

 University of Piraeus
Department of Digital Systems
Postgraduate Program “Digital Communications and Networks”

Enhanced
management of IoT
devices based on
collective
knowledge

Christos Pentsioudis

Supervisor: Dimosthenis Kyriazis

Enhanced management of IoT devices based on collective knowledge

Contents
Abstract ... 3

Περίληψη ... 4

1. Introduction ... 5

1.1 Structure .. 5

1.2 Internet of Things .. 5

1.2.1 Overview .. 5

1.2.2 Infrastructure Technologies .. 7

1.2.3 Application domains .. 10

2. Problem Statement ... 15

2.1 Context .. 15

2.2 Proposed approach ... 16

3. State of the Art .. 17

3.1 Ontologies ... 17

3.1.1 SensorML ... 17

3.1.2 O&M – OWL (SemSOS) .. 19

3.1.3 SDO .. 21

3.1.4 Semantic Sensor NetworkOntology .. 22

3.1.5 CSIRO (Commonwealth Scientific and Industrial Research Organization)
Sensor Ontology .. 23

3.1.6 OntoSensor .. 24

3.1.7 Sensei Observation and Measurement Ontology ... 25

3.1.8 Ontonym – Sensor ... 25

3.1.9 SEEK OBOE ... 26

3.1.10 Stimuli-Centered .. 26

3.1.11 Socio-Ecological Research and Observation ontology (SERONTO) 27

3.2 Distributed Coordination ... 28

3.2.1 Peer-To-Peer Protocols.. 29

3.2.2 Degree of centralization .. 31

3.2.3 Distributed Coordination ... 31

3.2.4 Chubby and ZooKeeper ... 33

3.2.5 Thialfi: A Client Notification Service for Internet-Scale Applications 33

3.2.6 Mobius: Unified Messaging and Data Serving for Mobile Apps 34

3.2.7 Public/subscribe(pub/sub) .. 34

1

Enhanced management of IoT devices based on collective knowledge

4. Approach ... 35

4.1 Ontologies ... 35

4.2 Distributed Coordination ... 36

5. The application .. 37

5.1 Flowchart of the first application .. 37

5.2 UML of the first application ... 37

5.3 The implementation of first application .. 38

5.3.1 MainActivity.java ... 38

5.3.2 MyData.java ... 42

5.3.3 QueryBuilder.java .. 43

5.3.4 SaveAsyncTask.java ... 45

5.4 Information and service flowof the second application ... 46

5.5 UML from the second application ... 48

5.6 The implementation of the second application .. 48

5.6.1 MainActivity.java ... 48

5.6.2 MyData.java ... 53

5.6.3 ViewDataActivity.java .. 54

5.6.4 ApplySettings.java ... 56

5.6.5 GetDataAsyncTask ... 59

5.6.6 QueryBuilder.java .. 61

5.6.7 SaveAsyncTask.java ... 63

5.7 Case study .. 64

5.8 Future work ... 66

6. Conclusion ... 67

References ... 68

2

Enhanced management of IoT devices based on collective knowledge

Abstract

The purpose of this project is to develop an environment where different devices
from our daily life (e.g. smart phone, digital camera, our car etc.) will communicate
to each other and will exchange information and data and act according the data and
information acquired. To achieve this we used as a base the idea of Internet of
Things (IoT). In the Internet of Things every device is connected and will exchange
data and information. Exchanging those information will make our daily life easier
and will help us in many different ways to achieve numerous things that today is
impossible to do. According to abovementioned we developed an Android
application that enables sharing of experiences and allows IoT devices to act
according to these shared experiences received. The developed application is a
representative example of the added value brought with respect to distributed
coordination and autonomous management based on the knowledge that can be
shared amongst communities of IoT devices.

3

Enhanced management of IoT devices based on collective knowledge

Περίληψη

Ο σκοπός της παρούσας εργασίας είναι να αναπτύξει ένα περιβάλλον όπου
διαφορετικές συσκευές από την καθημερινή μας ζωή (π.χ. έξυπνο κινητό τηλέφωνο,
ψηφιακή φωτογραφική μηχανή, το αυτοκίνητο μας κλπ.) θα επικοινωνούν μεταξύ
τους ώστε να είναι εφικτό να ανταλλάσσουν πληροφορίες και δεδομένα και να
δρουν ανάλογα με τα δεδομένα και τις πληροφορίες που αποκτήθηκαν. Για να
επιτευχθεί αυτό χρησιμοποιήσαμε σαν βάση μας την ιδέα του Internet of Things
(ΙοΤ). Στο Internet of Things (IoT) κάθε συσκευή θα είναι συνδεδεμένη και θα
ανταλλάσσει πληροφορίες με κάποια άλλη. Οι ανταλλασσόμενες αυτές
πληροφορίες θα κάνουν την ζωή μας πιο εύκολη και θα μας βοηθήσει σε πολλά
πράγματα που σήμερα είναι αδύνατο να επιτευχθούν. Σύμφωνα με τα παραπάνω
έχουμε αναπτύξει μια εφαρμογή Android που επιτρέπει την ανταλλαγή εμπειριών
και επιτρέπει στις συσκευές IoT να ενεργούν σύμφωνα με αυτές τις κοινές εμπειρίες
που έλαβε. Η εφαρμογή που αναπτύχθηκε είναι ένα αντιπροσωπευτικό παράδειγμα
της προστιθέμενη αξία που έφερε σε σχέση με το κατανεμημένο καταμερισμό
(distributed coordination) και την αυτόνομη διαχείριση με βάση τη γνώση που
μπορεί να μοιραστεί ανάμεσα στις κοινότητες των συσκευών IoT.

4

Enhanced management of IoT devices based on collective knowledge

1. Introduction
Over 2 billion mobile terminals that are in use today and over 1 billion users that use
the Internet worldwide. Wireless, mobile and web technologies gave the ability to
communicate between systems and applications. However, this is only the start as
an example the radio frequency identification (RFID tags).

Furthermore, is expected simple tags to involve into smart things connected to a
network with increased storage, processes also the ability to add sensors. This will
open new possibilities to network applications such as Man-to-machine, Machine-to-
mobile and Mobile-to-machine and context-aware communications.

The Internet of Things (IoT) [1] is a network from billion or trillion of machines which
are communicating between them. This is important for the development of the
information and the communication, because a simple example of those are already
is use today. As we speak there are 1.3 billion RFIDs and 2 billion users of mobile
services in the whole world.

The current thesis presents an approach to enable autonomous management of IoT
objects based on the information (i.e. experience) received from other objects.
Based on an extended ontology, a cloud-based mechanism allows objects to share
the aforementioned information and act accordingly.

1.1 Structure
The chapter 1 introduces the related technology of IoT, the architecture and what
the prospects are. In the next chapter we analyze the problem statement and some
solutions. The third chapter is dealing with the state of the art ontologies that
already exists. In the fourth chapter we will analyze the ontology that will be used in
order to solve the problem. The fifth chapter is dedicated to the analysis of the
developed application. Finally we will have the conclusion and some future work
about the application we’ve developed.

1.2 Internet of Things

1.2.1 Overview
Several architectural paradigms have been proposed. One of them is the IoT-A[2],
which is following a spiral design and development model. In order to describe this
architecture we’ll execute a modeling exercise. This exercise will help us understand
better the IoT domain. Also, this exercise allows the repeats the process of building
the architecture, so the stability of the models as part of the architecture is
increased. Each repeat generates additional updates and content for this
architecture description, as the understanding of the application IoT domain
increases. An architecture methodology is defined to ensure consistency of the

5

Enhanced management of IoT devices based on collective knowledge

architecture description during each iteration. The architecture model is mostly
describes dependencies between models (i.e., the IoT Reference Model guides the
definition of the IoT Reference Architecture).Once a change is proposed in one
modelling aspect, a clear chain of dependencies can be followed. In this way, the
overall consistency of the IoT-A reference model architecture is achieved.

Reference model and reference architecture

The reference models and architectures providing a description of greater
abstraction than is inherent to actual systems and applications. They are both more
abstract than the system architectures that have been designed for a particular
application. From the literature, we can expend the dependencies of reference
architecture, architectures, and actual systems. Architecture is helping in designing,
engineering, building, and testing actual systems. However, have to understand the
systems constraints better so we can provide input to the architecture design, and in
turn identifying future opportunities. The structure of the architecture can be made
explicit through an architecture description, or it is implicit through the system itself.
In order to define an architecture reference, we have to extract the essentials of
existing architectures, like mechanism or usage can be defined. Areference
architecture can provide guidance in form of best practices. Such guidance can, for
instance, make new architectures and systems compliant to each other. These
general architecture dependencies apply to the modeling of the IoT domain as well.

Figure 1. Relationship between a reference architecture, architectures, and actual systems (adapted
from Mueller)[3]

While the model presented in the picture above stops at the reference architecture,
the IoT-A architecture model continues a step further and also define a reference
model. As we already mentioned earlier, the reference model is providing us a

6

Enhanced management of IoT devices based on collective knowledge

common understanding of the IoT domain, this is achieved by modeling its concepts
and their relationships.

Figure 2. High-level taxonomy of the IoT reference model and IoT reference architecture
dependencies and model influences[4]

In the picture above, the inputs and dependencies of the IoT reference model and
the IoT reference architecture are depicted.

The IoT Reference Model provides guidance for the description of the IoT reference
architecture. The IoT reference architecture in turn guides the definition of
compliant domain specific architectures. Essential inputs for the definition of the IoT
reference model are stakeholder concerns, business scenarios, and existing
architectures. Important here is to create a common understanding of the IoT
domain from the different inputs. This is mainly a modeling exercise, during which
experts have to work together and extract the main concepts and their relations of
the IoT domain from available knowledge. Furthermore, business scenarios, existing
architectures, and stakeholder concerns can be transformed into application specific
requirements. When extrapolated, these requirements lead to a set of unified
requirements. Unified requirements in turn steer the definition of the IoT Reference
Architecture. A more detailed explanation of what guides the IoT-A architecture-
modeling process is provided in the next Section.

1.2.2 Infrastructure Technologies

IPv6

From the start of the internet we used the IPv4 Internet protocol. However due to
development of technology more and more IPv4 has been required, So the IPv4 it’s

7

Enhanced management of IoT devices based on collective knowledge

almost exhausted. The Internet of Things need a lot more IPs this sold by using the
new Internet by using the protocol IPv6[6].This protocol expands the current
Internet Protocol (IPv4). The IPv6 offers better addressing, security and more
features to support large worldwide network, that make it perfect for Internet of
Things (IoT). The IPv6 working with a new 128-bit system compared with the IPv4
that it used 32-bit system. For example an IPv4 would be like this “192.168.100.32”
at IPv6 would be like this “0000:0000:0000:0000:0000:0000:C0A8:6420” or
“::C0A8:6420”. So the IPv6 have been designed with scalability and extensibility, this
will allow the Internet Of Thing to develop without the addressing problem.

RFID System

One of the most popular technologies of identification that is recommended by the
ITU is the Radio Frequency Identification (RFID)[6]. RFID is an automatic method of
identification that is using radio waves and it can locate elements for example
human, animal or even things. RFID is the new barcode, but instead of bars it’s using
a microchip with radio waves. Those labels are wide known as electronic label, and
there are consisting by a RFID chip and an antenna. Those labels can be read a lot of
meter, the visual contact is unnecessary. The most common method to read
something like this is to increasing number that is determined or by a human or by
another thing, but one RFID can save data and other information. RFID system use
those labels, those labels consists the most popular and efficient technology for the
identification system of IoT.

One RFID label can transfer an ID that can be a unique string or a password. It’s a
special device that is designed to send a determined response to a specific signal.
There different states of RFIDs, so there as passive, semi-passive and active. Those
states can be determined by their power source, also a RFID can only read,
read/write and read and write. Also there furthermore two types of RFID: the near
field RFID and the distance field RFID. The near field RFID is the wide known NFC
(Near Field Communication) is widely used from smart phone and to credits cards
too. For example you can assign your credit card to your smartphone and pay your
bill, transfer your money simple from your phone. This type of chip can be activated
from the distance of 5 cm or by touch. The distance field RFID cover distances
between 3 to 6 meters and it’s usually used by stationary reader.

