
 University Of Piraeus

Department Of Digital Systems

Postgraduate Programme

“Techno-Economic Management and Digital Systems Security”

MSc Thesis

“Security Assessment of Mobile Networks by Data Extraction from SIM

Cards via AT Commands”

Student: Andi Anastasis

Supervisor: Assistant Professor Xenakis Christos

Piraeus

June 2012

1

2

Acknowledgements

The author would like to thank Assistant Professor Christos Xenakis for his guidance and his experienced

input on the subject, as well as for the trust he showed on this subject. Also thanks to Dr Christoforos

Dadoyan and Stefanos Malliaros for their valuable input and their elaboration on the project.

3

Abstract
In the last two decades the growth of the mobile phone industry has been significant. This growth has

led to the usage of mobile devices for everyday actions such as communication, banking, networking

etc. It is common knowledge that the more a service is used, the more attackers will try and exploit it.

The improvement of computers’ processing power has made security measures, which once were

adequate, easy to overcome. Moreover, mobile service providers are not up-to-date with the latest

standards mainly for two reasons. The first reason is that mobile carriers purchase their equipment and

once it is installed it acts as a black box, meaning that the provider does not interfere with the

equipment’s internals. The second reason is that in order to improve security for the mobile services the

provider offers, there need to be a tradeoff and waste more resources. The need for more processing

power will lead to a more expensive functioning of the infrastructure and this means less profit for the

provider.

This thesis documents the attempt to extract information about the mobile networks from the mobile’s

SIM card. With the use of AT Commands it was made possible to extract security related data and

perform a security assessment in the current state of the mobile service networks. Using custom made

tools, a database of logs was built and processed in order to arrive to conclusions.

4

Index

Abstract .. 0

1. Environment ... 5

2. Setting Up .. 6
2.1 Jailbreak .. 6
2.2 Programs’ Installation ... 6
2.3 Setting up minicom ... 6
2.4 Signal 6

3. Subscriber & Universal Subscriber Identity Module (SIM/USIM) ... 7
3.1 Authentication process for SIM & USIM ... 13
3.1.1 GSM Authentication .. 13
3.1.2 UMTS Authentication ... 13

3. AT Commands ... 14
3.1 AT Commands in GSM .. 14
3.2 AT Commands for Data Extraction .. 15

4. Experiment Process .. 17

5. Data collection and value ... 18

6. Information gathering .. 20

7. Tutorial ... 21

8. Assistive Scripts ... 29
8.1 keylife.rb ... 29
8.2 unique.rb ... 29

9. Related Work ... 30

References .. 31

Code Appendix .. 32

5

1. Environment
In order to conduct the necessary experiments a suitable environment must be first set up. The most

suitable environment in which the testing took place consists of:

 iPhone: The devices chosen were Apple’s iPhone 4 GSM with iOS version 5.1.1 and iPhone 3GS

with iOS version 6.

 Jailbreak: The devices underwent the jailbreaking process in order to get root access to the

phone. This process removes the limitations set by Apple for the iOS by the use of certain

exploits [2].It is a necessity in order to install additional tools that will help with the experiments

and are not available through the official App Store. The needed components are available via

Cydia. Cydia is an alternative software distribution channel for applications, tweaks and themes

for jailbroken iOS devices [4].

 OpenSSH: OpenSSH (OpenBSD Secure Shell) is a collection of network programs providing

encrypted communication sessions in a network via the Secure Shell (SSH) protocol [3].It should

be easily installed via Cydia.

 Minicom: Minicom is a text-based program used for modem control and terminal emulation for

Unix-based operating systems [5]. One of its main uses is serial communication with a device.

Minicom is the most essential program for the experiment as it utilizes the communication

between the user and the phone’s modem. Through minicom we can send commands to the

iPhone’s baseband and get replies.

 Ruby: Ruby is a dynamic, object-oriented, open-source programming language [6]. It is well-

known for its simplicity and its natural syntax making it easy to read and comprehend.In order to

automate the process of data extraction a script language is very helpful. The choice was ruby,

due to previous experience and the simplicity of the language.

 Signal: Signal is a utility that displays information about cell towers the device is connected, as

well as neighbour towers along with signal strength in dBm and the tower’s location in a map. In

some devices communication via minicom is not possible, probably due to an issue with the X-

Gold 618 baseband [8]. It is suggested that the “Signal” app is installed via Cydia in order to

achieve a successful communication with the iPhone serial ports.

 adv-cmds: The adv-cmds (short for advanced commands) is a set of unix commands ported for

the iOS [20]. The command required is the “ps” (process status) which lists all running processes

in the background. This is used in order to check whether an AT Command is still running in the

background.

 Core Utilities: This package is not necessary for the main process but it is required for monitoring

live the process via the “tail” command. The logs will still be saved in the device and will they can

be read with any text viewer or editor.

6

2. Setting Up
The technical steps in order to set up the environment are described below.

2.1 Jailbreak
There are numerous of up-to-date tutorials on how to jailbreak your iPhone device. The jailbreaking

process will not be described more and will be considered as a prerequisite.

2.2 Programs’ Installation
After opening the Cydia app, searching for the packets “OpenSSH”, “minicom”, “Signal”, “adv-cmds”,

“core utilities” and “ruby” and installing is a simple process.

2.3 Setting up minicom
A very detailed guide on how to set up minicom is located at the LetsUnlockIphone [8] site. A

recommended port should be the “cu.debug” instead of the “tty.debug”. You can start minicom by

typing “minicom -w -c on” in a terminal. When a message “AT” is send and a reply “OK” is received, it is

verified that minicom works.

