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Introduction 
 
 

The past thirty years, a large literature has been developed to explain 

how we can represent trends in macroeconomic time series models, such as 

GNP. Until the late 70’s it was common to simply fit a linear trend to the 

logarithm of the series, and then define the stochastic part of the time series 

as deviations from this trend. Working in this sense, macroeconomists 

routinely detrended data, and regarded business cycles as the stationery 

deviation about that trend or, as it was wisely accepted, short-run deviations 

from the trend. However, the permanence of the shocks, led them to question 

this time-honored assumption and start wonder whether these shocks 

resemble the permanent shocks of a random walk. This new approach 

motivated Nelson and Plosser to test macroeconomic series for unit roots 

and in their seminal paper in 1982 they found that they could not reject the 

random walk hypothesis in most of them. 

Throughout these years, financial economists got interested in the 

question of whether stock price and exchange rates movements are less than 

perfect random walks. It turns out that the same techniques that are good for 

quantifying how much macroeconomic series behave like random walks are 

useful for quantifying the extent to which stock price movements and 

exchange rates follow a random walk or not. This approach motivated some 

authors to consider these techniques as convincing evidence of “efficient 

markets”, an approach most of them recognize now that it is not the case.  

On the other hand, all these new issues motivated econometricians to 

try to develop methods and tests in order to capture and explain the behavior 

of these series. Since a well established result is that autoregressive models 

are those which describe these series, and particularly those of order one 

(AR(1) models), the random walk hypothesis became of great interest. All of 
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these years, lot of different tests have arisen having as forefront the unit root 

tests by Dickey and Fuller (1976, 1979 and 1981). Related work was done 

by Evans and Savin (1981, 1984) and by Sargan and Bhargava (1983) and 

Bhargava (1986). Although their work was influential, the assumptions they 

used on the innovations that drives the model (either ),0( 2σiid  or ),0( 2σiidN ) 

were rather strong, leading to rather restrictive results. 

These strong assumptions were first relaxed by P. C. B. Phillips in 

1987. In his paper Phillips studied the random walk in a general time series 

setting that allows for weakly dependent and heterogeneously distributed 

innovations. Phillips’s work, and the framework for testing the unit root 

hypothesis he developed in collaboration with Perron, has proven to be very 

influential to econometricians and it is very important for the purpose of this 

paper. 

In this paper we will attempt to apply a new test, developed by 

Kourogenis and Pittis, on several time series, such as stock indexes and 

exchange rates, a test that is characterized by an even general setting. 

Moreover, it extends the theory developed by Phillips to include cases where 

the variance grows without limit in a polynomial fashion. In particular they 

relax the restrictive assumption that tu  are all bounded, that is ∞p
β

tt uEsup  

for some β>2, thus precluding trending moments. What is interesting about 

this test is that it embodies the Phillips-Perron traditional test as a special 

case.  

The discussion that follows is organized in four parts: In the first part, 

we analyze the probabilistic structure of autoregressive models, and 

particular those of order one, which host the random walk models as a 

special case. In the second part, we examine some of the important 

properties of random walk models and we display the difference between 

them and the stable autoregressive ones. The third part is divided into two 
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parts: In the first part we give an explicit citation of unit root tests; especially 

the Phillips-Perron framework is given a special treat and in the second part 

the new test is presented in detail. Finally, in the fourth path we present the 

methodology that was used in the implementation of the test and the results 

from it. The details about the data and the rundown of the results can be 

found in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4

PART 1 
 
1.Introduction to the Probabilistic Theory of AR(p) Models 

 
 
 
The main objective of this chapter is to define and explain the theory 

that underlies autoregressive models; particularly the discussion will refer to 

the restrictions of dependence and heterogeneity needed to specify such 

statistical models. Moreover the probabilistic structure will be discussed in 

relation to the three basic categories of probabilistic assumptions:  

1. Distribution 

2. Dependence 

3. Homogeneity 

 

 1.1 Distribution 

 

Consider a stochastic process { },tY t T∈  whose joint distribution  

1 2( , ,..., ; )nf y y y ϕ  for any finite collection 1 2( , ,..., )nY Y Y  is Normal, i.e. 
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is said to be a Normal (or Gaussian) process. That is, the only definitional 

characteristic is the distribution assumption of Normality. At this point it is 

essential to add that the Normality assumption is being done to simplify our 

discussion. Later this assumption will be waved off. 
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1.2 Dependence 

 

From basic probability theory we know that without any restrictions 

on the dependence and heterogeneity of this process no operational model is 

possible. The only possible reduction of the joint distribution is the one 

based on sequential conditioning: 

1 2 1 1 1 1 1
2

( , ,... ; ) ( ; ) ( ,..., ; ),
nnon IID

n k k k
k

f y y y f y f y y y κφ ψ ψ
−

−
=

= ∏  for all .ny R∈ .ny R∈  

 

with the conditional distributions being Normal. The autoregressive and 

autoskedastic functions take the form: 

 

1 0( ( ,..., )) ( )k kE Y Y Y kσ β= +
1

1

( )
k

k i
i

k Yιβ
−

−
=
∑ , k=2,3,…,n 

2
1 0( ( ,..., )) ( )k kVar Y Y Y kσ σ= , k=2,3,…,n 

 

This however, does not give rise to an operational model because the 

overparameterization problem remains: the number of unknown parameters 

in  { }1 2, ,..., nψ ψ ψ  is the same as those in φ (and increasing with n).  

As it is well known, the way to deal with both problems, the 

increasing conditioning information set and the overparametrization, is to 

impose some restrictions on the dependence and heterogeneity of the set of 

random variables 1 2( , ,..., )nY Y Y .  

Firstly we will pursue this line of argument by imposing Markov 

dependence without any restrictions on heterogeneity in order to bring out 

the role of each set of restrictions and then proceed to impose Markovness 

and stationarity to derive the family of the models of interest, that is 

autoregressive models. 
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The Markov dependence (first order dependence) when applied to the 

only possible reduction of the joint distribution, the sequential conditioning, 

yields: 

 

1 2 1 1 1 1
2

( , ,... ; ) ( ; ) ( ; ),
nMarkov

n k k k
k

f y y y f y f y y κφ ψ ψ−
=

= ∏  for all .ny R∈ .ny R∈  

 

That is the dependence structure between kY  and  ( )1 1,...,kY Y−  is fully captured 

by its conditional distribution given its most recent past 1kY − . It is very 

important to emphasize that Markovness does not involve any heterogeneity 

restrictions. Therefore, under the Normality assumptions the first two 

stochastic conditional moments take the form: 

 

1 1 0 1 1( ( ,..., )) ( ) ( )k k kE Y Y Y a k a k Yσ − −= + , k=2,3,…,n 

2
1 1 0( ( ,..., )) ( )k kVar Y Y Y kσ σ− = , k=2,3,…,n 

 

  If we compare these moments with the unrestricted ones we can see 

that the Markov dependence assumptions deals with the problem of 

increasing conditioning information set but the parameters still remain index 

dependent. In order to deal with the last problem we need to impose some 

restrictions on the heterogeneity of the process. 
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 1.3 Heterogeneity – Three Different Assumptions 

 

This category is the most important of all three, because the models 

which derive under certain assumptions on the heterogeneity of the process 

are those of interest to the purpose of this paper. Univariate autoregressive 

models with characteristics like stationarity, first order non-stationarity and 

unit root non-stationarity are nothing but models with different assumptions 

on the heterogeneity of the process.  

The first restriction on heterogeneity that we are going to deal with is 

that of second-order stationarity (Normality and Markovness are still on). 

The joint distribution under this assumption takes the following form: 

 

 1 2 1 1 1 1
2

( , ,... ; ) ( ; ) ( ; )
nMarkov

n k k k
k

f y y y f y f y y κφ ψ ψ−
=

= ∏  1 1 1 1
2

( ; ) ( ; )
nStationary

k k k
k

f y f y yψ ψ−
=

= ∏  

 

Roughly speaking, stationarity deals with the overparametrization problem 

and Markovness with the increasing information set. It is easy to see that by 

supplementing these assumptions with some distribution assumption, such as 

Normality, the above decomposition gives rise to operational models. 

Under these assumptions we can concentrate only on a bivariate joint 

distribution. Therefore we have: 

 

 

 

where ( ) ,tE Y tµ= ∀     ( ) (0),tVar Y tσ= ∀   1( , ) (1)t tCov Y Y σ− =  free of t. 

 

By the properties of the binomial Normal distribution it is easy to 

calculate the conditional moments which are:  
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1 1 0 1 1( ( ,..., ))t t tE Y Y Y a a Yσ − −= +  

2
1 1( ( ,..., ))t tVar Y Y Yσ σ− =  

 

where   0 1 1(1 )a a aµ µ µ= − = −   and    1
(1) 1(0)a σ

σ= p  

 

Thus, when we have a process with the structure defined above, the model 

that we construct is an AR(1) model which is stationary and homoskedastic: 

 

AR(1):  0 1 1t t ty a a y u−= + +   with  2
1 1( ( ,..., ))t tVar Y Y Yσ σ− = . 

 

The next step that we are going to make is to change the assumption 

on heterogeneity. We relax the assumption of stationarity but not arbitrarily. 

We are going to assume first order non-stationarity which means that the 

unconditional mean depends on the index in the following form: 

 

( ) ,tE Y t tµ= ∀  

Therefore the process becomes: 
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where ( ) ,tE Y t tµ= ∀ , ( ) (0),tVar Y tσ= ∀ , 1( , ) (1)t tCov Y Y σ− =  free of t. 

 

As before the conditional moments are: 

1 1 0 1 1 1( ( ,..., ))t t tE Y Y Y t a Yσ δ δ− −= + +  

2
1 1( ( ,..., ))t tVar Y Y Yσ σ− =  

where  0 1δ α µ= ,  1 1(1 )δ µ α= −  and  1
(1) 1(0)a σ

σ= p  
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Thus, when we have a process with the structure defined above, the model 

that we construct is an AR(1) model which is first order non-stationary and 

homoskedastic: 

 

AR(1):  0 1 1 1t t ty t a y uδ δ −= + + +   with  2
1 1( ( ,..., ))t tVar Y Y Yσ σ− =  

 

The last heterogeneity assumption that we are going to analyze is that 

of separable non-stationarity. This is the most important assumption of all, 

because the unit root non-stationarity is a special case of this kind of 

heterogeneity. Thus the process under this assumption becomes: 

 

1
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t
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where ( ) ,tE Y t tµ= ∀ , ( ) (0) ,tVar Y t tσ= ∀ , 1( , ) (1)( 1),t tCov Y Y t tσ− = − ∀ . 

 

As before the conditional moments are: 

 

1 1 0 1 1 1( ( ,..., ))t t tE Y Y Y t a Yσ δ δ− −= + +  

1 1 0 1( ( ,..., ))t tVar Y Y Y tσ κ κ− = +   
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The above model under the unit root assumption, that is 

1 1 (0) (1)a σ σ= ⇒ = , takes the following form regarding its conditional 

moments:  

1 1 0 1( ( ,..., ))t t tE Y Y Y Yσ δ− −= +  

1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

where 0δ µ= , 0 (1)κ σ=  

 

Thus, when we have a process with the structure defined above, the model 

that we construct is an AR(1) model which is unit root non-stationary: 

 

AR(1):  0 1t t ty y uδ −= + +   with  1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

 

3.4 The Unit Root Case 

 

What it is important from this analysis is that the two last models:  

AR(1):  0 1 1 1t t ty t a y uδ δ −= + + +   with  2
1 1( ( ,..., ))t tVar Y Y Yσ σ− =  

AR(1):  0 1t t ty y uδ −= + +   with  1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

are both efficient to describe stochastic processes like the movement of the 

GDP: 
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In the case where 0µ = , the driftless case, the models become:  

 

AR(1):  1 1t t ty a y u−= +   with  2
1 1( ( ,..., ))t tVar Y Y Yσ σ− =  

AR(1):  1t t ty y u−= +   with  1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

 

Once again, the above models are efficient to describe stochastic processes 

like the movement of exchange rates: 

 
The US/UK exchange rate 

 

0.8

1.2

1.6

2.0

2.4

2.8

2500 5000 7500 
D E X U S U K

 
 

  Which of these models qualify to describe better the process will be 

decided by unit root tests which we are going to analyze later. 

