
Marios Vodas

Hermes

– Building an Efficient Moving Object Database

Engine –

Department of Informatics
University of Piraeus

MSc Thesis

March 29, 2013

To my beloved parents – Thomas & Eleni

Preface

This thesis was prepared at the Department of Informatics of the University
of Piraeus, in partial fulfillment of the requirements for acquiring the MSc
degree in Advanced Information Systems. This study has been conducted
from September 2012 to March 2013 under the supervision of Professor Yannis
Theodoridis.

Piraeus, March 2013 Marios Vodas

Acknowledgements

I would like to thank Yannis Theodoridis and Nikos Pelekis for their insight-
ful supervision during the writing of my thesis. I would also like to thank my
colleagues Despina Kopanaki, Panagiotis Tampakis, Nikos Giatrakos, Stelios
Sideridis, Giannis Kostis, and Michalis Basios for our cooperation in the lab.
Last but not least, I would like to thank Maria Zogkou, Evgenios Vodas, and
Giorgos Festas for all their support and understanding. Finally, my acknowl-
edgements to IMIS Hellas (www.imishellas.gr) for kindly providing the AIS
dataset which allowed me to test and demonstrate my work.

Abstract

This thesis describes “Hermes”, a MOD developed as an extension of Post-
greSQL. Hermes architecture is presented to show its general context of use
through an SQL interface. The data types that comprise the data model are
presented in three categories spatio-temporal, temporal, and spatial. A spatio-
temporal 3D-Rtree index structure is proposed along with a collection of oper-
ators that get support from it. Also, a showcase on an AIS dataset is presented
to indicate some of the querying capabilities of Hermes. There are two cluster-
ing algorithms implemented on Hermes that provide advanced functionality
to the framework. Finally, the maturity of Hermes is shown by the fact that
it is used in a real-world web application that offers spatio-temporal querying
functionality to its users.

Contents

1 Introduction . 1

2 Related Work . 3

3 Hermes MOD Architecture Principles . 5
3.1 Data Types . 6

3.1.1 Temporal Data Types . 6
3.1.2 Spatial Data Types . 8
3.1.3 Spatio-Temporal Data Types . 9
3.1.4 The “Trajectory” type . 10

3.2 Database Schema . 11
3.2.1 Coordinate Transformation . 11
3.2.2 Metadata Catalog . 12
3.2.3 Loading a Dataset . 13

3.3 Indexing with pg3D-Rtree . 16

4 Hermes MOD Functionality . 19
4.1 Methods . 19

4.1.1 average speed . 19
4.1.2 at instant . 20
4.1.3 at point . 20
4.1.4 at period . 21
4.1.5 at box . 21
4.1.6 intersection . 22
4.1.7 enter-leave points . 22
4.1.8 trajectory (aggregate function) . 22

4.2 Basic Operators . 23
4.3 Similarity Library . 24

XIV Contents

5 Showcase on IMIS AIS Dataset . 25
5.1 AIS Dataset Description . 25
5.2 Querying AIS Dataset . 25
5.3 Visualization tips . 36

6 Case Study: ChoroChronos Archive . 39

7 Summary . 43

A Installation Instructions . 45

References . 53

1

Introduction

Mobility has become a daily concept for people who own a GPS enabled elec-
tronic device, particularly because of the universal adoption of smartphones
and the advanced capabilities they offer to their users. The main factors that
drive the spreading of Mobility are the providers of geo-web services. Com-
panies like Google and Nokia have developed an extensive stack of geo-web
services that tightly integrate with mobile devices making it simple for third-
party developers and organizations to build custom applications for the pub-
lic. Open source initiatives like OpenStreetMap enhance the data provided
by these web services with the qualities of openness of the data, community
driven development and open feedback contribution. Organizations and the
public sector have already recognized the benefits of incorporating Mobility
data, originating either directly from their members or from third party col-
laborators, into their information systems. It is worth to mention the “Digital
Government” key initiative [2] of the “US Office of E-Government Informa-
tion Technology”. In this initiative it is stated how the US government will
place Mobility in the heart of the next generation digital services it will pro-
vide to its citizens. The expected benefits from such a move will span from
QoS to economical.

A moving object can be any geometry (point, line, area, etc.) in the geo-
graphical space that changes its positions or even its shape in time. An object’s
(might that be a pedestrian, car, ship, etc.) movement implies the unification
of space and time dimensions under one domain. Because an object moves
constantly and continuously it is impossible to capture its movement in every
detail; thus we only keep samples of the movement. In practice, that means
that we have GPS position reports at a varying sampling rate of seconds or
even minutes. These recordings only provide the object’s position at a specific
timestamp, and it is our responsibility to decide what happens between two
consecutive samples. A trajectory is defined by the kind of interpolation we
assume that happens between two sample points and the way we choose to
represent and store a trajectory. The most common interpolation method is
linear interpolation where two consecutive sample points are connected with

2 1 Introduction

a straight line. Another method is the Bezier-curves which requires the speed
and direction at each point in order to draw a smoother not straight line be-
tween the points. The first method assumes constant speed between the points
and the trajectory contains many abrupt changes both in speed and direction
in contrast to the second one. The simplicity of the linear interpolation makes
it very fast and easy to use and that is the main reason for its wide adoption.

Mobility, when looking at its technological aspects, spans from data mod-
eling to indexing and from data mining to visualization. This MSc the-
sis introduces a MOD prototype called Hermes (http://hermes-mod.java.net
- http://infolab.cs.unipi.gr/hermes), which was developed on top of Post-
greSQL ORDBMS through utilizing its extension interfaces. Hermes has a
long history of publications since 2006 [7,9,10]. This work resulted in a brand
new and improved design and implementation of the Hermes specification that
has the potential of real world application as a result of improvements in scal-
ability and efficiency. This implementation is available for downloading for re-
search and educational purposes under Hermes license at URL: http://hermes-
mod.java.net/Installer/ThesisVersion/.

After a short presentation of related work (chapter 2), we start (in chapter
3) by explaining the architecture of Hermes, its connection with PostgreSQL
and the general context it can be used with. Then (in chapter 4), we describe
the components of Hermes categorized according to the aspects of Mobil-
ity (data modeling, indexing, visualization, data mining, etc.). The last part
(chapter 5) includes a showcase in a real-world trajectory dataset and case
studies that Hermes has been tested and deployed with success.1

1 Throughout this text there are example code segments that will use sample data
(ship trajectories) to illustrate the capabilities of Hermes. A detailed description
of the dataset can be found in chapter 5.

2

Related Work

The HERMES system [10] was previously developed on Oracle DBMS and
could query continuously moving objects. Oracle’s spatial data types are used
along with the TAU Temporal Literal Library Data Cartridge (TAU-TLL)
types in order to construct the moving object data types (figure 2.1). In HER-
MES a trajectory is modelled as a sequence of segments called unit functions.

Fig. 2.1: HERMES architecture on Oracle [7]

The SECONDO system [5] is a state of the art moving objects database
which represents trajectories using the sliced representation method where

4 2 Related Work

the trajectory is segmented into fragments and each fragment can be viewed
as a simple function of time over geographical space. SECONDO is based on
Berkeley DB for storage management and is comprised of three main subsys-
tems (figure 2.2) namely the kernel, optimizer, and graphical user interface
(GUI). The kernel provides an extensible algebra and query processing on
that. The optimizer supports an SQL-like language and is used for query op-
timization. The GUI is used to visualize the different data types and models
that SECONDO supports. There are about thirty available algebras in SEC-
ONDO and the most important ones are the Standard-Algebra (basic data
types like numbers and strings), the Relational-Algebra, the Spatial-Algebra
(geometries such as points, lines, regions), and the Temporal-Algebra (moving
objects).

