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Abstract 
 
The era we live in is attacked by the “big data” phenomenon. Multiple enterprises store 
large amounts of data for analysis, making the field of data analysis more and 
important. But how is someone able to gain insights from this massively evolving data? 
There comes the data mining field, which is what this thesis investigates, and especially 
the clustering field, whose algorithms can group unknown data into multiple clusters.  

Needing to perform clustering in a distributed way, the framework of Hadoop is 
analyzed, which offers a way to execute parallel programs on a cluster of machines, 
storing the data in a distributed file system. The parallel executions are achieved using 
the MapReduce paradigm which transforms complex computations over a set of <key, 
value> pairs, so that many jobs can run together. As for the distributed storing, it is 
achieved using the Hadoop distributed file system (HDFS), a file system that provides 
scalable and reliable data storage. One of the projects that uses Hadoop for performing 
clustering, classification and collaborative-filtering techniques to large data, is Mahout.  

Among all the clustering algorithms, the thesis gives details about a Fuzzy clustering 
algorithm, Fuzzy kMeans, which groups the data to clusters, by assigning to each data 
point different degrees of association for each cluster. 

The main problem that has to be solved is how we can cluster data stored in an OLAP 
database, in a parallel way. For that reason, it is studied how Mahout implements the 
fuzzy kMeans algorithm using the Hadoop’s components, and after that, the thesis 
proposes a “similar approach” of the algorithm, running on top of an OLAP database. 

In more details, the new fuzzy kMeans implementation instead of MapReduce is using 
a three-stepped <key, value> pair idea (Map, Reduce & FinalReduce). In the first step, 
the clustering jobs are split and assigned to different threads which export their own 
<key, value> pairs. In the second step, each thread, without waiting for the other 
threads to finish their first step, continues using the extracted <key, value> pairs from 
its previous step and exports its own <key, values>. The last step, takes place when all 
of the threads finish the aforementioned two steps, and the results of the second step 
are merged together, to produce the final clustering result. In addition, instead of using 
the HDFS for storing purposes, the implementation is making use of an OLAP database. 

For the previous idea, a prototype implementation has been developed and preliminary 
tests were run, comparing the different fuzzy kMeans clustering implementations. 

Finally, the thesis concludes with the fact that more attention should be given to the 
data that evolve day by day, as mining and extracting information out of it, becomes 
more and more complicated, whereas it could be considered as a very challenging and 
attractive job. 
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Resumen 

Actualmente estamos viviendo un momento que está sufriendo el fenómeno “big data”. 
Muchas empresas almacenan enormes cantidades de datos para su posterior análisis, haciendo 
que el campo del data mining esté adquiriendo mayor importancia. Pero, ¿cómo puede ser 
alguien capaz de obtener información de estos datos que evolucionan de forma masiva? Es aquí 
donde entra en juego el campo del data mining, sobre el cual se centra el estudio de esta tesis y 
en especial el campo del clustering, cuyos algoritmos permite agrupar datos que a simple vista 
no tienen relación entre ellos. 

Debido a la necesidad de ejecutar estos algoritmos de clustering de manera distribuida, se va a 
utilizar Hadoop, un sistema distribuidos que ofrece la posibilidad de ejecutar programas en 
paralelo sobre un conjunto de máquinas. La ejecución paralela se consigue mediante la 
utilización del paradigma MapReduce el cual transforma computaciones complejas sobre un 
conjunto de pares clave-valor de tal manera que diversas tareas puede ser ejecutadas 
conjuntamente. Para conseguir el almacenamiento distribuido de los datos, se está utilizando 
HDFS, un sistema que provee escalabilidad y fiabilidad al almacenamiento de los datos. Uno de 
los proyectos que utiliza Hadoop para la ejecución de técnicas de clustering, clasificación y 
filtrado colaborativo sobre grandes cantidades de datos es Mahout. 

Entre todos los algoritmos de clustering existentes, en esta tesis se ha utilizado un algoritmo 
fuzzy, en concreto Fuzzy k-means, el cual agrupa los datos en grupos mediante la asignación a 
cada dato de un grado de asociación con cada uno de los grupos. 

El principal problema a resolver es como se puede aplicar el algoritmo de clustering sobre una 
base de datos OLAP de manera paralela. Por esta razón, se ha estudiado como Mahout 
implementa el algoritmo Fuzzy K-Means utilizando los componentes que ofrece Hadoop y a 
continuación proponer aproximaciones similares del algoritmo que permitan ser ejecutadas 
sobre una base de datos OLAP. 

Concretamente, la nueva implementación del algoritmo Fuzzy K-Means utiliza, en vez de 
MapReduce, un concepto de pares clave-valor basado en tres pasos (Map, Reduce y 
FinalReduce). En el primero paso, el proceso de clustering es dividido y asignado a diferentes 
procesos los cuales exportan sus propios pares clave-valor. En el segundo paso, cada proceso, 
sin esperar al resto de procesos a que terminen el primer paso, continúan utilizando los pares 
clave-valor del paso anterior y exportan son propios pares clave-valor. El último paso tiene 
lugar cuando todos los procesos han terminado los dos pasos anteriores y los pares clave-valor 
resultantes del segundo pasos de todos los procesos son integrados, dando lugar al resultado 
final del clustering. Además, en vez de utilizar HDFS como sistema de almacenamiento, se ha 
utilizado una base de datos OLAP. 

De esta manera, se han realizado diversas implementaciones del algoritmo de clustering Fuzzy 
K-Means, para realizar posteriormente distintos experimentos que han permitido la 
comparación entre ellos. 
Finalmente, se ha concluido que es necesario prestar mayor atención a los datos que 
evolucionan constantemente, así como a la extracción de información ya que este proceso cada 
vez es más complicado, dando lugar a ser considerado como una tarea desafiante y atractiva. 
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Chapter 1 

Introduction 

 
Summary: “In this chapter it is given an analysis of the goals and the purposes of the following 
thesis, including a short description of the problems that we have to deal with. Additionally, the 
structure of thesis is written, explaining the way the whole thesis has been split, beginning from 
the study of the state of the art, to the conclusions and the future plans. ” 
 

1.1 Goals – Purpose of the thesis 
 
The era we live in consists of the evolution of information systems, which has driven on 

the creation of a society which deals with various types and large amounts of 

information. This kind of information is stored in a continuous way, and as a result of 

this, the data gets bigger and bigger creating the need to exploit it with multiple 

complex ways, to gain valuable insights.  

 

The data has been replaced by the big data phenomenon, as the companies and the 

firms, have databases which can store almost everything. The problem that arises is 

how can this data be processed, and how can someone gain insights, retrieve 

information and make predictions, by the time that it needs so much time and 

expensive hardware, to analyze hundreds of petabytes of data? 

 

Various ways of exploiting big data have been introduced and are nowadays used, but 

each of these ways have both advantages and disadvantages, while they can sometimes 

be ineffective. In addition, in order to manage and analyze this data, the computer 

science has been driven into the creation of the data mining field, which includes a 

series of techniques based on various algorithms.  

 

Many projects have been created in order to read and analyze data simultaneously, and 

are trying to cooperate with each other, in order to have the best results. Projects like 

Hadoop, technologies like MapReduce and sub-projects like Mahout, are combined 

with the most effective way, in order to help the companies and the firms, to have 

faster, better and more valuable results.  

 

For that reason, in this thesis there are going to be explained some of the technologies 

and projects that have been developed to analyze and work with big data, which use 

various data mining techniques for gaining valuable insights.  
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In general, there will be a study of the state of the art on the field of data analysis, and 

after that the framework of Hadoop will be explained, which referring to the data 

analysis fields, it is used to achieve distributed data analysis results. The MapReduce 

paradigm and the Hadoop distributed file system (HDFS) will be explained, including 

the subproject of Mahout, which uses the core components of Hadoop to perform data 

mining techniques on massive data sets, in a high-scalable way. 

 

In addition, a new clustering algorithm implementation will be developed, using 

techniques and technologies that are going to be introduced. In more details, the main 

problem that we are dealing with in that thesis is how we can perform parallel 

clustering techniques in large amounts of data that are stored in an OLAP database. 

Until today, in order to achieve parallel clustering on massive data, the project of 

Mahout has been developed which is making use of MapReduce, a batch processing 

based concept, which splits the data into <key, value> pair format, for achieving 

parallel results. But what we need and we will develop in that case is a concept for 

clustering data that is stored in an OLAP database, in a parallel way. 

 

The new implementation will split again the clustering job into smaller parts, by 

assigning a different part of the job to different threads. The <key, value> pair idea will 

still be used, but instead of waiting for the Map tasks to be completed in order to 

continue with the Reduce tasks, each thread will perform its corresponding Map and 

Reduce tasks, without waiting for the other threads to finish their jobs. At the very end, 

when all the threads finish working, their results will be merged together. 

 

We know that data is not static, so having results in real-time has a great importance, as 

this could help enterprises in understanding their customers’ needs, making decisions 

or dealing better with difficult situations. 

 

Having developed the clustering algorithm to output results in parallel on top of an 

OLAP database, the next goal is to test it with various parameters and data sets, in 

order to compare it with the implementation that already exists and is running with 

Mahout on top of Hadoop. 

 

More details will be given to the following chapters, including the conclusions and the 

future goals which derive after the finalization of that thesis. 

 

As for the general goals from this thesis, these are listed below:  

 

 Research and study of the state of the art on data analysis. 

 Detailed study about what big data is and what are the challenges. 
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 Research of the knowledge discovery in databases (KDD) area and the data mining field. 

 Detailed study of the clustering techniques, accompanied with the applications of 

clustering, its techniques and its algorithms. 

 Research of the distributed processing framework of Hadoop. 

 Understanding the MapReduce paradigm and the Hadoop distributed file system. 

 Study of the Mahout, a subproject of the Hadoop’s ecosystem, and the way its 

clustering techniques are implemented. 

 Thorough research about the fuzzy kMeans clustering algorithm and how it is 

implemented with Mahout on top of Hadoop. 

 Development and explanation of a different parallel implementation of the fuzzy 

kMeans Clustering algorithm on top of an OLAP database, based on a distributed 

<key, value> pair concept. 

 Run tests and evaluate the results of the implementations. 

 Quote of the conclusions which derive from the completion of the thesis, 

accompanied with the future plans based on the research and the implementation 

that has been done. 

 

1.2 Structure of the thesis 
 
The thesis, consists of seven (7) chapters. In the beginning of its chapter, there is a short 

summary which explains in short, the content of each chapter. 

 

More particularly, the chapters are separated as following: 

 

 In Chapter 1, there is an introduction about the main subject of the thesis and there 

are explained the main goals that have been set. 

 

 In Chapter 2, takes place the study of the state of the art about the fields that someone 

has to know, in order to be able to understand the whole idea of the thesis. 

 

 In Chapter 3, the Hadoop distributed processing framework is described, in 

combination with its main components and its ecosystem. 

 

 In Chapter 4, the Mahout software is described, in combination with how it 

implements the clustering techniques. 

 

 In Chapter 5, the different implementations of the fuzzy kMeans Clustering 

algorithms are described, accompanied with detailed figures. 
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 In Chapter 6, the tests and the results are written down, in order to continue with the 

evaluation of the different clustering implementations. 

 

 In Chapter 7, there are described the final conclusions and the future plans after the 

research and the implementation that has been made. 
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Chapter 2 

State of the art on data analysis 

 
Summary: “In this chapter, a thorough research is done on the field of the data analysis. There 
are given various definitions about the area of data analysis, including the big data phenomenon. 
In addition, the knowledge discovery in databases is explained, accompanied with one of its steps, 
the data mining field. As for the last field, our interest remains at the clustering techniques and 
algorithms, as the final goal of the thesis, is to implement a new clustering algorithm.”  
 

2.1 Data analysis 
 
For the last years, it could be said that businesses actually sit on data, and every second 
that passes, they generate more and more. Data, nowadays, is being produced at faster 
rates due to the explosion of information which is related to the internet and the use of 
more and more systems. For sure, there is a way with which we can make use of all this 
data, but the problem that occurs is “how” this can happen.  
 
The aforementioned seems to be difficult as there is no specific problem that needs to be 
solved and there is no specific question that needs to be answered. The only 
information that we have in our hands is the data, whilst our final goal is to improve 
the business. 
 
The increasing volume of data, the complexity that arises from the different information 
types that are collected, the reliability and the integrity of the data collected, can be 
considered as a very difficult challenge. 
 
We can find data all around us, in different types and conditions, in hospitals, in banks, 
in weather records, in photo albums, in videos, or even in our mobile phones. In fact, 
data can be seen as the essential raw material of any kind of human activity. Almost 
every sector from biology and economics to engineering and marketing measures, 
gathers, and stores data in different kinds of digital form. Insurance companies store 
information of insurance claims, meteorological organizations measure and store data 
as for the weather conditions, and banks gather information concerning the personal 
data of their clients.  
 

For that reason, clever and timely decisions need to be made using the information 
collected, which will be used in order to improve sales, make better researches and 
project developments, while reducing the total costs. For instance, insurance companies 
need to find and claim all the activities which are considered as fraudulent and 
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meteorological organizations need to be able to predict weather conditions of the near 
future. 
 
So, in order to solve and simplify the needs mentioned before, a new science raised, the 
science of data analysis. In short, data analysis is the process in which raw data is ordered 
and organized, to be used in methods that help into the explanation of the past and the 
prediction of the future. It can be considered as a multi-faceted process for the 
inspection, the cleaning, the transformation and the modeling of the data with the main 
goal of discovering useful information, suggesting conclusions, and supporting 
decision-making. Usually, during the final step of the analysis, the data is converted 
into meaningful information, necessary to take decisions [1], [2], [3], [4]. 
 

2.1.1 Data analysis domains 
 
Data analysis does not have to do only with results and numbers, it is about asking 
questions, developing explanations, gathering information and testing hypotheses [2], 
[4]. It can be considered as a multi-disciplinary sector, which combines the domains of: 
 

 Computer science,  
 Artificial intelligence & machine learning,  
 Knowledge 
 Statistics & mathematics  

 

 

Figure 1 - Data analysis domains 

 
In Figure 1, we can see how data analysis is combined with the aforementioned 
domains. In a few words, these domains could be explained as follows: 
 

 Computer science is responsible for the creation of the various data analysis tools. 
The large amount of data has made computational analysis very important and 
has increased the requirements for programming, database and network 
administration skills. 

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Information


7 
 

 Artificial intelligence is required for the study of the algorithms that can simulate 
an intelligent behavior, so it is used in order to perform those activities that 
require this kind of intelligence. 
 

 Machine learning is the study of computer algorithms in order to learn about how 
to react in a certain circumstances or recognize patterns. According to how the 
algorithm is training, it consists of a large amount of algorithms generally, 
categorized in the following categories: 

o Supervised learning (data is labeled) 
o Unsupervised learning (data is unlabeled) 
o Semi-supervised learning (data is both labeled and unlabeled) 

 
 Statistics have to do with the development and the application of different 

methods in order to collect, to analyze, to understand and to translate data. 
During the phase of data analysis, a variety of statistical techniques are taking 
place such as clustering, classification, forecasting, prediction and regression. 
 

 As for the knowledge domain, a good understanding of it can give to someone the 
capability to ask good questions, which has a great importance in the field of 
data analysis. As mentioned earlier, data can be found everywhere, so the 
information gathered from the data, turn into a set of rules and can help us to 
make decisions. 

 
 In the field of mathematics, data analysis uses lots of mathematical techniques in 

the using algorithms such as linear algebra, numerical methods and probabilities.  
 

2.1.2 Data categories 
 
Data can be separated into two different categories [5]: categorical and numerical. 
 

 Categorical data are values that can be sorted into different groups or categories. 
There are two types of categorical values, nominal and ordinal.  

o A nominal variable is the one which has no numerical value (e.g. gender or 
occupation.) 

o An ordinal variable is the one whose order is significant, but on which no 
meaningful arithmetic operations can be performed (e.g. the survey 
question "Is your general health poor, reasonable, good, or excellent?" 
may have those answers coded respectively as 1, 2, 3, and 4.) 
 

 Numerical data are values that can be measured. There are two types of numerical 
values, discrete and continuous.  
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o A discrete variable can be counted and is always distinct and separate (e.g. 
the result of a flipped coin.) 

o A continuous variable can take on any value within a finite or infinite 
range of numbers (e.g. the weight of average heighted people which 
should be between 70-80 Kg)  

 
In Figure 2, a simple example is presented of how data can be turned into knowledge: 
 

 

Figure 2 - Transformation of data to knowledge 

 
 As we can see, the data that we have in our possession is that: 

“The temperature outside is 1 degrees Celsius”.  
 

 As a result of this, after some processing, we gather the information that: 
“It is freezing outside”.  

 
 So, the knowledge that derives from that short data analysis is that we should: 

“Put a warm jacket”. 
 
 
Data analysis however, is not so simple. 
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2.1.3 Steps of the data analysis process 
 
In the case that we had to deal with much more complicated and bigger data than the 
one mentioned in the previous example (section 2.1.2), the data analysis process in 
general consists of several steps which someone should carefully think through. In 
general, the steps that someone should follow for an effective data analysis can be the 
following:  
 

 State the problem 
 Obtain the data 
 Clean the data 
 Transform the data 
 Explore the data with statistics and visualizations 
 Implement predictive modeling 
 Visualize and interpret the results 
 Deploy the solution 

 
Figure 3, summarizes the data analysis process, including the aforementioned steps. 
Although it is usual to follow the order described, there are usually interactions 
between the different steps that may require to be revised. For example, it may be 
necessary to return to the data preparation while implementing the data analysis in 
order to make changes based on what is being learned.  
  

 

Figure 3 - Data analysis process 

 
These steps, are summarized here and explained afterwards: 

 (1) Problem Definition and Planning: The problem that has to be solved is clearly 
defined, and an appropriate team is assembled to perform the analysis. 

 (2) Data preparation: Before the starting of a data analysis project, the data must be 
gathered, characterized, cleaned, transformed and partitioned into an 
appropriate form for further processing. 

 (3) Analysis: Based on the information from the previous steps, the corresponding 
and appropriate techniques must be selected in order to gain the best results. 

 (4) Deployment: The results from the previous step should be examined and 
deployed to obtain what was identified at the beginning of the process. 
 



10 
 

1) Problem definition and planning  
 
The first step of the data analysis is to describe the problem that has occurred and create 
a plan to solve it.   
 
During the first phase, the following issues should be taken into consideration: 
 

 Identify the problem 
 List the project’s deliverables 
 Generate success factors 
 Understand each resource and find the limitations 
 Find an appropriate team  
 Generate a plan 
 Perform a cost/benefits analysis 

 
It is important to document the problem that has to be solved along with corresponding 
information. In certain occasions, however, it may not be possible to know precisely the 
sort of information that will be gathered after the analysis.  
 
In addition, concerning what resources are available for use in the project, there may be 
limitations on the available data, the hardware or the software that can be used. Also, 
there could be issues (privacy, legal issues) related to the data usage, which should be 
identified and written in prior. Moreover, there may also be time limitations for an 
algorithm to create the final results.  
 
As for the teams, having good knowledge is essential and it is more than helpful to 
have different roles, as different people will have an active role at different times, so it is 
desirable to involve all parties during this phase. 
 
Finally, a plan about how the team and the whole analysis process is going to work has 
to be created, in combination with a cost/benefit analysis, in order to see if the 
information that will be derived from the analysis would be more valuable than costly. 
 
 

2) Data preparation 
 
The second step of the data analysis has to do with the understanding and the 
preparation of the data, to get it ready for Analysis. However, it is the most time-
consuming step in the process, since the data is usually gathered from different data 
sources, with different representations or formats.  
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During the second phase, the following steps are required for preparing the data set: 
 

 Access and combine data sets 
 Summarize the data 
 Look for errors and noisy data 
 Transform the data 
 Partition the data 

 
In general, in occasions where the data has been collected for a different reason, it has to 
be transformed into an appropriate form for analysis. Since multiple sources of data 
may be used, it must be taken much care in order not to deal with errors when these 
sources are combined with each other.  
 