Wireless Sensor Networks

The technological progress helped us to develop new low power integrated circuits,
and also the wireless communications have been more available and efficient, low

8

Enhanced management of IoT devices based on collective knowledge

cost and power devices can be used for remotely sensing applications. Those factors
improved the viability of utilizing a sensor network the will be contained a large
number of sensors, enabling the collection, processing, analysis and dissemination of
valuable information, gathered from various environments. The RFID that there
currently in use are the as the lower end Wireless Sensor Networks (WSN)[7]nodes
but there have limited processing capabilities and storage. We have to overcome
those scientific challenges in order to realize the full potentials of the WSNs that are
substantial and multidisciplinary. The sensors data are being shared among the
sensors nodes and sent to a distributed centralized system for analysis. The parts
that compose the WSN monitoring network are:

 WSN hardware
One WSN core hardware contains sensor interfaces, processing units, transceiver
units and power supply. Almost always, they comprise of multiple A/D converters for
sensor interfacing and more modern sensor nodes have the ability to communicate
using one frequency band making them more versatile.

 WSN communication stack
The nodes of this technology are deployed in an adhoc protocol for the most
applications. In order to ensure the scalability and longevity of this network it’s
necessary to design a proper topology, routing and MAC layer. Also the nodes of the
WSN can communicate among each other so it can make possible to transmit data in
a single or in a multi- hop to a base station. But also the node drop out, and
consequent degraded network lifetimes, are frequent. Finally this communication
stack it will interact whit the outside world through the Internet and it can act like a
gateway to the WSN subnet and the Internet.

 Middleware
The middleware mechanism is responsible to combine the cyber infrastructure with
a Service Oriented Architecture (SOA) and sensor network so it can provide access to
heterogeneous sensor resources for deployment independent manner. Those can be
used by several applications. But in order to work this platform is required to
develop sensor applications, such application is an Open Sensor Web Architecture
(OSWA). This application is built according to certain set of operations and standard
data representations as defined in the Sensor Web Enablement (SWE) by the Open
Geospatial Consortium (OGC).

 Secure Data aggregation

9

Enhanced management of IoT devices based on collective knowledge

10

An efficient and secure data aggregation method is required so we can extend the
lifetime of the network and to ensure that reliable data has been collected from the
sensors. A common problem of the WSN is a node failure, the network topology it
should have the capability to heal itself. It is critical to ensure the security as the
system is automatically connected to actuators and the protection of the system
from intruders is a very important cause.

1.2.3 Application domains

Some examples of the usage of Internet of Things are the following:

 The Health
In the next decades, the model of healthcare will transform from the present
hospital-centric to hospital-home-balanced in 2020th.And from hospital-home-
balanced to the final home-centric in 2030th. The healthcare system will follow the
layer structure for example from low to high comprising the personal, home,
community and the hospital layer. Also the lower layer has lower labor and also
lower operational cost, it’s used frequently from people with chronic disease. So this
type of healthcare at home service enabled by the IoT technology and is promising
traditional healthcare industry and the ICT industry. The Health-IoT service is
ubiquitous and personalized and will speed up the transformation of healthcare
from career-centric to patient-centric.

Figure 3. Senario for in-Home healthcare solution [8]

Enhanced management of IoT devices based on collective knowledge

Typically, a Health-IoT solution includes the following functions:

1. Tracking and monitoring. Powered by the ubiquitous identification, sensing, and
communication capacity, all the objects (people, equipment, medicine, etc.) can be
tracked and monitored by wearable WSN devices on a 24/7 basis.

2. Remote service. Healthcare and assist living services e.g. emergency detection and
first aid, stroke habitation and training, dietary and medication management,
telemedicine and remote diagnosis, health social networking etc. can be delivered
remotely through the internet and field devices.

3. Information management. Enabled by the global connectivity of the IoT, all the
healthcare information (logistics, diagnosis, therapy, recovery, medication,
management, finance, and even daily activity) can be collected, managed, and
utilized throughout the entire value chain.

4. Cross-organization integration. The hospital information systems (HISs).are
extended to patient’ home, and can be integrated into larger scale healthcare

 Smart Cities
There will be all kind of sensors to measure a lot of variables so to achieve a better
town for the citizens.

 Noise Sensors
Noise sensors will help us measure the noise over the city, for example in the regions
with bars or clubs and the music is too loud an automatic alarm will inform the
police.

 Electromagnetic Sensors
One smart city also could have electromagnetic sensors to measure and to control
the radiation level from Wi-Fi and from cell stations so it can help the heath of the
citizens.

 Smart Lighting
There will be sensors one everyone light on the streets, with those sensors the
power consumption will be reduced significantly. Also the lights will adapt to the
weather of the city for example if today the weather is too cloudy the lights will
remain on. Also at night in the neighborhoods there are streets that too little citizens
are circulating so the lights will turn off and if there a move detected will back turn
on.

11

Enhanced management of IoT devices based on collective knowledge

 Smart Parking
Mostly in all large cities around the world the drivers are searching for parking for a
long time even hours. In a smart city there will be sensors at the parking spots. Those
sensors will measure is a parking spot is empty or not, also will cooperate for
example with an Android application. If a driver is searching for a parking will send a
request from the application and if a parking lot is free nearby the application will
alert him. The Smart Parking is actually working nowadays at Boston City.

 Smart factory

The companies will be able to track all their products by means of RFID tags in a
global supply chain; as a consequence, companies will reduce their operational
expenditure and improve their productivity due to a tighter integration with
enterprise resource planning and other systems. The IoT will provide automatic
procedures that will apply a reduction in the number of the employees needed. The
workers will be replaced with bar-code scanners, readers, sensors and actuators.
Without any doubt, these technologies will bring opportunities for workers and a big
number of technicians will be necessary needed to program and repairs all those
machines.

Figure 4. The future Smart City [9]

12

Enhanced management of IoT devices based on collective knowledge

 Thermostats, Fire alarm and CO alarm
This smart thermostat is connected to Internet and can be regulated from distance.
This device learns your preferences about the temperature, and after a while will
learn your habits for example your daily program. When you are away it can be
turned -off automatically, so to reduce the consumption of energy and save money.
Also you can program it so your house have the perfect temperature the time you
wanted for example you want at 6 a.m. to have 26 0C, to do this it will start
automatically earlier since the device knows how much time take to heat up your
home. However you can control it from your phone and you can change the settings
any time you even when you are miles away from your home. Also the device can
export monthly reports of the consumption, the energy it has been saved. The fire
alarm will inform you early enough for the possibility of a fire in your home and the
CO levels at any time with an alarm sound and with a light indicator. It’ll be the
ability to send you a notice at your smartphone in case of an emergency.

 Smart monitor for babies
This device would monitor your baby, with a non-contact sensor. This sensor would
monitor the temperature, the heart rate of the baby. With this device also you can
listen to your baby and know when is sleeping. The best of this monitor is that the
parent is able to see all those information live at his smart phone. The application on
the smart phone can notice you also when you have to feed the baby or even it can
remind you the schedule dose of a medicine.

 Forest fire detection
There will be sensors all around the forest. If a fire starts those sensors will
immediately notice the fire department and also start the extinguishing system. This
system will help us to reduce the response time of the fire department that is too
important in such cases.

 Smart Water
There will sensors that can measure the water quality, the water leakages and river
floods. With the water quality sensors will be able study the suitability of the
drinking water in almost every house. With the water leakage will help us with the
Detection of liquid presence outside tanks and pressure variations along pipes. And
the river floods is important for cities with big rivers near them, will monitor the
level of the water, dams and reservoirs. With this system can prevent floods before
even we know is going to happen.

13

Enhanced management of IoT devices based on collective knowledge

 Environment
Applications in the environmental domain have many overlaps with other scenarios.
All those application will help us save energy. One prominent example is Smart Grid.
Concerning this application area one needs to highlight initiatives that imply a more
distributed energy production, since many houses have a solar panel today. As a vital
part, smart metering is considered as a pre-condition for enabling intelligent
monitoring, control, and communication in grid applications.

The use of IoT platforms in Smart Metering will provide the following benefits:
 An efficient network of smart meters allows for faster outage detection and

restoration of service. Such capabilities redound to the benefit of customers.
 Provides customers with greater control over their energy or water

consumption, providing them more choices for managing their bills.
 IoT deployment of smart meters is expected to reduce the need to build power

plants. Building power plants that are necessary only for occasional peak
demand is very expensive. A more economical approach is to shape the demand
by either to incentivize customers to reduce their demand through time-based
rates or other programs, or by service-level agreements that allow temporarily
turning off devices which are not needed (e.g., the freezer for 20 minutes).

In order to describe a well-defined business model it is necessary to define what
needs to be done in the business, which are the metrics for success, which are the
problems that must be solved and the plans that solve these problems. Knowing
which part of the problem is possible to solve and how much time is needed and
which part cannot be solved is an important step that we must take into account
when we develop concrete business cases for some of the application fields
discussed above. As we can only go into the details of one business case in the
context of this document, we will pick a use case from the application field of retail,
as this is a central application field for the project, and apply an appropriate business
case methodology to it. This methodology is outlined in the next section. The use of
a methodology instead of merely calculating “some kind of business case” enables us
to perform comparisons between different application fields, for instance when we
consider health under an economic perspective within the context of the
forthcoming deliverables.

14

Enhanced management of IoT devices based on collective knowledge

2. Problem Statement
2.1 Context
The main idea is to enable different objects to acquire social skills and make
individuals and communities to act as objects. Current approaches are focused on
centralized management mechanisms, but taking into consideration that the number
of devices and assets is increasing (e.g. sensors in a smart city environment, data
objects in data centers, etc.), the aim of future IoT is to enable more decentralized
and autonomous management for these devices and assets. The latter is of major
importance given that objects may also belong to different administrative domains
and thus centralized management information and decisions may not be feasible.
The objects are the basic thing of an IoT network and in order to optimize their
operation and their management mechanisms are required to minimize the amount
of management information and the management components in IoT communities
and allow them to react in a more autonomous way. The latter will address the
following challenges:

 Objects interact and exchange information. The challenge and goal is to
enable objects to exchange information and utilized it to drive management
decisions.

 Protocols are required to facilitate information exchange. Given that different
kinds of information can be exchanged (from objects with different
characteristics, different APIs, etc), the challenge is to develop a common
“language” and way (as a protocol) that will enable objects to report
experiences and current statue.

 Mechanisms that will allow objects to learn from others. Like humans,
objects experience various situations (e.g. the memory required for executing
an application). The challenge is to allow objects to learn from others and
thus act in a more autonomous way by exploiting this knowledge.

 Adapt to different situations. Every object on such a network / community
will provide an experience (as feedback), which can be used by other things
(e.g. resolution or zoom settings of a camera) so they could adapt to different
situations.

 Becoming more intelligent. Sharing and gaining information from objects, will
help to reinforce service delivery through more intelligent objects,
considering both functional parameters such as performance, availability,
reliability etc. and non-functional such as for example trust, users experience,
expectations etc.

15

Enhanced management of IoT devices based on collective knowledge

2.2 Proposed approach
There are a lot ways in which we can collect data and analysis with purpose to
identify the relationships between different entities also we can find events that
influence the behaviour of the things. In an exemplar scenario of a data center that
uses data objects to store and retrieve data, harvesting and analysis of raw data will
enable identification of relationship patters between data objects (e.g. retrieved in
sequel for a specific application), detection of events (e.g. triggering live-migration),
identification of data objects of high importance (e.g. that may lead to replication of
these), etc.

The goal of the proposed approach is to utilize the generated data in order to enable
things to act in a more autonomous way. The latter can be achieved through
mechanisms that allow objects to exchange information and use it if they experience
the same situation. Thus, the things will receive this information that will permit
them to operate autonomous according to the new information that they will
receive (e.g. new data objects created in the data center or increasing number of
requests for data from a specific location). All the above requires new metadata
structures that will include the information being shared by other things. These
metadata structures – ontologies - will capture both the main attributes (e.g.
lifecycle properties, access properties, quality of service properties, etc.) and the
attributes concerning the appliance of social media technologies (e.g. relationships
with other entities, importance, experiences of others, triggering conditions, etc.).

What is more, tools are required that will allow objects to share their experiences
and exploit the experiences of other objects. Such tools are the first step towards
autonomous reasoning of things given that the use of experiences will minimize the
need to obtain management information from centralized mechanisms, while
network overheads will also be minimized.

16

Enhanced management of IoT devices based on collective knowledge

3. State of the Art
3.1 Ontologies

3.1.1 SensorML
SensorML is a generic data model in UML for capturing classes and associations that
are common to all sensors. This ontology is a part of an Open Geospatial Consortium
(OGC)[10] initiative to contribute to the development of a Sensor Web. Snapshot of
classes and associations provided by SensorML[11] can be used to create specific
profiles, which facilitate the processing, geolocation and integration of observed
data from millions of sensors. The profiles of individual sensors the use and/or
extend SensorML concepts can be created and posted to the Web environment in
which they can task, queried by monitoring and processing systems.