Fig. 2.2: SECONDO architecture [5]

3

Hermes MOD Architecture Principles

Hermes builds on PostgreSQL’s underlying functionality and extends it to
support trajectory data. In its core Hermes contains a few data types both
spatial and temporal but also a unification of those (i.e. spatio-temporal data
types). All of its functionality and features rely and utilize that model. In
Hermes a trajectory is a sequence of sampled time-stamped locations (pi, ti)
where pi is a 2D point (xi, yi) and ti is the recording timestamp of pi. We
can choose from two alternatives for interpolating the position of an object
between two sampled points (figure 3.1). The first and most common one
is to assume constant speed linear interpolation and the second one is to
consider constant acceleration. The first option is the most popular within
the spatio-temporal database community whilst the second is closer to a real-
world model.

(a) Constant Speed (b) Constant Acceleration

Fig. 3.1: Alternative Interpolation Techniques

The constant speed option entails simple and low cost calculations to in-
terpolate the position between two consecutive sample points and is preferable
in datasets that the speed of the objects doesn’t change often (e.g. the move-

6 3 Hermes MOD Architecture Principles

ment of ships). On the other hand, the constant acceleration option entails
a computational cost higher than that of the first though it is more suitable
in datasets that contain an underlying road network, thus the speed of the
objects changes frequently. Having a more accurate interpolation technique
allows to do more advanced computations such as emissions and consumption
or even collision detection.

∆s = vi ·∆τ, vi is constant during [τi− 1, τ i] (3.1)

∆s = 1/2ai ·∆τ2, ai is constant during [τi− 1, τ i] (3.2)

Hermes provides an SQL interface comprised of types, functions and op-
erators that the user can combine in order to construct data and perform
calculations on them. This SQL interface is accessible through a series of pro-
tocols such as JDBC, ODBC and practically any other protocol that has the
ability to connect to a standard PostgreSQL server. Keeping that in mind,
Hermes can be utilized within web frameworks and web services in order to
build applications that are backed by Hermes.

3.1 Data Types

In this section, the data types supported by Hermes are presented in three
categories: temporal, spatial and spatio-temporal. In summary, they are listed
in figure 3.2.

3.1.1 Temporal Data Types

Temporal data types are those types that model only the temporal dimension
of Mobility.

The building block data type in this category is the timestamp without
time zone (or just Timestamp) which is not really a data type introduced
by Hermes but is built in to PostgreSQL and Hermes encapsulates it in its
data model. An example of a timestamp is ‘2012-09-20 08:05:46’. Another
encapsulated data type is the Interval which is used to store information like
‘1 second’ or ‘05:30:5’ (which means 5 hours 30 minutes and 5 seconds) hence
contains a temporal quantity. One potential limitation of interval is that on
cases where it was produced from a subtraction of two timestamps it won’t
keep the original timestamps from which it was computed. That limitation
led to the development of some custom temporal types in Hermes.

Code Sample

3.1 Data Types 7

Fig. 3.2: Hermes Data Types

1 --1st Query --

2 SELECT ’2008 -12 -31 19:29:30 ’:: Timestamp;

3
4 --2nd Query --

5 SELECT ’00:00:01 ’:: Interval;

Code Explanation

These two queries have the potential to introduce some basic programming
concepts of PostgreSQL. Notice that “SELECT” is used to run a query even
if that doesn’t involve a SQL table. It’s like saying to PostgreSQL run this
code. Each command is terminated by a “;” semicolon.

PostgreSQL can cast a string to any datatype. In the 1st query a timestamp
is given as a string and is cast using “::” to the timestamp datatype. This is
also done for another datatype (i.e. interval) in the 2nd query.

It is important to note that the string that we cast to a datatype must
be conformant to the datatype. For example, if we cast the string in the 1st

query to an interval it will throw an error.

8 3 Hermes MOD Architecture Principles

Hermes temporal types

Hermes introduces the Period temporal data type. A period is comprised of
two timestamps (i, e), meaning i-nitial and e-nding, thus an interval can be
computed from of a period.

Code Sample

1 SELECT ’(’’2008 -12 -31 19:29:30 ’’, ’’2009 -01 -02 17:10:06 ’’)’

:: Period;

Code Explanation

What should be noted here is that when a single quote is needed in a string
it is required to put one single quote before that. Other than that, a period
object is formed by providing the two timestamps it needs and by enclosing
them with parenthesis (notice that the first and last character of the string is
a parenthesis).

3.1.2 Spatial Data Types

Hermes is designed to work with data in the Euclidean space, which means
that in order to define a position we need x, y coordinates measured in meters.
All the underlying mathematical procedures operate in the Euclidean space as
well. In GIS-related fields Projected coordinate systems are widely used and
since they essentially are a form of a Euclidean space they are fully compatible
with Hermes approach.

Usually the data will be in the World Geodetic System (WGS) where a
position is defined by a longitude and a latitude measured in decimal degrees.
Later, it will be described how we can transform from (lon, lat) to (x, y), and
the opposite, in order to feed Hermes with WGS data.

Spatial data types are those types that model only the spatial dimension
of Mobility. The building block data type in this category is the PointSP
and is comprised of (x, y) coordinates in meters. Another spatial data type
is SegmentSP and comprises of two PointSP (i, e) components where “i” is
the initial point and “e” is the ending point (figure 3.3).

The previous spatial types do not have a surface in contrast with the next
one that has. This very important spatial type, with a surface is the BoxSP
and is comprised of two PointSP (l, h) components where “l” is the low left
point and “h” is the high right point as illustrated in Figure 3.4.

3.1 Data Types 9

Fig. 3.3: Spatial Segment Fig. 3.4: Spatial Box

Code Sample

1 --1st Query --

2 SELECT ’(2337709 , 4163887) ’:: PointSP;

3
4 --2nd Query --

5 SELECT ’((2337709 , 4721671) , (3228259 , 4721671))’::

SegmentSP;

6
7 --3rd Query --

8 SELECT ’((2337709 , 4163887) , (3228259 , 4721671))’::BoxSP;

Code Explanation

It should be noted here that coordinates are measured in meters for the reasons
explained earlier.

3.1.3 Spatio-Temporal Data Types

Spatio-Temporal data types are those types that model both the temporal
and spatial dimension of Mobility in a unified manner. In these types we
distinguish the temporal and spatial dimension in the following way:

• A spatio-temporal point PointST is comprised of a Timestamp “t” and
a PointSP “sp”.

• A spatio-temporal segment SegmentST is comprised of two PointST com-
ponents “i” and “e”.

• A spatio-temporal box BoxST is comprised of a Period “t” and a BoxSP
“sp”. Consider a BoxST as a cube in 3D space.

Code Sample

10 3 Hermes MOD Architecture Principles

1 --1st Query --

2 SELECT ’(’’2008 -12 -31 19:29:30 ’’, (2337709 , 4163887))’::

PointST;

3
4 --2nd Query --

5 SELECT ’((’’2008 -12 -31 19:29:30 ’’, (2337709 , 4721671)), (’’

2009 -01 -02 17:10:06 ’’, (3228259 , 4721671))’:: SegmentST;

6
7 --3rd Query --

8 SELECT ’((’’2008 -12 -31 19:29:30 ’’, ’’2009 -01 -02 17:10:06 ’’)

, ((2337709 , 4163887) , (3228259 , 4721671)))’:: BoxST;

Code Explanation

Each component of the object is defined within parenthesis. The temporal
component always comes first and the spatial comes second.

3.1.4 The “Trajectory” type

Hermes defines a trajectory through its Trajectory data type which is an
object containing a sequence of spatio-temporal points ordered in time. It
is a variable length type in contrast to previous types and is comprised of
a sequence of PointST objects ordered by time. This type marks a different
approach to storing/handling/manipulating Mobility data, meaning that here
we look at the movement of an object as whole and not segmented in smaller
parts i.e. segments.

The distinction between the two alternative modeling proposals for storing
a trajectory is illustrated in figure 3.5: in figure 3.5a a trajectory consists of
a set of SegmentST objects; in figure 3.5b a trajectory consists of a single
Trajectory object.

Code Sample

1 SELECT ’(’’2008 -12 -31 19:29:30 ’’, (2337709 , 4163887))~(’’

2008 -12 -31 19:29:35 ’’, (2337710 , 4163890))~(’’

2008 -12 -31 19:29:41 ’’, (2337715 , 4163893))’:: Trajectory

;

Code Explanation

Spatio-temporal points are delimited with “ ”.