2.4 Signal
The communication with the modem is not always successful and minicom might not be getting any

responses to the “AT” messages. After running the Signal app, the communication initializes. The

initialization of the serial port by minicom may be at fault.

7

3. Subscriber & Universal Subscriber Identity Module (SIM/USIM)
The Subscriber Identity Module (SIM) is an embedded system installed in a smartcard, also known as

Integrated Circuit Card (ICC) [10]. It is used for the secure storage of the International Mobile Subscriber

Identity (IMSI) [11] as well as encryption keys that are used to verify the modules identity and secure the

mobile communication as far as confidentiality and integrity are concerned. Furthermore, a SIM card

contains the Integrated Circuit Card Identifier (ICCD), the Authentication Key (Ki), Location Area Identity

(LAI) [12], contacts and SMS messages. The above mentioned values are stored in special files in the SIM

module called Elementary Files (EF). A figure is presented below, visualizing the tree structure of folders

and EF files in the SIM module.

8

 MF

 '3F00'

DFGSM DFTELECOM DFIS-41 DFFP-CTS EFICCID EFELP

'7F20' '7F10' '7F22' '7F23' '2FE2' '2F05'

 see GSM

11.19

 EFADN EFFDN EFSMS EFCCP EFMSISDN

 '6F3A' '6F3B' '6F3C' '6F3D' '6F40'

 EFSMSP EFSMSS EFLND EFSMSR EFSDN

 '6F42' '6F43' '6F44' '6F47' '6F49'

 EFEXT1 EFEXT2 EFEXT3 EFBDN EFEXT4

 '6F4A' '6F4B' '6F4C' '6F4D' '6F4E'

 DFGRAPHICS EFIMG

 '5F50' '4F20'

 DFIRIDIUM DFGLOBST DFICO DFACeS

 '5F30' '5F31' '5F32' '5F33'

 DFEIA/TIA-553 DFCTS DFSoLSA EFSAI EFSLL

 '5F40' '5F60' '5F70' '4F30' '4F31'

 see GSM

11.19

 DFMExE EFMExE-ST EFORPK EFARPK EFTPRPK

 '5F3C' '4F40' '4F41' '4F42' '4F43'

 EFLP EFIMSI EFKc EFPLMNsel EFHPPLMN EFACMmax

 '6F05' '6F07' '6F20' '6F30' '6F31' '6F37'

 EFSST EFACM EFGID1 EFGID2 EFPUCT EFCBMI

 '6F38' '6F39' '6F3E' '6F3F' '6F41' '6F45'

 EFSPN EFCBMID EFBCCH EFACC EFFPLMN EFLOCI

 '6F46' '6F48' '6F74' '6F78' '6F7B' '6F7E'

 EFAD EFPHASE EFVGCS EFVGCSS EFVBS EFVBSS

 '6FAD' '6FAE' '6FB1' '6FB2' '6FB3' '6FB4'

 EFeMLPP EFAAeM EFECC EFCBMIR EFNIA EFKcGPRS

 '6FB5' '6FB6' '6FB7' '6F50' '6F51' '6F52'

9

 EFLOCIGPRS EFSUME EFPLMNwAcT EFOPLMNwAcT EFHPLMNAcT EFCPBCCH

 '6F53' '6F54' '6F60' '6F61' '6F62' '6F63'

 EFINVSCAN

 '6F64'

SIM File System Structure [13]

The Universal Subscriber Identity Module (USIM) is similar to the SIM with a number of differences. The

main differential factor is that the USIM is used for the UMTS [14] network and the SIM for the GSM [15]

network. A figure of the USIM folders and EF files structure is presented below.

10

ADFUSIM

 EFLI EFARR EFIMSI EFKeys EFKeysPS

 '6F05' '6F06' '6F07' '6F08' '6F09'

 EFDCK EFHPPLMN EFCNL EFACMmax EFUST

 '6F2C' '6F31' '6F32' '6F37' '6F38'

 EFACM EFFDN EFSMS EFGID1 EFGID2

 '6F39' '6F3B' '6F3C' '6F3E' '6F3F'

 EFMSISDN EFPUCT EFSMSP EFSMSS EFCBMI

 '6F40' '6F41' '6F42' '6F43' '6F45'

 EFSPN EFSMSR EFCBMID EFSDN EFEXT2

 '6F46' '6F47' '6F48' '6F49' '6F4B'

 EFEXT3 EFBDN EFEXT5 EFCCP2 EFCBMIR

 '6F4C' '6F4D' '6F4E' '6F4F' '6F50'

 EFEXT4 EFEST EFACL EFCMI EFSTART-HFN

 '6F55' '6F56' '6F57' '6F58' '6F5B'

 EFTHRESHOLD EFPLMNwAcT EFOPLMNwAcT EFHPLMNwAcT EFPSLOCI

 '6F5C' '6F60' '6F61' '6F62' '6F73'

 EFACC EFFPLMN EFLOCI EFICI EFOCI

 '6F78' '6F7B' '6F7E' '6F80' '6F81'

 EFICT EFOCT EFAD EFVGCS EFVGCSS

 '6F82' '6F83' '6FAD' '6FB1' '6FB2'

 EFVBS EFVBSS EFeMLPP EFAaeM EFECC

 '6FB3' '6FB4' '6FB5' '6FB6' '6FB7'

 EFHiddenkey EFNETPAR EFPNN EFOPL EFMBDN

 '6FC3' '6FC4' '6FC5' '6FC6' '6FC7'

 EFEXT6 EFMBI EFMWIS EFCFIS EFEXT7

 '6FC8' '6FC9' '6FCA' '6FCB' '6FCC'