 

Remark: The results derived above can be easily extended to the case 

where we replace Markov dependence with pth order Markov dependence 

giving rise to autoregressive models of order p, that is AR(p). These models 

though are out of the scope of this paper and therefore will not be analyzed.  
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PART 2 

 
Random Walks 

 
 
2. A General Discussion on Random Walks 

 
 

In the previous chapter we were introduced in the probabilistic 

structure of univariate autoregressive models. We saw that a stochastic 

process, like the GDP time series, can be described by two models, one of 

which is: 

AR(1):  0 1t t ty y uδ −= + +   with  1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

 

The above AR(1) model is called a random walk with a drift when 

0 0δ ≠  and a simple random walk when 0 0δ = . The later case, that is the 

AR(1) model:   

 

AR(1):  1t t ty y u−= +   with  1 1 0( ( ,..., ))t tVar Y Y Yσ κ− =  

 

is the one of interest for this paper.  

 

The simple random walk, as we saw earlier, is a model that 

describes very common phenomena in economics such as stock prices 

movements and foreign exchange rates. For example:  
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The US/UK exchange rate 
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Therefore, it is important to analyze the properties of these processes 

in order to establish a point of the importance of unit root tests.  

 

2.1 Properties of Random Walks 

 
 Random walks have a number of interesting properties: 

 

1. The impulse response function of a random walk is one at all 

horizons, while the impulse response function of a stationary process 

dies out eventually. 

 

The impulse response function is a path that  ty  follows if it is 

kicked by a single unit shock, i.e. 0t ju − = , 1tu = ,  0t ju + = . This function is 

interesting for several reasons. First, is another characterization of our 

models and second, and more importantly, it allows us to start thinking 

about “causes and effects”. For example, you might compute the response 

of GNP to a shock in money in a GNP-M1 VAR and interpret the result 

as the “effect” on GNP of monetary policy. To illustrate this consider the 

following table which depicts the impulse response function of a AR(1): 
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The model is: 

AR(1):  1t t ty y uρ −= +  or 
0

j
t t j

j
y uρ

∞

−
=

= ∑  (the ( )MA ∞  representation of ty ) 

 

 The impulse response function is: 

 

T t-2 t-1 t t+1 t+2 t+3 t+4 

tu  0 0 1 0 0 0 0 

ty  0 0 1 ρ  2ρ  3ρ  … 

 

It is obvious that when the true model is 1t t ty y uρ −= +  with 1ρ p  a 

single unit shock would have transitory effects on the process. 

On the other hand, when the true model becomes 1t t ty y u−= + , that 

is 1ρ = , the impulse response function becomes:    

 

T t-2 t-1 t t+1 t+2 t+3 t+4 

tu  0 0 1 0 0 0 0 

ty  0 0 1 1 1 1 … 

 

and it obvious that a single unit shock would have permanent effects on 

the process. 

Therefore we can understand how important is to distinguish 

between the random walk hypothesis and its stationary alternative 

returning to the previous example, that is a change in monetary policy 

could have a transitory or permanent effect on real output. 
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2. The forecast variance of a random walk grows linearly with the 

forecast horizon 2var( ) var( )t k t t k t uy y y y kσ+ += − =  to infinity, while the 

forecast variance of a stationary process converges to the 

unconditional variance. 

 

One of the most interesting things to do with an AR is form 

predictions of the variable given its past, i.e. we want to know what is the 

conditional expectation of t ky +  given the past values of ty  and tu : 

 

1 2 1( ) ( , , ,... , ,...)t t k t k t t t t tE y E y y y y u u+ + − − −≡  

 

We also want to know how certain we are about the predictions, which 

we can quantify with   

 

1 2 1var ( ) var( , , ,... , ,...)t t k t k t t t t ty y y y y u u+ + − − −≡  

 

For the AR(1) model 1t t ty y uρ −= + , we have: 

 

( )t t k tE y yκρ+ =  
2 4 2( 1) 2var ( ) (1 ... )t t k uy κρ ρ ρ σ+

+ = + + + +  

 

Under stationarity, that is 1ρ p , as k ↑ ∞  we have: 

 

( ) 0 ( )t t k tE y E y+ → =  and  2 2 2
2

0

1var ( ) var( )
1

j
t t k u u t

j

y yρ σ σ
ρ

∞

+
=

= = =
−∑ , 
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while under the unit root hypothesis, 1ρ = , as k ↑ ∞   we have: 

 

( )t t k tE y y+ =  and var ( )t t ky + → ∞  

 

Once again, the tradeoff between stationary and unit root non-

stationary processes is obvious, a result that points out the importance of 

unit root tests. 

 

Remark: The conditional moments are forecast functions that have 

the minimum mean square error from any other forecast function. 

 

 

3. The autocovariances of a random walk aren’t defined, strictly 

speaking.  

 

We can see the above result in our AR(1) model 1t t ty y uρ −= + , if we 

consider it to be stable, that is 1ρ p . The autocovariance and 

autocorrelation function of our model given the fact that 1ρ p  are: 

 

2
21

k

k u
ρ

γ σ
ρ

=
−

,  k
kcorr ρ= , 0,1, 2,...k =  

It is obvious that when  1ρ =  the autocovariance function cannot be 

defined. However, we can think of the limit of an AR(1) model as the 

autoregression parameter ρ  goes to unity. Thus, a sign of a random walk 

is that all the estimated autocorrelations are near one, or die out “too 

slowly”. 
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4. The variance of a random walk is primarily due to low-frequency 

components; therefore the signature of a random walk is its tendency 

to wander around low frequencies. 

 

The spectral density function of the AR(1) process is: 

 
2 2

1 2 1( ) [1 exp( )][1 exp( )] [1 2 cos( )]
2 2

u u
Yh i iσ σ

ω ρ ω ρ ω ρ ρ ω
π π

− −= − − − = + −  

 

In the limit 1ρ →  we get: 
2

1( ) [1 cos( )]u
Yh σ

ω ω
π

−= −  

 

It is obvious that as 0ω → , ( )Yh ω → ∞  
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PART 3 
 

Tests for Unit Roots 

 
3.1 General Discussion 

 

The implications of unit roots in macroeconomic data are, at least 

potentially, profound. If a structural variable as real output, is truly I(1), 

then as we saw in the discussion before, shocks to it will have permanent 

effects. If confirmed, then this observation would mandate some rather 

serious reconsideration of the analysis of macroeconomic policy. For 

example, the argument that a change in monetary policy could have a 

transitory effect on real output would vanish.  

Therefore it is understandable that we have to be in a position 

where we can infer whether the series that is under examination is 

characterized by a unit root or not. For the purpose of the following 

discussion we will restrict ourselves to the zero mean AR(1) model with 

white noise innovations: 

 

    AR(1):  1t t ty y uρ −= +  where  2(0, )t uu iid σ  

 

What we will focus on how alternative values of ρ affect not only the 

behavior of { }ty but also the OLS estimator of ρ. 

 

The OLS estimator of ρ is:    
1

1

2

1

T

t t
t
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t
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y
ρ

−∧
=

=

=
∑

∑
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The properties of the OLS estimator depend to whether the real value of ρ is 

less or equal to unity. 

If the real value is less than unity then the estimator of ρ, OLSρ
∧

 is 

consistent and asymptotically Normal: 

 

2( ) (0,1 )a
OLST Nρ ρ ρ

∧

− → −  

 

The rate with which p
OLSρ ρ

∧

→  is of order T  (which is referred as the 

standard asymptotic) 

If the real value is equal to unity then things are completely different. 

In that case the random quantity ( 1) (0,0)a
OLST Nρ

∧

− → , a result that is 

useless for statistical inference. The reason of this bad result is the sequence 

T  which in the unit root case doesn’t work. The solution to this problem 

was given by Fuller (1976). Fuller replaced the standard asymptotic with the 

sequence T and concluded that:  

}{ 2

1 2

0

1 (1) 12( 1)
( )

a
OLS

w
T

w z dz
ρ
∧ −

− →
∫

 and 
}{

{ }

2

1 1/ 22

0

1 (1) 11 2
( )

a
T

w
t

w z dz
ρ

ρ

σ
Τ

∧

Τ
∧

−−
= →

∫
 

 

where w(z) is a Brownian Motion 

 

For the purpose of statistical inference the above distributions where 

calculated using the Monte Carlo simulation method by Fuller and Dickey 

and the critical values for it can be found in several textbooks. These results 

can be extended to include cases where we have non-zero mean and trend or 

both. The asymptotic distributions for these cases are reasonably different 

from the above distributions but we are not going to refer to them. 
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3.2 The Philips-Perron framework 

 
     The past few decades there have been considerable research in the 

random walk hypothesis (that is autoregressive models with a unit root) 

which resulted in the development of the distribution theory that is necessary 

to construct tests for checking such hypothesis.  

Investigations by Dickey and Fuller (1976, 1979 and 1981), Evans 

and Savin (1981, 1984) have been at the forefront of this research (a small 

part of this research we saw earlier). Related work on regression residuals 

has been done by Sargan and Bhargava (1983) and Bhargava (1986). All of 

this research has been confined to the case where the sequence of 

innovations driving the model is either ),0( 2σiid  or ),0( 2σiidN  

(independent and homoskedastic) which are rather strong assumptions 

in most empirical econometric work. 

These strong assumptions were first relaxed by P. C. B. Phillips in 

1987. In his paper Phillips studied the random walk in a general time series 

setting that allows for weakly dependent and heterogeneously distributed 

innovations. It was shown that simple least squares regression consistently 

estimates a unit root under very general conditions in spite of the presence of 

autocorrelated errors. The limiting distribution of the standardized estimator 

and the associated regression t-statistic are found using functional central 

limit theory. New tests are developed which permit a wide class of 

dependent and heterogeneous innovation sequences. A new limiting 

distribution theory is constructed based on the concept of continuous data 

recording. 

Phillips’s work has proven to be very influential to econometricians 

and it is very important for the purpose of this paper, therefore we will give 

an extensive citation of his work. 
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Let  ∞
=1}{ tty  be a stochastic process generated in discrete time 

according to: 

1. ttt uyy += −1ρ     (t=1,2,…) 

2. ρ =1 
 

Under the unit root assumption (2) our autoregressive model has the 

following representation: 

                       

    0ySy tt +=   where ∑
∞

=

=
1j

jt uS , { }tu is the innovations sequence and 0y  is 

the initial condition having three alternative forms as proposed by White 

(1958): 

 

3a.  cy =0    a constant, with probability one 

3b.  0y          has a certain specified distribution 

3c.  Tyy =0   where T = the sample size 

 

Equation (3c) is a circularity condition, due to Hotelling, that is used mainly 

as a mathematical device to simplify distribution theory. (3b) is a random 

initial condition that is frequently used to achieve stationarity in stable 

models. In this paper the condition that is used is (3b), which permits the 

greatest flexibility in the specification of the model. It allows for 

nonstationary series and includes (3a) as a special case, usually 0 0y = .   

At this point it is essential to display the limiting distribution of the 

standardized sums which will play an important role to the following 

discussion. Therefore we have:  
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        4a.    1][
11)( −== jTrT S
T

S
T

rX
σσ

,   ),...,2,1(,//)1( TjTjrTj =≤≤−    

       4b.   TT S
T

X
σ

1)1( =  

 

where [] denotes the integer part and σ is a certain constant defined later. 

 

Under certain conditions )(rX T , which is a random element in the function 

space ]1,0[D , can be shown to converge weekly to a limit process known as 

the standard Brownian motion or the Wiener process. 

That is: 

                    )()( rWrX L
T →  

 

This property is known as the functional central limit theorem (FCLT) 

Moreover,  ]1,0[)( CrW ∈  is a Gaussian process (for fixed r, W(r) is ),0( rN ) 

and has independent increments (W(s) is independent of W(r)-W(s) for all 

0 1s r ≤p p ). What is important to add at this point is that the conditions that  

)(rX T  converges to )(rW are very general and extend to a wide class of 

nonstationary, weakly dependent and heterogeneously distributed 

innovations sequences  ∞
1}{ tu . 

Returning back to the discussion about the unit root case we must be 

precise about the innovations sequence that drives the model. Therefore the 

following assumptions are made: 
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Assumptions: 

a) 0)( =tuE   for all t 

b) ∞p
β

tt uEsup   for some β>2 

c) )(lim 212
TT STE −

∞→=σ   exists and 02 fσ  

d) ∞
1}{ tu    is strong mixing with mixing coefficients mα  that satisfy 

      ∑
∞

− ∞
1

/21 pβαm  (d΄) 

 

These conditions allow for both temporal dependence and 

heteroskedasticity in the process ∞
1}{ tu . Especially condition (d) controls 

the extent of the temporal dependence in the process ∞
1}{ tu , so that, 

although there may be substantial dependence amongst recent events, 

events which are separated by long intervals of time are almost 

independent. In particular, the summability requirement (d΄) on the mixing 

coefficients is satisfied when the mixing decay rate is ( )ma O m λ−=  for some 

( 2)
βλ β −f . The same condition also controls the mixing decay rate in 

relation to the probability of outliers as determined by the moment existence 

condition (b). Thus, as β approaches 2 and the probability of outliers rises 

(under weakening moment condition (b)) the mixing decay rate increases 

and the effect of outliers is required under (d΄) to wear off more quickly. 

