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Evyoaprotieg

Apywcd Ba n0ela va guyaplotiom Bepud tov emPAénovia Kabnynt pov, K. . Mrepoiun
Yo TV TOAOTIUN BonBeta TOv LoV ExEl OMOEL KATA TN SIUPKELN TOV TPOTTLYLOKAV OAAY KOl
TOV UETATTUYOK®OV HOV GTOLODV. MEC® TNG GLVEPYACING TOV HOL TPOGEPEPE EVKOAIPIES,
EMAOYEG aAAG KOl GUUPBOVAEC TOL NTOV KOBOPIOTIKES Yo TV TTOPEiR LoV OAa awTd Ta. £T1. Me
Vv KaBodnynomn tov e evémvevce Kot 1 yvopipio pov poli tov amotelel onueio otabuod yo
OTL &y emitoyet. Tov evyoploTd Amd KoPIiG.

EmmAéov Ba MBeha va evyapiotom to pEAN NG TPUEAOVS EMTPOTNG, TOV AVOTANP®TH
Kafnynm k. A. Avt{ovrdko kot tov Avaminpot Kadnynm k. . Yapdkn oyt pévov yia tig
GLUPOVAES TOVG KO TIG ETICTNUOVIKEG YVMGELS TIS OTOIES OV £XOLV TPOGPEPEL OAAG EmionG
KOl Y10 TO YPOVO OV aPLEP®SOV 0T dOPOMOT TNG SMAMUATIKNG OVTHG.

21 ovvéxeln Ba Nhela va evYaPIGTNO® OAOVS TOVG EEAIPETOVE EMGTNOVES OV ElY0L (G
KaONYNTEG KOTA TN SIPKELL TOV TPOTTLYIOKAOV KOl LETATTUYIOKAOV LoV GTOVd®MV Kabdg ot
YVOGELG TOV OV TPOGEPEPAY MTOV TEPIGGOTEPO OO TOAVTILEG,

[MapdAinia Ba NOeha va avagepBd Kot vo evxapIGTHcCHO TOVS PIAOVG OV TOL GTAONKAY
olmho. pov kot pe otpiEav Katd T OdpKeEW TG GLYYPUPNS TNG OWMAMUOTIKNG OVTAG
epyociag. Emiong 0éh® va evyoapiomowm Bepud t1g ovueortntpég kot ¢ileg pov B.
Booueddn kot E. Ztopoatomrodriov yro v moAdTiun forifeta mov pov £xovv tpocepEpel aALd
Koy T otpién Toug. e avto to onueio Ba NBeia va evyapiotiom ko v E. Bovpiiwt
KaBdG 1 VTOHOVY| Kol 1] VITOGTAPIEN TS NTOV KABOPLOTIKES Yol TNV OAOKANP®GT VTG TNG
TpooTadElogC.

OloxAnpovovtag, o€ Ba propovca va wapafAéym® QUOIKE TNV 1010 OV TNV OIKOYEVELD
KaOmg otekdTaYV TAVTO SITAN POV OOKPITIKA KOTE TN SIOPKELN QVTNG TNG TPOGTADELNG Kol

nicteye 6€ PEVA OO TNV OPYY).






IHepiinyn

O otatioTiKOG €Aeyy 0 Olepyaci®V gival éva gVpEMG YPNOILOTOLOVUEVO EPYaLELD
oV oT1oYEVEL 6TOV éAeyyo Kot TN PeAtimon Prounyoavikdv dtadikactdv. Texvikéc pe
pio  petofAinty umopovv va  ypnoipomomBovv Yo TNV  mwOpOKOAOVLONGT €VOC
YOPOKTNPLOTIKOY G€ U0 Ol00Kacin, OAAD ©€ TOAAEC TMEPIMTIMGEL; TEPLOGOTEPQ
YOAPOKTNPLOTIKA TpEmel va  mapakorovBovvialr tavtoypova. H aveEaptnTn
TopakoAoVONoN TOV YOPAKTNPIGTIKAOV, B0 00NYNGEL OE ECPAAUEVO CLUTEPACULATA,
0101t M oyéon petald tov petafintov oev Aapfavetoar vroyn. ‘Etor, n xpnon tov
[ToAvpetaPintov Ztatiotikod EAEyyov Atepyasiodv eival avaykaio yio tTnv amro@uyn
TETOLOV KOTOOTAGEWV.

Evod o1 mepiocdtepec teyvikéc mov avantdyOnkav otnv moAvpetafAnty nepintmoon
a@opovY TNV  TmapOKoAOVONGT TOL pécov egmmédov NG dledikaciag, M
nopakorovOnon g dtacmopdg eival eEicov onuavtikn Ady® tov YeYovoTog OTL LE TO
va ocvppopemwBel n dwacmopd, Ba odnynbodue oe pkpoOTEPN KOUOVON TOL HEGOL
EMTEOOV KAl EMOUEVOG G€ po To otabepn diepyacia.

H mapodoa odwatpipry opyikd mapéyel pio eocoayomyn oto Xtatiotikd Eleyyo
Atepyactdv. Ztn ovvéyela, mopovclaletal 1 anAn TEPINT®OON NG LOVOUETURANTIG
nopakorovOnong g docmopds. EmmpocOétmg, pio extetapévn avaokOmnoen g
BipMoypapiag oxeTik@ pe To TOAVUETAPANTA dtaypAppato eAEYXOV Yo TN OlGTOPd
€xel yiver kot 1€A0g, TOPOVGLAfOVUE HO. GVUYKPLOT TOV d10POp®V TOAVUETOPANTOV

dtaypappdtov eléyyov mov epeavifoviatl otn oxetikn Pipiioypaeia.






Abstract

Statistical process control is a widely used tool which aims in controlling and
improving an industrial or manufacturing process. Univariate techniques can be used
for monitoring one characteristic in a process but in many situations more
characteristics must be monitored simultaneously. By monitoring the characteristics
independently, will lead on false conclusions because the relation between the
variables is not taken into account. So, the usage of Multivariate Statistical Process
Control is a necessity for avoiding such situations.

While most techniques developed in the multivariate case deal with monitoring the
mean vector of the process, monitoring the dispersion is equally important due to the
fact that by controlling the dispersion, the mean will fluctuate less leading in a more
stable process.

