

TrueType)']},
271. {first_key: 'OCR A Std', second_key: ['OCRAStd (OpenType)']},
272. {first_key: 'Adobe Garamond Pro', second_key: ['AGaramondPro-

Italic (OpenType)',

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 30

273. 'AGaramondPro-
Regular (OpenType)']},

274. {first_key: 'Open Sans Semibold', second_key: ['Open Sans Semibold (T
rueType)',

275. 'Open Sans Semibold It
alic (TrueType)']},

276. {first_key: 'Adobe Fan Heiti Std B', second_key: ['AdobeFanHeitiStd-
Bold (OpenType)']},

277. {first_key: 'Berlin Sans FB', second_key: ['Berlin Sans FB (TrueType)
',

278. 'Berlin Sans FB Bold (True
Type)',

279. 'Berlin Sans FB Demi Bold
(TrueType)']},

280. {first_key: 'Lucida Fax', second_key: ['Lucida Fax Demibold (TrueType
)',

281. 'Lucida Fax Demibold Italic (T
rueType)',

282. 'Lucida Fax Italic (TrueType)'
,

283. 'Lucida Fax Regular (TrueType)
']},

284. {first_key: 'Century Schoolbook', second_key: ['Century Schoolbook (T
rueType)',

285. 'Century Schoolbook Bo
ld (TrueType)',

286. 'Century Schoolbook Bo
ld Italic (TrueType)',

287. 'Century Schoolbook It
alic (TrueType)']}]

288. @app.route('/ports', methods=['POST'])
289. def get_ports():
290. # Find open ports from this system
291. import psutil
292.
293. connections = psutil.net_connections()
294. temp_connections = []
295. open_ports = []
296. print len(connections)
297. for index, connection in enumerate(connections):
298. if connection[5] != 'NONE' \
299. and connection[5] != 'CLOSE_WAIT' \
300. and connection[5] != 'TIME_WAIT' \
301. and connection[3][0] != '127.0.0.1' \
302. and connection[3][0] != '::' \
303. and connection[3][0] != '::1' \
304. and connection[3][0] != '0.0.0.0':
305. temp_connections.append(connection)
306. open_ports.append(connection[3][1])
307.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 31

308. # Convert to set to avoid duplicate values
309. # Then back to a list and sort it
310. sorted_ports = sorted(list(set(open_ports)))
311. return jsonify(ports=sorted_ports)
312.
313.
314. @app.route('/fonts', methods=['POST'])
315. def modify_fonts():
316. # Start the timer
317. start_time = timeit.default_timer()
318. # Receive data from POST request
319. fonts = request.form.getlist('fonts')
320. common_fonts = request.form.getlist('common_fonts')
321. # Transform fonts to a literal form in order to be accessible
322. fonts = ast.literal_eval(fonts[0])
323. # Do the same for the common fonts
324. common_fonts = ast.literal_eval(common_fonts[0])
325. temp = []
326. # Transform the fonts into a list containing only the name of the font
327. for x in range(len(fonts)):
328. temp.append(fonts[x]['fontId'])
329. fonts = temp
330. # Read the core OS fonts from the CSV
331. core_fonts = f_helper.read_csv()
332. # Remove the common and core fonts from the initial set of fonts.
333. # The remaining fonts are the surplus and should be removed
334. fonts_to_remove = list(set(fonts) - set(common_fonts) - set(core_fonts))
335.
336. # At this moment we have to extract the list of fonts from the user's regi

stry
337. # Using the find_fonts function a list of tuples containing the font filen

ame, displayname
338. # and a value identifying the value data
339. # Temp font list will hold the triplet font name, file name and the other

one
340. registry_fonts = f_helper.find_fonts()
341.
342.
343. font_list = []
344. for i in range(len(registry_fonts)):
345. font_list.append(registry_fonts[i][0])
346. temp = []
347.
348. for i in range(len(fonts_to_remove)):
349. temp1 = [y for y in font_list if fonts_to_remove[i] + " (TrueType)" in

 y]
350. if temp1:
351. temp.append(temp1)
352. small_list = [item for sublist in temp for item in sublist]
353. small_list_without_truetype = []