 EFSPDI EFMMSN EFEXT8 EFMMSICP EFMMSUP

 '6FCD' '6FCE' '6FCF' '6FD0' '6FD1'

11

 EFMMSUCP EFNIA EFVGCSCA EFVBSCA EFGBAP

 '6FD2' '6FD3' '6FD4' '6FD5' '6FD6'

 EFMSK EFMUK EFEHPLMN EFGBANL EFEHPLMNPI

 '6FD7' '6FD8' '6FD9' '6FDA' '6FDB'

12

 EFLRPLMNSI EFNAFKCA EFSPNI EFPNNI EFNCP-IP

 '6FDC' '6FDD' '6FDE' '6FDF' '6FE2'

 EFEPSLOCI EFEPSNSC EFUFC EFUICCIARI EFNASCONFIG

 '6FE3' '6FE4' '6FE6' '6FE7' '6FE8'

 EFPWS

 '6FEC'

 DFPHONEBOOK

 '5F3A'

 EFPSC EFCC EFPUID EFPBR EFUID

 '4F22' '4F23' '4F24' '4F30' '4FXX'

 EFCCP1 EFIAP EFADN EFEXT1 EFPBC

 '4FXX' '4FXX' '4FXX' '4FXX' '4FXX'

 EFGRP EFAAS EFGAS EFANR EFSNE

 '4FXX' '4FXX' '4FXX' '4FXX' '4FXX'

 EFEMAIL

 '4FXX'

 DFGSM-ACCESS

 '5F3B'

 EFKc EFKcGPRS EFCPBCCH EFinvSCAN

 '4F20' '4F52' '4F63' '4F64'

 DFMexE

 '5F3C'

 EFMexE-ST EFORPK EFARPK EFTPRK EFTKCDF

 '4F40' '4F41' '4F42' '4F43' '4FXX'

 DFSoLSA

 '5F70'

 EFSAI EFSLL

 '4F30' '4F31'

 DFWLAN

 '5F40'

 EFPseudo EFUPLMNWLAN EF0PLMNWLAN EFUWSIDL EFOWSIDL

 '4F41' '4F42' '4F43' '4F44' '4F45'

1) 1) 1) 1) 1) 1) 1) EFWRI EFHWSIDL EFWEHPLMNPI EFWHPI EFWLRPLMN

2) 2) 2) 2) 2) 2) 2) '4F46' '4F47' '4F48' '4F49' '4F4A'

13

3) 3) 3) 3) 3) 3) 3) EFHPLMNDAI

4) 4) 4) 4) 4) 4) 4) '4F4B'

 DFHNB

 '5F50'

 EFACSGL EFCSGT EFHNBN EFOCSGL EFOCSGT

 '4F81' '4F82' '4F83' '4F84' '4F85'

 EFOHNBN

 '4F86'

USIM File Structure [16]

3.1 Authentication process for SIM & USIM
The authentication process of the GSM network was altered in order to offer improved security features

in the UMTS network. A more detailed view is presented below.

3.1.1 GSM Authentication

The Mobile Equipment (ME) requests to authenticate with the network. The network receives the

request and replies with a random value (RAND) to the ME. The ME passes the RAND value to the SIM in

the command RUN GSM ALGORITHM. The SIM returns a Signed Response (SRES) and a Ciphering Key

(Kc) value. The network receives the SRES value and compares it with another SRES value calculated by

itself. If the SRES is the same, the ME is successfully authenticated to the GSM network [17]. The RAND,

SRES and Kc values consist the Triplet.

3.1.2 UMTS Authentication

The authentication process in the UMTS network is considered more secure, since the algorithms are

stronger and it offers mutual authentication, both for the ME and the network [18]. The ME requests to

authenticate with the network. The network receives the request and replies with a random value RAND

and with an Authentication Token (AUTN). The AUTN contains a Message Authentication Code (MAC).

The ME calculates a new MAC called XMAC and compares the two values. If they are equal the ME

authenticates the network. Otherwise, the ME sends an authentication failure message to the network.

Similarly to the GSM process, the ME sends the SRES value to the network, which compares it with the

XRES value calculated by itself. If the values are equal then the ME is authenticated to the UMTS

network.

14

4. AT Commands
The AT Commands (“AT” standing for “attention”) is a set of Hayes commands, originally developed for

the Hayes Smartmodem 300 baud modem. The group of commands is made of a set of short text strings

which combine together to form complete operational commands, for example dialing, terminating

connections, changing parameters and extracting information of many sorts. The vast majority of

modems use the Hayes commands. However, due to the large number of firmware and baseband

devices, AT commands are not supported completely in all devices. A specific firmware may support

commands another does not and vice versa. Furthermore, a baseband may support proprietary AT

commands, available only for a specific device.

4.1 AT Commands in GSM

The ETSI GSM 07.07 (3GPP TS 27.007) specifies AT style commands for controlling a GSM phone or

modem.

Examples of GSM commands [9]

Command Description

AT+CPIN=1234 Enter PIN code

AT+CPWD="SC","old","new" Change PIN code from 'old' to 'new'

AT+CLCK="SC",0,"1234" Remove PIN code

AT&V Status

ATI Status (Manufacturer, Model, Revision, IMEI, capabilities)

AT+COPS=? List available networks

AT+CSQ Get signal strength

ATD*99# Dial access point

15

4.2 AT Commands for Data Extraction
In order to extract data from the SIM/USIM we need to use AT Commands. Minicom can enable the user

to send AT Commands to the phone’s modem and get a response. The SIM/USIM access can be

accomplished with two commands:

 AT+CSIM (Generic SIM Access) [1]

Command: +CSIM=<length>,<command>

Response: +CSIM: <length>,<response>

The <length> field is the number of bytes the command consists of.The <command> field is

populated with APDU commands that are sent to the SIM/USIM module. The <response> field is

the data sent by the SIM/USIM module.