The present dissertation initially provides an introduction in Statistical Process
Control. Next, the simple case of univariately monitoring the dispersion is presented.
In addition an extensive literature review on multivariate control charts for the
dispersion has been made and finally, we present a comparison of several

multivariate control charts that appear in literature.
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Chapter 1

Introduction

1.1 Introduction

Statistical process control (SPC) is the oldest and well tested method for con-
trolling and improving the products’ quality in an industrial or manufacturing
process. By using statistical methods, the researcher can discover non-conforming
standards of the product and contribute to the maintenance of the desirable qual-
ity.

In practice a products’ quality is not related to one but more qualitative charac-
teristics. In other words, it is necessary to monitor more than one characteristics
simultaneously to ensure the total quality of the product. Jackson (1991) in his

paper commented that a multivariate procedure should provide 4 information:

e an answer on whether or not the process is in-control,

e an overall probability for the event ”procedure diagnoses an out-of-control

state erroneously” must be specified,
e the relation between the variables/attributes should be taken into account”.

e an answer to the question ”If the process is out-of-control, what is the prob-

lem?”
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Therefore Multivariate Statistical Process Control (MSPC) is a necessity and
the fact that more and more scientists throughout the world contribute to the
expansion of this specific scientific area, makes it even more important. Harold
Hotteling in 1947 first applied the idea of Multivariate Statistical Process Control
in collected data regarding bomb sights in World War II. After that a lot of stud-
ies followed Hotteling’s idea including Hicks (1955), Jackson (1956, 1959, 1985),
Montgomery-Wadsworth (1972), Alt (1985), Crosier (1988), Hawkins (1991, 1993),
Pignatiello-Runger (1990), Tracy-Yang-Mason (1992), Lowry-Montgomery (1995),
Maravelakis-Bersimis-Panaretos-Psarakis(2002), Koutras-Berssimis- Antzoulakos (2006)

and Maravelakis-Bersimis(2009).

1.2 Control Charts

Among all techniques used in SPC and MSPC, the most common is the Control
Chart (CC). The CC, can be displayed when the quality of a product is char-
acterized by values of a variable and is the visualization of a measured quality
characteristic versus time. A CC is equipped with border lines which help the
researcher determine whether the process is in-control (operates with natural vari-
ation) or out-of-control (operates with special cause of variation). The border lines

are the following:
e The Upper Control Limit (UCL),
e The Center Line (CL) and
e The Lower Control Limit (LCL)
It is noted that the UCL and the LCL represent the maximum and the minimum
allowed values that indicate if the process is considered to operate with its nat-
ural variability. On the other hand, the CL represents the expected value of the

measured statistic function arising from functioning an in-control process. Other

optional features that may be included to a CC are the Upper and Lower Warning
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Limits (UWL and LWL) which represent zones that warn the researcher of the

process, in the case that the plotted statistic exceeds or falls short of them.

1.3 Phases of Statistical Process Control

The usage of CCs can be generally separated into two phases with a different
objective.

In Phase I a set of preliminary data is collected and is analysed retrospectively
for constructing control limits in order to establish reliable control limits for mon-
itoring future production. So in Phase I, m subgroups are collected and a set of
control limits is computed for these points. It is fair to assume that in Phase I the
data collected are in-control so the control limits can be calculated by using these
m subgroups. Points that are outside the control limits are usually investigated
by technicians and it is determined if special cause of variation has occurred. If
any special cause of variation is identified for the points that are initially outside
the control limits, they are excluded so a new set of control limits is constructed
by using the rest samples. The next step of the researcher is to collect a new set
of data and plot them on the control limits that have already been obtained. If
any sample is outside the control limits, is again investigated and new control lim-
its are constructed. This analysis continues until the process is stable, so control
limits and a set of in-control Phase I data are obtained.

Phase II begins after a clean set of data has been gathered. In Phase II, the
control limits that have been constructed from Phase I are used for on-line moni-
toring the process so the purpose of this phase is to monitor the process and not
try to bring it in-control. A sample statistic is calculated for every new sample
drawn from the process and is compared to the control limits and if the statistic
is plotted outside the control limits, the process is claimed to be out-of-control.
Otherwise, the monitoring continuous. In this phase sensitizing rules can be ap-
plied for detecting small shifts or for reacting more quickly to prevent the process

from being out-of-control.



Chapter 1. Introduction 4

1.4 Control Chart Types

From literature it is clear that different CCs can be constructed for different
scenarios that can exist in every process.

First of all, there are CCs that can be used for monitoring the mean of the process
and their purpose is to control the target of the specifications of a product. On
the other hand, the researcher may be interested on keeping the dispersion of a
product in a specific level. For this purpose, CCs for the variability can be applied.
Finally, the most reasonable scenario is for the researcher to maintain control over
both the mean and the dispersion of a product and thus to use CCs for both the
characteristics.

Another useful and interesting set of options for the researcher is whether or not
the sample size that can be collected from the process is equal to one (1). So CCs
have been proposed for either individual observations or not.

Usually, for monitoring financial data, there have been proposed several CCs
based on the time-series approach. The difference that time-series data have from
regular data is that they are time dependent so every new sample is correlated
with previous ones.

Another big difference that exists in the nature of the data is that not all processes
assume normality of the data. It is common for the data to be distribution-free or
non-normal and CCs based on this assumption have been proposed. In most cases
though the researcher makes the normality assumption and uses a large variety of
CCs.

Finally, all CCs can be classified into two big distinct categories depending on
one simple property. If the points plotted are based only in the information given
by the most recent sample taken, regardless any previous information, then the
CC is characterized as a CC without memory. On the other hand, the last few
years CCs have been developed in which a point plotted is based on information
obtained not only from the most recent sample but from previous as well. These
CCs are called CCs with memory.

As mentioned before, CCs is the most common technique for maintaining the



Chapter 1. Introduction 5

products quality. In practice three types of CCs are widely used:

e Shewhart Control Charts,
e Cumulative Sum Control Charts (CUSUM) and

e Exponentially Weighted Moving Average Control Charts (EWMA)

1.4.1 Control Charts Without Memory

In this category the most common type of CCs can be classified which are the
Shewhart CCs [1.1] introduced by Walter A. Shewhart in 1920 while working
for Bell Laboratories but the idea was published in 1931 in his book ” Economic
Control of Quality of Manufactured Product”. Shewhart CCs can be used for
monitoring either the mean or the dispersion of the process or both. These CCs
can be used when the sample size is greater than two (n > 2) and the probability
function of the plotted statistic is known or approximately known. A property in
which the Shewhart CCs lack against the CCs with memory is that they cannot
detect as easily small scale changes in the process as the latter. But in contrary

they are usually preferred for detecting bigger scale shifts.
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FIGURE 1.1: A Shewhart Control Chart.
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1.4.2 Control Charts With Memory

From literature, it seems that two types of CCs can be classified into this category.
These CCs are the CUSUM [1.2] and the EWMA [1.3] CCs introduced by Page
(1954) and Roberts (1959) respectively. CUSUM and EWMA CCs are preferred
when the shift that the researcher wants to detect is small. CUSUM CCs are
mostly used when the probability function of the plotted statistic is known whereas
EWMA CCs are more robust when the distribution is unknown.