SensorML has been developed as a specification for efficient implementation by
vendors that desire to implement OGCcompliant sensor system, therefore,
SensorML try to specify as few class and relation definitions as possible. However,
the ontological engineering focuses on rich semantic data and knowledge models.
Therefore the re-conceptualization, redefinition, or extension of some of the classes
in SensorML is necessary. SensorML has been developed by using syntax from the
eXtensible Markup Language (XML). The use of XML syntax alone to define classes
restricts the potential scope of interoperability and reuse of its sensor profile
instantiations. SensorML does not include formal definitions of the classes or
relations it uses, that is, it provides no logical or axiomatic-grounded theory to
account for its conceptualizations and therefore cannot be considered to be
ontology. However, SensorML is providing a generic data model that expresses the
knowledge and data about sensors and can provide good schema for developing a
data store for sensor metadata and sensed attribute values. Moreover, SensorML
provides good organizational framework within the sensor ontology can be defined.

The essential elements to work the SensorML are:

 Component
Is a physical atomic process that transforms information from one form to
another.

 System
Composite physically based model of a group or array of components, which
can include detectors, actuators, or sub-systems. A System relates a Process
Chain to the real world and therefore provides additional definitions
regarding relative positions of its components and communication interfaces.

 Process Model
Atomic non-physical processing block usually used within a more complex
Process Chain. It is associated to a Process Method which defines the process

17

Enhanced management of IoT devices based on collective knowledge

interface as well as how to execute the model. It also precisely defines its
own inputs, outputs and parameters.

 Process Chain
Composite non-physical processing block consisting of interconnected sub-
processes, which can in turn be Process Models or Process Chains. A process
chain also includes possible data sources as well as connections that explicitly
link input and output signals of sub-processes together. It also precisely
defines its own inputs, outputs and parameters.

 Process Method
Definition of the behavior and interface of a Process Model. It can be stored
in a library so that it can be reused by different Process Model instances (by
using 'xlink' mechanism). It essentially describes the process interface and
algorithm, and can point the user to existing implementations.

 Detector
Atomic component of a composite Measurement System defining sampling
and response characteristic of a simple detection device. A detector has only
one input and one output, both being scalar quantities. More complex
Sensors such as a frame camera which are composed of multiple detectors
can be described as a detector group or array using a System or Sensor. In
SensorML a detector is a particular type of Process Model.

 Sensor
Specific type of System representing a complete Sensor. This could be for
example a complete airborne scanner which includes several Detectors (one
for each band).

The advantages of SensorML are:

 Electronic Specification Sheet
SensorML is providing a standard digital means of providing specification
sheets for sensor components and systems.

 Discovery of sensor, sensor systems, and processes
The sensors system or processes can make themselves known and
discoverable, so SensorML can detect them. Also is providing a rich collection
of metadata that can be used to discover sensor system and observation
processes. This metadata could include identifiers, classifiers, constraints,
capabilities, characteristics, contacts, and references, in addition to inputs,
outputs, parameters, and system location.

 Lineage of Observations
In other words, it can describe in detail the process by which an observation
came to be from acquisition by one or more detectors to processing and
perhaps even interpretation by an analyst. Not only can this provide a

18

Enhanced management of IoT devices based on collective knowledge

confidence level with regard to an observation, in most cases, part or all of
the process could be repeated, perhaps with some modifications to the
process or by simulating the observation with a known signature source.

 On-demand processing of Observations
Process chains for geolocation or higher-level processing of observations can
be described in SensorML, discovered and distributed over the web, and
executed on-demand without a prior knowledge of the sensor or processor
characteristics. This was the original driver for SensorML, as a means of
countering the proliferation of disparate, stovepipe systems for processing
sensor data within various sensor communities. SensorML also enables the
distribution of processing to any point within the sensor chain, from sensor
to data center to the individual user's PDA. SensorML enables this processing
without the need for sensor-specific software.

 Support for tasking, observation, and alert services
SensorML descriptions of sensor systems or simulations can be mined in
support of establishing OGC Sensor Observation Services (SOS), Sensor
Planning Services (SPS), and Sensor Alert Services (SAS). SensorML defines
and builds on common data definitions that are used throughout the OGC
Sensor Web Enablement (SWE) framework.

 Plug-N-Play, auto-configuring, and autonomous sensor networks
This ontology had enabled the development of plug-n-play sensors, processes
and simulations, which may be seamlessly added to Decision Support
systems. Also the self-describing characteristic of this ontology had enabled
sensors and processes also supports the development of auto-configuring
sensor network and autonomous sensor networks, those sensors can publish
alerts and task to which other sensor can subscribe and alert.

 Archiving of Sensor Parameters
Finally, this ontology is providing mechanisms for achieving fundamental
parameters and assumptions for sensors and processes, so those
observations of those systems can also be reprocessed and be improved after
their missions has ended. This characteristic is important for long-range
applications like a global change monitoring and modeling.

3.1.2 O&M – OWL (SemSOS)
OWL[12] can be used when we want to process information that are included in
documents, on the contrary to situations that the content only need to presented to
humans. This ontology also can be used to represent the meaning of terms in
vocabularies and moreover the relationships between those terms. So this exactly
representation of terms and their interrelationships is called ontology. OWL has
more characteristics for expressing meanings and semantics than XML, RDF[13] and

19

Enhanced management of IoT devices based on collective knowledge

20

RDF-s, and furthermore OWL goes beyond these languages in its ability to represent
machine interpretable content on the Web. OWL is a revision of the DAML+OIL web
ontology language incorporating lessons learned from the design and application of
DAML+OIL[15].

The Semantic Web is a vision for the future of the Web. In this web the information
will be given explicit, and will make easier for the machines to automatically process
and integrate the information that are available at the Web. Also on Semantic Web
we exploit the XML’s ability to define and customize tagging schemes and RDF’s
flexible approach to represent data. The first level that is required above the RDF for
the Semantic Web is an ontology language, this can describe the meaning of
terminology that had been used in Web documents. The OWL Use Cases and
Requirements have to go beyond the basic semantics of RDF schema and have to
provide more details on ontologies. This is motivating the need for a Web Ontology
Language in terms of six use cases, and formulates design goals, requirements and
objectives for OWL.

 OWL has been designed to meet this need for a Web Ontology Language. OWL is
part of the growing stack of W3C recommendations related to the Semantic
Web.

 XML provides a surface syntax for structured documents, but imposes no
semantic constraints on the meaning of these documents.

 XML Schema is a language for restricting the structure of XML documents and
also extends XML with data types.

Figure 5. Subset of major concepts and relations in O&M-OWL [16]

Enhanced management of IoT devices based on collective knowledge

 RDF is a data model for objects ("resources") and relations between them,
provides a simple semantics for this data model, and these data models can be
represented in an XML syntax.

 RDF Schema is a vocabulary for describing properties and classes of RDF
resources, with a semantics for generalization-hierarchies of such properties and
classes.

 OWL adds more vocabulary for describing properties and classes: among others,
relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"),
equality, richer typing of properties and characteristics of properties (e.g.
symmetry), and enumerated classes.

3.1.3 Sleep Domain Ontology
The Sleep Domain Ontology (SDO) [17] purpose is to search relevant sensor data
over distributed and heterogeneous sensor networks. However it’s not available for
use but it has been descripted in only two papers. There are some key frameworks
such as:

i. Reuses the SUMO[18]ontology as a whole. The rest of the modules reference
to the SUMO ontology.

ii. SensorHierarchyOntology.
o Only a figure is available.
o Describes Sensors and Sensor data.
o Builtfrom IEEE 1451.4

 Does not completely cover the standard
 Some modelling errors: Mix subclass properties with ad-hoc

properties (e.g., has, characterised_by)
 Non-justified modelling decisions. E.g., they say that "A sensor

is an actuator or a transducer" and in IEEE it appears that "A
transducer is a sensor or an actuator".

iii. Sensor Data Ontology. There is nothing available. Fromthepaper:
o "Describes the dynamic and observational properties of transducers

data that goes beyond describing individual transducers"
o "Describes the context of a sensor with respect to spatial and/or

temporal observations"
o "Provides abstract measurements/operations by groping transducers

(virtual transducer)"
iv. Extension Plug-in Ontologies. There is nothing available. Each plug-in

ontology includes the representation for a particular domain of sensor data
and networks.

There no best feature but only a general concept such as:

21

Enhanced management of IoT devices based on collective knowledge

i. Alignmentwithstandard.
ii. Alignmentwithupperontologies.

iii. Abstraction of groups of sensors/sensor networks in virtual sensors.
iv. Modulardevelopment.

As a weakest point refers that there’s a lack information availability and some of
them conflicts with standards.

3.1.4 Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) [19] has been developed by W3C Semantic
Sensor Network Incubator Group (SSN-XG) so it can be describe sensors and
observations, and other related concepts.

The SSN-XG group had two objectives:

i. To develop an ontology that can describe a sensor or an entirely network of
sensors and those descriptions can be used in a sensor network or to a web
application.

ii. Study and recommend methods for using the ontology to semantically enable
applications developed according to available standards such as the OGC SWE
standards.

After a review of the existing sensor and observation ontologies this ontology
created. To do that the ontology for a starting point is using CSIRO Sensor ontology.
SSN ontology defines a domain-independent and end-to-end model for sensing
applications, by merging sensor-focused (e.g. SensorML), observation-focused (e.g.
O&M) and system-focused views.

This ontology doesn’t have any hierarchy of sensors types. These type of definitions
left for the domain experts.

The ontology although is organized, conceptually (not physically) into ten modules.
Those modules contains the classes and the properties that can be used to built
aspects of a sensor or of its observations. The ontology can be used for focus on any
of a number of perspectives such as:

i. sensor perspective, with a focus on what senses, how it senses, and what is
sensed.

ii. data or observation perspective, with a focus on observations and related
metadata.

iii. system perspective, with a focus on systems of sensors.
iv. feature and property perspective, with a focus on features, properties of

them, and what can sense those properties.

22

Enhanced management of IoT devices based on collective knowledge

Finally close to the ontology Stimulus-Sensor-Observation ontology design pattern.
This pattern links the sensors and the resulting observations:

• Observations act as the nexus between incoming stimuli, the sensor, and the
output of the sensor, i.e., a symbol representing a region in a dimensional
space. Properties are qualities that can be observed via stimuli by a certain
type of sensors.

• Features of Interest are entities in the real world that are the target of
sensing.

• Procedure is a description of how a sensor works, i.e., how a certain type of
stimuli is transformed to a digital representation, perhaps a description of the
scientific method behind the sensor.

• Result (or SensorOutput) is a symbol representing a value as outcome of the
observation.

This pattern encompasses three of the four perspectives — the missing system
perspective is more about system organization and deployments than sensing, but
clearly links to the pattern.

3.1.5 CSIRO (Commonwealth Scientific and Industrial Research Organization)
Sensor Ontology

Figure 6. The SSN ontology, key concepts and relations, split by conceptual modules. The concepts
not depicted are largely properties for measurement capabilities, and survival or operating ranges:
accuracy, precision, resolution and the like. Note the central importance of sensors, observations
and properties, brought out by the SSO ontology design pattern [20]

23

Enhanced management of IoT devices based on collective knowledge

The CSIRO [21] ontology created for describing and reasoning about sensors
observations and scientific models. Semantic description of sensors have been
provided by the use in workflows. This ontology have been developed but it’s not
completed or finished because it should provide a language to specify sensors but is
agnostic about domain sensors, units of measurement, location etc. The observation
and the sensors has an equivocal concept , for example a sensor ontology could be a
sensor and observation ontology but hasn’t happened yet.

The best features of this Ontology is:

i. Plug and Play – this ontology focus on the sensor and not in the domain
concerns such as measurements, locations, etc.

ii. Hierarchy of Sensors – There is no hierarchy in this ontology in other words a
thermometer is only a temperature sensor. Approaching the hierarchy of
sensors there are a) more domain approach influence and b) can origin from
another sensor.

iii. Composition – It is considered that this ontology is the only ontology which
can do a proper composition.

3.1.6 OntoSensor

This ontology was created by the University of Memphis and purpose is to build a
knowledge base of sensors. This base can be searched by the Protégé plugin. It is
either active or complete and it hasn’t been updated since 2008. Mainly is used to
cover the sensor which listed in Crossbow catalogue. OntoSensor[22] contains a
hierarchy of sensor classes and describes sensor attributes, services and capabilities.
Also is focused on technical specification of sensors such as data acquisition boards,
sensing elements and processor/radio units in the Crossbow 2006 catalogue. The
sensors are sorted in minimum range, but several complicated properties are
included.