 AT+CRSM (Restricted SIM Access) [1]

Command: +CRSM=<command>[,<fileid>[,<P1>,<P2>,<P3>[,<data>[,<pathid>]]]]

Response: +CRSM: <sw1>,<sw2>[,<response>]

The <command> field is one of the following:

● 176 READ BINARY

● 178 READ RECORD

● 192 GET RESPONSE

● 214 UPDATE BINARY

● 220 UPDATE RECORD

● 242 STATUS

● 203 RETRIEVE DATA

● 219 SET DATA

The <fileid> field is the integer of the file id. For example the integer for file ‘6F08’ is ‘28424’.

The <P3> field is the number of bytes the response should have. If the <sw1> and <sw2> fields

have values equal to “144” and “0” respectively, this means the command execution was

successful.

Examples of both commands:

CSIM:

16

AT+CSIM=14,"A0A40000023F00" (Go to 3F00 directory*)

AT+CSIM=14,"A0A40000027F20" (Go to 7F20 directory*)

AT+CSIM=14,"A0A40000026F20" (Go to 6F20 file)

AT+CSIM=10,"A0B0000009" (Get previous file response)

* Not mandatory

CRSM:

AT+CRSM=176,28448,0,0,9

Both commands can be used to access the SIM/USIM module data. It was observed, however, that some

USIM modules do not support the CSIM command so the CRSM is the only possible way in data access.

17

4. Experiment Process
With the environment described above installed and set, the data extraction can be started. The

following figure explains the process, the modules that are participating and the information flow.

3. Process Flow

The process that takes place is:

1. The mobile phone takes as input an AT Command. The input source can be the user or an

automated script and the AT Command is the AT+CSRM. The AT Command also includes the file

that will be read from the SIM/USIM card.

2. The AT Command is received by minicom and is processed. Then minicom performs a request on

the mobile device’s modem.

3. The modem receives the request and performs a new one to the SIM/USIM card.

4. The command is received and processed by the SIM/USIM card in order to respond with the

requested data. In this case, the data is the content of an EF file.

5. A response is generated by the SIM/USIM card and forwarded to the modem. The response in

this case is the value of the EF file.

6. The response is received by the modem and forwarded to minicom.

7. The final step of the data flow is the receipt of the request from minicom and the presentation of

the result. The presentation may be the result being printed on the phone screen for the user to

see or the saving of the value in a database of some sort.

18

This is the description of the data flow and the nodes from which the information is passed through.

Further processing of the data may take place, such as timestamp addition, value parsing, location

added and altogether database storage.

5. Data collection and value
The SIM/USIM module contains numerous files for different purposes and not all of them are related to

the current experiment or to security in general. Below follows the description of the important

information we can access.

IMSI : The IMSI [11] is a 8 bytes value and is unique for a SIM/USIM card. It is used by the network for

acquiring data for the specific subscriber. To prevent unwanted tracking and eavesdropping, the IMSI

value is sent as rarely as possible. Instead the value used is the Temporary Mobile Subscriber Identity

(TMSI) [19]. It is located in the EF(IMSI) with identifier 6F07 [17].

TMSI : The TMSI is a 4 bytes value and it is the identifier that is most commonly sent between the ME

and the network. It is set by the network and only for the ME that are connected to a specific station. If

the ME changes location and connects to a new station, the TMSI will be changed too. It is located in the

EF(LOCI) within the first 4 bytes and with identifier 6F7E [17].

Kc : The Kc is the ciphering key used by the SIM module. It is used for encrypting the voice

communication between the ME and the network. Its length is 8 bytes and it is located in the EF(Kc) with

identifier 6F08 [17]. This value is also present in the USIM module in the EF(Kc) file with identifier 4F20

[16].

KcGPRS : It is similar to the Kc with the difference that it is used for the encryption of the GPRS data

between the ME and the network. Its length is 8 bytes and it is located in the EF(KcGPRS) with identifier

6F52 [17].This value is also present in the USIM module in the EF(KcGPRS) file with identifier 4F52 [16].

CK : CK is the ciphering key used by the USIM module. It is used for encrypting communication between

the ME and the network. Its length is 16 bytes and it is located in the EF(Keys) with identifier 6F08,

within the 2nd and the 17th byte [16].

IK : IK is the integrity key used by the USIM module. It is used for ensuring integrity for packets exhanged

between the ME and the network. Its length is 16 bytes and it is located in the EF(Keys) with identifier

6F08, within the 18th and the 33rd byte [16].

Ciphering Indicator : This is a value of 1 bit. When the ME and the network communicate through an

encrypted channel the value is set to 1. When the communication is unencrypted the value is set to 0. It

is located in the EF(AD) with identifier 6FAD and within the 3rd byte [17].

P-TMSI : This value is the Packet TMSI used for data packets. It is located in the EF(PSLOCI) with

identifier 6F73 [17].

19

RAI : This value represents the Routing Area Information.It is located in the EF(PSLOCI) along with the P-

TMSI value [17].

RAUS: The Routing Area Update Status value is, as well, located in the EF(PSLOCI).

TMSI TIME : This value represents the time interval in which the next TMSI update will take place. It is

located in the EF(LOCI) with identifier 6F7E [17].

THRESHOLD : This value represents the time interval in which a keys’ update will take place. It is located

in the EF(THRESHOLD) with identifier 6F5C [17].