This tradeoff between moment and mixing conditions was first developed by 

McLeish (1975b) in the context of strong laws for dependent sequences. 

Condition (c) also controls the allowable heterogeneity in the process by 

ruling out unlimited growth in the βht absolute moments of { }tu . 

Condition (c) is a convergence condition on the average variance of 

the partial sum TS . It is a common requirement in much central limit theory 
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although it is not strictly a necessary condition. However if { }tu is weakly 

stationary, then 

2 2
1 1

2

( ) 2 ( )k
k

E u E u uσ
∞

=

= + ∑  

 

And the convergence of the series is implied by the mixing conditions (d΄)  

These assumptions allow for a wide variety of possible generating 

mechanisms for the sequence of innovations ∞
1}{ tu . These include all 

Gaussian and many stationary finite order ARMA models under very 

general conditions on the underlying errors. 

For following discussion we shall make extensive use of the following 

two results for the purpose of theoretical development. The first is a 

functional limit theorem that is due to Herrndorf, and the second is the 

continuous mapping theorem: 

 

• Lemma1: If ∞
1}{ tu  satisfies the above assumptions, then as T ↑ ∞   

)()( rWrX L
T → , a standard Wiener process on C 

• Lemma2: If  )()( rWrX L
T →  as T ↑ ∞  and h is any continuous 

functional on D (continuous, that is, except for at most a set of points 

hD D⊂  for which ( ) 0hP W D∈ = , then ( ) ( )L
Th X h W→ as T ↑ ∞ . 

 

Under these assumptions, Phillips developed the asymptotic 

distributions of the OLS estimators for both ρ  and the t-statistic. 

 

Furthermore the ordinary least squares (OLS) estimator of ρ  in (1) is:  

                        

∑∑ −−=
T

t

T

tt yyy
1

2
1

1
1ρ̂  
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Which appropriately centered and standardized is: 

 

                      ∑∑ −
−

−
− −=−

T

t

T

ttt yTyyyTT
1

2
1

2

1
1

1 )()1ˆ(ρ  

 

And the subsequent t-statistic of the regression is: 

 

                    syt
T

t )1ˆ(
2/1

1

2
1 −







= ∑ − ρρ      where     ∑ −

− −=
T

tt yyTs
1

2
1

12 )ˆ( ρ  

 

Both the above statistics have been suggested as test statistics for detecting 

the presence of a unit root in our AR model. The distributions of these 

statistics under both the null hypothesis 1ρ =  and certain alternatives 1ρ ≠  

have been studied recently by Dickey and Fuller (1979, 1981), as we saw 

before, Evans and Savin (1981, 1984) and Nankervis and Savin (1985). The 

work of these authors concentrates altogether on the special case in which 

the innovations sequence that drives the model 1{ }t tu ∞
=  is 2(0, )iid σ .  

Phillips’s approach relies on the theory of weak convergence on D. It 

leads to rather simple characterizations of the limiting of the above statistics 

in terms of functionals of a Wiener process. The main advantage of the 

approach is that the results hold for a very wide class of error processes in 

the AR model.   
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The limiting distributions are given in the following theorem: 

 

Theorem1: If ∞
1}{ tu  satisfies the former assumptions and if 

∞
+

p
ηβ

tt uEsup  for some n>0 ( β >2), then as ∞→T : 

a) ∫∑ →−
− 1

0

2

1

22
1

2 )( drrWyT
T

L
t σ  

b) )/)1()(2/()( 2222

1
11

1 σσσ u

T
L

ttt WyyyT −→−∑ −−
−  

c) ∫−→−
1

0

2222 )()/)1()(2/1()1ˆ( drrWWT u
L σσρ  

d) 1ˆ →pρ  

e) { }∫−→
1

0

2/12222 )()/)1()(2/( drrWWt uu
L σσσσρ  

 

where    ∑−

∞→
=

T

uTu uET
1

212 )(limσ ,   )(lim 212
TT

STE −

∞→
=σ   and W(r) is a standard 

Wiener process. 

It is obvious that when the sequence 1{ }t tu ∞
=  is 2(0, )iid σ  we have 

2 2
uσ σ= , leading to the following simplification of part (c) of the Theorem1: 

 
12 2

0
ˆ( 1) (1/ 2)( (1) 1) ( )LT W W r drρ − → − ∫  

 

a result we have seen before and was first given by White (1958), although 

his expression is incorrect in terms of his standardization of  ρ
∧

, that is he 

proposed ( ) / 2g T T=  instead of ( )g T T= . 

Theorem1 extends the distribution theory to include very general 

cases of weakly dependent and heterogeneously distributed data. The 

differences between (c) of theorem1 and the trivial case were the sequence 
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that drives the model is 2(0, )iid σ  can be demonstrated with a simple 

example: 

Suppose that the generating process of 1{ }t tu ∞
=  is a moving average 1 

process: 

1t t tu ε θε −= +    where tε  is an 2(0, )iid εσ  process. Then: 

 

2 1 2 2 2

1
lim (1 )

T

u t
T
p T u εσ θ σ−

→∞
= = +∑    and   2 1 2 2 2lim ( ) (1 )T

T
p T E S εσ θ σ−

→∞
= = +    

 

and we have   1 2 2 2 2
1

1

( / 2)[(1 ) (1) (1 )]
T

L
t tT y u Wεσ θ θ−
− → + − +∑  

 

which can also be verified by direct calculation. In this case: 

 
12 2 2 2

0
ˆ( 1) (1/ 2)[ (1) (1 ) /(1 ) ] ( )LT W W r drρ θ θ− → − + + ∫  

 

which of course generalizes the trivial case and reducing to it when 0θ = . 

Part (d) of Theorem1 shows that, unlike the stable AR(1) with 1ρ p , 

OLS retains the property of consistency when there is a unit root even in the 

presence of substantial serial correlation. The robustness of the consistency 

of ρ
∧

 in this case is rather extraordinary, allowing for a wide variety of error 

processes that permit serious misspecifications in the usual random walk 

formulation of our AR model with white noise errors. Intuitively, when the 

model has a unit root, the strength of the signal (as measured by the sample 

variation of the regressor 1ty − ) dominates the noise by a factor of O(T), so 

that the effects of any regressor-error correlation are annihilated as  T ↑ ∞ . 
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Finally part (e) of Theorem1 gives the limiting distribution of tρ . This 

distribution, like that of the coefficient estimator, depends on the variance 

ratio 2 2/uσ σ . 

At this point it is important to discuss how the unknown 

parameters 2
uσ  and 2σ  are estimated, since they appear in the limiting 

distributions in Theorem1, and how we deal with them with finite 

samples. Therefore it is understandable that the distributions Phillips 

derived are not directly useable for statistical testing and in order to 

modify these statistics and make them useful (that is the distributions 

have to be independent of 2
uσ  and 2σ ), the unknown parameters have to 

be consistently estimated.  

In the proof of Theorem1 (the proof can not be found in this paper 

because it is out of its scope) Phillips showed that: 

 

. .1 2 2

1

T
a s

t uT u σ− →∑  as T ↑ ∞  

 

This provides us with the simple estimator: 

 

2 1 1 2
1 1

1 1
( )

T T

u t t t ts T y y y T u− −
− −= − =∑ ∑  

 

which is consistent for 2
uσ  under the null hypothesis ρ =1. Since 1ˆ →pρ  by 

Thoerem1 we may also use  1
1 1

1

( )
T

t t tT y y yρ
∧

−
− −−∑  as a consistent estimator of 

2
uσ . 
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Consistent estimation of )(lim 212
TT STE −

∞→=σ  is more difficult. The 

problem is essentially equivalent to the consistent estimation of an 

asymptotic covariance matrix of weakly dependent and heterogeneously 

distributed observations. Therefore we have: 

 
1

2 1/ 2 2 1 2 1
1 1

1 1 1

var( ) ( ) 2 ( )
T T T

T t
t

T S T E u T E u u τ
τ τ

σ
−

− − −
Τ −

= = +

= = +∑ ∑ ∑  

 

and introducing the approximant  

 

2 1 2 1
1 1

1 1 1

( ) 2 ( )
T l T

l t
t

T E u T E u u τ
τ τ

σ − −
Τ −

= = +

= +∑ ∑ ∑  

 

where l   is the lag truncation number. 

For large T and large l Tp , 2
lσΤ  may be expected to be very close to 

2σ Τ  if the total contribution in 2σ Τ  of covariances such as   ( )t tE u u τ−  with long 

lags T lf  is small. This will be true if  1{ }t tu ∞
=  satisfies the assumptions we 

previously stated. All this can be stated in the following lemma: 

 

• Lemma3: If the sequence 1{ }t tu ∞
=  the assumptions and if  l ↑ ∞  as T ↑ ∞  

then 2 2 0lσ σΤ Τ− →  as T ↑ ∞ . 

 

This lemma suggests that under suitable conditions on the rate at 

which l ↑ ∞  as T ↑ ∞  we may proceed to estimate 2σ  from finite samples 

of data by sequentially estimating 2
lσ Τ . Therefore we define:  

2 1 2 1
1

1 1 1
2

T l T

l t t
t

s T u T u u τ
τ τ

− −
Τ −

= = +

= +∑ ∑ ∑  

which establishes that 2
lσ Τ  is a consistent estimator of  2σ  
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The previous result establishes the following theorem: 

 

 Theorem2: 

1. If  1{ }t tu ∞
=  satisfies (a), (c), and (d), and part (b) of the assumptions 

is replaced by the stronger moment condition: 2supt tE u β
∞p , for 

some 2β f , 

2. If  l ↑ ∞  as T ↑ ∞  such that 1/ 4( )l o T= , then 2 2p
lσ σΤ →  as T ↑ ∞ . 

 

According to this result, if we allow the number of estimated 

autocovariances to increase as  T ↑ ∞  but control the rate of increase so that  
1/ 4( )l o T=  then 2

lσ Τ  yields a consistent estimator of 2σ . White and Domowitz 

(1984) provide some guidelines for the selection of l . Inevitably the choice 

of l  will be an empirical matter. In our own case, a preliminary 

investigations of the sample autocorrelations of  1t t tu y y −= −  will help 

selecting an appropriate choice of l . Since the sample autocorrelations of 

first differenced economic time series usually decay quickly it is likely that 

in moderate sample sizes quite a small value of l  will be chosen. 

Rather than using the first differences 1t t tu y y −= −  in the construction 

of 2
lσ Τ , we could have used the residuals 1t t tu y yρ

∧ ∧

−= −  from the least squares 

regression. Since 1ˆ →pρ  as T ↑ ∞  this estimator is also consistent for 2σ  

under the null hypothesis  ρ=1. Moreover this estimator is consistent for 2σ  

under explosive alternatives to ρ=1 (i.e. when ρ 1f  ) and may, therefore, be 

preferred to 2
lσ Τ  when such cases seem likely. 

We remark that 2
lσ Τ  is not constrained to be nonnegative as it is defined 

in  2 1 2 1
1

1 1 1

2
T l T

l t t
t

s T u T u u τ
τ τ

− −
Τ −

= = +

= +∑ ∑ ∑ . When there are large negative sample 

serial covariances, 2
lσ Τ  can take on negative values. In a related context, 
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Newey and West (1985) have suggested a modification to variance 

estimators such as 2
lσΤ  which ensures that they are nonnegative. In the 

presence case the modification yields:  

 

2 1 2 1

1 1 1

2
T l T

l t Tl t t
t t

s T u T w u u τ
τ τ

− −
Τ −

= = = +

= +∑ ∑ ∑  

 

where 1 ( 1)Tlw l
τ= − +  

 

The above expression represents the weighted variance estimator. When 

1{ }t tu ∞
=  is weakly stationary, 2 2 (0)ufσ π=  where ( )uf λ  is the spectral density 

of tu . In this case, 2(1/ 2 ) Tlsπ  is the value of the origin 0λ =  of the Bartlett 

estimate:  

 
1

1

( ) (1/ 2 ) [1 /( 1)] ( )
l

i t
u

l

f l C e λ

τ

λ π τ τ
+∧

−

=− −

= − +∑  

 

where  1

1

( )
T

t t
t

C T u u τ
τ

τ −
−

= +

= ∑  

 

of  ( )uf λ . Since the Bartlett estimate is nonnegative everywhere, we deduced 

that 2 0lσ Τ ≥  also. Of course, weights other than the ones we proposed are 

possible and may be inspired by other choices of lag window in the density 

estimate.  
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3.3 Relaxing further the Assumptions – A New Test 

 
The following discussion concerns the asymptotic theory for         

first-order autoregressions with asymptotically unbounded error variance. 