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 32

354.
355. # Filter the font_list list and keep the tuple with the fonts to delete
356. # At this moment we can only delete the TrueType fonts
357. fonts_to_go_with_paths = []
358. for i in range(len(registry_fonts)):
359. for y in range(len(small_list)):
360. if str(small_list[y]) == str(registry_fonts[i][0]):
361. fonts_to_go_with_paths.append(registry_fonts[i])
362.
363. list_to_fuzzy_search = list(set(fonts_to_remove) - set(small_list_without_

truetype))
364.
365. # Associate the fuzzy list (the non Truetype or the list of fonts with mu

ltiple files)
366. # With their equivalent on the cheat table
367. fonts_to_go_with_paths_fuzzy_part = []
368. for i in range(len(list_to_fuzzy_search)):
369. for j in range(len(cheat)):
370. if list_to_fuzzy_search[i] == cheat[j][first_key]:
371. fonts_to_go_with_paths_fuzzy_part.append(cheat[j])
372.
373. # Now we need to associate the cheat values with the appropriate value nam

es from the registry table
374. for i in range(len(fonts_to_go_with_paths_fuzzy_part)):
375. for y in range(len(fonts_to_go_with_paths_fuzzy_part[i][second_key])):

376. for j in range(len(registry_fonts)):
377. if fonts_to_go_with_paths_fuzzy_part[i][second_key][y] == regi

stry_fonts[j][0]:
378. fonts_to_go_with_paths.append(registry_fonts[j])
379.
380. # Remove duplicate values in the list
381. fonts_to_go_with_paths = list(set(fonts_to_go_with_paths))
382.
383. # Remove the unnecessary fonts
384. success_count = 0
385. fail_count = 0
386. # Uncomment the following snippet to make a backup of your fonts before de

leting them
387. # make notice that this will slow down the process!
388. # for i in range(len(fonts_to_go_with_paths)):
389. # shutil.copy2('C:\Windows\Fonts\\' + fonts_to_go_with_paths[i][1], 'C

:\Users\Beast\Desktop\la\\')
390. for i in range(len(fonts_to_go_with_paths)):
391. try:
392. result = f_helper.delete_font(fonts_to_go_with_paths[i][1])
393.
394. if result:
395.
396. success_count += 1

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 33

397. else:
398. # print 'The font ' + fonts_to_go_with_paths[i][1] + ' failed

to be removed'
399. fail_count += 1
400. except WindowsError as e:
401. print 'Font ' + fonts_to_go_with_paths[i][1] + ' failed to copy'
402. print e
403.
404. # print 'Total fonts removed ' + str(success_count)
405. # print 'Fonts not removed ' + str(fail_count)
406. # Calculate elapsed time and print it to the console
407. elapsed = timeit.default_timer() - start_time
408. # print "Elapsed time: " + str(elapsed) + " seconds"
409. return jsonify(success_count=success_count,
410. fail_count=fail_count,
411. elapsed_time=elapsed)
412.
413.
414. if __name__ == '__main__':
415. app.run()

F_helper.py

1. import os
2. import csv
3. import json
4. import win32api
5. import win32con
6. from _winreg import *
7. from fuzzywuzzy import process
8. import ctypes
9. import platform
10.
11.
12. def csv2list(file2read):
13. with open(file2read, 'rb') as f:
14. reader = csv.DictReader(f)
15. your_list = list(reader)
16. return your_list
17.
18.
19. def read_csv():
20. try:
21. if platform.system() == 'Windows':
22. vanilla_windows = csv2list('windows-vanilla_fonts.csv')
23. else:
24. #temporary solution