3.2 Database Schema 11

(a) Segment based modeling (b) Trajectry based modeling

Fig. 3.5: Alternative Interpolation Techniques

3.2 Database Schema

This section describes the structure of the database that was designed to be
able to host multiple datasets. Having defined the data types the main missing
feature is methods for loading structured data into the database. This is solved
by developing a metadata infrastructure, essentially a catalog, which will help
us host multiple datasets with different characteristics. For example, it is
possible to host two diverse datasets one of moving vehicles and another one
of traveling vessels in the same database.

That metadata infrastructure takes the form of a table named dataset.
So, each dataset in this table has a unique identifier and a unique short name
e.g. [1, ‘imis’] or [2, ‘milan’]. Most spatio-temporal datasets are in the form
of [objectID, trajectoryID, t, lon, lat] where “objectID” is the identifier of
the object, “trajectoryID” is the identifier of the trajectory for that object,
“t” is the UTC (Coordinated Universal Time) timestamp at which it was
recorded and “lon” and “lat” are degrees of longitude and latitude in WGS
84 Geographic Coordinate System. “objectID” and “trajectoryID”, normally,
are combined to form the unique identifier of a trajectory in a specific dataset.

3.2.1 Coordinate Transformation

Hermes works on the Euclidean space, meaning it needs degrees (lon, lat) to
be transformed into meters (x, y). For this transformation the Geographic
to/from Topocentric conversion (EPSG 9837) [4] was implemented. Accord-
ing to this specification, to do the transformation we only need a reference

12 3 Hermes MOD Architecture Principles

point (lon, lat) which in (x, y) will be regarded as (0, 0), i.e. the Cartesian
center. So, the closer a position is to this reference point the more accurate
the transformation will be. Thus, a dataset must have a reference point for
transformations.

Code Sample

1 --1st Query --

2 SELECT ll2xy(’(20.999999 , 35.000044) ’::PointLL , ’(23.63994 ,

37.9453) ’:: PointLL);

3 --Result of 1st Query

4 ’(-240909.991094767 , -323271.482666732) ’

5
6 --2nd Query --

7 SELECT xy2ll(’(-240909.991094767 , -323271.482666732) ’::

PointSP , ’(23.63994 , 37.9453) ’:: PointLL);

8 --Result of 2nd Query

9 ’(20.999999000041 , 35.0000440000481) ’

Code Explanation

Here we notice one more data type, PointLL composed of (lon, lat), which
is considered auxiliary because it is only used to represent points in longitude
and latitude so that we can later transorm them to meters.

The function ll2xy(point, reference point) returns the point transformed
to a PointSP.

The second query shows the opposite operation where it should be no-
ticed that there is a slight loss of precision in the result w.r.t. the input in
the 1st query. This phenomenon is generally common in coordinate system
transformations.

3.2.2 Metadata Catalog

The dataset table that was mentioned before is the metadata catalog and
each of its row corresponds to a dataset. Its structure is as follows:

• id is an auto incremented integer column that is the primary key of the
table. Each dataset hosted is given an id.

• name is a text column that contains a unique short name of the dataset.
• name long is a text column that contains a human friendly name of the

dataset.
• parent dataset is a foreign key to another existing row in the table that,

when it is not NULL, indicates a parent-child relationship between the
datasets.

• parent dataset notes is a text column that contains notes on the parent-
child relationship of the dataset.

3.2 Database Schema 13

• local ref poi is a PointLL column that is the reference point for coordi-
nate transformation.

• SRID is an integer column that contains the EPSG code of the projected
reference system in which the dataset is stored in Hermes. Note that if we
give a value for local ref poi then SRID will have to be NULL and vice
versa.

• There also some statistics about the dataset that can be kept in this table:
– bounds of the dataset (tmin, tmax, lx, ly, hx, hy, llon, llat, hlon, hlat).
– centroid of the dataset (centroid x, centroid y, centroid lon, centroid lat).
– number of objects / trajectories / points / segments.
– minimum /average / maximum number of points per trajectory / tra-

jectory duration / trajectory length.
• notes is a text column that contains arbitrary notes on the dataset.

3.2.3 Loading a Dataset

Each dataset consists of three tables. Each table’s name begins with the
dataset’s name followed by a suffix:

• obj: this table hosts the objects that exist in the dataset and contains
one column:
– obj id the unique identifier of the object.

• traj: this table hosts the trajectories of the objects and contains three
columns:
– obj id is a foreign key to obj table.
– traj id is an identifier for the particular trajectory of the object.
– traj contains an object of type Trajectory (optional, see below).

• seg: this table will host the segments of the trajectories and contains four
columns:
– obj id is a foreign key to obj table.
– traj id is a foreign key to traj table.
– seg id is an identifier for the particular segment of the trajectory.
– seg contains a segment of a trajectory, an object on type SegmentST.

The objects table and the trajectories table must have data in contrast
with segments table. The “traj” column in trajectories table could be empty if
trajectories are stored in the segments table (that is why it is not bold in figure
3.6). It is always possible to build a trajectory object from its corresponding
segments that we can find in the segments table on the fly using aggregate
functions. That allows us to use advanced methods that Hermes provides for
its “Trajectory” type.

The entire database schema presented earlier is illustrated in figure 3.6.
The indexing illustrated in this image refers to a 3D-Rtree that can be built
either on the segment or trajectory tables. Building the tree on trajectory
objects is prone to the dead space that the minimum bounding box of the

14 3 Hermes MOD Architecture Principles

trajectory usually introduces. Nonetheless, Hermes supports building a 3D-
Rtree both on segment and trajectory objects.

Fig. 3.6: Database Schema

3.2 Database Schema 15

Hermes Loader

In Hermes, a function named Loader can be called, with some parameters of
the dataset, in order to fill the above tables. The most common format for
Loader is the CSV. In this format the loader is fed with a csv file that has the
structure: objectID, trajectoryID, t, lon, lat. The file has to contain a header.
An example of such a CSV file is illustrated here:

1 objectID ,trajectoryID ,t,lon ,lat

2 201100024 ,1 ,2009 -01 -02

08:54:07 ,24.609728324369 ,38.013503319816

3 201100024 ,1 ,2009 -01 -02

08:54:25 ,24.6094016577037 ,38.0127699864845

4 201100024 ,1 ,2009 -01 -02

08:55:06 ,24.6086749910399 ,38.011116653155

5 201100024 ,1 ,2009 -01 -02

08:55:56 ,24.6076299910435 ,38.0092066531597

6 201100024 ,1 ,2009 -01 -02

08:56:16 ,24.6071983243782 ,38.0084733198281

7 201100034 ,1 ,2009 -01 -02

04:19:26 ,23.1092366579214 ,38.5853616531322

8 201100034 ,1 ,2009 -01 -02

04:19:36 ,22.9272199909328 ,38.8922416526431

9 201100034 ,1 ,2009 -01 -02

04:19:45 ,23.0359933243564 ,38.7788549861265

10 201100034 ,1 ,2009 -01 -02

04:19:55 ,22.9355449909622 ,38.868204986019

11 201100034 ,1 ,2009 -01 -02

04:20:05 ,23.0638616578755 ,38.6383849863914

12 ...

1 INPUT: CSV file

2 OUTPUT: Hermes tables

3
4 1. Bulk load the csv file in a table ‘‘pos’’.

5 2. Order table ‘‘pos’’ by obj_id ASC , traj_id ASC , t ASC

6 3. Iterate through the ordered result and for each position

7 a) Check if this position belongs to the previous

trajectory

8 i. If yes then form a segment with the previous

position and this position and insert it into

the segments table. At the same time insert

into the trajectories table if the trajectory

is not already there.

9 ii. If not then start a new trajectory and continue

to the next position.

