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TTeessttiinngg  ffoorr  MMaaccrrooeeccoonnoommiicc  CCoonnvveerrggeennccee  iinn  SSeelleecctteedd  
CCoouunnttrriieess  

 

11..      IINNTTRROODDUUCCTTIIOONN  
 

The convergence hypothesis has been at the forefront of empirical 

growth research for over a decade. Convergence has been studied for over 10 

years now in literally hundreds of studies. Whether income levels of poorer 

countries of the world are converging to those of richer countries is by itself a 

question of paramount importance for human welfare. This interest may be 

explained on two levels. First, the large contemporary differences in per capita 

incomes across countries have enormous welfare implications. As studies such 

as Bourguignon and Morrison (2002) and Firebaugh (1999) have argued, 

differences in per capita income across countries play a critical role in 

explaining levels of poverty and inequality across the world’s population. 

Hence, to the extent that convergence occurs, it suggests that, at least over 

long time horizons, world inequality will diminish. Income convergence across 

countries is widely interpreted as a test of the Solow (1956) neoclassical 

growth model as opposed to the endogenous growth model pioneered by 

Lucas (1988) and Romer (1986); specifically, convergence tests have been 

used to evaluate the presence or absence of increasing returns to scale in the 

growth process.  

The European economy has become more integrated in the last twenty-

five years due to economic, political and institutional factors. Some key events 

in the resent history of Europe are the establishment of the Exchange Rate 

Mechanism in 1979, the opening of the Common Market in 1993 and the 

introduction of the Euro in 2001. These events, together with the worldwide 

increase in trade and financial flows, have led to a closer synchronization of 
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economic fluctuations across European countries. It is therefore of particular 

interest to investigate whether the cyclical components of industrial production 

series, which are closely related to the business cycle, are evolving more 

closely over time as a result. 

European union after growing in size from the original six members to 

twelve members and presently to fifteen member states is currently preparing 

for the biggest expansion ever in terms of scope and diversity. Of the thirteen 

countries that have applied to become members, ten countries are set to join 

the Union on May 1, 2004. These countries are Cyprus, the Czech Republic, 

Estonia, Hungary, Latvia, Lithuania, Malta, Poland, the Slovak Republic and 

Slovenia. 

Since the early 1990s, the transition economies of Central and East 

Europe, the Baltic States, and of the former Soviet Union have introduced a 

series of fundamental economic reforms, allowing market forces to play a 

significant role in the decision-making process of economic agents. More 

recently, the countries have begun experiencing positive real economic growth. 

Three reasons motivate us to investigate the degree of real convergence 

in transition economies. First, evidence of no economic convergence within a 

region can bring about social and political instability as economic performance 

varies significantly across countries. Second, the majority of the Central and 

Eastern European transition countries are also the first and second-round 

candidates for the European Union (EU). Finally, the majority of the countries 

have signed Association agreements with the EU. Evidence of non-convergence 

would imply that such institutional linkages with respect to the EU do not 

necessarily lead to macroeconomic convergence. 

This paper addresses the issue of real income convergence between the 

ten accession candidates. Most accession candidates expect to join the EU soon 

(some as early as 2004), yet no specific economic conditions have been 

defined for the EU enlargement process. The “Copenhagen criteria” set out at 
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the European Council’s meeting in Copenhagen in June 1993 give three rather 

broad conditions. 

v Stable institutions guaranteeing democracy, the rule of law, human 

rights and respect for the protection of minorities; 

v A functioning market economy and capacity to cope with competitive 

pressures and market forces within the EU; and 

v An ability to take on the obligations of membership, including adherence 

to the aims of political, economic and monetary union. 

 

While these conditions lack quantitative economic targets, the last 

condition clearly implies that accession countries should be able to join 

Economic and Monetary Union (EMU). Most applicant states, however, see 

accession as full participation in all EU initiatives, including the euro. Therefore, 

from an economic perspective, all of these countries must apply considerable 

effort to satisfy the Maastricht convergence criteria as prerequisites to joining 

the euro area. 

In light of future costs and benefits and the optimality of EU 

enlargement, it is arguable that real convergence or divergence is what 

matters. The greater the degree of real convergence, the smoother the future 

functioning of the enlarged EU. When less money is needed in the form of 

subsidies from the rich to the poor, more money will be available for structural 

adjustments to help harmonization of business cycles. Leaving aside the 

constructed indices for the quality of living, the ultimate benchmark for 

measuring convergence is the convergence in levels of real per capita income, 

real per capita GDP. However, as the GDP series for the accession countries is 

short we prefer to use the Industrial Production as a proxy to real GDP. The 

main reason for this choice is the availability of monthly data. 

Brada and Kutan (2001) use cointegration tests on monthly data to 

study the convergence of money supply dynamics between transition 
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economies and that of the EU approximated by Germany. They find mixed 

evidence with positive results for the Czech Republic, Estonia, Slovakia and 

Slovenia. Kočenda (1999) studies convergence among transition countries 

using monthly time-series on industrial output from 1991 to 1998. He also 

applies panel unit-root test as an econometric tool. His study finds limited 

evidence of convergence for some groups of countries, i.e. the Czech Republic, 

Poland and Hungary converge in the growth of industrial output. 

Economic growth is the term economists use to describe the growth in 

output from an economy. Some economies achieve large increases in output 

over extended periods of time that, in turn, dramatically changes the economic, 

political and social landscape. Increasing output alone cannot be a sensible 

goal for any society. A more useful measure is the amount of output per 

person in the economy. When output per person (or GDP per capita) is high, 

people have more goods and services, and this may increase societal well-

being. 

Rogers (2002) in his paper outlined how modern economists think about 

the process of economic growth. The starting point is a consideration of the 

neoclassical growth model and “new”, or endogenous, growth theory. The 

neoclassical growth model, originating with Solow (1956), has profoundly 

affected the way in which economists conceptualize long-run interrelationships 

between macroeconomies. 

 

NNeeooccllaassssiiccaall  mmooddeellss  

Convergence, the tendency of per capita income of different economies 

to equalize over time, is one of the predictions of Solow’s neoclassical growth 

model. The Solow (1956) and Swan (1956) models are based on an aggregate 

production function of the form 

    Y = A f (K, L) 
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With output (Y) depending on capital (K), labour (L) and technology (A). 

If we assume growth in L and A are zero, growth in output will only occur if 

there is capital accumulation. 

The level of output per worker when (net) capital accumulation stops is 

called the “steady state”. As might be expected, as an economy approaches its 

steady state its rate of growth will decline. 

If there is labour growth the outcome of the model is that output grows 

in proportion, hence output per worker is constant. If there is technology 

growth, this transmits directly to a positive, and equal, level of output per 

worker growth. An increase in A raises the marginal product of capital, which 

can be thought of as maintaining the incentive to invest. 

The neoclassical models stress the accumulation of capital and the 

importance of (non) diminishing returns. Solow’s model predicts that 

convergence exists among different economies regardless of initial conditions 

once the determinants of aggregate production functions are controlled for. It 

therefore requires a negative correlation between initial per capita output and 

its growth rate, so that poorer countries will catch up with wealthier countries. 

Baumol (1986), Dowrick and Nguyen (1989), Wolff (1991), Barro and 

Xavier Sala-i-Martin (1991,1992), and Mankiw, Romer, and Weil (1992) 

conclude that economies do indeed converge. All of these studies reach their 

conclusions by examining the cross-sectional relationship between the growth 

rate of per capita output (or per worker) over some time period and the initial 

level of per capita output. This approach is valid only if economies have 

identical first-order autoregressive dynamic structures and all permanent cross-

economy differences are completely controlled for.  

Evans and Karras developed an alternative approach that is valid under 

much less restrictive conditions. Using their alternative approach, they found 

emphatic evidence that the 48 U.S. countries and the 54 countries, they used 
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as sample, do in fact converge. They also found strong evidence that 

convergence is conditional rather than absolute for both samples.  

 Their empirical findings are consistent with neoclassical growth models, 

which predict convergence, and inconsistent with most endogenous growth 

models, which predict divergence.  

The conventional approach attempts to infer whether and how 

economies converge by applying ordinary least squares to  

0n n n ng y ΄xα β γ ν= + + + ,     

where gn=(ynT – yn0)/T is the average growth rate of per capita output for 

economy n between periods 0 and T, xn is a vector of variables that control for 

permanent cross-economy differences in either levels or growth rates of per 

capita output, α and β are parameters, γ is a parameter vector, and νn is an 

error term with a zero mean and finite variance. According to the above 

equation with β < 0, economies that are initially rich after controlling for the 

permanent differences associated with xn and with any economy- specific 

effects in νn grow more slowly than economies that are initially poor on the 

same basis. The convergence is absolute only if γ = 0 and conditional if 0γ ≠ . 

The conventional approach produces invalid inferences unless their 

economies have identical first-order autoregressive dynamic structures and all 

permanent cross-economy differences in their per capita outputs are 

completely controlled for.  

The alternative approach attempts to infer whether and how economies 

converge by applying the equation 

   1, 1 ,
1

( ) ( ) ( )
p

t t t int n n n t ni n t i nt
i

y y y y y y uδ ρ φ
− − −

− −− −
=

∆ − = + − + ∆ − +∑ ,      

where nρ  is negative if the economies converge and zero if they 

diverge, δn is a parameter, and the φs are parameters such that all roots of 
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i
nii
Lφ∑  lie outside the unit circle. They assumed that us become uncorrelated 

as N approaches infinity. 

According to Bernard and Durlauf (1995), empirical tests of convergence 

fall into two categories. The first class of tests studies the cross-section 

correlation between initial per capita output levels and subsequent growth 

rates for a group of countries. A negative correlation is taken as evidence of 

convergence as it implies that, on average, countries with low per capita initial 

incomes are growing faster than those with high initial per capita incomes. 

A second set of tests has examined the long-run behavior of differences 

in per capita output across countries. Convergence, according to this approach, 

has the strong implication that output differences between two economies 

cannot contain unit roots or time trends and the weak implication that output 

levels in two economies must be cointegrated. 

 

EEnnddooggeennoouuss  ggrroowwtthh  mmooddeellss  

In 1986 Paul Romer provided a model that yielded positive, long run 

growth rates without assuming exogenous technical change. Instead, Romer 

modeled technology growth as the outcome of competitive firms that invested 

in knowledge generation. The central idea that allowed this was that while 

individual firms face diminishing returns to investing in knowledge, at the 

societal level returns to knowledge could be increasing. 

The model also suggests that a) the competitive growth rate is below 

the socially optimal level (due to the presence of knowledge externalities), b) 

large countries may grow faster (a scale effect), and c) shocks to a country’s 

growth may have permanent effects. 

Part of the endogenous growth achievement is to model imperfect 

competition (i.e. firms have some market power and set price above marginal 

cost). Technically, this is done by modeling an economy of symmetric firms 
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that each has the monopoly right to a distinct good. In some models new 

goods are invented continuously (product variety models), while in others new 

goods displace older versions (creative destruction or product ladder models). 

 The need to model technology growth, and the search for models that 

yield positive long run growth, is the motivation for endogenous growth 

models. 

A first problem is that empirical growth studies tend to conflate 

economic and statistical definitions of convergence. 

 

CCoonnvveerrggeennccee  aass  aann  eeccoonnoommiicc  pphheennoommeennoonn  

Suppose that one observes two countries with identical preferences and 

technologies but with different initial human and physical capital stocks: 

convergence means that asymptotically, the growth rates in these economies 

will be identical. Barro (1997) describes the underlying economies of 

convergence as follows: 

“The convergence property derives in the neoclassical model from the 

diminishing returns to capital. Economies that have less relative capital per 

worker (relative to their long-run capital per worker) tend to have higher rates 

of return and higher growth rates”. 

Malinvaud (1998) describes convergence as: 

« … countries or regions starting from very different levels of output per 

capita, evolving in stable environments and having access to the same 

technology should experience convergence: the dispersion of their output per 

capita should diminish; poor countries should grow faster than rich ones”. 

Formally, if gi,t denotes the growth in country i at time t, Si,t denotes the 

levels of human and physical capital, θ denotes technology, ρ denotes 

preferences, and μ(.) is a probability measure, then convergence can be 

thought of as the condition 
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, ,( , , )lim i t k i tk
g Sµ θ ρ+→∞

   does not depend on Si,t   

 

CCoonnvveerrggeennccee  aass  aa  ssttaattiissttiiccaall  pphheennoommeennoonn  

The primary basis for empirical convergence studies has been cross-

country growth regressions. Barro (1991), Barro and Sala-i-Martin (1992) and 

Mankiw, Romer and Weil (1992) are the seminal studies in this regard, 

although Kormendi and Meguire (1985) is an underappreciated antecedent. A 

canonical form for such regressions, is 

gi = yi,0 β + Xi δ + Zi γ + ει     

where gi is real per capita growth of country i across some fixed time interval, 

yi,0 is the initial per capita income, Xi is a set of additional regressors suggested 

by the Solow growth model (population growth, technological change, physical 

and human capital savings rates transformed in ways implied by the model), Zi 

is a set of additional control variables suggested by new growth theories, and ει 

is an error. 

Variables such as initial income and population growth (as specified in 

the Solow model) affect growth because of their implications for transition 

dynamics towards a steady state. Variables such as saving rates reflect 

preferences and also affect short run dynamics. Other variables, in particular 

those one finds in Zi , are usually interpreted as capturing differences in 

aggregate production functions across economies and as a proxy for growth 

theories that move beyond the Solow framework. 

Following Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw, 

Romer and Weil (1992), the economic notion of convergence is replaced in 

cross-country regressions studies with a particular statistical notion of 

conditional convergence. The above equation exhibits conditional β 

convergence if β<0.  
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Conditional β convergence means that if one observes two economies 

with identical Xi and Zi values, the country with lower initial income will grow 

faster than the country with higher initial income.  

Durlauf believes that there has been far too little attention paid to the 

question of heterogeneity in the growth experiences of different countries. 

Standard analyses fail to adequately deal with heterogeneity in the growth 

process. The role of factors such as geography or culture suggests that a 

common economic model is inadequate for describing the growth experiences 

across very diverse economies. 

The use of growth regressions to interpret causal growth relationships 

requires strong homogeneity assumptions. For example, it is necessary to 

believe that the coefficients in the regression are constant across economies. 

Furthermore, following an argument in Brock and Durlauf (2001), it is 

necessary to believe that, the residuals are indistinguishable given a 

researcher’s prior information about the countries with which the residuals are 

associated. A formal way to state this is that regression errors should exhibit a 

certain conditional exchangeability condition. Intuitively, one needs to believe 

that there is no prior reason why the residuals for one subgroup of countries 

should have a different mean than for some other subgroup. 

Far greater effort should be made to the identification of subgroups of 

economies that can plausibly be described as obeying a common linear model. 

Operationally, this means that a primary goal of empirical work in growth 

should be the identification of sets of countries that appear to obey a common 

growth model. Once such groupings are achieved, a natural second step is the 

analysis of the factors that explain why a particular country is part of a 

particular grouping. This sort of approach will avoid the artificial idea that a 

negative relationship between initial income and growth is an appropriate way 

to think about convergence. The identification of subgroups of countries that 
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obey a common growth model corresponds to the longstanding idea that there 

may be convergence clubs for aggregate economies. 

Luginbuhl and Koopman (2003) defined convergence in terms of a 

decrease over time and modeled this decrease via mechanisms that allowed for 

gradual reductions in the ranks of covariance matrices associated with the 

disturbance vectors driving the unobserved components of the model. 

The common converging component model was estimated for the per 

capita gross domestic product of five European countries. To investigate the 

existence of converging properties in economic time series Luginbuhl and 

Koopman adopted unobserved components time series (UC) models that 

typically consisted of interpretable components such as trend, cycle, seasonal 

and irregular components. Each component was separately modeled by an 

appropriate dynamic stochastic process, which usually depends on normally 

distributed disturbances. 

The main contribution of this paper is the introduction of convergence 

mechanisms into the common trend-cycle model. At the beginning of the time 

series, for example, the vector cycle component is a linear function of three 

factors, and subsequently converges to being dependent on only two factors. 

It is found that convergence features in trends and cycles are present 

and are associated with some key events in the history of European 

integration. 

The following dichotomies indicate some of the different ways in which 

convergence has been understood: 

a) Convergence within an economy vs. convergence across economies; 

b) Convergence in terms of growth rate vs. Convergence in terms of 

income level; 

c) β – convergence vs. σ – convergence ; 

d) Unconditional (absolute) convergence vs. conditional convergence;  

e) Global convergence vs. local or club – convergence; and 
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f) Deterministic convergence vs. stochastic convergence. 

 

Convergence research has also witnessed the use of different 

methodologies, which may be classified broadly as follows: 

a) Informal cross – section approach, 

b) Formal cross – section approach, 

c) Panel approach, 

d) Time – series approach, and 

e) Distribution approach. 

 

The informal and formal cross – section approaches, the panel approach, 

and the time – series approach (in part) have all studied β – convergence, 

either conditional or unconditional.  These approaches have generally dealt 

with convergence across economies and in terms of per capita income level. In 

addition, the formal cross – section approach and the panel approach have 

been used to study club – convergence and TFP – convergence. The cross – 

section approach has even been used to study σ–convergence. The time series 

approach has been used to investigate convergence both within an economy 

and across – economies. Finally, the distribution approach has gone beyond 

investigating just σ – convergence and has studied the entire shape of the 

distribution and intra – distribution dynamics. A useful way to start reviewing 

the convergence literature is therefore to provide a brief introduction to these 

different concepts of convergence. 

The concept of conditional convergence is related with the notion of 

“club convergence”. In the case of unconditional convergence, there is only 

one equilibrium–level to which all economies approach. In the case of 

conditional convergence, equilibrium differs by the economy, and each 

particular economy approaches its own but unique equilibrium. In contrast, the 

idea of club-convergence is based on models that yield multiple equilibrium. 



 13 

Which of these different equilibrium an economy will reach, depends on its 

initial position or some other attribute. A group of countries may approach a 

particular equilibrium if they share the initial location or attribute corresponding 

to that equilibrium. This produces club- convergence. 

From a chronological point of view, the study of convergence began 

with the notion of ‘absolute convergence’ and then moved to the concept of 

‘conditional convergence.’ Both these concepts were initially studied using the 

notion of ‘β-convergence.’ The notion of σ-convergence arose later. Alongside 

emerged the concepts of ‘club-convergence,’ and the time series notions of 

convergence.  

Several researchers, such as Bernard and Durlauf (1996), Carlino and 

Mills(1993), Evans (1996), and Evans and Karras (1996a), Li and Papell (1999), 

and others have investigated convergence using time series econometric 

methods. From this point of view, two economies, i and j, are said to converge 

if their per capita outputs, yit and yjt satisfy the following condition: 

, ,lim ( | ) 0i t k j t k tk
E y yα+ +→∞

− Ι =       

where It denotes the information set at time t. 

This definition of convergence is relatively unambiguous for a two-

economy situation. This is not so when convergence is considered in a sample 

of more than two economies. Researchers differ on defining convergence in 

such multi-country situations. Some have taken deviations from a reference 

economy as the measure of convergence. In this treatment, yit in the above 

equation is replaced by y1t, where 1 is the index for the reference country. 

Others have based their analysis of convergence on deviations from the sample 

average. In this treatment, yit is replaced by ty  the average for time t. This 

difference is not innocuous, as we shall see. The time series definitions of 

convergence can be related with the notions of conditional and unconditional 

convergence too. 
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With α=1, the equation represents a variant of unconditional 

convergence. On the other hand, if α≠1 then the equation may represent a 

variant of conditional convergence. Within this framework a distinction has also 

been made between ‘deterministic’ and ‘stochastic convergence’. This 

distinction refers to whether ‘deterministic’ or ‘stochastic’ trend is allowed in 

testing for unit root in the deviation series. 

Convergence in terms of both growth rate and income level requires 

what is called β – convergence. This follows from the assumption of 

diminishing returns, which imply higher marginal productivity of capital in a 

capital – poor country. With similar savings rates, poorer economies will 

therefore grow faster. If this scenario holds, there should be a negative 

correlation between the initial income level and the subsequent growth rate. 