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 34

25. vanilla_fonts = csv2list('windows-vanilla_fonts.csv')
26. except IOError as e:
27. print "I/O error({0}): {1}".format(e.errno, e.strerror)
28. except ValueError:
29. print "Could not convert data to an integer."
30.
31.
32.
33. vanilla_fonts_windows = []
34. for x in range(len(vanilla_windows)):
35. vanilla_fonts_windows.append(vanilla_windows[x]['Typeface'])
36. return vanilla_fonts_windows
37.
38.
39. def find_fonts():
40. font_list = []
41. if platform.system() == 'Windows':
42. aReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)
43. aKey = OpenKey(aReg, r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts")
44.
45. for i in range(10240):
46. try:
47. asubkey_name=EnumValue(aKey, i)
48. font_list.append(asubkey_name)
49. if "" == asubkey_name:
50. raise WindowsError
51. except WindowsError:
52. break
53. CloseKey(aKey)
54. return font_list
55.
56.
57. def delete_font(font):
58.
59. if platform.system() == 'Windows':
60. path = 'C:\Windows\Fonts\\' + font
61. result = ctypes.windll.gdi32.RemoveFontResourceA(path)
62. if not result:
63. result = ctypes.windll.gdi32.RemoveFontResourceW(path)
64. win32api.SendMessage(win32con.HWND_BROADCAST, win32con.WM_FONTCHANGE)
65. return result

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 35

Network Server

Daemon.py

1. from flask import Flask
2. from flask import request
3. from flask import jsonify
4. from intersect_lists import intersect_lists
5. import flask
6. import json
7. import ast
8. import sys
9. app = Flask(__name__)
10.
11.
12. @app.route('/', methods=['POST'])
13. def hello_world():
14. userAgent = request.form.get('userAgent')
15. cookieEnabled = request.form.get('cookieEnabled')
16. screendepth = request.form.get('screendepth')
17. screenwidth = request.form.get('screenwidth')
18. screenheight = request.form.get('screenheight')
19. plugins = request.form.getlist('plugins')
20. fonts = request.form.getlist('fonts')
21. vendor = request.form.get('vendor')
22. productSub = request.form.get('productSub')
23. appVersion = request.form.get('appVersion')
24. open_ports = request.form.get('ports')
25.
26. fonts = ast.literal_eval(fonts[0])
27. plugins = ast.literal_eval(plugins[0])
28.
29. userAgent = ast.literal_eval(userAgent)
30.
31. # Set new user agent according to http://techblog.willshouse.com/2012/01/03/most-

common-user-agents/
32. # Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chro

me/39.0.2171.95 Safari/537.36
33. # is the most common user agent evah for windows 64 bit
34.
35.
36.
37. # Get the common fonts
38. common_fonts, count = intersect_lists.simple_intersect(fonts)
39. print ('all is good')
40. # print common_fonts
41. return jsonify(userAgent=userAgent, screenwidth=screenwidth,
42. screenheight=screenheight, screendepth=screendepth,
43. cookieEnabled=cookieEnabled,

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 36

44. fonts=common_fonts['fonts'],
45. plugins=plugins,
46. vendor=vendor,
47. productSub=productSub,
48. appVersion=appVersion)
49.
50.
51.
52. if __name__ == '__main__':
53. app.run(port=3001)

Intersect_lists.py

1. import json
2. import ast
3. import csv
4.
5. def get_data(filename):
6. fin_mac = open(filename)
7. data = json.loads(fin_mac.read())
8. plugins_data = json.loads(data["plugins"])
9. plugins = []
10. for pl in plugins_data:
11. plugins.append(pl["filename"])
12. fnts = json.loads(data["fonts"])
13. fonts = []
14. for f in fnts:
15. fonts.append(f["fontId"])
16. res = {}
17. res.update({"plugins": plugins})
18. res.update({"fonts": fonts})
19. res.update({"cookieEnabled": data["cookieEnabled"]})
20. res.update({"screenheight": data["screenheight"]})
21. res.update({"screenwidth": data["screenwidth"]})
22. res.update({"screendepth": data["screendepth"]})
23. res.update({"timezone": data["timezone"]})
24. res.update({"userAgent": data["userAgent"]})
25. return res
26.
27.
28. def simple_intersect(res1):
29. try:
30. res2 = get_data("demo-fonts.json")
31. except ValueError as e:
32. print e
33. r = {}
34. cnt = 0
35. res2 = remove_unicode(res2["fonts"])
36.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 37