20

6. Information gathering
The next step is the automation of the extraction of data from the SIM/USIM module. The framework

used is a minicom wrapper written in ruby. After the extraction, data is saved is a comma separated

value (csv) type database along with a timestamp, the provider name, the Location Area Code (LAC) and

the cell tower id. A description of the database structure follows:

● Type: This value described the type of value that populates a specific row. The different types

are:

o Ciphering Mode

o IMSI

o Kc

o KcGPRS

o CK

o IK

o TMSI

o PTMSI

o RAI

o RAUS

o TMSI TIME

o THRESHOLD

● Value: The value of the type. For the Ciphering Mode, the options are “ON”, “OFF” or the actual

value if it does not match any filter rules..

● Provider: This is the name of the service provider. It is set to return a name for the greek

providers. Otherwise, a provider id is returned.

● LAC: This is the Location Area Code and it is helpful for estimating the area of the current value.

● CellID: This is the cell tower id and it is helpful for the security assessment of each tower

individually (eg a specific tower offers only 2G services).

● Time: A timestamp of the current value. The structure is Year - Month - Day, Hours - Minutes -

Seconds, GMT. Example: 2013-01-16 03:40:10 +0200.

21

7. Tutorial
The first step is to run the Signal app (Screenshot 1). The reason we run this is that the serial port is

initially locked and Signal enables us to initialize it and achieve serial communication.

Screenshot 1 Signal App Icon

22

Screenshot 2 Signal Initial Screen

After the initialization of Signal, we minimize the app using the home button and then start an SSH

client. We chose to use Prompt app for this, but any compatible SSH client should work properly.

23

Screenshot 3 Prompt App Icon

Once we start Prompt, we have a preconfigured set of profiles to run. The set consinsts of 4 profiles

which are described below:

 kill: This profile is configured to log in via ssh protocol and execute the “killminicom.rb” script.

The purpose of this script is to kill minicom when an AT command has finished loading, thus

enabling the next AT command to be executed.

 main: This profile is configured to run the “main.rb” script which is responsible for initiating the

AT Commands as well as logging the data.

 tail: This profile is not required for the logging process. It is helpful, however, as it executes the

“tail –f db.csv” command which monitors the database of the logs and presents real time the

new data that is logged.

 upload: This profile is configured to run the “upload.rb” script. This function is responsible for

uploading the logged data to a remote server. The purpose of this is the collection of all data

from all devices in a central location for better management and storage.

24

Screenshot 4 Prompt Profiles

The next step is running the kill profile. Once taped, a connection window appears (Screenshot 5). We

tap connect and the next screen shows us the “killminicon.rb” script running (Screenshot 6). In order to

do this manually go to the script directory and type “ruby killminicom.rb”.

25

Screenshot 5 Prompt Connection Window

26

Screenshot 6 kill profile running

Once “killminicom.rb” is running, we start the main profile. We tap on the globe icon (Screenshot 6 –

highlighted in red circle) and go back to the profile list. We choose the “main” profile and after tapping

“Connect” we see a message saying “Interval is X minutes” (Screenshot 7). This value represents the

frequency a data collection will be made, for example every 5 minutes. After that, you will see the

initialization screen of minicom with the message “Initializing Modem” (Screenshot 8). To do this

manually go to the script directory and type “ruby main.rb”.

Screenshot 7 Interval Message

27

Screenshot 8 Minicom initialization screen

Now the process has started and data are being logged in the database. If you want to monitor the

process, press the globe icon to go back to the profile list and tap on the “tail” profile. Once tapped and

connected, the monitor command will be executed and you will be presented with the last lines of the

database (Screenshot 9). Every new addition will be shown to you in real time. To do this manually, go to

the database location and type “tail –f db.csv”.

Screenshot 9 tail command output

ATTENTION: Once the main and/or tail profile is running you must bring the Signal app back in the

foreground. However, if the Prompt app is kept in the background for ten minutes then the log process

will stop. This is due to a restriction in the iOS architecture. In order to run the process constantly, you

should bring the Prompt app in the foreground every 5-8 minutes for a few seconds and then bring

Signal in the foreground again.

28

For uploading the logged data, tap the globe icon and go back to the profile list. Then tap on the

“upload” profile and the upload command will be executed. You will be prompted to enter a password

in order to upload data to the server and once the upload is complete you will be informed by the

screen. In order to do this manually go to the script folder and type “ruby upload.rb”.

Screenshot 10 Prompt for upload server password

Screenshot 11 Upload completion

29

8. Assistive Scripts
Due to the large sum of data acquired by the experiment process, the creation of a number of assistive

scripts was necessary. We currently use two scripts in order to parse data from the logs.

8.1 keylife.rb
When using this script, the user gives as input the type of key they want to examine, e.g. CK. The script

parses all the logs and locates the entries where the type of key is that of CK and saves the value of the

key and the time they key was logged. After that, it checks whether the same key exists with a different

timestamp. It saves the first time and the last time value the key has appeared, therefore creating a time

period when the key was active. An example result of the script output is the following:

Key-- 58EAFA7AEA6BF906ACA8A5C2D469CD72 Duration-- 1182.0 (19 minutes 42 seconds)

Key-- DE7C0C806806788AD66E32E83302F91C Duration-- 797.0 (13 minutes 17 seconds)

Key-- 3C2EA40B6333496D21B367A025472B64 Duration-- 1186.0 (19 minutes 46 seconds)

Key-- 80F56540E9C520E48C546E50A1C973D4 Duration-- 0.0 ()

When the duration is 0, this means the key has appeared only once in our logs.