The purpose of this thesis is to present multivariate CCs with the assumption
of normality, with sample sizes bigger than one that are not time series. All these
charts will also concern the dispersion of the process. For this reason, Normal

distribution should also be presented.
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FIGURE 1.2: A CUSUM Control Chart.
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1.5 The Normal Distribution

Normal distribution is the most commonly used continuous distribution and the
main reason that it is so popular is because it works or at least is good enough in
many situations. The reason that the normal distribution works is because of the
Central Limit Theorem which means that any variable that can be measured and
is sufficiently large in terms of replicates will be approximately normal.

In the following chapters, the charts that have been recorded from the literature,
have been proposed by assuming the normal distribution (multivariate or not) of
the data. In order to develop the theory of the proposed methods, the reader must
understand the assumed nature of the data.

Normal distribution, which is also known as Gaussian distribution was firstly
proposed by Carl Friedrich Gauss in 1809 in a published monograph called ” Theo-
ria motus corporum coelestium in sectionibus conicis solem ambientium”. In the
same monograph it was also introduced the least squares method and the method

of maximum likelihood.

1.5.1 The Univariate Normal Distribution

In Chapter 2, the CCs that will be presented assume that the data come from a
univariate normal distribution so the simpler case must be presented first.

When a quality characteristic of interest must be monitored (p = 1), it is
said that the vector & = (X) has a univariate normal distribution (symbolically
@ ~ N (uo,03)) with in control mean po and in control variance o2. The density

function has the following form:
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1.5.2 The Bivariate Normal Distribution

All CCs in Chapter 3 have been proposed for monitoring two characteristics
simultaneously and assume the multivariate normality or more specifically the
bivariate normality.

In a two dimensional space (p = 2), a vector & = (X, X3) has a bivariate
normal distribution (symbolically @ ~ Ny (po, Xo) where pg = [u1, pi2] is the in-

2
0'1 012

control means and X = is the 2 x 2 variance covariance matrix with
2
091 ag 2

diagonal elements the in-control variances and off-diagonal elements the in-control
covariance between the two characteristics). The probability density function has

the following form:

f(@) = F(X1, X5) = exp [__}

2mo1094/ 1 — p?

where

O'% 0102 O'%

(X1 — ) 20(X1 = ) (X — pio) n (Xo — p12)°

and p is the correlation between the two variables.

1.5.3 The Multivariate Normal Distribution

Finally the multivariate normal distribution must be presented not only because
it is the generalization of the univariate and bivariate normal distribution but also
because the proposed CCs in Chapter 4 assume that the nature of the data are
multivariate normal.

A multidimensional vector of variables

wl = [X17X27”' 7Xp]
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with p > 2 has a multivariate normal distribution (symbolically & ~ N, (o, X))

if the probability density function has the following form:
1 _
fla) = f(X0, Xo, -+, X) = (2m) 28|72 x exp —5 (@) g (@ — 11y

where

Ho = [:ulnu%"' a,up]

is the in-control means for the p characteristics of interest and

2
0'1 0'12 . e 0'1p
2
0'21 0'2 . e 0-2]7
Yo =
o 0. A W
| Yl p2 p |

is the variance-covariance matrix with diagonal elements the in control variances
for every characteristic and off-diagonal elements the in-control covariances be-

tween two characteristics.

A p-dimensional sample of size n can be illustrated as a data matrix (denoted

as X ,x,,) with the following form:

X1 Xz Xin
X21 X22 X2n
prn =
| X X Xy |

1.6 The Case of the Dispersion

Controlling the dispersion of the process is as equally important as controlling
the mean. By monitoring the mean in an industrial or manufacturing process,
the researcher tries to achieve the specifications of the product. By assuming that
a point in time is between the UCL and the LCL when monitoring the mean of

the process, then the process is considered to be in-control on the condition that
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the dispersion of the quality characteristic has not changed through time. Also, it
should be noted that when constructing a CC for the mean level of the process,
the dispersion of the process is also taken into account indirectly through the
control limits computed. In other words, the control limits of a process for the
mean depend upon the dispersion. Therefore, the dispersion of the process should
always be monitored. In the case that the dispersion is out-of-control, the mean
level fluctuates more than it should leading not only the process out-of-control but
also in some cases to wider control limits for the mean.

For the case of the dispersion there are several charts that have been proposed

most of them based on different quantities.

1.6.1 Univariate Quantities for the Dispersion

There are several quantities in the univariate case that can be used for measuring
the dispersion.

The first and most known quantity is the sample variance s2. The sample variance
is the second sample central moment and its mathematical expression for a sample

of size n is the following:

1
2 _ 2
S_n—lg (x; — T)

i=1

Consecutively the sample standard deviation s can be derived as s = v/s? and
it measures how spread out the given data are. Of course, both quantities have
positive values and small values indicate that the data tend to be really close,
while high values indicate that the data are very spread out around the mean.

Also, if m subgroups of size n are available, then the pooled variance can be used

as quantity for measuring the dispersion. Pooled variance has the following form:

m n

9 1 < \2
5= o) 2 2 (K = X)

i=1 j=1
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Another quantity that can easily be derived from the previous 2 is the s which

is of the following form:

Zgl Ti
=
The second univariate statistic that measures dispersion is the sample range (R)

where T =

and it is defined as the maximum minus the minimum observed value of a sample.

Its mathematical expression is:

R = Xmax - Xmin

Finally, another quantity for measuring the dispersion of the data is the sample
Coefficient of Variation (CV'). CV represents the ratio of the standard deviation
to the mean and is useful for comparing the degree of variation from a data set to
another even when the means are different. The mathematical expression is the
following;:

CV =

8l ®

1
where 7 is the sample mean which is computed as T = — > | X; for a sample of
n

size n.

1.6.2 Multivariate Quantities for the Dispersion

In this subsection, it is presented all the the multivariate analogues of the previous

sample statistics.
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For a variance covariance matrix X where:

2
0'1 012 . e le
0921 0'2 09
2 P
> =
o g O'2
| Yl P2 p |

we have the following.