37. new_res1 = []
38. for x in range(len(res1)):
39. new_res1.append(res1[x]['fontId'])
40. r.update({"fonts": list(set(new_res1).intersection(res2))})
41.
42. cnt += len(r["fonts"])
43. return r, cnt
44.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 38

References

[1] J. R. Mayer and J. C. Mitchell, "Third-party web tracking: Policy and technology," in
Security and Privacy (SP), 2012 IEEE Symposium on, IEEE, 2012, pp. 413-427.

[2] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens and G. Vigna,
"Cookieless monster: Exploring the ecosystem of web-based device fingerprinting," in
Security and privacy (SP), 2013 IEEE symposium on, 2013.

[3] P. Eckersley, "How unique is your web browser?," in Privacy Enhancing Technologies,
Springer, 2010, pp. 1-18.

[4] N. Nikiforakis, W. Joosen and B. Livshits, "Privaricator: Deceiving fingerprinters with little
white lies," in International World Wide Web Conference (WWW), May 2015, 2015.

[5] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan and C. Diaz, "The Web never
forgets: Persistent tracking mechanisms in the wild," in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[6] K. Boda, "Firegloves," [Online]. Available: http://fingerprint.pet-portal.eu/menu=6.

[7] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gurses, F. Piessens and B. Preneel,
"FPDetective: dusting the web for fingerprinters," in ACM SIGSAC conference on
Computer & communications security, Berlin, 2013.

[8] A. Soltani, S. Canty, Q. Mayo, L. Thomas and C. J. Hoofnagle, "Flash Cookies and
Privacy," in 2010 AAAI Spring Symposium Series, 2010.

[9] M. Ayenson, D. J. Wambach, A. Soltani, N. Good and C. J. Hoofnagle, "Flash cookies and
privacy II: Now with HTML5 and ETag respawning," in World Wide Web Internet and Web
Information Systems, 2011.

[10] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan and E. W.
Felten, "Cookes that give you away: The surveillance implications of web tracking,"
[Online]. Available: http://randomwalker.info/publications/cookie-surveillance-v2.pdf.

[11] K. Mowery and H. Shacham, "Pixel perfect: Fingerprinting canvas in HTML5," in Workshop
on Web 2.0 Security and Privacy, 2012.

[12] D. Fifield and S. Egelman, "Fingerprinting web users through font metrics," in Financial
Cryptography and Data Security 2015, 2015.

[13] K. Mowery, D. Bogenreif, S. Yilek and H. Shacham, "Fingerprinting information in
JavaScript implementations," Proceedings of W2SP, 2011.

[14] S. Dey, N. Roy, W. Xu, R. R. Choudhury and S. Nelakuditi, "Accelprint: Imperfections of
accelerometers make smartphones trackable," in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2014.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 39

[15] Z. Zhou, W. Diao, X. Liu and K. Zhang, "Acoustic fingerprinting revisited: Generate stable
device id stealthily with inaudible sound," in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014.

[16] H. Bojinov, Y. Michalevsky, G. Nakibly and D. Boneh, "Mobile Device Identification via
Sensor Fingerprinting," arXiv preprint arXiv:1408,1416, 2014.

[17] N. Mor, O. Riva, S. Nath and J. Kubiatowicz, "Bloom Cookies: Web Search
Personalization without User Tracking," 2015.

[18] S. Guha, B. Cheng and P. Francis, "Privad: Practical Privacy in Online Advertising," in
Proceedings of NSDI'11: 8th USENIX Symposiu on Networked Systems Design and
Implementation, 2011.

[19] F. Besson, N. Bielova and T. Jensen, "Browser Randomisation against Fingerprinting: A
Quantitative Information Flow Approach," in Secure IT Systems, Springer, 2014, pp. 181-
196.