Listing 3.1: Steps of the Hermes CSV loader

16 3 Hermes MOD Architecture Principles

Code Sample

1 SELECT HLoader(’imis’, ’IMIS 3 Days’);

2 SELECT HLoaderCSV_II(’imis’, ’imis3days.txt’);

3 SELECT HDatasetsOfflineStatistics(’imis’);

4 CREATE INDEX ON imis_seg USING gist (seg);

Code Explanation

In this sample code we notice that there is a function and a table with the
same name “HLoader”. The function loads the dataset by taking into account
the information / parameters that we pass to the function but also the ones
that are present in the table. Because loader can be extended to support
more formats beyond CSV this is why “HLoader” table exists to hold the
specific parameters for that extension. Every loader though must have the
parameters that are passed in the function since they are common to any
dataset and loader combination.

3.3 Indexing with pg3D-Rtree

Indexing mechanisms in DBMS’s for Spatio-Temporal data lack a unified
structure for space and time dimensions [12]. This leads to maintaining mul-
tiple indexes, one for each dimension, and adds complexity to queries.

This section presents the Rtree-like pg3D-Rtree indexing mechanism that
was developed on top of GiST (Generalized Search Tree) interface of Post-
greSQL and can be applied on SegmentST and Trajectory types. GiST [6] is
a balanced, tree-structured access method, which acts as a base template in
which to implement arbitrary indexing schemes [1]. B-trees, R-trees and many
other indexing schemes can be implemented in GiST.

pg3D-Rtree implements 8 functions as specified by GiST so that Spatio-
Temporal data can be indexed in a unified Rtree-like structure.

In the next paragraphs the most important functions that define our in-
dexing mechanism are described. To facilitate the discussion, let’s think of
BoxST as a Spatio-Temporal Minimum Bounding Box MBB(Xl, Yl, Ti, Xh,
Yh, Te) where (Xl, Yl, Ti) is the low-left and (Xh, Yh, Te) is the high-right
3-dimensional point of MBB.

Consistent(E, q) given an entry E and a query q this function supports
a variety of operators.

• Spatial operators:
– Overlaps
– Contains
– On the Left/Right/Above/Below

• Temporal operators:

3.3 Indexing with pg3D-Rtree 17

– Overlaps
– Contains
– Before/After

• Spatio-Temporal operators:
– Overlaps
– Contains

Compress(seg/traj) is used to transform the next to insert segment or
trajectory in the structure to an MBB.

Union(E1, , En) aggregates the MBB’s of the input entries into one single
MBB that contains all of them. This new MBB will become the parent entry
of those entries in the tree.

Penalty(E1, E2) given entry E1 and a new entry E2 this function cal-
culates the “cost” of inserting E2 under E1. The equation to compute this
“cost” is Size(Union(E1, E2)) - Size(E1), where size is the volume of the box.
The lower the cost the more possible it will be that E2 is inserted under E1.

Picksplit is responsible for splitting the entries of a node in the tree that
has overflowed. Hermes implements the “New Linear Node Splitting Algo-
rithm for R-trees” algorithm, proposed by Anf and Tan [3].

GiST is not suitable for all variations of R-Trees. For example, TB-Tree [11]
cannot be implemented using GiST because it requires either a linked-list be-
tween leaf nodes or a leaf node to contain segments from only one trajectory.
This is because GiST doesn’t support custom interconnections between nodes
(apart from parent-child) and penalty method cannot guarantee that a seg-
ment will be inserted to a specific node.

4

Hermes MOD Functionality

The index mechanism that was described earlier is utilized through a set of
spatio-temporal operators listed in table 4.1. In the rest of this paragraph we
elaborate on the functionality of Hermes in terms of SQL functions and the
algorithms they implement.

4.1 Methods

The following methods can be used interchangeably either on segment or
trajectory objects (recall the discussion about alternative models of storage
in 3.1.4), thus each time they assume a different interpolation model. In the
case of segments a uniform linear motion model is assumed, in fact it is the
only assumption we can make about the segment since we have no other
information about its previous state. On the other hand, when the function
is called on a trajectory object the non-uniform linear motion with constant
non-zero acceleration between two points is used. An assumption is made on
the initial speed of the object: the speed of the object at the first point of
the trajectory is considered equal to the speed at the second point, in other
words, the acceleration at the first segment of the trajectory is zero.

In the following, there is example code segments for the segment model
mainly.

4.1.1 average speed

This function takes a segment or a trajectory as a parameter and returns the
average speed.

Code Sample

20 4 Hermes MOD Functionality

1 --1st Query --

2 SELECT averageSpeed(’((’’1970-1-1 0:0:0 ’’, ’’1970-1-1 0:0:4

’’), ((0, 0), (0, 4)))’:: SegmentST);

3 --Result of 1st Query

4 "1" -m/s

5
6 --2nd Query --

7 SELECT averageSpeed(’(’’1970 -01 -01 00:00:00 ’’, (0, 0))~(’’

1970 -01 -01 00:00:01 ’’, (0, 1))~(’’1970 -01 -01 00:00:02 ’’

, (0, 2))~(’’1970 -01 -01 00:00:03 ’’, (0, 4))’::

Trajectory);

8 --Result of 2nd Query

9 "1.33" -m/s

Code Explanation

The result is measured in meters per second. The 2nd query will calculate the
average speed of the trajectory by looking only at the first and last point and
since it looks only at two points it assumes a zero acceleration between them.

4.1.2 at instant

This function takes a segment and a timestamp as parameters and returns
the point where the object was found at the given timestamp.

Code Sample

1 --1st Query --

2 SELECT atInstant(’((’’1970-1-1 0:0:0 ’’, ’’1970-1-1 2:0:0 ’’)

, ((0, 0), (2, 2)))’::SegmentST , ’1970-1-1 1:0:0’::

Timestamp);

3 --Result of 1st Query

4 "(1, 1)" -Of type PointSP

Code Explanation

Notice that the result is the middle of the segment.

4.1.3 at point

This function takes a segment and a point as parameters and returns the
timestamp at which the object was found at the given point.

4.1 Methods 21

Code Sample

1 --1st Query --

2 SELECT atPoint(’((’’1970-1-1 0:0:0 ’’, ’’1970-1-1 2:0:0 ’’),

((0, 0), (2, 2)))’::SegmentST , ’(1, 1)’:: PointSP);

3 --Result of 1st Query

4 "1970 -01 -01 01:00:00" -Of type Timestamp

Code Explanation

The point has to be on the segment, otherwise the function returns NULL.

4.1.4 at period

This function takes a segment and a period as parameters and returns the
part of the segment that corresponds to the given period.

Code Sample

1 --1st Query --

2 SELECT n, s, p FROM atPeriod(’((’’1970-1-1 0:0:0 ’’, ’’

1970-1-1 4:0:0 ’’), ((0, 0), (4, 4)))’::SegmentST , ’(’’

1970-1-1 1:0:0 ’’, ’’1970-1-1 2:0:0 ’’)’:: Period);

3 --Result of 1st Query

4 2, "((1, 1), (2, 2))", NULL

Code Explanation

The segment might have only one timestamp in common with the period so
in that case the function returns a point instead of a segment. This is why the
function returns three columns (n, s, p) where n is the number of common
points, s is the segment within the period (if n is 2) and p is the point that
the segment was within the period (if n is 1).

4.1.5 at box

This function takes a segment and a box as parameters and returns the part
of the segment that resides within the box.

Code Sample

1 --1st Query --

2 SELECT n, s, p FROM atBox(’((’’1970-1-1 0:0:0 ’’, ’’1970-1-1

4:0:0’’), ((0, 0), (4, 4)))’::SegmentST , ’((1, 1), (2,

2))’:: BoxSP);

3 --Result of 1st Query

4 2, "(’’1970-1-1 1:0:0’’, ’’1970-1-1 2:0:0’’)", NULL

22 4 Hermes MOD Functionality

Code Explanation

The n, s, and p have the same meaning as in atPeriod.

4.1.6 intersection

This function takes a spatial segment and a spatial box as parameters and
returns the intersection of the segment with the box. There is also a third op-
tional parameter, called “solid”, that when is set to false the function returns
NULL when the segment is fully contained within the box without touching
the perimeter.