The first multivariate quantity that can be used for measuring the variability
is the generalized variance (GV') which is denoted as |X| and is the determinant
of the variance covariance matrix. GV was introduced by Wilks (1932) and is a
measure of the overall dispersion.

The GV can be computed as the generalized determinant of a n x n matrix. Let
0;; be the entry on the i*" row and % column fori = 1,2,--- ;pand j = 1,2,--- , p.
Also let X;; be the determinant of the square matrix of order p — 1 obtained by
¥ by removing the i row and the j"* column multiplied by (—1)"*/. The GV is:

J=p
B|=) 0%y
j=1

for any given i. Although GV is widely used for measuring the multivariate vari-
ability, it seems to be a really simple approach of the multivariate structure. Low-
ery and Montgomery (1995) in a really famous example showed that three bivari-
ate covariance matrices, have the same GV even though they have really different

variances-covariances. These matrices are the following:

2.32 040
0.40 0.50

232 —-0.40
—0.40 0.50
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It can be easily seen that the GV in all three cases is equal to 1 but the correlation

differ. For the matrices ¥, 3y and X3 they are 0, 0.8 and -0.8 respectively.

Following, a random sample of size n = 10000 in a process with mean vector

p = [0,0] and variance-covariance matrix ¥; can be seen.

FIGURE 1.4: Correlation: 0.

Furthermore, the process with mean vector g = [0, 0] and variance-covariance

matrix X, can be seen below.

FI1GURE 1.5: Correlation: 0.8.
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Finally, the process with mean vector pu = [0,0] and variance-covariance

matrix Y3 is the following:

FIGURE 1.6: Correlation: -0.8.

From the previous three graphs, it can be seen how different the nature of the
data is. Even though the data are so different, the GV is the same so it can be
justified GV’s simplistic approach explained above.

Another quantity that can be used for measuring the variability is the total
variance (7'V) which is usually denoted as ¢r () and is the trace of the variance

covariance matrix. The mathematical expression of the TV is the following:
p
tr (X) :a%+0§+---+02220i2
i=1

Total Variance also has a defect. Although it is a good representation of the
variance, it does not take into account the correlations between the variables.

A third quantity that measures variability in a multivariate space is the multi-
variate range. Gentle et al. (1975) in their paper present the bivariate range. For

a sample (X1,Y7), (X2,Ys), -, (X,,Y,) the bivariate range can be defined as:

1/2

R =max{(X; — X;)*+ (Y; - Y;)*}
2%

fori,j =1,2,--- . n.

A quantity which can measure the multivariate dispersion and yet has not been
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used for constructing CCs is the multivariate coefficient of variation (MCV).
Reyment (1960) was the first to propose a formal definition for the MCV. His

proposal is denoted as C'Vgg and is given as:

‘2’1/p>1/2

W

Reyment suggested another MCV denoted as C'Vyy with the following form:

tr (2)\ /2

vy (2)
p

In another approach, Voinov and Nikulin (1996) proposed the following expres-

sion for the MCV denoted as C'Vy y:
CVun (WX ') ~

Finally, Albert and Zhang (2010) proposed the following expression:

Vi = {“_2”} -
(')

Concluding, another method used in multivariate data is the Principal Compo-
nents Analysis (PCA). The purpose of the PCA is to replace a number of correlated
variables X, Xy, - -+ , X}, with fewer variables C, Cs, - - - which are a linear trans-
formation of the initial variables and retain a significant amount of information.

For a p-variate vector of variables X = (X1, Xy, - -+, X,) with variance-covariance

matrix X, the first principal component can be specified as:
Cl = O./le + O./QXQ + -+ Oépo = o/X

where o = (v, a, -+ , ) is real vector with length equal to 1 meaning ||c||=

\/o@ + a3+ -+ a2 =1. Since Var (C,) = o'Ze, finding « for the first compo-
nent is the same as maximizing the quantity o’3a. Therefore ae should be equal

to the unit length eigenvector u; which corresponds to the biggest eigenvalue (A1)
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of the variance covariance matrix.

The second component can be defined as:
Cy = X1+ o Xo+ -+ 5,X, =a'X

where B = (81,82, , 3,), ||B]|= 1, has the second largest possible variance and

is uncorrelated to Cy. But
Cov (Cy,C1) = Cov (B X, u1 X) = 33w,

and since ¥u; = A\juy it will be Cov (Cy, C1) = A\ B'u;. For having Cov (Cy, Cy) =
0 it must be B'u; = 0. Finally for finding 3 the following quantity should be
maximized:

Var (Cy) = B'S3

under the restriction that 3 is a unit vector and normal to u.

1.6.3 An Example on the Presented Quantities

In this subsection an example will be presented for comparing the various quan-
tities presented that measure dispersion on a multivariate level. The scenarios are
the following: On a bivariate space, 2 variables are considered with mean vector
p = (1,1) and variance covariance matrix with unit variances and covariances:
0.99, 0.50, 0, —0.50, —0.99. So all in all there are a total of 5 different scenarios.

Each simulation was produced with 10000 repetitions.
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1 099
For p = (1,1) and ¥ = the produced points can be plotted
099 1
as follows:
FiGURE 1.7: Correlation: 0.99.
**i
1 05 .
For p = (1,1) and ¥ = the produced points can be plotted as
05 1
follows:

FI1GURE 1.8: Correlation: 0.50.
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10
For p = (1,1) and ¥ = the produced points can be plotted as

follows:

FIGURE 1.9: Correlation: 0.

1 —0.5
For p=(1,1) and X = the produced points can be plotted

—0.5 1
as follows:

FIGURE 1.10: Correlation: -0.50.
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Forp=(1,1)and ¥ =

as follows:

1 —0.99
—0.99 1

the produced points can be plotted

FIGURE 1.11: Correlation: -0.99.

In the following table, the summary of the quantities produced can be seen:

Correlation | GV TV~ Range CV,, Var of 15 PC
0.99 0.019 1.966 11.447 0.997 1.956
0.50 0.717 1.963 9.633 0.866 1.479
0 0.956 1.955 &8.149 0.707 0.986
-0.50 0.717 1.951 9.482 0.5 1.461
-0.99 0.019 1962 11.212 0.071 1.952

It can be easily seen that the problem which was previously mentioned is now

confirmed. GV has the same value for different scenarios. Also the problem that

was mentioned about TV has been also confirmed.

1.7  Summary

In this section it was initially presented what is SPC and why is it important to

generalize the idea to MSPC. Afterwards, the CCs were presented with their key

features and the different types that have been proposed for every different scenario

that can occur in a real process.