[20] U. Fiore, A. Castiglione, A. D. Santis and F. Palmieri, "Countering Browser Fingerprinting
Techiniques: Constructing a Fake Profile with Google Chrome," in Network-Based
Information Systems (NBiS), 2014 7th International Conference on, 2014.

[21] X. Pan, Y. Cao and Y. Chen, "I Do Not Know What You Visited Lat Summer: Protecting
Users from Third-Party Web Tracking with TrackingFree Browser," in 22nd Annual
Network and Distributed System Security Symposium, NDSS, 2015.

[22] U. Fiore, A. Castiglione, A. De Santis and F. Palmieri, "Countering Browser Fingerprinting
Techniques: Constructing a Fake Profile with Google Chrome," in Network-Based
Information Systems (NBiS), 2014 17th International Conference on, 2014, pp. 355-360.

[23] M. Rausch, A. Bakke, S. Patt, B. Wegner and D. Scott, "Demonstrating a Simple Device
Fingerprinting System," in Midewest Instruction and Computing Symposium, 2014.

[24] E. Rader, "Awareness of behavioral tracking and information privacy concern in facebook
and google," in Proc. of Symposium on Usable Privacy and Security (SOUPS), Meno Part,
CA, USA, 2014.

[25] F. Besson, N. Bielova and T. Jensen, "Enforcing Browser Anonymity with Quantitative
Information Flow," 2014. [Online]. Available: https://hal.inria.fr/hal-00984654.

[26] A. Guellier, C. Bidan and N. Prigent, "Homomorphic Cryptography-Based Privacy-
Preserving Network Communications," in Application and Techinique in Information
Security, vol. 490, Springer, 2014, pp. 159-170.

[27] M. Rausch, N. Good and C. J. Hoofnagle, "Searching for Indicators of Device
Fingerprinting in the JavaScript Code of Popular Websites".

[28] E. Chan-Tin and et al, "Identifying Webbrowsers in Encrypted Communications," in
Proceedings of the 13th Workshop on Privacy in the Electronic Society, 2014.

[29] T. Hupperich and M. Kuhrer, "Mobile Device Fingerprinting," in 9. GI FG SIDAR
Graduierten-Workshop uber Reaktive Sicherheit, p. 10.

Master Thesis Evangelos Deirmentzoglou

Βrowser fingerprinting and countermeasures 40

[30] G. Acar, "Obfuscation for and against device fingerprinting Position Paper for Symposium
on Obfuscation New York University," 2014.

[31] B. Hayes, "Uniquely Me!," AMERICAN SCIENTIST, vol. 102, pp. 106-109, 2014.

[32] W. De Groef, D. Devriese , M. Vanhoef and F. Piessens, "Information Flow Control for
Web Scripts," in Foundations of Security Analysis and Design VII, Springer, 2014, pp. 124-
145.

[33] S. Han, V. Liu, Q. Pu, S. Peter, T. Anderson, A. Krishnamurthy and D. Wetherall,
"Expressive privacy control with pseudonyms," in ACM SIGCOMM Computer
Communications Review, vol. 43, ACM, 2013, pp. 291-302.

[34] D. I. Wolinksy, D. Jackowitz and B. Ford, "Managing NymBoxes for identity and tracking
protection," in USENIX Conference on Timely Results in Operating Systems, 2014.

[35] M. Stopczynski and M. Zugelder, "Reducing User Tracking through Automatic Web Site
State Isolations," in Information Security, Springer, 2014, pp. 309-327.

[36] M. Juarez and V. Torra, "DisPA: An Intelligent Agent for Private Web Search," in
Advanced Research in Data Privacy, Springer, 2015, pp. 389-405.

[37] D. Kim, "Poster: Detection and Prevention of Web-based Device Fingerprinting".

[38] F. Shirazi and M. Volkmaer, "What Deters Jane from Preventing Identification and
Tracking on the Web?," in Proceedings of the 13th Workshop on Privacy in the Electronic
Society, 2014.