This led to the popular methodology of investigating convergence, namely 

running what is now known as the growth-initial level regressions. The 

coefficient of the initial income variable in these regressions (say, β) is 

supposed to pick up the negative correlation. Convergence judged by the sign 

of β is known as the β – convergence. 

We observe absolute β-convergence when “poor economies tend to 

grow faster than rich ones”. This definition assumes that all economies 

converge to the same steady-state level of per capita GDP. 

The concept of absolute β-convergence in regression terms is given by 

 
Equation 1 Absolute β-convergence 

 
  γi, t, t+T = α – b log(yi,t) + εi, t+T   ,  

where b>0 means that there is convergence in the data set. The failure of 

many empirical studies to find absolute β-convergence leads, through the 

works of Barro and Sala-i-Martin (1992), and Mankiw, Romer, and Weil (1992) 

to a concept of conditional β-convergence whereby “the growth rate of an 
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economy will be positively related to the distance that separates it from its own 

steady state.” This concept reflects the fact that neither Solow’s (1956) 

neoclassical growth model nor its optimal savings versions by Cass (1965) and 

Koopman (1965) imply convergence to the same steady state of per capita 

income. If economies have different technological and preference parameters, 

then nothing prevents them from converging to different steady states. 

Therefore, to investigate for the possibility of conditional β-convergence, one 

needs to include regression variables that determine the steady state: 

 

Equation 2 Conditional β-convergence 

 

   γi, t, t+T = α – b log(yi,t) + ψXi,t + εi, t+T    , 

 

where Xi,t is a vector of variables that hold constant the steady state of the 

economy i, and, as before, b>0 means that the data set exhibits conditional β-

convergence.  

However, such researchers as Quah (1993a), Friedman (1994), and 

others have emphasized that convergence is a proposition regarding dispersion 

of the cross-sectional distribution of income (and growth rate), and a negative 

β from the growth-initial level regression does not necessarily imply a reduction 

in this dispersion. According to this view, instead of judging indirectly and 

perhaps erroneously through the sign of β, convergence should be judged 

directly by looking at the dynamics of dispersion of income level and/or growth 

rate across countries. This gave rise to the concept of σ – convergence, where 

σ is the notation for standard deviation of the cross-sectional distribution of 

either income level or growth rate. While β-convergence reflects the movement 

of individual countries within a group, the concept of σ – convergence 

describes the evolution of income distribution of the entire group. Let σt  be the 

time t standard deviation of log of real per capita GDP, then “a group of 
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economies are converging in the sense of σ if the dispersion of their real per 

capita GDP levels tends to decrease over time. That is, if σt+T < σt”. 

Despite the limitations above, researchers have continued to be 

interested in β – convergence, in part because it is necessary, though not 

sufficient, condition of σ – convergence. The other reason is that 

methodologies, associated with investigation of β – convergence, also provide 

information regarding structural parameters of growth models, while research 

along the distribution approach usually do not provide such information. 

The statistical notion of cointegration is well suited to study the     co-

movements of a set of variables in the long run. By definition, a set of possibly 

nonstationary variables are cointegrating if there exist linear combinations or 

cointegrating relations among them that are stationary and move together over 

time. The cointegrating relations have the appealing economic interpretation of 

long run equilibrium relationships among the variables under study. In general 

if there exist r cointegrating relations in a set of p variables, there must also 

exist p – r common stochastic trends that move these variables around their 

equilibrium paths, and thus “drive” the cointegrating relations. 

Koukouritakis and Michelis analyzed the long run cointegration 

properties of real per capita GDPs among the 10 new countries and the 3 EMU 

countries, France, Germany and the Netherlands. They viewed evidence of the 

long run co-movements in real per capita GDPs as strengthening the case for 

successful EMU enlargement by some or all the new countries. 

According to Hall, Robertson and Wickens (1997) cointegration is not 

necessary for convergence as it is possible to construct series that are not 

cointegrated yet converge. For example, two series that differ by a random 

walk for t<T and are identical thereafter will converge in probability, and 

indeed pointwise, yet are not cointegrated.  This brings out an important 

difference between the concepts of convergence and cointegration. 

Convergence is determined by the limiting (large t) behaviour of the series, 
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whilst cointegration is a property of the entire time history of the series. 

Discussions of convergence occur most naturally in the context of non-

stationary series.  In constructing a test for convergence it is important to take 

account of the distinction between convergence and cointegration. 

 

UUnniitt  RRoooott  AAnnaallyyssiiss  ooff  PPoooolleedd  DDaattaa  ffoorr  CCoouunnttrriieess  

 
The time series analysis has been applied to investigate convergence 

across countries too. In fact, Evans and Karras (1996a) conduct a similar unit 

root analysis of pooled deviation (from average) data for a sample of 56 

countries. The results favor rejection of unit root and by implication favor the 

conditional convergence hypothesis. Time series notions of convergence imply 

that per capita output disparities between converging economies follow a 

stationary process. Stochastic or deterministic convergence is therefore directly 

related to the unit root hypothesis in relative per capita output. Li and Papell 

utilized both conventional ADF tests as well as tests which incorporate a one-

time break in the deterministic trend. Rejection of the null hypothesis of a unit 

root, whether or not a break is included, provides evidence of convergence. Li 

and Papell employed time series techniques that incorporate structural breaks 

to explore both deterministic and stochastic convergence among 16 OECD 

countries. In particular, they tested the unit root hypothesis on the log relative 

per capita output (to that of the group). If they found evidence against the unit 

root null for its relative per capita output, a country’s output is converging to 

the aggregate output of the whole group. The unit root null is rejected in favor 

of trend stationarity, and hence evidence is provided for stochastic 

convergence. Incorporating trend breaks in the unit root tests significantly 

strengthens the findings of stochastic convergence.  

Li and Papell found considerable evidence of convergence among the 16 

OECD countries. Combining tests with and without structural breaks, they could 
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reject the unit root null against an alternative of trend stationarity, and thus 

provide evidence for stochastic convergence, for 14 of the 16 countries. They 

could also reject the unit root null in favor of a level stationary alternative, and 

provide evidence of deterministic convergence, for 10 of the 16 countries. The 

results of the sequential unit root tests also reveal that World War II is the 

major cause for the structural shifts of relative per capita outputs. 

 

RReellaattiioonnsshhiipp  ttoo  ootthheerr  ccoonnvveerrggeennccee  tteessttss  

DDiissppeerrssiioonn  MMeetthhooddss  

A method often used is to consider how the cross-section dispersion of a 

number of series behaves over time, after scaling the series appropriately, if 

necessary. Convergence is deemed to be occurring if the cross-section 

dispersion is declining over time. An important limitation of this approach is 

that it is not possible to use it if the underlying series are available only in 

index number form, for then the cross-section variance can be set arbitrarily at 

zero in any particular period by the choice of base period. In this way 

convergence at a given point in time can be guaranteed.  

In practice there are a number of disadvantages to this measure. 

Constructing formal tests for convergence for this approach would involve 

delicate distributional assumptions and so detecting convergence remains a 

matter of judgement. The dispersion measure will not, in general, reveal which 

of the series has failed to converge. Moreover, if n is large and the length of 

time series is short, then the averaging inherent in the dispersion method will 

tend to obscure the contribution to the variance of any non-converging series.  

IInniittiiaall  vvaalluuee  rreeggrreessssiioonnss  

This test is derived from the theory of growth and is based on the idea 

that rates of economic growth are mean reverting with the higher the growth 

rate, the lower the level of output (or output per capita), thus reducing 

disparities in growth rates over time.  
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This approach to the measurement of convergence involves testing for a 

negative relationship between the growth rates of a set of series and the initial 

level of the series, taken to imply that the cross-section dispersion declines 

over time. These initial value regressions do not necessarily imply that the 

cross-section dispersion diminishes over time, and thus has nothing to say 

about this mode of convergence.  

An alternative approach would be to regress the growth rates on the 

lagged value of the level and test the significance of the regression coefficient 

of this lagged value. This, of course, is simply a test for the stationarity of the 

series. Under our definition of convergence any stationary series have 

converged. Thus, positive results from such tests will imply convergence. 

However such tests do not allow for convergence between non-stationary or 

trending variables, a case that we would not wish to rule out a priori. 

 

QQuuaahh’’ss  RRaannddoomm  FFiieelldd  TTeessttss  

 Quah (1990b) uses the same definition of convergence that Hall, 

Robertson and Wickens propose, and relates convergence to cointegration. The 

concept of cointegration is modified to cope with the comparison of disparities 

among a set of series that are tested for stationarity. Whilst this comes closest 

to Hall, Robertson and Wickens’ investigation, it is inherently a test of whether 

a set of series have converged, and cannot address the issue of whether such 

series are in the process of converging. 

The plan of the paper is as follows. Section 2 provides definitions of 

convergence and common trends using a cointegration framework. Section 3 

outlines the test statistics we use. Section 4 describes the data. Section 5 

contains the empirical results. 
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22..      CCOONNVVEERRGGEENNCCEE  IINN  SSTTOOCCHHAASSTTIICC  EENNVVIIRROONNMMEENNTTSS  
 

In our paper we test convergence in an explicitly stochastic framework. 

If long-run technological progress contains a stochastic trend, or unit root, then 

convergence implies that the permanent components in output are the same 

across countries. The theory of cointegration provides a natural setting for 

testing cross-country relationships in permanent output movements.   

The organizing principles of our empirical work come from employing 

stochastic definitions for both long-term fluctuations and convergence. These 

definitions rely on the notions of unit roots and cointegration in time series. 

We model the individual output series as satisfying 

   α (L) Yi,t=μi +εi,t 

where α(L) has one root on the unit circle and εi,t is a mean zero stationary 

process. This formulation allows for both linear deterministic and stochastic 

trends in output. The interactions of both types of trends across countries can 

be formulated into general definitions of convergence and common trends. 

Definition 2.1. Convergence in output 

Countries j and i converge if the long-term forecasts of output for both 

countries are equal at a fixed time t: 

   limk⇒∞ E(yi,t+k – yj,t+k It) = 0 

 

Definition 2.1’. Convergence in multivariate output 

Countries p=1,….., n converge if the long-term forecasts of output for all 

countries are equal at a fixed time t: 

    limk⇒∞ E(y1,t+k – yp,t+k It) = 0 ∀ p≠1 

 

This definition of convergence asks whether the long-run forecasts of 

output differences tend to zero as the forecasting horizon tends to infinity. If 

y1,t+k – yp,t+k is a mean zero stationary process then this definition of 
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convergence will be satisfied. In order for countries i and j to converge under 

Definition 2.1 their outputs must be cointegrated with cointegrating vector   [1, 

-1]. Additionally, if the output series are trend-stationary, then the definitions 

imply that the time trends for each country must be the same.  

If countries do not converge in the sense of Definitions 2.1 or 2.1’ they 

may still respond to the same long-run driving processes, i.e. they may face 

the same permanent shocks with different long-run weights. 

 

Definition 2.2. Common trends in output 

Countries i and j contain a common trend if the long-term forecasts of 

output are proportional at a fixed time t: 

   limk⇒∞ E(yi,t+k – αyj,t+k It) = 0 

 

Definition 2.2’. Common trends in multivariate output 

Countries p= 1, …..,n contain a single common trend if the long term 

forecasts of output are proportional at a fixed time t, let yt=[y2,t y3,t ….yp,t]  

limk⇒∞ E(y1,t+k – α’pyt+k It) = 0 

Countries i and j have a common trend if their output series are 

cointegrated with cointegrating vector [1,-α]. This is a natural definition to 

employ if we are interested in the possibility that there are a small number of 

stochastic trends affecting output that differ in magnitude across countries. 

Our analysis studies convergence by directly examining the time-series 

properties of various output series, which places the convergence hypothesis in 

an explicitly dynamic and stochastic environment. 
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33..      OOUUTTPPUUTT  RREELLAATTIIOONNSSHHIIPPSS  AACCRROOSSSS  CCOOUUNNTTRRIIEESS  

 

In order to test for convergence and common trends, we employ a 

multivariate technique developed by Johansen (1991, 1995a). 

Let yi,t denote the output level (industrial production) of country i and 

Dyi,t the deviation of output in country i from output in country 1, i.e. y1,t – yi,t. 

Yt is defined as the nx1 vector of the individual output levels, ΔYt as the first 

difference of Yt, DYt as the (n-1)x1 vector of output deviations, Dyi,t, and ΔDYt 

the first differences of the deviations. 

The starting point for the empirical work is the finding that the individual 

elements of the output vector are integrated of order one. A time series is said 

to be integrated of order d, in short, I(d), if it has a stationary, invertible, non-

deterministic ARMA representation after differencing d  times. A non-stationary 

process is, by definition, one that violates the stationarity requirement, so its 

means and variances are non-constant over time. 

To illustrate the use of Dickey-Fuller tests, we consider first an AR(1) 

process: 

   yt = μ + ρyt-1 + εt  , 

Where μ and ρ are parameters and εt is assumed to be white noise. Y is a 

stationary series if –1 < ρ < 1. If ρ = 1, y is a non-stationary series (a random 

walk with drift). If the process is started at some point, the variance of y 

increases steadily over time and goes to infinity. If the absolute value of ρ is 

greater than one, the series is explosive. Therefore, the hypothesis of a 

stationary series can be evaluated by testing whether the absolute value of ρ is 

strictly less than one. The DF test takes the unit root as the null hypothesis 

H0:ρ = 1. Since explosive series do not make much economic sense, this null 

hypothesis is tested against the one-sided alternative H1: ρ < 1. 
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 The test is carried out by estimating an equation with yt-1 subtracted 

from both sides of the equation: 

   Δyt = μ + γyt-1 + εt   , 

where γ = ρ – 1, and the null and alternative hypotheses are 

  H0: γ = 0 

  Η1: γ < 0 

   The simple unit root test described above is valid only if the series is an 

AR(1) process. If the series is correlated at higher order lags, the assumption 

of white noise disturbances is violated. The ADF test makes a parametric 

correction for higher-order correlation by assuming that the y series follows an 

AR(p) process and adjusting the test methodology. 

The ADF approach controls for higher-order correlation by adding lagged 

difference variable y to the right-hand side of the regression: 

   Δyt = μ + γyt-1 + δ1 Δyt-1 + δ2 Δyt-2 + ….+  δp Δyt-p +  εt 

This augmented specification is then used to test: 

  H0: γ = 0 

  Η1: γ < 0 

in this regression. 

 When data are non-stationary purely due to unit roots, they can be 

brought back to stationarity by linear transformations, for example, by 

differencing, as in    yt-yt-1 = Δyt. If yt ~I(1), then by definition Δyt ~ I(0). An 

alternative is to try a linear transformation like yt – β1xt – β0 ~ Ι(0). But unlike 

differencing, there is no guarantee that yt – β1xt – β0 is I(0) for any value of β.  

 The second natural step of the empirical work is to write a multivariate 

Wold representation of output as 

   ΔYt = μ + C(L)εt 

 Engle and Granger (1987) pointed out that a linear combination of two 

or more non-stationary series may be stationary. If such a stationary linear 

combination exists, it is called the cointegration equation and may be 
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interpreted as a long-run equilibrium relationship among the variables. 

However, all variables must be integrated of the same order to be candidates 

to form a cointegrating relationship. 

The purpose of the cointegration test is to determine whether a group of 

non-stationary series are cointegrated or not. The presence of a cointegrating 

relation forms the basis of the VEC specification. There are many possible tests 

for cointegration: the most general of them is the multivariate test based on 

the vector autoregressive representation (VAR) discussed in Johansen (1991, 

1995a). Consider a VAR of order p 

yt = A1 yt-1 +  A2 yt-2 + …. +  Ap yt-p + εt          with  εt~INp[0,Ωε] 

where yt is a k-vector of non-stationary I(1) variables and εt is a vector of 

innovations. We can rewrite this VAR in the form of a VEC model as 

  Δyt = Πyt-1 + 
1

1

p

i t i
i

y
−

−
=

Γ ∆∑  + εt    

where 

  Π = 
1

p

i
i

A I
=

−∑   ,  Γi = 
1

p

j
j i

A
= +

− ∑  

 

Π represents the long-run relationship of the individual output series, while Γi 

traces out the short-run impact of shocks to the system. 

Granger’s representation theorem asserts that if the coefficient matrix Π 

has reduced rank r < p, then there exist p x r matrices α and β each with rank 

r such that Π=αβ’ and β’yt is I(0). The β coefficients characterize long-run 

relationships between levels of variables; the α coefficients describe changes 

that help restore an equilibrium market position. r is the number of 

cointegrating relations (the rank) and each column of β is the cointegrating 

vector. Cointegration vectors are of considerable interest when they exist, since 

they determine I(0) relations that hold between variables which are individually 



 25 

non-stationary. Such relations are often called “long-run equilibria”, since it can 

be proved that they act as “attractors” towards which convergence occurs. 

However, β is not uniquely determined; a different choice of α satisfying 

equation Π=αβ’ will produce a different cointegrating matrix. Regardless of the 

normalization chosen, the rank of Π is still related to the number of 

cointegrating vectors. If the rank of Π equals p, then yt is a stationary process. 

If the rank of Π is 0<r<p, there are r cointegrating vectors for the individual 

series in yt and hence the group of time series is being driven by p-r common 

shocks. If the rank of Π equals zero, there are p stochastic trends and the 

long-run output levels are not related across countries. In particular, from 

Definition 2.1, for the individual output series to converge there must be p-1 

cointegrating vectors of the form (1, -1) or one common long-run trend. If 

there are n-r common trends among the n variables, there must be r 

cointegrating relationships. Note that 0< r< n, since r = 0 implies that each 

series in the system is governed by a different stochastic trend and that r = n 

implies that the series are I(0) instead of I(1). Convergence requires that the 

persistent parts be equal; common trends require that the persistent parts of 

individual output series be proportional.  In a multivariate framework, 

proportionality and equality of the persistent parts corresponds to linear 

dependence. 

Two test statistics proposed by Johansen to test the rank of the 

cointegrating matrix are derived from the eigenvalues of the MLE estimate of 
∧

Π . If 
∧

Π  is of full rank, p, then it will have no eigenvalues equal to zero. If, 

however, it is of less than full rank, r < p, then it will have p-r zero 

eigenvalues. Looking at the smallest p-r eigenvalues the statistics are  

 Trace = T
1 1

2ln( ; , ) ln(1 )
p p

i i
i r i r

Q r p Tλ λ
∧ ∧

= + = +

≈ − = − −∑ ∑  

and 
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  maximum eigenvalue = 1 12 ln( ; , 1) ln(1 )r rT Q r r Tλ λ
∧ ∧

+ +≈ − + = − −  

 The trace statistic tests the null hypothesis that the rank of the 

cointegrating matrix is r against the alternative that the rank is p. The 

maximum eigenvalue statistic tests the null hypothesis that the rank is r 

against the alternative that the rank is r+1. Critical values for the asymptotic 

distributions of both statistics are tabulated in Osterwald-Lenum (1992). 

 

Five cases for trends and intercepts 

The basic ideas are illustrated using the p-dimensional cointegrated VAR 

with a constant and a linear trend, but to simplify notations we assume that 

only one lag is needed, so Γi = 0. As before, εt~INp[0,Ωε]: 

 Δyt = αβ’yt-1 + π +δt + εt   (1) 

 
Without loss of generality, the two (px1) vectors π and δ can each be 

decomposed into two new vectors, of which one is related to the mean value of 

the cointegrating relations, β’xt-1, and the other to growth rates in Δyt: 

    π = αμ + γ    (2) 

    δ = αρ + τ 

 
Substituting (2) into (1) yields: 

Δyt = αβ’yt-1 + αμ + γ + αρt + τt + εt 

  
Thus, γ≠ 0 corresponds to constant growth in the variables xt, whereas 

τ≠ 0 corresponds to linear trends in growth, and so quadratic trends in the 

variables. Hence, the constant term and the deterministic linear trend play a 

dual role in the cointegrated model: in the α directions they describe a linear 

trend and an intercept in the steady-state relations; in the remaining 

directions, they describe quadratic and linear trends in the data. 
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We now discuss five of the most frequently used models arising from 

restricting the deterministic components in (1): 

Case 1.    Η(κ): No restrictions on π and δ, so the trend and intercept 

is the VAR model. With unrestricted parameters, π, δ, the model is consistent 

with linear trends in the differenced series Δyt and thus, quadratic trends in yt. 