8.2 unique.rb
This script is similar to the previous. It also takes as input a key type from the user, e.g. CK. The main

difference is that it will search the logs for multiple appearances of the key. If a result is found, it is

printed among with the different timestamps of the key. Due to the nature of our logs, it is possible to

have false-positive results, therefore a verification by the user is required as to define whether or not

the time difference is large enough to conclude that a key was user again after a period of time. A result

example follows:

80F56540E9C520E48C546E50A1C973D4 -- 3

2012-02-28 13:27:56 +0200

2013-02-28 14:53:22 +0200

2013-02-28 15:13:09 +0200

30

9. Related Work
Related works and projects focus mostly on ways and or improved suggestions on cracking the

encryption algorithms such as A5/1 and A5/2. After cracking the encrypted communication, the

confidentiality is breached and a security issue is thereby proved. Our work focuses on a different

perspective by setting the same goal but reaching via another route. Our method collects essential

security data from within the device and makes the breaching of the communication a much easier task.

This is due to the fact that we already possess the encryption keys and no cracking process is needed.

31

References
[1] 3GPP TS 27.007, Technical Specification Group Core Network and Terminals - AT command set for

User Equipment (UE)

[2] iOS Jailbreaking, Wikipedia https://en.wikipedia.org/wiki/IOS_jailbreaking

[3] OpenSSH, Wikipedia https://en.wikipedia.org/wiki/OpenSSH

[4] Cydia, Wikipedia https://en.wikipedia.org/wiki/Cydia

[5] Minicom, Wikipedia https://en.wikipedia.org/wiki/Minicom

[6] Ruby Language Official Site http://www.ruby-lang.org/en/

[7] Signal App for iPhone Shows Detailed Info of Cellular Towers Around You

http://www.redmondpie.com/signal-app-for-iphone-shows-detailed-info-of-cellular-towers-around-

you/

[8] http://www.letsunlockiphone.com/install-minicom-iphone-4-baseband/

[9] Hayes command set, Wikipedia https://en.wikipedia.org/wiki/Hayes_command_set

[10] Smartcard, Wikipedia https://en.wikipedia.org/wiki/Smart_card

[11] https://en.wikipedia.org/wiki/International_Mobile_Subscriber_Identity

[12] https://en.wikipedia.org/wiki/Location_Area_Identity

[13] ETSI TS 100 977, Specification of the Subscriber Identity Module -

Mobile Equipment (SIM-ME) Interface

[14] https://en.wikipedia.org/wiki/Universal_Mobile_Telecommunications_System

[15] https://en.wikipedia.org/wiki/GSM

[16] ETSI TS 131 102, Characteristics of the Universal Subscriber Identity Module (USIM) application

[17] 3GPP TS 11.11, Mobile Equipment (SIM - ME) interface

[18] 3GPP TS 33.102, 3G Security, Security Architecture

[19] https://en.wikipedia.org/wiki/Temporary_Mobile_Subscriber_Identity#TMSI

[20] adv-cmds Cydia packet page http://cydia.saurik.com/package/adv-cmds

https://en.wikipedia.org/wiki/IOS_jailbreaking
https://en.wikipedia.org/wiki/OpenSSH
https://en.wikipedia.org/wiki/Cydia
https://en.wikipedia.org/wiki/Minicom
http://www.ruby-lang.org/en/
http://www.redmondpie.com/signal-app-for-iphone-shows-detailed-info-of-cellular-towers-around-you/
http://www.redmondpie.com/signal-app-for-iphone-shows-detailed-info-of-cellular-towers-around-you/
http://www.letsunlockiphone.com/install-minicom-iphone-4-baseband/
https://en.wikipedia.org/wiki/Hayes_command_set
https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/International_Mobile_Subscriber_Identity
https://en.wikipedia.org/wiki/Location_Area_Identity
https://en.wikipedia.org/wiki/Universal_Mobile_Telecommunications_System
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Temporary_Mobile_Subscriber_Identity#TMSI
http://cydia.saurik.com/package/adv-cmds

32

Code Appendix
Filename : getciphering.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getciphering -C ciphering.txt')

if File.exist?('ciphering.txt')

 keys = File.open('ciphering.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[14..-3]

 if keys_tuple.length == 6

 ciphering = keys_tuple[4..5].to_i(16).to_s(2)

 if ciphering[-1] == '1'

 ciphering = 'ON'

 elsif ciphering[-1] == '0'

 ciphering = 'OFF'

 else

 ciphering = "ERROR"

 end

 log("CIPHERING MODE", ciphering)

 File.delete('ciphering.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : getimsi.rb

33

require 'csv'

require "./log.rb"

system('minicom -c on -S script_getimsi -C imsi.txt')

if File.exist?('imsi.txt')

 keys = File.open('imsi.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[0..-2]

 if keys_tuple.length == 15

 imsi = keys_tuple

 log("IMSI", imsi)

 File.delete('imsi.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : getkc_gprs.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getkc_gprs -C kc_gprs.txt')

if File.exist?('kc.txt')

 keys = File.open('kc.txt').readlines

 key_line = keys[1]

34

 if key_line.include? "+CRSM: 106,130"

 system('minicom -c on -S script_getkc_gprs_usim -C kc_gprs_usim.txt')

 if File.exist?('kc_gprs_usim.txt')

 keys = File.open('kc_gprs_usim.txt').readlines

 key_line = keys[1]

 if key_line.include? "+CRSM: 106,130"

 log("Kc_GPRS_USIM","Unsupported USIM")

 File.delete("kc_gprs_usim.txt")

 else

 keys_tuple = key_line[14..-3]

 if keys_tuple.length == 18

 kc_gprs_usim = keys_tuple[0..15]

 log("Kc_GPRS_USIM", kc_gprs_usim)