It is important to characterize the attributes types that have been collected over the 
different items in the data set, so to identify unexpected values. For example, in looking 
at the numeric attribute weight collected for a set of people, if an item has the value 
“low” then we need to either to replace it with a numerical value or remove the entire 
record for that person.  
 
Moreover, it may be important to transform the data to make it more capable for data 
analysis, which should be done without losing any valuable or important information. 
Last but not least, the data has to be partitioned in smaller segments, in order to be 
more easily accessed and processed, with faster and more effective results.  
 

3) Analysis 
 
The third step during the data analysis has to do with the examination of the data, an 
important step for understanding the type of information that has been collected and 
the meaning of the data. In combination with the gathered information from the 
problem definition phase, the correct data analysis approach will be selected.   
 
During the third phase, the following approaches should be considered when analyzing 
the data: 

 Summarize the data 
 Explore the relationships between attributes 
 Group the data 
 Identify non-trivial facts, patterns and trends 

 
First of all, data must be interpreted and summarized, without losing valuable or 
important information. In addition, there should be a number of tasks for focusing on 
finding important facts and relationships in the data. Discovering this information, 
often has to do with looking at the data in many different aspects, using techniques of 
data visualization, data analysis and data mining.  
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Furthermore, during the third phase there should be some tasks which have to do with 
the development of mathematical models that give relationships to the data. Models 
like these can be useful for understanding the data and for making predictions.  
 
Moreover, a mandatory fact can be considered the selection of the methods to be used, 
which are often driven by the type of data being analyzed and the problem being 
solved. Some approaches generate solutions that are very easy to interpret and explain 
important problems, while others are more limited for explaining the various results. 
 
Finally, understanding hidden relationships between different items in the data can 
help in generating models. For that reason, it is essential that the data analysis team 
works closely while analyzing and interpreting the data. 
 

4) Deployment 
 
In the fourth step, the data analysis results are translated into valuable information for 
the organization. For that reason, this step should be carefully planned and executed, 
and as a result of that, there are many ways to deploy the output of a data analysis 
process. 
 
During the fourth phase, the results can be deployed in different ways, as we can see 
below: 
 

 Generate a report 
 Deploy a decision-support tool 
 Measure business impact 

 
As for the first option, the data analysis team could write a report describing the 
business, the results or the scientific intelligence derived from the analysis. Afterwards, 
the report should be directed to those who are responsible for making decisions. 
 
However, in the case when the results of the process include the generation of 
predictive models, these models can be deployed as standalone applications or can be 
integrated with other software. The integration of the results into existing systems is 
often one of the most expensive approaches to delivering a solution. 
 
Finally, at the end of a project, it is always a useful exercise to look back at the data 
analysis impact, and to determine what worked and what did not work, as this will 
provide results, information and ideas for the future improvement of similar kinds of 
processes [3], [4], [5]. 
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2.2 Data preparation (data cleaning) 
 

There are many different sources of data as well as methods used to collect the data. For 

instance, surveys or polls can be considered as a common way for gathering data, in 

order to answer specific questions. Another example could be an interview where a set 

of questions is used, for gaining information on people's opinions, preferences, 

capabilities or behavior. However, in the survey there should be selected a random 

sample of the target population or during an interview there should not be any 

questions that favor a particular response. 

 

In addition, the data collected should be reliably measured, which means that if the 
measurement would be repeated then it should not result in different values or results.  
 
Generally, data can be found in many different forms. 
 
By the time that the data is collected, the most time-consuming part of the data analysis 
has to take part: the data preparation. The way in which the data is collected and 
prepared is critical for the final results, and for that reason it is a very important step.  
 
Most of the times, the data needs to be combined or merged into a table. After that, the 
data should be cleaned by resolving errors, removing noisy data and deleting columns 
of irrelevant data.  Finally, during the data preparation, the table should be divided, 
into smaller parts so to make the data analysis clearer and to allow specific questions to 
be answered more easily. 
 
It should be mentioned that it is important to write down the details about the steps 
taken and the reason of why they were done, in order to provide a methodology to 
apply to similar data sets in the future.  
 
Subsequently, the process of preparing the data (data cleaning) for analysis is defined in 
more details as for the phases of how to obtain, clean, normalize and transform raw 
data into a standard format. 

 
In order to avoid “dirty” data, the data set that is going to be used should have the 
following characteristics: 

 
 Be correct 
 Be complete 
 Be accurate 
 Be consistent 
 Be uniformed 
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Some data cleaning tasks include record matching, deduplication and column 
segmentation. For some variables it is useful to inspect all of their possible values to 
reveal and correct mistakes, duplications and errors, as each value has a unique term. 
Another common problem with numeric variables is that sometimes they are written as 
non-numeric terms (e.g. “below zero”), so these terms should be transformed into 
number format or removed. 
 
A different problem arises when observations for a particular variable are missing data 
values, so in that case the value may be replaced according to the knowledge of how the 
data was gathered in general. 
 
Moreover, during the data cleaning it can be more difficult to clean variables measured 
on a ratio scale since they can take any possible value within a given range. In that case, 
it is useful to consider outliers (small number of data values that differ greatly from the 
rest of the values) in the data.  
 
Finally, it should be taken into consideration that a particular variable may have been 
measured over different units (e.g. km, miles) and that when data is combined from 
multiple sources, it is more likely that it have been recorded more than once. In these 
cases, the data should be converted and duplicate entries should be removed, as well. 
 
Some of the data preparation techniques, are described below, in order to prepare the 
data for the data analysis process [3], [4]. 

 
 Converting text to numbers 

 
In order to use variables that have been assigned as nominal or ordinal and described in 
text values, it is mandatory for these values to be converted into numerical values. A 
common way to handle nominal data, is to convert the values into a separate column 
where values with number 1, indicate the presence of a certain category and values with 
number 0, indicate the absence of a certain category.  
 

 Converting continuous data to categories 
 
The conversion of continuous data to categories is more desirable when a value is 
defined on a ratio scale, but there is less knowledge about how the data was collected. 
For example, a variable weight that has a range from 0 to 100 kg may be divided into 
five categories: (1) less than 20 kg, (2) 20–40 kg, (3) 40–60 kg, (4) 60–80 kg and (5) 80-100 
kg. Afterwards, all values for the variable weight must be assigned to a category and be 
given an average value of the assigned category.  
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 Combining variables 
 
Sometimes, the variable that is going to be used may not be present in the data set but it 
may be a result from some existing variables. In that case, mathematical operations, 
such as average or sum, could be applied to one or more variables in order to create an 
extra variable. 
 

 Generating Groups 
 

In general, larger data sets take more time to be analyzed. One solution for that problem 
could be to take a random part for analysis, but this is only effective when the data set 
matches the target population. One reason of generating groups, is that dividing the 
data set into smaller parts based on some knowledge of the data, may allow someone to 
generate several simpler, faster and more effective models. 
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2.3 Big data 
 
The question that arises nowadays is, what exactly big data is. Referring to this kind of 
data, someone could guess that it is something that is large and full of information. 
More often, big data is described as extremely large data sets that grow so fast that their 
management and analysis cannot be done using traditional data processing tools. In 
other words, the data set has become so large that it is so hard to gain value out of it.  
 
In general, big data is a word, used to describe a massive volume of both structured and 
unstructured data that is so large, making it difficult to process using traditional 
database and software techniques. In most of the cases, the data is too big or it moves too 
fast or it exceeds current processing capacity [10]. Big data has the potential to help 
companies to improve their operations and make faster and more intelligent decisions. 
 
Despite all the aforementioned, big data is not that new. Although large data sets have 
been created in the last couple of years, big data has its roots in the scientific and 
medical communities, where the analysis of large amounts of data has been done for 
development, modeling and other forms of research, all of which processed large data 
sets [4], [7], [8], [10].   
 
An example of big data might be petabytes of data consisting of billions of records, of 
thousands of relations, of millions of people, from various and different sources (e.g. 
web, sales, social media and mobile data). 
 
To gain insights from this data, someone has to choose an alternative way to process it. 
Many approaches have been produced in order to deal with the volume, the velocity 
and the variety of massive data in which valuable information is hidden, which could 
not previously be seen because of the amount of work required to extract them.   
 
In order to characterize the different aspects of big data, the three Vs of volume, velocity 
and variety are commonly used. They are used so to view and understand the nature of 
the data and the software platforms that are available, in order to exploit them. 
 
As someone could understand, the power of big data is hidden in these three main 
features. The volume, the velocity and the variety, cooperate with each other, making 
the processing of big data more complicated, as the size of the data becomes larger, the 
speed of its growth is just a matter of seconds and it can contain thousands of different 
varieties of data [9], [11], [12], [13].   
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In Figure 4, we can see how these three characteristics interact with each other: 
 

 

Figure 4 - Big data characteristics 

 
 Volume: Big data is found in one size, large. Data can be found in the format of 

videos, music and large images. It is very common to petabytes of the storage 
system for enterprises. As the database grows, the applications and 
architecture built to support the data, has to be re-evaluated and re-constructed 
regularly. The benefit gained from the ability to process massive amounts of data 
is the main advantage of analyzing big data. By having more and more data, 
means that there could be created better models, including better results, and 
making better decisions. The big volume indeed, represents big data [9], [13].  

 
 Variety: Big data can include data of all varieties and can be stored in multiple 

format. For instance, text, audio, video, click streams are log files are some of the 
aforementioned varieties. It is very uncommon that data presents itself in a form 
perfectly ordered and ready for processing. However, the organization has the 
need have meaningful information from them, so in order to do that it would be 
easier to have data in the same format. Unfortunately, it is not as easy as it looks, 
the most of the times. The real world have data in many different formats and 
that is the challenge we have to overcome with the big data. This variety of the 
data, represents big data [9], [12], [13]. 

 

 Velocity: The speed of the data growth have changed the way we look at the data, 
as there were times when we used to think that data of the previous month is 
recent and valid. Today, the data grows in real time so it needs to be analyzed 
quickly, taking in consideration that it is time sensitive. So this means that it 
must be processed every second and stored minute by minute into the archives 
of the enterprises, due to its growth speed. This high velocity data, represent big 
data [9], [11]. 
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However, the complexity of big data does not end with just these three dimensions. 
Nowadays, there is a sum of technologies that are used to find the value that comes out 
of large data sets, by translating it to valuable information, making businesses to move 
forward. 
 
Many of those technologies or concepts are not new, but nowadays they belong to big 
data [12], [13]. 
In short, these technologies include the following: 

 Business intelligence. It is a large category of applications and technologies built 
for gathering, storing, analyzing and providing access to various kinds of data. 
In general, business intelligence is a set of techniques and tools for the transformation of 
raw data into meaningful and useful information for business analysis purposes [14]. 

 Data mining. It is a process in which data is analyzed from various aspects and 
then transformed to valuable information. Its techniques focus on modeling and 
knowledge discovery for purposes of prediction, which helps in discovering new 
patterns from massive data sets. 

 Statistical applications. Statistical applications are developed in order to deliver 
smaller amounts of data set, which can be used to study various data for 
estimating, testing and predictive analysis. Usually, the primary sources for 
gathering this kinds of information are surveys and experimental reports. 

 Predictive analysis. It is a sub category of statistical applications in which the data 
is examined in order to result with predictions, based on information which was 
gathered from databases. Predictive analysis has as a main goal to identify the 
risks and the opportunities for the businesses, in which it is performed. 

 Data modeling. Data modeling is an application of analytics in which cases that 
answer to the question of “what-if” are usually applied via multiple algorithms 
to different kinds of data sets. In general, it is a process used to define and 
analyze data requirements needed to support the business processes. 

The aforementioned categories are only an example of where big data is used and why 
it has a so large value for the businesses nowadays. That value is helping and 
encouraging the organizations to start using large repositories for storing data, in order 
to gain insights, retrieve information, reveal trends and uncover statistics to help them 
decide about their future movements. The last part, has helped the concept of big data 
to gain popularity, in combination with its associated tools, techniques, platforms, 
technologies and the various forms of analytics. 
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2.4 Knowledge discovery in databases (KDD) 
 

The need for information has driven to the development of systems that can generate 
and gather large amounts of data. Many different kinds of businesses are participating 
in the field of gaining valuable outcomes. Some examples may include finance, banking, 
manufacturing, monitoring, health care and marketing. 
 
For that reason, there are several tools currently being used in order to gain these useful 
and valuable insights. The information retrieval process, which is making use of the 
aforementioned tools is known as knowledge discovery in databases (KDD). 

 
The basic task of the KDD process is to extract knowledge from lower level data (e.g. 
databases). In short, knowledge discovery in databases is the process of identifying valid, useful 
and understandable patterns in data, for future use [18]. In other words, the KDD process 
involves using the data stored in a database, and applying data mining methods to gain 
insights and information out of it. The main goal of the KDD process is to discover for 
unprocessed data, information or trends that may be useful. Extraction of knowledge 
from raw and unprocessed data is done by applying data mining methods, which is a 
step of the aforementioned process. KDD however, has a much broader scope. 
 
The KDD deals with the process of discovering useful knowledge from data while data 
mining, statistical analysis and other techniques deal with only a particular step in this 
process. The KDD process tries to understand, to translate and to implement this 
information, for future cases and data sets. 

The KDD is repetitive (one might have to move back to the previous steps), interactive 
and consists of various steps. The process starts with determining the KDD goals, and 
ends with the implementation of the discovered knowledge. Then the loop is closed. 
The retrieved knowledge is measured on the data sets, and the process starts for one 
more time. It is important to note that KDD is not accomplished without human 
interaction [15], [16], [17], [20]. 

The following steps, is a brief description of the nine (9) stepped KDD process, which 
starts with the managerial step. These steps can be seen in Figure 5 [15], [19], [20], [21]. 
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Figure 5 - Knowledge discovery in databases process 

Step 1: The first step has to do with the understanding of what has to be done with the 
transformation, the algorithms and the representation. The people who are in charge of 
a KDD project have to understand and define the goals and the environment in which 
the knowledge discovery process will take place. After that, the pre-processing of the 
data starts. One should keep in mind that some of the pre-processing methods are 
similar to data mining algorithms, in order not to have any misunderstandings.  

Step 2: The second step has to do with the creation of a data set among the whole data, 
where the process will be performed, according to the pre-defined goals. Some 
questions need to be answered such as what data is available, how can someone have 
more data and how the whole data can be integrated into one data set. 

Step 3: The third step has to do with the data pre-processing and the data cleaning. The 
data is cleaned and is preprocessed, including removing noisy data, deleting or 
correcting errors, collecting information and deciding on strategies for manipulating 
missing data. This step, usually uses statistical methods or data mining algorithms. 

Step 4: The fourth step is the step of data transformation where the generation of better 
data, is taking part. Such transformation methods are dimension reduction and 
extraction, attribute transformation and functional transformation. Furthermore, this 
step helps in finding useful features to represent the data depending on the final goals.  
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Step 5: The fifth step has to do with choosing the appropriate data mining task among 
classification, regression and clustering. This usually depends on the KDD goals which 
were set during the beginning of the process and also on the previous steps.  

Step 6: The sixth step is about choosing the data mining algorithm, a method for 
searching and investigating various kinds of data patterns. In addition, this step 
includes deciding of which models and parameters might be appropriate according to 
the overall criteria and goal of the KDD process. 

Step 7: During the seventh step, the chosen data mining algorithm is implemented. 
However, one should have in mind that the algorithm is deployed several times until a 
satisfying and valuable result is gathered. For instance, someone could deploy the 
kMeans algorithm various times, by changing the initial number of clusters of the 
kMeans Algorithm, until the best result will appear. 

Step 8: As for the eighth step, the data mining results are evaluated and interpreted 
according to the goals that were defined in the first steps. It should be mentioned that in 
this step, the discovered knowledge is also written in documents for future usage, in 
case of similar problems or data sets, and that there can also be involved data 
visualization of the extracted information and models. 

Step 9: During the final step, the discovered knowledge is being used and applied. The 
knowledge is transferred into different systems for further actions or is simply written 
and reported to the interested parties. The success of this step determines the 
effectiveness and the final outcome of the entire KDD process that was described above.  

Having defined the basic steps and having introduced the KDD process, we now focus 
on the data mining component (step 5 of the KDD process), which has received the 
most attention at this thesis. 
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2.5 Data mining 

Data mining can be used for prediction and description purposes, the fifth (5th) step in 
the KDD process, mentioned in section 2.4.  

Data Mining has to do with finding useful patterns and information among the data. 
However, there is a wide variety of definitions and criteria for performing data mining. 
In general, data mining can also be called as knowledge discovery, machine learning or 
predictive analytics. Although, it should be considered that each of these terms have a 
different meaning depending upon the context. 

Data mining starts with data, which can range from a simple array of a few 
observations to a complex matrix of millions of observations with thousands of 
variables and relationships. The act of data mining uses specialized 
computational methods in order to discover meaningful and useful structures in the 
data. These computational methods have been taken and used from the field of statistics, 
artificial intelligence, machine learning, database theories, and pattern recognition.    

As mentioned before, the first goal of data mining is to extract and generalize meaningful 
patterns from the data set. Its main objective is to find useful conclusions and 
information that can be used by the users of the analysis.  

Algorithms used in data mining, are originated from the aforementioned computational 
methods, but in addition they are making use of several techniques such as parallel or 
evolutionary computing. Data mining is a non-stop process in which the data analyst is 
able to gain more information about the patterns and the relationships from data, 
during each data mining loop.  

However in order for the data mining process to have results, various iterative 
algorithms are implemented, so to transform inputs to outputs. The application of 
algorithms for extracting useful outputs from the raw data, is the main difference 
between data mining and the other traditional data analysis techniques. Most of these 
algorithms were developed in the recent decades and are using ideas from the fields 
of machine learning and artificial intelligence. However, there are some algorithms that 
are based on the foundations of theories that are originated many years ago.  

According to the data problem, data mining is classified into tasks such as classification, 
association analysis, clustering and regression, while each data mining task, uses 
specific algorithms like decision trees, k-nearest neighbors and k-means clustering, to 
finally extract and generalize meaningful patterns from the data set [22], [24]. 
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2.5.1 Data mining types 
 
There are various data mining types available, which have as a goal to extract knowledge 
from databases or data sets. These types, could be split into two main categories: 
“descriptive” and “predictive”, as the primary goals of data mining in general, is to have 
results for prediction and description [22], [23], [24].  
 

 As for the prediction, it has to do with using fields in a database, in order to 
forecast unknown or future values of other fields. To be more specific, prediction 
refers to the creation of models that are capable of producing prediction results when 
applied to unseen, future cases [25]. Classification and regression are the most 
frequent types of tasks that are applied in predictive data mining. 

 
 As for the description, it focuses on finding human-interpretable patterns which 

describe the data. To be more specific, the description has to do with models that 
summarize and explain data for the purpose of inference. Summarization and 
visualization of databases are the main applications of descriptive data mining. The 
important fact of this concept is that it makes someone to see the data set from 
various levels of abstraction, which eases the examination of the general behavior 
of the data, since it is very difficult to derive that from a large database.   

 
However, some of the predictive models can be descriptive, until the degree that they 
are understandable, and vice versa, but the distinction among them is useful for 
understanding the final goal. 

Having understood the two major data mining types, it is time the different types of 
data mining learning models that are commonly used to solve the different data mining 
problems, to be mentioned. These are categorized into two (2) basic categories: the 
supervised and the unsupervised learning models [22], [23]. 

 Supervised data mining creates relationships based on labeled (known) training 
data and uses this created relationship, in order to map new unlabeled data. In 
addition, this kind of learning model can forecast the value of the output 
variables, according to a set of input variables, by developing a model from 
a training data set where the values of input and output are previously known.  
  

 Unsupervised data mining finds hidden patterns in unlabeled (unknown) data, for 
which there is no previous knowledge. In unsupervised data mining, there are 
no output variables to predict, so its main objective is to find different patterns in 
data, according to the relationships among the points of the data set. 

Having in mind all the aforementioned, the last goal of this section is to categorize the 
different data mining techniques, according to the data set we have and the results that 
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we want to derive from the process. These data mining techniques can be grouped into 
the following basic categories [24]:  

 Classification has to do with the mapping of the data into one of several 
predefined classes. It is a data mining function that assigns the data points of a 
date set in a collection, to target categories or classes. The main goal of 
classification is to predict the aforementioned target category or class, while its 
tasks begin with a data set in which the data are labeled and previously known. 
 