This theory is the product of the work made by N. Kourogenis and N. Pittis 

and it extends the theory developed by Phillips to include cases where the 

variance grows without limit in a polynomial fashion. In particular they 

relax the restrictive assumption that tu  are all bounded, that is ∞p
β

tt uEsup  

for some β>2, thus precluding trending moments. They consider both stable 

and unit root processes assuming martingale difference and weakly 

dependent innovations respectively. Moreover for both these cases the 

asymptotic distributions of the OLS estimator of the autoregressive 

parameter along with that of the corresponding t-statistic are derived. For the 

purpose of this paper we will restrict the discussion in the unit root case. 

As before, we need to begin the discussion with the assumptions 

imposed on the innovations process that drives the model assuming the same 

autoregressive process as before: 

 

Let  ∞
=1}{ tty  be a stochastic process generated in discrete time 

according to: 

 

1. ttt uyy += −1ρ     (t=1,2,…) 

2. ρ =1 
 

The initial conditions about 0y  are that 0y  is either an arbitrary 

constant or a random variable. 
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Assumptions on tu : 

a) tt tfu υ)(=  where 0)()( ftgttf k
k += β  with )()( 1−Ο= kttg  if 1≥k  

and 0)( =tg   if  10 ≤≤ k  

b)   ∞→∑− p2

1

21 )( υσυ p
T

tET  (the variance of tυ ) 

c)   ∞→− p221 )( σTSET  

d) )(1)( ][ rWS
T

rX L
TrT →=

σ
  

 

Assumption (a) allows the second unconditional moment of the error 

term tu  to grow in a polynomial-like fashion. Assumptions (b)-(d) allow for 

quite general weekly dependent and heterogeneously distributed tu , 

similarly to those Phillips imposed.  

 

Remark: What is very important to add at this point is that 

assumption (a) can be simplified as )()( 11 tgttf k +=  where )(1)(1 tgtg
kβ

=  

without any loss of generality, therefore for the rest of the discussion we 

assume we have 1=kβ . 

 

The asymptotic behavior of tu  under the assumptions (a) and (b) is: 

 

∞
+

→∑+ p
1

)(1 2

1

2
1 k

uE
T

p
T

tk
υσ ,  

 

 

The previous results are necessary to obtain the asymptotic behavior 

of the OLS estimator of ρ  and the t-statistic tρ .  
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This is shown in the following theorem: 

 

Theorem2:    If ∞
1}{ tu  satisfies the former assumptions, then as  ∞→T : 

 

∫










+
−

→− 1

0

2

2

2
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)1(

2
1

)1ˆ(
drrQ

k
Q

T L σ
σ

ρ

υ

     and 

 

( )∫










+
−+

→ 1

0

2/12

2

2
2

)(

)1(
)1(1

2
1

drrQ
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t L σ
σ
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σ
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Where     ∫ −−=
r

kk dssWskrWrrQ
0

12/2/ )(
2

)()(  

 

It is obvious that when 1,0 0 == βk  the asymptotic distributions are the 

same with the ones Phillips proposed. 
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3.4 From Theory to Real Data 

 

In time series analysis, what has been observed is that most of the 

economic and financial data tend to satisfy the unit root hypothesis. This 

result though, in several cases is rather misleading in away that these time 

series are proven to be, as econometricians say, “almost unit roots”. This 

means that sometimes the value the t-statistic very close to the critical value 

which in this case means that there is a relevant misconception whether the 

series under consideration has a unit root or is stationary. 

As we said in the beginning, this paper is going to do is to test 

macroeconomic and financial time series under the assumption of 

polynomial trend in their conditional variance and compare the results to 

those of traditional tests, like the Phillips-Peron test.  

 

To demonstrate all these we will compare a case of a random walk 

with (0,1)iidN  disturbances and a case with a random walk with t tu tυ=  

disturbances: 
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What is apparent from these diagrams is that both of them can 

describe a process:  

1. ttt uyy += −1ρ     (t=1,2,…) 

2. ρ =1 
Which one describes better the process will be decided in unit root tests 

under different assumption on the sequence that drives the model.  
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PART 4 
 

4. Methodology and Empirical Application of the new test 
 

In order to test the new test we decided to use several time series 

which exhibit the statistical behavior of interest, that is pure random walks. 

This behavior is very common in foreign exchange rates, equity indexes, 

simple stocks, commodities and some macroeconomic variables. 

Therefore we used daily data of several foreign exchange rates and 

equity indexes, few intraday data on equity indexes and some commodities. 

Information about the data can be found in the appendix (there someone can 

find the name of the series, its code (we used on the program) , the number 

of observations that are included for the test and the source from which each 

series was taken).   

 

4.1 Methodology – Monte Carlo Simulation: 

 

The new test is exclusively programmed in EViews 

 

Firstly, for each series (the natural logarithm of them) we calculate the 

value of kappa (the exponent of the power of the polynomial 

0)()( ftgttf k
k += β  with )()( 1−Ο= kttg  if 1≥k  and 0)( =tg   if  10 ≤≤ k ) with 

its sample estimator: 

 

2

1
/ 2

2

1

ˆ
1 log 1

log 2 ˆ

T

t
t
T

t
t

u
k

u

=

=

= −
∑

∑
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Then the values of  2
uσ  and 2σ  are estimated by their sample estimators 2

us  

and 2
Tls  respectively: 

 

2 2 2
1

1

1 ˆ
T

p
u tk

t

ks u
T υσ+

=

+
= → ∞∑ p   

 

2 2 1 2
( 1) / 2

1 1 1

ˆ ˆ( 1) ˆ 2
( ( ))

T l T
pt t

l t Tlk k
t t

u uks u T w
T t t

τ

τ τ

σ
τ

− −
Τ +

= = = +

+
= + →

−∑ ∑ ∑  

 

What is important to add at this point is that we estimate 2σ  using the 

methodology Phillips used in his framework. That is we weigh the 

autocovariance sample estimators (the second part of the above estimator 2
Tls ) 

with 1 ( 1)Tlw l
τ= − +  where l   is the lag truncation number (the Newley-West 

bandwidth), which is taken by the Phillips-Perron test.  

 

Then we calculate the values of the OLS estimator of ρ  and the subsequent 

t-statistic tρ  with their sample estimators ,kZ ρ  and  ,k tZ  respectively: 

 
2 2

, ( 2) 2
1 1

1ˆ( 1)
2( 1)

v
k T k T

t t

s sZ T
k T yρ ρ − +

= −

−
= − −

+ ∑
 

 

( )
2 2

, 1/ 2( 2) 2
1 1

1
2 1

v v
k t k T

t t

s s sZ t
s k s T y

ρ
− +

= −

−
= −

+ ∑
 

 

Finally for all series we calculate the Phillips-Perron t-statistic without 

intercept or tend, using the Bartlett spectral estimation method (Bartlett 

kernel) and the Newley-West bandwidth.   
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The critical values for the new test are calculated through Monte 

Carlo analysis for various sample sizes (30, 50, 100, 250, 500, 1000 and 

5000 ∞ ), for kappa = 0,1,2,3 and with three different assumptions on tυ   

(IID, AR(1) with r=0.5 and MA(1) with θ=0.7). The number of replications 

we chose for this analysis is 1000 and the results can be found in the 

Appendix II. For the case of infinite sample and IID secondary innovations 

the critical values are shown in the following tables:   

 
 
 
Table 1: Critical Values for the Zk,p Statistic with IID secondary innovations ( ∞ ) 
Kappa 1% 2.5% 5% 10% 90% 95% 97.5% 99% 

0 -12.476 -9.897 -7.349 -5.197 0.938 1.258 1.600 2.097 
1 -15.629 -11.746 -9.242 -7.083 1.485 2.193 2.762 3.466 
2 -21.677 -16.291 -12.589 -9.079 2.017 2.882 3.646 5.165 
3 -23.722 -19.702 -15.575 -10.912 2.605 3.488 4.564 6.244 

 
Table 2: Critical Values for the Zk,t Statistic with IID secondary innovations  ( ∞ ) 
Kappa 1% 2.5% 5% 10% 90% 95% 97.5% 99% 

0 -2.462 -2.143 -1.839 -1.556 0.897 1.312 1.586 1.897 
1 -2.719 -2.366 -2.098 -1.822 1.150 1.590 2.079 2.646 
2 -3.283 -2.826 -2.456 -2.034 1.237 1.938 2.594 3.094 
3 -3.437 -3.065 -2.650 -2.226 1.348 2.163 2.829 3.459 

 
 

 

These values will be used to compare the new test with the traditional 

Phillips-Perron test. 

 

Remark: Secondary innovations are tυ . 
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It is apparent from the above tables that the distribution of  ,k tZ  opens up. 

This can be seen at the following kernel densities of ,k tZ  for k=0,1,2,3: 
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4.2 Empirical Results 

 

The following tables depict all the series that have significant value of 

kappa, the exponent of interest of polynomial. As it obvious, all values of 

kappa are smaller than unity; therefore the first table has the critical values 

for k=1 and IID secondary innovations. The rest of them can be found in 

Appendix I   

 

Critical values  

Levels KP Critical Values K=1 PP Critical Values  
1% -2.719 -2.565 
5% -2.098 -1.940 

10% -1.822 -1.616 
 

Results of daily data 

Variable Y9 Ro estimate 1.000028 
Description FX Thailand / U.S. Kappa estimate 0.873441 

Observations 5997 KP t-statistic 1.313605 
Source  DataStream  PP t-statistic 1.141234 

 
Variable Y1 Ro estimate 0.99997 

Description FX Canada / U.S. Kappa estimate 0.83381 
Observations 8551 KP t-statistic -0.2536 

Source  DataStream  PP t-statistic -0.2563 
 

Variable Y20 Ro estimate 1.00003 
Description FX Malaysia / U.K. Kappa estimate 0.83023 

Observations 6501 KP t-statistic 0.42752 
Source  DataStream  PP t-statistic 0.44213 

 
Variable Y53 Ro estimate 1.00002 

Description FX H. Kong / Austr Kappa estimate 0.77954 
Observations 3025 KP t-statistic 0.4085 

Source  DataStream  PP t-statistic 0.33096 
 

Variable Y99 Ro estimate 1.00003 
Description Total Mkt: Portugal Kappa estimate 0.65951 

Observations 3915 KP t-statistic 0.60306 
Source  DataStream  PP t-statistic 0.69406 
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Variable Y19 Ro estimate 1.00001 

Description FX Korea / U.K. Kappa estimate 0.58943 
Observations 6501 KP t-statistic 0.46833 

Source  DataStream  PP t-statistic 0.46256 
 

Variable Y54 Ro estimate 1.00001 
Description FX H Kong / Canad Kappa estimate 0.53572 

Observations 3025 KP t-statistic 0.27859 
Source  DataStream  PP t-statistic 0.27664 

 
Variable Y81 Ro estimate 1.00001 

Description Nikkei (Japan) Kappa estimate 0.45745 
Observations 6523 KP t-statistic 0.48408 

Source  DataStream  PP t-statistic 0.49006 
 

Variable Y72 Ro estimate 1.00001 
Description Nikkei Average Kappa estimate 0.42946 

Observations 6565 KP t-statistic 0.50608 
Source  DataStream  PP t-statistic 0.51154 

 
Variable Y66 Ro estimate 1.00004 

Description DAX (Germany) Kappa estimate 0.42304 
Observations 6565 KP t-statistic 1.88896 

Source  DataStream  PP t-statistic 1.88505 
 

Variable Y32 Ro estimate 1.00001 
Description FX Denmark / Japan Kappa estimate 0.4194 

Observations 4696 KP t-statistic 0.12164 
Source  DataStream  PP t-statistic 0.12733 

 
Variable Y79 Ro estimate 1.00003 

Description Dow Jones Utilities  Kappa estimate 0.40709 
Observations 6524 KP t-statistic 1.33601 