Although quadratic trends may sometimes improve the fit within the sample, 

forecasting outside the sample is likely to produce implausible results. It is 

preferable to find out what induced the apparent quadratic growth and, if 

possible, increase the information set of the model. 

Case 2.     Η*(κ): τ = 0 but γ, μ, ρ remain unrestricted, so the trend is 

restricted to lie in the cointegration space, but the constant is unrestricted in 

the model. Thus, τ being zero still allows linear, but precludes quadratic, trends 

in the data. Ε(Δyt)=γ≠0 implies linear deterministic trends in the level yt. When, 

in addition, ρ≠0, these linear trends in the variables do not cancel in the 

cointegrating relations, so the model contains  ‘trend-stationary’ relations which 

can either describe a single trend-stationary variable, (y1,t-b1t)~l(0), or an 

equilibrium relation (β1’xt – b2t)~l(0). Therefore, the hypothesis that a variable 

is trend-stationary can be tested in this model. 

Case 3.     Η1(κ): δ=0, so there are no linear trends in (1). Since the 

constant term π is unrestricted, there are still trends in the data, but no 

deterministic trends in any cointegration relations. Also, Ε[Δyt]= γ≠0, is 

consistent with linear deterministic trends in the variables but, since ρ=0, these 

trends cancel in the cointegrating relations. π≠0 accounts for both linear trends  

in the DGP and a none-zero intercept in the cointegration relations. 

Case 4.   Η1
*(κ): δ=0, γ=0, but μ≠0, so the constant term is restricted 

to lie in the cointegration space. In this case, there are no linear deterministic 

trends in the data, consisted with Ε[Δxt] = 0. The only deterministic 

components in the model are the intercepts in any cointegrating relations, 

implying that some equilibrium means are different from zero. 
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Case 5.     Η2(κ): δ=0 and π=0, so the model excludes all deterministic 

components in the data, with both Ε[Δyt]=0 and Ε[β΄yt]=0, implying no 

growth and zero intercepts in every cointegrating relation. Since an intercept is 

generally needed to account for the initial level of measurement, y0, only in the 

exceptional case when the measurement start from zero, or when the 

measurements cancel in the cointegrating relations, can the restriction π=0 be 

justified.    

  When there are linear trends in the data, i.e. E[Δyt] ≠0, they can enter 

the model through the constant term, γ≠0 in E[Δyt]= γ + τt or through the 

cointegration relations, ρ≠0. Hence, given linear trends in the data, case 2 is 

the most general case. When the rank has been determined, it is always 

possible to test the hypothesis ρ = 0, as a linear restriction on the 

cointegrating relations. 

If, on the other hand, E [Δyt]=0, so there are no linear trends in the 

data, then the baseline model has the constant term restricted to the 

cointegration space, which is case 4 above. Therefore, based on the similarity 

argument, the rank should be based on either case 4 (trends in data) or case 2 

(no trends in data). Nevertheless, if there is strong prior information that there 

are trends in the data, but they do not appear in the cointegration relations, 

then case 3 is the appropriate choice. 

 

44..    DDAATTAA  

 

The data used in the empirical exercise are monthly, seasonally 

adjusted, log industrial production and most of them are obtained from the IFS 

CD-ROM. The countries involved are the 10 new countries and Germany, 

France and Netherlands, the 3 EMU countries.  
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These EMU countries serve as our benchmarks of EU policy and 

macroeconomic performance. Germany is the country traditionally used for this 

purpose in the convergence literature because of the alleged credibility of the 

policies of the Bundesbank and because it is the largest economy in the EU. 

Moreover, it is the largest trading partner of the transition economies. 

However, Germany experienced considerable monetary and real turbulence in 

the early and mid-1990s due to the difficulties encountered in the reunification 

of the country. Consequently, we also use France and Netherlands as a 

benchmark as they did not experience the adjustment costs that Germany did, 

and thus it may serve as a more stable indicator of EU policies and 

performance. 

The sample is comprised of monthly data of varying time spans 

determined by data availability. The starting date for the data was January 

1993, when the Czech and the Slovak Republic became independent states 

following the split of Czechoslovakia. 

Due to lack of data availability, we dropped Malta from the sample. 

We work with the logarithms of data in order to ensure positive 

outcomes and models with constant elasticities. 

 

55..      EEMMPPIIRRIICCAALL  RREESSUULLTTSS  OONN  CCOONNVVEERRGGEENNCCEE  
 

We first test for the presence of stochastic trends in each of the 12 

output series. Table 1 presents the results for Augmented Dickey-Fuller tests.  
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Table 1 

ADF tests on industrial production 

 

COUNTRIES SAMPLE ADF TEST UNIT ROOT LAGS 

Ρ 

CYPRUS 1993:1-2003:12 - 2,483560 I(1)*** 3 

CZECH REPUBLIC 1993:1-2003:12 - 2,315681 I(1)*** 1 

ESTONIA 1993:1-2003:12 - 2,687872 I(1)*** 3 

HUNGARY 1993:1-2003:12 - 1,399327 I(1)*** 2 

LATVIA 1993:1-2003:12 - 3,763734 I(1)* 2 

LITHUANIA 1993:1-2003:12 - 1,642817 I(1)*** 4 

POLAND 1993:1-2003:12 - 2,677709 I(1)*** 3 

SLOVAK REPUBLIC 1993:1-2003:12 - 1,964441 I(1)*** 8 

SLOVENIA 1993:1-2003:12 - 2,196603 I(1)*** 0 

FRANCE 1993:1-2003:12 - 1,389100 I(1)*** 1 

GERMANY 1993:1-2003:12 - 1,414383 I(1)*** 2 

NETHERLANDS 1993:1-2003:12 - 1,744809 I(1)*** 3 

 

*    denotes statistical significance at the 1% level 

**   denotes statistical significance at the 5% level 

***   denotes statistical significance at the 10% level 

 

 

In order to select the appropriate lag length, we used the Modified 

Akaike’s information criterion. As far as Latvia is concerned, the series of 

industrial production for this country is stationary (the ADF test exceeds only 

the test critical value of 1% and the probability of the test is 0,0217). However, 

according to the literature, Latvia is always taken as a non-stationary series 
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and for this reason we will also consider it non-stationary. As a result, none of 

the 12 countries rejects the null hypothesis of a unit root in output. 

Proceeding in a multivariate framework, choosing the sample period that 

was previously chosen (1993:M1 – 2003:M12), we examine the long run 

relationship among: 

• the non-stationary series of the new EU countries 

• the non-stationary series of the new EU countries plus the industrial 

production series of Germany, France and Netherlands 

In the first sample we dropped off Lithuania and Estonia. This happened 

as we run a cross-country model and there should be a common sample period 

so that our estimations would not be affected.  

In the second sample we dropped off Lithuania and Estonia as the data 

spans for these countries were very small. 

To select the appropriate lag length, ρ, we set up a separate VECM for 

each group and use the likelihood ratio test to carry out hypothesis testing. 

Under the hypothesis Γρ = 0, the likelihood ratio test is asymptotically 

distributed as χ2 with p2 degrees of freedom. 

For the group of the seven new countries of the EU the lag length that 

we found was ρ=1.  
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Table 2 

Lag selection for the 7 new EU countries 

 

 

Furthermore, for the group of the seven new countries and the three 

countries of the EMU the lag length was ρ= 1 . 

 

 

 

 

 

 

 

 

VAR Lag Order Selection Criteria 

Endogenous variables: DCYP DCZ DHUN DLAT DPOL DSLVK DSLVN  

Exogenous variables: C  

Date: 06/22/04   Time: 21:31 

Sample: 1993:01 2003:12 

Included observations: 121 

Lag LogL LR FPE AIC SC HQ 

0 1865.404 NA 1.08E-22 -30.71743 -30.55569* -30.65174 

1 1963.206 182.6711 4.81E-23* -31.52407* -30.23015 -30.99856* 

2 2007.540 77.67666 5.24E-23 -31.44695 -29.02085 -30.46162 

3 2048.701 67.35333 6.08E-23 -31.31737 -27.75909 -29.87222 

4 2092.608 66.76747 6.87E-23 -31.23318 -26.54273 -29.32821 

5 2128.198 50.00305 9.14E-23 -31.01154 -25.18890 -28.64674 

6 2169.227 52.89657 1.15E-22 -30.87978 -23.92496 -28.05517 

7 2228.117 69.11120* 1.12E-22 -31.04326 -22.95626 -27.75882 

8 2287.772 63.10555 1.15E-22 -31.21937 -22.00019 -27.47511 

* indicates lag order selected by the criterion 
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Table 3 

Lag selection for the 7 new and the 3 EMU countries 

 

 

VAR Lag Order Selection Criteria 

Endogenous variables: DCYP DCZ DFR DGER DHUN DLAT DNETH DPOL 

DSLVK DSLVN  

Exogenous variables: C  

Date: 06/24/04   Time: 20:29 

Sample: 1993:01 2003:12 

Included observations: 121 

Lag LogL LR FPE AIC SC HQ 

0 2909.962 NA  7.21E-34 -47.93325 -47.70220* -47.83941 

1 3073.359 297.0864 2.54E-34* -48.98115 -46.43952  -47.94890* 

2 3167.032 154.8312 2.91E-34 -48.87657 -44.02437 -46.90590 

3 3250.959 124.8500 4.12E-34 -48.61090 -41.44813 -45.70182 

4 3349.463 130.2531 4.96E-34 -48.58617 -39.11283 -44.73868 

5 3447.103 112.9717 6.84E-34 -48.54716 -36.76325 -43.76126 

6 3535.610 87.77516 1.30E-33 -48.35718 -34.26270 -42.63288 

7 3687.989 125.9336* 1.11E-33 -49.22296 -32.81791 -42.56024 

8 3842.121 101.9055 1.34E-33  -50.11771* -31.40208 -42.51658 

 * indicates lag order selected by the criterion 

 

 

Further, to determine which submodel describes best each set of 

variables, we test the various submodels against each other using likelihood 

ratio tests in Johansen (1995), which are also distributed as χ2 with appropriate 

degrees of freedom. The degrees of freedom for testing pairs of the five nested 
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submodels, which are nested from the most to the least restrictive, are defined 

as follows: 

  H2(κ) 
r
⊂  Η1

* (κ) 
rp−

⊂  Η1(κ) 
r
⊂  Η* (κ)  

rp−
⊂  Η(κ) 

 

Johansen (1995) constructed likelihood ratio tests in order to choose 

between the different deterministic trend specifications of cointegration, for 

given κ cointegrating vectors. These likelihood ratio tests are the following: 

-2 logQ(H2(κ) *
1 ( )κΗ )= * 2

1

ˆlog(1 ) /(1 ) ( )i i
i

κ

λ λ χ κ
=

Τ − −∑   

-2 logQ(H1(κ) *( )κΗ )= * 2

1

ˆlog(1 ) /(1 ) ( )i i
i

κ

λ λ χ κ
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Τ − −∑   

-2 logQ(H1
*(κ) 1( )κΗ )= * 2

1
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= +
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-2 logQ(H*
 (κ) ( )κΗ )= * 2

1

ˆlog(1 ) /(1 ) ( )i i
i

ν

κ

λ λ χ ν κ
= +

Τ − − −∑   

 

where îλ  and *
iλ  are the i greater eigenvalues under the hypothesis H and H* 

respectively. This test is conducted as follows: we start from the most 

restrictive case and turning down the hypothesis consecutively we move on to 

the less restrictive case. When a certain test is accepted, we accept this 

hypothesis. 

For the group of the seven new countries of the EU the deterministic 

trend specification of cointegration that was chosen was case 3: H1, which 

allows for linear trend in data (Intercept (no trend) in CE and VAR).  
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Table 4 

Choise of the appropriate model for the cointegration test 

 

Data Trend: None None Linear Linear Quadratic 

      

Rank or No Intercept Intercept Intercept Intercept Intercept 

No. of CEs No Trend No Trend No Trend Trend Trend 

 Selected (5% level) Number of Cointegrating Relations by Model (columns)  

      

Trace 2 4 2 1 2 

Max-Eig 2 1 1 1 1 

      

0 2005.124 2005.124 2020.35 2020.35 2022.404 

1 2030.865 2031.004 2044.232 2045.457 2046.841 

2 2049.359 2049.532 2059.587 2062.155 2063.484 

3 2063.15 2064.845 2074.322 2077.132 2078.411 

4 2070.905 2077.865 2083.962 2087.261 2088.537 

5 2076.364 2085.62 2089.201 2093.483 2094.558 

6 2078.934 2089.87 2092.41 2098.663 2098.9 

7 2079.016 2092.424 2092.424 2101.051 2101.051 

 Likelihood Ratio   

 a) model 4 better than model 5   

 COINT. VECTORS LR PROBABILITY 

 4 2.552 0.465967 

 b) model 3 better than model 4  

 COINT. VECTORS LR PROBABILITY 

 4 6.598 0.085877 

      

 a) model 2 better than model 3   

 COINT. VECTORS LR PROBABILITY 

 4 12.194 0.006747 
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Furthermore, for the group of the seven new countries and the three 

countries of the EMU case 2: H*, was chosen. This case allows for linear trend 

in data (intercept and trend in CE and no trend in VAR). 

 

Table 5 

Choise of the appropriate model for the cointegration test 

 

Data Trend: None None Linear Linear Quadratic 

          

Rank or No Intercept Intercept Intercept Intercept Intercept 

No. of CEs No Trend No Trend No Trend Trend Trend 

Selected (5% level) Number of Cointegrating Relations by Model (columns) 

      

Trace 5 6 5 4 5 

Max-Eig 4 2 2 2 2 

      

0 3171.309 3171.309 3188.127 3188.127 3191.565 

1 3209.529 3211.065 3227.155 3230.893 3234.267 

2 3238.741 3245.923 3261.337 3265.077 3268.244 

3 3264.042 3271.411 3286.539 3290.949 3294.103 

4 3284.923 3293.546 3305.929 3316.012 3319.05 

5 3302.958 3312.907 3322.962 3333.127 3335.818 

6 3316.173 3329.593 3335.705 3348.734 3350.765 

7 3323.77 3342.19 3348.011 3361.119 3363.141 

8 3328.212 3349.203 3353.04 3367.52 3369.181 

9 3329.576 3353.586 3354.432 3371.846 3372.178 

10 3329.754 3354.621 3354.621 3373.02 3373.02 

  Likelihood Ratio 

  a) model 4 better than model 5    

  COINT. VECTORS LR PROBABILITY   

  6 4.062 0.397680   

  b) model 3 better than model 4    

  COINT. VECTORS  LR PROBABILITY   

  6 26.058 3.08 E-05   
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As a next step, we construct a VEC Model and from its equation we 

make a hypothesis testing as far as the variables A(i,1) are concerned. The null 

hypothesis is H0: A(i,1)=0 and its purpose is to test whether the country 

concerned is exogenous or not. An explanation for this is to test which of the 

countries move towards the restoration of equilibrium when the latter is 

affected and which are not. From the above test we conduct the following 

results for the 7 new EU countries: 

 

Table 6 

Restrictions on A(i,1) for the 7 new EU countries 

 

COUNTRIES CHI-SQUARE PROBABILITY STATUS 

CYPRUS 0,255588 0,613168 Exogenous 

CZECH REPUBLIC 16.37260 0.000052 Endogenous 

HUNGARY 0.637934 0.424460 Exogenous 

LATVIA 4.801170 0.028440 Endogenous 

POLAND 0.185298 0.666859 Exogenous 

SLOVAK REPUBLIC 1.556603 0.212163 Exogenous 

SLOVENIA 1.098100 0.294683 Exogenous 

 

 For the group of the 7 new countries, we notice from the cointegration 

test that the trace test indicates 2 cointegrating equations at the 5% level and 

1 cointegrating equation at the 1% level. Furtheremore, the max-eigenvalue 

test indicates 1 cointegrating equation at the 5% level and no cointegrating 

equation at the 1% level. From the above hypothesis test for the A(i,1), where 

the null hypothesis is H0: A(i,1)=0, we conclude that Cyprus, Hungary, Poland, 

Slovak Republic and Slovenia do not adjust towards the restoration of 
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equilibrium when the latter is affected. On the contrary, only Czech Republic 

and Latvia do so. 

For the group of the 7 new and the 3 EMU countries, for the same test 

the results are the following:       

Table 7 

Restrictions on A(i,1) for the 7 new and the 3 EMU countries 

 

 

For the group of the 7 new and the 3 EMU countries, from the above 

hypothesis test for the A(i,1), where the null hypothesis is H0: A(i,1)=0, we 

conclude that Cyprus, Czech Republic, France, Hungary, Latvia, Netherlands, 

Poland, Slovak Republic and Slovenia do not adjust towards the restoration of 

equilibrium when the latter is affected. On the contrary, only Germany does so. 

 As a next step, we conduct a Granger Causality test for the Γi that traces 

out the short-run impact of shocks to the system. The Granger (1969) 

approach to the question of whether x (the industrial production of a country) 

causes y (the industrial production of another country) is to see how much of 

COUNTRIES CHI-SQUARE PROBABILITY STATUS 

CYPRUS 1.300314 0.254156 Exogenous 

CZECH REPUBLIC 0.548479 0.458940 Exogenous 

FRANCE 1.679742 0.194959 Exogenous 

GERMANY 17.12727 0.000035 Endogenous 

HUNGARY 1.367080 0.242314 Exogenous 

LATVIA 3.222882 0.072616 Exogenous 

NETHERLANDS 1.300314 0.254156 Exogenous 

POLAND 1.447612 0.228912 Exogenous 

SLOVAK REPUBLIC 0.046627 0.829040 Exogenous 

SLOVENIA 0.648339 0.420707 Exogenous 
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the current y can be explained by past values of y and then to see whether 

adding lagged values of x can improve the explanation. y is said to be Granger-

caused by x if x helps in the prediction of y, or equivalently if the coefficients 

on the lagged x’s are statisticaly significant. Note that two-way causation is 

frequently the case; x Granger causes y and y Granger causes x. Granger 

causality measures precedence and information content but does not by itself 

indicate causality in the more common use of the term. A pairwise Granger 

Causality test tests whether an endogenous variable can be treated as 

exogenous. For each equation in the VAR, the output displays (Wald) statistics 

for the joint significance of each of the other lagged endogenous variables in 

that equation. 