This version is not autonomous it depends on other upper ontologies some of those
are:

i. IEEE SUMO: Process, ContentDevelopment, MeasuringDevice,
TransportationService

ii. ISO 19115: MD_LegalConstraints, MD_SecurityConstraints,
CI_ResponsibleParty, CI_Citation, CI_OnlineResouce

iii. SensorML

24

Enhanced management of IoT devices based on collective knowledge

iv. GML

The best feature is that includes 32 individual (instances) definitions and the weakest
part of this ontology is too messy to use it with others applications.

3.1.7 Sensei Observation and Measurement Ontology

The purpose of this ontology is to annotate sensors observation and measurement
data. The O&Montology is embedded into the SENSEI[23] resource model. It isn’t an
active ontology but only a draft version that is based on the OGC’s observation and
measurement model. Furthermore there are no textual description for this project.
As a key framework concepts refers that this project’s observations and
measurements data can be related to an Entity of Interest (EoI) and this is provided
as a Resource also refers that the processes and the services which make the O&M
data available provided through a Resource End Point (REP). The SENSEI ontology
has a basic hierarchy of concepts and very little property restrictions.As a conclusion
the best points of this ontology is that is an observation and a measurement model.
On the other hand the weakest points are that the property restrictions are not
entirely defined.

3.1.8 Ontonym – Sensor

This ontology has created to represent core conceper in pervasive computing (time,
location, people, sensing, provenance, events, device, resource) also the Ontonym is
set up of upper ontologies. Sensor is able to describe sensors and the data that they
generate. This ontology had created recently but with a lot of upkeep in the future.

Theontologyisorganizedaroundthreekeyconcepts:

i. Sensor: High level description of a sensor and its capabilities (frequency,
coverage, accuracy and precision pairs).

ii. Sensor data: Description of sensor observations (observation-specific
information, metadata, sensor, timestamp, time period over which the value
is valid, rate of change).

iii. These ontologies must be extended to characterize any specific sensor and its
data.

In general the ontology is good because ground on existing ontologies and theories
which represent time, location, people and events. But it is not recommended for
the SSN ontology.

25

Enhanced management of IoT devices based on collective knowledge

3.1.9 SEEK OBOE

The SEEK Extensible Observation Ontology (OBOE)[24]was developed for the SEEK
project, and has since been used by Spire and now is kept by the Scientific
Observation Networks-SONet.

Figure 7. Overview of the OBOE ontology [25]

 The ontology separates observations from the entity being observed: the

observation has a measurement while the entity has characteristics, and the
measurement is then of that characteristic.

 Entities are extension points into domain models.
 Observations can occur within a context, which in turn is an observation; this

property is transitive.
It is not a device ontology but an observation with more than a basic hierarchy of
concepts. This ontology is the right match for the SSN ontology given other design
requirements (OGC alignment, dovetailing with the device ontology, etc.). In
conclusion further discussion is required to find if it is a better approach than that in
e.g. the OGC O&M model.

3.1.10 Stimuli-Centered

The Stimouli-Centered [27]ontology created to make a bridge the sensor-centric
Sensor Model Language (SensorML) and the user-centric Observations &
Measurements (O&M) specification by focusing on stimuli as objects of sensing.
There is no need to have a strong link between sensors and features of interests such
as O&M also humans can also be used as sensors which are the key to volunteered
geographic information. It is an active ontology but it is not complete in the sense of
listing sensor(types) or observations but focuses on establishing a common ground
for both. The key frameworks are:

i. Stimuli
ii. Observations

iii. Sensors

26

Enhanced management of IoT devices based on collective knowledge

Figure 8. Stimuli as a proxy between a sensor and the object of sensing[28]

This ontology is focused on providing a top-level view on observation and not on
specific sensors also provides algebraic specifications using the Haskell[29]
programming language to define the core concepts. It depends on SensorML, O&M.
The good is that the ontology be used as top-level for the SSN ontology but it needs
an OWL version to work with the W3C SSN Ontology.

3.1.11 Socio-Ecological Research and Observation ontology (SERONTO)
This project created for the context of Long Term Ecological Research (LTER) [30]and
semantic data integration (ALTER-NET)[31]. The ALTER-NETproject since in March
2009. Currently is responding the 2nd version of development, it’s almost finished
except two unsatisfiable classes. There’re multiple documents which details the
ontology creation process which has been used. Thekeyframeworkare:

i. Has Device a investigation_device (one class not further defined by the
ontology).

ii. has a parameter_method (combo of method and parameter description,
including units).

iii. hasInvestigationItemphysical_thing which is a real world object
(SamplingFeature).

Although this ontology is pretty sophisticated. It looks pretty good in the UML and
also look fine in Protégé (but with not much classes). This ontology has adopted by a
large list of contributors. There are many examples of domain ontologies where are
completing the core.

Some of the best features are:

i. The Bio-Diversity use case that is covered by the O&M ontology so anything is
handled by SORENTO and OBOE is taken in consideration.

ii. Many generic aspects of an observation are covered in details.
iii. SERONTO imports a unit ontology which looks okay.

And some of the weakest features are:

i the use of subPropertyOf to group properties by themes.

27

Enhanced management of IoT devices based on collective knowledge

ii The presence of unsatisfiable concepts
iii the choice of using owl:individual (see Individuals by Classes tab in Protege)

o This is both good
• Because it grounds the abstract classes into complementary

definitions
o And bad

• these definitions are less self-descriptive: the end user needs
to read the comments (and they are not well documented
elsewhere)

• this design choice could also be a roadblock for possible
extensions.

3.2 Distributed Coordination
Nowadays the new technology and the current lifestyle commands more and more
communicating systems. For that reason the communications systems are constantly
growing continuously and as a result is growing the complicity too. This means that
we have exponential growth in the number of communicating elements and the
number of communicating subgroups. A characteristic example of this challenge is
the evolution of clustering and group communication in enterprise systems. The
group communication is about who is in the group and how reliable is the
communication between the members. Through the development of systems we
passed by master-slave replication to synchronous replication in groups and finally
protocols that allow asynchronous progress, such as Virtual Synchrony.

In a virtually synchronous environment processes are allowed to be structured into
process groups. Also can make events for example it can face a group like an entity
and broadcast to them events, group membership changes, and even migration of
an activity from one place to another appear to occur instantaneously -- in other
words, synchronously. The scalability of those protocols was restricted by strong
consistency semantics.

As the systems became even bigger in size, there were introduced peer-to-peer
techniques and gossip protocols were imported, so to relax the consistency
semantic, increasing the scale by an order of magnitude. A peer-to-peer (P2P)
network refers that is a type of decentralized and distributed network architecture.
In this network there’re exists individual nodes ,those nodes called "peers", and they
act both as suppliers and as consumers of resources, in contrast to the centralized
client–server model where client nodes request access to resources provided by
central servers. As gossip protocol refers that is a style of computer-to-computer
communication protocol inspired by the form of gossip seen in social networks.
Gossip protocols used by modern distributed systems to solve problems that might
be difficult to solve in other ways, either because the underlying network has an

28

Enhanced management of IoT devices based on collective knowledge

inconvenient structure, is extremely large, or because gossip solutions are the most
efficient ones available. The peer-to-peer protocol will be described further on
chapter 2.2.1.

Continuously Chubby[32] and ZooKeeper[33] is another aspect for managing large
distributed systems. In this aspect all the group participants connect to a distributed
hub and coordinate their actions through it. ZooKeeper-style services were
developed to support the needs of mobile users and mobile applications as a
consequence of soaring growth of these.

3.2.1 Peer-To-Peer Protocols
Peer-to-peer (P2P) technology has attracted significant interest in recent years. It’s
used to share music e.g. Napster, for data storage e.g. Freenet and for scientific
computing projects such as SETI@home. First has been used mostly to exchange
music files between user’s computers (Napster).

Almost a decade later, P2P, technology has been used furthermore than the simple
music sharing, anonymous data storage or scientific computing and now begin to
gather significant research attention and increasingly widespread use in software
communities and industries alike. Scientist, companies and open-software
organizations use BitTorrent to distribute bulk data such as software updates, data
sets, and media files to many nodes. For example 5 commercial P2P software allows
to distribute news and events to their employees, 22 million of people use Skype to
communicate every day, there are hundreds of TV channels using live streaming.

But the term P2P has been defined in different ways. Let’s clarify what P2P really
mean. The P2P is a distributed system with the following properties:

High degree of decentralization.

The peers implement both client and server functionality and most of the system's
state and tasks are dynamically allocated among the peers. There are few if any
dedicated nodes with centralized state. As a result, the bulk of the computation,
bandwidth, and storage needed to operate the system are contributed by
participating nodes.

Self-organization.

Once a node is introduced into the system (typically by providing it with the IP
address of a participating node and any necessary key material), little or no manual
configuration is needed to maintain the system.

29

Enhanced management of IoT devices based on collective knowledge

Multiple administrative domains.

The participating nodes are not owned and controlled by a single organization. In
general, each node is owned and operated by an independent individual who
voluntarily joins the system.

Furthermore there are several distinctive specifications about P2P that make them
interesting such as:

Low barrier to deployment.

Because P2P systems require little or no dedicated infrastructure, the upfront
investment needed to deploy a P2P service tends to be low when compared to
client-server systems.

Organic growth.

Because the resources are contributed by participating nodes, a P2P system can
grow almost arbitrarily without requiring a"fork-lift upgrade" of existing
infrastructure, for example, the replacement of a server with more powerful
hardware.

Resilience to faults and attacks.

P2P systems tend to be resilient to faults because there are few if any nodes that are
critical to the system's operation. To attack or shut down a P2P system, an attacker
must target a large proportion of the nodes simultaneously.

Abundance and diversity of resources.

Popular P2P systems have an abundance of resources that few organizations would
be able to afford individually. The resources tend to be diverse in terms of their
hardware and software architecture, network attachment, power supply, geographic
location and jurisdiction. This diversity reduces their vulnerability to correlated
failure, attack, and even censorship.

We’ll analyze the most important techniques that make P2P systems works. We
discuss fundamental architectural choices like the degree of centralization and the
structure of the overlay network. One of the challenges is to built an overlay with a
routing capability that works well in the presence of a high membership turnover,
this is typically deployed P2P systems. We then present solutions to specific
problems addressed in the context of P2P systems: application state maintenance,
application-level node coordination, and content distribution.

30

Enhanced management of IoT devices based on collective knowledge

3.2.2 Degree of centralization
We can categorize the architecture of P2P systems according to the presence or the
absence of centralized components in the system. Partly centralized P2P systems
have dedicated controller node that maintains the se of participating nodes and
controls system. For example, Napster had a Web site that maintained the
membership and content index and Skype has a central site provides log-in, account
management and payment.

Resource-intensive operations like transmitting content or computing applications
does not involve the controller. Party P2P systems though can provide organic
growth and abundant resources.

However, these type of P2P does not offer the same scalability and resilience
because of the controller forms a potential bottleneck and a single point of failure
and attack. Party centralized P2P systems are relatively simple though and can be
managed by a single organization via a controller.

The decentralized P2P system have no dedicated nodes that are can be critical for
the operation of the system. Also they haven’t inherent bottlenecks and can
potentially scale very well. Furthermore, the lack of dedicated nodes makes the
resilient to failure, attack and legal challenge. Though in some of those decentralized
systems, nodes with plenty of resources, high availability and a publicity routable IP
address act as super-nodes. Those nodes have more responsibilities, such as acting a
rendezvous point for nodes behind firewalls. Also can increase the efficiency of a P2P
system, but this can be its vulnerability to node failure.

3.2.3 Distributed Coordination
Often a group of nodes must coordinate their actions without the central control.
For example, the set of nodes that replicated a particular object must inform each
other of updates to the object, or a node that is interested in receiving a particular
streaming content channel may wish to find, among the nodes that currently receive
that channel, one that is nearby and has available upstream network bandwidth.
We’ll look these two distinct approaches to this problem: epidemic techniques
where information spreads virally through the system, and tree-based techniques
where distribution trees are formed to spread the information.

We’ll focus only on decentralized overlays, coordination can be accomplished by the
controller node in partly centralized systems.