Source  DataStream  PP t-statistic 1.37376 
 

Variable Y64 Ro estimate 1.00006 
Description AEX INDEX (AEX) Kappa estimate 0.32716 

Observations 5781 KP t-statistic 1.73979 
Source  DataStream  PP t-statistic 1.80589 

 
Variable Y15 Ro estimate 1.00011 

Description FX China / U.S. Kappa estimate 0.29248 
Observations 6017 KP t-statistic 2.18117 

Source  DataStream  PP t-statistic 2.18656 
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Variable Y7 Ro estimate 0.99991 

Description FX Singapore / U.S. Kappa estimate 0.29138 
Observations 6077 KP t-statistic -1.2438 

Source  DataStream  PP t-statistic -1.2383 
 

Variable Y3 Ro estimate 0.99997 
Description FX Japan / U.S. Kappa estimate 0.24959 

Observations 8551 KP t-statistic -1.8939 
Source  DataStream  PP t-statistic -1.9058 

 
Variable Y4 Ro estimate 0.99999 

Description FX Norway / U.S. Kappa estimate 0.23117 
Observations 8551 KP t-statistic -0.359 

Source  DataStream  PP t-statistic -0.359 
 

Variable Y75 Ro estimate 1.00004 
Description BEL 20 (Belgium ) Kappa estimate 0.22877 

Observations 6524 KP t-statistic 2.20486 
Source  DataStream  PP t-statistic 2.25605 

 
Variable Y5 Ro estimate 1.00001 

Description FX Sweden / U.S. Kappa estimate 0.20831 
Observations 8551 KP t-statistic 0.32697 

Source  DataStream  PP t-statistic 0.32798 
 

Variable Y48 Ro estimate 0.99956 
Description FX Rate Korea/US. Kappa estimate 0.20716 

Observations 2670 KP t-statistic -0.9322 
Source  DataStream  PP t-statistic -0.9346 

 
Variable Y48 Ro estimate 0.99956 

Description FX Rate Korea/US. Kappa estimate 0.20716 
Observations 2670 KP t-statistic -0.9322 

Source  DataStream  PP t-statistic -0.9346 
 

Variable Y78 Ro estimate 1.00005 
Description Dow Jones Transp. Kappa estimate 0.18247 

Observations 6524 KP t-statistic 2.17664 
Source  DataStream  PP t-statistic 2.21488 

 
Variable Y25 Ro estimate 1 

Description FX Norway / U.K. Kappa estimate 0.16337 
Observations 6524 KP t-statistic 0.07633 

Source  DataStream  PP t-statistic 0.07495 
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Variable Y29 Ro estimate 0.99932 

Description FX Switzer. / Japan  Kappa estimate 0.16269 
Observations 8550 KP t-statistic -1.7804 

Source  DataStream  PP t-statistic -1.796 
 

Variable Y50 Ro estimate 1.00017 
Description FX Brazil / Switzer. Kappa estimate 0.15444 

Observations 2670 KP t-statistic 0.14469 
Source  DataStream  PP t-statistic 0.14745 

 
Variable Y28 Ro estimate 0.9999 

Description FX Switzer. / U.K. Kappa estimate 0.14631 
Observations 6524 KP t-statistic -1.3548 

Source  DataStream  PP t-statistic -1.3664 
 

Variable Y40 Ro estimate 1.00011 
Description FX Brazil / Canada Kappa estimate 0.1358 

Observations 2670 KP t-statistic 0.11193 
Source  DataStream  PP t-statistic 0.10242 

 
Variable Y80 Ro estimate 1.00006 

Description MILAN MIB 30 Kappa estimate 0.0479 
Observations 6524 KP t-statistic 2.1828 

Source  DataStream  PP t-statistic 2.19417 
 

Variable Y10 Ro estimate 0.99984 
Description FX U.S. / Australia Kappa estimate 0.04566 

Observations 8551 KP t-statistic -0.7599 
Source  DataStream  PP t-statistic -0.7598 

 
Variable Y67 Ro estimate 1.00004 

Description FTSE100 (England) Kappa estimate 0.02948 
Observations 6565 KP t-statistic 2.46396 

Source  DataStream  PP t-statistic 2.47287 
 

Variable Y93 Ro estimate 1.00005 
Description Total Mkt: France Kappa estimate 0.02882 

Observations 8351 KP t-statistic 2.15179 
Source  DataStream  PP t-statistic 2.1573 

 
Variable Y84 Ro estimate 1.00003 

Description Singap Straits Times Kappa estimate 0.01525 
Observations 5216 KP t-statistic 0.95856 

Source  DataStream  PP t-statistic 0.95724 
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Variable Y12 Ro estimate 0.99989 

Description FX U.S. / U.K. Kappa estimate 0.01177 
Observations 8551 KP t-statistic -1.0188 

Source  DataStream  PP t-statistic -1.0232 
 

Variable Y22 Ro estimate 0.99999 
Description FX Denmark / U.K. Kappa estimate 0.0021 

Observations 6524 KP t-statistic -0.3854 
Source  DataStream  PP t-statistic -0.3862 

 
 

 

Results of intraday data with kappa>0.4 

 

Dow Jones Industrial 
Variable Day Y89 Ro estimate 1 

Description Dow Jones Indust. Kappa estimate 0.994163 
Observations 2340 KP t-statistic 0.046627 

Source Dukascopy.net PP t-statistic 0.029331 
 

Variable Day Y83 Ro estimate 0.9999998 
Description Dow Jones Indust. Kappa estimate 0.6476177 

Observations 2340 KP t-statistic -0.4487252 
Source Dukascopy.net PP t-statistic -0.4846127 

 
Variable Day Y67 Ro estimate 1.0000003 

Description Dow Jones Indust. Kappa estimate 0.5920893 
Observations 2340 KP t-statistic 0.969043 

Source Dukascopy.net PP t-statistic 0.5402505 
 

Variable Day Y52 Ro estimate 0.9999996 
Description Dow Jones Indust. Kappa estimate 0.5244324 

Observations 2340 KP t-statistic -1.3556701 
Source Dukascopy.net PP t-statistic -1.3506685 

 

 

FTSE100 
Variable Day Y13 Ro estimate 0.9999997 

Description FTSE 100 Kappa estimate 1.3505868 
Observations 3000 KP t-statistic -0.1316636 

Source Dukascopy.net PP t-statistic -1.1002111 
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Variable Day Y14 Ro estimate 0.9999999 

Description FTSE 100 Kappa estimate 1.030446 
Observations 3000 KP t-statistic -0.0807578 

Source Dukascopy.net PP t-statistic -0.377579 
 

Variable Day Y12 Ro estimate 1.0000002 
Description FTSE 100 Kappa estimate 0.5929725 

Observations 3000 KP t-statistic 0.3656941 
Source Dukascopy.net PP t-statistic 0.9928287 

 
 

S&P 500 
Variable Day Y21 Ro estimate 1 

Description S&P 500 Kappa estimate 0.41133 
Observations 2340 KP t-statistic -0.0494 

Source Dukascopy.net PP t-statistic -0.0491 
 

 

4.3 Comments on the Results  

 

From the tables above, someone can infer that we cannot reject the 

null hypothesis; the variable Y has a unit root. The values that our t-statistic 

takes don’t differ significantly from the Phillips-Perron values, especially 

when kappa takes values around zero. As kappa grows, all we can infer is 

that our t-statistic values are smaller than the values of Phillips-Perron t-

statistic, but not significantly enough, in a way that we could reject the null.  

 

4.4 The New Test when the Model is Misspecified 

 

Many of the key macroeconomic and financial variables are 

characterized by permanent volatility shifts. It is known that conventional 

unit root tests are unreliable in the presence of such behavior. Similar cases 

were examined in this paper in which the implementation of the new test led 

to rather misleading results when the model is not a pure random walk. The 
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case of Argentina’s exchange rates, where we have an exogenous shock, a 

devaluation of Argentina’s currency (Variables: Y16, Y33 Y34 Y35 Y38), 

the model was inappropriate to describe these unusual movements and the 

similar but extreme case of  the FX Rate between Korea and U.S.: 

 

Variable Y14 Ro estimate 1.0000090 
Description FX Rate Korea/US. Kappa estimate 5.1953457 

Observations 5964 KP t-statistic 0 
Source  DataStream  PP t-statistic 0.5581636 
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What we observe is that the exogenous shock is responsible for the 

extreme value kappa takes (Kappa=5.1953). This estimated value is 

incorporated in the calculation of all the other estimators’ values             

( 2 2
,, ,u l ks s Z ρΤ  and ,k tZ ) and literally cancels out the test. To be precise, the 

extreme kappa is responsible the negative value of the estimator 2
lsΤ , even 

in context of the Newey-West modification, which makes impossible to 

take a value for the t-statistic ,k tZ .  
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PART 5 
 

 

5  Conclusions 

 

In this paper we have examined a new test for unit roots, both 

theoretically and empirically. The new test is built upon more general 

assumptions than the traditional tests, like the Phillips-Perron test, and 

contain the latter as a special case. The old tests have a common 

assumption; the variances of the innovations that drives the model are 

bounded, thus precluding trending moments. For the development of the 

test we have used the asymptotic results obtained by the work of Pittis 

and Kourogenis for first-order autoregressive models with a unit root, 

when the innovations that drives the model grows in a polynomial 

fashion. 

 Theoretically, using Monte-Carlo simulation, we examined the 

behavior of the test for four different cases of error terms; we used 

polynomials of order zero to three. This approach showed that as the 

value of the exponent of the polynomial grows, the  critical values of the 

test becomes significantly smaller than those of the traditional Phillips-

Perron test, a result someone can observe watching the distribution of the 

t-statistic; the distribution opens up. 

On the other hand, empirically the test didn’t provide us with any 

interesting result. The new test, that we used on several time series, failed 

to reject the null, that is unit root under the polynomial trend, due to small 

estimates of kappa while it misbehaved when our series were 

characterized by structural brakes.    
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APPENDIX I 
 

Daily Data 
 

Foreign Exchange Rates 
Variable Y Observations Code Description 

1 8551 DEXCAUS Canada / U.S. 
2 8071 DEXINUS India / U.S. 
3 8551 DEXJPUS Japan / U.S. 
4 8551 DEXNOUS Norway / U.S. 
5 8551 DEXSDUS Sweden / U.S. 
6 8551 DEXSFUS South Africa / U.S. 
7 6077 DEXSIUS Singapore / U.S. 
8 8551 DEXSZUS Switzerland / U.S. 
9 5997 DEXTHUS Thailand / U.S. 

10 8551 DEXUSAL U.S.  / Australia 
11 8551 DEXUSNZ U.S. / New Zealand 
12 8551 DEXUSUK U.S. / U.K. 
13 5094 DEXTAUS Taiwan / U.S. 
14 5964 DEXKOUS South Korea / U.S. 
15 6017 DEXCHUS China / U.S. 
16 5403 (ARG_UK Argentina / U.K. 
17 6501 CHILE_UK Chile / U.K. 
18 6501 HK_UK  Hong Kong / U.K. 
19 6501 KOR_UK Korea / U.K. 
20 6501 MAL_UK Malaysia / U.K. 
21 6501 SING_UK Singapore / U.K.  
22 6524 DEN_UK Denmark / U.K. 
23 6524 IND_UK India / U.K. 
24 6524 IRL_UK  Ireland / U.K. 
25 6524 NOR_UK Norway / U.K. 
26 6524 PHIL_UK Philippines / U.K.  
27 6524 CAN_UK Canada / U.K. 
28 6524 SWISS_UK Switzerland / U.K. 
29 8550 SWISS_JAP Switzerland / Japan 
30 8550 SWISS_CAN Switzerland / Canada 
31 4696 DEN_CAN Denmark / Canada 
32 4696 DEN_JAP Denmark / Japan 
33 3681 ARCADSP Canada / Argentine 
34 3681 ARHKDSP Hong Kong / Argentine 
35 3681 ARJPYSP Japan / Argentine 
36 3681 ARNZDSP Argentine / New Zealand 
37 3681 ARSEKSP Sweden / Argentine 
38 3681 ARZARSP South Africa / Argentine 
39 2670 BRAUDSP Brazil /  Australia 
40 2670 BRCADSP Brazil / Canada 
41 2670 BRDKKSP Brazil / Denmark 
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Variable Y Observations Code Description 
42 2670 BRHKDSP Brazil / Hong Kong 
43 2670 BRINRSP Brazil / India 
44 2670 BRMYRSP Brazil / Malaysia 
45 2670 BRNZDSP Brazil / New Zealand 
46 2670 BRSARSP Brazil / Saudi Arabia 
47 2670 BRSEKSP Brazil / Sweden 
48 2670 BRSGBSP Brazil / Singapore 
49 2670 BRSURSP Brazil / Russia 
50 2670 BRSWFSP Brazil / Switzerland  
51 1106 BRXEUSP Brazil / ECU 
52 2670 BRZARSP Brazil / South Africa 
53 3025 HKAUDSP Hong Kong / Australia 
54 3025 HKCADSP Hong Kong / Canada 
55 3025 HKCGFSP Hong Kong / Switzerland 
56 3025 HKJPYSP Hong Kong / Japan 
57 3025 HKMYRSP Hong Kong / Malaysia 
58 3025 HKSGDSP Hong Kong / Singapore 
59 3025 HKTHBSP Hong Kong / Thailand 
60 2669 MXBECSP Mexico / Belgium 
61 2669 MXCADSP Mexico / Canada 
62 2669 MXDEMSP Mexico / Germany 
63 2669 MXFRFSP Mexico / France 