In the test described above the null hypothesis is H0: country a does not 

granger-cause country b.  The results of this test for the 7 new EU countries 

are the following: 
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Table 8 

Perwise Granger Causality test for the 7 new EU countries 

 

COUNTRY RESULT COUNTRY PROBABILITY 

CYPRUS Does not Granger cause CZECH REPUBLIC 0.9258 

CYPRUS Does not Granger cause HUNGARY 0.0584 

CYPRUS Does not Granger cause LATVIA 0.3026 

CYPRUS Does not Granger cause POLAND 0.2959 

CYPRUS Does not Granger cause SLOVAK REPUBLIC 0.7842 

CYPRUS Does not Granger cause SLOVENIA 0.4143 

CZECH REPUBLIC Does not Granger cause CYPRUS 0.1845 

CZECH REPUBLIC Does not Granger cause HUNGARY 0.5080 

CZECH REPUBLIC Does not Granger cause LATVIA 0.9434 

CZECH REPUBLIC Does not Granger cause POLAND 0.8621 

CZECH REPUBLIC Does not Granger cause SLOVAK REPUBLIC 0.0967 

CZECH REPUBLIC Does Granger cause SLOVENIA 0.0000 

HUNGARY Does not Granger cause CYPRUS 0.6722 

HUNGARY Does not Granger cause CZECH REPUBLIC 0.3602 

HUNGARY Does not Granger cause LATVIA 0.7048 

HUNGARY Does not Granger cause POLAND 0.1494 

HUNGARY Does not Granger cause SLOVAK REPUBLIC 0.2307 

HUNGARY Does not Granger cause SLOVENIA 0.1052 

LATVIA Does not Granger cause CYPRUS 0.6146 

LATVIA Does Granger cause CZECH REPUBLIC 0.0105 

LATVIA Does not Granger cause HUNGARY 0.6825 

LATVIA Does not Granger cause POLAND 0.9785 

LATVIA Does not Granger cause SLOVAK REPUBLIC 0.1983 

LATVIA Does not Granger cause SLOVENIA 0.8897 
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From the above results, we conclude that we have a two-way causation 

between Slovenia and Czech Republic and that Latvia does Granger cause to 

Czech Republic. As we can see, an alteration in the series of the industrial 

production of Cyprus is not affected by the history of the dynamics of Czech 

Republic, Hungary, Latvia, Poland, Slovak Republic and Slovenia. Czech 

Republic’s series is not affected by the history of Cyprus, Hungary, Latvia, 

Poland and Slovak Republic. Hungary’s series is not affected by the history of 

Cyprus, Czech Republic, Latvia, Poland, Slovak Republic and Slovenia. Latvia’s 

series is not affected by the history of Cyprus, Hungary, Latvia, Poland, Slovak 

Republic and Slovenia. Poland’s series is not affected by the history of Cyprus, 

Czech Republic, Hungary, Latvia, Slovak Republic and Slovenia. Slovak 

Republic’s series is not affected by the history of Cyprus, Czech Republic, 

Hungary, Latvia, Poland and Slovenia. Finally, Slovenia’s series is not affected 

COUNTRY RESULT COUNTRY PROBABILITY 

POLAND Does not Granger cause CYPRUS 0.7959 

POLAND Does not Granger cause CZECH REPUBLIC 0.5937 

POLAND Does not Granger cause HUNGARY 0.1984 

POLAND Does not Granger cause LATVIA 0.6059 

POLAND Does not Granger cause SLOVAK REPUBLIC 0.3829 

POLAND Does not Granger cause SLOVENIA 0.0530 

SLOVAK REPUBLIC Does not Granger cause CYPRUS 0.7109 

SLOVAK REPUBLIC Does not Granger cause CZECH REPUBLIC 0.8759 

SLOVAK REPUBLIC Does not Granger cause HUNGARY 0.2281 

SLOVAK REPUBLIC Does not Granger cause LATVIA 0.2566 

SLOVAK REPUBLIC Does not Granger cause POLAND 0.0878 

SLOVAK REPUBLIC Does not Granger cause SLOVENIA 0.3993 

SLOVENIA Does not Granger cause CYPRUS 0.4352 

SLOVENIA Does Granger cause CZECH REPUBLIC 0.0084 

SLOVENIA Does not Granger cause HUNGARY 0.4334 

SLOVENIA Does not Granger cause LATVIA 0.5157 

SLOVENIA Does not Granger cause POLAND 0.1843 

SLOVENIA Does not Granger cause SLOVAK REPUBLIC 0.7808 
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by the history of Cyprus, Hungary, Latvia, Poland, Slovak Republic and 

Slovenia. 

The results of this test for the 7 new and the 3 EMU countries are the 

following: 

Table 9 

Perwise Granger Causality test for the 7 new and the 3 EMU countries 

 

COUNTRY RESULT COUNTRY PROBABILITY 

CYPRUS Does not Granger cause CZECH REPUBLIC 0.4978 

CYPRUS Does Granger cause FRANCE 0.0015 

CYPRUS Does not Granger cause GERMANY 0.6709 

CYPRUS Does not Granger cause HUNGARY 0.0766 

CYPRUS Does not Granger cause LATVIA 0.2408 

CYPRUS Does not Granger cause NETHERLANDS 0.6224 

CYPRUS Does not Granger cause POLAND 0.2947 

CYPRUS Does not Granger cause SLOVAK REPUBLIC 0.9463 

CYPRUS Does not Granger cause SLOVENIA 0.1320 

CZECH REPUBLIC Does not Granger cause CYPRUS 0.3051 

CZECH REPUBLIC Does not Granger cause FRANCE 0.3161 

CZECH REPUBLIC Does not Granger cause GERMANY 0.1150 

CZECH REPUBLIC Does not Granger cause HUNGARY 0.2061 

CZECH REPUBLIC Does not Granger cause LATVIA 0.0747 

CZECH REPUBLIC Does Granger cause NETHERLANDS 0.0454 

CZECH REPUBLIC Does not Granger cause POLAND 0.5259 

CZECH REPUBLIC Does Granger cause SLOVAK REPUBLIC 0.0059 

CZECH REPUBLIC Does Granger cause SLOVENIA 0.0015 

FRANCE Does not Granger cause CYPRUS 0.4019 

FRANCE Does not Granger cause CZECH REPUBLIC 0.7057 

FRANCE Does not Granger cause GERMANY 0.3000 

FRANCE Does not Granger cause HUNGARY 0.1662 

FRANCE Does not Granger cause LATVIA 0.9327 

FRANCE Does not Granger cause NETHERLANDS 0.6535 
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FRANCE Does not Granger cause POLAND 0.7072 

FRANCE Does not Granger cause SLOVAK REPUBLIC 0.5923 

FRANCE Does not Granger cause SLOVENIA 0.2210 

GERMANY Does Granger cause CYPRUS 0.0002 

GERMANY Does Granger cause CZECH REPUBLIC 0.0069 

GERMANY  Does not Granger cause FRANCE 0.7893 

GERMANY Does not Granger cause HUNGARY 0.2396 

GERMANY Does not Granger cause LATVIA 0.0546 

GERMANY Does Granger cause NETHERLANDS 0.0001 

GERMANY Does Granger cause POLAND 0.0078 

GERMANY Does not Granger cause SLOVAK REPUBLIC 0.2151 

GERMANY Does not Granger cause SLOVENIA 0.1566 

HUNGARY Does not Granger cause CYPRUS 0.4476 

HUNGARY Does not Granger cause CZECH REPUBLIC 0.2212 

HUNGARY Does not Granger cause FRANCE 0.3421 

HUNGARY Does not Granger cause GERMANY 0.0693 

HUNGARY Does not Granger cause LATVIA 0.7173 

HUNGARY Does not Granger cause  NETHERLANDS  0.1734 

HUNGARY Does not Granger cause POLAND 0.0749 

HUNGARY Does not Granger cause SLOVAK REPUBLIC 0.2327 

HUNGARY Does not Granger cause SLOVENIA 0.1377 

LATVIA Does not Granger cause CYPRUS 0.4832 

LATVIA Does Granger cause CZECH REPUBLIC 0.0154 

LATVIA Does not Granger cause FRANCE 0.2863 

LATVIA Does not Granger cause GERMANY 0.8361 

LATVIA Does not Granger cause HUNGARY 0.4076 

LATVIA Does not Granger cause NETHERLANDS 0.3893 

LATVIA Does not Granger cause POLAND 0.9959 

LATVIA Does Granger cause SLOVAK REPUBLIC 0.0422 

LATVIA Does not Granger cause SLOVENIA 0.5433 

NETHERLANDS Does not Granger cause CYPRUS 0.5969 

NETHERLANDS Does not Granger cause CZECH REPUBLIC 0.6303 

NETHERLANDS Does not Granger cause FRANCE 0.6541 
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NETHERLANDS Does not Granger cause GERMANY 0.8827 

NETHERLANDS Does not Granger cause HUNGARY 0.3005 

NETHERLANDS Does not Granger cause LATVIA 0.4724 

NETHERLANDS Does not Granger cause POLAND 0.1139 

NETHERLANDS Does not Granger cause SLOVAK REPUBLIC 0.3919 

NETHERLANDS Does not Granger cause SLOVENIA 0.6573 

POLAND Does not Granger cause CYPRUS 0,8408 

POLAND Does not Granger cause CZECH REPUBLIC 0,7675 

POLAND Does not Granger cause FRANCE 0,5372 

POLAND Does not Granger cause GERMANY 0,5723 

POLAND Does not Granger cause HUNGARY 0,0962 

POLAND Does not Granger cause LATVIA 0,7310 

POLAND Does not Granger cause NETHERLANDS 0,1251 

POLAND Does not Granger cause SLOVAK REPUBLIC 0,5018 

POLAND Does Granger cause SLOVENIA 0,0483 

SLOVAK REPUBLIC Does not Granger cause CYPRUS 0,8869 

SLOVAK REPUBLIC Does not Granger cause CZECH REPUBLIC 0,9848 

SLOVAK REPUBLIC Does not Granger cause FRANCE 0,1327 

SLOVAK REPUBLIC Does not Granger cause GERMANY 0,1536 

SLOVAK REPUBLIC Does not Granger cause HUNGARY 0,2667 

SLOVAK REPUBLIC Does Granger cause LATVIA 0,0386 

SLOVAK REPUBLIC Does not Granger cause NETHERLANDS 0,2162 

SLOVAK REPUBLIC Does Granger cause POLAND 0,0329 

SLOVAK REPUBLIC Does not Granger cause SLOVENIA 0,7998 

SLOVENIA Does not Granger cause CYPRUS 0,2849 

SLOVENIA Does Granger cause CZECH REPUBLIC 0,0085 

SLOVENIA Does not Granger cause FRANCE 0,9001 

SLOVENIA Does Granger cause GERMANY 0,0200 

SLOVENIA Does not Granger cause HUNGARY 0,2373 

SLOVENIA Does not Granger cause LATVIA 0,1732 

SLOVENIA Does not Granger cause NETHERLANDS 0,7925 

SLOVENIA Does not Granger cause POLAND 0,0532 

SLOVENIA Does not Granger cause SLOVAK REPUBLIC 0,6576 
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From the above results as we can see, an alteration in the series of 

industrial production of Cyprus is not affected by the history of all the other 

countries except France. Czech’s series is not affected by the history of all the 

other countries except Netherlands, Slovak Republic and Slovenia. Germany’s 

series is not affected by the history of all the other countries except Cyprus, 

Czech, Netherlands and Poland. Hungary’s series is not affected by the history 

of all the other countries. Latvia’s series is not affected by the history of all the 

other countries except Czech and Slovak Republic. Netherlands’ series is not 

affected by the history of all the other countries. Poland’s series is not affected 

by the history of all the other countries except Slovenia. Slovakia’s series is not 

affected by the history of all the other countries except Latvia and Poland. 

Slovenia’s series is not affected by the history of all the other countries except 

Czech and Germany. 

Finally, we proceed in testing whether the cointegrating coefficients 

B(1,i) participate in the cointegrating equation. This is achieved through a 

hypothesis testing with null hypothesis H0: B(1,i)=0. From the above test we 

conduct the following results for the 7 new EU countries: 

Table 10 

Restrictions on B(1,i) for the 7 new EU countries 

 

COUNTRY CHI-SQUARE PROBABILITY RESULT 

CYPRUS 0.555195 0.456203 Doesn’t participate 

CZECH REPUBLIC 10,04098 0.001531 Participates 

HUNGARY 0.553083 0.457061 Doesn’t participate 

LATVIA 13.73000 0.000211 Participates 

POLAND 0.005968 0.938424 Doesn’t participate 

SLOVAK REPUBLIC 0.495098 0.481662 Doesn’t participate 

SLOVENIA 0.097684 0.754627 Doesn’t participate 
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From the above results, we conclude that only Czech Republic and 

Latvia participate in the cointegrating equation.  

For the 7 new and the 3 EMU countries we conduct the following 

results: 

 

Table 11 

Restrictions on B(1,i) for the 7 new and the 3 EMU countries 

 

COUNTRY CHI-SQUARE PROBABILITY RESULT 

CYPRUS 7.527113 0.006078 Participate 

CZECH REPUBLIC 3.400234 0.065187 Doesn’t participate 

FRANCE 1.538785 0.214799 Doesn’t participate 

GERMANY 15.09762 0.000102 Participate 

HUNGARY 6.283079 0.012190 Participate 

LATVIA 4.405046 0.035833 Participate 

NETHERLANDS 3.093923 0.078585 Doesn’t participate 

POLAND 0.609497 0.434977 Doesn’t participate 

SLOVAK REPUBLIC 0.344931 0.556997 Doesn’t participate 

SLOVENIA 0.010014 0.920289 Doesn’t participate 

 

From the above results, we conclude that only Cyprus, Germany, 

Hungary and Latvia participate in the cointegrating equation. 

At last, from the cointegration test for the 7 new EU countries trace test 

indicates two cointegrating vectors at the 5% level and therefore 5 common 

trends. 

For the 7 new and the 3 EMU countries trace indicates 4 cointegrating 

vectors at both 5% and 1% levels and therefore 6 common trends. 
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66..    CCOONNCCLLUUSSIIOONNSS  
 

In this paper we have presented cointegration analysis among the 10 

new EU countries alone, as well as in relation to 3 EMU countries. Cointegration 

is a necessary condition for co-movement of key variables in the long run and, 

thus for a successful future accession of the new countries into the EMU. The 

analysis was based on an aspect of real convergence, using as a proxy the 

industrial production series of those countries. We attempt to answer the 

question of whether there is convergence in output (industrial production) in 

these countries. We first appose a stochastic definition of convergence based 

on the theory of integrated time series. 

For the interpretation of the empirical results, we claim that there is 

“complete” convergence of government policies in a group of p countries, if we 

find that there exist r = p –1 cointegrating vectors and a single shared 

common stochastic trend in a set of variables such as industrial production. On 

the other hand, if 0 < r < p –1, then there is only “partial” convergence among 

the policies of the countries concerned. In this sense, convergence means that 

the countries’ policies are aligned enough, so that the relevant variables move 

towards a long run equilibrium and do not drift too far apart over time. Time 

series of industrial production of different countries can fail to converge only if 

the persistent parts of the time series are dinstinct. 

In the case of industrial production our analysis indicates no 

convergence among the 7 new countries, as 2 cointegrating vectors aren’t 

sufficient to conclude partial convergence, and only partial convergence among 

the 7 new and the 3 EMU countries.  

In the long run, as far as the 7 new countries are concerned, Cyprus, 

Hungary, Poland, Slovak Republic and Slovenia do not adjust towards the 

restoration of equilibrium when the latter is affected. On the contrary, only 
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Czech Republic and Latvia do so. Furthermore, we conclude that only Czech 

Republic and Latvia participate in the cointegrating equation.  

In the group of the 7 new and the 3 EMU countries Cyprus, Czech 

Republic, France, Hungary, Latvia, Netherlands, Poland, Slovak Republic and 

Slovenia do not adjust towards the restoration of equilibrium when the latter is 

affected. On the contrary, only Germany does so. Furthermore, Cyprus, 

Germany, Hungary and Latvia participate in the cointegrating equation. 

As there exist five common stochastic trends among the industrial 

production series of the 7 new EU countries, then these countries set their 

policies independently in the long run. In the group of the 7 new and 3 EMU 

countries there exist six common stochastic trends, consequently, there is only 

partial convergence of policies and some further adjustment in the policies of 

some countries may be required to successfully reach a long run equilibrium. 
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Cointegration among the 7 new EU countries 
 

Cointegration Test (Model 6)  
 
 
 

Date: 06/23/04   Time: 23:11 
Sample: 1993:01 2003:12 
Included observations: 128 
Series: CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
Lags interval: 1 to 1 

Data Trend: None None Linear Linear Quadratic 

Rank or No Intercept Intercept Intercept Intercept Intercept 
No. of CEs No Trend No Trend No Trend Trend Trend 

 Selected (5% level) Number of Cointegrating Relations by Model (columns)  

Trace 2 4 2 1 2 
Max-Eig 2 1 1 1 1 

 Log Likelihood by Rank (rows) and Model (columns)  

0  2005.124  2005.124  2020.350  2020.350  2022.404 
1  2030.865  2031.004  2044.232  2045.457  2046.841 
2  2049.359  2049.532  2059.587  2062.155  2063.484 
3  2063.150  2064.845  2074.322  2077.132  2078.411 
4  2070.905  2077.865  2083.962  2087.261  2088.537 
5  2076.364  2085.620  2089.201  2093.483  2094.558 
6  2078.934  2089.870  2092.410  2098.663  2098.900 
7  2079.016  2092.424  2092.424  2101.051  2101.051 

 Akaike Information Criteria by Rank (rows) and Model (columns)  

0 -30.56444 -30.56444 -30.69297 -30.69297 -30.61569 
1 -30.74789 -30.73444 -30.84738 -30.85090 -30.77876 
2 -30.81810 -30.78956 -30.86855 -30.87742 -30.82006 
3 -30.81484 -30.79445  -30.88003* -30.87707 -30.83454 
4 -30.71727 -30.76351 -30.81191 -30.80095 -30.77402 
5 -30.58381 -30.65031 -30.67502 -30.66379 -30.64934 
6 -30.40521 -30.48234 -30.50640 -30.51036 -30.49844 
7 -30.18775 -30.28787 -30.28787 -30.31330 -30.31330 

      

 Schwarz Criteria by Rank (rows) and Model (columns)  

0 -29.47265* -29.47265* -29.44520 -29.44520 -29.21195 
1 -29.34415 -29.30842 -29.28767 -29.26891 -29.06309 
2 -29.10243 -29.02933 -28.99690 -28.96121 -28.79245 
3 -28.78723 -28.69999 -28.69644 -28.62664 -28.49498 
4 -28.37771 -28.33483 -28.31639 -28.21630 -28.12252 
5 -27.93232 -27.88741 -27.86755 -27.74491 -27.68590 
6 -27.44178 -27.38521 -27.38699 -27.25727 -27.22307 
7 -26.91237 -26.85652 -26.85652 -26.72598 -26.72598 
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ESTIMATION 
VEC Model - (Model 3, lags 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Vector Error Correction Estimates 
 Date: 06/23/04   Time: 23:46 
 Sample(adjusted): 1993:03 2003:10 
 Included observations: 128 after adjusting endpoints 
 Standard errors in ( ) & t-statistics in [ ] 

Cointegrating Eq:  CointEq1       

CYP_LOG(-1)  1.000000       
        

CZ_LOG(-1)  2.321086       
  (0.48752)       
 [ 4.76102]       
        

HUN_LOG(-1) -0.286174       
  (0.28431)       
 [-1.00656]       
        

LAT_LOG(-1) -1.194195       
  (0.19535)       
 [-6.11322]       
        

POL_LOG(-1) -0.025112       
  (0.26550)       
 [-0.09459]       
        

SLVK_LOG(-1) -0.700512       
  (0.62481)       
 [-1.12115]       
        

SLVN_LOG(-1) -0.525462       
  (0.99856)       
 [-0.52622]       
        

C -2.726570       

Error Correction: D(CYP_LOG) D(CZ_LOG) D(HUN_LOG) D(LAT_LOG) D(POL_LOG) D(SLVK_LOG) D(SLVN_LOG) 

CointEq1 -0.013614 -0.124936  0.012023  0.108414 -0.015240 -0.029282 -0.009489 
  (0.01881)  (0.02136)  (0.01500)  (0.04571)  (0.03345)  (0.01840)  (0.00659) 
 [-0.72385] [-5.84845] [ 0.80130] [ 2.37171] [-0.45553] [-1.59165] [-1.44042] 
        

D(CYP_LOG(-1)) -0.579214  0.110310 -0.024707 -0.089558 -0.033667 -0.026537  0.020005 
  (0.07319)  (0.08313)  (0.05839)  (0.17789)  (0.13019)  (0.07159)  (0.02564) 
 [-7.91351] [ 1.32692] [-0.42313] [-0.50345] [-0.25860] [-0.37066] [ 0.78036] 
        

D(CZ_LOG(-1))  0.005129 -0.424715 -0.040184 -0.342505 -0.052241 -0.008407  0.050795 
  (0.05505)  (0.06253)  (0.04392)  (0.13381)  (0.09793)  (0.05385)  (0.01928) 
 [ 0.09317] [-6.79206] [-0.91490] [-2.55973] [-0.53347] [-0.15611] [ 2.63425] 
        