 File.delete('kc_gprs_usim.txt')

 end

 end

 end

 File.delete('kc_gprs_usim.txt')

 end

 keys_tuple = key_line[14..-3]

 if keys_tuple.length == 18

 kc = keys_tuple[0..15]

 log("Kc", kc)

 File.delete('kc.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

35

Filename : getkc.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getkc -C kc.txt')

if File.exist?('kc.txt')

 keys = File.open('kc.txt').readlines

 key_line = keys[1]

 if key_line.include? "+CRSM: 106,130"

 system('minicom -c on -S script_getkc_usim -C kc_usim.txt')

 if File.exist?('kc_usim.txt')

 keys = File.open('kc_usim.txt').readlines

 key_line = keys[1]

 if key_line.include? "+CRSM: 106,130"

 log("Kc_USIM","Unsupported USIM")

 File.delete("kc_usim.txt")

 else

 keys_tuple = key_line[14..-3]

 if keys_tuple.length == 18

 kc_usim = keys_tuple[0..15]

 log("Kc", kc_usim)

 File.delete('kc_usim.txt')

 end

 end

 end

 File.delete('kc_usim.txt')

 end

 keys_tuple = key_line[14..-3]

 if keys_tuple.length == 18

36

 kc = keys_tuple[0..15]

 log("Kc", kc)

 File.delete('kc.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : getkeyspacket.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getkeyspacket -C keyspacket.txt')

if File.exist?('keyspacket.txt')

 keys = File.open('keyspacket.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[14..-3]

 if key_line.include? "+CRSM: 148,4"

 log("CK-Packet", "null-SIM")

 log("IK-Packet", "null-SIM")

 File.delete('keyspacket.txt')

 end

 if keys_tuple != nil && keys_tuple.length == 66

 #ksi = keys_tuple[0..1]

 ck = keys_tuple[2..33]

 ik = keys_tuple[34..65]

 log("CK-Packet", ck)

37

 log("IK-Packet", ik)

 File.delete('keyspacket.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : getkeys.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getkeys -C keys.txt')

if File.exist?('keys.txt')

 keys = File.open('keys.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[14..-3]

 if key_line.include? "+CRSM: 148,4"

 log("CK", "null-SIM")

 log("IK", "null-SIM")

 File.delete('keys.txt')

 end

 if keys_tuple != nil && keys_tuple.length == 66

 #ksi = keys_tuple[0..1]

 ck = keys_tuple[2..33]

 ik = keys_tuple[34..65]

 log("CK", ck)

 log("IK", ik)

38

 File.delete('keys.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : getlaccellid.rb

system('minicom -c on -S script_creg -C creg.txt')

if File.exist?('creg.txt')

 creg = File.open('creg.txt').readlines

 info = creg[1].scan(/"([^"]*)"/)

 File.open('lac_cellid.txt', 'w') do |lid|

 lid << "#{info[0]}\n#{info[1]}"

 end

 File.delete('creg.txt')

else

 print "creg file not found."

end

Filename : getprovider.rb

system('minicom -c on -S script_cops -C cops.txt')

if File.exist?('cops.txt')

 cops = File.open('cops.txt').readlines

 provider_code = cops[1].scan(/"([^"]*)"/).to_s

39

 if provider_code.include?('20201')

 provider_name = "GR COSMOTE"

 elsif provider_code.include?('20205')

 provider_name = "vodafone GR"

 elsif provider_code.include?('20209')

 provider_name = "GR Q-TELECOM"

 elsif provider_code.include?('20210')

 provider_name = "TIM GR"

 else

 provider_name = provider_code

 end

 File.open('provider.txt', 'w') do |prv|

 prv << provider_name

 end

 File.delete('cops.txt')

else

 print "COPS file not found."

end

Filename : getptmsi.rb

require 'csv'

require './log.rb'

system('minicom -c on -S script_getptmsi -C ptmsi.txt')

if File.exist?('ptmsi.txt')

 keys = File.open('ptmsi.txt').readlines

 key_line = keys[1]

 if key_line != nil && key_line.length > 1

 ptmsi = key_line[14..21]

40

 rai = key_line[28..39]

 raus = key_line[40..41]

 if ptmsi != nil

 if ptmsi.length == 8

 log("PTMSI", ptmsi)

 log("RAI", rai)

 log("RAUS", raus)

 File.delete('ptmsi.txt')

 elsif key_line == "+CRSM: 106,130\n"

 system('minicom -c on -S script_getptmsi_usim -C ptmsi_usim.txt')

 if File.exist?('ptmsi_usim.txt')

 keys = File.open('ptmsi_usim.txt').readlines

 key_line = keys[1]

 if key_line != nil && key_line.length > 1

 ptmsi = key_line[14..21]

 rai = key_line[28..39]

 raus = key_line[40..41]

 log("PTMSI", ptmsi)

 log("RAI", rai)

 log("RAUS", raus)

 File.delete('ptmsi_usim.txt')

 end

 end

 else

 print "Length not matching"

 log("PTMSI", "invalid")

 File.delete('ptmsi.txt')

 end

 end

 end

else

 print "Keys file not found."