 
Stock Market Indexes 

Variable Y Observations Code Description 
64 5781 AMSTEOE AEX INDEX (AEX) 
65 6565 AUSTOLD ASX ALL ORDINARIES 1971 
66 6565 DAXINDX  DAX (Germany) 
67 6565 FTSE100  FTSE100 (England) 
68 6565 HNGKNGI  Hang Seng  NGI 
69 6565 IFGMAR$ S&P/IFCG M ARGENTINA 
70 6565 IFGWJO$ S&P/IFCG W JORDAN 
71 5779 ISEQUIT RELAND SE OVERALL (ISEQ) 
72 6565 JAPDOWA NIKKEI 225 STOCK AVERAGE 
73 4998 PSECOMP PHILIPPINES SE COMPOSITE 
74 6281 WIEIREL FTSE W IRELAND 
75 6524 BEL BEL 20 (Belgium ) 
76 6524 US_S_P50001 S&P 500 (U.S.) 
77 6524 DJ_INDUS Dow Jones Industrial (U.S.) 
78 6524 DJ_TRSPT Dow Jones Transportation (U.S.) 
79 6524 DJ_UTILS Dow Jones Utilities (U.S.) 
80 6524 IT_30 MILAN MIB 30 
81 6523 JP_NIKKEI Nikkei (Japan) 
82 6524 NASCOMP NASDAQ COMPOSITE 
83 6524 NYSE_ALL New York Stock Exchange All 
84 5216 SNGPORI SINGAPORE STRAITS TIMES 
85 4436 TOTMKAR Total Market: Argentina 
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Variable Y Observations Code Description 
86 8351 TOTMKAU Total Market: Australia 
87 2741 TOTMKBR Total Market: Brazil 
88 3486 TOTMKCA Total Market: China A 
89 2986 TOTMKCH Total Market: China 
90 8350 TOTMKCN Total Market: Canada 
91 3139 TOTMKCP Total Market: Cyprus 
92 4377 TOTMKFN Total Market: Finland 
93 8351 TOTMKFR  Total Market: France 
94 3914 TOTMKIN  Total Market: India 
95 8351 TOTMKIR  Total Market: Ireland  
96 3132 TOTMKIS  Total Market: Israel 
97 8351 TOTMKIT  Total Market: Italy 
98 4519 TOTMKPH Total Market: Philippines 
99 3915 TOTMKPT Total Market: Portugal 

 
Commodities 

Variable Y Observations Code Description 
100 5571 OILBREND Crude Oil Brent 

 
All the above series are taken from DATASTREAM 

 
Results of daily data 

Variable Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
1 0.9999707 0.8338131 -0.2536414 -0.2562589 
2 1.0000677 0 4.1715508 4.1733739 
3 0.9999709 0.2495874 -1.8938849 -1.9057779 
4 0.9999876 0.2311723 -0.3590067 -0.3589686 
5 1.0000125 0.2083144 0.3269656 0.3279819 
6 1.0001046 0 1.2815273 1.2806069 
7 0.9999141 0.2913789 -1.243778 -1.2382703 
8 0.9996725 0 -2.7126547 -2.7138421 
9 1.0000281 0.8734408 1.3136054 1.141234 
10 0.9998404 0.0456553 -0.7599131 -0.7598407 
11 0.9999147 0 -0.4986292 -0.4998042 
12 0.9998895 0.011766 -1.0187524 -1.0231831 
13 0.9999848 0.9445832 -0.9738193 -1.0750342 
14 1.000009 5.1953457 0 0.5581636 
15 1.0001128 0.2924766 2.181174 2.1865608 
16 0.9993461 0 -6.1586826 -6.1557286 
17 1.0000592 0 2.9675866 2.9698059 
18 1.0000158 0 0.4637754 0.4637308 
19 1.0000081 0.5894274 0.4683254 0.462557 
20 1.0000303 0.8302329 0.4275193 0.442128 
21 0.999913 0 -1.3116266 -1.3118303 
22 0.9999903 0.0020966 -0.3854415 -0.386195 
23 1.0000631 0 2.877065 2.8725584 
24 0.9995947 0 -1.1112485 -1.1108701 
25 1.0000016 0.1633665 0.0763273 0.0749472 
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Variable Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
26 1.0000746 0 2.3760169 2.3776463 
27 0.9999398 0 -0.5996107 -0.6011298 
28 0.9999028 0.1463132 -1.3547501 -1.3664101 
29 0.9993173 0.1626944 -1.7804224 -1.7959747 
30 0.9994835 0 -3.1753988 -3.1727641 
31 0.999994 0 -0.3728774 -0.3721629 
32 1.0000079 0.4193964 0.1216353 0.1273335 
33 0.999597 1.4305138 -4.8218928 -0.7939126 
34 0.999724 1.4172179 -1.5041179 -2.1886985 
35 0.9998769 1.0468564 -1.1663394 -2.1476681 
36 0.9994937 1.3309166 -3.0136533 -1.3761911 
37 0.9997694 0.9054598 -1.2559599 -1.6665566 
38 0.9997978 1.5568904 -2.1632116 -1.0512582 
39 0.9992414 0 -0.2402401 -0.240541 
40 1.0001118 0.1358012 0.1119296 0.1024209 
41 0.9988382 0 -1.4710767 -1.4687993 
42 0.9994115 0 -1.9240541 -1.9241605 
43 0.9997221 0 -1.1982429 -1.196479 
44 0.9990076 0 -1.4583044 -1.4583729 
45 0.928559 0 -10.210154 -10.213923 
46 0.9994085 0 -2.2459075 -2.2469373 
47 0.9995156 0 -1.8586985 -1.8601199 
48 0.9995601 0.2071611 -0.9322145 -0.9345966 
49 0.9990013 0 -0.9674308 -0.9679724 
50 1.0001678 0.1544358 0.1446855 0.1474507 
51 0.9962369 3.5399614 0 0.051151 
52 0.9975255 0 -1.0364866 -1.0366921 
53 1.0000217 0.7795396 0.4085028 0.330959 
54 1.0000105 0.5357223 0.2785861 0.2766428 
55 1.0000399 0 0.5781722 0.578127 
56 0.9999898 0 -0.2062466 -0.2060771 
57 0.9998226 0 -1.3170731 -1.3139719 
58 0.9999954 0 -0.1083743 -0.1084983 
59 0.9995869 3.8953817 0 0.227894 
60 0.9997107 0 -1.7409684 -1.7377726 
61 1.0002084 0 1.8350284 1.8336286 
62 1.0001197 0 0.737739 0.739301 
63 0.9992999 0 -0.9904285 -0.9897958 
64 1.0000594 0.3271574 1.739786 1.8058918 
65 1.0000419 0 2.0599089 2.0539434 
66 1.0000406 0.4230436 1.8889587 1.8850465 
67 1.0000409 0.0294801 2.463962 2.4728683 
68 1.0000461 0 1.5993488 1.5979701 
69 1.0000033 0 0.0414952 0.041503 
70 1.0000589 0 2.3113589 2.3119897 
71 1.0000631 0 2.6000714 2.5965983 
72 1.0000078 0.4294596 0.5060807 0.5115449 
73 1.0000632 0 1.3772162 1.3753175 
74 1.0000688 0 1.9078881 1.9059861 
75 1.0000387 0.2287684 2.204859 2.2560538 
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Variable Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
76 1.0000572 0 2.875528 2.879621 
77 1.0000462 0 3.0256141 3.0340286 
78 1.0000538 0.182465 2.1766389 2.2148838 
79 1.000031 0.407091 1.3360102 1.3737551 
80 1.0000633 0.0478995 2.1827956 2.1941718 
81 1.0000075 0.4574524 0.4840795 0.4900639 
82 1.0000581 1.2048984 2.5237051 2.1463637 
83 1.0000455 0 3.0594352 3.056678 
84 1.0000292 0.0152542 0.9585598 0.9572358 
85 1.0001251 0 2.2783119 2.2811516 
86 1.000052 0 2.0802548 2.0775625 
87 1.0001081 0 1.6993828 1.6982825 
88 1.0000819 0 1.1621464 1.1616611 
89 1.0000461 0 0.4927743 0.4926476 
90 1.00005 0 2.6188102 2.6171039 
91 1.0000035 1.4290038 -0.1480898 -0.0372473 
92 1.0000587 1.3385485 0 1.0317691 
93 1.0000525 0.0288218 2.1517923 2.1572968 
94 1.0000899 0 1.4610483 1.4593207 
95 1.0000636 0 2.3353134 2.3412533 
96 1.0000635 0 1.2866299 1.2873796 
97 1.0000538 0 1.9303757 1.9320312 
98 1.0000596 0 1.2601102 1.2616222 
99 1.0000273 0.6595127 0.6030598 0.694058 

100 0.9999873 0 -0.1039725 -0.1038991 
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Intraday Data 
 

Description  Dow Jones Industial FTSE100  S&P 500 
Days Included 99 39 39 

Obsrevations per day 2340 3000 2340 
 
 