Moreover, the two phases of a process were
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defined and after determining the purpose of the thesis, the normal distribution
was defined. Finally, all quantities that measure dispersion were presented in both
the univariate and multivariate case and some comparisons of these measures were
made.

The outline of this thesis will be as follows. In Chapter 2, some univariate CCs
for the dispersion will be presented. In Chapter 3, there are the bivariate CCs for
the dispersion as for Chapter 4, the general case of the multivariate CCs will be
presented. Chapter 5, compares both bivariate and multivariate charts in a two
dimensional example. Finally, in Chapter 6 there is an overall summary of this

thesis and proposal for further research is discussed.






Chapter 2

Univariate Control Charts for the

Dispersion

2.1 Introduction

For achieving the predetermined target of a product the researcher should be
able to monitor and control the process. As mentioned before, there are different
types of CCs that can be used in practice for monitoring the process and most
of them revolve around the mean of the process but are usually used in addition
with the ones for the dispersion. In the univariate case, the most common and
well-known univariate CCs for monitoring the process is by using the X and R

charts. Phase II X CC has as plotted quantity the sample mean

- 1

i=1

and the following « probability control limits:
UCL = M+Za/20/\/ﬁ

LCL = H—= Za/Qa/\/ﬁ

23
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and with CL = p.
Phase II R CC has as plotted quantity the sample range:

Xmaz - Xmin
and the following « probability control limits:
UCL = DQO’

LCL = Dyo

and with C'L = dyo.

In this chapter, some univariate CCs for the dispersion will be presented. Section
2.2 deals with the Phase I CCs. In 2.2.1, the Shewhart CCs have been recorded
while in subsection 2.2.2 and 2.2.3 are the Phase I CUSUM and EWMA CCs
respectively. In section 2.3 the Phase II CCs for the dispersion can be found with
2.3.1 dealing with the Shewhart CCs, 2.3.2 discusses the CUSUM CCs and finally
2.3.3 is about the EWMA CCs.

2.2 Phase I Charts

2.2.1 Shewhart Charts
2.2.1.1 The s-Chart Control Limits

If the process variability ¢ is considered unknown, then by selecting m random
subgroups of size n, an s-Chart can be used if as estimation of o the quantity

0 = §/cy is selected. The plotted statistic in this case is the sample standard

deviation (s) and the 30 control limits of the S-Chart are:

UOL:B4X§: |:1+3\/1—C?1/C4]:| X8
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LOL:B3X§:|:1—3 1—0?1/04]:|X§

with Center Line C.L. = 5.

2.2.1.2 The s?>-Chart Control Limits

The unknown process variability 2 can be estimated by selecting as estimation
of o2 the quantity s2 . The s*>Chart with probability a control limits has as

plotted statistic the sample variance and the control limits are:

52

UCL — X Xg,fl;oz/Q

n—1

52

LCL =

2
e X L1-a/2

with Center Line C.L. = s2.

2.2.2 CUSUM Charts
2.2.2.1 log(s*) CUSUM Chart

Chang and Gan (1995) proposed the use of the logarithmic transformation of the
sample variance (log (s?)) in a CUSUM chart for monitoring the process dispersion.
As an unbiased estimator of o2 from the m samples of size n the pooled variance

can be used.
Chang and Gan (1995) introduced an upward CUSUM CC for detecting increases

in the process variance using the scheme:
Uo = uy,

Ut:max(Ut_1+ln(sf) —k:u,O),tzl,Q,...,

where 0 < uy < UCL and k, is a constant. This chart signals when U; > UCL.

The corresponding downward CUSUM CC for detecting decreases in the process
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variance is given by the scheme:
DO = d07

Dy =min (Dy—1 +In (s7) + kq,0) ,t =1,2,...,

where LC'L < dy < 0 and kg is constant. The downward CUSUM chart signals
when D, < LCL. The chart defined above cannot be used for individual observa-
tions. It should be noted that UCL and LCL can be chosen for a predetermined
ARL.

2.3 Phase II Charts

2.3.1 Shewhart Control Charts
2.3.1.1 The S-Chart Control Limits

If a process with a Normally distributed quality characteristic X is considered,
then the dispersion of the process can be monitored by using the sample standard
deviation.

The CC for the dispersion of the quality characteristic X has the following 3o
control limits:

UCL = s, + 30, = (c4+3 1—cﬁ>a

LCL = ps, — 305, = <c4—3 1—03)0

with C.L. = pg, = cy0.

and

_ — 5/ 2
fs, = C40 , 05, = 01/ 1 — c}

Moreover a CC with probability limits « can be easily developed by using the
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relation:
StV — 1
o

2
” Xn—1:1-a/2 < X1, Xn-1,0/2
n—1 — n—1

where y,, is the distribution of the random variable Y = v/X (when X ~ x2).

P (Xn—l;l—a/2 < < Xn—l;a/?)

or equivalently:

2.3.1.2 The s?-Chart Control Limits

For monitoring the dispersion of the quality characteristic X the sample variance

s? as plotted statistic can be used where

Since
2

o? o
P (FXn Ll-a/2 < s; < mXil;am)

the o probability control limits for the dispersion of the quality characteristic X

where the sample variance s? is used as a dispersion measurement are:

2
UCL = n— 1Xn 1;a/2

LCL = an—m—a/z

with C.L. = o2.
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2.3.2 CUSUM Control Charts
2.3.2.1 Scale CUSUM Chart

Hawkins (1981) proposed the following quantities to be used for the Scale CUSUM

chart for the dispersion:
S;" = max [0, W, — k+ S;,] , where Sj =0

S; =max [0, W, — k+ S;_,] , where S; =0

If either S;" or S; exceeds the quantity = hoy (where h is usually equal to
5) then, the procedure is considered to be out of control. W, derives from the
following;:

By considering individual observations X; from N (ug,0?) and by putting:

Xy = o
o

Y, =

the following statistic can be constructed:

Vil = E(Yi])

()

where E (|Y;]) = 0.822 and /V (Mmy) — 0.349.