D(HUN_LOG(-1)) -0.200191 -0.079532 -0.368229  0.105151 -0.241954 -0.124711 -0.029024 
  (0.10577)  (0.12014)  (0.08438)  (0.25707)  (0.18814)  (0.10346)  (0.03705) 
 [-1.89263] [-0.66201] [-4.36370] [ 0.40903] [-1.28602] [-1.20537] [-0.78343] 
        

D(LAT_LOG(-1)) -0.036864  0.002881 -0.010807 -0.281631  0.032817  0.039681  0.008140 
  (0.03576)  (0.04062)  (0.02853)  (0.08691)  (0.06361)  (0.03498)  (0.01252) 
 [-1.03090] [ 0.07094] [-0.37881] [-3.24050] [ 0.51595] [ 1.13445] [ 0.64995] 
        

D(POL_LOG(-1))  0.057845  0.010915  0.063650 -0.003619 -0.256946 -0.092420 -0.025730 
  (0.05534)  (0.06285)  (0.04415)  (0.13450)  (0.09843)  (0.05413)  (0.01938) 
 [ 1.04529] [ 0.17366] [ 1.44174] [-0.02691] [-2.61040] [-1.70737] [-1.32751] 
        

D(SLVK_LOG(-1)) -0.026940  0.185543 -0.094037 -0.307528 -0.152662 -0.318564  0.009586 
  (0.09835)  (0.11171)  (0.07847)  (0.23904)  (0.17494)  (0.09621)  (0.03445) 
 [-0.27391] [ 1.66092] [-1.19846] [-1.28651] [-0.87263] [-3.31127] [ 0.27828] 
        

D(SLVN_LOG(-1))  0.212359 -1.386517  0.336260  0.087700 -0.895427 -0.214490  0.145849 
  (0.26016)  (0.29549)  (0.20755)  (0.63229)  (0.46275)  (0.25448)  (0.09112) 
 [ 0.81626] [-4.69231] [ 1.62015] [ 0.13870] [-1.93503] [-0.84287] [ 1.60065] 
        

C  0.002331  0.006914  0.008855  0.008532  0.008025  0.006429  0.001773 
  (0.00241)  (0.00274)  (0.00193)  (0.00587)  (0.00430)  (0.00236)  (0.00085) 
 [ 0.96550] [ 2.52102] [ 4.59657] [ 1.45375] [ 1.86839] [ 2.72163] [ 2.09664] 

 R-squared  0.391870  0.539822  0.178869  0.228987  0.166436  0.218732  0.115686 
 Adj. R-squared  0.350988  0.508885  0.123667  0.177154  0.110398  0.166210  0.056236 
 Sum sq. resids  0.076770  0.099036  0.048861  0.453466  0.242885  0.073452  0.009417 
 S.E. equation  0.025399  0.028848  0.020263  0.061730  0.045178  0.024844  0.008896 
 F-statistic  9.585249  17.44942  3.240260  4.417789  2.970059  4.164559  1.945946 
 Log likelihood  293.1900  276.8913  322.1081  179.5192  219.4764  296.0173  427.4784 
 Akaike AIC -4.440469 -4.185802 -4.892314 -2.664362 -3.288694 -4.484646 -6.538724 
 Schwarz SC -4.239936 -3.985268 -4.691780 -2.463829 -3.088161 -4.284112 -6.338191 
 Mean dependent  0.000813  0.002759  0.006559  0.005363  0.003127  0.003823  0.002069 
 S.D. dependent  0.031528  0.041165  0.021646  0.068052  0.047899  0.027208  0.009157 

 Determinant Residual Covariance  5.28E-23      
 Log Likelihood  2044.232      
 Log Likelihood (d.f. adjusted)  2011.570      
 Akaike Information Criteria -30.33703      
 Schwarz Criteria -28.77733      
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VEC Model Equation 

 
 
Estimation Proc: 
=============================== 
EC(C,1) 1 1 CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 
VAR Model: 
=============================== 
D(CYP_LOG) = A(1,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(1,1)*D(CYP_LOG(-1)) + C(1,2)*D(CZ_LOG(-1)) + C(1,3)*D(HUN_LOG(-1)) + C(1,4)*D(LAT_LOG(-1)) + C(1,5)*D(POL_LOG(-1)) + 
C(1,6)*D(SLVK_LOG(-1)) + C(1,7)*D(SLVN_LOG(-1)) + C(1,8) 
 
D(CZ_LOG) = A(2,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(2,1)*D(CYP_LOG(-1)) + C(2,2)*D(CZ_LOG(-1)) + C(2,3)*D(HUN_LOG(-1)) + C(2,4)*D(LAT_LOG(-1)) + C(2,5)*D(POL_LOG(-1)) + 
C(2,6)*D(SLVK_LOG(-1)) + C(2,7)*D(SLVN_LOG(-1)) + C(2,8) 
 
D(HUN_LOG) = A(3,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(3,1)*D(CYP_LOG(-1)) + C(3,2)*D(CZ_LOG(-1)) + C(3,3)*D(HUN_LOG(-1)) + C(3,4)*D(LAT_LOG(-1)) + C(3,5)*D(POL_LOG(-1)) + 
C(3,6)*D(SLVK_LOG(-1)) + C(3,7)*D(SLVN_LOG(-1)) + C(3,8) 
 
D(LAT_LOG) = A(4,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(4,1)*D(CYP_LOG(-1)) + C(4,2)*D(CZ_LOG(-1)) + C(4,3)*D(HUN_LOG(-1)) + C(4,4)*D(LAT_LOG(-1)) + C(4,5)*D(POL_LOG(-1)) + 
C(4,6)*D(SLVK_LOG(-1)) + C(4,7)*D(SLVN_LOG(-1)) + C(4,8) 
 
D(POL_LOG) = A(5,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(5,1)*D(CYP_LOG(-1)) + C(5,2)*D(CZ_LOG(-1)) + C(5,3)*D(HUN_LOG(-1)) + C(5,4)*D(LAT_LOG(-1)) + C(5,5)*D(POL_LOG(-1)) + 
C(5,6)*D(SLVK_LOG(-1)) + C(5,7)*D(SLVN_LOG(-1)) + C(5,8) 
 
D(SLVK_LOG) = A(6,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(6,1)*D(CYP_LOG(-1)) + C(6,2)*D(CZ_LOG(-1)) + C(6,3)*D(HUN_LOG(-1)) + C(6,4)*D(LAT_LOG(-1)) + C(6,5)*D(POL_LOG(-1)) + 
C(6,6)*D(SLVK_LOG(-1)) + C(6,7)*D(SLVN_LOG(-1)) + C(6,8) 
 
D(SLVN_LOG) = A(7,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*HUN_LOG(-1) + B(1,4)*LAT_LOG(-1) + B(1,5)*POL_LOG(-1) + B(1,6)*SLVK_LOG(-1) + 
B(1,7)*SLVN_LOG(-1) + B(1,8)) + C(7,1)*D(CYP_LOG(-1)) + C(7,2)*D(CZ_LOG(-1)) + C(7,3)*D(HUN_LOG(-1)) + C(7,4)*D(LAT_LOG(-1)) + C(7,5)*D(POL_LOG(-1)) + 
C(7,6)*D(SLVK_LOG(-1)) + C(7,7)*D(SLVN_LOG(-1)) + C(7,8) 
 
VAR Model - Substituted Coefficients: 
=============================== 
D(CYP_LOG) =  - 0.01361429947*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) - 0.5792136578*D(CYP_LOG(-1)) + 0.005129487695*D(CZ_LOG(-1)) - 
0.2001910889*D(HUN_LOG(-1)) - 0.03686446625*D(LAT_LOG(-1)) + 0.05784496821*D(POL_LOG(-1)) - 0.02694015717*D(SLVK_LOG(-1)) + 0.2123585534*D(SLVN_LOG(-
1)) + 0.002331495397 
 
D(CZ_LOG) =  - 0.1249355243*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) + 0.1103096646*D(CYP_LOG(-1)) - 0.4247153171*D(CZ_LOG(-1)) - 
0.07953179898*D(HUN_LOG(-1)) + 0.002881465074*D(LAT_LOG(-1)) + 0.01091514685*D(POL_LOG(-1)) + 0.1855432011*D(SLVK_LOG(-1)) - 
1.386517009*D(SLVN_LOG(-1)) + 0.006914458925 
 
D(HUN_LOG) = 0.01202335816*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) - 0.02470714471*D(CYP_LOG(-1)) - 0.0401838243*D(CZ_LOG(-1)) - 
0.3682286438*D(HUN_LOG(-1)) - 0.01080673193*D(LAT_LOG(-1)) + 0.0636503532*D(POL_LOG(-1)) - 0.09403729246*D(SLVK_LOG(-1)) + 0.3362604201*D(SLVN_LOG(-
1)) + 0.008855190782 
 
D(LAT_LOG) = 0.1084136008*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) - 0.08955820252*D(CYP_LOG(-1)) - 0.3425053969*D(CZ_LOG(-1)) + 
0.105150634*D(HUN_LOG(-1)) - 0.2816309094*D(LAT_LOG(-1)) - 0.003618716708*D(POL_LOG(-1)) - 0.3075278045*D(SLVK_LOG(-1)) + 0.0876999262*D(SLVN_LOG(-1)) 
+ 0.008531943931 
 
D(POL_LOG) =  - 0.01523950179*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) - 0.03366708733*D(CYP_LOG(-1)) - 0.05224103104*D(CZ_LOG(-1)) - 
0.2419541071*D(HUN_LOG(-1)) + 0.03281718483*D(LAT_LOG(-1)) - 0.2569459732*D(POL_LOG(-1)) - 0.1526615015*D(SLVK_LOG(-1)) - 0.8954268331*D(SLVN_LOG(-1)) 
+ 0.008025143753 
 
D(SLVK_LOG) =  - 0.0292818619*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-1) - 
0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) - 0.02653695115*D(CYP_LOG(-1)) - 0.008406744688*D(CZ_LOG(-1)) - 
0.1247110819*D(HUN_LOG(-1)) + 0.03968116019*D(LAT_LOG(-1)) - 0.09242004049*D(POL_LOG(-1)) - 0.3185644933*D(SLVK_LOG(-1)) - 0.2144901123*D(SLVN_LOG(-
1)) + 0.006428613025 
 
D(SLVN_LOG) =  - 0.009488609926*( CYP_LOG(-1) + 2.321086061*CZ_LOG(-1) - 0.2861742391*HUN_LOG(-1) - 1.194195353*LAT_LOG(-1) - 0.02511231361*POL_LOG(-
1) - 0.7005122995*SLVK_LOG(-1) - 0.5254621077*SLVN_LOG(-1) - 2.726570022 ) + 0.02000488766*D(CYP_LOG(-1)) + 0.05079514822*D(CZ_LOG(-1)) - 
0.02902358531*D(HUN_LOG(-1)) + 0.008140284843*D(LAT_LOG(-1)) - 0.02572984529*D(POL_LOG(-1)) + 0.009586110021*D(SLVK_LOG(-1)) + 
0.1458494183*D(SLVN_LOG(-1)) + 0.001773266423 
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Cointegration Test 
 

Date: 06/24/04   Time: 00:36 
Sample(adjusted): 1993:03 2003:10 
Included observations: 128 after adjusting endpoints 
Trend assumption: Linear deterministic trend 
Series: CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
Lags interval (in first differences): 1 to 1 

        
Unrestricted Cointegration Rank Test 

        

Hypothesized  Trace 5 Percent 1 Percent    
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value    

        

None **  0.311444  144.1478 124.24 133.57    
At most 1 *  0.213311  96.38340  94.15 103.18    
At most 2  0.205649  65.67335  68.52  76.07    
At most 3  0.139838  36.20392  47.21  54.46    
At most 4  0.078597  16.92264  29.68  35.65    
At most 5  0.048895  6.444840  15.41  20.04    
At most 6  0.000219  0.028080   3.76   6.65    

        

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Trace test indicates 2 cointegrating equation(s) at the 5% level 
 Trace test indicates 1 cointegrating equation(s) at the 1% level 

        
        

Hypothesized  Max-Eigen 5 Percent 1 Percent    
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value    

        

None *  0.311444  47.76436  45.28  51.57    
At most 1  0.213311  30.71005  39.37  45.10    
At most 2  0.205649  29.46943  33.46  38.77    
At most 3  0.139838  19.28128  27.07  32.24    
At most 4  0.078597  10.47780  20.97  25.52    
At most 5  0.048895  6.416761  14.07  18.63    
At most 6  0.000219  0.028080   3.76   6.65    

        

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Max-eigenvalue test indicates 1 cointegrating equation(s) at the 5% level 
 Max-eigenvalue test indicates no cointegration at the 1% level 

        
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  

CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
-8.377758 -19.44550  2.397499  10.00468  0.210385  5.868722  4.402194  
-6.568741 -9.380477  4.754130  4.225706  2.887595  22.84917 -52.14268  
 44.86974 -10.07921 -8.640808  2.742841 -0.392084  23.21919 -18.30798  
-22.62622 -15.72665 -0.072105 -2.047556 -11.05183  16.74715  22.01805  
-3.470202 -6.110114 -10.69807 -2.556655  9.924453  3.777564  25.58312  
-9.110243  6.455740 -10.87250  0.469120  5.946981  10.77799  6.074615  
-1.069761 -2.652223  1.816799 -3.052663  2.653852  3.563887  3.281841  

        
 Unrestricted Adjustment Coefficients (alpha):  

D(CYP_LOG)  0.001625  0.001457 -0.010136  0.001971  0.001881  0.000677  2.22E-05 
D(CZ_LOG)  0.014913  0.001167  0.002711  0.002002  0.003278 -0.001761 -4.93E-05 

D(HUN_LOG) -0.001435  5.83E-05  0.000202 -0.001802  0.002293  0.000564 -0.000248 
D(LAT_LOG) -0.012941  0.005071  0.002124  0.000644  0.007687 -0.010530 -4.09E-05 
D(POL_LOG)  0.001819  0.003148 -0.001448  0.006135 -0.006242 -0.003592 -0.000420 
D(SLVK_LOG)  0.003495 -0.005462 -0.004090 -0.002721 -0.002527 -0.002810 -8.11E-05 
D(SLVN_LOG)  0.001133  0.002733 -0.000837 -0.001745 -0.000162 -0.000698 -7.12E-06 

        
1 Cointegrating Equation(s):  Log likelihood  2044.232     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 1.000000  2.321086 -0.286174 -1.194195 -0.025112 -0.700512 -0.525462  

  (0.48752)  (0.28431)  (0.19535)  (0.26550)  (0.62481)  (0.99856)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.013614       

  (0.01881)       
D(CZ_LOG) -0.124936       

  (0.02136)       
D(HUN_LOG)  0.012023       

  (0.01500)       
D(LAT_LOG)  0.108414       

  (0.04571)       
D(POL_LOG) -0.015240       

  (0.03345)       
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D(SLVK_LOG) -0.029282       
  (0.01840)       

D(SLVN_LOG) -0.009489       
  (0.00659)       

        
2 Cointegrating Equation(s):  Log likelihood  2059.587     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 1.000000  0.000000 -1.423474  0.237617 -1.102394 -7.920676  21.47184  

   (1.29936)  (0.73347)  (1.18043)  (2.05093)  (4.54728)  
 0.000000  1.000000  0.489986 -0.616872  0.464128  3.110683 -9.477160  

   (0.61349)  (0.34631)  (0.55734)  (0.96834)  (2.14699)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.023187 -0.045270      

  (0.02386)  (0.04838)      
D(CZ_LOG) -0.132601 -0.300932      

  (0.02712)  (0.05500)      
D(HUN_LOG)  0.011641  0.027361      

  (0.01907)  (0.03867)      
D(LAT_LOG)  0.075106  0.204072      

  (0.05788)  (0.11737)      
D(POL_LOG) -0.035916 -0.064900      

  (0.04240)  (0.08599)      
D(SLVK_LOG)  0.006595 -0.016732      

  (0.02276)  (0.04616)      
D(SLVN_LOG) -0.027444 -0.047665      

  (0.00793)  (0.01609)      

        
3 Cointegrating Equation(s):  Log likelihood  2074.322     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 1.000000  0.000000  0.000000 -0.096826  0.169227  1.778428 -4.014142  

    (0.12953)  (0.18879)  (0.34302)  (0.71537)  
 0.000000  1.000000  0.000000 -0.501750  0.026413 -0.227927 -0.704413  

    (0.07302)  (0.10643)  (0.19338)  (0.40331)  
 0.000000  0.000000  1.000000 -0.234948  0.893321  6.813683 -17.90407  

    (0.58475)  (0.85230)  (1.54857)  (3.22961)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.477975  0.056890  0.098405     

  (0.09404)  (0.04859)  (0.02070)     
D(CZ_LOG) -0.010954 -0.328258  0.017875     

  (0.11692)  (0.06041)  (0.02573)     
D(HUN_LOG)  0.020682  0.025330 -0.004905     

  (0.08259)  (0.04267)  (0.01818)     
D(LAT_LOG)  0.170413  0.182663 -0.025273     

  (0.25054)  (0.12945)  (0.05514)     
D(POL_LOG) -0.100882 -0.050306  0.031837     

  (0.18357)  (0.09484)  (0.04040)     
D(SLVK_LOG) -0.176903  0.024488  0.017751     

  (0.09707)  (0.05016)  (0.02136)     
D(SLVN_LOG) -0.064981 -0.039233  0.022939     

  (0.03419)  (0.01766)  (0.00752)     

        
4 Cointegrating Equation(s):  Log likelihood  2083.962     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 1.000000  0.000000  0.000000  0.000000  0.222981  1.348807 -3.367030  

     (0.13917)  (0.27071)  (0.51682)  
 0.000000  1.000000  0.000000  0.000000  0.304965 -2.454216  2.648914  

     (0.19285)  (0.37514)  (0.71621)  
 0.000000  0.000000  1.000000  0.000000  1.023756  5.771207 -16.33385  

     (0.70609)  (1.37350)  (2.62222)  
 0.000000  0.000000  0.000000  1.000000  0.555161 -4.437044  6.683258  

     (0.48624)  (0.94584)  (1.80575)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.522580  0.025886  0.098263 -0.009421    

  (0.10434)  (0.05799)  (0.02062)  (0.02313)    
D(CZ_LOG) -0.056262 -0.359750  0.017731  0.157464    

  (0.12990)  (0.07219)  (0.02567)  (0.02880)    
D(HUN_LOG)  0.061458  0.053671 -0.004775 -0.009869    

  (0.09160)  (0.05091)  (0.01810)  (0.02031)    
D(LAT_LOG)  0.155850  0.172541 -0.025319 -0.103532    

  (0.27906)  (0.15509)  (0.05514)  (0.06186)    
D(POL_LOG) -0.239691 -0.146787  0.031395  0.014968    

  (0.20242)  (0.11250)  (0.04000)  (0.04487)    
D(SLVK_LOG) -0.115328  0.067287  0.017947  0.006244    

  (0.10737)  (0.05967)  (0.02121)  (0.02380)    
D(SLVN_LOG) -0.025496 -0.011789  0.023065  0.024161    

  (0.03718)  (0.02067)  (0.00735)  (0.00824)    

        
5 Cointegrating Equation(s):  Log likelihood  2089.201     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
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 1.000000  0.000000  0.000000  0.000000  0.000000  0.956567 -2.226157  
      (0.18746)  (0.34186)  

 0.000000  1.000000  0.000000  0.000000  0.000000 -2.990674  4.209259  
      (0.47685)  (0.86962)  

 0.000000  0.000000  1.000000  0.000000  0.000000  3.970340 -11.09584  
      (0.93797)  (1.71054)  

 0.000000  0.000000  0.000000  1.000000  0.000000 -5.413617  9.523723  
      (1.14263)  (2.08377)  

 0.000000  0.000000  0.000000  0.000000  1.000000  1.759079 -5.116468  
      (0.59693)  (1.08860)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.529106  0.014396  0.078145 -0.014229  0.005400   