Dow Jones Industrial 
Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
1 0.9999997 0 -0.74635 -0.7463219 
2 0.9999996 0 -1.2306 -1.2326473 
3 0.9999999 0 -0.4904 -0.4905861 
4 1.0000001 0 0.356722 0.356634 
5 0.9999999 0 -0.35669 -0.3566132 
6 1.0000001 0 0.292782 0.2921831 
7 0.9999998 0 -0.88798 -0.8874949 
8 1.0000003 0 0.97478 0.9739179 
9 0.9999995 0 -1.89704 -1.8976871 
10 1.0000002 0 0.930554 0.9286539 
11 0.9999999 0 -0.32038 -0.3200663 
12 0.9999997 0.112752 -0.90325 -0.9160382 
13 0.9999996 0 -1.24944 -1.2474792 
14 0.9999999 0 -0.29144 -0.2915111 
15 1.0000004 0 1.267315 1.2680576 
16 1.0000002 0 0.634536 0.6346197 
17 0.9999999 0 -0.4642 -0.463917 
18 1.0000002 0 0.71292 0.7129301 
19 1.0000003 0 1.472171 1.4762488 
20 1.0000002 0.3379745 1.004307 0.9432111 
21 1 0 -0.01791 -0.0179289 
22 1 0 -0.00543 -0.0054265 
23 1.0000001 0 0.396926 0.3968255 
24 0.9999997 0 -1.34717 -1.3477095 
25 1.0000004 0.0451988 1.467121 1.5110625 
26 1.0000002 0 0.885641 0.8836909 
27 1 0 -0.126 -0.1256318 
28 1.0000002 0.0295961 1.046034 1.0451242 
29 1 0 -0.04941 -0.0493626 
30 0.9999997 0 -1.60343 -1.6004732 
31 1.0000001 0 0.667484 0.6661017 
32 0.9999993 0 -2.40836 -2.4014226 
33 1.0000003 0 1.018557 1.020969 
34 1.0000003 0 1.114688 1.1125094 
35 1.0000004 0 2.041538 2.0468145 
36 0.9999997 0 -1.39986 -1.3941108 
37 1.0000003 0 1.204947 1.2021396 
38 1 0 -0.14699 -0.1470633 
39 1 0 0.140532 0.1402408 
40 1.0000005 0 1.609797 1.6065288 
41 1 0.1100235 -0.00459 -0.0045964 
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Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
42 0.9999999 0 -0.52945 -0.5281415 
43 0.9999996 0 -1.48778 -1.4870612 
44 1.0000002 0 0.690863 0.6902216 
45 0.9999997 0 -1.24372 -1.2420475 
46 1.0000001 0 0.383565 0.3836917 
47 0.9999998 0 -0.95149 -0.9524743 
48 0.9999995 0 -1.74557 -1.7454725 
49 1 0 -0.10188 -0.102002 
50 1 0 -0.00032 -0.0003172 
51 0.9999997 0 -0.99646 -0.9954187 
52 0.9999996 0.5244324 -1.35067 -1.3556701 
53 0.9999999 0 -0.293 -0.2933386 
54 0.9999999 0 -0.29328 -0.2927449 
55 1 0 1.003445 1.0001971 
56 1.0000002 0 0.861188 0.8592039 
57 0.9999997 0.0845513 -1.15493 -1.1600806 
58 1.0000006 0.03226 2.075914 2.1070663 
59 0.9999998 0 -0.76413 -0.7656735 
60 0.9999995 0 -1.12222 -1.1210455 
61 1.0000001 0.0087057 0.244353 0.2449898 
62 1.0000002 0.0666542 0.707773 0.70976 
63 1.0000001 0 0.49511 0.4956345 
64 1.0000003 0 1.26958 1.2708859 
65 0.9999996 0 -1.92525 -1.9209998 
66 1 0 -0.17107 -0.1710934 
67 1.0000003 0.5920893 0.540251 0.969043 
68 0.9999995 0.0837395 -1.77653 -1.7878442 
69 0.9999995 0.2100317 -1.61729 -1.6286761 
70 0.9999991 0 -1.981 -1.9828129 
71 0.9999999 0 -0.20738 -0.2076723 
72 1.0000003 0 0.811244 0.810155 
73 0.9999995 0 -1.29625 -1.2949706 
74 1.0000009 0 1.809303 1.8047464 
75 0.9999997 0.1582096 -0.6734 -0.6805607 
76 1.0000003 0 1.037981 1.0387046 
77 0.9999996 0.1029103 -1.17915 -1.2149342 
78 1.0000002 0 0.607472 0.6070301 
79 0.9999994 0 -1.57994 -1.5790744 
80 1.0000005 0 1.080878 1.0795005 
81 1 0.9941632 0.029331 0.0466267 
82 1.0000005 0 1.645433 1.6443097 
83 0.9999998 0.6476177 -0.48461 -0.4487252 
84 1 0 0.078162 0.0781511 
85 1.0000002 0 0.785666 0.7864734 
86 0.9999995 0 -1.34303 -1.3404792 
87 1.0000001 0 0.259024 0.2592452 
88 0.9999995 0 -1.41917 -1.4170477 
89 0.9999998 0.1473979 -0.57757 -0.5758451 
90 1.0000005 0 2.089144 2.0864832 
91 1.0000003 0 1.187509 1.1888702 
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Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
92 1.0000006 0 1.869516 1.872302 
93 1.0000001 0.0011425 0.467541 0.467701 
94 0.9999999 0.1132398 -0.34533 -0.3512107 
95 1.0000002 0.0441087 1.056443 1.0569606 
96 0.9999999 0.0926769 -0.25658 -0.2634659 
97 0.9999998 0 -0.68718 -0.6873847 
98 1.0000003 0 1.445787 1.4437251 
99 1 0 0.292615 0.2924833 

 
 
 

FTSE100 
Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
1 1.0000002 0.1769204 1.3781449 1.3345659 
2 0.9999999 0.0303881 -0.5461821 -0.5399847 
3 1.0000003 0 1.5864642 1.5879972 
4 1.0000001 0.0454218 0.4216716 0.4266769 
5 1.0000001 0 0.3463147 0.3460903 
6 0.9999999 0 -0.4780599 -0.4768736 
7 0.9999998 0 -1.7077357 -1.705959 
8 1.0000001 0 0.3512806 0.3505513 
9 0.9999999 0 -0.4163291 -0.4157222 
10 0.9999997 0 -1.2137493 -1.2136475 
11 0.9999994 0 -0.921111 -0.919905 
12 1.0000002 0.5929725 0.3656941 0.9928287 
13 0.9999997 1.3505868 -0.1316636 -1.1002111 
14 0.9999999 1.030446 -0.0807578 -0.377579 
15 1.0000003 0 0.8076676 0.8091399 
16 1.0000001 0 0.7827722 0.7814985 
17 0.9999998 0 -0.9043655 -0.9064747 
18 0.9999995 0.0371362 -2.4484276 -2.474518 
19 1 0 -0.0577079 -0.0577812 
20 1.0000001 0 0.4998888 0.5005384 
21 1.0000005 0 1.6985702 1.6952759 
22 1.0000001 0.0966392 0.7082944 0.7185353 
23 1.0000002 0 0.978991 0.9782307 
24 1.0000001 0.4320143 0.868033 0.8524921 
25 0.9999999 0.107974 -0.6229485 -0.6506796 
26 0.9999998 0.0130946 -0.8462739 -0.8570892 
27 0.9999998 0 -0.7059849 -0.7049329 
28 1.0000001 0 0.5390581 0.5380466 
29 0.9999998 0 -0.6918686 -0.6931598 
30 1 0.0937272 -0.1139593 -0.1232681 
31 1.0000001 0.0628699 0.6830179 0.7002388 
32 1.0000004 0 2.2219257 2.2271285 
33 1.0000002 0 0.9265202 0.9288115 
34 1.0000001 0 0.9005873 0.9006045 
35 1.0000001 0 1.1163364 1.1164712 
36 0.9999999 0 -0.6195189 -0.6183376 
37 0.9999999 0 -0.9750424 -0.9757035 
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Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
38 1.0000002 0 1.0405482 1.0429308 
39 0.9999999 0.0530023 -0.8165225 -0.8220193 

 
 
 
 

S&P 500 
Y Ro estimate Value of kappa PK t-statistic PP t-statistic 
1 0.9999996 0 -0.7931226 -0.7941018 
2 1.0000001 0 0.2897283 0.2897957 
3 1.0000002 0 0.6207726 0.62171 
4 1.0000002 0 0.4308946 0.4300748 
5 0.9999995 0 -1.8453526 -1.8377208 
6 1 0 0.0330782 0.0330766 
7 1.0000004 0.3310292 0.733865 0.8343056 
8 0.9999993 0 -1.8242714 -1.8255177 
9 0.9999994 0.0332517 -1.3339044 -1.3333692 
10 0.999999 0 -1.7998345 -1.8009953 
11 1.0000002 0 0.4822901 0.4828529 
12 1.0000003 0 0.7921867 0.7922196 
13 0.9999992 0 -1.7043788 -1.7052683 
14 1.0000011 0 1.7500755 1.7512465 
15 0.9999997 0.0445938 -0.5720423 -0.5715161 
16 1.0000004 0 0.9694359 0.9702058 
17 0.9999995 0.0208233 -1.1492595 -1.1469534 
18 1.0000002 0 0.5461368 0.5462838 
19 0.9999993 0 -1.485686 -1.4870747 
20 1.0000006 0 1.1216295 1.1208482 
21 1 0.4113282 -0.0493657 -0.0490828 
22 1.0000007 0 1.8664525 1.8649272 
23 0.9999999 0.2555814 -0.2292944 -0.2218176 
24 0.9999998 0 -0.3956649 -0.3953176 
25 1.0000004 0 1.40145 1.4002716 
26 0.9999994 0 -1.2922201 -1.2912806 
27 1.0000002 0 0.3746721 0.3751307 
28 0.9999994 0 -1.3794625 -1.3789554 
29 0.9999997 0.1325458 -0.5564943 -0.5533239 
30 1.0000006 0 1.7698606 1.7713568 
31 1.0000004 0.0358128 0.950508 0.9531353 
32 1.0000005 0 1.419085 1.4186148 
33 1.0000002 0 0.6988074 0.699304 
34 0.9999999 0.0474209 -0.3622195 -0.3663404 
35 1.0000002 0 0.7501349 0.7519226 
36 1.0000001 0.0604867 0.3417231 0.3426619 
37 1 0 -0.0934764 -0.0940071 
38 1.0000002 0 0.7093226 0.7097283 
39 1.0000003 0 0.8133465 0.812594 

 
All the above series are taken from Dukascopy.net 



 59

Appendix II 
 
 
Table 1: Critical Values for the Zk,p Statistic with IID secondary innovations 
 K=0 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -11.236 -8.811 -7.392 -5.508 1.064 1.512 1.960 2.434 
50 -12.144 -10.467 -8.211 -5.980 1.064 1.466 1.926 2.244 

100 -14.151 -10.846 -8.643 -6.690 0.978 1.372 1.824 2.264 
250 -13.871 -10.750 -8.385 -6.095 0.946 1.278 1.701 2.084 
500 -14.691 -11.534 -8.081 -5.638 0.914 1.261 1.515 1.725 
1000 -12.669 -9.721 -7.723 -5.718 0.897 1.281 1.653 2.060 
∞ -12.476 -9.897 -7.349 -5.197 0.938 1.258 1.600 2.097 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -14.495 -12.009 -9.686 -7.255 1.780 2.576 3.198 4.107 
50 -15.550 -12.504 -9.990 -7.531 1.863 2.468 3.216 3.817 

100 -17.507 -13.426 -10.138 -7.669 1.542 2.354 3.073 4.284 
250 -17.686 -13.738 -10.509 -8.042 1.517 2.223 2.856 3.531 
500 -19.510 -14.297 -11.221 -7.270 1.511 2.042 2.452 3.093 
1000 -15.180 -11.696 -8.653 -6.454 1.694 2.312 3.029 3.429 
∞ -15.629 -11.746 -9.242 -7.083 1.485 2.193 2.762 3.466 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -23.060 -18.094 -13.654 -9.695 2.465 3.431 4.604 6.338 
50 -22.340 -17.845 -13.043 -9.492 2.512 3.639 4.389 5.095 

100 -23.457 -18.474 -14.288 -9.828 2.331 3.287 4.255 5.631 
250 -24.810 -18.529 -13.319 -10.037 2.160 3.039 3.881 4.792 
500 -23.757 -18.415 -14.178 -9.820 2.062 2.725 3.328 4.433 
1000 -23.396 -17.537 -13.701 -9.828 2.288 3.104 3.994 4.912 
∞ -21.677 -16.291 -12.589 -9.079 2.017 2.882 3.646 5.165 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -30.864 -24.073 -17.678 -12.208 3.179 4.505 5.771 8.166 
50 -36.127 -23.675 -18.796 -12.092 3.125 4.390 5.384 6.659 

100 -36.570 -25.133 -18.841 -13.394 2.971 4.424 5.981 7.298 
250 -30.032 -22.474 -18.229 -13.117 2.947 3.917 5.078 6.202 
500 -33.539 -22.180 -18.670 -12.816 2.601 3.453 4.362 6.001 
1000 -32.128 -23.946 -18.419 -12.572 2.903 3.961 4.958 6.499 
∞ -23.722 -19.702 -15.575 -10.912 2.605 3.488 4.564 6.244 
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Table 2: Critical Values for the Zk,t Statistic with IID secondary innovations  
 K=0 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.561 -2.194 -1.889 -1.626 1.103 1.563 2.226 3.176 
50 -2.500 -2.309 -2.004 -1.703 1.009 1.566 2.003 2.408 

100 -2.724 -2.311 -2.086 -1.788 0.927 1.417 1.869 2.378 
250 -2.645 -2.317 -2.000 -1.697 0.907 1.310 1.659 1.981 
500 -2.640 -2.321 -1.959 -1.608 0.864 1.305 1.701 2.104 
1000 -2.476 -2.158 -1.909 -1.639 0.829 1.302 1.794 2.275 
∞ -2.462 -2.143 -1.839 -1.556 0.897 1.312 1.586 1.897 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.881 -2.495 -2.168 -1.861 1.381 2.026 2.768 4.577 
50 -2.872 -2.547 -2.211 -1.870 1.335 2.024 2.522 3.391 

100 -2.973 -2.568 -2.218 -1.882 1.238 1.906 2.418 3.066 
250 -2.943 -2.578 -2.258 -1.942 1.177 1.673 2.136 2.803 
500 -2.989 -2.576 -2.335 -1.825 1.175 1.675 2.108 2.506 
1000 -2.824 -2.527 -2.182 -1.819 1.114 1.618 2.127 2.825 
∞ -2.719 -2.366 -2.098 -1.822 1.150 1.590 2.079 2.646 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -3.674 -3.160 -2.704 -2.170 1.568 2.274 3.326 5.094 
50 -3.411 -3.046 -2.570 -2.110 1.744 2.448 2.929 4.303 