 Regression techniques are used in order to predict a target variable based on the 
input variables. It is a learning technique which maps a data point to a real-
valued variable, while it is based on a generalized model built from a previously 
known data set. One should have in mind that always, the output variable is 
numeric. 
 

 Clustering is the process of identifying natural groupings among the data set. It is 
a technique that assigns a data point into one of several groups (clusters). In the 
case of clustering, the groups must be determined from the data, unlike 
classification in which the groups are already defined. Generally, clusters are 
defined by discovering natural groupings of data items based on similarity 
metrics, probability density models or the distances between the data. 
 

 Anomaly detection is able to identify the data points that are significantly different 
from the other data points among the data set. One of the most prolific 
applications of anomaly detection, is credit card transaction fraud detection. 
 

 Text mining is a data mining application where the input data is text, which can 
be found in the form of documents, messages, emails and web pages. To help the 
process of data mining among text data, the text files are converted into 
document vectors, where each unique word is considered as a different attribute. 
Once the text file is converted to document vectors, standard data mining tasks 
such as classification or clustering, can be applied on these document vectors.  

 

2.5.2 Data mining algorithms 
 
An algorithm, as we have already seen in the previous chapters, is a step-by-step 
procedure for solving a problem. In data mining, it is the way with which a particular 
data problem is solved.  
 
Many of the algorithms have a number of different steps which are repeated various 
times until a limiting condition is met or until the desire result outcomes.  
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A data mining classification task can be solved using various approaches and 
algorithms such as decision trees, k-nearest neighbors (k-NN), Bayesian Models, density 
based models and regression algorithms.  
 
In general, the choice of which algorithm to use according to the problem that has to be 
solved, depends on the following: 
 

 Type of data set 
 

 Objective of the data mining 
 

 Structure of the data 
 

 Computational power 
 

 Number of records and attributes 
 

 Available time 
 
The analyst has to decide about what algorithm has to use, by evaluating and testing 
the performance of multiple algorithms.  
 
There have been hundreds of algorithms developed in the last few decades to solve the 
various data mining problems that may appear, especially now that we have to deal 
with the big data phenomenon [23].  
 
At this thesis, as it was mentioned on Chapter 1, the main goal was to implement a data 

mining algorithm to run in parallel on top of an OLAP database. For that reason, the 

data mining algorithm that was chosen to be implemented was the fuzzy kMeans 

algorithm. The aforementioned algorithm belongs to the category of clustering 

algorithms, and it is mostly used for unknown and unlabeled data, in order to assign 

data points to multiple clusters with different degree of association to each one.  

  

As a result of this, we will not mention any further details for the other data mining 

tasks, apart from the task of clustering, which will be our main interest during the thesis. 

Answers will be given to questions such as how the clustering techniques are 

performed, when should we prefer the clustering algorithms and why in general 

clustering can help us to gain information out of different kinds of data. 

 

Further details about how the fuzzy kMeans Clustering Algorithm works and clusters 

data, are going to be given in chapter 5 (chapter of the algorithm implementation). 
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Table 1, provides a summary of some data mining tasks with the most commonly used 
algorithms, followed by some examples.   
 
 
Tasks Algorithms Examples 

Classification  Decision trees 
 Neural networks 
 Bayesian models 
 k-nearest Neighbors 

Assigning new customers 
into one of the known 
customer groups, according 
to their behavior 

Regression  Linear regression 
 Logistic regression 

Predicting unemployment 
rate for next year 
 

Anomaly Detection  Distance based 
 Density based 
 Local Outlier Factor 

(LOF) 

Fraud detection in credit 
cards 
 

Clustering  kMeans  
 fuzzy kMeans 
 Density Based 

clustering (DBSCAN) 

Partition customers in 
groups, according to their 
similarities 

Table 1 - Data mining tasks 
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2.6 Clustering 
 
Clustering can be considered as the most important unsupervised learning technique, 
where a set of patterns in a multi-dimensional space, are grouped into clusters in such a way 
that patterns in the same cluster are similar in some sense and patterns in different clusters are 
dissimilar in the same sense [37]. A cluster, in general, is a collection (group) of objects 
which are similar between them and are dissimilar to the objects belonging to other 
clusters. 
 
We can show this with a simple graphical example (Figure 6): 

 

Figure 6 - Clustering data 

Each circle represents one cluster containing several points. In this simple example 
(Figure 6), the circles obviously represent the best clustering of the data points into four 
clusters based on the distance of the points, to the cluster centroids. Circles are a good 
way to think of clusters, because clusters are also defined by a center point and radius 
[26], [28], [33], [34]. 

The center of the circle is called the centroid (mean) of that cluster. It is the point whose 
coordinates are the average of the coordinates of all the data points in the cluster. 

In this case we can easily identify the four (4) clusters into which the data can be split. It 
should be mentioned that for the clusters above, the similarity criterion is the distance. 
In general, it must be said that two or more points belong to the same cluster if they are 
close according to a given distance. As a result, this type of clustering is called distance-
based clustering. Some of the most used distance measures are the following [28], [35]: 

 Euclidean Distance Measure 
 Squared Euclidean Distance Measure 
 Manhattan Distance Measure 
 Cosine Distance Measure 
 Tanimoto Distance Measure 
 Weighted Distance Measure 



28 
 

Another kind of clustering is conceptual clustering, where two or more data points are 
grouped according to their fit to a given description, not according to simple similarity 
measures, like the previous kind of clustering. 

Depending on the clustering technique used, the number of groups or clusters is either 
user defined or automatically determined by the algorithm. Its main objective is not to 
predict a target class variable, but to simply capture the possible natural groupings in the data 
[26]. 
 

2.6.1 Clustering applications 

 

Clustering has a wide variety of applications, ranging from market partition to 
customer partition, and web analytics [26], [29]. 
 
The most common application of clustering is to explore the data and find all the 
possible meaningful groups that the data can be split. Some of the most common 
applications of clustering are:  
 
1. Marketing: Clustering can be used to find the common groups of customers based on 
all the past customers’ behaviors, attributes or purchase history. 

2. Document clustering: It automatically groups the text documents into groups of similar 
topics. It provides a way of identifying key topics, understanding and summarizing 
these clustered groups, rather than reading through the whole documents which is a 
time consuming process. 

3. Session grouping: In web analytics, clustering can be helpful to understand clusters of 
clickstream patterns and discover different kinds of clickstream profiles. 

4. Reduce Dimensionality: In an n-dimensional data set, the attributes can be reduced to 
less categorical attributes. So, the complexity is reduced, although there is loss of 
valuable information because of the dimensionality reduction to less attributes. 

5. Object Reduction: It can be used to find the most common representation of all the data 
points that belong to the same cluster and it can be a new point whose values are the 
means of the values of all the points that belong to the cluster. 

6. Search Engines: Clustering algorithms are playing a significant role behind the search 
engines. Search engines try to group similar objects in one certain cluster, while they 
move dissimilar objects far from each other. So, clustering provides results for the data 
that is searched, according to the nearest similar or identical object, which belong to the 
cluster around the searched data. 
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2.6.2 Clustering techniques 
 

Clustering techniques can be classified based on the algorithmic approach which is used 
in order to find clusters in the data set [30], [31], [32]. 
 
 Partitioning clustering: In a data set of n objects, a partitioning method 
develops k partitions of the data, where each partition represents a cluster (k ≤ n). 
Partitioning clustering divides the data into k groups, such that each group must 
contain at least one object. Most of the partitioning methods typically obey to the rule 
that each object must belong to exactly one cluster. The general idea of a good clustering 
is that objects which belong to the same cluster are close to each other, whereas objects 
in different clusters are far apart. 
 
 Density-Based clustering: Its general idea is to continue growing a specific cluster as 
long as the density (number of objects or data points) in the “neighborhood” exceeds 
some given threshold. A cluster can be defined as a region where data points are 
gathered, surrounded by a low-density area where data points are sparse. Each area 
with high density can be assigned to some cluster and the low-density area can be 
considered as faulty or noisy data points. However, in this form of clustering not all 
data objects are clustered since noisy data points are discarded and not assigned to any 
clusters. 
 
 Hierarchical clustering: Hierarchical clustering is a process where a cluster hierarchy 
is created based on the distance between the various data points. The output is a tree 
diagram that shows the different clusters at any point of precision which is specified by the user 
[33]. There are two approaches to create an hierarchy of clusters:  
 

o A bottom-up approach (agglomerative) starts with each data point forming a 
separate cluster. Afterwards, it merges the data groups close to one another, until 
all the groups are merged. 

o The top-down approach (divisive) starts with all the data points belonging to the 
same cluster. Afterwards, in each iteration, a cluster is divided into smaller sub-
clusters, until each data point gets to one cluster. 
 

 Model (Distribution)-Based clustering: In Model-Based clustering, a cluster can be 
thought of as a grouping that has the data points belonging to the same probability distribution 
[35]. So, each cluster can be represented by a distribution model (like Gaussian or 
Poisson), where the parameter of the distribution can be iteratively optimized between 
the cluster data and the model. 
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In Table 2, the main characteristics of each clustering method are described, according 
to their type: 
 

Method General Characteristics 

Partitioning clustering  Finds exclusive spherical clusters 
 Is distance based 
 May use an average number to represent the 

cluster centroid 
 Effective for small-medium sized data sets. 

Hierarchical clustering  Clustering is a hierarchical decomposition 
 Cannot correct faulty merges or splits 
 May uses techniques like micro-clustering 

Density-Based clustering  Finds clusters of various shapes 
 Can handle noisy data 
 Each point must have a minimum number of 

points within its region 
 Needs density parameters as termination 

condition 

Model (Distribution) -
Based clustering 

 Data is generated by a mixture of underlying 
probability distribution 

 Optimizes the fit between the data and 
mathematical models 

Table 2 - Clustering method's characteristics 

 

2.6.3 Clustering algorithms 
 

Clustering algorithms can be categorized based on their cluster model, as listed in 
section 2.6.2. In general, there are hundreds of published clustering algorithms, where 
not all provide models for their clusters and as a reason for that they cannot easily be 
categorized and classified.  
 
Some clustering algorithms use the basic concepts and ideas of multiple clustering 
methods, and for that reason it is complicated most of the times to characterize that a 
given algorithm belongs to only one clustering method. Moreover, there are some 
applications that may have clustering criteria which require the integration of several 
clustering techniques, at the same time, in order to output the final results. 
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For all the aforementioned, it can be assumed that there is not an objectively “correct” 
clustering algorithm, but one should have in mind that for a particular problem, the 
most appropriate clustering algorithm has to be chosen by testing and experiments, 
unless there is a specific reason to prefer a certain clustering model instead of a different 
one [26], [34], [35]. 
 
Some of the most used and well known clustering algorithms, are listed in Table 3: 
 

Method General Characteristics 

Partitioning Clustering  Fuzzy kMeans 

 kMeans 

 CLARA 

 CLARANS 

Hierarchical Clustering  CURE 

 CHAMELEON 

 BIRCH 

 SLINK 

 

Density-based Clustering  DBSCAN 

 OPTICS 

 DENCLUE 

 CLIQUE 

 

Model (Distribution)-

Based Clustering 

 Expectation Maximization 

 COBWEB 

 CLASSIT 

 Self-Organizing Feature Map (SOM) 

 

Table 3 - Clustering algorithms 

 

After having studied in deep details the chapter of the state of the art on data analysis, 
the next goal is to study about the distributed processing framework of Hadoop, which 
offers distributed computational and storing techniques, to each project that is making 
use of it. As we have to implement our own distributed way of computing and storing 
the various clustering results of the fuzzy kMeans clustering algorithm, we have first to 
understand how the whole implementation of Hadoop functions in general.  
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Chapter 3 

Apache Hadoop 

 
Summary: “In this chapter, a deep-detailed study is done about what is the apache Hadoop. 
During the research, the components and the ecosystem of Hadoop are stated in a detailed way. 
Finally, the MapReduce paradigm and the Hadoop’s distributed file system are explained, which 
we are going to fully replace in the chapter of the implementation, after having discussed about 
them in details.” 
 

3.1 Apache Hadoop: A distributed processing framework 
 

Today, we are surrounded by data. People upload videos, take pictures on their mobile 
phones, send messages to friends, update their social network profiles, make comments 
around the web or click on advertisements. As a result of that, machines have to 
generate and store massive amounts of data, to provide it back to their owners and to 
gain valuable information out of it. 
  
This data growth, created multiple difficulties to the businesses of all over the world 
such as Google, Yahoo and Amazon. The aforementioned businesses, had every day to 
deal with millions of bytes of data in order to discover which websites were mostly 
visited, what books were in demand and what type of advertisements were more 
amusing to the people. However, all the existing tools were becoming incapable to 
process and derive results from such large amounts of data. For that reason, Google 
published the MapReduce framework, a different system used to scale their big data 
processing needs. 
 
Around 2004, Google published two (2) papers describing the Google file system and 
the MapReduce framework. Google adopted these two technologies, in order to scale 
and help the complex work of its own search system. A new project was produced in 
order to combine better these two technologies, and as a result of that, Hadoop was born 
[7], [38], [40], [45]. 
 

3.1.1 What is Hadoop? 
 
Today, we live in the age of big data, where the data volumes we need to work with, 
demand more and more storage and processing capabilities. Big data come with two 
initial challenges: 
 

 How to store and work with extremely large data 
 How to understand data and turn it into advantage. 
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Hadoop helps the market by storing and providing computational capabilities over 
massive amounts of data. It provides and supports the development of open source software 
that supplies a framework for the development of highly scalable distributed computing 
applications. [39] Furthermore, the Hadoop framework deals with the processing details, 
leaving the developers free to focus on the development of applications logic. 
 
In a few words, Hadoop is a distributed system made up of a distributed file system and it 
offers a way to parallelize and execute programs on a cluster of machines.  
 
In Figure 7, we are able to see how one interacts with a Hadoop cluster. In general, a 
Hadoop cluster is a set of commodity machines which are networked together in a 
single location. Data storage and processing take place within this region of machines, 
while different users are able to submit jobs which require computational processes to 
Hadoop, using different machines (clients) in remote locations from the Hadoop cluster 
[40], [41], [42], [48].  
 

 

Figure 7 -Hadoop cluster 

 
In other words, Hadoop is an open source framework for writing and running 
distributed applications that process and store massive amounts of data and can run 
simultaneously. In Figure 8, we can see the two main components of Hadoop that help 
into the idea of distributed computation and storage (they will be described later). 
Hadoop, changes the way that data is generally managed and processed, by leveraging 
the power of computing resources composed of commodity hardware, while it can automatically 
recover from failures [50]. 
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Figure 8 - Hadoop's components 

 
The differences of Hadoop as for the distributed computing in general, that makes it so 
different and special, are listed below. In general, as for its computational techniques, 
Hadoop offers: 
 

 Accessibility: Hadoop runs on large clusters of machines, or on cloud computing 
services, making it easily accessible by every kind of client. 

 Robustness: As Hadoop is intended to run on commodity hardware, it is designed 
with the idea of having various hardware malfunctions, so it can manipulate 
failures in a better way. 

 Scalability: Hadoop scales and can be configured, in order to be able to handle 
larger data by adding multiple nodes to the cluster. 

 Simplicity: Hadoop allows users to quickly write efficient and effective parallel 
code, making it even easier to test it, by using its distributed computational 
techniques and storage. 

 

Hadoop, as shown in Figure 9, is generally a distributed master-slave architecture that 
consists of the Hadoop distributed file system (HDFS) for storage and the MapReduce 
framework for computing [38], [42]. 
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Figure 9 - Master-slave architecture of Hadoop 

HDFS is the storage component of Hadoop. It is a distributed file system which is 
developed for having high throughput and works best when it interacts with large files. 
In order to support this throughput, HDFS creates multiple block sizes and data locality 
optimizations, so to reduce network input/output [40]. HDFS, also offers scalability and 
availability, which are achieved because data is split into smaller parts and HDFS can 
manipulate various types of errors. In short, HDFS replicates files for a configured number 
of times, it is tolerant of both software and hardware failure and automatically re-replicates data 
blocks on nodes that have failed [51]. In Figure 10, we can see a logical representation of the 
components in HDFS, the NameNode and the DataNode, which will be described later. 
It also shows an application that is using the Hadoop file system library, in order to 
access the HDFS. 
 

 

Figure 10 - HDFS components 
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MapReduce is a distributed computing framework which allows the parallelization of 
the work over a large amount of raw data. This type of work, which could take a long 
time to finish using sequential programming techniques, can be completed in a few 
minutes using MapReduce, by working on a Hadoop cluster. The MapReduce abstracts 
away the complexities which someone faces with when working with distributed 
systems (e.g. computational parallelization, work distribution). In that way, MapReduce 
allows the programmer to focus on the application development, by splitting work 
submitted by a client, into small parallelized map - reduce workers (Figure 11). 
 

 

Figure 11 - MapReduce paradigm 

In general, MapReduce provides a model which transforms complex computations into 
computations over a set of <key, value> pairs. It schedules and monitors the 
MapReduce jobs and is responsible for executing again the failed tasks.  
 
So, the role of the programmer becomes much easier, as he has only to define the map 
and the reduce functions, where the map function outputs <key, value> pairs which are 
then processed by the reduce functions according to the keys of these pairs, in order to 
produce the final output. 
 
More details about how HDFS and MapReduce work, will be mentioned in the 
following chapters of the thesis [41], [42], [45], [46], [47]. 
 

3.1.2 Hadoop cluster components 
 
A typical Hadoop environment generally consists of a MasterNode along with multiple 
SlaveNodes (Figure 12). Each of these nodes consist of several specialized software 
components, which we will described next [38], [41], [42], [48]. 
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As we can see in Figure 12, the HDFS layer consists of two different types of nodes, the 
NameNode and the DataNode, while the MapReduce layer consists of two types of trackers, 
the JobTracker and the TaskTracker. 
 

 

Figure 12 - Hadoop cluster components 

 
In general, most of the Hadoop deployments consist of more than one MasterNode 
instances, and for that reason, the risk of a single point of failure is eliminated.  
 
The major elements that are presented in the MasterNode are: 
 

 JobTracker: It is assigned to interact with client applications. It is also responsible 
for distributing MapReduce tasks to particular nodes within a cluster. The 
JobTracker daemon combines the application with Hadoop. By the time that the 
code is submitted to the cluster, the JobTracker determines the files that have to 
be processed, assigns the nodes to different tasks and monitors all tasks while 
they are running. In case that one of these tasks fail, the JobTracker re-executes 
the task, either on the same or on a different node. It has to be mentioned that 
there is only one JobTracker daemon for each Hadoop cluster. 

 
 TaskTracker: It is a process in the cluster that receives tasks from the JobTracker. 

The TaskTrackers deal with the execution of individual tasks on each slave node. 
Usually, there is a single TaskTracker for each slave node, but each TaskTracker 
can spawn multiple JVMs to handle many tasks at the same time [47]. The TaskTracker 
has to communicate with the JobTracker, so in case that the JobTracker fails to 
receive a heartbeat from a TaskTracker within a short amount of time, it will be 
assumed that the TaskTracker has failed and will submit again the failed tasks to 
different nodes of the cluster. 
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 NameNode: The NameNode is the bookkeeper of HDFS, as it writes down the way 

that the files are split into file blocks, the nodes that store these blocks and the 
overall state of the DFS. The Client applications contact with NameNodes when 
they need to find or edit a file. The NameNode is the master of HDFS, which is 
responsible for directing the DataNode daemons. The server which hosts the 
NameNode typically does not store any data or perform computations, in order 
to shrink the workload of the machine. 

 
 DataNode: The DataNode has to store data in the HDFS and is responsible for 

replicating data across clusters. When someone wants to read or write an HDFS 
file, the file is split into blocks and the NameNode informs the client about which 
DataNode each block resides in. For that reason, the client speaks directly with 
the DataNode daemons in case that he wants to edit the files corresponding to 
the blocks. Furthermore, a DataNode interacts with other DataNodes in order to 
replicate its data blocks for redundancy and have to make reports to the 
NameNode. The first job of the DataNode is to inform the NameNode of the 
blocks that is currently storing, which gives instructions such as to create, move, 
or delete blocks from the local disk. 