  (0.10420)  (0.05909)  (0.02985)  (0.02362)  (0.03064)   
D(CZ_LOG) -0.067637 -0.379778 -0.017337  0.149084  0.015845   

  (0.12927)  (0.07331)  (0.03703)  (0.02930)  (0.03801)   
D(HUN_LOG)  0.053500  0.039659 -0.029309 -0.015732  0.042464   

  (0.09117)  (0.05170)  (0.02611)  (0.02067)  (0.02681)   
D(LAT_LOG)  0.129176  0.125576 -0.107550 -0.123184  0.080258   

  (0.27733)  (0.15727)  (0.07944)  (0.06287)  (0.08155)   
D(POL_LOG) -0.218031 -0.108650  0.098168  0.030925 -0.119706   

  (0.20073)  (0.11383)  (0.05750)  (0.04550)  (0.05902)   
D(SLVK_LOG) -0.106558  0.082727  0.044982  0.012705 -0.008436   

  (0.10695)  (0.06065)  (0.03063)  (0.02424)  (0.03145)   
D(SLVN_LOG) -0.024933 -0.010797  0.024801  0.024576  0.026135   

  (0.03726)  (0.02113)  (0.01067)  (0.00845)  (0.01096)   

        
6 Cointegrating Equation(s):  Log likelihood  2092.410     

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG HUN_LOG LAT_LOG POL_LOG SLVK_LOG SLVN_LOG  
 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000 -0.468451  

       (0.07900)  
 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000 -1.286152  

       (0.26743)  
 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000 -3.800273  

       (0.31901)  
 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 -0.423884  

       (0.50906)  
 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000 -1.884133  

       (0.30540)  
 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000 -1.837516  

       (0.11288)  
        

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.535276  0.018768  0.070782 -0.013911  0.009427 -0.145089  

  (0.10577)  (0.06049)  (0.03707)  (0.02363)  (0.03290)  (0.07852)  
D(CZ_LOG) -0.051590 -0.391149  0.001814  0.148258  0.005370  0.204065  

  (0.13101)  (0.07492)  (0.04591)  (0.02927)  (0.04075)  (0.09726)  
D(HUN_LOG)  0.048362  0.043299 -0.035440 -0.015468  0.045817 -0.017852  

  (0.09255)  (0.05293)  (0.03243)  (0.02067)  (0.02879)  (0.06871)  
D(LAT_LOG)  0.225107  0.057597  0.006937 -0.128123  0.017636  0.015558  

  (0.27708)  (0.15846)  (0.09710)  (0.06190)  (0.08620)  (0.20570)  
D(POL_LOG) -0.185303 -0.131842  0.137227  0.029240 -0.141071  0.089425  

  (0.20312)  (0.11616)  (0.07118)  (0.04538)  (0.06319)  (0.15079)  
D(SLVK_LOG) -0.080962  0.064589  0.075530  0.011387 -0.025144 -0.284645  

  (0.10777)  (0.06163)  (0.03777)  (0.02408)  (0.03353)  (0.08001)  
D(SLVN_LOG) -0.018575 -0.015303  0.032389  0.024248  0.021985  0.012319  

  (0.03769)  (0.02156)  (0.01321)  (0.00842)  (0.01173)  (0.02798)  
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CCooiinntteeggrraattiioonn  aammoonngg  tthhee  77  nneeww  EEUU  ccoouunnttrriieess  aanndd  tthhee  33  EEMMUU  
ccoouunnttrriieess  

 
 

Cointegration Test (Model 6) Choise of the appropriate model for the 
cointegration test 

 
 
 

Date: 06/24/04   Time: 20:48 
Sample: 1993:01 2003:12 
Included observations: 128 
Series: CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG 
SLVN_LOG  
Lags interval: 1 to 1 

Data Trend: None None Linear Linear Quadratic 

Rank or No Intercept Intercept Intercept Intercept Intercept 
No. of CEs No Trend No Trend No Trend Trend Trend 

 Selected (5% 
level) Number of 

Cointegrating 
Relations by 

Model (columns) 

     

Trace 5 6 5 4 5 
Max-Eig 4 2 2 2 2 

 Log Likelihood 
by Rank (rows) 

and Model 
(columns) 

     

0  3171.309  3171.309  3188.127  3188.127  3191.565 
1  3209.529  3211.065  3227.155  3230.893  3234.267 
2  3238.741  3245.923  3261.337  3265.077  3268.244 
3  3264.042  3271.411  3286.539  3290.949  3294.103 
4  3284.923  3293.546  3305.929  3316.012  3319.050 
5  3302.958  3312.907  3322.962  3333.127  3335.818 
6  3316.173  3329.593  3335.705  3348.734  3350.765 
7  3323.770  3342.190  3348.011  3361.119  3363.141 
8  3328.212  3349.203  3353.040  3367.520  3369.181 
9  3329.576  3353.586  3354.432  3371.846  3372.178 
10  3329.754  3354.621  3354.621  3373.020  3373.020 

 Akaike 
Information 

Criteria by Rank 
(rows) and Model 

(columns) 

     

0 -47.98921 -47.98921 -48.09573 -48.09573 -47.99321 
1 -48.27389 -48.28226 -48.39305 -48.43582 -48.34793 
2 -48.41783 -48.49880 -48.61464 -48.64183 -48.56632 
3 -48.50066 -48.56893 -48.69592 -48.71795 -48.65786 
4 -48.51443 -48.58665 -48.68639  -48.78144* -48.73516 
5 -48.48373 -48.56105 -48.64003 -48.72074 -48.68466 
6 -48.37770 -48.49365 -48.52664 -48.63647 -48.60570 
7 -48.18390 -48.36234 -48.40642 -48.50186 -48.48657 
8 -47.94081 -48.14380 -48.17251 -48.27376 -48.26845 
9 -47.64962 -47.88415 -47.88175 -48.01322 -48.00278 
10 -47.33990 -47.57220 -47.57220 -47.70343 -47.70343 

 Schwarz Criteria 
by Rank (rows) 

and Model 
(columns) 

     

0 -45.76106* -45.76106* -45.64476 -45.64476 -45.31943 
1 -45.60011 -45.58620 -45.49645 -45.51695 -45.22852 
2 -45.29843 -45.33483 -45.27242 -45.25505 -45.00128 
3 -44.93562 -44.93705 -44.90806 -44.86325 -44.64719 
4 -44.50376 -44.48686 -44.45291 -44.45883 -44.27886 
5 -44.02743 -43.99335 -43.96092 -43.93022 -43.78274 
6 -43.47577 -43.45803 -43.40190 -43.37804 -43.25815 
7 -42.83635 -42.85881 -42.83605 -42.77552 -42.69338 
8 -42.14762 -42.17237 -42.15650 -42.07950 -42.02963 
9 -41.41081 -41.44480 -41.42012 -41.35106 -41.31833 
10 -40.65546 -40.66494 -40.66494 -40.57335 -40.57335 
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ESTIMATION 
VEC Model - (Model 4, lags 1) 

 
 
Vector Error Correction Estimates 
 Date: 06/24/04   Time: 22:20 
 Sample(adjusted): 1993:03 2003:10 
 Included observations: 128 after adjusting endpoints 
 Standard errors in ( ) & t-statistics in [ ] 

Cointegrating Eq:  CointEq1          

CYP_LOG(-1)  1.000000          
           

CZ_LOG(-1)  0.534066          
  (0.16926)          
 [ 3.15525]          
           

FR_LOG(-1) -1.398932          
  (0.59626)          
 [-2.34619]          
           

GER_LOG(-1)  4.765009          
  (0.55853)          
 [ 8.53140]          
           

HUN_LOG(-1) -1.247450          
  (0.24252)          
 [-5.14370]          
           

LAT_LOG(-1) -0.247049          
  (0.06033)          
 [-4.09471]          
           

NETH_LOG(-1) -1.099323          
  (0.34398)          
 [-3.19587]          
           

POL_LOG(-1) -0.081101          
  (0.07685)          
 [-1.05535]          
           

SLVK_LOG(-1) -0.270521          
  (0.23753)          
 [-1.13890]          
           

SLVN_LOG(-1) -0.040760          
  (0.29630)          
 [-0.13756]          
           

@TREND(93:01)  0.005090          
  (0.00128)          
 [ 3.98173]          
           

C -8.646295          

Error Correction: D(CYP_LOG) D(CZ_LOG) D(FR_LOG) D(GER_LOG) D(HUN_LOG) D(LAT_LOG) D(NETH_LOG) D(POL_LOG) D(SLVK_LOG) D(SLVN_LOG) 

CointEq1 -0.060252 -0.060713  0.031829 -0.162816  0.060085  0.226107  0.040186 -0.105613 -0.014459 -0.015887 
  (0.04629)  (0.06084)  (0.01844)  (0.01975)  (0.03762)  (0.11720)  (0.03587)  (0.08518)  (0.04646)  (0.01674) 
 [-1.30158] [-0.99799] [ 1.72602] [-8.24489] [ 1.59703] [ 1.92920] [ 1.12022] [-1.23990] [-0.31123] [-0.94882] 
           

D(CYP_LOG(-1)) -0.557419  0.100754  0.024964  0.120211 -0.046147 -0.132721 -0.030639  0.027637 -0.010668  0.028917 
  (0.07476)  (0.09825)  (0.02978)  (0.03189)  (0.06076)  (0.18929)  (0.05794)  (0.13757)  (0.07503)  (0.02704) 
 [-7.45584] [ 1.02548] [ 0.83822] [ 3.76921] [-0.75946] [-0.70117] [-0.52883] [ 0.20090] [-0.14218] [ 1.06936] 
           

D(CZ_LOG(-1))  0.036618 -0.507777 -0.008127  0.062279 -0.053706 -0.331299 -0.020144 -0.029383 -0.001030  0.051434 
  (0.05401)  (0.07098)  (0.02152)  (0.02304)  (0.04390)  (0.13675)  (0.04186)  (0.09939)  (0.05420)  (0.01954) 
 [ 0.67795] [-7.15359] [-0.37770] [ 2.70296] [-1.22343] [-2.42265] [-0.48125] [-0.29565] [-0.01900] [ 2.63280] 
           

D(FR_LOG(-1)) -0.673211  0.279202 -0.410240 -0.024154  0.163602  0.572069  0.073571  0.240585 -0.319771  0.009624 
  (0.21191)  (0.27848)  (0.08441)  (0.09040)  (0.17222)  (0.53651)  (0.16422)  (0.38992)  (0.21266)  (0.07665) 
 [-3.17691] [ 1.00258] [-4.85983] [-0.26720] [ 0.94993] [ 1.06627] [ 0.44801] [ 0.61701] [-1.50369] [ 0.12557] 
           

D(GER_LOG(-1))  0.083197  0.405647  0.080853 -0.039562 -0.289083  0.102579 -0.022387  0.203443  0.280422  0.164804 
  (0.19583)  (0.25735)  (0.07801)  (0.08354)  (0.15915)  (0.49580)  (0.15175)  (0.36033)  (0.19652)  (0.07083) 
 [ 0.42485] [ 1.57624] [ 1.03646] [-0.47358] [-1.81637] [ 0.20690] [-0.14752] [ 0.56460] [ 1.42694] [ 2.32678] 
           

D(HUN_LOG(-1)) -0.191653 -0.179804 -0.059691 -0.054296 -0.330483  0.226926 -0.086833 -0.331296 -0.120620 -0.046259 
  (0.10822)  (0.14222)  (0.04311)  (0.04617)  (0.08795)  (0.27400)  (0.08386)  (0.19913)  (0.10860)  (0.03914) 
 [-1.77095] [-1.26425] [-1.38460] [-1.17611] [-3.75742] [ 0.82821] [-1.03540] [-1.66371] [-1.11064] [-1.18179] 
           

D(LAT_LOG(-1)) -0.041899  0.083689 -0.001202 -0.029287 -0.010514 -0.270082 -0.019894  0.022601  0.074149  0.017598 
  (0.03572)  (0.04695)  (0.01423)  (0.01524)  (0.02903)  (0.09045)  (0.02768)  (0.06573)  (0.03585)  (0.01292) 
 [-1.17287] [ 1.78260] [-0.08445] [-1.92180] [-0.36212] [-2.98610] [-0.71860] [ 0.34384] [ 2.06829] [ 1.36195] 
           

D(NETH_LOG(-1))  0.056452 -0.301356  0.020500 -0.185600 -0.126830  0.249839 -0.382036 -0.323507 -0.142249 -0.010904 
  (0.11462)  (0.15063)  (0.04566)  (0.04890)  (0.09316)  (0.29020)  (0.08883)  (0.21091)  (0.11503)  (0.04146) 
 [ 0.49251] [-2.00060] [ 0.44897] [-3.79579] [-1.36146] [ 0.86092] [-4.30099] [-1.53387] [-1.23665] [-0.26301] 
           

D(POL_LOG(-1))  0.057512 -0.045752  0.008212 -0.062291  0.079454  0.000712  0.067242 -0.276273 -0.117530 -0.038373 
  (0.05488)  (0.07213)  (0.02186)  (0.02341)  (0.04461)  (0.13896)  (0.04253)  (0.10099)  (0.05508)  (0.01985) 
 [ 1.04787] [-0.63431] [ 0.37562] [-2.66052] [ 1.78121] [ 0.00512] [ 1.58096] [-2.73564] [-2.13384] [-1.93300] 
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D(SLVK_LOG(-1)) -0.006296  0.338103  0.019927  0.049396 -0.090603 -0.480378 -0.061977 -0.115461 -0.279811  0.014977 
  (0.09342)  (0.12277)  (0.03721)  (0.03985)  (0.07592)  (0.23651)  (0.07239)  (0.17189)  (0.09375)  (0.03379) 
 [-0.06739] [ 2.75405] [ 0.53550] [ 1.23953] [-1.19336] [-2.03107] [-0.85612] [-0.67171] [-2.98474] [ 0.44327] 
           

D(SLVN_LOG(-1))  0.373285 -1.033036  0.120814 -0.149757  0.298959 -0.381299 -0.085198 -0.900203 -0.063074  0.163858 
  (0.24780)  (0.32565)  (0.09871)  (0.10571)  (0.20140)  (0.62739)  (0.19203)  (0.45596)  (0.24868)  (0.08963) 
 [ 1.50639] [-3.17219] [ 1.22390] [-1.41669] [ 1.48443] [-0.60776] [-0.44367] [-1.97428] [-0.25364] [ 1.82821] 
           

C  0.002659  0.005928  0.002115  0.002026  0.008820  0.007938  0.002359  0.008226  0.006164  0.001655 
  (0.00234)  (0.00307)  (0.00093)  (0.00100)  (0.00190)  (0.00592)  (0.00181)  (0.00431)  (0.00235)  (0.00085) 
 [ 1.13629] [ 1.92796] [ 2.26960] [ 2.02974] [ 4.63815] [ 1.33989] [ 1.30109] [ 1.91075] [ 2.62528] [ 1.95504] 

 R-squared  0.446264  0.439029  0.295239  0.504664  0.224022  0.238126  0.234268  0.187745  0.251206  0.141273 
 Adj. R-squared  0.393755  0.385834  0.228408  0.457693  0.150437  0.165879  0.161655  0.110721  0.180199  0.059842 
 Sum sq. resids  0.069903  0.120728  0.011093  0.012721  0.046174  0.448091  0.041979  0.236676  0.070399  0.009145 
 S.E. equation  0.024548  0.032261  0.009779  0.010472  0.019951  0.062152  0.019023  0.045170  0.024635  0.008879 
 F-statistic  8.498736  8.253127  4.417712  10.74406  3.044428  3.296006  3.226272  2.437486  3.537794  1.734886 
 Log likelihood  299.1868  264.2158  416.9996  408.2347  325.7278  180.2823  331.8226  221.1338  298.7344  429.3575 
 Akaike AIC -4.487294 -3.940872 -6.328119 -6.191167 -4.901997 -2.629411 -4.997228 -3.267716 -4.480225 -6.521211 
 Schwarz SC -4.219916 -3.673494 -6.060741 -5.923789 -4.634619 -2.362034 -4.729850 -3.000338 -4.212847 -6.253833 
 Mean dependent  0.000813  0.002759  0.001486  0.001281  0.006559  0.005363  0.001113  0.003127  0.003823  0.002069 
 S.D. dependent  0.031528  0.041165  0.011133  0.014220  0.021646  0.068052  0.020777  0.047899  0.027208  0.009157 

 Determinant Residual Covariance  1.51E-34         
 Log Likelihood  3230.893         
 Log Likelihood (d.f. adjusted)  3167.891         
 Akaike Information Criteria -47.45142         
 Schwarz Criteria -44.53255         
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VEC Model Equation 

 
 
Estimation Proc: 
=============================== 
EC(D,1) 1 1 CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG  
 
VAR Model: 
=============================== 
D(CYP_LOG) = A(1,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(1,1)*D(CYP_LOG(-1)) + C(1,2)*D(CZ_LOG(-1)) + C(1,3)*D(FR_LOG(-1)) + C(1,4)*D(GER_LOG(-1)) + C(1,5)*D(HUN_LOG(-1)) + 
C(1,6)*D(LAT_LOG(-1)) + C(1,7)*D(NETH_LOG(-1)) + C(1,8)*D(POL_LOG(-1)) + C(1,9)*D(SLVK_LOG(-1)) + C(1,10)*D(SLVN_LOG(-1)) + C(1,11) 
 
D(CZ_LOG) = A(2,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(2,1)*D(CYP_LOG(-1)) + C(2,2)*D(CZ_LOG(-1)) + C(2,3)*D(FR_LOG(-1)) + C(2,4)*D(GER_LOG(-1)) + C(2,5)*D(HUN_LOG(-1)) + 
C(2,6)*D(LAT_LOG(-1)) + C(2,7)*D(NETH_LOG(-1)) + C(2,8)*D(POL_LOG(-1)) + C(2,9)*D(SLVK_LOG(-1)) + C(2,10)*D(SLVN_LOG(-1)) + C(2,11) 
 
D(FR_LOG) = A(3,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(3,1)*D(CYP_LOG(-1)) + C(3,2)*D(CZ_LOG(-1)) + C(3,3)*D(FR_LOG(-1)) + C(3,4)*D(GER_LOG(-1)) + C(3,5)*D(HUN_LOG(-1)) + 
C(3,6)*D(LAT_LOG(-1)) + C(3,7)*D(NETH_LOG(-1)) + C(3,8)*D(POL_LOG(-1)) + C(3,9)*D(SLVK_LOG(-1)) + C(3,10)*D(SLVN_LOG(-1)) + C(3,11) 
 
D(GER_LOG) = A(4,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(4,1)*D(CYP_LOG(-1)) + C(4,2)*D(CZ_LOG(-1)) + C(4,3)*D(FR_LOG(-1)) + C(4,4)*D(GER_LOG(-1)) + C(4,5)*D(HUN_LOG(-1)) + 
C(4,6)*D(LAT_LOG(-1)) + C(4,7)*D(NETH_LOG(-1)) + C(4,8)*D(POL_LOG(-1)) + C(4,9)*D(SLVK_LOG(-1)) + C(4,10)*D(SLVN_LOG(-1)) + C(4,11) 
 
D(HUN_LOG) = A(5,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(5,1)*D(CYP_LOG(-1)) + C(5,2)*D(CZ_LOG(-1)) + C(5,3)*D(FR_LOG(-1)) + C(5,4)*D(GER_LOG(-1)) + C(5,5)*D(HUN_LOG(-1)) + 
C(5,6)*D(LAT_LOG(-1)) + C(5,7)*D(NETH_LOG(-1)) + C(5,8)*D(POL_LOG(-1)) + C(5,9)*D(SLVK_LOG(-1)) + C(5,10)*D(SLVN_LOG(-1)) + C(5,11) 
 
D(LAT_LOG) = A(6,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(6,1)*D(CYP_LOG(-1)) + C(6,2)*D(CZ_LOG(-1)) + C(6,3)*D(FR_LOG(-1)) + C(6,4)*D(GER_LOG(-1)) + C(6,5)*D(HUN_LOG(-1)) + 
C(6,6)*D(LAT_LOG(-1)) + C(6,7)*D(NETH_LOG(-1)) + C(6,8)*D(POL_LOG(-1)) + C(6,9)*D(SLVK_LOG(-1)) + C(6,10)*D(SLVN_LOG(-1)) + C(6,11) 
 