100 -3.425 -2.965 -2.601 -2.137 1.481 2.164 2.950 3.930 
250 -3.485 -2.988 -2.521 -2.196 1.352 1.963 2.592 3.550 
500 -3.456 -2.956 -2.585 -2.142 1.378 1.941 2.513 2.800 
1000 -3.380 -2.881 -2.528 -2.139 1.348 1.979 2.503 3.254 
∞ -3.283 -2.826 -2.456 -2.034 1.237 1.938 2.594 3.094 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -4.114 -3.619 -3.027 -2.479 1.786 2.656 3.647 6.452 
50 -4.248 -3.511 -3.053 -2.417 1.912 2.726 3.452 4.187 

100 -4.174 -3.486 -3.031 -2.500 1.751 2.657 3.524 4.416 
250 -3.836 -3.292 -2.956 -2.510 1.537 2.226 2.926 4.046 
500 -4.038 -3.342 -2.964 -2.457 1.495 2.233 2.727 3.234 
1000 -3.901 -3.382 -2.967 -2.373 1.577 2.328 2.881 3.596 
∞ -3.437 -3.065 -2.650 -2.226 1.348 2.163 2.829 3.459 

 
  
 
 
 
 
 
 
 
Table 3: Critical Values for the Zk,p Statistic with MA=0.7 secondary innovations 
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 K=0 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -7.125 -6.399 -5.072 -3.847 1.319 1.828 2.244 2.739 
50 -8.641 -6.991 -5.869 -4.313 1.257 1.697 2.003 2.807 

100 -10.823 -8.672 -6.769 -5.017 1.096 1.553 2.006 2.398 
250 -12.033 -8.727 -7.008 -5.366 1.032 1.487 1.804 2.280 
500 -12.853 -9.649 -6.996 -4.896 0.975 1.345 1.572 1.784 
1000 -11.957 -8.499 -6.957 -5.181 0.950 1.367 1.718 2.053 
∞ -11.455 -9.205 -6.786 -4.971 0.956 1.246 1.642 2.162 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -9.118 -7.360 -5.862 -4.501 2.125 2.868 3.609 4.496 
50 -10.912 -8.555 -7.038 -5.061 2.073 2.850 3.456 4.201 

100 -12.459 -10.126 -8.147 -6.043 1.744 2.475 3.200 4.381 
250 -13.754 -10.776 -8.593 -6.403 1.732 2.459 3.101 3.678 
500 -15.486 -11.952 -9.856 -6.434 1.632 2.135 2.701 3.176 
1000 -15.180 -11.696 -8.653 -6.454 1.694 2.312 3.029 3.429 
∞ -15.295 -11.344 -8.748 -6.773 1.532 2.283 2.811 3.515 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -14.679 -10.257 -8.207 -5.967 2.945 3.917 4.989 6.335 
50 -14.511 -11.777 -8.867 -6.724 2.706 3.786 4.629 5.612 

100 -15.745 -13.311 -10.703 -7.874 2.559 3.476 4.474 5.340 
250 -19.339 -13.668 -10.737 -8.462 2.357 3.183 4.228 5.096 
500 -18.715 -14.182 -12.136 -8.364 2.210 2.929 3.558 4.605 
1000 -21.547 -15.006 -12.129 -8.760 2.432 3.293 4.075 5.008 
∞ -20.235 -15.025 -11.870 -8.488 2.055 2.933 3.718 5.407 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -25.152 -14.741 -11.083 -7.671 3.695 4.902 6.618 8.721 
50 -21.875 -16.091 -12.146 -8.321 3.558 4.853 5.676 7.072 

100 -23.562 -18.066 -13.259 -9.477 3.298 4.496 6.040 7.011 
250 -22.830 -18.140 -13.575 -10.130 3.052 4.089 5.207 6.846 
500 -25.141 -17.584 -14.796 -10.823 2.771 3.658 4.578 6.355 
1000 -25.902 -20.297 -16.027 -10.897 3.046 4.201 5.206 6.442 
∞ -22.894 -18.623 -14.500 -10.140 2.796 3.648 4.624 6.473 

 



 62

 
 
Table 4: Critical Values for the Zk,t Statistic with MA=0.7 secondary innovations 
 K=0 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -1.866 -1.710 -1.531 -1.332 1.362 2.014 2.839 3.634 
50 -2.054 -1.817 -1.650 -1.402 1.215 1.804 2.261 2.763 

100 -2.316 -2.057 -1.801 -1.516 1.081 1.575 2.194 2.897 
250 -2.434 -2.044 -1.819 -1.576 1.020 1.479 1.767 2.222 
500 -2.454 -2.112 -1.823 -1.501 0.959 1.417 1.809 2.265 
1000 -2.372 -2.045 -1.829 -1.552 0.918 1.405 1.892 2.393 
∞ -2.340 -2.075 -1.798 -1.519 0.953 1.363 1.618 1.991 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.086 -1.906 -1.667 -1.432 1.849 2.701 3.499 5.158 
50 -2.295 -2.038 -1.807 -1.493 1.666 2.399 3.072 3.638 

100 -2.413 -2.187 -1.951 -1.623 1.461 2.227 2.849 3.707 
250 -2.590 -2.298 -2.047 -1.742 1.303 1.944 2.438 3.059 
500 -2.726 -2.396 -2.115 -1.709 1.307 1.837 2.225 2.608 
1000 -2.655 -2.356 -2.053 -1.711 1.188 1.788 2.248 3.001 
∞ -2.668 -2.317 -2.029 -1.766 1.211 1.632 2.210 2.706 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.637 -2.210 -1.964 -1.645 2.149 2.895 4.155 5.817 
50 -2.690 -2.328 -2.037 -1.709 2.043 2.798 3.571 4.359 

100 -2.774 -2.434 -2.217 -1.834 1.694 2.495 3.476 4.126 
250 -3.087 -2.590 -2.265 -1.971 1.557 2.123 2.724 3.980 
500 -2.950 -2.647 -2.397 -1.961 1.517 2.103 2.484 2.975 
1000 -3.175 -2.676 -2.372 -2.012 1.480 2.211 2.746 3.484 
∞ -3.147 -2.681 -2.385 -1.974 1.320 2.006 2.678 3.195 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -3.547 -2.652 -2.324 -1.843 2.415 3.554 4.794 7.341 
50 -3.308 -2.743 -2.366 -1.943 2.383 3.240 3.967 5.000 

100 -3.332 -2.871 -2.522 -2.050 2.064 2.863 3.788 4.638 
250 -3.300 -2.895 -2.522 -2.143 1.767 2.524 3.140 4.526 
500 -3.486 -2.931 -2.621 -2.241 1.670 2.343 2.889 3.485 
1000 -3.569 -3.129 -2.691 -2.189 1.714 2.494 2.984 3.708 
∞ -3.357 -2.935 -2.579 -2.146 1.467 2.226 2.865 3.630 

 
  
 
 
 
 
 
 
 
Table 5: Critical Values for the Zk,p Statistic with AR(1)(r=0.5) secondary innovations 
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 K=0 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -6.870 -5.184 -4.343 -3.228 1.448 1.962 2.401 2.930 
50 -7.541 -5.850 -4.861 -3.557 1.355 1.854 2.202 2.965 

100 -9.487 -7.724 -6.052 -4.552 1.156 1.595 2.069 2.531 
250 -10.799 -8.097 -6.470 -5.048 1.100 1.504 1.847 2.336 
500 -11.801 -8.657 -6.561 -4.609 1.040 1.371 1.633 1.856 
1000 -10.678 -8.091 -6.696 -4.998 0.975 1.368 1.799 2.086 
∞ -11.359 -9.180 -6.649 -4.926 0.971 1.272 1.643 2.192 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -7.651 -6.172 -5.011 -3.746 2.311 3.059 3.789 4.975 
50 -8.542 -6.986 -5.362 -4.082 2.259 2.879 3.511 4.377 

100 -10.965 -9.059 -7.047 -5.353 1.905 2.614 3.340 4.408 
250 -12.132 -10.009 -7.770 -5.925 1.875 2.519 3.333 4.025 
500 -14.837 -11.348 -8.591 -5.972 1.714 2.181 2.757 3.327 
1000 -14.818 -10.934 -8.303 -5.998 1.761 2.457 3.047 3.482 
∞ -14.626 -10.950 -8.454 -6.654 1.560 2.275 2.779 3.610 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -11.694 -8.397 -6.443 -4.762 3.151 4.210 5.146 6.197 
50 -10.411 -9.012 -6.960 -5.038 3.032 3.969 4.832 5.568 

100 -13.690 -11.205 -9.074 -7.187 2.788 3.710 4.716 5.410 
250 -16.839 -12.550 -8.927 -7.414 2.575 3.339 4.364 5.420 
500 -16.721 -12.883 -10.965 -7.788 2.367 3.072 3.808 5.231 
1000 -20.715 -14.375 -11.233 -8.348 2.493 3.329 4.131 5.509 
∞ -20.310 -14.907 -11.707 -8.264 2.078 2.939 3.742 5.421 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -16.764 -11.769 -8.735 -5.997 4.004 5.279 6.796 8.387 
50 -15.059 -11.588 -9.001 -6.449 3.877 4.989 5.744 7.091 

100 -19.276 -14.544 -11.361 -7.994 3.552 4.828 6.176 7.286 
250 -19.702 -15.481 -11.471 -8.727 3.284 4.332 5.471 6.823 
500 -21.338 -16.369 -12.961 -9.537 2.982 3.908 4.800 6.419 
1000 -23.748 -19.634 -14.597 -10.579 3.128 4.235 5.287 6.844 
∞ -21.899 -17.646 -14.553 -9.988 2.790 3.712 4.802 6.783 
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Table 6: Critical Values for the Zk,t Statistic with AR(1)(r=0.5) secondary innovations 
 K=0 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -1.823 -1.568 -1.394 -1.194 1.706 2.330 3.065 3.921 
50 -1.929 -1.668 -1.511 -1.264 1.454 2.097 2.564 3.155 

100 -2.125 -1.918 -1.691 -1.436 1.201 1.831 2.328 3.085 
250 -2.300 -1.954 -1.742 -1.536 1.112 1.587 1.874 2.361 
500 -2.315 -2.024 -1.773 -1.457 1.037 1.489 1.853 2.311 
1000 -2.245 -1.973 -1.791 -1.514 0.949 1.473 1.996 2.407 
∞ -2.338 -2.062 -1.782 -1.499 0.939 1.386 1.635 1.985 

 K=1 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -1.902 -1.664 -1.513 -1.294 2.161 3.019 3.988 5.421 
50 -2.043 -1.788 -1.571 -1.356 1.950 2.720 3.386 4.072 

100 -2.283 -2.021 -1.809 -1.540 1.630 2.452 2.949 3.808 
250 -2.405 -2.175 -1.925 -1.677 1.487 2.079 2.542 3.290 
500 -2.705 -2.288 -2.006 -1.652 1.347 1.924 2.397 2.790 
1000 -2.575 -2.271 -1.988 -1.678 1.283 1.816 2.422 3.106 
∞ -2.621 -2.293 -2.028 -1.737 1.239 1.649 2.192 2.772 

 K=2 
T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.360 -1.944 -1.702 -1.428 2.535 3.545 4.723 6.190 
50 -2.236 -2.024 -1.785 -1.490 2.389 3.215 4.315 5.058 

100 -2.535 -2.263 -2.019 -1.752 2.021 2.766 3.544 4.701 
250 -2.858 -2.389 -2.065 -1.834 1.759 2.456 3.038 4.093 
500 -2.811 -2.492 -2.228 -1.884 1.664 2.216 2.696 3.249 
1000 -3.087 -2.626 -2.287 -1.949 1.576 2.291 2.902 3.549 
∞ -3.131 -2.666 -2.358 -1.942 1.365 2.054 2.717 3.215 
 K=3 

T 1% 2.5% 5% 10% 90% 95% 97.5% 99% 
30 -2.826 -2.345 -1.943 -1.613 2.852 4.065 5.450 7.178 
50 -2.678 -2.351 -1.991 -1.680 2.653 3.731 4.810 5.842 

100 -3.034 -2.600 -2.295 -1.888 2.339 3.184 3.950 5.051 
250 -3.085 -2.707 -2.300 -2.011 2.015 2.782 3.621 4.917 
500 -3.244 -2.815 -2.462 -2.080 1.831 2.606 3.023 3.624 
1000 -3.409 -3.038 -2.594 -2.128 1.862 2.595 3.249 4.011 
∞ -3.291 -2.884 -2.633 -2.140 1.504 2.328 2.892 3.636 
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