Hawkins observed that the distribution of the quantity W, is approximately

m:

N (0,1) and that W; is sensitive in dispersion (o?) shifts.
E(]Yy]) and V' (x/ |Y;|> can be computed as follows:
It ‘E‘N X1 then7

21/4T (3/4)
E (m) T T(1/2)

21/2F( )
T(1/2)

v(M) E (i) [ ( |K)]2:O.121906

E([Y)]) = = 0.79885
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2.3.2.2 P, and y CUSUM Charts

Acosta-Mejia et al. (1998) proposed two new CCs for monitoring the dispersion
of a normal process. These two new charts are two-sided and thus are able to
detect both increases and decreases in process dispersion. P,, x CUSUM charts
are based on two different normalizing transformations of s2. After transforming s
to an approximately normal variate Z, the standard two-sides CUSUM procedure

can be applied which is the following:
S =max (0,2, — k, + S;4)

S, =max (0,—Z; — ki + S;_,) ,

where S, Sy > 0. The value S;" is used to detect positive shifts while S; is used
to detect negative shifts. The constants k, and k; are called reference values and
in most applications k; = k, = k. The statistics S;” and S; are compared to the
decision limits h, and h; respectively where as stated by the authors, the deci-
sion limits are chosen by the user for achieving a desirable ARL. If either statistic
exceeds its respective decision limit, the standard two-sided CUSUM procedure
signals.

The statistics Z; can be chosen to be one of the following quantities.

The P, CUSUM CC for process dispersion
The first control chart for monitoring the process dispersion is based on the

inverse normal transformation:

- 2
p—ao{p, (L2l
n—1 0-0

FP,, has a standard normal distribution, where F\2  (y) is the cumulative distribu-
tion function for the y? distribution with n — 1 degrees of freedom and ® (z) is the
cumulative distribution function for the standard normal distribution. An increase

(decrease) in ¢ will result in an increase (decrease) in the mean of P,,. Thus the
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standard two-sided CUSUM scheme using P,, as Z; can be used to monitor the
process variance. This procedure is called P,-CUSUM chart. For the P,-CUSUM
chart the reference values k, and k; and the control limits A, and h; that give a
desired ARL performance can be obtained through simulation.
The y-CUSUM chart for process dispersion

The second approach for the CUSUM chart for the dispersion is based on a
transformation given by Wilson and Hilferty (1931). Wilson and Hilferty showed
that W is approximately normally distributed with a mean 1 — 2/(9n) and
variance 2/(9n). If the observations are iid N (u, o) then:

o U e

will have an approximate standard normal distribution. This procedure is called
x-CUSUM chart and in this case, x; can be used as Z; in the standard two-sided
CUSUM scheme. For the y-CUSUM the reference values k, and k; can be obtained

[[(0%/03)”3 1] |1- 525/ \/%]
=3l i [t 2] o

where 07" # 0¢ is the process standard deviation that needs to be detected.

as follows:

ky =

DN | —

and

2.3.3 EWMA Control Charts
2.3.3.1 In(¢?) EWMA Control Chart

For monitoring the process dispersion the unknown in-control process variance

o2 can be estimated as the pooled sample variance 312J from a Phase I data set.
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Crowder and Hamilton (1992) proposed an EWMA CC for monitoring the process’

standard deviation using the scheme:
To =1n (07)

T, = max ()\111 (S?) +(1=XNTiq,In (312))) t=1,2,---

where 0 < A < 1 is a smoother parameter. The UCL of this chart (for the 7;) in

case of independent observations is given by:

UCL:K\/(Zi/\) (n31+(n_21)2+3(n4_1)3_15(nli1)5)

where K is chosen together with A for achieving a desired performance for the

chart. The chart can be used only with subgroup data (n > 1) and the chart can
be used to identify only upward shifts in the variability.

2.3.3.2 The CH EWMA Control Chart

Crowder and Hamilton (1992) EWMA CH chart is based on the following quan-
tity:
Q= max [(1 —A) Q1 + AX;, 0],

where ()g = 0. The chart detects an increase in the process variance if @), is greater

than:
A

h=1L
2—-A

0o

where L can be chosen to achieve the desired ARL.
Similarly, if one is interested in detecting a decrease in the process variance, the

EWMA chart based on:

(), = min [(1 - N Q,_ + Xy, O} ,
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can be used where Q) = 0. The chart detects an decrease in the process variance

if @} is less than:
A

h/:_L/
2—A

0o

where L' can be chosen to achieve the desired ARL.

2.3.3.3 The EWMA s2? Control Chart

Castagliola (2005) following Crowder and Hamilton (1992) EWMA CC for mon-
itoring the process standard deviation proposed the following three-parameter
transformation to s*:

Tt:a—l—bln(sf+c)

with ¢ > 0. The following EWMA can be derived:
Zt - (1 - )\) thl + )\E

If the value of £ (1;) and o (7}) of T; which correspond to the parameters «,
b and ¢ are known, then the EWMA control limits for the transformed sample

variance will be set at:

UCL=FE(T)+K (%) v o (T)

LOL = E(T) — K (ﬁ) "o

where K is a positive constant which is set for achieving a predetermined ARLy.
By using the exact value for the standard deviation of the EWMA statistic
(Montgomery (2001), Ryan (2000)) the control limits become:

2ty \ 1/2
UCL:E(Tt)JrK(/\{l_(l_)\) }) o (Ty)

2—-A

2\ 1/2
LOL=E<E>—K(A{1_2(:A) }> o (T})
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In practice, the following simplified control limits for the s2-EWMA CC can be
used:

A 1/2

N\ 12
LCL=-K (m) o (Ty)

The above control limits correspond to a two-sided EWMA CC but also the
one-sided EWMA control limits can be considered.

The transformation proposed, belongs to a class of transformations originally
proposed by Johnson (1949). This approach was chosen because «, b and ¢ may
result in approximate normality better than the approach of Crowder and Hamil-
ton (1992).

Castagliola (2005) proves that «, b and ¢ can be defined as:

where:
1
Bn) = In (w? + 1)
Ay =20y, (w ;ZU(S;) 1)>
¢ (m Y4200 g ()
and

1/3

= W (1 (87) /22 + 1+ (n () /2)} s N (n (s3) /22 11— (1 () /2)

in which, E (S?), us (s?) and ~ (s?) are the first three moments of s?.
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2.3.3.4 The SJ] EWMA Control Chart
Shu and Jiang (2008) proposed an EWMA chart (SJ chart) based on:

1
Wi=A (Z;“—E> + (1 =) Wiy,

where W, = 0. The chart declared to be out-of-control when W; exceeds the UCL:

A
=g

where Ly can be chosen to achieve the desired ARL.

The following standardized quantity has been defined:

7, = Xy — NX‘Ut:JO’

%5'¢

where fix|¢,—0, i the approximate in-control mean of X;. Also Z;" = max (Z;,0).
If Z; has an exact standard normal distribution, Barr and Sherrill (1999) showed
that £ (Z) =1/v2r and 0,2 = 1/2 — 1/ (2).