D(NETH_LOG) = A(7,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(7,1)*D(CYP_LOG(-1)) + C(7,2)*D(CZ_LOG(-1)) + C(7,3)*D(FR_LOG(-1)) + C(7,4)*D(GER_LOG(-1)) + C(7,5)*D(HUN_LOG(-1)) + 
C(7,6)*D(LAT_LOG(-1)) + C(7,7)*D(NETH_LOG(-1)) + C(7,8)*D(POL_LOG(-1)) + C(7,9)*D(SLVK_LOG(-1)) + C(7,10)*D(SLVN_LOG(-1)) + C(7,11) 
 
D(POL_LOG) = A(8,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(8,1)*D(CYP_LOG(-1)) + C(8,2)*D(CZ_LOG(-1)) + C(8,3)*D(FR_LOG(-1)) + C(8,4)*D(GER_LOG(-1)) + C(8,5)*D(HUN_LOG(-1)) + 
C(8,6)*D(LAT_LOG(-1)) + C(8,7)*D(NETH_LOG(-1)) + C(8,8)*D(POL_LOG(-1)) + C(8,9)*D(SLVK_LOG(-1)) + C(8,10)*D(SLVN_LOG(-1)) + C(8,11) 
 
D(SLVK_LOG) = A(9,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(9,1)*D(CYP_LOG(-1)) + C(9,2)*D(CZ_LOG(-1)) + C(9,3)*D(FR_LOG(-1)) + C(9,4)*D(GER_LOG(-1)) + C(9,5)*D(HUN_LOG(-1)) + 
C(9,6)*D(LAT_LOG(-1)) + C(9,7)*D(NETH_LOG(-1)) + C(9,8)*D(POL_LOG(-1)) + C(9,9)*D(SLVK_LOG(-1)) + C(9,10)*D(SLVN_LOG(-1)) + C(9,11) 
 
D(SLVN_LOG) = A(10,1)*(B(1,1)*CYP_LOG(-1) + B(1,2)*CZ_LOG(-1) + B(1,3)*FR_LOG(-1) + B(1,4)*GER_LOG(-1) + B(1,5)*HUN_LOG(-1) + 
B(1,6)*LAT_LOG(-1) + B(1,7)*NETH_LOG(-1) + B(1,8)*POL_LOG(-1) + B(1,9)*SLVK_LOG(-1) + B(1,10)*SLVN_LOG(-1) + B(1,11)*(@TREND(93:01)) + 
B(1,12)) + C(10,1)*D(CYP_LOG(-1)) + C(10,2)*D(CZ_LOG(-1)) + C(10,3)*D(FR_LOG(-1)) + C(10,4)*D(GER_LOG(-1)) + C(10,5)*D(HUN_LOG(-1)) + 
C(10,6)*D(LAT_LOG(-1)) + C(10,7)*D(NETH_LOG(-1)) + C(10,8)*D(POL_LOG(-1)) + C(10,9)*D(SLVK_LOG(-1)) + C(10,10)*D(SLVN_LOG(-1)) + 
C(10,11) 
 
VAR Model - Substituted Coefficients: 
=============================== 
D(CYP_LOG) =  - 0.0602520948*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) - 0.5574188659*D(CYP_LOG(-1)) + 
0.03661790171*D(CZ_LOG(-1)) - 0.6732105642*D(FR_LOG(-1)) + 0.08319664046*D(GER_LOG(-1)) - 0.1916532181*D(HUN_LOG(-1)) - 
0.04189938024*D(LAT_LOG(-1)) + 0.05645229858*D(NETH_LOG(-1)) + 0.0575121711*D(POL_LOG(-1)) - 0.006295536086*D(SLVK_LOG(-1)) + 
0.3732848775*D(SLVN_LOG(-1)) + 0.002658706971 
 
D(CZ_LOG) =  - 0.06071310279*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) + 0.100754449*D(CYP_LOG(-1)) - 
0.507777034*D(CZ_LOG(-1)) + 0.2792016243*D(FR_LOG(-1)) + 0.4056465544*D(GER_LOG(-1)) - 0.179803776*D(HUN_LOG(-1)) + 
0.08368857256*D(LAT_LOG(-1)) - 0.301356163*D(NETH_LOG(-1)) - 0.04575189915*D(POL_LOG(-1)) + 0.3381031074*D(SLVK_LOG(-1)) - 
1.033036297*D(SLVN_LOG(-1)) + 0.005928323822 
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D(FR_LOG) = 0.0318286312*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) + 0.02496390456*D(CYP_LOG(-1)) - 
0.008126731354*D(CZ_LOG(-1)) - 0.4102397882*D(FR_LOG(-1)) + 0.08085276107*D(GER_LOG(-1)) - 0.05969062204*D(HUN_LOG(-1)) - 
0.001201795307*D(LAT_LOG(-1)) + 0.02049988987*D(NETH_LOG(-1)) + 0.0082123212*D(POL_LOG(-1)) + 0.01992743283*D(SLVK_LOG(-1)) + 
0.1208143214*D(SLVN_LOG(-1)) + 0.002115433765 
 
D(GER_LOG) =  - 0.1628156598*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) + 0.1202109855*D(CYP_LOG(-1)) + 
0.06227916097*D(CZ_LOG(-1)) - 0.02415378096*D(FR_LOG(-1)) - 0.03956183044*D(GER_LOG(-1)) - 0.05429591772*D(HUN_LOG(-1)) - 
0.02928700257*D(LAT_LOG(-1)) - 0.1855997999*D(NETH_LOG(-1)) - 0.06229135945*D(POL_LOG(-1)) + 0.04939585557*D(SLVK_LOG(-1)) - 
0.1497567119*D(SLVN_LOG(-1)) + 0.002025955951 
 
D(HUN_LOG) = 0.0600848055*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) - 0.04614664539*D(CYP_LOG(-1)) - 
0.05370596657*D(CZ_LOG(-1)) + 0.1636017583*D(FR_LOG(-1)) - 0.2890834456*D(GER_LOG(-1)) - 0.330483039*D(HUN_LOG(-1)) - 
0.01051368944*D(LAT_LOG(-1)) - 0.1268297677*D(NETH_LOG(-1)) + 0.07945377971*D(POL_LOG(-1)) - 0.09060298727*D(SLVK_LOG(-1)) + 
0.2989585861*D(SLVN_LOG(-1)) + 0.008820105464 
 
D(LAT_LOG) = 0.2261072901*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) - 0.1327214864*D(CYP_LOG(-1)) - 
0.331299235*D(CZ_LOG(-1)) + 0.5720694117*D(FR_LOG(-1)) + 0.1025790553*D(GER_LOG(-1)) + 0.2269261836*D(HUN_LOG(-1)) - 
0.2700818387*D(LAT_LOG(-1)) + 0.2498394989*D(NETH_LOG(-1)) + 0.0007120257116*D(POL_LOG(-1)) - 0.480378074*D(SLVK_LOG(-1)) - 
0.3812994244*D(SLVN_LOG(-1)) + 0.007937519282 
 
D(NETH_LOG) = 0.0401861393*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) - 0.03063874871*D(CYP_LOG(-1)) - 
0.0201437051*D(CZ_LOG(-1)) + 0.07357055153*D(FR_LOG(-1)) - 0.02238670677*D(GER_LOG(-1)) - 0.08683343429*D(HUN_LOG(-1)) - 
0.01989372194*D(LAT_LOG(-1)) - 0.3820359946*D(NETH_LOG(-1)) + 0.06724232377*D(POL_LOG(-1)) - 0.06197651532*D(SLVK_LOG(-1)) - 
0.08519797918*D(SLVN_LOG(-1)) + 0.002359164804 
 
D(POL_LOG) =  - 0.105612834*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) + 0.02763703903*D(CYP_LOG(-1)) - 
0.02938341297*D(CZ_LOG(-1)) + 0.2405849251*D(FR_LOG(-1)) + 0.2034434871*D(GER_LOG(-1)) - 0.3312958975*D(HUN_LOG(-1)) + 
0.02260146542*D(LAT_LOG(-1)) - 0.3235069881*D(NETH_LOG(-1)) - 0.2762731611*D(POL_LOG(-1)) - 0.11546092*D(SLVK_LOG(-1)) - 
0.9002032999*D(SLVN_LOG(-1)) + 0.008226434014 
 
D(SLVK_LOG) =  - 0.01445850829*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) - 0.01066757556*D(CYP_LOG(-1)) - 
0.001030115344*D(CZ_LOG(-1)) - 0.3197706747*D(FR_LOG(-1)) + 0.2804218367*D(GER_LOG(-1)) - 0.1206202067*D(HUN_LOG(-1)) + 
0.07414876614*D(LAT_LOG(-1)) - 0.1422491088*D(NETH_LOG(-1)) - 0.1175302324*D(POL_LOG(-1)) - 0.2798114327*D(SLVK_LOG(-1)) - 
0.06307432799*D(SLVN_LOG(-1)) + 0.006164403115 
 
D(SLVN_LOG) =  - 0.01588654315*( CYP_LOG(-1) + 0.5340655177*CZ_LOG(-1) - 1.398932186*FR_LOG(-1) + 4.765009291*GER_LOG(-1) - 
1.247450333*HUN_LOG(-1) - 0.2470494004*LAT_LOG(-1) - 1.09932254*NETH_LOG(-1) - 0.08110127686*POL_LOG(-1) - 0.2705205013*SLVK_LOG(-
1) - 0.04076024806*SLVN_LOG(-1) + 0.005090408717*(@TREND(93:01)) - 8.646295183 ) + 0.02891673136*D(CYP_LOG(-1)) + 
0.05143443655*D(CZ_LOG(-1)) + 0.009624229061*D(FR_LOG(-1)) + 0.1648036278*D(GER_LOG(-1)) - 0.04625854829*D(HUN_LOG(-1)) + 
0.01759785907*D(LAT_LOG(-1)) - 0.01090363922*D(NETH_LOG(-1)) - 0.03837297003*D(POL_LOG(-1)) + 0.01497716313*D(SLVK_LOG(-1)) + 
0.1638583681*D(SLVN_LOG(-1)) + 0.001654536546 
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Cointegration Test 
 

Date: 06/24/04   Time: 22:42 
Sample(adjusted): 1993:03 2003:10 
Included observations: 128 after adjusting endpoints 
Trend assumption: Linear deterministic trend (restricted) 
Series: CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG  
Lags interval (in first differences): 1 to 1 

           
Unrestricted Cointegration Rank Test 
           

Hypothesized  Trace 5 Percent 1 Percent       
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value       

           

None **  0.487381  369.7861 263.42 279.07       
At most 1 **  0.413823  284.2536 222.21 234.41       
At most 2 **  0.332518  215.8846 182.82 196.08       
At most 3 **  0.324037  164.1414 146.76 158.49       
At most 4  0.234652  114.0144 114.90 124.75       
At most 5  0.216401  79.78416  87.31  96.58       
At most 6  0.175937  48.57031  62.99  70.05       
At most 7  0.095183  23.80128  42.44  48.45       
At most 8  0.065360  10.99835  25.32  30.45       
At most 9  0.018164  2.346334  12.25  16.26       

           

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Trace test indicates 4 cointegrating equation(s) at both 5% and 1% levels 

           
           

Hypothesized  Max-Eigen 5 Percent 1 Percent       
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value       

           

None **  0.487381  85.53246  66.23  73.73       
At most 1 **  0.413823  68.36905  61.29  67.88       
At most 2  0.332518  51.74316  55.50  62.46       

At most 3 *  0.324037  50.12698  49.42  54.71       
At most 4  0.234652  34.23028  43.97  49.51       
At most 5  0.216401  31.21385  37.52  42.36       
At most 6  0.175937  24.76903  31.46  36.65       
At most 7  0.095183  12.80293  25.54  30.34       
At most 8  0.065360  8.652016  18.96  23.65       
At most 9  0.018164  2.346334  12.25  16.26       

           

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Max-eigenvalue test indicates 2 cointegrating equation(s) at both 5% and 1% levels 

           
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  

CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 21.33475  11.39416 -29.84587  101.6603 -26.61405 -5.270738 -23.45378 -1.730276 -5.771488 -0.869610  0.108603 
 0.544213 -11.82110  74.19337 -34.49159 -26.78546 -7.036473  26.32507  4.075726  34.37835 -4.054850 -0.002829 
 28.13268 -27.22834  33.98621  27.03055 -35.32905  7.451590 -12.61135  4.727734  18.24551 -12.81933  0.153481 
 10.05901 -10.60136  78.41992 -38.62220  5.725177  4.727105 -66.88633 -4.393618  19.77429 -15.00577 -0.067821 
 3.711746  5.647078 -34.24915  33.61888  10.12266  2.707357 -1.649674  4.160519  9.561548 -58.53926 -0.021151 
-18.74637 -10.75955 -39.63711  22.57805  15.47945  2.259525  14.66490 -9.400851  24.58427 -5.104768 -0.092312 
-40.68519 -5.128057  27.58447  20.74500 -9.684209 -0.084387 -12.43510  3.691893  2.104889  13.31177  0.007588 
-3.762791 -11.79869 -10.57661  10.52920 -9.738712 -3.011601 -5.111529 -6.867056 -13.13885  14.88301  0.160605 
-0.704811  0.012204  22.18746  1.763125 -10.74509  1.752298 -6.282010 -5.197162 -4.498602 -19.61367  0.121443 
 3.222301 -2.719141  12.67868  6.478004  9.475291 -1.484596  4.972499 -2.206888 -2.268515 -10.48314 -0.049634 

           
 Unrestricted Adjustment Coefficients (alpha):  

D(CYP_LOG) -0.002824 -0.002302 -0.004058  1.34E-05  0.000513 -0.000315  0.008944  0.001045 -0.000459 -0.000284 
D(CZ_LOG) -0.002846 -0.005928  0.012945 -0.003290 -0.001511  0.005652  0.002771  0.002173 -0.001903  0.000340 
D(FR_LOG)  0.001492 -0.002608  0.001019 -0.002117  0.001835 -0.000934 -0.000508  0.000662 -0.000176 -0.000687 

D(GER_LOG) -0.007631 -0.000283  0.000518 -0.000603 -6.54E-05 -0.002396 -0.000871  0.000210  0.000320 -0.000238 
D(HUN_LOG)  0.002816  0.005337  0.005167 -0.001876 -7.27E-05 -0.004732  0.001935  0.001753  0.001475 -0.000195 
D(LAT_LOG)  0.010598  0.006670 -0.002442 -0.002776  0.008401 -0.003202 -0.002691  0.012508 -0.006272  0.003297 

D(NETH_LOG)  0.001884 -0.005562  0.002298  0.007510  0.003137 -0.001552  0.000538  0.000420 -0.000245 -0.000193 
D(POL_LOG) -0.004950 -0.003311 -0.000569 -0.000771  6.96E-05  0.003862 -0.002739  0.009116  0.007215 -0.000482 

D(SLVK_LOG) -0.000678 -0.009473 -0.001225 -0.001786 -0.004027 -0.003514 -0.000721  0.001815  0.002065  0.001274 
D(SLVN_LOG) -0.000745 -0.001157  0.000719 -0.001437  0.002987 -0.000133  0.000608  3.92E-05  0.000509  0.000531 

           
1 Cointegrating Equation(s):  Log likelihood  3230.893        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.534066 -1.398932  4.765009 -1.247450 -0.247049 -1.099323 -0.081101 -0.270521 -0.040760  0.005090 

  (0.16926)  (0.59626)  (0.55853)  (0.24252)  (0.06033)  (0.34398)  (0.07685)  (0.23753)  (0.29630)  (0.00128) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.060252          

  (0.04629)          
D(CZ_LOG) -0.060713          

  (0.06084)          
D(FR_LOG)  0.031829          

  (0.01844)          
D(GER_LOG) -0.162816          

  (0.01975)          
D(HUN_LOG)  0.060085          

  (0.03762)          
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D(LAT_LOG)  0.226107          
  (0.11720)          

D(NETH_LOG)  0.040186          
  (0.03587)          

D(POL_LOG) -0.105613          
  (0.08518)          

D(SLVK_LOG) -0.014459          
  (0.04646)          

D(SLVN_LOG) -0.015887          
  (0.01674)          

           
2 Cointegrating Equation(s):  Log likelihood  3265.077        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  1.906182  3.129762 -2.398616 -0.551393  0.087858  0.100563  1.251879 -0.218580  0.004844 

   (0.73354)  (0.79836)  (0.32079)  (0.08210)  (0.49972)  (0.11235)  (0.27535)  (0.43388)  (0.00181) 
 0.000000  1.000000 -6.188594  3.061884  2.155476  0.569862 -2.222911 -0.340154 -2.850586  0.332955  0.000462 

   (1.02423)  (1.11473)  (0.44791)  (0.11464)  (0.69774)  (0.15687)  (0.38446)  (0.60581)  (0.00252) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.061505 -0.004964         

  (0.04608)  (0.03545)         
D(CZ_LOG) -0.063939  0.037652         

  (0.05971)  (0.04594)         
D(FR_LOG)  0.030409  0.047825         

  (0.01771)  (0.01362)         
D(GER_LOG) -0.162970 -0.083607         

  (0.01975)  (0.01519)         
D(HUN_LOG)  0.062989 -0.031001         

  (0.03612)  (0.02779)         
D(LAT_LOG)  0.229737  0.041906         

  (0.11649)  (0.08962)         
D(NETH_LOG)  0.037159  0.087207         

  (0.03415)  (0.02627)         
D(POL_LOG) -0.107415 -0.017265         

  (0.08495)  (0.06536)         
D(SLVK_LOG) -0.019614  0.104254         

  (0.04251)  (0.03270)         
D(SLVN_LOG) -0.016516  0.005196         

  (0.01659)  (0.01276)         

           
3 Cointegrating Equation(s):  Log likelihood  3290.949        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  3.356221 -1.478270 -0.161533 -0.678174  0.025963  0.293545 -0.194308  0.005146 

    (0.36720)  (0.17103)  (0.04417)  (0.25694)  (0.05972)  (0.14496)  (0.23709)  (0.00097) 
 0.000000  1.000000  0.000000  2.326667 -0.832512 -0.695854  0.264079 -0.097958  0.260731  0.254153 -0.000518 

    (0.71065)  (0.33100)  (0.08548)  (0.49727)  (0.11559)  (0.28054)  (0.45885)  (0.00188) 
 0.000000  0.000000  1.000000 -0.118802 -0.482822 -0.204524  0.401867  0.039136  0.502750 -0.012733 -0.000158 

    (0.23157)  (0.10786)  (0.02785)  (0.16204)  (0.03767)  (0.09142)  (0.14952)  (0.00061) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.175667  0.105528 -0.224435        

  (0.07508)  (0.06760)  (0.18474)        
D(CZ_LOG)  0.300228 -0.314809  0.085047        

  (0.08922)  (0.08033)  (0.21954)        
D(FR_LOG)  0.059087  0.020069 -0.203360        

  (0.02911)  (0.02621)  (0.07163)        
D(GER_LOG) -0.148403 -0.097706  0.224360        

  (0.03263)  (0.02938)  (0.08029)        
D(HUN_LOG)  0.208340 -0.171679  0.487512        

  (0.05731)  (0.05160)  (0.14103)        
D(LAT_LOG)  0.161042  0.108393  0.095591        

  (0.19258)  (0.17340)  (0.47390)        
D(NETH_LOG)  0.101798  0.024646 -0.390766        

  (0.05600)  (0.05042)  (0.13781)        
D(POL_LOG) -0.123421 -0.001773 -0.117242        

  (0.14055)  (0.12655)  (0.34586)        
D(SLVK_LOG) -0.054068  0.137601 -0.724196        

  (0.07022)  (0.06323)  (0.17280)        
D(SLVN_LOG)  0.003710 -0.014380 -0.039202        

  (0.02735)  (0.02463)  (0.06730)        

           
4 Cointegrating Equation(s):  Log likelihood  3316.012        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  2.859642  1.150684 -8.437591 -0.739872 -1.440495 -1.012234 -0.004700 