 Unstructured overlays.
Here the coordination typically relies on epidemic techniques. In these protocols,
information is spread through the overlay in a manner similar to the way an infection

31

Enhanced management of IoT devices based on collective knowledge

spreads in a population: the node that produced the information sends it to (some
of) its overlay neighbors, who send it to (some of) their neighbors, and so on. This
method of dissemination is very simple and robust. As in all epidemic techniques,
there is a trade-off between the speed of information dissemination and overhead.
Moreover, if a given piece of information is of interest only to a subset of nodes and
these nodes are widely dispersed within the overlay, then the information ends up
being needlessly delivered to all nodes. A more efficient way to coordinate the
actions among a group of nodes is to form a spanning tree among the nodes. The
spanning tree is embedded in the overlay graph, using a decentralized algorithm for
spanning tree formation. This tree can then be used to multicast messages to all
members, or to compute summaries (for example, sums, averages, minima, or
maxima) of state variables within the group. However, this added coordination
efficiency must be balanced against the overhead of maintaining the spanning tree in
the unstructured overlay network.

 Structured overlays.

In structured overlays, spanning trees among any group of overlay nodes can be
formed and maintained very efficiently using the KBR [33] primitive making trees the
preferred method of coordination in these overlays. To join a spanning tree, a node
uses KBR to route to a unique key associated with the group. The resulting union of
the paths from all group members form a spanning tree rooted at the node
responsible for the group's key. This KBR tree is then used to aggregate and
disseminate state associated with the group, and to implement multicast and any
cast.

Finally the epidemic techniques typically used for coordination in unstructured
overlays are simple and robust to overlay churn, but they may not scale to large
overlays or large numbers of groups, and information tends to propagate slowly.
Spanning trees can increase the efficiency of coordination, but maintaining a
spanning tree in an unstructured overlay adds costs. The additional overhead for
maintaining a structured overlay is proportional to the churn in the total overlay
membership. Once that overhead is paid, KBR trees enable efficient and fast
coordination among potentially numerous, large and dynamic subgroups within the
overlay.

32

Enhanced management of IoT devices based on collective knowledge

3.2.4 Chubby and ZooKeeper

Chubby is a lock service which is designed for use within a loosely-coupled
distributed system consisting of large numbers of small machines connected by a
high-speed network.

ZooKeeper is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services. All of
these kinds of services are used in some form or another by distributed applications.
Zookeeper is a close clone of Chubby designed to fulfill many of the same roles for
HDFS [34] and other Hadoop infrastructure. Before Zookeeper developed in a
distributed environment we have taken into account how available and scalable is
the service. The Chubby for Google to guarantee a high level of availability runs on
minimum five machines and simultaneously provides a built-in master election and
failover mechanisms. Considering a cluster of Zookeeper servers (only one of them
act as a leader) whose role is to accept and coordinate all writes. The rest of servers
are read-only replicas of the master and are direct. This means that if the master
break down, immediately any of the other server way, if the master goes down, any
other server can take over and serve requests. We have to say that is remarkable
that Zookeeper allows the standby servers to serve reads opposed to Chubby. The
only disadvantage of this that every cluster node is an exact replica – there is no
sharing and the capacity of the service is limited by the size of an individual machine.
Two characteristic examples of this are Thialfi from Google and Mobius from Yahoo.

3.2.5 Thialfi: A Client Notification Service for Internet-Scale Applications

Google developed Thialfi [35] for user-facing applications with hundreds of millions
of users and billions of objects thus providing sub-second notification delivery in
common case and clear semantics despite failures even of entire data centers. All
these supports applications written in many languages such as Java, JavaScript and
C++ which running in different platforms such as desktops, web browser and mobile
phones. To have reliability with Thialfi we have to rely on clients to drive recovery
operations avoiding the need for hard state at the server. All these models shared
data as versioned objects which are stored at a data center and cached at clients. All
clients register with Thialfi to be informed when an object changes and also the
application servers notify when updates occur. To synchronize Thialfi data with
application servers we have to register clients so Thialfi spread notifications to
register them. An attribute of Thialfi is the reliability in the presence of a wide variety
of faults. The system ensures their clients that eventually learn of the latest version

33

Enhanced management of IoT devices based on collective knowledge

of each registered object even if the clients were unreachable at the time the update
occurred.

3.2.6 Mobius: Unified Messaging and Data Serving for Mobile Apps
Mobius is a consolidated messaging and data serving system for mobile apps that
addresses the challenges, is motivated by data consumption, creation, sharing and
messaging requirements of current and future mobile apps. Mobius provides all
these features through the MUD (Messaging Unified with Data) abstraction. Mobius
consists of both client-side and back-end (cloud) infrastructure.

3.2.7 Public/subscribe(pub/sub)
A fundamental communication service that needs to be offered for efficient group
communication is multicast with the popular abstraction public/subscribe(pub/sub)
messaging. Publish/subscribe is a distributed interaction example well adapted to
the growth of scalable and loosely coupled systems. To compare distributed
abstractions, they have introduced a classification based on three dimensions: the
decoupling in time, space, and synchronization between producers and consumers
of information. Decoupling enforces scalability at the abstraction level, by allowing
participants to operate independently of one another. The basic system model for
publish/subscribe interaction relies on an event notification service providing
storage and management for subscriptions and efficient delivery of events. Such an
event service represents a neutral mediator between publishers, acting as producers
of events, and subscribers, acting as consumers of events. The publishers publish
events through an event service and the subscribers get these events indirectly
through the event service. The publishers do not usually hold references to the
subscribers, neither do they know how many of these subscribers are participating in
the interaction. Similarly, subscribers do not usually hold references to the
publishers, neither do they know how many of these publishers are participating in
the interaction.

34

Enhanced management of IoT devices based on collective knowledge

4. Approach
4.1 Ontologies
In previous chapter we have analyzed some ontologies which are integral part of the
Internet of Things (IoT).One of those ontologies that mentioned earlier is the Sensor
Model Language (SensorML) and will help us to describe and analyze our problem.
The primary target of this ontology (SensorML) is to provide a semantically-tied
means so we can define the processes and processing components that are
associated with the measurement and post-measurement transformation of
observations. This includes sensors and actuators as well as computational processes
applied pre- and post-measurement. The main concern is to enable the
interoperability, initially at the syntactic level and after that at the semantic level (
this will happen using ontologies and semantic mediation), in that way the sensors
and the processes will be easily understood from machines, and will utilized
automatically in complex workflows, and will easily shared between intelligent
sensor web nodes. The advantages of the selected ontology (SensorML) is that there
are options for positions and dynamic states such as locations, orientations, velocity
etc. and there is also an option for real-time access to values and data streams.

With the aid of SensorML we managed to give some certain characteristics to
objects, which are helping them to get the necessary experience. Based on existing
attributes we added some additional attributes the social properties, these are
helping the objects with their experience. Some of the social properties that
mentioned above are:

• Experience
• Goals
• Relationships etc.

The scheme above describes the approach of our work. The basic properties are
properties that already existing and we have included for example physical entity,
trust, asset etc. In our example we extended those basic properties and we added

Basic
Properties

Social
Properties

Experience

•Asset
•Physical Entity
•Trust

•Reputation
•Events
•Trends

•Functional
•Non-Functional

35

Enhanced management of IoT devices based on collective knowledge

the social properties such as reputation, events and trends. With those social
properties we have created the idea of “facebook” of things

 Store Data

 “Friends”

In the example above we see this idea where two objects became “friends” by
sharing experience between them. So the point is to create a society of things which
can communicate between them and exchange information.

In the next chapter we will analyze them with the help of SensorML.

4.2 Distributed Coordination

The growth in the number of communicating elements and the number of
communicating subgroups is huge. A characteristic example of this challenge is the
evolution of clustering and group communication in enterprise systems. Our concept
is to bilk from the model of hierarchical structure and create an autonomous system.
The idea of the main entity does not exist and the other entities act autonomous
when they get the appropriate experience. In other words we will not have an entity
which acts like a “leader” and give directions and information to sub entities because
every entity will act autonomous when it will have all the information. All of these
make our system faster and useful without collisions.

In order to understand how the distributed coordination model works we can refer
to the human. When a child is born it isn’t able to speak, to eat by its own, to do
things generally and off course this child will necessary need the help of his parents
in order to grow and learn things. But as the child grows will learn to eat, to speak
and will be able to do more and more things every day by its own, as a result the
help of his parents is unnecessary. Like the child at the first the distributed
coordination model will need the help of the users and it won’t be able to act
entirely autonomous. As the system grows and gather experiences from the user is
acting more and more autonomous just like the adult human. At the end the sensor
or the application is running without any help from the central system, but will
follow the acts from the users.

Camera

HD

36

Enhanced management of IoT devices based on collective knowledge

5. The application

In this chapter we will explain the structure of our applications and also we will
provide you some of the code. I order to build those application we’ve used a really
popular program the “eclipse”, and as a database we’ve used the MongoDB. The
MongoDB in our case is running in the cloud so we use it as a service from the web
site http://www.mongolab.com.

5.1 Flowchart of the first application
The first application is receiving data from the device, in our case those data are: the
battery, the Wi-Fi state (enabled, enabling, disabled, disabling), the current
brightness of the screen (in scale from 0 to 255), the longitude and finally latitude.
The flowchart from our first application is:

5.2 UML of the first application
In this chapter we’ll show the UML representation of our application. The
MainActivity class is developed as the main class of this application, the purpose is to
collect the data from the device. It has one button to save the data to MongoLAB.
The MyData class is creating the variables that we want to pass. The QueryBuilder
class is responsible to make the querry to mongoDB right. Finally the saveAsyncTask

37

Enhanced management of IoT devices based on collective knowledge

is running on the background and is responsible for make the connection to
database sending the queries too.

5.3 The implementation of first application

So in this chapter we will explain the implementation of the second application.

5.3.1 MainActivity.java

First we create the MainActivity.java in this activity we get the battery, the Wi-Fi
state, the current brightness, longitude and latitude and when we press the button
“save to MongoDB” the application check if there is connectivity to internet and
depending the result shows the proper message to user.

package com.example.first1;

import java.net.UnknownHostException;
import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.location.Criteria;
import android.location.Location;
import android.location.LocationManager;
import android.net.ConnectivityManager;

38

Enhanced management of IoT devices based on collective knowledge

import android.net.wifi.WifiManager;
import android.os.BatteryManager;
import android.os.Bundle;
import android.provider.Settings.SettingNotFoundException;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

import com.example.first1.MongoLab.SaveAsyncTask;

publicclass MainActivity extends Activity {
//We define the variables for the Location Manager, Location and TextView
LocationManager lm;
String provider;
Location l;

TextView textView_battery, textView_wifistatus, textView_brightness,
textView_longitude, textView_latitude;

protectedvoid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

textView_battery = (TextView) findViewById(R.id.textView_battery);
textView_wifistatus = (TextView) findViewById(R.id.textView_wifistatus);
textView_brightness = (TextView) findViewById(R.id.textView_brightness);
textView_longitude = (TextView) findViewById(R.id.textView_longitude);
textView_latitude = (TextView) findViewById(R.id.textView_latitude);

getBatteryPercentage();
getWifi();
getLocation();

try {
int curBrightnessValue=android.provider.Settings.System.getInt(
getContentResolver(), android.provider.Settings.System.SCREEN_BRIGHTNESS);
textView_brightness.setText(""+ curBrightnessValue);

} catch (SettingNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

publicvoid getLocation(){
lm=(LocationManager)this.getSystemService(Context.LOCATION_SERVICE);
Criteria c=new Criteria();

39

Enhanced management of IoT devices based on collective knowledge

provider=lm.getBestProvider(c, false);
l=lm.getLastKnownLocation(provider);
if(l!=null)
{
double lat=l.getLatitude();
double lng=l.getLongitude();

textView_longitude.setText(""+lng);
textView_latitude.setText(""+lat);
}
else
{
textView_longitude.setText("No Provider");
textView_latitude.setText("No Provider");
}
}

publicvoid getBatteryPercentage(){
BroadcastReceiver batteryLevelReceiver = new BroadcastReceiver() {
publicvoid onReceive(Context context, Intent intent) {
context.unregisterReceiver(this);
int currentLevel = intent.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
int scale = intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
int level = -1;
if (currentLevel >= 0 && scale > 0) {
level = (currentLevel * 100) / scale;
}
String tmpStr10 = String.valueOf(level);
textView_battery.setText(tmpStr10);
}
};
IntentFilter batteryLevelFilter = new
IntentFilter(Intent.ACTION_BATTERY_CHANGED);
registerReceiver(batteryLevelReceiver, batteryLevelFilter);
}

publicvoid getWifi(){
BroadcastReceiver WifiStateChangedReceiver = new BroadcastReceiver() {
publicvoid onReceive(Context context, Intent intent) {

int extraWifiState = intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE ,
WifiManager.WIFI_STATE_UNKNOWN);

switch(extraWifiState){
case WifiManager.WIFI_STATE_DISABLED:

40

Enhanced management of IoT devices based on collective knowledge

textView_wifistatus.setText("Disabled");
break;
case WifiManager.WIFI_STATE_DISABLING:
textView_wifistatus.setText("Disabling");
break;
case WifiManager.WIFI_STATE_ENABLED:
textView_wifistatus.setText("Enabled");
break;
case WifiManager.WIFI_STATE_ENABLING:
textView_wifistatus.setText("Enabling");
break;
case WifiManager.WIFI_STATE_UNKNOWN:
textView_wifistatus.setText("Unknown");
break;
}
};
};

IntentFilter wifiLevelFilter = new
IntentFilter(WifiManager.WIFI_STATE_CHANGED_ACTION);
registerReceiver(WifiStateChangedReceiver, wifiLevelFilter);
}

publicvoid saveContact(View v) throws UnknownHostException {

ConnectivityManager connec =
(ConnectivityManager)getSystemService(getBaseContext().CONNECTIVITY_SERVICE);

// Check for network connections
if (connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.CONNECTED ||
connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.CONNECTING ||
connec.getNetworkInfo(1).getState() ==
android.net.NetworkInfo.State.CONNECTING ||
connec.getNetworkInfo(1).getState() == android.net.NetworkInfo.State.CONNECTED
) {

//Concert the text from TextView to String
MyData data = new MyData();
data.baterypercent = textView_battery.getText().toString();
data.wifistatus = textView_wifistatus.getText().toString();
data.brightness = textView_brightness.getText().toString();
data.longitude = textView_longitude.getText().toString();
data.latitude = textView_latitude.getText().toString();

//Run the SaveAsyncTask so we can send the data to cloud

41

Enhanced management of IoT devices based on collective knowledge

SaveAsyncTask tsk = new SaveAsyncTask();
tsk.execute(data);

Toast.makeText(this, " Data send. Thank you for your contribution!",
Toast.LENGTH_LONG).show();
//Check for network connections
} elseif (
connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.DISCONNECTED ||
connec.getNetworkInfo(1).getState() ==
android.net.NetworkInfo.State.DISCONNECTED) {

Toast.makeText(this, " I'm sorry you I need Internet to send my DATA. Please
connect me to Internet and try again! ", Toast.LENGTH_LONG).show();

}}}

5.3.2 MyData.java

In the file MyData.java we declared the variables that we want to send to cloud in
our case at Mongodb.

package com.example.first1;

publicclass MyData {

public String doc_id;
public String baterypercent;
public String wifistatus;
public String brightness;
public String longitude;
public String latitude;

public String getDoc_id() {
returndoc_id;
}
publicvoid setDoc_id(String doc_id) {
this.doc_id = doc_id;
}
public String getBaterypercent() {
returnbaterypercent;
}
publicvoid setBaterypercent(String baterypercent) {
this.baterypercent = baterypercent;
}

42

Enhanced management of IoT devices based on collective knowledge

public String getWifistatus() {
returnwifistatus;
}
publicvoid setWifistatus(String wifistatus) {
this.wifistatus = wifistatus;
}
public String getBrightness() {
returnbrightness;
}
publicvoid setBrightness(String brightness) {
this.brightness = brightness;
}
public String getLongitude() {
returnlongitude;
}
publicvoid setLongitude(String longitude) {
this.longitude = longitude;
}
public String getLatitude() {
returnlatitude;
}
publicvoid setLatitude(String latitude) {
this.latitude = latitude;
}}

5.3.3 QueryBuilder.java

In this file we define the database that we’ve created in the web-site
www.mogolab.com, the API key, the database that will allow us to manage our
database, the docid and finally we created the query.

package com.example.first1.MongoLab;

import com.example.first1.MyData;

publicclass QueryBuilder {

/**
* Specify the database name
*/
public String getDatabaseName() {
return"code102";
}

43

Enhanced management of IoT devices based on collective knowledge

/**
* Specify the MongoLab API key
*/
public String getApiKey() {
return"K6onPQmCPU5S1N9PqztFmmzMlMKvJpRp";
}

/**
* This constructs the URL that allows to manage your database,
* collections and documents
*/
public String getBaseUrl()
{
returnhttps://api.mongolab.com/api/1/databases/"+getDatabaseName()+"/collectio
ns/";
}

/**
* Completes the formating of your URL and adds the API key at the end
*/
public String docApiKeyUrl()
{
return"?apiKey="+getApiKey();
}

/**
* Get a specified document with the docid
*/
public String docApiKeyUrl(String docid)
{
return"/"+docid+"?apiKey="+getApiKey();
}

/**
* Returns the docs101 collection
*/
public String documentRequest()
{
return"docs101";
}

/**
* Builds a complete URL using the methods specified above
*/
public String buildContactsSaveURL()
{
return getBaseUrl()+documentRequest()+docApiKeyUrl();

44

Enhanced management of IoT devices based on collective knowledge

}

/**
* This method is identical to the one above.
*/
public String buildContactsGetURL()
{
return getBaseUrl()+documentRequest()+docApiKeyUrl();
}

/**
* Get a Mongodb document that corresponds to the given object id parameter
doc_id
*/
public String buildContactsUpdateURL(String doc_id)
{
return getBaseUrl()+documentRequest()+docApiKeyUrl(doc_id);
}

/**
* Formats the contact details for MongoHLab Posting data: battery, wifistatus,
brightness, longitude, latitude
*/
public String createData(MyData data)
{
return String
.format("{\"battery_percent\": \"%s\",\"wifi_status\": \"%s\",\"brightness\":
\"%s\",\"longitude\": \"%s\",\"latitude\": \"%s\"}",
data.baterypercent, data.wifistatus, data.brightness, data.longitude, data.latitude);
}
}

5.3.4 SaveAsyncTask.java

In this file we created the AsyncTask that connects to MongoDB and execute the
query. The AsycnTask runs in background.

package com.example.first1.MongoLab;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;

import android.os.AsyncTask;

45

Enhanced management of IoT devices based on collective knowledge

import com.example.first1.MyData;;

public class SaveAsyncTask extends AsyncTask<MyData, Void, Boolean> {

@Override
protected Boolean doInBackground(MyData... arg0) {
try
{
MyData contact = arg0[0];

QueryBuilder qb = new QueryBuilder();

HttpClient httpClient = new DefaultHttpClient();
HttpPost request = new HttpPost(qb.buildContactsSaveURL());

StringEntity params =new StringEntity(qb.createContact(contact));
request.addHeader("content-type", "application/json");
request.setEntity(params);
HttpResponse response = httpClient.execute(request);

if(response.getStatusLine().getStatusCode()<205)
{
return true;
}
else
{
return false;
}
} catch (Exception e) {
//e.getCause();
String val = e.getMessage();
String val2 = val;
return false;
}}}

5.4 Information and service flow of the second application

In this application we also check the device data and we have two options. The first
options is to press the button “save to mongoDB”, the application check the
connectivity to network and if the device is connected to internet sends the data to
cloud. If the device is not connected to internet the application shows to user and
urge the user to try again. The second option is to see the data that already exists on
database so we press the button “watch data”. The application show us the data in a
list view (the list view shows the battery of each query of the database). The user can

46

Enhanced management of IoT devices based on collective knowledge

select a value from the above list. The selected values will show on the next screen
and the user can apply the brightness of the screen or can watch the data again from
the beginning.

47

Enhanced management of IoT devices based on collective knowledge

5.5 UML from the second application

The MainActivity class is the first class that opens. This class collect all the data from
the device and give the user the option to save the data or to watch the saved data.
The ViewDataActivity class is showing on a list view the results of the database, on
our case mongoLAB. The GetDataAsyncTask class help us get the data from the cloud
in our case the mongoLAB. The SaveAsyncTask is saving the collected data to cloud.
The QueryBuilder is the constrictor of the basic query that we are sending to cloud,
also in this file we configure the database we want to save the data. The
ApplySettings class is showing to us the data we’ve selected from the list
(ViewDataActivity) and give the user two options. The first option is to apply the
selected data and the second is to go again and watch the data so user goes back to
ViewDataActivity.

5.6 The implementation of the second application

So in this chapter we will explain the implementation of the second application.

5.6.1 MainActivity.java

This class is identical with the first application, but we have added the button that
link us to ViewDataList class.

48

Enhanced management of IoT devices based on collective knowledge

package com.example.second;

import java.net.UnknownHostException;
import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.graphics.drawable.Drawable;
import android.location.Criteria;
import android.location.Location;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.wifi.WifiManager;
import android.os.BatteryManager;
import android.os.Bundle;
import android.provider.Settings.SettingNotFoundException;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

import com.example.second.MongoLab.SaveAsyncTask;

public class MainActivity extends Activity {
//Define variables
LocationManager lm;
String provider;
Location l;
TextView textView_battery, textView_wifistatus, textView_brightness,
textView_longitude, textView_latitude;

private Drawable buttonDrawable;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

//Find the TextView of activity_main.xml
textView_battery = (TextView) findViewById(R.id.textView_battery);
textView_wifistatus = (TextView) findViewById(R.id.textView_wifistatus);
textView_brightness = (TextView) findViewById(R.id.textView_brightness);
textView_longitude = (TextView) findViewById(R.id.textView_longitude);
textView_latitude = (TextView) findViewById(R.id.textView_latitude);

49

Enhanced management of IoT devices based on collective knowledge

getBatteryPercentage();
getWifi();
getLocation();

try {
int curBrightnessValue=android.provider.Settings.System.getInt(
getContentResolver(), android.provider.Settings.System.SCREEN_BRIGHTNESS);
textView_brightness.setText(""+ curBrightnessValue);

} catch (SettingNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

public void getLocation(){
lm=(LocationManager)this.getSystemService(Context.LOCATION_SERVICE);
Criteria c=new Criteria();

provider=lm.getBestProvider(c, false);
l=lm.getLastKnownLocation(provider);
if(l!=null)
{
double lat=l.getLatitude();
double lng=l.getLongitude();

textView_longitude.setText(""+lng);
textView_latitude.setText(""+lat);
}
else
{
textView_longitude.setText("No Provider");
textView_latitude.setText("No Provider");
}
}

//Get the battery percent
public void getBatteryPercentage(){
BroadcastReceiver batteryLevelReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
context.unregisterReceiver(this);
int currentLevel = intent.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
int scale = intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
int level = -1;
if (currentLevel >= 0 && scale > 0) {
level = (currentLevel * 100) / scale;

50

Enhanced management of IoT devices based on collective knowledge

}

String tmpStr10 = String.valueOf(level);
textView_battery.setText(tmpStr10);
}
};
IntentFilter batteryLevelFilter = new
IntentFilter(Intent.ACTION_BATTERY_CHANGED);
registerReceiver(batteryLevelReceiver, batteryLevelFilter);
}

//Get the wi-fi state
public void getWifi(){
BroadcastReceiver WifiStateChangedReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {

int extraWifiState = intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE ,
WifiManager.WIFI_STATE_UNKNOWN);

switch(extraWifiState){
case WifiManager.WIFI_STATE_DISABLED:
textView_wifistatus.setText("Disabled");
break;
case WifiManager.WIFI_STATE_DISABLING:
textView_wifistatus.setText("Disabling");
break;
case WifiManager.WIFI_STATE_ENABLED:
textView_wifistatus.setText("Enabled");
break;
case WifiManager.WIFI_STATE_ENABLING:
textView_wifistatus.setText("Enabling");
break;
case WifiManager.WIFI_STATE_UNKNOWN:
textView_wifistatus.setText("Unknown");
break;
}
};
};

IntentFilter wifiLevelFilter = new
IntentFilter(WifiManager.WIFI_STATE_CHANGED_ACTION);
registerReceiver(WifiStateChangedReceiver, wifiLevelFilter);
}

//Act when the button is pressed
public void saveData(View v) throws UnknownHostException {

51

Enhanced management of IoT devices based on collective knowledge

ConnectivityManager connec =
(ConnectivityManager)getSystemService(getBaseContext().CONNECTIVITY_SERVICE);

// Check for network connections
if (connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.CONNECTED ||
connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.CONNECTING ||
connec.getNetworkInfo(1).getState() ==
android.net.NetworkInfo.State.CONNECTING ||
connec.getNetworkInfo(1).getState() == android.net.NetworkInfo.State.CONNECTED
) {