 
On the other hand, apart from the MasterNode, there are also the SlaveNodes which 
unlike the MasterNode, a Hadoop deployment consists of hundreds of SlaveNodes, 
which have capabilities and power to analyze terabytes of data. Each SlaveNode 
includes a DataNode and a TaskTracker [42], [45], [49]. 
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3.1.3 Hadoop architecture 
 
The architecture of a Hadoop-based system can be described with Figure 13: 
 

 

Figure 13 - Hadoop architecture 

 
The Hadoop ecosystem grows by the day. It is impossible to keep track of all of the 
projects that interact with Hadoop in some form, and are using it in order to have 
distributed storage and computational techniques. 
 
A typical Hadoop-based platform includes the Hadoop distributed file system (HDFS), 
the parallel computing framework (MapReduce), a column-oriented data storage table 
(e.g. HBase), high-level data management systems (e.g. Pig and Hive), a big data 
analytics library (e.g. Mahout), a distributed coordination system (e.g. ZooKeeper), a 
workflow management module (e.g. Oozie), data transfer modules (e.g. Sqoop), data 
aggregation modules (e.g. Flume), and data serialization modules (e.g. Avro) [41], [46], 
[48].  
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As we can see in Figure 14, some of the projects that consist the Apache Hadoop’s 
Ecosystem, are the following [38], [49]: 
 

 

Figure 14 - Apache Hadoop ecosystem 

 
Apache Pig: Pig is a platform for analyzing large data sets that consists of a high-level 
language, in order to express data analysis programs, in combination with 
infrastructures for evaluating these programs. What makes Pig so special is that its 
structure is amenable to substantial parallelization [52], which in aids it handling very large 
data sets. Until now, Pig's infrastructure layer consists of a compiler that produces 
sequences of MapReduce programs. Pig's language layer currently consists of a textual 
language called Pig Latin, which is easy to use, optimized and extensible. 

Apache Hive: Hive is a data warehouse system for Hadoop that helps with the data 
summarization, the queries and the analysis of large datasets that are stored in Hadoop. 
It provides a mechanism to query the data using a SQL-like language called HiveQL. It 
also allows traditional MapReduce programmers to plug in their own map and reduce 
jobs when it is hard on inefficient to express it in HiveQL. Like apache Pig, Hive’s 
runtime engine translates HiveQL statements into a sequence of MapReduce jobs for 
execution. 

Apache Oozie: Apache Oozie is a server-based workflow engine which is specialized in 
running workflow jobs with actions that run MapReduce and Pig jobs. It is data aware 
and coordinates jobs according to their dependencies. Furthermore, Oozie has been 
integrated with Hadoop and can support any kind of Hadoop jobs. 
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Apache HBase: Apache HBase is an open source, distributed, and column-oriented data 
store. It was built on top of Hadoop and HDFS for the underlying storage and supports 
computations using MapReduce. The main components of HBase, are the HBase Master 
who is responsible for negotiating load balancing across all region servers and maintain 
cluster’s health and the RegionServer which is deployed on each machine and hosts data, 
processing I/O requests. It is scalable, meaning that it can host very large tables, 
containing billions of rows and millions of columns. 

Apache Mahout: Apache Mahout is an open source scalable machine learning library 
based on Hadoop. It implements many different approaches to machine learning and 
currently contains implementations of algorithms for classification, clustering and 
collaborative filtering. Mahout is scalable, and as a result of that it scales to reasonably 
large data sets, by leveraging algorithm properties or implementing versions based on 
apache Hadoop.  
 
Apache ZooKeeper: Apache ZooKeeper is a centralized coordination service for large 
scale distributed systems. It keeps and watches the configuration and the naming 
information, by providing distributed synchronization and group services for 
distributed systems applications. It has to be mentioned that ZooKeeper makes the 
HBase to be operational. 
 
Apache Sqoop: Apache Sqoop is a tool for moving bulk data between apache Hadoop 
and structured data stores such as relational databases, by providing various command-
line suites to transfer the data. 
 
Apache Flume: Apache Flume is a tool for collecting log data in distributed systems. It 
consists of a flexible and fault tolerant architecture, while it is mostly used for collecting 
log data from many diverse sources and moving them to a specific data store. 
 
Apache Avro: Apache Avro is a fast data serialization system for Hadoop which is 
making use of JSON, in order to define the data types and protocols, and to serialize 
data in a binary format. That serialized data is coupled with the data schema, which 
makes easier its processing with the use of various programming languages. 
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3.2 Apache Hadoop ecosystem 
 

As it was mentioned earlier, Hadoop has a distributed master-slave architecture whose 
core components are the Hadoop distributed file system (HDFS), which is used for 
distributed storage and the MapReduce framework, which is used for distributed 
computational capabilities. In the following sections, there are given more information 
on how these two components work and communicate, aiding the goal of Hadoop. 
 

3.2.1 Hadoop distributed file system (HDFS) 
 
The Hadoop distributed file system (HDFS) is a distributed file system designed to run 
on commodity hardware. It has many similarities with the existing distributed file 
systems, but the differences from them can be significant.  
 
Generally speaking, Hadoop distributed file system (HDFS) is a fault-tolerant 
distributed file system that has been optimized for streaming reads on large files and is 
suitable for applications that have large data sets. In addition, HDFS uses a simple 
model for data consistency where files can only be written to once.  
 
HDFS is making use of a concept called block replication to replicate data across the 
various nodes in the cluster. In general, HDFS uses a much larger block size when 
compared to desktop file systems. By the time that a file has been stored into the HDFS, 
it is split into one or more data blocks, while copies of these blocks are distributed to 
nodes in the cluster to have high data availability in the case of a disk failure. The 
number of copies that HDFS has to make for each data block is determined by the 
replication factor setting. By default, the replication factor is 3, meaning that three 
replicas of a data block will be distributed across the nodes in the cluster [53], [54], [55]. 
 

HDFS Architecture 
 
As we have already discussed, HDFS has a master-slave architecture (Figure 15)  
[56], [57]. 
 
A HDFS cluster consists of a NameNode, which is a master server that manages the file 
system and deals with the access to files by clients.  
Furthermore, there are a number of DataNodes, usually one per node in the cluster, 
which deal with the storage attached to the nodes that they run on.  
 
HDFS allows user data to be stored in files where a file is split into one or more blocks, 
while these blocks are stored in a set of DataNodes. The NameNode is able to open, 
close and rename files and directories, and it determines how the blocks will be mapped 
to the DataNodes. The DataNodes server read and write requests from its clients and 
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can also perform block creation, deletion, and replication if they are told to by the 
NameNode. 
 
In addition, apart from these, the HDFS includes a secondary NameNode, which make 
some people think that when the primary NameNode goes offline, the secondary 
NameNode takes over. In fact, the secondary NameNode connects with the primary NameNode 
and builds check-points of the primary NameNode directory information, which the system then 
saves to local or remote directories [58]. These check-points can be used to restart a failed 
primary NameNode without having to re-execute the previous actions, and then to edit 
the log to create an up-to-date directory structure. 
 

 

Figure 15 - HDFS architecture 

 
The file content is split into blocks (typically 128 megabytes), while each block of the file 
is independently replicated at multiple DataNodes. The blocks are stored on the local 
file system on the DataNodes, while all blocks in a file, apart from the last block, have 
exactly the same size. 
 
The NameNode periodically receives a Heartbeat and a BlockReport from each of the 
DataNodes in the cluster. The Heartbeat means that the DataNode is functioning well. In 
the case that a replication of a block is lost because of a failure, the NameNode creates 
another block replication. The NameNode sends instructions to the DataNodes by 
replying to heartbeats which include commands to: replicate blocks to other nodes, 
remove local block replicas, re-register and send an immediate block report, or shut 
down the node. 
 
HDFS is built using the Java language, which means that HDFS can be deployed on a 
wide range of machines, and as a result of that any machine that supports Java can run 
the NameNode and the DataNode software [55], [57]. 
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3.2.2 MapReduce framework 
 

MapReduce is a relatively new technology, which builds upon much of the 

fundamental work from both mathematics and computer science. MapReduce concept 

is that of "divide and conquer", where a single problem is split into multiple individual 

sub-problems. However, this approach becomes even more desiring when the sub-

problems are executed concurrently, at the same time. 

Hadoop MapReduce is a software framework for easily writing applications which can 

process large amounts of data in-parallel, on large clusters of commodity hardware in a 

reliable and fault-tolerant way.  

In this programming paradigm, applications are divided into self-contained units of work 

[64], which can be run on any node in the cluster. In a Hadoop cluster, a MapReduce 

program is known as a job, which is run by being broken down into smaller parts, 

known as tasks, which are programmed to run on the nodes in the cluster where the 

data exists [59], [60], [65], [66]. 

 

Figure 16 - MapReduce tasks 

As we can see in Figure 16, the applications submit jobs to a specific node in a Hadoop 
cluster, which is running a JobTracker. The JobTracker is responsible to communicate 
with the NameNode to see if all of the data which is required for the job is available 
across the cluster.  
 
The job is then broken into map tasks and reduce tasks for each node in the cluster to 
work on. The JobTracker is trying to schedule tasks on the cluster where the data is stored, 
rather than sending data across the network to complete a task [64]. 
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However, the MapReduce framework and the HDFS typically exist on the same set of 
nodes, so the JobTracker can easily schedule tasks on nodes where the data is stored. 
 

 The map tasks, take a set of data and transform it into another set of data, where 
individual elements are broken down into <key, value> pairs.  

 The reduce tasks, take the output from a map task as an input and combine those 
pairs into a smaller set of pairs. 

A set of programs that run continuously, known as TaskTrackers, watches the status of 
each map and reduce task. In the case that a task fails to complete, the failure is 
reported to the JobTracker, which reschedules the task on another node in the cluster. 

The whole MapReduce concept, provides a great range of scalability, while it also 
maximizes parallelism by manipulating data stored across multiple clusters. The data 
sets for Hadoop MapReduce are stored in the HDFS in data blocks which can be 
processed independently by map tasks in parallel. MapReduce applications do not have 
to be written in Java, though most MapReduce programs that run natively under 
Hadoop are written in Java [61], [62]. 
 
As we can see in Figure 17, the MapReduce framework uses the data blocks which are 
stored in the HDFS as input to map tasks. The JobTracker is responsible for the 
distribution of the map and the reduce tasks to the TaskTrackers, running on each of the 
machines. All data are transformed in the form of <key, value> pairs. After the map 
tasks, the outputs are shuffled and sorted in the same group, based on their keys, so that 
all the values with the same key will be given to the same reducer tasks. The output of 
the reduce task is written back to the HDFS [60], [61], [62], [63]. 
 

 

Figure 17 - MapReduce framework 
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MapReduce Example 

 

In Figure 18, we can see a simple MapReduce example, which counts the words that are 

repeated in a small text file. 

 

Figure 18 - MapReduce example 

According to that example, we can easily define the three different phases that a 

MapReduce job is split: 

 

 Firstly, we have the pre-Map phase, where the data is read from the file system 

and is partitioned to blocks. 

 Then, during the Map phase, each map task reads the blocks, and transforms the 

data into <key, value> pairs. 

 During the next phase, the Shuffle phase, the data with the same keys are grouped 

and sorted together, keeping their <key, value> pair format. 

 Afterwards, the Reduce phase starts, where each group of the Shuffle phase is 

assigned to a single reduce task, which combines the values with the same keys. 

 Finally, the result of the Reduce phase is written back to the file system, having 

an obvious smaller size than before. 
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Chapter 4 

Apache Mahout 

 
Summary: “In this chapter, the data mining software of apache’s Mahout is explained. Apache 
Mahout belongs to the Hadoop’s ecosystem, and as our goal is to understand how it performs 
parallel clustering with massive data, we have to fully understand how the clustering techniques 
are fulfilled with Mahout. For that reason, a detailed research is being done, as for the clustering 
part of Mahout, which uses the MapReduce paradigm, implemented by Hadoop.” 
 

4.1 Apache Mahout: a data mining software 
 
The Mahout project started by some people who were involved in the apache Lucene 
project who were interested in the fields of machine learning and had a desire for 
implementations with high scalability of some common machine learning algorithms 
for clustering and classification. Mahout began its life in 2008 as a subproject of apache’s 
Lucene project, which provides advanced implementations of search, text mining and 
information-retrieval techniques. In the computer science field, these concepts had a lot 
in common with machine learning techniques like clustering or classification. As a 
result, by some people there was given a biggest interest in the machine learning areas 
and soon after, Mahout absorbed another open source collaborative filtering project, 
called as Taste. Some years later, Mahout became a top-level apache project in its own 
right.  
 
Mahout, as we have mentioned, is a set of machine learning Java libraries which have 
been developed for various tasks, such as classification, clustering or pattern-mining. 
Much of Mahout’s work has been not only implementing algorithms in an efficient and 
scalable way, but also has to do with the conversion of some of the most well-known 
algorithms to be able to work on top of Hadoop. Hadoop’s logo is a yellow elephant, 
which explains the project name. A mahout is a person who keeps and drives an 
elephant.  
 
The power of Mahout is hidden in the fact that the algorithms it implements are 
developed in such a way, in order to be run in a Hadoop environment. As we have 
already discussed, Hadoop is a distributed framework that allows for an algorithm to 
run concurrently on multiple nodes using the distributed computational and 
distributed storage techniques. The main idea behind Hadoop is having multiple 
machines that are able to handle the computational and storage task of very large 
datasets at the same time, referring to datasets whose records require an order in the 
scale of millions of records [67], [68], [69]. 
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However, one could say that there are many user-friendly frameworks, equipped with 
more algorithms to perform these machine learning tasks. So why should we use 
Mahout instead of the other frameworks? Well, the main reason is that all the previous 
frameworks have not been developed to be scalable for very large datasets.   
 
In short, Mahout aims to: 

 Build and support a community of users, making it easy for everyone to do its 
tests and experiments with it 

 Focus on real-world and practical use cases 
 Provide quality documentation, with easy to understand example 

 
Although Mahout is a project open to implementations of all kinds of machine learning 
techniques, currently it focuses on three specific areas of machine learning. These 
specific machine learning areas that Mahout currently supports its algorithms are mostly 
used in real applications. These areas are the following [69], [70]:  
 

 Collaborative filtering (Recommender engines) 
 Classification (Categorization) 
 Clustering 

 

Collaborative Filtering (Recommender engines) 
 
Collaborative filtering (CF) is a technique that uses user information and behavior such as 
ratings, clicks, history and purchases to provide recommendations to other site users, 
with similar behavior. It is mostly used to recommend products to buy such as books, 
music and movies, but it is also used in other applications in order to shrink and sort 
multiple forms of data. Given a set of users and items, collaborative filtering 
applications recommend products to the current user of the system. There are four 
different ways of generating this kind of recommendations: 
 

 User-based: Recommend items by finding users with similar behavior or 
preferences. 

 Item-based: Calculate the similarity between similar products and provide users 
with different kind of recommendations. 

 Slope-One: A simple and fast way of recommendation where different products 
are recommended according to user ratings 

 Model-based: Provide recommendations according to a model which is developed 
according to users’ behavior and ratings. 

 
All the aforementioned approaches have the idea of calculating the similarity between 
users and their ratings. There are many ways to compute this kind of similarity while 
there are multiple measures so that you can determine which one works best for every 
kind of data. 
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Nowadays, there are hundreds of services or sites that try to recommend products such 
as books or movies, according to the web user’s history and behavior. Some of these, are 
the following:  
 

 Facebook uses recommender techniques to identify people which someone 
probably knows, but does not know if he has a Facebook account or not.  

 Amazon is the most famous e-commerce which uses recommendations. Based on 
past purchases and the user’s activity, it recommends items that is most likely to 
interest the user, but does not know it yet. 

 Netflix recommends movies that may be interesting for the users, based to the 
ratings of the users with similar movie tastes and behavior. 

 Dating sites can recommend people to people, according to the preferences of 
each one. 

 

Classification 
 
Classification techniques can find how much a thing belong or not to a category, or how 
much it does or does not have a specific attribute. Usually, these systems learn by 
looking at multiple f items which belong to various categories, in order to result in 
classification rules. 
 
The goal of classification is to label unseen documents, so to sort them together. Many 
classification approaches in machine learning calculate a variety of statistics that 
combine the specifications of a document with a certain label, in order to create a model 
that can be used afterwards in order to classify unknown or unseen documents.  
 
The mostly used features for classification usually can contain words or probabilities for 
these words to belong in a book. However, these features can be anything that helps to 
associate a document with a specific label and can be integrated into the classification 
algorithm. 
 
In general, classification helps someone to decide whether a thing is similar to a 
previously observed pattern or not, and it is mostly used to classify behavior or patterns 
that seem not to be usual. For instance, classification could be used to detect fraudulent 
activities, or it could be used to understand the content of a message. Whether it 
indicates anger or satisfaction. One should have in mind that, each of these techniques 
work in a better way when they are provided with massive data, as the results are 
usually better. Sometimes, these techniques must not only work on massive amounts of 
data, but have to produce fast results, making the idea of scalability a very important 
issue. 
 
Mahout offers various classification algorithms, most of which are developed to run on 
top of Hadoop. For these algorithms, in order to function properly, a model has to be 
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trained to represent the patterns to be identified, and then tested against a subset of the 
data set. In most cases of classification problems, one or more people have usually to go 
through and manually find a specific subset of the data, which will be used to train the 
classification algorithm. 
 
Nowadays, this general idea has many applications among the various enterprises and 
companies. Some of these, are the following:  
 

 Yahoo! Mail is able to decide whether or not an email is spam based on prior 
emails and spam reports from other users, as well as on characteristics of the 
email itself. 

 Google’s Picasa, a photo management application, is able to decide whether a 
region of an image contains a human face, according to the colors and the 
characteristics.  

 Optical character recognition software is able to classify small regions of scanned 
text into specific and individual characters. 

 Apple’s Genius feature in iTunes, uses classification in order to classify songs into 
playlists that will be probably likable by its users. 

  

Clustering 
  
Clustering, as we have already seen, tries to group a large number of things together 
into multiple clusters that have similarities among them. It is used in order to discover 
hierarchy and order in a large or difficult-to-interpret data set. So it is used for finding 
interesting and previous unknown patterns and making the data set easier to 
understand.  

 
Like CF, clustering calculates the similarity between items in a specific collection, but it 
only has to sort together similar items, in the same group of clusters. In many 
implementations of clustering, items are usually represented as vectors in a multi-
dimensional space. As a result of this, one is able to calculate the distance between two 
items, if he has in his position the vectors of the data points and a specific distance 
measures. After that, the actual clusters can be calculated by grouping together the 
items that are close in distance. 

As with classification, Mahout has various clustering algorithms, each with different 
characteristics. For instance, the kMeans algorithm is scalable but requires the user to 
specify the number of the initial clusters, while Dirichlet clustering requires the user to 
pick a distribution model, including the number of initial clusters he prefers. 
 
There are many different ways to calculating the clusters, which have both advantages 
and disadvantages. Some of these ways work from the bottom up, by creating larger 
clusters from smaller ones, while other tend to partition a large cluster into smaller 
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ones. Both ways have various criteria for exiting the process at some point before they 
conclude to a pattern that is not interpretable and understandable. 
 
Some examples where clustering is used, nowadays, to cluster unknown and unlabeled 
data are the following: 
 

 Google News groups articles by topic using clustering techniques, in order to 
present news grouped by logical story, rather than presenting a full list of all the 
articles that have been written that day. 

 Search engines group their search results using again their logical content, like 
before. 

 In companies, consumers can group into different clusters according to several 
attributes such as their total income, geographical location and buying habits.  

 
In Table 4, we can see the algorithms that Mahout supports, as for making 
recommendations, classification and clustering among very large datasets. For each of 
these algorithms, it is given a short description [67], [68], [69], [70]. 