Code Sample

1 --1st Query --

2 SELECT n, s, p FROM intersection(’((0, 0), (4, 4))’::

SegmentSP , ’((1, 1), (2, 2))’::BoxSP);

3 --Result of 1st Query

4 2, "((1, 1), (2, 2))", NULL

Code Explanation

The n, s, and p have the same meaning as in atPeriod and atBox.

4.1.7 enter-leave points

The enter leave function finds the points where the object entered or left a
specific region. It takes an array of segments and a box as parameters.

Code Sample

1 --1st Query --

2 SELECT enterPoint , leavePoint FROM enter_leave(

array_of_segments [], box_area);

Code Explanation

The function returns two columns one for the enter and one for the leave
point. If one of them doesn’t exist then it returns NULL to the corresponding
column.

4.1.8 trajectory (aggregate function)

This is an aggregate function (meaning that it is used with a GROUP BY
clause) that takes segments ordered by time as input and returns a trajectory
object.

4.2 Basic Operators 23

Code Sample

1 --1st Query --

2 SELECT trajectory(seg ORDER BY t_i(seg))

3 FROM

4 (

5 SELECT ’((’’1970-1-1 0:0:0 ’’, ’’1970-1-1 0:0:1 ’’),

((0, 0), (1, 1)))’:: SegmentST AS seg

6 UNION

7 SELECT ’((’’1970-1-1 0:0:1 ’’, ’’1970-1-1 0:0:2 ’’),

((1, 1), (4, 4)))’:: SegmentST

8 UNION

9 SELECT ’((’’1970-1-1 0:0:2 ’’, ’’1970-1-1 0:0:4 ’’),

((4, 4), (4, 6)))’:: SegmentST

10) AS segs;

11 --Result of 1st Query

12 "(’1970-01-01 00:00:00 ’ , (0, 0))~(’1970 -01 -01 00:00:01 ’ ,

(1, 1))~(’1970 -01 -01 00:00:02 ’ , (4, 4))~(’1970 -01 -01

00:00:04 ’ , (4, 6))" -Of type Trajectory

Code Explanation

The query uses UNION keyword in order to build a result consisting of three
rows. That result is named “segs” and is considered a table of segments. The
function trajectory receives all the segments one by one in ascending time
order and builds the trajectory object. This trajectory can be passed as an
argument to more advanced methods that are discussed in the next paragraph.

4.2 Basic Operators

In this section, we present the index-supported operators of Hermes. The oper-
ators rely on the methods of the previous section in order to be implemented.

The && (overlaps) operator checks if the segment has any common points
(or common timespan, in the case of Period) with the object in the right of the
operator. When the object in the right is of spatio-temporal type interpolate
is used to find if both the spatial and temporal components interact.

The ∼ (contains) operator checks if the segment contains the object in
the right argument. When the right argument is PointST then interpolation
takes place in order to find the position the segment was at the timestamp
that PointST contains and then if the position is the same as the position
that PointST contains the operator returns true.

The @ (contained) operator checks whether the segment is contained
within a BoxSP (or Period, when we only check time) allowing it to touch

24 4 Hermes MOD Functionality

Table 4.1: 3D-Rtree operators

Symbol Returns Left Argument Right Argument
Operation

&& boolean SegmentST Period, BoxSP, SegmentSP, BoxST, SegmentST
overlaps
∼ boolean SegmentST Timestamp, Period, PointSP, PointST
contains
@ boolean SegmentST Period, BoxSP, BoxST
contained
@! boolean SegmentST BoxST
contained properly
-< boolean SegmentST RangeSP, RangeST
within distance
<-> number SegmentST Timestamp, Period, PointSP, SegmentSP, BoxSP
distance

the perimeter of the box. The @! (contained properly) operator differenti-
ates in that it doesn’t allow the segment to touch the perimeter (thus fully
contained).

The -<(within distance) operator checks whether the distance of the seg-
ment from the center of the RangeSP is less than the radius of the RangeSP
object. In the case where the right argument is a RangeST interpolation takes
place before evaluating the spatial distance. Specifically, atPeriod method is
called on the segment and the Period (Period is the temporal quantity that
is represented in the RangeST object).

The <->(distance) operator returns a number, in contrast to the previous
operators that return a boolean value, and shows the distance in seconds or
meters from the SegmentST to the right argument. If the right argument
is a temporal type the operator returns distance in seconds whereas if the
argumment is a spatial type it returns in meters.

4.3 Similarity Library

Measuring the similarity/distance between trajectories is not straightforward
mainly because we need to take into account the temporal dimension. There
are many proposed measures in the bibliography and Hermes implements some
of the state of the art methods in its similarity measures library.

The trajectory similarity functions that are implemented in Hermes in-
clude: Manhattan, Euclidean, Tchebycheff, DISSIM, DTW, LCSS, EDR, ERP.

5

Showcase on IMIS AIS Dataset

This chapter is a showcase on AIS data provided by IMIS Hellas and exploits
the capabilities of Hermes to efficiently query the data.

5.1 AIS Dataset Description

The “IMIS 3 Days” dataset spawns from “2008-12-31 19:29:30” to “2009-
01-02 17:10:06” and contains positions reports for 933 ships. It is spatially
constrained in the Aegean Sea and covers an area of 496736 km2, from (21,
35)-lowest to (29, 39)-highest longitude-latitude point.

In figure 5.1 there is an overview of the dataset with the blue lines repre-
senting the trajectories of the ships, the green circles that contain a number
indicate how many trajectories start around that area and the red ones how
many end.

5.2 Querying AIS Dataset

Find the position of all ships on the second day of 2009, midnight.

1 SELECT DISTINCT ON (obj_id , traj_id) obj_id , traj_id ,

2 atInstant(seg , ’2009 -01 -02 00:00:00 ’) AS position

3 FROM imis_seg

4 WHERE seg ~ ’2009 -01 -02 00:00:00 ’:: timestamp;

The index-supported “contains” operator () filters the database. Then
atInstant() method finds the exact location.

So, we can clearly see that greek seas are busy.

26 5 Showcase on IMIS AIS Dataset

Fig. 5.1: Overview of the “IMIS 3 Days” dataset

What was the movement of ships in Heraklion port on New Years
Eve 2009?

1 WITH TO_METERS AS (

2 SELECT

3 PointSP(PointLL (25.1325 , 35.3407) , HDatasetID(’imis’))

AS low ,

4 PointSP(PointLL (25.1569 , 35.3527) , HDatasetID(’imis’))

AS high

5), SPT_WINDOW AS (

6 SELECT BoxST(

7 Period(’2008 -12 -31 23:00:00 ’, ’2009 -01 -01 01:00:00 ’

),

8 BoxSP ((SELECT low FROM TO_METERS), (SELECT high

FROM TO_METERS))

9) AS box

10)

11 SELECT obj_id , traj_id , (atBox(seg , (SELECT box FROM

SPT_WINDOW))).s AS seg

12 FROM imis_seg

13 WHERE seg && (SELECT box FROM SPT_WINDOW)

14 AND (atBox(seg , (SELECT box FROM SPT_WINDOW))).n = 2;

The index-supported “intersects” operator (&&) filters the database. Then
atBox() method finds the sub-trajectory in the range. This method could

5.2 Querying AIS Dataset 27

Fig. 5.2: TimeSlice Result

return a point instead of a segment under certain circumstance such as when
the intersection between segment and the box is a point or when the segment
and the period have only one common timestamp. This is why the method
returns three properties the first of them is “n” which informs if the result is
a point in which case the value would be 1 or if it is a segment in which case
the value is 2. In case it is 0 then there is no intersection between the segment
and the box. To get the point use the “p” property and for the segment the
“s”.

There is no movement since the year is about to change.

Find the ships that came closer than half nautical mile from an
old lighthouse in Patrai.