Similarly, if one is interested in detecting a decrease in the process variance, the

following EWMA chart can be used:

1
W, =\ (Zt — E) + (1 =MW/,

where Z,” = min (0, Z;) and W/ = 0. The LCL is given by:

)
I / +
W=l 53

where L’ can be determined to achieve desired ARL. The chart is declared to be

out-of-control when W, deceeds the LCL.
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2.3.3.5 HHW1, HHW2 and HHW-C charts

Huwang et al. (2010) following Crowder and Hamilton (1992) and Shu and Jiang
(2008) EWMA chart, proposed the following similar charts for detecting a decrease

in the process variance.

The HHW1 EWMA chart
Huwang et al. (2010) define the following standardized statistic for monitoring
either an increase or a decrease in the variance of the process in time ¢:

[V, — (1= Vo] — s

t =
0-2

The one-sided UCL or LCL can be chosen to achieve a desired ARLy.
First they obtain the EWMA statistic:

Z)\ (1=A —2 +(1=N"V,

99

where Vp = 1.
In their paper they use the fact that s?/o? follows a Gamma distribution. Due

to independence, they use the following approximation by Box (1954)

~ Gamma(f, B2)

V, — Z)\ (1—\

oml :

where:
PR VICERY [1-(1-N17
' A [1— (1 - N7
and o
8, — 2A [1—(1=X)7]

The logarithm of V; — (1 — \)" V; follows approximately a Normal distribution
with:
1 1 1

=W (5%) = 55~ o5 T 105
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and

1 1 1 1
o= —

bt
Bi o 28F 647 3087

The HHW2 EWMA chart
Huwang et al. (2010) have proposed standardized statistic for monitoring the

dispersion of a univariate process which is defined as follows:
H,
A 2
— |1 =(1=A
Voo - =7

The one-sided UCL and LCL can be chosen to achieve a desired ARLy.
First they obtain the EWMA statistic:

Dt:

Ht = )\Mt + (1 - )\) Ht—l

where Hy = 0. When the process is in control, H; has a normal distribution with
mean equal to 0 and variance A [1 — (1 — )\)Qt] /(2—=M).

The second proposition from Huwang et al. (2010) has come from the exact nor-
mal transformation of s?/a2. Tt is known that when the process is in control, then
the statistic My = @1 {F [(n — 1) s?/0?]} follows a standard normal distribution,
where F'(+) is the distribution of a chi-squared random variable with n-1 degrees
of freedom.

In their paper, is used the standardized statistic because a possible change in the

variance can result in both changes in the mean and variance of M,.

The HHW — C EWMA chart

Finally, Huwang et al. (2010) conclude in their paper that the HHW2 chart gives
the best results for detecting an increase in the process variance. On the other
hand, HHW1 chart gives the best results for detecting a decrease in the process
variance. By combining the lower-sided HHW1 CC with the upper-sided HHW2
chart, it results in a better performance for monitoring the process variance. The

mixed CC is denoted as HHW-C' chart.



Chapter 3

Bivariate Control Charts for the

Dispersion

3.1 Introduction

In this section some bivariate control charts for the dispersion are presented.
These control charts are specifically constructed for monitoring the dispersion of
two characteristics of interest simultaneously. Section 3.2 discusses bivariate Phase
II control charts for the dispersion since no charts that can be used only in Phase
I could be found in literature. Subsection 3.2.1 presents Shewhart control charts

while subsection 3.2.2 discusses two EWMA control charts.

37



Chapter 3. Bivariate Control Charts for the Dispersion 38

3.2 Phase II Bivariate Control Charts

3.2.1 Shewhart Control Charts for the Dispersion
3.2.1.1 The CC2 Control Chart

By having two quality characteristics according to Alt (1985), the process
variability can be monitored using as plotted statistic the GV of the variance-
covariance matrix (|S|) and the following chart can be constructed.

The (« probability) control limits are the following:

2
20| <X§n74;17a/2)

UCL = .
(2(n—1))

2
|20| <X3n74;a/2>

LCL = .
(2(n—1))

and center line C.L. = |Xy|. Where

2(n = 1)[S|'/2
W ~ X2on—4

3.2.1.2 The CC3 Control Chart

Alt and Smith (1988) proposed that by monitoring two quality characteris-
tics, a CC with |S|*/2 as plotted statistic can be constructed with the following

control limits:

UCL — |20|1/2X%n—4,1—a/2
2(n—1)
LCL = B0l X3 s,0/2
2(n—1)

and center line C.L. = |3q|/2.
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3.2.1.3 The |G|-Control Chart Based on the Gini Matrix

Riaz and Does (2008) proposed a bivariate CC for the process dispersion based
on the sample Gini mean differences matrix. In their paper Riaz and Does use the

quantity |G|"?= (G2G? — G,Gay) "2 for monitoring the quantity 120]"/2. The «

probability limits for the proposed chart are:

UCL = |G|,/* with F, (|G|'?*=|G|/?) > 1 - a,

LOL = |G|"? with F, (|G|1/2: |G|;/2) < o

After some simplifications, the previous limits can be modified to:
UCL = |G|Y*= B,|G|"? /by with F,, (B = B,) > 1 — a,

LCL =|G|}"*= B|G|"?/by with F, (B = B)) < o

It is noted that the CL is |G|"?. For constructing the CC, the following matrix
must be defined:
G2 G,

G pr—
Gy G2

where

G, = (Vr/2) 4Cov (Y, F (Y))

G, = (V7/2) 4Cov (X, F (X))
Gya = (V7/2) 4Cov (Y, F (V) G,
Gy = (V7/2) 4Cov (X, F (X)) Gy

where F' is cumulative distribution function. For developing the proposed chart,

the authors define a new quantity for showing the relation between |G|'/? and

|20[*/2. The quantity B is defined as follows:

B =2(n—1)|G|'?/|Z|"
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From B three more quantities can be derived. These quantities are by, b; and
B, which represent the mean, the standard deviation and the a'® quantile point
of the distribution of B. All three quantities can be obtained using a simulation

approach.

3.2.1.4 VMIX Chart of a Bivariate Process

Quinino et al. (2012) in their paper, propose a new statistic for controlling the
covariance matrix of a bivariate normal process with known means and variances.

The CC is known as VMIX chart and the monitoring statistic VMIX is:

VMIX — Z?:l Xt2 + Z?:l }/;52
2n

The chart signals when VMIX > CL, where CL is the control limit which is
selected for a predefined ARLy.