 

Algorithm Category Description 

Distributed Item-based 

Collaborative Filtering 

 

Recommender 

Engines 

Finds a user’s preference for one item by 

looking at past preferences for similar items 

Collaborative Filtering 

Using a Parallel Matrix 

Factorization  

Recommender 

Engines 

Predicts which items a user might prefer, 

among them which has not yet seen or 

bought 

Naïve Bayes Classification Used to classify objects into binary 

categories 

Hidden Markov Models Classification The system being modeled is assumed to be 

a Markov process with hidden states 

 

Logistic Regression Classification Is used for prediction of the probability of an 

event to happen, using predictor variables 

that may be either numerical or categories 

Random Forest Classification MapReduce implementation where each 

mapper builds a subset of the forest using 

only the data available in its partition 

Canopy Clustering Clustering For preprocessing data before using a 

kMeans or Hierarchical clustering algorithm 

https://cwiki.apache.org/confluence/display/MAHOUT/Collaborative+Filtering+with+ALS-WR
https://cwiki.apache.org/confluence/display/MAHOUT/Collaborative+Filtering+with+ALS-WR
https://cwiki.apache.org/confluence/display/MAHOUT/Collaborative+Filtering+with+ALS-WR
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Fuzzy kMeans Clustering Discovers soft clusters where a particular 

point can belong to more than one cluster, 

according to its degree of association to each 

cluster 

kMeans Clustering Clustering Aims to partition n observations 

into k clusters in which each observation 

belongs to the cluster with the nearest mean. 

Spectral Clustering Clustering Makes use of the spectrum of the similarity 

matrix of the data examining 

the connectedness of the data 

Table 4 - Mahout's algorithms 

In this thesis, as it was mentioned in the previous chapters, the algorithm which is 
going to be implemented to run in parallel on top of an OLAP database, is the fuzzy 
kMeans algorithm. This algorithm, as we can see in Table 4, has to do with the 
clustering techniques of Mahout, and for that reason more details about clustering with 
Mahout in general, are going to be given in section 4.2. 
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4.2 Clustering with Mahout 
 

Mahout, as we have already discussed, supports several clustering-algorithm 
implementations, all written in the MapReduce framework, each with its own set of 
goals and criteria. 
 
In general, the steps involved in clustering data using Mahout (Figure 19) are [69], [70]: 

1. Prepare the input dataset. If clustering has to be performed with text, we have to 
convert the text to a numeric representation. 

2. Run the clustering algorithm using one of the many Hadoop-ready driver 
programs that are available in Mahout. 

3. Read and evaluate the results from the output directory. 
4. Run again the experiment, if it is considered necessary. 

 

 

Figure 19 - Clustering with Mahout 

 

 

Preprocess the data 

 

Firstly, one should have in mind that clustering algorithms require data that is in a 
suitable format for processing. Generally, in Machine Learning, the data is often 
represented in a vector format, sometimes called a feature vector. In clustering, a vector is 
an array of weights that represent the data point and can come from various areas, such 
as a sensor data or user profiles. 
 
In Mahout, vectors are implemented as three different classes, each of which is 
optimized for different scenarios: DenseVector, RandomAccessSparseVector and 
SequentialAccessSparseVector. 
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 DenseVector can be thought of as an array of doubles, whose size is the number of 
features in the data. 

 RandomAccessSparseVector is like a HashMap between an integer and a double, 
where only non-zero valued features are permitted. 

 SequentialAccessSparseVector is like having two parallel arrays, one of integers and 
the other of doubles, where again only non-zero valued entries are allowed.  
 

Depending on the data, we will need to choose an appropriate implementation in order 
to have good algorithm performance. Generally speaking, text-based problems are 
sparse, making SparseVector the correct choice for them. On the other hand, if the values 
for most of the vectors are non-zero, then a DenseVector is more appropriate. 
 
After that, we have to save the vectors in a SequenceFile format as input for the 
algorithm, which is a format from the Hadoop library that encodes a series of <key, 
value> pairs. 
 

Run the Clustering algorithm 

 

Finally the desired clustering algorithm is run, according to the different criteria and 
needs. Depending on what clustering algorithm is being chosen, the user has to set the 
initial number of clusters, the maximum number of iterations that the algorithm needs to run 
before stopping, a possible threshold after which the algorithm has to stop, a specific 
distance measure, according to which the distances between the data points and the 
cluster centroids are calculated, and so on. 
 
As it was mentioned earlier, the clustering algorithms that Mahout implements run as 
MapReduce jobs, so according to how large the dataset is and how it has been split, the 
number of the mappers and the reducers is not predefined. 
 

Read and evaluate the results 

 
After all of these, the algorithm stops, it stores the results of each iteration to different 
sequence files and the user can observe and evaluate them, using the clusterdump 
utility of Mahout, which converts the sequence files to a human readable format. The 
ClusterDumper takes the input set of clusters and an optional dictionary that was 
generated during the conversion of the data to vectors, and outputs the clustering 
results into human readable form. 
 
There are many approaches to evaluating the cluster results. Many people start simply 
by using manual inspection and ad-hoc testing. However, it is often necessary to use 
more in-depth evaluation techniques, as analyzing the output of clustering is an 
important steps to understand the output patterns. It can be done with simple 
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command-line tools or GUI-based visualizations. By the time that the clusters are 
visualized and the areas with the problems have been identified, these results can be 
transformed into quality measures, which give numeric values showing how good or 
how bad the final clusters are. 
 
One good way for evaluating the clustering results is using the inter-Cluster and intra-
cluster distances. In short, the distance between all pairs of cluster centroids can be 
calculated using some distance measure and can be represented in a table.  
 

 This table of the inter-Cluster distance given the information of what happened 
after the clustering, by showing how near or far the resulting clusters ended up 
from each other. 

 Intra-Cluster distance has to do with the distance among the data points that 
belong to a specific cluster, rather than the distance between two or more 
different cluster centroids. This kind of distance is able to give an idea of how 
well the distance measure was able to bring the items together. 

 
If the results were not satisfying, then the process has to be repeated from the 
beginning, changing some of the parameters used to run the algorithm, or even 
changing the algorithm that was run. 
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Chapter 5 

Parallel clustering with fuzzy kMeans 

 
Summary: “In this chapter the clustering algorithm which we are going to implement on top of 
an OLAP database, is explained in details. Moreover, the implementation of the aforementioned 
algorithm is being detailed, as for how it works with Mahout on top of Hadoop. Finally, the 
implementation that has been developed is mentioned in deep details, as for how the fuzzy 
kMeans clustering algorithm works in parallel on top of an OLAP database.” 
 

5.1 Fuzzy kMeans: A clustering algorithm 
 

In fuzzy clustering, every point has a degree of belonging to a cluster, rather than 
belonging to just a single cluster. For that reason, points that are found to the edge of a 
cluster, may have a smaller degree of association to that cluster, than the points that can 
be found in the center of the cluster. Fuzzy kMeans generally tries to deal with the problem 
where points are somewhat in between centers by replacing distance with probability, which 
could be some distance function, such as having probability relative to the inverse of the distance 
[77]. 
 

Fuzzy kMeans belongs to the family of fuzzy logic based clustering algorithms and was 
introduced in 1984 by Bezdek. It attempts to partition a collection of n elements into a 
collection of K clusters by associating each gene with all clusters via a real valued vector of 
indexes [72]. As the name says, the fuzzy kMeans clustering algorithm implements a 
fuzzy form of the kMeans clustering, whereas it tries to generate overlapping clusters 
from a data set. kMeans tries to find the clusters where each point of the data set 
belongs to one single (hard) cluster, whereas fuzzy kMeans discovers the soft clusters. 
In a soft cluster, as it was mentioned earlier, any point can belong to more than one 
cluster with a certain degree of association towards each. This degree has to do with the 
distance from the point to the centroid of the cluster [71], [72], [73], [76]. 
 
In addition, fuzzy kMeans has a parameter, m, called the fuzziness factor, and has 
values greater than 1. In general, Fuzzy kMeans interacts with all of the data set but 
instead of assigning vectors to the nearest clusters, it calculates the degree of association 
of the point to each of the clusters. Suppose for a vector, V, that d1, d2, ..., dk are the 
distances to each of the k cluster centroids. The degree of association (u1) of vector (V) 
to the first cluster (C1) is calculated as [71], [75]: 
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In the same way, we can calculate the degree of association to the other clusters by 
replacing d1 with d2, d3, and so on. It is clear from the expression that m should be 
greater than 1, or else we would have Non-accepted-Number (NaN) results.  
 

 If we choose the value of 2 for m, we will see that all the degrees of association 
for any data point sum up to one.  

 If we choose a value close to 1, like 1.000001, for m, the Fuzzy kMeans algorithm 
behaves more like the kMeans algorithm as m is getting closer to 1.   

 
If m increases, the fuzziness of the algorithm increases, having more overlapping  
[74], [75], [76]. 
 

Algorithm’s steps 
 
In short, the fuzzy kMeans algorithm’s basic steps are shown below: 
 
1. The algorithm selects k points as the initial cluster centers (“means”), which 

represent the initial group centroids. 
 

2. For each data point of the data set, the degree of association is calculated for each 
different cluster centroid, using the formula that was mentioned above. 

 

m is usually considered as m=2 and the distances which are represented by the 
symbol di are calculated according to the chosen distance measure and are the 
distances between each point and each of the clusters centroids. 

 
3. When all the degrees of association have been calculated, each cluster center 

(centroid) is recomputed as the sum of the data points multiplied each by its degree 
of association to the cluster, divided by the sum of the degree of association of the 
points in the specific cluster. 
 
For example, assuming that we have k points, then the cluster centroid of the 
cluster C1 would be: 

C1 = 
u1∗coord1 + u2∗coord2 + … + uk∗coordk

u1 + u2 + … + uk
 

 
 

4. Steps 2 and 3 repeat until the centroids converge according to a given threshold, or 
until the number of maximum iterations has reached its maximum value. 
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5.2 Fuzzy kMeans on top of HDFS 
 
For the implementation of fuzzy kMeans on top of HDFS, it was used the projects of 
Mahout, which contains machine learning libraries which support the field of 
clustering. The design is similar to the other clustering algorithms in Mahout, as it was 
mentioned in Chapter 4.  
 
The implementation of the algorithm, accepts as an input a sequence file which contains 
vector points. It should be mentioned that the user can either provide the cluster centers 
as input or can allow canopy algorithm to run and create the initial number of clusters. 
 
For every iteration, the cluster output is stored in a directory named as clusters-N (N is 
the iteration number), while the program does not modify the input directories. 
 
The code has set a number of reduce tasks equal to the number of map tasks. So, in 
every reduce task there are created files with the name of part-00000, which contain the 
results of the MapReduce jobs and are stored into the clusters-N directory (N is the 
iteration number).  
 
The final results of the MapReduce jobs, are stored in a folder named as clusters-N-final 
(N is the iteration number), and the algorithm finishes its job when the maximum 
number of iterations has been reached or there is convergence, according to a specific 
threshold. 
 
The code of the clustering Mahout implementation, in order to have results using the 
MapReduce paradigm, is using the classes of a Driver, a Mapper, a Combiner and a 
Reducer as follows [74]: 
 

 FuzzyKMeansDriver: The Driver iterates over the input data points and the cluster 
centroids for the specified number of iterations or until it is converged. During 
every iteration, a new clusters-N directory is created which contains the 
modified cluster centers obtained during the Fuzzy kMeans iteration. This will 
be provided as input clusters in the next iteration.  Once Fuzzy KMeans is run for 
specified number of iterations or until it is converged, a map task is run to output 
the point and the cluster membership to each cluster pair, as final output to a 
directory named as clusteredPoints. 
 
The class of the FuzzyKMeansDriver, in order to work properly, is fed with the 
following variables: 
 
1. input: a file path string to a directory that contains the input data, stored in a 

Sequence File format. 
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2. clustersIn: a file path string to a directory that contains the initial clusters, 
stored in a Sequence File format. 

3. output: a file path string to an empty directory which is used for the output 
from the algorithm, to be stored. 

4. convergenceDelta: a double value used to determine if the algorithm has 
converged or not. 

5. maxIterations: the maximum number of iterations that the algorithm is able to 
run. 

6. m: a double which is the "fuzzyness" factor. 
7. runClustering: a boolean that indicates that if it is true, the clustering step will 

be executed after the clusters have been determined. 
8. emitMostLikely: a boolean that indicates that if it is true, the clustering step 

should only emit the most likely cluster for each clustered point. 
9. Threshold: a double indicating that if the emitMostLikely is false, then it is the 

cluster probability threshold which is used for emitting multiple clusters for 
each point. 

10. runSequential: a boolean that indicates that if it is true, the algorithm will run 
sequentially in memory, rather that running MapReduces jobs. 

 
 FuzzyKMeansMapper: The Mapper reads the input cluster and computes the 

degree of association of each point to each cluster. The degree of association has 
to do with the distance of the data point to the cluster centroid, which is 
computed using the user supplied distance measure. 
 

 FuzzyKMeansCombiner: The Combiner receives all the <key, value> pairs from the 
Mapper and produces partial sums of the degrees of association of the data 
points, for each cluster. 
 

 FuzzyKMeansReducer: The Reducers receive the keys and the values that are 
associated with those keys, and afterwards they sum the values to produce a new 
centroid for each cluster. Finally, the reducer encodes the clusters which have not 
converged with a 'SC' cluster ID and the clusters which have converged with a 
'SV' cluster ID. 

 
In the following figures, it is a given a full image of how the Fuzzy kMeans 
implementation works on top of HDFS. For each of the figures, it will be given an 
explanation of how the algorithm works and outputs its final results to the user, in 
order to observe and evaluate them. 
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Preprocessing steps  

 

Figure 20 - Preprocessing steps on top of HDFS 

 

Firstly, when the project is executed, it asks from the user to insert the number of 
desired clusters, in order the implementation to know how many clusters it is going to 
create. 
Example: k=2. 
 
After that, it reads the whole data set sequentially (line by line), and it stores it to the 
HDFS, splitting it in blocks of 64 MB each. 
Example: We have a data set called test, which is stored on the HDFS in one block. 
 
The implementation’s first job is to create in the HDFS, the input folder, where it writes 
a new sequence file, which contains the data set in a vectorised form (<key, value> 
pairs), with different key for each value. 
Example: It stores the sequence file called vectors which contains the data set in the 
following way: 

Key: 0, Value: {0:2.0, 1:6.0} 
Key: 1, Value: {0:3.0, 1:5.0} 

… 
 
In addition, it writes a sequence file which contains the initial centroids, which are the 
first k different points of the data set and have the SoftKluster format. 
Example: It writes the sequence file called part-00000, which contains two (2) initial 
centroids in <key, value> pairs, with a different key for each value (SoftKluster): 
 

Key: SC-0, Value: SC-0{n=0 c=[2.000, 6.000] r=[]} 
Key: SC-1, Value: SC-1{n=0 c=[3.000, 5.000] r=[]} 
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Pre-MapReduce steps 
 

 

Figure 21 - pre-MapReduce steps on top of HDFS 

 
The next job of the implementation has to do with starting the FuzzyKmeansDriver, 
which takes as an input the parameters we have explained above: Input, clustersin, 
output, convergenceDelta, maxIterations, m, runClustering, emitMostLikely, threshold, 
runsequential.  
Example: The FuzzyKmeansDriver accepts the following parameters:  
 

Input: vectors m: 2 
Clustersin: part-00000 runClustering: true 
Output: out emitMostLikely: true 
convergenceDelta: 0.005 threshold: 0.0 
maxIterations: 20 runsequential: false 

 
 
But firstly, it reads the sequence file which contains the initial centroids in <key, value> 
pairs, and it returns the values as a list. 
Example: Afterwards, it reads the part-0000 sequence file and it returns the following 
list: 

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
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Then, it creates the folder named as clusters-0, where it stores a sequence file called 
_policy which contains the value of the convergence delta and the value of the number m. 
In addition, it stores k files which contain the k centroids, in <key, value> pair format. 
After all of these, it is time for the MapReduce jobs to start. 
Example: The FuzzyKMeansDriver runs and stores to the HDFS, the _policy file which 
contains the following:  

Key: “ ” , Value: 0.0010 
Key: “ ” , Value: 2.0 

 
Finally, it creates and stores to the out folder of the HDFS, two (2) different sequence 
files named as part-00000 and part-00001, which are the following: 
 

Key: 0, Value: SC-0{n=0 c=[2.000, 6.000] r=[]} 
Key: 1, Value: SC-1{n=0 c=[3.000, 5.000] r=[]} 

 
 

MapReduce steps 
 

 

Figure 22 - MapReduce on top of HDFS 

 
Before the Map job starts, the Fuzzy kMeans implementation reads the contents of the 
_policy file which contains the convergence delta and the m. 
Example: It reads the _policy file which contains the following:  
 

Key: “ ” , Value: 0.0010 
Key: “ ” , Value: 2.0 
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The Map phase starts. Firstly, it reads the k sequence files which contain the initial 
centroids in <key, value> pairs and returns a list with the values of the k centroids.  
Example: It reads the part-0000 and part-00001 sequence files and it returns the 
following list, with the values of the <key, value> pairs, with the initial centroids: 
  

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
 
Then, for each vectorised point the map job, it is doing the following. It returns the 
distance between each vectorised point and each cluster centroid and it stores it in a list.  
Example: During the first time that the Map job runs, it uses the Euclidean distance 
measure and it calculates the Euclidean distance between the point with value 
{0:1.0,1:1.0} and the cluster centroids [2.000, 6.000] and [3.000, 5.000]. The list that it 
returns is the following: 
  

[5.099, 4.472] 
The same happens for all the other points. 
 
Afterwards, having calculated the aforementioned distances, it uses the following 
formula to calculate the Degree of Association of each point to each cluster, and it stores 
it in vector format. 

 
Finally, it stores the results of the degree of association of the different points of the data 
set, in <key, value> pairs, after having scanned the whole sequence file with the data 
points. 
Example: During the first time that the Map job runs, it calculates the degree of 
association of the point with value {0:1.0, 1:1.0} and the clusters with the following 
centroids [2.000, 6.000] and [3.000, 5.000]. The vector that it returns is the following: 
  

{0:0.4347, 1:0.5652} 
 
The same happens for all the other points. 
 
After that, it stores the results of all of the degrees of association of all the points: 
 

Key: 0, Value: {0:0.57,1:0.43} 
Key: 1, Value: {0:0.19,1:0.81} 

Key: 2, Value: {0:0.4347,1:0.5652} 
... 
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Then, it is time for the Reduce jobs to start.  
 
Firstly, it reads the k sequence files which contain the initial centroids in <key, value> 
pairs and returns a list with the values of the k centroids.  
Example: It reads the part-0000 and part-00001 sequence files and it returns the 
following list, with the values of the <key, value> pairs, with the initial centroids: 
  

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
 
Then, for each initial cluster, it calculates the new cluster centroid by adding all the data 
points together, multiplied by their degree of association to each cluster, and dividing 
this sum with the sum of the degrees of association. 
Example: It calculates that the new cluster centroid of the 1st cluster with key equal to 0 
is: 

c=[1.640, 0.360] 
 
It compares the new calculated centroid with the old centroid using the convergence 
delta that was assigned in the beginning. If their difference is less or equal than the 
convergence delta, then the centroids converge, so the final form of the cluster changes 
from SC to SV. On the other hand, the final form of the cluster remains as is. 
Example: It calculates the Sqrt(1.64^2+0.36^2)-2*(1.64*2+0.36*6)+(2^2+6^2)) and 
compares it with the convergence delta for the cluster with key equal to 0, the result 
shows that they do not converge, so the final form of the cluster that will be calculated 
is SC. 
 
Finally, the reduce phase calculates the following as for each cluster: 
 

 The total number of the points that belong to the cluster, by adding all the 
degrees of association of the points to the cluster 
 

 The new centroid, by adding all the data points together, multiplied by their 
degree of association to each cluster, and dividing this sum with the sum of the 
degrees of association. 

 
 The new radius (population standard deviation), by calculating the square root 

of the data points multiplied twice by their degree of association to each cluster, 
multiplied with the total number of points and extracted by the square of the 
sum of the new centroid. This square root, divided by the total number of the 
points that belong to the cluster, is the radius of the aforementioned cluster. 