1 SELECT DISTINCT obj_id , traj_id

2 FROM imis_seg

3 WHERE seg -< RangeSP(

4 round(nm2metres (0.5))::integer ,

5 PointSP(PointLL (21.72565 , 38.24513) , HDatasetID(’

imis’))

28 5 Showcase on IMIS AIS Dataset

Fig. 5.3: Range Result

6);

The index-supported “within distance” operator (-<) filters the database.
Notice that “nm2metres” function is used to transform nautical miles to

meters. Since Hermes uses 1 meter accuracy the number is rounded to the
nearest integer.

In figure 5.4 we notice a few ships passing close to the lighthouse. The
lighthouse is at the same location with the port of Patrai so we expect a lot
of ships passing very close to it.

Find the ship that was the closest to the lighthouse in Patrai.

1 WITH TO_METERS AS (

2 SELECT PointSP(PointLL (21.72565 , 38.24513) , HDatasetID(’

imis’)) AS lighthouse

3)

4 SELECT obj_id , traj_id , atPoint(seg , cp, false) cp,

5 distance(cp, (SELECT lighthouse FROM TO_METERS)) AS

dist

6 FROM (

5.2 Querying AIS Dataset 29

Fig. 5.4: Distance Result

7 SELECT obj_id , traj_id , seg ,

8 closestPoint(getSp(seg), (SELECT lighthouse FROM

TO_METERS)) AS cp

9 FROM imis_seg

10 ORDER BY seg <-> (SELECT lighthouse FROM TO_METERS)

11 LIMIT 1

12) AS tmp;

The index-supported distance operator (<->) searches the database for
the k-NN segments w.r.t. a stationery object. Here k is limited to 1, so we
saw a 1-NN case.

Notice that we use “closestPoint” function to find the point in the trajec-
tory segment that is the closest to the lighthouse. After that we use “atPoint”

30 5 Showcase on IMIS AIS Dataset

function to find the timestamp for that point. We command the function not
to check for containment by adding “false” as the last parameter since we
already know the point is contained on the segment.

Fig. 5.5: 1-NN Result

This query gives us one of the ships of the result of the previous query, see
figure 5.5. This time we know that the ship with MMSI 239575000 was the
one that came closest to the lighthouse and at what point exactly.

For every ship, find which other ships were in its 1 n.m. vicinity 5
minutes around 2009-01-02 11:00:00. Also, let’s give an estimate
on how close each ship was to the other.

1 SELECT r.obj_id , db.obj_id ,

2 intersection(HUnion(getT(db.seg)),

3 Period(’2009 -01 -02 10:55:00 ’, ’2009 -01 -02 11:05:00 ’

)) AS common_period ,

4 avg(metres2nm(distance(getSp(db.seg), getSpc(r.range)))

) AS avg_dist

5 FROM imis_seg AS db INNER JOIN (

6 SELECT obj_id , RangeST(’00:05:00 ’, getT(position),

7 round(nm2metres (1))::integer , getX(position),

getY(position)

8) AS range

5.2 Querying AIS Dataset 31

9 FROM (

10 SELECT DISTINCT ON (obj_id) obj_id ,

11 atInstant(seg , ’2009 -01 -02 11:00:00 ’) AS

position

12 FROM imis_seg

13 WHERE seg ~ ’2009 -01 -02 11:00:00 ’:: timestamp

14) AS timeslice

15) AS r ON db.seg -< r.range

16 WHERE r.obj_id <> db.obj_id

17 GROUP BY r.obj_id , db.obj_id

18 ORDER BY r.obj_id ASC , avg_dist ASC;

In this query we first execute a timeslice query and then use that result
to execute a distance query. Also, we use an aggregate function “HUnion”,
along with a “GROUP BY” clause of course, on the period component of the
segments of a trajectory to find their union.

Fig. 5.6: Join Result

Find the ships that entered Patras port area. (Irrespective of time)

32 5 Showcase on IMIS AIS Dataset

1 WITH TO_METERS AS (

2 SELECT

3 PointSP(PointLL (21.7223 , 38.2448) , HDatasetID(’imis’))

AS low ,

4 PointSP(PointLL (21.7394 , 38.2630) , HDatasetID(’imis’))

AS high

5), PORT_AREA AS (

6 SELECT BoxSP ((SELECT low FROM TO_METERS), (SELECT high FROM

TO_METERS)) AS box

7)

8 SELECT obj_id , (el).enterPoint

9 FROM (

10 SELECT obj_id ,

11 enter_leave(array_agg(seg), (SELECT box FROM

PORT_AREA)) AS el

12 FROM imis_seg

13 WHERE seg && (SELECT box FROM PORT_AREA)

14 GROUP BY obj_id

15) AS tmp

16 WHERE (el).enterPoint IS NOT NULL;

Notice the “enter leave” function which takes an array of segments of the
same trajectory and returns an enter and a leave points of that trajectory in
the area specified in the second argument. If there is no enter and/or leave
point then the corresponding property in the result of the function will be
NULL.

We can clearly see the main entrance points in the figure 5.7.

Find the ships that crossed Evvoia - Andros narrow passage.
(Irrespective of time)

1 WITH TO_METERS AS (

2 SELECT

3 PointSP(PointLL (24.528 , 37.920) , HDatasetID(’imis’)) AS

low ,

4 PointSP(PointLL (24.810 , 38.010) , HDatasetID(’imis’)) AS

high

5), PORT_AREA AS (

6 SELECT BoxSP ((SELECT low FROM TO_METERS), (SELECT high FROM

TO_METERS)) AS box

7)

8 SELECT obj_id , (el).enterPoint , (el).leavePoint

9 FROM (

10 SELECT obj_id ,

11 enter_leave(array_agg(seg), (SELECT box FROM

PORT_AREA)) AS el

12 FROM imis_seg

5.2 Querying AIS Dataset 33

Fig. 5.7: Enter Result

13 WHERE seg && (SELECT box FROM PORT_AREA)

14 GROUP BY obj_id

15) AS tmp

16 WHERE (el).enterPoint IS NOT NULL AND (el).leavePoint IS

NOT NULL;

We utilize the “enter leave” function again to find if a ship crossed the
area.

We notice that the passage is heavily used and there a lot of congestion,
see figure 5.8.

Find the Origin-Destination Matrix between 4 large areas of the
Greek territory.

34 5 Showcase on IMIS AIS Dataset

Fig. 5.8: Cross Result

1 WITH AREAS AS (

2 SELECT ’North Aegean ’ AS name , BoxSP(PointSP(PointLL (24.84 ,

37.43) , HDatasetID(’imis’)),

3 PointSP(PointLL (27.10 , 40.06) , HDatasetID(’imis’))) AS

area

4 UNION SELECT ’Piraeus ’, BoxSP(PointSP(PointLL (23.19 , 37.50)

, HDatasetID(’imis’)),

5 PointSP(PointLL (23.90 , 38.10) , HDatasetID(’imis’)))

6 UNION SELECT ’Ionian -Cretan ’, BoxSP(PointSP(PointLL (21.55 ,

35.28) , HDatasetID(’imis’)),

7 PointSP(PointLL (23.65 , 36.68) , HDatasetID(’imis’)))

8 UNION SELECT ’Dodecanese ’, BoxSP(PointSP(PointLL (26.39 ,

35.05) , HDatasetID(’imis’)),

9 PointSP(PointLL (28.57 , 37.32) , HDatasetID(’imis’)))

10), OD AS (

11 SELECT origin.name AS o_name , origin.area AS o_area ,

12 destination.name AS d_name , destination.area AS d_area

13 FROM AREAS AS origin INNER JOIN AREAS AS destination

14 ON origin.name <> destination.name

15), START_END AS (

16 SELECT obj_id , minT(i(seg)) AS start , maxT(e(seg)) AS end

17 FROM imis_seg

18 GROUP BY obj_id

19)

20 SELECT OD.o_name , OD.d_name , count(DISTINCT START_END.

obj_id) AS nof_ships

21 FROM OD LEFT JOIN START_END

22 ON contains(OD.o_area , getSp(START_END.start))

23 AND contains(OD.d_area , getSp(START_END.end))

5.2 Querying AIS Dataset 35

24 GROUP BY OD.o_name , OD.d_name

25 HAVING count(DISTINCT START_END.obj_id) > 0

26 ORDER BY OD.o_name ASC , OD.d_name ASC;

Fig. 5.9: Entrance and exit areas in Greek territory. See table 5.1 for an OD-Matrix
between these areas.