     (0.56248)  (0.19366)  (1.07757)  (0.26505)  (0.64192)  (1.03983)  (0.00387) 
 0.000000  1.000000  0.000000  0.000000  2.174703  0.213828 -5.115061 -0.628866 -0.941376 -0.312866 -0.007344 

     (0.37276)  (0.12834)  (0.71411)  (0.17565)  (0.42541)  (0.68910)  (0.00256) 
 0.000000  0.000000  1.000000  0.000000 -0.636373 -0.250973  0.676531  0.066245  0.564131  0.016219  0.000190 

     (0.09545)  (0.03286)  (0.18287)  (0.04498)  (0.10894)  (0.17646)  (0.00066) 
 0.000000  0.000000  0.000000  1.000000 -1.292499 -0.390981  2.311951  0.228184  0.516665  0.243705  0.002934 

     (0.17782)  (0.06122)  (0.34066)  (0.08379)  (0.20294)  (0.32873)  (0.00122) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.175533  0.105387 -0.223386 -0.317902       

  (0.07806)  (0.07126)  (0.24885)  (0.24928)       
D(CZ_LOG)  0.267129 -0.279925 -0.172993  0.392157       

  (0.09209)  (0.08406)  (0.29356)  (0.29406)       
D(FR_LOG)  0.037790  0.042515 -0.369394  0.350936       

  (0.02939)  (0.02683)  (0.09370)  (0.09386)       
D(GER_LOG) -0.154472 -0.091310  0.177049 -0.728756       
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  (0.03386)  (0.03091)  (0.10795)  (0.10813)       
D(HUN_LOG)  0.189466 -0.151787  0.340370  0.314346       

  (0.05925)  (0.05408)  (0.18887)  (0.18919)       
D(LAT_LOG)  0.133122  0.137819 -0.122077  0.888534       

  (0.20002)  (0.18259)  (0.63764)  (0.63872)       
D(NETH_LOG)  0.177345 -0.054974  0.198192  0.155359       

  (0.05230)  (0.04774)  (0.16672)  (0.16700)       
D(POL_LOG) -0.131173  0.006397 -0.177678 -0.374661       

  (0.14612)  (0.13338)  (0.46581)  (0.46660)       
D(SLVK_LOG) -0.072035  0.156536 -0.864263  0.293707       

  (0.07276)  (0.06642)  (0.23196)  (0.23236)       
D(SLVN_LOG) -0.010744  0.000853 -0.151886  0.039147       

  (0.02801)  (0.02557)  (0.08930)  (0.08945)       

           
5 Cointegrating Equation(s):  Log likelihood  3333.127        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  0.000000  0.578577 -9.724728 -2.367032 -8.577896  18.50937  0.012792 

      (0.60271)  (3.42443)  (0.88772)  (2.31464)  (3.34261)  (0.00983) 
 0.000000  1.000000  0.000000  0.000000  0.000000 -0.221248 -6.093904 -1.866290 -6.369232  14.53294  0.005959 

      (0.44852)  (2.54840)  (0.66062)  (1.72252)  (2.48752)  (0.00732) 
 0.000000  0.000000  1.000000  0.000000  0.000000 -0.123659  0.962965  0.428346  2.152459 -4.328039 -0.003703 

      (0.13340)  (0.75793)  (0.19648)  (0.51230)  (0.73982)  (0.00218) 
 0.000000  0.000000  0.000000  1.000000  0.000000 -0.132400  2.893710  0.963626  3.742622 -8.579654 -0.004973 

      (0.26511)  (1.50630)  (0.39048)  (1.01814)  (1.47031)  (0.00432) 
 0.000000  0.000000  0.000000  0.000000  1.000000  0.200062  0.450104  0.569008  2.495907 -6.826589 -0.006117 

      (0.19903)  (1.13085)  (0.29315)  (0.76437)  (1.10384)  (0.00325) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.173627  0.108286 -0.240969 -0.300643  0.285465      

  (0.07844)  (0.07224)  (0.25922)  (0.25926)  (0.11266)      
D(CZ_LOG)  0.261521 -0.288457 -0.121246  0.341362 -0.256931      

  (0.09241)  (0.08511)  (0.30539)  (0.30543)  (0.13272)      
D(FR_LOG)  0.044601  0.052878 -0.432244  0.412630  0.000586      

  (0.02887)  (0.02659)  (0.09539)  (0.09541)  (0.04146)      
D(GER_LOG) -0.154715 -0.091679  0.179289 -0.730956  0.188279      

  (0.03403)  (0.03135)  (0.11247)  (0.11249)  (0.04888)      
D(HUN_LOG)  0.189196 -0.152198  0.342861  0.311902 -0.411918      

  (0.05955)  (0.05484)  (0.19679)  (0.19681)  (0.08552)      
D(LAT_LOG)  0.164304  0.185260 -0.409800  1.170962 -0.305308      

  (0.19897)  (0.18325)  (0.65753)  (0.65762)  (0.28576)      
D(NETH_LOG)  0.188989 -0.037258  0.090745  0.260828  0.092422      

  (0.05145)  (0.04739)  (0.17004)  (0.17006)  (0.07390)      
D(POL_LOG) -0.130915  0.006790 -0.180063 -0.372319  0.236826      

  (0.14686)  (0.13526)  (0.48534)  (0.48540)  (0.21093)      
D(SLVK_LOG) -0.086980  0.133798 -0.726359  0.158340  0.264046      

  (0.07182)  (0.06615)  (0.23735)  (0.23738)  (0.10315)      
D(SLVN_LOG)  0.000341  0.017719 -0.254175  0.139554  0.047421      

  (0.02623)  (0.02416)  (0.08668)  (0.08669)  (0.03767)      

           
6 Cointegrating Equation(s):  Log likelihood  3348.734        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  17.33445  6.483461  15.97421 -44.86042 -0.014720 

       (7.58300)  (2.01577)  (5.38723)  (7.61008)  (0.02258) 
 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000 -16.44136 -5.250727 -15.75798  38.76560  0.016480 

       (6.49577)  (1.72675)  (4.61482)  (6.51897)  (0.01934) 
 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000 -4.820373 -1.463263 -3.095044  9.215937  0.002178 

       (1.61455)  (0.42919)  (1.14703)  (1.62032)  (0.00481) 
 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 -3.298444 -1.061698 -1.875819  5.921725  0.001323 

       (1.07389)  (0.28547)  (0.76293)  (1.07772)  (0.00320) 
 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  9.806726  3.629364  10.98562 -28.73882 -0.015630 

       (4.75773)  (1.26473)  (3.38005)  (4.77471)  (0.01417) 
 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000 -46.76850 -15.29700 -42.43532  109.5269  0.047551 

       (18.6017)  (4.94482)  (13.2153)  (18.6681)  (0.05539) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.167724  0.111674 -0.228486 -0.307753  0.280591  0.001588     

  (0.08797)  (0.07577)  (0.27255)  (0.26364)  (0.11735)  (0.02751)     
D(CZ_LOG)  0.155568 -0.349269 -0.345271  0.468972 -0.169442  0.146296     

  (0.10135)  (0.08729)  (0.31398)  (0.30372)  (0.13519)  (0.03170)     
D(FR_LOG)  0.062119  0.062932 -0.395205  0.391532 -0.013878  0.010931     

  (0.03218)  (0.02771)  (0.09969)  (0.09643)  (0.04292)  (0.01006)     
D(GER_LOG) -0.109797 -0.065899  0.274262 -0.785054  0.151189  0.037631     

  (0.03705)  (0.03191)  (0.11477)  (0.11102)  (0.04942)  (0.01159)     
D(HUN_LOG)  0.277902 -0.101285  0.530419  0.205065 -0.485165 -0.033657     

  (0.06427)  (0.05535)  (0.19910)  (0.19259)  (0.08573)  (0.02010)     
D(LAT_LOG)  0.224327  0.219710 -0.282887  1.098671 -0.354871 -0.118602     

  (0.22283)  (0.19192)  (0.69033)  (0.66777)  (0.29725)  (0.06969)     
D(NETH_LOG)  0.218088 -0.020557  0.152271  0.225782  0.068395  0.086816     

  (0.05740)  (0.04944)  (0.17784)  (0.17203)  (0.07657)  (0.01795)     
D(POL_LOG) -0.203314 -0.034764 -0.333143 -0.285122  0.296608  0.050421     

  (0.16406)  (0.14130)  (0.50825)  (0.49164)  (0.21884)  (0.05131)     
D(SLVK_LOG) -0.021103  0.171609 -0.587069  0.078998  0.209649  0.033814     

  (0.07942)  (0.06840)  (0.24604)  (0.23799)  (0.10594)  (0.02484)     
D(SLVN_LOG)  0.002839  0.019152 -0.248894  0.136546  0.045359  0.018417     

  (0.02942)  (0.02534)  (0.09113)  (0.08815)  (0.03924)  (0.00920)     

           
7 Cointegrating Equation(s):  Log likelihood  3361.119        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.003349  0.614232 -1.392106 -0.000450 

        (0.07093)  (0.17938)  (0.24777)  (0.00070) 
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 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.895521 -1.189368 -2.463166  0.002945 
        (0.20775)  (0.52536)  (0.72568)  (0.00206) 

 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.338730  1.176266 -2.871752 -0.001791 
        (0.12316)  (0.31145)  (0.43020)  (0.00122) 

 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.171354  1.046916 -2.349535 -0.001392 
        (0.09696)  (0.24520)  (0.33869)  (0.00096) 

 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 -0.036669  2.295929 -4.147229 -0.007557 
        (0.17640)  (0.44608)  (0.61617)  (0.00175) 

 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  2.186396 -0.993975 -7.750913  0.009051 
        (0.49291)  (1.24648)  (1.72176)  (0.00488) 

 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.373828  0.886095 -2.507625 -0.000823 
        (0.11155)  (0.28210)  (0.38967)  (0.00111) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.531612  0.065809  0.018229 -0.122209  0.193975  0.000833 -0.060772    

  (0.11355)  (0.07047)  (0.25662)  (0.24605)  (0.10967)  (0.02533)  (0.15465)    
D(CZ_LOG)  0.042819 -0.363480 -0.268828  0.526461 -0.196279  0.146062  0.018441    

  (0.14132)  (0.08770)  (0.31938)  (0.30623)  (0.13650)  (0.03152)  (0.19247)    
D(FR_LOG)  0.082790  0.065538 -0.409220  0.380992 -0.008958  0.010973  0.014707    

  (0.04503)  (0.02795)  (0.10178)  (0.09759)  (0.04350)  (0.01005)  (0.06133)    
D(GER_LOG) -0.074341 -0.061430  0.250223 -0.803133  0.159629  0.037705  0.181163    

  (0.05173)  (0.03210)  (0.11692)  (0.11210)  (0.04997)  (0.01154)  (0.07046)    
D(HUN_LOG)  0.199175 -0.111208  0.583795  0.245207 -0.503904 -0.033820  0.041454    

  (0.08951)  (0.05555)  (0.20229)  (0.19396)  (0.08645)  (0.01997)  (0.12191)    
D(LAT_LOG)  0.333815  0.233510 -0.357120  1.042844 -0.328810 -0.118375  0.116130    

  (0.31211)  (0.19369)  (0.70536)  (0.67631)  (0.30146)  (0.06962)  (0.42508)    
D(NETH_LOG)  0.196186 -0.023317  0.167120  0.236949  0.063181  0.086770 -0.756534    

  (0.08044)  (0.04992)  (0.18179)  (0.17430)  (0.07769)  (0.01794)  (0.10955)    
D(POL_LOG) -0.091858 -0.020715 -0.408710 -0.341952  0.323138  0.050652  0.178251    

  (0.22956)  (0.14246)  (0.51881)  (0.49744)  (0.22173)  (0.05121)  (0.31265)    
D(SLVK_LOG)  0.008239  0.175307 -0.606963  0.064037  0.216633  0.033875 -0.134481    

  (0.11129)  (0.06906)  (0.25151)  (0.24115)  (0.10749)  (0.02482)  (0.15157)    
D(SLVN_LOG) -0.021886  0.016036 -0.232131  0.149153  0.039474  0.018366  0.059606    

  (0.04112)  (0.02552)  (0.09292)  (0.08910)  (0.03971)  (0.00917)  (0.05600)    

           
8 Cointegrating Equation(s):  Log likelihood  3367.520        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.614121 -1.367137 -0.000484 

         (0.17275)  (0.24205)  (0.00064) 
 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 -1.219092  4.213142 -0.006178 

         (0.82925)  (1.16193)  (0.00307) 
 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.165023 -0.346448 -0.005241 

         (0.27564)  (0.38622)  (0.00102) 
 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  1.041228 -1.072051 -0.003138 

         (0.18059)  (0.25304)  (0.00067) 
 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  2.297146 -4.420607 -0.007184 

         (0.45842)  (0.64233)  (0.00170) 
 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 -1.066546  8.549151 -0.013222 

         (2.02197)  (2.83314)  (0.00749) 
 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.873687  0.279348 -0.004631 

         (0.31500)  (0.44138)  (0.00117) 
 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.033192 -7.455221  0.010187 

         (1.25500)  (1.75848)  (0.00465) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.535546  0.053474  0.007173 -0.111202  0.183794 -0.002315 -0.066116  0.007197   

  (0.11365)  (0.07406)  (0.25714)  (0.24661)  (0.11118)  (0.02597)  (0.15478)  (0.02949)   
D(CZ_LOG)  0.034643 -0.389117 -0.291809  0.549340 -0.217440  0.139518  0.007334 -0.007690   

  (0.14113)  (0.09197)  (0.31932)  (0.30625)  (0.13807)  (0.03225)  (0.19221)  (0.03662)   
D(FR_LOG)  0.080298  0.057724 -0.416224  0.387964 -0.015407  0.008979  0.011321  0.010908   

  (0.04499)  (0.02932)  (0.10179)  (0.09762)  (0.04401)  (0.01028)  (0.06127)  (0.01167)   
D(GER_LOG) -0.075132 -0.063911  0.247999 -0.800919  0.157581  0.037071  0.180089  0.034741   

  (0.05183)  (0.03378)  (0.11727)  (0.11247)  (0.05070)  (0.01185)  (0.07059)  (0.01345)   
D(HUN_LOG)  0.192580 -0.131886  0.565259  0.263660 -0.520972 -0.039098  0.032495  0.088840   

  (0.08920)  (0.05813)  (0.20181)  (0.19355)  (0.08726)  (0.02038)  (0.12148)  (0.02314)   
D(LAT_LOG)  0.286749  0.085928 -0.489417  1.174547 -0.450625 -0.156045  0.052193 -0.021279   

  (0.30538)  (0.19901)  (0.69095)  (0.66266)  (0.29875)  (0.06979)  (0.41591)  (0.07924)   
D(NETH_LOG)  0.194608 -0.028268  0.162682  0.241367  0.059095  0.085507 -0.758679 -0.021311   

  (0.08057)  (0.05251)  (0.18231)  (0.17484)  (0.07882)  (0.01841)  (0.10974)  (0.02091)   
D(POL_LOG) -0.126160 -0.128274 -0.505128 -0.245966  0.234358  0.023198  0.131654 -0.112965   

  (0.22472)  (0.14644)  (0.50843)  (0.48762)  (0.21983)  (0.05136)  (0.30605)  (0.05831)   
D(SLVK_LOG)  0.001409  0.153890 -0.626162  0.083149  0.198956  0.028409 -0.143760 -0.034221   

  (0.11109)  (0.07239)  (0.25135)  (0.24106)  (0.10868)  (0.02539)  (0.15130)  (0.02882)   
D(SLVN_LOG) -0.022033  0.015573 -0.232546  0.149566  0.039092  0.018248  0.059405  0.021937   

  (0.04120)  (0.02685)  (0.09322)  (0.08941)  (0.04031)  (0.00942)  (0.05611)  (0.01069)   

           
9 Cointegrating Equation(s):  Log likelihood  3371.846        

Normalized cointegrating coefficients (std.err. in parentheses) 
CYP_LOG CZ_LOG FR_LOG GER_LOG HUN_LOG LAT_LOG NETH_LOG POL_LOG SLVK_LOG SLVN_LOG @TREND(93:02) 
 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  140.8220 -0.274291 

          (32.7281)  (0.06930) 
 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 -278.0465  0.537357 

          (64.3041)  (0.13617) 
 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  269.3946 -0.524669 

          (62.4251)  (0.13219) 
 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  240.0065 -0.467371 

          (55.6628)  (0.11787) 
 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  527.4439 -1.031370 

          (122.392)  (0.25917) 
 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000 -238.3912  0.462300 

          (55.0055)  (0.11648) 
 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  202.5666 -0.394167 

          (46.9279)  (0.09937) 
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 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.229786 -0.004612 
          (1.15393)  (0.00244) 

 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  1.000000 -231.5328  0.445852 
          (53.4077)  (0.11309) 
           

Adjustment coefficients (std.err. in parentheses) 
D(CYP_LOG) -0.535222  0.053469 -0.003014 -0.112012  0.188727 -0.003120 -0.063231  0.009583 -0.132299  

  (0.11363)  (0.07404)  (0.26070)  (0.24657)  (0.11312)  (0.02619)  (0.15523)  (0.03118)  (0.10396)  
D(CZ_LOG)  0.035984 -0.389141 -0.334042  0.545984 -0.196988  0.136183  0.019292  0.002202  0.094089  

  (0.14077)  (0.09172)  (0.32297)  (0.30546)  (0.14013)  (0.03245)  (0.19230)  (0.03863)  (0.12879)  
D(FR_LOG)  0.080422  0.057722 -0.420131  0.387654 -0.013515  0.008670  0.012428  0.011823 -0.135934  

  (0.04498)  (0.02931)  (0.10320)  (0.09761)  (0.04478)  (0.01037)  (0.06145)  (0.01234)  (0.04116)  
D(GER_LOG) -0.075357 -0.063907  0.255094 -0.800355  0.154145  0.037632  0.178080  0.033079 -0.033738  

  (0.05181)  (0.03376)  (0.11886)  (0.11242)  (0.05157)  (0.01194)  (0.07077)  (0.01422)  (0.04740)  
D(HUN_LOG)  0.191541 -0.131868  0.597987  0.266261 -0.536821 -0.036513  0.023229  0.081174  0.081775  

  (0.08885)  (0.05789)  (0.20384)  (0.19279)  (0.08845)  (0.02048)  (0.12137)  (0.02438)  (0.08129)  
D(LAT_LOG)  0.291169  0.085851 -0.628566  1.163490 -0.383237 -0.167034  0.091591  0.011315 -0.071481  

  (0.30352)  (0.19778)  (0.69638)  (0.65864)  (0.30216)  (0.06996)  (0.41464)  (0.08329)  (0.27771)  
D(NETH_LOG)  0.194780 -0.028271  0.157247  0.240935  0.061728  0.085078 -0.757140 -0.020038 -0.023080  

  (0.08057)  (0.05250)  (0.18485)  (0.17484)  (0.08021)  (0.01857)  (0.11007)  (0.02211)  (0.07372)  
D(POL_LOG) -0.131245 -0.128186 -0.345046 -0.233245  0.156832  0.035841  0.086329 -0.150462 -0.173264  

  (0.22133)  (0.14422)  (0.50780)  (0.48028)  (0.22033)  (0.05102)  (0.30236)  (0.06073)  (0.20250)  
D(SLVK_LOG) -4.65E-05  0.153916 -0.580336  0.086791  0.176763  0.032028 -0.156735 -0.044956 -0.538954  

  (0.11054)  (0.07203)  (0.25361)  (0.23986)  (0.11004)  (0.02548)  (0.15101)  (0.03033)  (0.10114)  
D(SLVN_LOG) -0.022392  0.015579 -0.221249  0.150464  0.033621  0.019140  0.056206  0.019290 -0.027029  

  (0.04111)  (0.02679)  (0.09433)  (0.08922)  (0.04093)  (0.00948)  (0.05617)  (0.01128)  (0.03762)  

 
 

 
 
 
 

 