MyData data = new MyData();
data.baterypercent = textView_battery.getText().toString();
data.wifistatus = textView_wifistatus.getText().toString();
data.brightness = textView_brightness.getText().toString();
data.longitude = textView_longitude.getText().toString();
data.latitude = textView_latitude.getText().toString();

SaveAsyncTask tsk = new SaveAsyncTask();
tsk.execute(data);

Toast.makeText(this, " Data send. Thank you for your contribution!",
Toast.LENGTH_LONG).show();
Intent i = new Intent(this, ViewDataActivity.class);
startActivity(i);
}
// Check for network connections
else if (
connec.getNetworkInfo(0).getState() ==
android.net.NetworkInfo.State.DISCONNECTED ||
connec.getNetworkInfo(1).getState() ==
android.net.NetworkInfo.State.DISCONNECTED) {

Toast.makeText(this, " I'm sorry you I need Internet to send my DATA. Please
connect me to Internet and try again! ", Toast.LENGTH_LONG).show();
}}

//Act when the button is pressed
public void watchData(View n) throws UnknownHostException{

Intent i = new Intent(this, ViewDataActivity.class);
startActivity(i);
}}

52

Enhanced management of IoT devices based on collective knowledge

5.6.2 MyData.java

This java class is similar from the first application.

package com.example.second;

publicclass MyData {

public String doc_id;
public String baterypercent;
public String wifistatus;
public String brightness;
public String longitude;
public String latitude;

public String getDoc_id() {
returndoc_id;
}
publicvoid setDoc_id(String doc_id) {
this.doc_id = doc_id;
}
public String getBaterypercent() {
returnbaterypercent;
}
publicvoid setBaterypercent(String baterypercent) {
this.baterypercent = baterypercent;
}

public String getWifistatus() {
returnwifistatus;
}
publicvoid setWifistatus(String wifistatus) {
this.wifistatus = wifistatus;
}
public String getBrightness() {
returnbrightness;
}
publicvoid setBrightness(String brightness) {
this.brightness = brightness;
}
public String getLongitude() {
returnlongitude;
}
publicvoid setLongitude(String longitude) {
this.longitude = longitude;
}

53

Enhanced management of IoT devices based on collective knowledge

public String getLatitude() {
returnlatitude;
}
publicvoid setLatitude(String latitude) {
this.latitude = latitude;
}
}

5.6.3 ViewDataActivity.java

This java class is the class that create the list view with data provided by the cloud (in
our case the service of mongoDB).

package com.example.second;

import java.util.ArrayList;
import java.util.concurrent.ExecutionException;
import android.app.ListActivity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;

import com.example.second.MongoLab.GetDataAsyncTask;

/**
* This activity retrieves the mongolab data and displays them in a listview.
*
*/
publicclass ViewDataActivity extends ListActivity{
//Define the Array List
ArrayList<MyData>returnValues = new ArrayList<MyData>();
ArrayList<String>listItems = new ArrayList<String>();

String valueTOUpdate_id;
String valueTOUpdate_battery;
String valueTOUpdate_wifistatus;
String valueTOUpdate_brightness;
String valueTOUpdate_longitude;
String valueTOUpdate_latitude;

54

Enhanced management of IoT devices based on collective knowledge

protectedvoid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.list_view_data);

//Get cloud data
GetDataAsyncTask task = new GetDataAsyncTask();
try {
returnValues = task.execute().get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}

for(MyData x: returnValues){
listItems.add(x.getBaterypercent());
}
setListAdapter(new ArrayAdapter<String>(this,android.R.layout.simple_list_item_1,
listItems));
}

//Define that to do when a result is pressed
protectedvoid onListItemClick(ListView l, View v, int position, long id) {
super.onListItemClick(l, v, position, id);

String selectedValue = (String) getListAdapter().getItem(position);
Toast.makeText(this, "The selected battery is :"+selectedValue,
Toast.LENGTH_SHORT).show();
selectedContact(selectedValue);

Bundle dataBundle = new Bundle();
dataBundle.putString("_id", valueTOUpdate_id);
dataBundle.putString("battery_percent", valueTOUpdate_battery);
dataBundle.putString("wifi_status", valueTOUpdate_wifistatus);
dataBundle.putString("brightness", valueTOUpdate_brightness);
dataBundle.putString("longitude", valueTOUpdate_longitude);
dataBundle.putString("latitude", valueTOUpdate_latitude);

//Open the ApplySetting class so we can see the results from the data we receives
from cloud
Intent moreDetailsIntent = new Intent(this,ApplySettings.class);
moreDetailsIntent.putExtras(dataBundle);
startActivity(moreDetailsIntent);
}

/*

55

Enhanced management of IoT devices based on collective knowledge

* Retrieves the full details of a selected data.
* The details are then passed onto the Apply Setting class.
*/
publicvoid selectedContact(String selectedValue){
for(MyData x: returnValues){
if(selectedValue.contains(x.getBaterypercent())){
valueTOUpdate_id = x.getDoc_id();
valueTOUpdate_battery = x.getBaterypercent();
valueTOUpdate_wifistatus=x.getWifistatus();
valueTOUpdate_brightness=x.getBrightness();
valueTOUpdate_longitude=x.getLongitude();
valueTOUpdate_latitude=x.getLatitude();
}}}}

5.6.4 ApplySettings.java

This class file is similar with the MainActivity.java but we the have insert “if”
statements witch decide what to do with brightness and Wi-Fi according to data
from the cloud.

package com.example.second;

import java.net.UnknownHostException;
import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.net.wifi.WifiManager;
import android.os.Bundle;
import android.os.RemoteException;
import android.view.View;
import android.view.WindowManager;
import android.widget.TextView;
import android.widget.Toast;

public class ApplySettings extends Activity {
TextView textView_battery, textView_wifistatus, textView_brightness,
textView_longitude, textView_latitude;

String _id;
String battery;
String wifi;
String brightness;
String longitude, latitude;

56

Enhanced management of IoT devices based on collective knowledge

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_apply);
textView_battery = (TextView) findViewById(R.id.textView_battery);
textView_wifistatus = (TextView) findViewById(R.id.textView_wifistatus);
textView_brightness = (TextView) findViewById(R.id.textView_brightness);
textView_longitude = (TextView) findViewById(R.id.textView_longitude);
textView_latitude = (TextView) findViewById(R.id.textView_latitude);

//Obtain details of the clicked data
Bundle getBundle = null;
getBundle = this.getIntent().getExtras();
_id = getBundle.getString("_id");
battery= getBundle.getString("battery_percent");
wifi= getBundle.getString("wifi_status");
brightness=getBundle.getString("brightness");
longitude=getBundle.getString("longitude");
latitude=getBundle.getString("latitude");

textView_battery.setText(battery);
textView_wifistatus.setText(wifi);
textView_brightness.setText(brightness);
textView_longitude.setText(longitude);
textView_latitude.setText(latitude);
}

public void applySettings(View v) throws UnknownHostException {

int bat= Integer.parseInt(battery);
int br = Integer.parseInt(brightness);

Toast.makeText(this, "The battery is: "+bat +"\n The brightness will be: " +br,
Toast.LENGTH_LONG).show();
//adjust brightness and wi-fi according to the queries
if(bat==100)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
wifiManager.setWifiEnabled(true);
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);

WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/255.0f;
getWindow().setAttributes(layoutParams);

57

Enhanced management of IoT devices based on collective knowledge

android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}

else if(bat<100&&bat>75)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
wifiManager.setWifiEnabled(true);
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);

WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/255.0f;
getWindow().setAttributes(layoutParams);

android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}
else if(bat<75&&bat>50)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
wifiManager.setWifiEnabled(true);
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);

WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/255.0f;
getWindow().setAttributes(layoutParams);

android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}
else if(bat<50&&bat>25)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
wifiManager.setWifiEnabled(true);
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);

WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/255.0f;
getWindow().setAttributes(layoutParams);

58

Enhanced management of IoT devices based on collective knowledge

android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}
else if(bat<=25)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
wifiManager.setWifiEnabled(false);
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);

WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/100.0f;
getWindow().setAttributes(layoutParams);

android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}

}

public void watchData(View n) throws UnknownHostException{

Intent i = new Intent(this, ViewDataActivity.class);
startActivity(i);

}
}

5.6.5 GetDataAsyncTask

 In this file we retrieve the data from mongoLab.

package com.example.second.MongoLab;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.ArrayList;

import android.os.AsyncTask;

import com.mongodb.BasicDBList;

59

Enhanced management of IoT devices based on collective knowledge

import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
import com.example.second.MyData;
/**
* Async Task to retrieve data frommongolab
*
*/
publicclass GetDataAsyncTask extends AsyncTask<MyData, Void,
ArrayList<MyData>> {
static BasicDBObject user = null;
static String OriginalObject = "";
static String server_output = null;
static String temp_output = null;

protected ArrayList<MyData> doInBackground(MyData... arg0) {

ArrayList<MyData> mydata = new ArrayList<MyData>();
try
{

QueryBuilder qb = new QueryBuilder();
URL url = new URL(qb.buildContactsGetURL());
HttpURLConnection conn = (HttpURLConnection) url
.openConnection();
conn.setRequestMethod("GET");
conn.setRequestProperty("Accept", "application/json");

if (conn.getResponseCode() != 200) {
thrownew RuntimeException("Failed : HTTP error code : "
+ conn.getResponseCode());
}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

while ((temp_output = br.readLine()) != null) {
server_output = temp_output;
}

// create a basic db list
String mongoarray = "{ artificial_basicdb_list: "+server_output+"}";
Object o = com.mongodb.util.JSON.parse(mongoarray);

DBObject dbObj = (DBObject) o;
BasicDBList contacts = (BasicDBList) dbObj.get("artificial_basicdb_list");

60

Enhanced management of IoT devices based on collective knowledge

for (Object obj : contacts) {
DBObject userObj = (DBObject) obj;
MyData temp = new MyData();
temp.setDoc_id(userObj.get("_id").toString());
temp.setBaterypercent(userObj.get("battery_percent").toString());
temp.setWifistatus(userObj.get("wifi_status").toString());
temp.setBrightness(userObj.get("brightness").toString());
temp.setLongitude(userObj.get("longitude").toString());
temp.setLatitude(userObj.get("latitude").toString());
mydata.add(temp);
}
}catch (Exception e) {
e.getMessage();
}
return mydata;
}
}

5.6.6 QueryBuilder.java

This class is similar to the first application and is the responsible to pass important
information about the API key of the mongoLab, the collection name, the database
name, the way data will save to the mongoLab.

package com.example.second.MongoLab;

import com.example.second.MyData;
publicclass QueryBuilder {

/**
* Specify database name here
*/
public String getDatabaseName() {
return"code102";
}

/**
* Specify MongoLab API here
*/
public String getApiKey() {
return"K6onPQmCPU5S1N9PqztFmmzMlMKvJpRp";
}

61

Enhanced management of IoT devices based on collective knowledge

/**
* This constructs the URL that allows you to manage our database, collections and
documents
*/
public String getBaseUrl()
{
return"https://api.mongolab.com/api/1/databases/"+getDatabaseName()+"/collecti
ons/";
}

/**
* Completes the formating of your URL and adds your API key at the end
*/
public String docApiKeyUrl()
{
return"?apiKey="+getApiKey();
}

/**
* Get a specified document, with docid as parameter
*/
public String docApiKeyUrl(String docid)
{
return"/"+docid+"?apiKey="+getApiKey();
}

/**
* Returns the docs101 collection
*/
public String documentRequest()
{
return"docs101";
}

/**
* Builds a complete URL using the methods specified above
*/
public String buildContactsSaveURL()
{
return getBaseUrl()+documentRequest()+docApiKeyUrl();
}

/**
* This method is identical to the one above.
*/
public String buildContactsGetURL()
{

62

Enhanced management of IoT devices based on collective knowledge

return getBaseUrl()+documentRequest()+docApiKeyUrl();
}

/**
* Get a Mongodb document that corresponds to the given object id
*/
public String buildContactsUpdateURL(String doc_id)
{
return getBaseUrl()+documentRequest()+docApiKeyUrl(doc_id);
}

/**
* Formats the data details for MongoHLab Posting
* @return
*/
public String createContact(MyData data)
{
return String
.format("{\"battery_percent\": \"%s\",\"wifi_status\": \"%s\",\"brightness\":
\"%s\",\"longitude\": \"%s\",\"latitude\": \"%s\"}",
data.baterypercent, data.wifistatus, data.brightness, data.longitude, data.latitude);
}