Table 5.1: Origin-Destination Matrix between 4 large areas of the Greek territory

Origin / Destination Dodecanese Ionian-Cretan North Aegean Piraeus

Dodecanese - 2 30 4
Ionian-Cretan 6 - 47 11
North Aegean 29 35 - 9
Piraeus 2 1 7 -

As shown by the OD-Matrix (table 5.1) the two main entrance and exit
routes in Greek Seas are the most heavily used routes. Meaning that Greek
Seas are a congested crossroad for travelling ships.

36 5 Showcase on IMIS AIS Dataset

5.3 Visualization tips

Hermes provides a set of functions that allow to construct a KML document
within a query in steps. An example of how we visualized the Timeslice query
is the following.

1 COPY (

2
3 WITH TABULAR_RESULT AS (

4 ------------------------------- Core Query

5 SELECT DISTINCT ON (obj_id , traj_id) obj_id , traj_id ,

6 atInstant(seg , ’2009 -01 -02 00:00:00 ’) AS position

7 FROM imis_seg

8 WHERE seg ~ ’2009 -01 -02 00:00:00 ’:: timestamp

9 ------------------------------- End of Core Query

10)

11 SELECT KMLDocument(KMLFolder(’2009 -01 -02 00:00:00 ’,

string_agg(

12 KMLPoint(’MMSI: ’ || obj_id , getSp(position),

HDatasetID(’imis’))

13 , ’’)))

14 FROM TABULAR_RESULT

15
16) TO ’C:\ Program Files\PostgreSQL \9.2\ data\Timeslice.kml’;

Function “KMLPoint” returns a string that gives a KML point placemark
element (each point will have in its description the object and trajectory id
it belongs to). Then we aggregate all points using “string agg” function and
pass that result to “KMLFolder” which will enclose the points under one KML
folder element (the folder’s name is the timestamp we gave for the query).
Finally, we enclose that folder element in a KML document element. So, our
KML file is now all in one row as a string and using “COPY” command we
write it to a system file.

One more example that shows how to visualize trajectories.

1 COPY (

2
3 WITH TABULAR_RESULT AS (

4 ------------------------------- Core Query

5 WITH TO_METERS AS (

6 SELECT

7 PointSP(PointLL (25.1325 , 35.3407) , HDatasetID(’imis’))

AS low ,

8 PointSP(PointLL (25.1569 , 35.3527) , HDatasetID(’imis’))

AS high

9), SPT_WINDOW AS (

5.3 Visualization tips 37

10 SELECT BoxST(

11 Period(’2008 -12 -31 23:00:00 ’, ’2009 -01 -01 01:00:00 ’

),

12 BoxSP ((SELECT low FROM TO_METERS), (SELECT high

FROM TO_METERS))

13) AS box

14)

15 SELECT obj_id , traj_id , (atBox(seg , (SELECT box FROM

SPT_WINDOW))).s AS seg

16 FROM imis_seg

17 WHERE seg && (SELECT box FROM SPT_WINDOW)

18 AND (atBox(seg , (SELECT box FROM SPT_WINDOW))).n = 2

19 ------------------------------- End of Core Query

20)

21 SELECT KMLDocument(KMLFolder(’Input area’, KMLPolygon(’

Heraklion port area’,

22 BoxSP(PointSP(PointLL (25.1325 , 35.3407) , HDatasetID

(’imis’)),

23 PointSP(PointLL (25.1569 , 35.3527) , HDatasetID(’

imis’)))

24 , HDatasetID(’imis’))) || string_agg(tracksFolder ,

’’))

25 FROM (

26 SELECT obj_id , KMLFolder(’MMSI: ’ || obj_id ,

27 string_agg(trackPlacemark , ’’)) AS tracksFolder

28 FROM (

29 SELECT obj_id , traj_id , KMLTrack(

30 ------------------- Balloon Info

31 ’MMSI: ’ || obj_id || ’

’ ||

32 count (*) - 1 || ’ points sampled between ’ ||

min(getTi(seg)) ||

33 ’ and ’ || max(getTe(seg)) || ’.

’ ||

34 ’The ship covered a distance of ’ ||

35 trunc(metres2nm(sum(length(getSp(seg))))::

numeric , 1) ||

36 ’ NM with an average speed of ’ ||

37 trunc(mps2knots(sum(length(getSp(seg))) /

38 extract(epoch from max(getTe(seg)) - min(

getTi(seg)))):: numeric

39 , 1) ||

40 ’ knots within an area of ’ ||

41 trunc(area(BoxSP(min(min(getIx(seg), getEx(seg)

)),

42 min(min(getIy(seg), getEy(seg))),

43 max(max(getIx(seg), getEx(seg))),

44 max(max(getIy(seg), getEy(seg))))) /

1000000 , 1) ||

38 5 Showcase on IMIS AIS Dataset

45 ’ square kilometers.’

46 ------------------- End of Balloon Info

47 , array_agg(seg ORDER BY getTi(seg) ASC),

HDatasetID(’imis’)

48) AS trackPlacemark

49 FROM TABULAR_RESULT

50 GROUP BY obj_id , traj_id

51) AS tracks

52 GROUP BY obj_id

53) AS folders

54
55) TO ’C:\ Program Files\PostgreSQL \9.2\ data\Range.kml’;

6

Case Study: ChoroChronos Archive

ChoroChronos Archive (http://www.chorochronos.org) is a web portal and a
collection of moving object databases and related algorithms that are used
by the mobility data management and mining community for the empirical
analysis and evaluation of mobility-centric query processing and mining al-
gorithms [8]. Hermes was used to support ChoroChronos data layer so that
guests can pose queries to a Moving Objects Database (MOD). The architec-
ture of ChoroChronos is illustrated in figure 6.1. It is a classic 3-tier archi-
tecture (presentation-business-data) and Hermes is a part of the data layer.
Spatio-temporal datasets are hosted in Hermes thus allowing efficient query
execution. In figure 6.2 you can see an example execution of a window query
on “IMIS 3 Days” dataset, indexed with pg3D-RTree.

The Window Query of ChoroChoronos utilizes atPeriod and atBox meth-
ods to compute the result that is visualized on the map. It also uses &&
(overlaps) operator in the same query to take advantage of the index. The
TimeSlice Query (figure 6.3) uses atInstant to find the place where the ships
were at a specific timestamp and takes advantage of the 3D-Rtree through
the ∼ (contains) operator.

40 6 Case Study: ChoroChronos Archive

Fig. 6.1: The architecture of ChoroChronos.org [8]

6 Case Study: ChoroChronos Archive 41

Fig. 6.2: ChoroChronos.org Window Query

42 6 Case Study: ChoroChronos Archive

Fig. 6.3: ChoroChronos.org TimeSlice Query

7

Summary

The spread of the concept of Mobility to basic users in conjunction with the
lack of software frameworks that would be able to handle spatio-temporal
data and methods lead to the development of Hermes. Hermes provides a
clear SQL interface to its data types, functions and operators that make it
easy to learn and use when it comes to managing spatio-temporal data. We
explained its components and demonstrated its capabilities on a real world
dataset. We also showed its maturity by using it to support a real-world web
application.

Next Steps

There is always room for improvement on a framework like Hermes and some
of the areas this can be done are:

• spatio-temporal indexing: developing an indexing library on top of GiST
with the state of the art indexing algorithms for spatio-temporal data

• advanced spatio-temporal processing (e.g. computational geometry algo-
rithms)

• semantic trajectories management: integrating text and spatio-temporal
data

• management of mobility data from cellular networks such as GSM: ways
to store and query very sparsely sampled trajectories with high position
uncertainty

An immediate feature that can be added to Hermes is a way to do Map-
Matching over a network. This can adopt the network representation of
pgRouting and it could be embedded into the Loader for automatic execution
of the procedure during loading.