 
The results are written in a new clusters folder, into a sequence file (<key, value> pairs), 
as well as the _policy file which is stored again to the new clusters folder. 
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Example: The implementation after doing the aforementioned calculations, it calculates 
the following for the cluster with key equal to 0. 
 

 n = n1+n2+… = 4 
 

 cx = (n1*u1+n2*u2+…)/n = 1.640 
 

 rx = Sqrt.[(n1*u1*u1+n2*u2*u2+…)*n - cx^2]/n = 2.090 
 
The final cluster has the following format: 
 

SC-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]} 
 

It is stored in the folder clusters-1 in the HDFS, in the sequence file part-r-00000 which 
contains <key, value> pairs for each cluster. 
 

Key: 0, Value: SC-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]} 
Key: 1, Value: SC-0{n=3 c=[1.437, 2.080] r=[0.577, 0.736]} 

 
Moreover, in the folder clusters-1, it is stored the _policy file which contains the 
following:  
 

Key: “ ” , Value: 0.0010 
Key: “ ” , Value: 2.0 

 
However, during the check of the convergence, if all the centroids converge with their 
old-ones at some iteration, then the clusters folder where the converged clusters are 
stored, is renamed to clusters-final folder, and stores the final results. 
Example: The cluster converged at the second iteration, so the folder clusters-2 with the 
converged clusters, is renamed to clusters-2-final. 
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runClustering set to true 
 

 

Figure 23 - runClustering set to true on top of HDFS (1/2) 

 
In the case that the boolean variable of runClustering at the FuzzyKmeansDriver is set 
to true, then it is time for one last map job to run, in order for the algorithm to show 
where and how the data points have been assigned to each cluster. In that case, a folder 
named as clusteredPoints is created, while the _policy sequence file is stored to the 
output folder of the HDFS. 
Example: The folder clusteredPoints is created and the _policy file is stored to the folder 
out of the HDFS, including the following: 
 

Key: “ ” , Value: 0.0010 
Key: “ ” , Value: 2.0 
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Figure 24- runClustering set to true on top of HDFS (2/2) 

 
Then, the final Map phase takes place.  
 
It reads from the clusters final folder the _policy file and the sequence file of the 
converged clusters, and returns their values as a list.  
Example: It reads the part-00000 sequence file of the clusters-2-final folder and it returns 
the following list, with the values of the <key, value> pairs, with the initial centroids: 
  
SV-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]}, SV-0{n=3 c=[1.437, 2.080] r=[0.577, 0.736]} 
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After that, for each Vectorised point it calculates the distance between the point and 
each of the cluster centroids and it stores it in a list.  
Example: During the first time that the Map job runs, it uses the Euclidean distance 
measure and it calculates the Euclidean distance between the point with value 
{0:1.0,1:1.0} and the cluster centroids [1.640, 0.360] and [1.437, 2.080]. The list that it 
returns is the following:  
  

[0.905, 1.165] 
The same happens for all the other points. 
 
Afterwards, having calculated the aforementioned distances, it uses the following 
formula to calculate the Degree of Association of each point to each cluster, and it stores 
it in vector format. 

 
Finally, it assigns the data point to the cluster with the biggest degree of association, 
storing it in a <key, value> pair format, where the key is the cluster identifier and the 
value is the vectorised format of the data point. 
Example: During the first time that the Map job runs, it calculates the degree of 
association of the point with value {0:1.0, 1:1.0} and the clusters with the following 
centroids [1.640, 0.360] and [1.437, 2.080]. The vector that it returns is the following: 
  

{0:0.623, 1:0.3763} 
 

As we can see, the point has a bigger degree of association with the cluster with 
identifier equal to 0, so it is assigned that it belong to this cluster, by creating the 
following <key, value> pair: 
 

key: 0, Value: {0:1.0,1:1.0} 
 
Finally, these <key, value> pairs are stored in a sequence file format to the 
clusteredPoints folder of the HDFS, making the algorithm to stop running. 
Example: The sequence file is named as part-m-00000 and is stored to the folder 
clusteredPoints. By reading this sequence file, we could see how the data points have 
been assigned to each cluster, according to their keys. 
 

Key: 1, Value: {0:2.0,1:6.0} 
Key: 1, Value: {0:3.0,1:5.0} 
Key: 0, Value: {0:1.0,1:1.0} 
Key: 0, Value: {0:8.0,1:4.0} 

... 
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5.3 Fuzzy kMeans on top of an OLAP database 
 
The implementation of fuzzy kMeans on top of an OLAP database, has many 
differences with the implementation that was explained in the section 5.2. 
 
In general, there are two main differences: 
 

 The idea of HDFS does not exist anymore. All the aforementioned files that were 
created and stored in different folders and sub-folders of the HDFS, are now 
stored entirely in an OLAP database. 
 

 The MapReduce paradigm has been fully replaced by a different <key, value> 
pair based implementation. In short, multiple threads read and write in parallel 
(concurrently) different data on the database tables, and do the same job without 
interrupting each other. At each thread, it is assigned a specific area of data 
where it can work, without having to communicate with the other threads or 
wait for the other threads to finish their jobs. 

 
More details about how the fuzzy kMeans implementation works in parallel on top of 
an OLAP database, will be given and explained accompanied with the following 
figures. It must be mentioned that in these figures, the differences between the previous 
implementation are shown clearly, marked with a red “X” symbol.  
 

Preprocessing steps 
 

 

Figure 25 - Preprocessing steps on top of an OLAP database 
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Firstly, when the project is executed, it asks from the user to insert the number of 
Clusters, in order for the Fuzzy kMeans implementation to know how many clusters it 
is going to create. 
Example: k=2. 
 
After that, it stores the whole data set, using the BULK_IMPORT option where the 
implementation creates a database table with as many columns as the coordinates of the 
data points of the data set, and after that it writes the whole file, by splitting it between 
the commas, and writing these different comma separated parts to the table. 
Example: We have a data set called test, which is stored in the table POINTS, like we can 
see below: 

ID    COL_1   COL_2
0 2.0 6.0
1 3.0 5.0

...
 

 
The implementation’s first job is to store the initial clusters to a database table, which 
has as many rows as the number k. 

Example: Because the initial clusters are two (2), it inserts as the clusters’ centroid the 
first two data points of the data set, in the table CENPOINTS_0: 
 

ID KEYS CENPOINTS
0 SC-1 SC-1{n=0 c=[3.000, 5.000] r=[]}
1 SC-0 CL-0{n=0 c=[2.000, 6.000] r=[]}
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Pre-NewMapReduce steps 
 

 

Figure 26 - pre-NewMapReduce steps on top of an OLAP database 

 
The next job of the implementation has to do with starting the FuzzyKmeansDriver, 
which takes as an input the following parameters: connection, convergenceDelta, 
maxIterations, m, runClustering, emitMostLikely, threshold, numberofpoints, k.  
Example: The FuzzyKmeansDriver accepts the following parameters:  
 

connection: database connect emitMostLikely: true 
convergenceDelta: 0.005 threshold: 0.0 
maxIterations: 20 Numberofpoints: 8 
m: 2 k: 2 
runClustering: true  

 
But firstly, it reads the database table which contains the initial centroids in <key, 
value> pairs, and it returns the values as a list. 
Example: Afterwards, it reads the table CENPOINTS_0  

ID KEYS CENPOINTS
0 SC-1 SC-1{n=0 c=[3.000, 5.000] r=[]}
1 SC-0 CL-0{n=0 c=[2.000, 6.000] r=[]}

 
and it returns the following list: 
  

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
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Then, it creates and writes to a database table the value of the convergence delta, and the 
value of the number m. After all of these, it is time for the New MapReduce jobs to start. 
Example: The FuzzyKMeansDriver runs and creates the table POLICY with the values 
of the convergence delta and the m, as follows: 

ID PAR VALUE
0 ConvergenceDelta 0.0010
1 m 2

 
 

NewMapReduce steps 
 

 

Figure 27 - NewMapReduce steps on top of an OLAP database 

 
Before the multithreaded map job starts, the fuzzy kMeans implementation reads the 
contents of the database table with the policy values which contain the convergence 
delta and the m. 
Example: It reads the table POLICY with the values of the convergence delta and the m, 
as follows: 

ID PAR VALUE
0 ConvergenceDelta 0.0010
1 m 2

 
 
The multithreaded Map phase starts.  
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Before continuing explaining the whole process, it should be mentioned that in order 
for the new MapReduce jobs to run in parallel without using the MapReduce paradigm, 
we have used the concept of threads. More particularly, according to the number of the 
data points that are stored in the database table POINTS, there are created different 
amount of threads, for splitting and assigning to them, multiple New MapReduce jobs, 
in order to run in parallel. For instance, we have considered that each thread will 
handle 1000 different points and will run its own New MapReduce job, without being 
interrupted or waiting for the other threads to finish.  
 
So if we had a data set with 5000 data points, there would be created 5 different threads, 
where each one would implement its own New MapReduce Job, with different data 
points each. 

Threads IDs of data points 

Thread-1 1-1000 
Thread-2 1001-2000 
Thread-3 2001-3000 
Thread-4 3001-4000 
Thread-5 4001-5000 

Table 5 - MapReduce jobs assigned to threads 

As a result of all of these, various threads are created. 
 
Firstly, each thread reads the database table which contains the initial centroids in <key, 
value> pairs and returns a list with the values of the k centroids. In addition, it reads the 
contents of the database table with the policy information. 
Example: It reads the table CENPOINTS_0: 

ID KEYS CENPOINTS
0 SC-1 SC-1{n=0 c=[3.000, 5.000] r=[]}
1 SC-0 CL-0{n=0 c=[2.000, 6.000] r=[]}

 
and it returns the following list, with the values of the <key, value> pairs, with the 
initial centroids: 

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
 
In addition, it reads the table POLICY which include the convergence delta and the 
number m: 

ID PAR VALUE
0 ConvergenceDelta 0.0010
1 m 2
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Then, each thread is doing the following. It reads the assigned to it values of the database 
table with the data points, and it returns the distance between each vectorised point and 
each cluster centroid, storing it into a list.  
Example: The first thread (thread-1), reads the assigned to it values of the table POINTS: 

ID    COL_1   COL_2
0 2.0 6.0
1 3.0 5.0
...

 
 
Then, it uses the Euclidean distance measure and it calculates the Euclidean distance 
between the point with value {0:1.0, 1:1.0} and the cluster centroids [2.000, 6.000] and 
[3.000, 5.000]. 
 
The list that it returns is the following: 

[5.099, 4.472] 
 
The same happens for all the other points, for each different thread. 
 
Afterwards, having calculated the aforementioned distances, each thread uses the 
following formula to calculate the degree of association of each of the assigned to it 
points, to each cluster, and it stores it in vector format. 

 
Finally, each thread stores the results of the degree of association of the different points 
of the data set in a database table, in a random order. 
Example: The first thread (thread-1), calculates the degree of association of the point 
with value {0:1.0, 1:1.0} and the clusters with the following centroids [2.000, 6.000] and 
[3.000, 5.000].  
The vector that it returns is the following: 

{0:0.4347, 1:0.5652} 
The same happens for all the other points, for each different thread. 
 
After that, each thread stores the results of all of the degrees of association of all the 
points, accompanied with their identification number and their coordinates, in the table 
MAP: 

ID    COORD    CLUSTER_0          ... 
0         2,6 0.57             ...
5         8, 4 0.76206              ...
1 3, 5 0.891
...
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After one of the threads finish its map job, it is time for the Reduce jobs to start, without 
waiting the other threads to finish their own jobs. 
  
To begin with, each thread reads the database table which contain the initial centroids 
in <key, value> pairs and returns a list with the values of the k centroids. In addition, it 
reads the contents of the database table with the policy information. 
Example: It reads the table CENPOINTS_0: 

ID KEYS CENPOINTS
0 SC-1 SC-1{n=0 c=[3.000, 5.000] r=[]}
1 SC-0 CL-0{n=0 c=[2.000, 6.000] r=[]}

 
and it returns the following list, with the values of the <key, value> pairs, with the 
initial centroids: 
  

[SC-0{n=0 c=[2.000, 6.000]=[]}, SC-1{n=0 c=[3.000, 5.000] r=[]}] 
 
In addition, it reads the table POLICY which include the convergence delta and the 
number m: 

ID PAR VALUE
0 ConvergenceDelta 0.0010
1 m 2

 
 
Then, each thread, for each initial cluster, for its assigned data points calculates the 
following: 
 

 The total number of the points that belong to the cluster, by adding all the 
degrees of association of the points to the cluster 
 

 The new centroid, by adding all the data points together, multiplied by their 
degree of association to each cluster, and dividing this sum with the sum of the 
degrees of association. 

 
 The new radius (population standard deviation), by calculating the square root 

of the data points multiplied twice by their degree of association to each cluster, 
multiplied with the total number of points and extracted by the square of the 
sum of the new centroid. This square root, divided by the total number of the 
points that belong to the cluster, is the radius of the aforementioned cluster. 

 
The results are written in a database table which contains the new “middle” clusters, 
which will be averaged in the next step, of the final reduce, according to their common 
keys.  
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More particularly, each thread deals with the data points that have been assigned to it, 
like there are no other data points. For that reason, each thread create its own clusters, 
which we will have to merge, by combining the clusters with the same identification 
key. 
Example: Each thread, calculates the following for the cluster with key equal to 0. 
 

 n = n1+n2+… = 1.43 
 

 cx = (n1*u1+n2*u2+…)/n = 1.765 
 

 rx = sqrt.[(n1*u1*u1+n2*u2*u2+…)*n - cx^2]/n = 0.482 
The “middle” cluster has the following format: 

SC-1{n=1.43 c=[1.765, 2.542] r=[0.482, 2.103]} 
 
Finally, the results are stored in the table CENPOINTS_COMB, where each cluster is 
accompanied with its own key, in order to find afterwards the clusters with the 
common keys and merge them. 
 

ID     KEYS    CENPOINTS         
0          0       SC-1{n=1.43 c=[1.765, 2.542] r=[0.482, 2.103]}
1          0       SC-1{n=2.54 c=[5.112, 4.165] r=[1.765, 1.668]} 
...

 
However, in that part, in order the procedure to continue, we have to wait for all the 
threads to complete their New MapReduce jobs, as our final step has to do with the 
combination of clusters with the common keys, according to the database table 
CENPOINTS_COMB. 
 
So, the time for the Final Reduce has come. 
During that phase, for the clusters that we have in the middle table 
CENPOINTS_COMB with common keys, we calculate the total number of observations 
(n), the total value of the centers (c) and the total value of the radius (r). 
 

 In order to calculate the total n, we add the number n of each centroid. 
 In order to calculate the final c, we calculate for each centroid a number called S1, 

by multiplying the number n of each cluster, with its center and by adding the 
different values of S1. So, after all of these cx=S1x/n 

 In order to calculate the final r, we calculate for each centroid a number called S2 
by adding the squared radius multiplied with the squared n, with the squared S1 
and by dividing the result with the number n. Finally, we add the different 
values of S2. So, after all of these rx = (sqrt(S2x*n-S1x*S1x))/n 
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Example: In our case, after the aforementioned computations, the merged cluster of the 
following clusters: 

SC-1{n=1.43 c=[1.765, 2.542] r=[0.482, 2.103]} 
SC-1{n=2.54 c=[5.112, 4.165] r=[1.765, 1.668]} 

 
is: SC-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]} 
 
The final merged clusters are stored in a database table, similar to the database table 
that had the initial clusters. 
Example: The results are stored in the table called CENPOINTS_1, where number 1 
indicates the iteration number. 

ID KEYS CENPOINTS
0   0 SC-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]}
...

 
 
Afterwards, the implementation selects the new centroids of the changed clusters from 
the database table and it compares them with the old ones, using the convergence delta 
which is selected from the database table with the policy variables. If their difference is 
less or equal than the convergence delta, then the centroids converge, so the final cluster 
ID changes from SC to SV. On the other hand, the form of the cluster remains as is. 
Example: It calculates the Sqrt(1.64^2+0.36^2)-2*(1.64*2+0.36*6)+(2^2+6^2)) and 
compares it with the convergence delta for the cluster with key equal to 0, the result 
shows that they do not converge, so the final form of the cluster that will be calculated 
is SC. 
 

runClustering set to true 
 

 

Figure 28 - runClustering set to true on top of an OLAP database (1/2) 
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In the case that the Boolean variable of runClustering at the FuzzyKmeansDriver is set 
to true, then it is time for one last map job to run, in order for the algorithm to show 
where and how the data points have been set to each cluster. In that case, there are not 
created any new database tables, and we proceed to the last map job, where again we 
have multiple threads doing the same job in parallel, with different data each.  
 

 

Figure 29 - runClustering set to true on top of an OLAP database (2/2) 

 
Then, the final Map phase takes place. Each thread, reads from the database table which 
contains the policy variables and the database table of the converged clusters, and 
returns their values as a list.  
Example: It reads the table POLICY, which is the following: 

ID PAR VALUE
0 ConvergenceDelta 0.0010
1 m 2
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Afterwards, it reads the table CENPOINTS_2 and it returns the following list, with the 
values of the <key, value> pairs, of the clusters: 
  
SV-1{n=4 c=[1.640, 0.360] r=[2.090, 6.035]}, SV-0{n=3 c=[1.437, 2.080] r=[0.577, 0.736]} 
 
After that, each thread reads from the database table which contains all the data points, 
the data points that have been assigned to it, according to their identification number. 
Example: Each thread reads the data points of the table POINTS, according to their 
assigned IDs. For instance, the first thread (thread-1) reads the first 1000 rows of the 
table POINTS, which is the following: 

ID    COL_1   COL_2
0 2.0 6.0
1 3.0 5.0
...

 
 
Then, each thread for each assigned to it data point calculates the distance between the 
point and each of the cluster centroids and it stores it in a list.  
Example: The first thread (thread-1), uses the Euclidean distance measure and it 
calculates the Euclidean distance between the point with value {0:1.0,1:1.0} and the 
cluster centroids [1.640, 0.360] and [1.437, 2.080].  
The list that it returns is the following:  

[0.9050, 1.1650] 
 

The same happens for all the other points, for each different thread. 
 
Afterwards, having calculated the aforementioned distances, each thread makes use of 
the following formula in order to calculate the degree of association of each assigned to 
it point, to each cluster, and it stores it in vector format. 

 
Finally, each thread assigns the data point to the cluster with the biggest degree of 
association, storing it in a database table in <key, value> pairs, where the key is the 
cluster identifier and the value is the vectorised format of the data point. 
Example: The first thread (thread-1), calculates the degree of association of the point 
with value {0:1.0, 1:1.0} and the clusters with the following centroids [1.640, 0.360] and 
[1.437, 2.080].  
 
The vector that it returns is the following:  

{0:0.6236, 1:0.3763} 
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As we can see, the point has a bigger degree of association with the cluster with 
identifier equal to 0, so it is assigned that it belong to this cluster, creating the following 
<key, value> pair: 

key: 0, Value: {0:1.0,1:1.0} 
 
So, the table that it creates is the CLUSTERED_POINTS table which contains an 
identification number, the cluster ID where each data point belongs to (key), 
accompanied with each vectorised format (value). The table is the following: 
 

ID CLUSTERID VECTORPOINTS
0 1 {0:2.0,1:6.0}
1 1 {0:3.0,1:5.0}
2 0 {0:8.0,1:4.0}
...

 
 
In that point, the description of the two different implementations finishes, and it is 
time for testing, using various datasets and configuring the parameters that each 
implementation takes as an input. 
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Chapter 6 

Evaluation 

 
Summary: “In this chapter, the tests of the aforementioned implementations are taking place. 
More specifically, there is given a data set, with various data points, with which we execute the 
two different implementations in order to compare them, and understand their behavior with 
data. However, before all that, the system specifications and the tools that were used for the tests 
are described thoroughly.” 
 

6.1 System specifications and tools 
 

Before running the tests with the various data sets for the two implementations that 
were mentioned on Chapter 5, we should first define the system specifications, in which 
the tests were run. 
 
In that case, the tests run on a computer with the following specifications (Table 6): 

Specifications Values 

Operating System Ubuntu 14.04 LTS 
Memory 11.7 GiB 
Processor Intel® Core ™ i7 CPU 930 @ 2.80 GHz x 8  
Graphics GeForce GTS 250/PCIe/SSE2 
OS type 64-bit 
Disk 971,7 GB 

Table 6 - System specifications 

As for the tools that were used, these are the following: 
 

 The Hadoop environment was the 1.2.1 version (single-node Hadoop installation). 
 