/**
* Update a given data record
* @return
*/
public String setContactData(MyData data) {
return String.format("{ \"$set\" : "
+ "{\"battery_percent\" : \"%s\",\"wifi_status\": \"%s\",\"brightness\":
\"%s\",\"longitude\": \"%s\",\"latitude\": \"%s\"}",
data.getBaterypercent(), data.getWifistatus(), data.getBrightness(),
data.getLongitude(), data.getLatitude());
}}

5.6.7 SaveAsyncTask.java

package com.example.second.MongoLab;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;

63

Enhanced management of IoT devices based on collective knowledge

import android.os.AsyncTask;
import com.example.second.MyData;;

public class SaveAsyncTask extends AsyncTask<MyData, Void, Boolean> {

protected Boolean doInBackground(MyData... arg0) {
try
{
MyData contact = arg0[0];

QueryBuilder qb = new QueryBuilder();

HttpClient httpClient = new DefaultHttpClient();
HttpPost request = new HttpPost(qb.buildContactsSaveURL());

StringEntity params =new StringEntity(qb.createContact(contact));
request.addHeader("content-type", "application/json");
request.setEntity(params);
HttpResponse response = httpClient.execute(request);

if(response.getStatusLine().getStatusCode()<205)
{
return true;
}
else
{
return false;
}
} catch (Exception e) {
//e.getCause();
String val = e.getMessage();
String val2 = val;
return false;
}}}

5.7 Case study

In order to understand the way the application works we will explain some of the
cases. For example the first device sends to mongoLab the following data:

battery_percent: 100,
wifi_status: Enabled,
brightness: 255,
longitude: 23.7438103,
latitude: 38.0465187

64

Enhanced management of IoT devices based on collective knowledge

According to our code if the user of the second application select this query from the
list view and push the button “apply settings” the Wi-Fi state will be on and the
screen brightness will be 255. Those settings will be applied according to this code.

if(bat==100)
{
WifiManager wifiManager =
(WifiManager)getBaseContext().getSystemService(Context.WIFI_SERVICE);
//with this command stays enabled
wifiManager.setWifiEnabled(true);
//with this command we deactivated the auto-brightnes that some devides might
have
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS_MODE, 0);
//here we change the brightness to our current window
WindowManager.LayoutParams layoutParams = getWindow().getAttributes();
layoutParams.screenBrightness = br/100.0f;
getWindow().setAttributes(layoutParams);
//finally we certain value of brightness goes to android system
android.provider.Settings.System.putInt(getContentResolver(),
android.provider.Settings.System.SCREEN_BRIGHTNESS, br);
}

The following table will demonstrate the case scenarios that will happen in our
example.

Baterry (%) Wifi Brightness (0-255)

100 enable 255

75-100 enable 200

50-75 enable 150

25-50 disable 100

<=25 disable 50

65

Enhanced management of IoT devices based on collective knowledge

5.8 Future work

In the near future, the Internet of Things (IoT) will have been fully developed,
everywhere and “things” will be all over the city, all over us. We’ve successfully
developed a representative example of sharing experiences, but in the future we
could add a lot of features. We could create groups of the “things” so it will be easy
sharing experience between two similar “things”, e.g. we could create a group only
with public transportation buses, in this group all those buses could exchange data
about geolocation, the current capacity of people, the remaining fuel or even if a
mechanical problem happened. This could be easily solve the problem of the groups
by adopting “friend” feature. Every “thing” could make a friend another “thing” if
same features are existing so they can easily exchange experiences by their own. The
“friend” feature is handier for the users, so if you have a smart device and become a
friend with a similar one you would be able to exchange experiences, and apply
those settings.

66

Enhanced management of IoT devices based on collective knowledge

6. Conclusion

In a society that development is rapid and people use more and more the Internet
and depend on that we came to answer the question how useful is to have a system
where all the things can communicate between them and share their experiences.
The importance of Internet of Things (IoT) played a very important role in our
research because this theory was the base to start the idea of share experience
between different things. After a short description about the Internet of Things and
what the usage of them in our daily life we described the existing problems that we
must solved. The solution from all the above was the ontologies and the distributed
coordination. The main ontology that help us to solve and answer the questions was
the SensorML. Also with the distributed coordination we achieve the goal to make
our application autonomous. With the help from all the above we develop an
application in Android that is a representative example of sharing experiences
through different things. We used the MongoDB as the main database of our
application which in our case is Software as a Service database (SaaS).

67

Enhanced management of IoT devices based on collective knowledge

References

[1] Joachim W. Walewski (Siemens), “Initial architectural reference model for IoT”,
http://www.iot-a.eu/public/public-documents/d1.2, 2013

[2] J. Gubbi, R. Buyya,S. Marusic,M. Palaniswamia, “Internet of Things (IoT): A Vision,
Architectural Elements, and Future Directions”,
http://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf

[3] Joachim W. Walewski (Siemens), “Initial architectural reference model for IoT”,
http://www.iot-a.eu/public/public-documents/d1.2, 2013

[4] Joachim W. Walewski (Siemens), “Initial architectural reference model for IoT”,
http://www.iot-a.eu/public/public-documents/d1.2, 2013

[5] Kaushik Das, IPv6, Information about IPv6, http://ipv6.com/articles/general/ipv6-
the-next-generation-internet.htm, 2013

[6] Sabita Maharjan, “RFID and IOT: An overview”, Simula Research Laboratory
University of Oslo, 2010

[7] C. Alcaraz, P. Najera, J.Lopez, R. Roman, “Wireless Sensor Networks and the
Internet of Things: Do We Need a Complete Integration?”, University of Malaga
Malaga, Spain

[8] Image from paper with title “Technologies and Architectures of the Internet-of-
Things (IoT) for Health and Well-being”

[9] Image for the future smart city,
http://www.libelium.com/top_50_iot_sensor_applications_ranking/#show_infog
raphic

[10] About OGC, http://www.opengeospatial.org/standards
[11] Sensor Model Language (SensorML),

http://www.opengeospatial.org/standards/sensorml
[12] Cory Henson,

http://www.w3.org/2005/Incubator/ssn/wiki/Incubator_Report#O.26M-
OWL_.28SemSOS.29

[13] Resource Description Framework (RDF) , http://www.w3.org/RDF/, 2014
[14] Cory A. Henson, Josh K. Pschorr, Amit P. Sheth, K. Thirunarayan, “SemSOS:

Semantic Sensor Observation Service” , Kno.e.sis Center, Department of
Computer Science and Engineering Wright State University, Dayton, 2009

[15] D. Connolly, Frank van Harmelen, I. Horrocks, D. L. McGuinness , P. F. Patel-
Schneider, L. A. Stein, “DAML+OIL Reference Description”, 2001

[16] Cory A. Henson, Josh K. Pschorr, Amit P. Sheth, K. Thirunarayan, “SemSOS:
Semantic Sensor Observation Service” , Kno.e.sis Center, Department of
Computer Science and Engineering Wright State University, Dayton, 2009

[17] Raúl García Castro, definition of SDO,
http://www.w3.org/2005/Incubator/ssn/wiki/Incubator_Report#SDO

[18] Ian Niles, “Mapping WordNet to the SUMO Ontology”, Teknowledge Corporation
[19] M. Comptona, P. Barnaghib, L. Bermudezc, R. Garc´ıa-Castrod, O. Corchod, S.

Coxe, J. Graybeal,M. Hauswirthf, C. Hensong, A. Herzogh, V. Huangi, K. Janowiczj,
W. David Kelsey, Danh Le Phuocf,L. Leforta, M. Leggierif, H. Neuhaus, A. Nikolovl,
K. Pagem, A. Passantf, A. Shethg, K.Taylora, “The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group”, 2012

[20] M. Comptona, P. Barnaghib, L. Bermudezc, R. Garc´ıa-Castrod, O. Corchod, S.
Coxe, J. Graybeal,M. Hauswirthf, C. Hensong, A. Herzogh, V. Huangi, K. Janowiczj,
W. David Kelsey, Danh Le Phuocf,L. Leforta, M. Leggierif, H. Neuhaus, A. Nikolovl,
K. Pagem, A. Passantf, A. Shethg, K.Taylora, “The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group”, 2012

68

http://www.opengeospatial.org/standards

Enhanced management of IoT devices based on collective knowledge

[21] Michael Compton, “CSIRO Sensor Ontology”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-
20110628/#CSIRO_Sensor_Ontology

[22] Danh Le Phuoc, “OntoSensor”, http://www.w3.org/2005/Incubator/ssn/XGR-ssn-
20110628/#OntoSensor, 2008

[23] V.Tsiatsis, A. Gluhak, T. Bauge, F. Montagut, J. Bernat, M. Bauer, C. Villalonga, P.
Barnaghi, S. Krco, The SENSEI Real World Internet Architecture, Ericsson
Research, Ericsson AB, University of Surrey UK, Thales Research and Technology,
SAP AG, Switzerland, Telefonica I+D, NEC Europe Ltd., ETH Zurich

[24] Kevin Page, Definition of “SEEK OBOE”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#SEEK_OBOE

[25] Kevin Page, Definition of “SEEK OBOE”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#SEEK_OBOE

[26] Kevin Page, Definition of “SEEK OBOE”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#SEEK_OBOE

[27] Krzysztof Janowicz, definition of “Stimuli-Centered”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#Stimuli-Centered

[28] Krzysztof Janowicz, definition of “Stimuli-Centered”,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#Stimuli-Centered

[29] The Haskell Programming Language,
 http://www.haskell.org/haskellwiki/Haskell

[30] The Long Term Ecological Network, http://www.lternet.edu/
[31] Definition of “AlterNet”, http://alternet.io/what-is-alternet/
[32] Mike Burrows, The Chubby lock service for loosely-coupled distributed systems,

s, Google Inc.,
http://static.googleusercontent.com/media/research.google.com/el//archive/ch
ubby-osdi06.pdf

[33] Thomas Fuhrmann, Pengfei Di and Kendy Kutzner, “Providing KBR Service for
Multiple Applications”, Universit¨at Karlsruhe (TH), Germany, TU Munich,
Germany

[34] Definition of “ZooKeepr”,
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index, 2012

[35] Definition of HDFS, “HDFS Architecture Guide”,
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[36] Atul Adya, Gregory Cooper, Daniel Myers, Michael Piatek, Thialfi: A Client
Notification Service for Internet-Scale Applications, 2011

69

	Abstract
	Περίληψη
	1. Introduction
	1.1 Structure
	1.2 Internet of Things
	1.2.1 Overview
	1.2.2 Infrastructure Technologies
	1.2.3 Application domains

	2. Problem Statement
	2.1 Context
	2.2 Proposed approach

	3. State of the Art
	3.1 Ontologies
	3.1.1 SensorML
	3.1.2 O&M – OWL (SemSOS)
	3.1.3 Sleep Domain Ontology
	3.1.4 Semantic Sensor Network Ontology
	3.1.5 CSIRO (Commonwealth Scientific and Industrial Research Organization) Sensor Ontology
	3.1.6 OntoSensor
	3.1.7 Sensei Observation and Measurement Ontology
	3.1.8 Ontonym – Sensor
	3.1.9 SEEK OBOE
	3.1.10 Stimuli-Centered
	3.1.11 Socio-Ecological Research and Observation ontology (SERONTO)

	3.2 Distributed Coordination
	3.2.1 Peer-To-Peer Protocols
	3.2.2 Degree of centralization
	3.2.3 Distributed Coordination
	3.2.4 Chubby and ZooKeeper
	3.2.5 Thialfi: A Client Notification Service for Internet-Scale Applications
	3.2.6 Mobius: Unified Messaging and Data Serving for Mobile Apps
	3.2.7 Public/subscribe(pub/sub)

	4. Approach
	4.1 Ontologies
	4.2 Distributed Coordination

	5. The application
	5.1 Flowchart of the first application
	5.2 UML of the first application
	5.3 The implementation of first application
	5.3.1 MainActivity.java
	5.3.2 MyData.java
	5.3.3 QueryBuilder.java
	5.3.4 SaveAsyncTask.java

	5.4 Information and service flow of the second application
	5.5 UML from the second application
	5.6 The implementation of the second application
	5.6.1 MainActivity.java
	5.6.2 MyData.java
	5.6.3 ViewDataActivity.java
	5.6.4 ApplySettings.java
	5.6.5 GetDataAsyncTask
	5.6.6 QueryBuilder.java
	5.6.7 SaveAsyncTask.java

	5.7 Case study
	5.8 Future work

	6. Conclusion
	References