41

end

Filename : getthreshold.rb

require 'csv'

require "./log.rb"

system('minicom -c on -S script_getthreshold -C threshold.txt')

if File.exist?('threshold.txt')

 keys = File.open('threshold.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[14..19]

 if key_line == "+CRSM: 148,4\n"

 log("THRESHOLD", "null-sim")

 File.delete('threshold.txt')

 end

 if keys_tuple.length == 6

 threshold = keys_tuple

 log("THRESHOLD", threshold)

 File.delete('threshold.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : gettmsi.rb

42

require 'csv'

require './log.rb'

system('minicom -c on -S script_gettmsi -C tmsi.txt')

if File.exist?('tmsi.txt')

 keys = File.open('tmsi.txt').readlines

 key_line = keys[1]

 keys_tuple = key_line[14..-3]

 if keys_tuple == nil

 log("TMSI","null")

 File.delete('tmsi.txt')

 end

 if keys_tuple!= nil && keys_tuple.length == 22

 tmsi = keys_tuple[0..7]

 tmsi_time = keys_tuple[18..19]

 log("TMSI", tmsi)

 log("TMSI TIME", tmsi_time.to_i(16))

 File.delete('tmsi.txt')

 else

 print "Length not matching"

 end

else

 print "Keys file not found."

end

Filename : killminicom.rb

while 1 == 1

 check = `ps`

 #print check

43

 if check.include? "minicom -c"

 sleep(5) # 5sec is on average enough time for minicom to initialize and send the
command

 system('killall -9 minicom')

 end

end

Filename : log.rb

def strip(string)

 string = string.tr '"', ''

 string = string.tr '[', ''

 string.tr ']', ''

end

def log(title, data)

 if File.exist?('provider.txt')

 provider = File.open('provider.txt').readlines

 provider = strip(provider.to_s)

 else

 puts "Provider file not found"

 end

 if File.exist?('lac_cellid.txt')

 info = File.open('lac_cellid.txt').readlines

 if info.length > 1

 lac = strip(info[0][0..-2])

 cellid = strip(info[1])

 else

 lac = cellid = "Unavailable"

 end

44

 else

 puts "LAC & Cell ID file not found!"

 end

 CSV.open('db.csv', 'a') do |db|

 if File.zero?(db)

 db << ["Type", "Value", "Provider", "LAC", "CellID", "Time"]

 end

 db << [title, data, provider, lac, cellid, Time.now]

 end

end

Filename : main.rb

if ARGV[0].nil?

 interval = 300

else

 interval = ARGV[0].to_i * 60

end

puts "Interval is #{interval/60} minutes"

while true do

 system("rm -rf *.txt")

 system("rm -rf /var/lock/*")

 system("ruby getprovider.rb")

 system("ruby getlaccellid.rb")

 system("ruby getciphering.rb")

 system("ruby getimsi.rb")

 system("ruby getptmsi.rb")

 system("ruby getkc.rb")

 system("ruby getkc_gprs.rb")

 system("ruby getkeys.rb")

45

 system("ruby gettmsi.rb")

 system("rm -rf *.txt")

 sleep interval

end

Filename : README

iSim Sniffer

============

by Andis Anastasis

v0.5

Requirements

1. Jailbroken iPhone

2. OpenSSH

3. Minicom

4. Signal

5. ruby

Instructions

Connect to your iPhone via ssh from a computer and run "minicom -w -c on". You will
enter the minicom interface. Type "Ctrl+A+E" in order to activate echo mode and see
what you type in the minicom interface. Make sure you have minicom properly
configured(See http://www.letsunlockiphone.com/install-minicom-iphone-4-baseband/).Try
typing "AT" and pressing ENTER. If you get an "OK" message this means you're ready to
go. If you don't get the "OK" after the "AT" then try running the Signal app. You will
see many messages passing through the terminal. Try locking the screen while the app
is running and see if you get only the "OK" when you type "AT" and not the other info
from the Signal app. Try many times if you need to. The goal is to type "AT" and get
only the "OK" response. Once you achieve that, you are ready to start getting data.

46

Open two ssh connections from the mobile (Prompt is a nice program). Navigate to the
location of the scripts and in the first ssh window type "ruby killminicom.rb". On the
second window type "ruby main.rb". The process should start. For better indication
that the process in still running and data are still being gathered you can open a
third ssh window, navigate to the location of the scripts and type "tail -f db.csv".
This will show you the changes made on the db.csv file. Every time a new record is
added, you will see the change appended. This means the process is still running
smoothly ;)

Filename : script_copn

send "AT+COPN"

Filename : script_cops

send "AT+COPS?"

Filename : script_creg

send "AT+CREG?"

Filename : script_getciphering

send "AT+CRSM=176,28589,0,0,3"

Filename : script_getimsi

send "AT+CIMI"

Filename : script_getkc

47

send "AT+CRSM=176,28448,0,0,9"

Filename : script_getkc_gprs

send "AT+CRSM=176,28498,0,0,9"

Filename : script_getkc_gprs_usim

send "AT+CRSM=176,20306,0,0,9"

Filename : script_getkc_usim

send "AT+CRSM=176,20256,0,0,9"

Filename : script_getkeys

send "AT+CRSM=176,28424,0,0,33"

Filename : script_getkeyspacket

send "AT+CRSM=176,28425,0,0,33"

Filename : script_getptmsi

send "AT+CRSM=176,28499,0,0,14"

48

Filename : script_getptmsi_usim

send "AT+CRSM=176,28531,0,0,14"

Filename : script_getthreshold

send "AT+CRSM=176,28508,0,0,3"

Filename : script_gettmsi

send "AT+CRSM=176,28542,0,0,22"

Filename : upload.rb

if File.exist?('db.csv')

 time = Time.now.strftime("%Y-%m-%d-%H%M%S")

 system("scp db.csv user@83.212.105.117:/home/user/idata/db-#{time}.csv")

 system("mv db.csv db-#{time}.csv")

else

 puts "File db.csv not found."

end