 For the tests on top of an OLAP database, as our first goal was to check whether 
the clustering results were correct or not, running with smaller data sets, we used 
Apache Derby, an open source relational database implemented entirely in Java. 
 

 The Mahout framework was the 0.9 version. 
 

 The Maven build automation tool that was used was the 3.0 version. 
 

  Both implementations were written and executed in Java (version 7). 
 

  The IDE that was used for the implementations was NetBeans (version 7.2). 
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6.2 Data set description 
 
To work with the implementations, there was used a randomly created data set, which 
contains information about the habits of a town’s citizens, about if they use or not 
public transports (named as ptusages). 
 
In general, the data set consists of 13 different columns, which describe the contents of 
Table 7 and can have values between a specific range, according to what they represent. 
In more details, the columns of the data set are the following: 
 

Public Transport Usage data set 

D
es

cr
ip

ti
o

n
 

Id
en

ti
fi

ca
ti

o
n

 

N
u

m
b

er
 

G
en

d
er

 

A
g

e 

M
a

rr
ie

d
 

C
h

il
d

re
n

 

E
d

u
ca

ti
o

n
a

l 

L
ev

el
 

W
o

rk
 

In
co

m
e 

D
ri

v
er

 

L
ic

en
se

 

P
u

b
li

c 

T
ra

n
sp

o
rt

 

u
se

rs
 

H
o

w
 o

ft
en

 

tr
a

n
sp

o
rt

 

u
si

n
g

 
M

o
n

th
ly

 

T
ra

n
sp

o
rt

 

ca
rd

 h
o

ld
er

s 

W
h

ic
h

 

tr
a

n
sp

o
rt

 i
s 

m
o

st
 

co
m

m
o

n
ly

 

u
se

d
 

R
an

g
e 

o
f 

v
al

u
es

 

1 - … 1/ 2 25 - 65 1/ 2 1/ 2/ 3/ 

4/ 5 

1/ 2/ 3/ 

4/ 5/ 6/ 

7 

1/ 

2 

1 - 

100000 

1/ 2 1/ 2 1/ 2 

/3 /4 

/5 

1/ 2 1/ 2 /3/ 4 

Table 7 - Public transport usage data set 

The values in the data set are numerical and separated with commas “,”, and represent 
the following: 
 

 Identification Number: From 1 - ∞, as it does not have a specific range of values 
 Gender: 1 (male) or 2 (female) 
 Age: between 25 and 65 
 Married: 1 (no) or 2(yes) 
 Children: 1 (zero) or 2 (one) or 3 (two) or 4(three) or 5 (4 or more) 
 Educational Level: 1 (no education) or 2(primary) or 3 (high school) or 4 (bachelor) 

or 5 (master) or 6 (PhD) or 7 (higher than the above) 
 Work: 1 (no) or 2(yes) 
 Income: between 1 and 100000 euros/year 
 Driver License: 1 (no) or 2(yes) 
 Public Transport Users: 1 (no) or 2(yes) 
 Public Transport Usage: 1 (zero times) or 2(1-2 times/week) or 3 (3-4 times/week) 

or 4(5-6 times/week) or 5 (everyday) 
 Public Transport Card Owners: 1 (no) or 2(yes) 
 Most Commonly used Public Transport: 1 (bus) or 2(metro) or 3 (tram) or 4(all of 

them)  
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6.3 Tests with fuzzy kMeans 

 

1st data set test 
 
The first (1st) data set that was used, contained 1000 different data points, where the 
values of each row were randomly created, according to the characteristics that were 
described earlier. A small sample of the data set can be seen below: 
 

1,2,58,2,4,4,2,61320,2,1,5,1,1 
2,1,40,1,3,5,2,20393,1,2,3,2,1 
3,2,69,2,2,2,1,80449,2,1,5,2,1 
4,2,44,1,3,4,2,76764,2,1,4,1,3 
5,1,22,1,4,1,1,49640,1,2,3,1,3 
6,1,38,1,3,5,1,89353,2,1,1,2,2 
7,2,51,2,2,5,2,45200,2,2,1,1,2 
8,2,27,2,3,1,1,41536,1,1,2,2,2 
9,2,49,1,5,7,1,27441,2,2,4,1,4 
10,1,24,2,4,4,2,27712,1,1,5,1,2 

… 
 
Having the data set in our hands, it is time to make the tests with the two different 
implementations. 
 

 Fuzzy kMeans on top of HDFS 
The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of HDFS 

Number of clusters (k): 5 

Distance Measure: Euclidean Distance 

Input: ptusages_1000 m: 2 

Clustersin: part-00000 runClustering: true 

Output: out emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 runsequential: false 

 
The size of the file that was stored in the HDFS was about 100 kBytes. For that reason it 
was only partitioned to one block. 
 
After running the tests with these parameters, if we browse the HDFS file system, we 
can see that the file ptusages_1000, has been successfully stored to the HDFS, and there 
have been created the “in” and the “out” folders (Figure 30). 
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Figure 30 - HDFS folders and files 

The “in” folder, contains the data points in vectorised form (vecpoints), while it also 
contains the initial centroids that have been chosen for the clusters (part-00000) (Figure 
31). 
 

 

Figure 31 - HDFS “in” folder 

The “out” folder contains the various clusters folders, created in each iteration (Figure 
32). 
 

 

Figure 32 - HDFS "out" folder 
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Finally, by opening a random folder among them, we can see that it contains the result 
sequence files of the specific iteration, including the policy files, the logs and the part-r-
0000 files which contain the cluster centroids of that specific iteration (Figure 33). 
 

 

Figure 33 - Results of the iteration 

 
The results of the test can be seen in Figure 34: 
 

 

Figure 34 - Results of the 1st test (k=5) 
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The results can be better seen and interpreted in Table 8: 
 

Results of the 1st test 

Total time of execution: 360 sec 

Total iterations: 20 

Converged: False 

Final Clusters: 
SC-4{n=225 c=[1.486, 44.634, 1.496, 2.983, 4.186, 1.451, 13467.481, 1.493, 1.494, 3.041, 
1.522, 2.412] r=[0.500, 15.527, 0.500, 1.389, 1.985, 0.498, 10930.452, 0.500, 0.500, 1.411, 
0.500, 1.106]} 
SC-3{n=169 c=[1.426, 45.100, 1.460, 2.950, 3.744, 1.567, 64940.915, 1.489, 1.511, 3.161, 
1.493, 2.473] r=[0.494, 15.342, 0.498, 1.375, 2.070, 0.495, 12615.177, 0.500, 0.500, 1.381, 
0.500, 1.122]} 
SC-2{n=233 c=[1.493, 43.863, 1.535, 2.975, 3.903, 1.492, 86144.167, 1.459, 1.482, 3.087, 
1.495, 2.573] r=[0.500, 14.789, 0.499, 1.380, 1.983, 0.500, 10734.890, 0.498, 0.500, 1.408, 
0.500, 1.124]} 
SC-1{n=182 c=[1.467, 44.129, 1.494, 3.023, 4.183, 1.483, 48533.726, 1.503, 1.483, 2.961, 
1.514, 2.491] r=[0.499, 15.094, 0.500, 1.422, 2.044, 0.500, 12143.111, 0.500, 0.500, 1.331, 
0.500, 1.070]} 
SC-0{n=189 c=[1.465, 45.123, 1.519, 3.031, 4.168, 1.498, 31446.144, 1.464, 1.435, 3.054, 
1.584, 2.479] r=[0.499, 14.567, 0.500, 1.396, 2.049, 0.500, 11918.056, 0.499, 0.496, 1.373, 
0.493, 1.121]} 

Table 8 - Results of the 1st test (k=5) 

 
 

 Fuzzy kMeans on top of Derby 
The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of Derby 

Number of clusters (k): 5 

Distance Measure: Euclidean distance 

connection: database connect emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 Numberofpoints: 1000 

m: 2 k: 5 

runClustering: true Points/Thread: 100 
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The results of the test can be seen in Figure 35: 

 

Figure 35 - Results of the 1st test (k=5) 

 
The results can be better seen and interpreted in Table 9: 
 

Results of the 1st test 

Total time of execution: 125 sec 

Total  iterations: 20 

Converged: False 

Final Clusters:  
SC-4{n=225 c=[1.486, 44.634, 1.497, 2.983, 4.186, 1.451, 13456.968, 1.493, 1.494, 3.041, 
1.522, 2.411] r=[0.5, 15.528, 0.5, 1.389, 1.985, 0.498, 10929.324, 0.5, 0.5, 1.411, 0.5, 1.106]} 
SC-3{n=169 c=[1.426, 45.09, 1.461, 2.951, 3.746, 1.567, 64944.573, 1.489, 1.51, 3.161, 1.492, 
2.472] r=[0.495, 15.348, 0.498, 1.375, 2.07, 0.496, 12602.862, 0.5, 0.5, 1.382, 0.5, 1.121]} 
SC-2{n=233 c=[1.493, 43.862, 1.535, 2.976, 3.903, 1.492, 86146.855, 1.46, 1.483, 3.087, 1.495, 
2.573] r=[0.5, 14.79, 0.499, 1.38, 1.983, 0.5, 10728.401, 0.498, 0.5, 1.408, 0.5, 1.124]} 
SC-1{n=181 c=[1.469, 44.093, 1.496, 3.026, 4.193, 1.48, 48462.03, 1.505, 1.481, 2.961, 1.512, 
2.484] r=[0.499, 15.114, 0.5, 1.424, 2.043, 0.5, 12156.863, 0.5, 0.499, 1.334, 0.5, 1.067]} 
SC-0{n=189 c=[1.464, 45.126, 1.519, 3.032, 4.168, 1.499, 31413.533, 1.465, 1.435, 3.055, 
1.584, 2.479] r=[0.499, 14.569, 0.499, 1.396, 2.049, 0.5, 11919.75, 0.499, 0.496, 1.373, 0.493, 
1.121]} 

Table 9 - Results of the 1st test (k=5) 
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 Fuzzy kMeans on top of HDFS 
The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of HDFS 

Number of clusters (k): 20 

Distance Measure: Euclidean Distance 

Input: public transport (1000) m: 2 

Clustersin: part-00000 runClustering: true 

Output: out emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 runsequential: false 

 
The size of the file that was stored in the HDFS was about 100 kBytes. For that reason it 
was only partitioned to one block. 
 
The results can be better seen and interpreted in Table 10: 
 

Results of the 1st test 

Total time of execution: 384 sec 

Total iterations: 20 

Converged: False 

Final Clusters (sample): 
… 
SC-14{n=48 c=[1.447, 47.990, 1.610, 3.279, 3.904, 1.522, 29083.302, 1.443, 1.432, 3.088, 
1.547, 2.582] r=[0.497, 14.300, 0.488, 1.356, 2.170, 0.500, 5474.661, 0.497, 0.495, 1.296, 0.498, 
1.098]} 
SC-15{n=61 c=[1.459, 44.678, 1.468, 3.027, 4.117, 1.403, 15789.857, 1.424, 1.544, 3.085, 
1.483, 2.441] r=[0.498, 16.448, 0.499, 1.279, 2.010, 0.491, 4869.394, 0.494, 0.498, 1.395, 0.500, 
1.144]} 
SC-16{n=38 c=[1.397, 44.745, 1.601, 2.975, 4.109, 1.452, 75378.195, 1.449, 1.531, 3.404, 
1.411, 2.334] r=[0.489, 15.861, 0.490, 1.239, 1.805, 0.498, 6132.535, 0.497, 0.499, 1.406, 0.492, 
1.162]} 
SC-17{n=51 c=[1.406, 43.520, 1.470, 2.970, 3.965, 1.588, 51480.500, 1.557, 1.495, 2.992, 
1.477, 2.653] r=[0.491, 15.389, 0.499, 1.416, 2.071, 0.492, 5360.318, 0.497, 0.500, 1.317, 0.499, 
1.096]} 
SC-18{n=46 c=[1.503, 42.484, 1.524, 2.929, 4.223, 1.350, 42083.719, 1.471, 1.451, 2.884, 
1.589, 2.437] r=[0.500, 14.295, 0.499, 1.380, 2.032, 0.477, 5623.872, 0.499, 0.498, 1.269, 0.492, 
1.052]} 
SC-19{n=44 c=[1.442, 44.079, 1.582, 2.501, 4.070, 1.376, 20358.498, 1.600, 1.397, 3.142, 
1.558, 2.463] r=[0.497, 15.469, 0.493, 1.346, 1.897, 0.484, 5714.087, 0.490, 0.489, 1.522, 0.497, 
1.131]} 

Table 10 - Results of the 1st test (k=20) 
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 Fuzzy kMeans on top of Derby 
The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of Derby 

Number of clusters (k): 20 

Distance Measure: Euclidean Distance 

connection: database connect emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 Numberofpoints: 1000 

m: 2 k: 20 

runClustering: true Points/Thread: 100 

 
The results can be better seen and interpreted in Table 11: 
 
Results of the 1st test 

Total time of execution: 454 sec 

Total iterations: 20  

Converged: False 

Final Clusters (sample):  
… 
SC-14{n=48 c=[1.447, 47.98, 1.609, 3.281, 3.903, 1.522, 29072.48, 1.443, 1.432, 3.089, 1.547, 
2.581] r=[0.497, 14.301, 0.488, 1.356, 2.17, 0.499, 5469.597, 0.497, 0.495, 1.296, 0.498, 1.098]} 
SC-15{n=61 c=[1.459, 44.68, 1.468, 3.027, 4.117, 1.403, 15784.991, 1.424, 1.544, 3.085, 1.483, 
2.441] r=[0.498, 16.449, 0.499, 1.279, 2.011, 0.49, 4867.114, 0.494, 0.498, 1.394, 0.5, 1.144]} 
SC-16{n=39 c=[1.397, 44.753, 1.6, 2.976, 4.109, 1.451, 75393.535, 1.449, 1.53, 3.405, 1.411, 
2.335] r=[0.489, 15.864, 0.49, 1.239, 1.805, 0.498, 6126.759, 0.497, 0.499, 1.406, 0.492, 1.162]} 
SC-17{n=51 c=[1.407, 43.505, 1.471, 2.972, 3.972, 1.587, 51471.746, 1.558, 1.494, 2.991, 
1.476, 2.65] r=[0.491, 15.404, 0.499, 1.418, 2.072, 0.492, 5347.636, 0.497, 0.5, 1.319, 0.5, 
1.095]} 
SC-18{n=46 c=[1.503, 42.465, 1.525, 2.926, 4.222, 1.35, 42065.593, 1.47, 1.451, 2.883, 1.589, 
2.439] r=[0.5, 14.277, 0.499, 1.38, 2.032, 0.477, 5617.517, 0.499, 0.498, 1.268, 0.492, 1.052]} 
SC-19{n=44 c=[1.442, 44.078, 1.581, 2.501, 4.07, 1.377, 20346.834, 1.6, 1.397, 3.14, 1.558, 
2.464] r=[0.496, 15.471, 0.493, 1.347, 1.897, 0.485, 5711.06, 0.49, 0.489, 1.522, 0.497, 1.131]} 

Table 11 - Results of the 1st test (k=20) 
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2nd data set test 
 
The second (2nd) data set that was used, contained 200.000 different data points, where the 
values of each row were randomly created, according to the characteristics that were 
described in the beginning of Chapter 6. A small sample of the data set can be seen 
below: 
 

1,1,24,2,4,4,2,27712,1,1,5,1,2 
2,2,69,1,4,5,1,4188,2,1,1,2,2 
3,2,47,2,4,2,2,66786,2,2,5,1,2 
4,2,44,1,3,4,2,76764,2,1,4,1,3 
5,1,22,1,4,1,1,49640,1,2,3,1,3 
6,1,38,1,3,5,1,89353,2,1,1,2,2 
7,2,51,2,2,5,2,45200,2,2,1,1,2 
8,2,27,2,3,1,1,41536,1,1,2,2,2 
9,2,49,1,5,7,1,27441,2,2,4,1,1 

… 
 
Having the data set in our hands, it is time to make the tests with the two different 
implementations. 
 

 Fuzzy kMeans on top of HDFS 
The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of HDFS 

Number of clusters (k): 5 

Distance Measure: Euclidean Distance 

Input: public transport (2*105) m: 2 

Clustersin: part-00000 runClustering: true 

Output: out emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 runsequential: false 

 
The size of the file that was stored in the HDFS was 6.7 MBytes. For that reason it was 
only partitioned to one block. 
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The results can be better seen and interpreted in Table 12: 
 

Results of the 2nd test 

Total time of execution: 544 sec 

Total iterations: 20 

Converged: False 

Final Clusters: 
SC-0{n=36890 c=[1.504, 43.906, 1.483, 2.984, 4.015, 1.485, 50107.192, 1.496, 1.499, 2.986, 
1.497, 2.495] r=[0.500, 15.283, 0.500, 1.407, 1.991, 0.500, 12198.332, 0.500, 0.500, 1.423, 
0.500, 1.119]} 
SC-1{n=38050 c=[1.494, 44.108, 1.499, 2.989, 4.035, 1.505, 32399.983, 1.503, 1.517, 2.970, 
1.506, 2.495] r=[0.500, 15.284, 0.500, 1.408, 2.008, 0.500, 12011.038, 0.500, 0.500, 1.418, 
0.500, 1.119]} 
SC-2{n=43870 c=[1.497, 44.224, 1.509, 2.999, 3.975, 1.498, 13704.547, 1.496, 1.506, 3.010, 
1.497, 2.510] r=[0.500, 15.263, 0.500, 1.427, 2.028, 0.500, 11184.638, 0.500, 0.500, 1.407, 
0.500, 1.115]} 
SC-3{n=43590 c=[1.504, 44.211, 1.496, 2.999, 3.970, 1.506, 86334.333, 1.501, 1.498, 2.970, 
1.502, 2.479] r=[0.500, 15.221, 0.500, 1.419, 1.991, 0.500, 11219.648, 0.500, 0.500, 1.414, 
0.500, 1.127]} 
SC-4{n=37600 c=[1.499, 44.073, 1.509, 3.019, 4.004, 1.501, 67401.272, 1.499, 1.498, 2.985, 
1.498, 2.491] r=[0.500, 15.380, 0.500, 1.421, 1.983, 0.500, 12081.586, 0.500, 0.500, 1.426, 
0.500, 1.116]} 

Table 12 - Results of the 2nd test (k=5) 

 
 Fuzzy kMeans on top of Derby 

The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of Derby 

Number of clusters (k): 5 

Distance Measure: Euclidean Distance 

connection: database connect emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 Numberofpoints: 200000 

m: 2 k: 5 

runClustering: true Points/Thread: 1000 
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The results can be better seen and interpreted in Table 13: 
 

Results of the 2nd test 

Total time of execution: 473 sec 

Total iterations: 20 

Converged: False 
Final Clusters:  
SC-0{n=36890 c=[1.504, 43.906, 1.483, 2.984, 4.015, 1.485, 50107.192, 1.496, 1.499, 2.986, 
1.497, 2.495] r=[0.500, 15.283, 0.500, 1.407, 1.991, 0.500, 12198.332, 0.500, 0.500, 1.423, 
0.500, 1.119]} 
SC-1{n=38050 c=[1.494, 44.108, 1.499, 2.989, 4.035, 1.505, 32399.983, 1.503, 1.517, 2.970, 
1.506, 2.495] r=[0.500, 15.284, 0.500, 1.408, 2.008, 0.500, 12011.038, 0.500, 0.500, 1.418, 
0.500, 1.119]} 
SC-2{n=43870 c=[1.497, 44.224, 1.509, 2.999, 3.975, 1.498, 13704.547, 1.496, 1.506, 3.010, 
1.497, 2.510] r=[0.500, 15.263, 0.500, 1.427, 2.028, 0.500, 11184.638, 0.500, 0.500, 1.407, 
0.500, 1.115]} 
SC-3{n=43590 c=[1.504, 44.211, 1.496, 2.999, 3.970, 1.506, 86334.333, 1.501, 1.498, 2.970, 
1.502, 2.479] r=[0.500, 15.221, 0.500, 1.419, 1.991, 0.500, 11219.648, 0.500, 0.500, 1.414, 
0.500, 1.127]} 
SC-4{n=37600 c=[1.499, 44.073, 1.509, 3.019, 4.004, 1.501, 67401.272, 1.499, 1.498, 2.985, 
1.498, 2.491] r=[0.500, 15.380, 0.500, 1.421, 1.983, 0.500, 12081.586, 0.500, 0.500, 1.426, 
0.500, 1.116]} 