A

Installation Instructions

There are two ways to install Hermes on PostgreSQL. The first one is to
use the installer and the second one is to run the install scripts manually
thus provides a solution in cases where custom installation is required. The
recommended way is the installer.

The installer supports downloading the latest version and updating a
database to the latest version of Hermes.

Use the Installer

The latest version of the installer can be downloaded from this link. The .zip
file is to be used on Windows and the .tar.gz on Linux.

*Important: On 64-bit Linux you will need to install the following pack-
ages “ia32-libs” and “ia32-libs-gtk” for the installer to work.

The recommended first thing to do is extract the contents of the com-
pressed file and read the “ReadMe.txt” file.

Below there are screenshots demonstrating the steps of the installer on
Windows. The steps are the same on Linux.

Installation Step 1: Run installer as administrator. On Linux as root.
Installation Step 2: Choose “Install Hermes” to begin a fresh installation.
Installation Step 3: Choose “Install prerequisites for me” if you want the

installer to install PostgreSQL, PostGIS, Python, and VCRedist later on an-
other step. If you choose not to, then the installer assumes you have already
installed the prerequisites.

Installation Step 4: You will have to accept the license terms in order to
continue.

Installation Step 5: “Install as” field should NOT be changed unless you
need to have multiple versions of Hermes in one PostgreSQL instance.

Installation Step 6: Now the installer will begin the installation of the
prerequisites, provided that in a previous step you chose that option. The
first prerequisite is “Microsoft Visual C++ 2012 Redistributable Package”.

Installation Step 7: The second prerequisite is Python.

46 A Installation Instructions

Installation Step 8: The third prerequisite is PostgreSQL.
Installation Step 9: When PostgreSQL installation finishes you will have

to install the fourth prerequisite, PostGIS, usually via the Stack Builder ap-
plication of PostgreSQL.

Installation Step 10: In this step you will have to provide the port your
PostgreSQL instance runs on, as well as the password for the “postgres” su-
peruser.

Installation Step 11: If everything works as it should the installer will
show you the above screen. At this point you have installed Hermes on your
PostgreSQL instance!

Manual Steps

Before following the installation steps, check the prerequisites of Hermes de-
scribed below.

Hermes works both on 64-bit and 32-bit operating systems, and supports
Linux and Windows Vista SP2 or later.

Hermes requires:

1. PostgreSQL version 9.2 or later
2. PostGIS version 2.0 or later (Optional in Hermes architecture, but highly

recommended because it enhances user experience)
3. Python version 3.2 or later
4. Windows only: Microsoft Visual C++ 2012 Redistributable Package

Installation steps:

1. Install PostgreSQL and then PostGIS (usually via StackBuilder).
2. Install Python, 32-bit or 64-bit version depending on the architecture of

your PostgreSQL (not of the operating system).
3. Only if you are using Windows, install “Microsoft Visual C++ 2012 Redis-

tributable Package”, 32-bit or 64-bit version depending on the architecture
of your PostgreSQL (not of Windows).

4. Copy the shared library Hermes.so (Linux)/Hermes.dll (Windows) under
$PostgreSQL install dir/lib folder. The shared library that you should
copy also depends on whether the version of your PostgreSQL installation
is 32-bit or 64-bit.

5. Run the SQL scripts found in “Hermes SQL Framework” folder.

A Installation Instructions 47

Fig. A.1: Installation Step 1

Fig. A.2: Installation Step 2

48 A Installation Instructions

Fig. A.3: Installation Step 3

A Installation Instructions 49

Fig. A.4: Installation Step 4

50 A Installation Instructions

Fig. A.5: Installation Step 5

Fig. A.6: Installation Step 6

A Installation Instructions 51

Fig. A.7: Installation Step 7

Fig. A.8: Installation Step 8

52 A Installation Instructions

Fig. A.9: Installation Step 9

Fig. A.10: Installation Step 10

Fig. A.11: Installation Step 11

References

1. Postgresql documentation. http://www.postgresql.org/docs/current/static.
2. Building a 21st century platform to better serve the american peo-

ple. http://www.whitehouse.gov/sites/default/files/omb/egov/digital-
government/digital-government.html, May 2012.

3. C.-H. Ang and T. C. Tan. New linear node splitting algorithm for r-trees. In Pro-
ceedings of the 5th International Symposium on Advances in Spatial Databases,
SSD ’97, pages 339–349, London, UK, UK, 1997. Springer-Verlag.

4. O. G. Committee. Guidance notes. http://info.ogp.org.uk/geodesy/guides.
5. S. Dieker and R. H. Güting. Plug and play with query algebras: Secondo-a

generic dbms development environment. In Proceedings of the 2000 International
Symposium on Database Engineering & Applications, IDEAS ’00, pages 380–392,
Washington, DC, USA, 2000. IEEE Computer Society.

6. J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees for
database systems. In Proceedings of the 21th International Conference on Very
Large Data Bases, VLDB ’95, pages 562–573, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

7. N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. Hermes: aggregative
lbs via a trajectory db engine. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, SIGMOD ’08, pages 1255–
1258, New York, NY, USA, 2008. ACM.

8. N. Pelekis, E. Stefanakis, I. Kopanakis, C. Zotali, M. Vodas, and Y. Theodoridis.
Chorochronos.org: A geoportal for movement data and processes. In Proceedings
of the 10th International Conference on Spatial Information Theory, COSIT ’11,
2011.

9. N. Pelekis and Y. Theodoridis. Boosting location-based services with a moving
object database engine. In Proceedings of the 5th ACM international workshop
on Data engineering for wireless and mobile access, MobiDE ’06, pages 3–10,
New York, NY, USA, 2006. ACM.

10. N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes -
a framework for location-based data management. In Proceedings of the 10th
international conference on Advances in Database Technology, EDBT’06, pages
1130–1134, Berlin, Heidelberg, 2006. Springer-Verlag.

11. D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query pro-
cessing for moving object trajectories. In Proceedings of the 26th International

54 References

Conference on Very Large Data Bases, VLDB ’00, pages 395–406, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

12. Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for
large multimedia applications. In Multimedia Computing and Systems, 1996.,
Proceedings of the Third IEEE International Conference on, pages 441–448,
1996.

List of Figures

2.1 HERMES architecture on Oracle [7] . 3
2.2 SECONDO architecture [5] . 4

a (a) Constant Speed . 5
b (b) Constant Acceleration . 5

3.1 Alternative Interpolation Techniques . 5
3.2 Hermes Data Types . 7
3.3 Spatial Segment . 9
3.4 Spatial Box . 9

a (a) Segment based modeling . 11
b (b) Trajectry based modeling . 11

3.5 Alternative Interpolation Techniques . 11
3.6 Database Schema. 14

5.1 Overview of the “IMIS 3 Days” dataset . 26
5.2 TimeSlice Result . 27
5.3 Range Result . 28
5.4 Distance Result . 29
5.5 1-NN Result . 30
5.6 Join Result . 31
5.7 Enter Result . 33
5.8 Cross Result . 34
5.9 Entrance and exit areas in Greek territory. See table 5.1 for

an OD-Matrix between these areas. 35

6.1 The architecture of ChoroChronos.org [8] . 40
6.2 ChoroChronos.org Window Query . 41
6.3 ChoroChronos.org TimeSlice Query . 42

A.1 Installation Step 1 . 47
A.2 Installation Step 2 . 47

56 List of Figures

A.3 Installation Step 3 . 48
A.4 Installation Step 4 . 49
A.5 Installation Step 5 . 50
A.6 Installation Step 6 . 50
A.7 Installation Step 7 . 51
A.8 Installation Step 8 . 51
A.9 Installation Step 9 . 52
A.10 Installation Step 10 . 52
A.11 Installation Step 11 . 52

List of Tables

4.1 3D-Rtree operators . 24

5.1 Origin-Destination Matrix between 4 large areas of the Greek
territory . 35