Table 13 - Results of the 2nd test (k=5) 

 
 Fuzzy kMeans on top of HDFS 

The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of HDFS 

Number of clusters (k): 20 

Distance Measure: Euclidean Distance 

Input: public transport (1000) m: 2 

Clustersin: part-00000 runClustering: true 

Output: out emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 runsequential: false 

 
The size of the file that was stored in the HDFS was 6.7 MBytes. For that reason it was 
only partitioned to one block. 
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The results can be better seen and interpreted in Table 14: 
 

Results of the 2nd test 

Total time of execution: 1117 sec 

Total iterations: 20 

Converged: False 

Final Clusters (sample): 
… 
SC-14{n=13300 c=[1.501, 44.215, 1.509, 3.010, 3.955, 1.513, 4379.437, 1.506, 1.502, 3.004, 
1.484, 2.493] r=[0.500, 15.433, 0.500, 1.423, 2.022, 0.500, 4841.779, 0.500, 0.500, 1.390, 0.500, 
1.132]} 
SC-15{n=9520 c=[1.504, 43.874, 1.478, 3.020, 4.032, 1.479, 52429.165, 1.494, 1.498, 2.977, 
1.489, 2.455] r=[0.500, 15.007, 0.500, 1.389, 1.979, 0.500, 5724.105, 0.500, 0.500, 1.437, 0.500, 
1.114]} 
SC-16{n=9740 c=[1.480, 44.375, 1.499, 2.910, 4.125, 1.494, 24973.675, 1.483, 1.500, 2.992, 
1.494, 2.467] r=[0.500, 15.115, 0.500, 1.451, 2.024, 0.500, 5657.328, 0.500, 0.500, 1.407, 0.500, 
1.104]} 
SC-17{n=9180 c=[1.506, 44.108, 1.499, 3.016, 4.037, 1.522, 29650.978, 1.518, 1.543, 2.968, 
1.528, 2.504] r=[0.500, 15.121, 0.500, 1.384, 2.021, 0.499, 5827.210, 0.500, 0.498, 1.416, 0.499, 
1.134]} 
SC-18{n=9270 c=[1.519, 44.550, 1.519, 3.000, 4.026, 1.514, 70397.915, 1.512, 1.506, 3.021, 
1.495, 2.487] r=[0.500, 15.814, 0.500, 1.441, 1.979, 0.500, 5798.279, 0.500, 0.500, 1.451, 0.500, 
1.117]} 
SC-19{n=10930 c=[1.508, 43.297, 1.495, 3.012, 3.973, 1.505, 89799.787, 1.507, 1.499, 2.966, 
1.491, 2.453] r=[0.500, 15.028, 0.500, 1.427, 1.980, 0.500, 5341.568, 0.500, 0.500, 1.380, 0.500, 
1.136]} 

Table 14 - Results of the 2nd test (k=20) 

 
 Fuzzy kMeans on top of Derby 

The parameters used in that scenario, were the following: 
 

Parameters used for Fuzzy kMeans on top of Derby 

Number of clusters (k): 20 

Distance Measure: Euclidean Distance 

connection: database connect emitMostLikely: true 

convergenceDelta: 0.005 threshold: 0.0 

maxIterations: 20 Numberofpoints: 200000 

m: 2 k: 20 

runClustering: true Points/Thread: 1000 
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The results can be better seen and interpreted in Table 15: 
 

Results of the 2nd test 

Total time of execution: 1268 sec 

Total iterations: 20 

Converged: False 

Final Clusters (sample): 
… 
SC-14{n=13300 c=[1.501, 44.215, 1.509, 3.010, 3.955, 1.513, 4379.437, 1.506, 1.502, 3.004, 
1.484, 2.493] r=[0.500, 15.433, 0.500, 1.423, 2.022, 0.500, 4841.779, 0.500, 0.500, 1.390, 0.500, 
1.132]} 
SC-15{n=9520 c=[1.504, 43.874, 1.478, 3.020, 4.032, 1.479, 52429.165, 1.494, 1.498, 2.977, 
1.489, 2.455] r=[0.500, 15.007, 0.500, 1.389, 1.979, 0.500, 5724.105, 0.500, 0.500, 1.437, 0.500, 
1.114]} 
SC-16{n=9740 c=[1.480, 44.375, 1.499, 2.910, 4.125, 1.494, 24973.675, 1.483, 1.500, 2.992, 
1.494, 2.467] r=[0.500, 15.115, 0.500, 1.451, 2.024, 0.500, 5657.328, 0.500, 0.500, 1.407, 0.500, 
1.104]} 
SC-17{n=9180 c=[1.506, 44.108, 1.499, 3.016, 4.037, 1.522, 29650.978, 1.518, 1.543, 2.968, 
1.528, 2.504] r=[0.500, 15.121, 0.500, 1.384, 2.021, 0.499, 5827.210, 0.500, 0.498, 1.416, 0.499, 
1.134]} 
SC-18{n=9270 c=[1.519, 44.550, 1.519, 3.000, 4.026, 1.514, 70397.915, 1.512, 1.506, 3.021, 
1.495, 2.487] r=[0.500, 15.814, 0.500, 1.441, 1.979, 0.500, 5798.279, 0.500, 0.500, 1.451, 0.500, 
1.117]} 
SC-19{n=10930 c=[1.508, 43.297, 1.495, 3.012, 3.973, 1.505, 89799.787, 1.507, 1.499, 2.966, 
1.491, 2.453] r=[0.500, 15.028, 0.500, 1.427, 1.980, 0.500, 5341.568, 0.500, 0.500, 1.380, 0.500, 
1.136]} 

Table 15 - Results of the 2nd test (k=20) 
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6.4 Evaluation of the results 
 
After having run the different tests, we have the following results as for the two 
implementations: 
 

1st data set test 

 
 1st Scenario 

During the first test, the data set had 1000 different data points, and the number of the 
chosen clusters was k=5. 
 
By examining the results, we can see the following: 
 

HDFS implementation Derby implementation 

File size: 100 kBytes 

Distance Measure: Euclidean Distance 

Clusters: 5 Clusters: 5 

Total time of execution: 360 sec Total time of execution: 125 sec 

Total iterations: 20 Total  iterations: 20 

Converged: False Converged: False 

Differences between the final clusters: False 

Table 16 - 1st data set test - 1st scenario results 

In short, someone could observe that the fuzzy kMeans implementation on top of 
Derby, is 2.88 times faster, than the other implementation. As for the final clusters, they 
have exactly the same values, for the same number of iterations. 
 

 2nd Scenario 
During the first test, the data set had 1000 different data points, and the number of the 
chosen clusters was k=20. 
 
By examining the results, we can see the following: 
 

HDFS implementation Derby implementation 

File size: 100 kBytes 

Distance Measure: Euclidean Distance 

Clusters: 20 Clusters: 20 

Total time of execution: 384 sec Total time of execution: 454 sec 

Total iterations: 20 Total  iterations: 20 

Converged: False Converged: False 

Differences between the final clusters: False 

Table 17 - 1st data set test - 2nd scenario results 
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In short, someone could observe that the fuzzy kMeans implementation on top of 
HDFS, is a 0.84 times faster than the other implementation, which runs on top of Derby. 
As for the final clusters, they have exactly the same values, for the same number of 
iterations. 
 

2nd data set test 
 

 1st Scenario 
During the second test, the data set had 200.000 different data points, and the number of 
the chosen clusters was k=5. 
 
By examining the results, we can see the following: 
 

HDFS implementation Derby implementation 

File size: 6.7 MBytes 

Distance Measure: Euclidean Distance 

Clusters: 5 Clusters: 5 

Total time of execution: 544 sec Total time of execution: 473 sec 

Total iterations: 20 Total  iterations: 20 

Converged: False Converged: False 

Differences between the final clusters: False 

Table 18 - 2nd data set test - 1st scenario results 

In short, someone could observe that the fuzzy kMeans implementation on top of 
Derby, is again 1.15 times faster, than the other implementation. As for the final clusters, 
they have exactly the same values, for the same number of iterations. 
 

 2nd Scenario 
During the second test, the data set had 200000 different data points, and the number of 
the chosen clusters was k=20. 
 
By examining the results, we can see the following: 
 

HDFS implementation Derby implementation 

File size: 6.7 MBytes 

Distance Measure: Euclidean Distance 

Clusters: 20 Clusters: 20 

Total time of execution: 1117 sec Total time of execution: 1268 sec 

Total iterations: 20 Total iterations: 20 

Converged: False Converged: False 

Differences between the final clusters: False 

Table 19 - 2nd data set test - 2nd scenario results 
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In short, someone could observe that the fuzzy kMeans implementation on top of 
HDFS, is 0.88 times faster than the other implementation, which runs on top of Derby. As 
for the final clusters, they have exactly the same values, for the same number of iterations. 
 

Test Conclusions 
 
Having executed the aforementioned tests, we could understand that when the number of 
initial clusters becomes larger, then the Fuzzy kMeans algorithm on top of Derby, converges 
slower. 
 
On the other hand, when the number of the initial clusters gets smaller, then the Fuzzy 
kMeans Algorithm on top of Derby, converges faster. 
 
As for the final results, we can see that both implementations have exactly the same 
clustering results, running for the same number of iterations. For that reason, we cannot 
have a more clear view, on which implementation converges faster or not, as the 
maximum iterations had been set by default to 20, for each of the different scenarios. 
 
Additionally, as we can view from the results, the data points have been assigned well to the 
clusters, meaning that in each cluster it belongs almost equal number of data points, not 
having large distances between them. It must be mentioned that if the maximum iterations 
had been set with a larger value, then we could probably have better results concerning 
the assignment of the data points to each cluster, due to the fact that the cluster 
centroids would have better final positions (or would have converged, meaning that 
they would no longer move from their current position).  
 
Having all that in mind, we could clearly understand that each implementation works 
better, when the number of the initial clusters gets bigger or not, as well. 
 
However, one should have in mind that there should be done more and more tests, on 
different data sets, with different parameters for each implementation, in order to have 
a more clear image about which implementation works better. In addition, the results 
and the execution time can vary a lot according to the specifications of the machine that 
were tested, and according to how each implementation is configured to run (e.g. 
Hadoop Configuration).  
 
In the previous implementations’ tests, the reason for why the tests have been done in 
small data sets, is because we wanted for the beginning, to be sure that it runs and 
outputs correct clustering results. In addition, we already know that Hadoop is 
designed for working with big data, but the aforementioned project that was 
implemented is just a prototype, and should be first tested with easily interpretable and 
understandable data sets. 
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For sure, using Derby with big data can appear a bottleneck, as Derby is not designed 
for that purpose, but the next goal of the project is to test it on top of an OLAP database. 
 
As it was mentioned above, one should keep in mind that the new fuzzy kMeans 
implementation, is a new-born project, which means that for sure it will have to be 
debugged and corrected in the way that it works. However, as one could see, the final 
results that it produces do not differ much from the results that the other 
implementation produces, meaning that it should be considered as a good effort for a 
prototype project, which has been developed in the last months.  
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Chapter 7 

Conclusions 

 
Summary: “In this chapter, the final conclusions after the completion of the thesis are given, 
accompanied with some of my future plans, which have to do with the improvement of the 
algorithm’s implementation and the study of new technologies and data mining algorithms.” 
 

7.1 Conclusions 
 
After the completion of this thesis, it could be said that the overall goals which have 
been set in Chapter 1, have been satisfyingly fulfilled and accomplished.  
 
In more details, nowadays, as we have seen data has a significant importance. The first 
goal of the thesis was to focus and study about the data accompanied with the era we 
live in. For that reason, there was an extensive state of the art study about the data in 
general, including the data analysis process from which someone can retrieve valuable 
information and meaningful insights.  
 
Furthermore, we dealt with the fields of data preprocessing, which is a very important 
step of the data analysis, in order to gain the best insights. As for this sector, there were 
given sufficient and understandable definitions, targeting the different kinds of data 
that someone can face with and the different ways of “cleaning” the data from various 
types of noises and faults. 
 
Afterwards, it was given significant importance to the phenomenon of the data 
evolution, the big data. It was analyzed what big data is and how they can be connected 
with our daily lives, including the value of analyzing and exporting knowledge out of 
it, keeping in mind their large volume, velocity and variety. 
 
Moreover, we dealt with the fields of the knowledge discovery in databases (KDD) and 
data mining, trying to analyze with the most efficient and in-deep details way the 
techniques, the methodologies and the ways with which data mining is accomplished. 
 
Last but not least, there was given a detailed literature review about clustering, the data 
mining technique, which is used every day to gain results, valuable information and 
insights out of unknown and unlabeled data. Explanations were given about what is 
clustering, which are the most well-known clustering techniques, clustering algorithms 
and in general where and how it is used. 
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It should be mentioned, that there were given more details to that part, as the main goal 
of the thesis was to understand the clustering algorithms and techniques, and 
implement a clustering algorithm, working on top of an OLAP database. 
 
Having explained the state of the art on data analysis, it was time to study about 
Hadoop and Mahout, in order to be able to transfer the way that Mahout performs 
clustering with Hadoop, in a different environment, using an OLAP database and a 
different distributed processing concept. 
 
As for Hadoop, there was given an in deep details literature review about what in 
general is Hadoop. We discovered that Hadoop is a distributed processing framework, 
which consists of various distributed components and a complicated architecture. We 
studied about the different Hadoop cluster components, and a detailed explanation was 
given about its architecture. 
 
Additionally, we studied in details about the Hadoop’s distributed file system (HDFS) 
and the MapReduce framework, which are the basic components of its ecosystem, and 
which were important to understand, in order to continue with the algorithm’s 
implementation chapters. 
 
Afterwards, it was time to study about a data mining software which is included in the 
apache Hadoop’s ecosystem, Mahout. Mahout was very important to understand, as 
the whole algorithm’s implementation was running using the machine learning libraries 
that Mahout provides, so it was given significant importance on what is Mahout, how it 
works and how can someone perform clustering techniques with it. 
 
Having in mind all of the aforementioned, it was time for the implementation. The 
clustering algorithm that was chosen was the fuzzy kMeans algorithm, which belongs 
to the family of the fuzzy clustering algorithms. A detailed description of how it works 
in general was given, and after that there was mentioned a deep-detailed explanation of 
how it works on top of HDFS, using the MapReduce paradigm and how it works with 
its new implementation, running on top of an OLAP database, using a distributed <key, 
value> pair concept.  
 
Following, it was time to run some tests, with the two aforementioned algorithm 
implementations. A short description of the tools and the system specifications were 
given. Afterwards, the data set used for the tests was explained and finally the results of 
the various tests were written, followed by a brief evaluation and some additional 
comments. 
 
Generally, we are able to see that the use of data occupies more and more the 
technology sector. Every day, the data that is transferred among the companies, the 
organizations, the firms and between individuals, is multiplied in a very large scale, 
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creating difficulties as for the separation between important and non-important 
information. As it becomes comprehensible, the data mining field is used in order to 
sort, to classify and to exploit this data, so to either extract valuable insights or prepare 
the data in such a way, in order to give back the biggest benefit to those who need it.  
 
Moreover, we are able to see that data have to be analyzed, processed and evaluated in 
a faster and more efficient way, as it becomes more and more complicated. For that 
reason, there must always be various implementations of algorithms, which will try to 
work with data in a more efficient and effective way. These algorithms should use more 
and more the distributed systems framework, in order to work and have results in a 
parallel way, but they also have to be evaluated, corrected and tested many times, 
before replacing the older implementations. 
 
However, one should keep in mind that there should not be a fully replace of the older 
algorithm implementations, as in some points there must be most productive, efficient 
or effective, than the newer implementations, according to the data that has to be mined 
and processed. 
 
There is no doubt that the era we live in, gets stormed by a very big amount of 
problems, which have to do with the data and its process, for which different kinds of 
solutions are being discovered daily. Some of these problems, are listed below: 
 
 Larger databases: Databases with hundreds of fields and tables and millions of 

records are beginning to appear. 
 High dimensionality: There can be a large number of fields, including a large number 

of records in the database. So, the dimensionality of the problem gets high. 
 Changing data and knowledge: Data that is changing quickly can make previously 

discovered techniques or patterns invalid. 
 Missing and noisy data: Due to the fact that data become larger and larger, there is the 

problem that they contain many noisy data, so they require a pre-processing method 
for cleaning it. 

 Complex relationships between fields: The relationships between the data are becoming 
more and more complex, making ii very hard to identify them. 

 
In other words, we observe that it has to be given significant importance to all the 
aforementioned problems, by producing more and more capable, efficient, effective, 
user-friendly and “low-cost” algorithms, for the various data mining techniques. 
However, in order to become something feasible, it is required a full comprehension of 
what has been previously created and carried out by scientists and researchers, so to be 
someone able to reengineer and improve an existing technique. It should be mentioned 
that the last part, requires a lot of preparation, big effort, right guidance and a huge 
amount of experience, in order for a complete solution to be created.  
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7.2 Future plans 
 
As for the future plans, after the fulfillment of the thesis above, all the aforementioned 
that were explained and analyzed, have to be examined and studied using various 
kinds of data sets. As a result, we have to find larger data sets, noisy and non-noisy, 
with various kinds of attributes, in order to test how the implementations work with 
different kind of data. 
 
Additionally, it is mandatory that the implementations be configured in order to work 
with both numerical and non-numerical data, as the data that we find every day, 
unfortunately are not only in number format. 
 
As for the fuzzy kMeans implementation on top of an OLAP database, the 
preprocessing step has to be configured in order to be able to read and write the data 
set into a table, faster and concurrently. 
 
Furthermore, the implementation above could be changed in order to work 
simultaneously with various tables, and having faster and more efficient results. 
 
However, as most of the implementations have different kinds of bugs or errors that 
make them inefficient, the whole project should be evaluated by different people, in 
order to find and try to solve the various problems that may appear, and were not 
noticed until today. This is a long time procedure, which has to be done in order for the 
algorithm to work in the most efficient way. 
 
As it has been stated, because of the fact that we wanted to test the implementations to 
check if their results were correct or not, we performed the tests running on top of a 
relational database, with small data sets. So one of the future plans is to test and to 
configure the whole implementation on top of an OLAP database, using massive 
amounts of data. 
 
Afterwards, one of the future plans is to study different techniques, similar to the 
MapReduce paradigm, in order to discover the differences and be able to evaluate each 
one of them. Having all that in mind, for sure a better and more efficient 
implementation could be delivered, just by combining the gained knowledge from the 
above study. 
 
Furthermore, as we have seen, data mining is not only clustering, and clustering is not 
only the fuzzy kMeans algorithm. So, more and more algorithms should be studied, 
including the different data mining techniques, and why not, it would be a nice idea to 
try to implement, reengineer or create a new data mining algorithm, which would solve 
many of the today’s big data challenges. 
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The kMeans, and more specifically the fuzzy kMeans algorithm, is one of the most easy 
to understand algorithms, so we should not stay only to that. There are hundreds of 
algorithms that are waiting to be explored and implemented, using different ways of 
distributing, analyzing and gaining insights from the data. 
 
Last but not least, Mahout is just a sub-project of Hadoop’s ecosystem. There are many 
other projects similar to Mahout, with machine learning libraries which can probably be 
more effective, according to the data set and the algorithms that implement.  
 
One should keep in mind that our era consists of non-static data, as they change hour 
by hour, day by day, so it must be given significant importance to the streaming data, in 
order to gain information and valuable insights, using algorithms which perform data 
mining techniques in real time. This could probably be a big challenge, to study, to 
understand, to test, to implement and to produce algorithms for real-time analysis. 
 
However, as it was mentioned before, such things require a big effort and experience, 
which hopefully I am going to obtain in the next few years with the appropriate 
preparation, study and supervision.  
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