The CC is defined by considering X* and Y* as two quality characteristics of
interest with means py- and py- respectively. The variances are defined as 0%,
and U%* and the covariance is defined as ox+y«. If all the parameters are known,

the new variables can be defined as:

X — pxe
Xt — ( t Hx )
O g*

and

V1= p?

Y — py+
where Z; = w When the process is in control, X; and Y; follow the
Oy

standardized normal distribution and become free of the correlation parameter p.

Therefore, after the assignable cause occurrence, at least one of the two variances

2 2

o, or o,, of the transformed variables X and Y, increases without changing the

means px =0 and py =0 .
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3.2.2 EWMA Control Charts for the Dispersion
3.2.2.1 EWMA Scheme Based on the VMAX Statistic

Machado and Costa (2008) proposed an EWMA scheme based on VMAX for
detecting changes in the covariance matrix ¥ of a bivariate process. The EWMA

scheme is based on the statistic:
Zt:AYt—f—(l—A)Zt_l,t: 1,2,"'

and a signal is given if Z; > C'L where:

(X%n—4,a)2 |20|
4(n—1)

CL=

It is denoted that ¥; = max {S?, S;t}. Sz, and S}, are the sample variances of
X and Y respectively. The starting value Z; is often taken to be the expected

in-control value of Z as defined by Lucas and Saccucci (1990).

3.2.2.2 A Bivariate EWMA Control Chart Based on the Decomposi-
tion Method of Mason (1995)

Nezhad (2011) defined the following statistic for monitoring the dispersion of a

bivariate process:

Qt == )\5,52 + (]. - )\) Qt—l
with Q9 = 2. The time varying control limits for Fj can be defined as follows:

4\

The control limits for ); can also be obtained as:

2X21 o
“Avl-a/2 and
1%

UCL =
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2X12/,a/2
14

LCL =

2(2-\)
T
Nezhads (2011) proposal relied on the decomposition method of Mason et al.(1995)

where v =

for two quality characteristics. According to Masons decomposition method, the

following two statistics can be defined:

- (xﬂ —E (xﬂ))

01

— E (z;
Ty = (%&2 (ZE 2\%&1))

021

where 051 is the conditional standard deviation of the second characteristic given

the first. Finally, the S? statistic defined as follows:
S =Th + T

When the process is in-control, the statistics S? follows a 3 distribution.



Chapter 4

Multivariate Control Charts for

the Dispersion

4.1 Introduction

This chapter discusses all multivariate control charts for monitoring the dis-
persion of the process. In the multivariate case, the most well-known control
chart for monitoring the process’ mean in the case of normality is the D? control
chart. The control chart is based on plotting the following statistic against time:
D? = n (T — py) 5" (T — pg). It is assumed that the in-control mean vector
and the variance-covariance matrix is known or are estimated from Phase /. The
D? statistic represents the distance between any point and g,. The UCL for the
D? is Xg,ka- For the case of the dispersion there are several charts that have been
proposed and will be discussed in this chapter.

In section 4.2 all Phase I control charts will be presented. 4.2.1 discusses She-
whart control charts while 4.2.2 EWMA control charts. No Phase I CUSUM
control charts where found in literature. Section 4.3 discusses Phase II control
charts where 4.3.1 presents the Shewhart control charts and 4.3.2 and 4.3.3 present
the CUSUM and EWMA control charts respectively.

43
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4.2 Phase I Control Charts

4.2.1 Shewhart Control Charts for the Dispersion
4.2.1.1 The Phase I CC1 Control Chart

By considering unknown the variance-covariance matrix | 2| the unbiased esti-
mator |S|/b; defined by Alt(1985) can be used. The control limits of the Phase
I CC for the dispersion with monitoring statistic the GV of the sample variance

covariance matrix (|.S;|) are:
- 1/2
UCL = ([Si/h) (61 +3b) )

LCL = ([Si]/b,) (bl ~ 3pY 2)

P

— —1
with C.L. = |S;|. by can be defined as % and also, by can be defined as
n P—

i n—t
(n—1)*"

4.2.2 EWMA Control Charts for the Dispersion
4.2.2.1 The EWMA V Chart

For a p-variate normal process with a mean vector p, and a variance-covariance
matrix 3o (N, (Ko, o)) in which g, and X can be estimated from the Phase I
data samples as the total mean and the pooled variance respectively the EWMA
V CC can be constructed.

Yeh et al. (2003) propose the next multivariate EWMA CC based on the function:

S, () =Ax (1 —05)+(1—A\) xS, (t—1),t>1
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where S, (0) = 0.
The control limits for the multivariate V EWMA CC are:

UCL = L x \/é <%> (1—(1—=N*)

CL=0

LCL = —L x \/% (%) (1—(1—X*)

where ¢ = 1,2,... and L are chosen for a predetermined ARLy. The authors

propose m > 50,n > 10 and 3 < p < 8.
Yeh et al. (2003) defined the following probability for ¢ > 1:

p

P .
N—m+1—j InS|
v =P FojNn—it1—; < . X —
<£[1 j J <H neJ ) VS|

=

where for any given A and ¢ > 1:

E(S,(t)) =0and V (S, (t) = % (%) (1-(1— N2

4.2.2.2 EWDMA Chart Based on Generalized Variance

It is known that if the process is in control (X; ~ N, (pg, o)) then, the distri-

bution of:

In
2p |33

Y, =

follows asymptotically the standardized normal distribution. If the process is out-
of-control and more specifically if 3 changes to 3, then Y; is asymptotically
distributed as N (In|X|/|X0[,1). So, a change in the generalized variance is char-
acterized in a change of the mean of Y;. Therefore a univariate EWMA chart can
be used for detecting a mean shifts in Y;. If ¥ is known, Yeh et al. (2006) defined
the following:

Gi=\Y,+(1-)N)Y,,
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where Gy = 0 and A is a smoothing constant. The control limits for the EWMA

charts are:

and

UCL:LX\/QL [1—(1 -]
[1-(1-

-

A
LCL = —L x /] ——
C x\/2_>\

If 3 is not known, it can be estimated by S and the statistic Y; is modified to:

/\)Zt]

. [E=1) s
= n-—
2p(k+1) |S|

and follows asymptotically the standardized normal distribution. If the process is
out-of-control and more specifically if 3 changes to 3, then Y;* is asymptotically

distributed as N <\/k’/k: + 11n|3|/]3, 1) and the EWMA statistic is given by:

Gi =AY+ (1=3)Y,

4.3 Phase II Control Charts

4.3.1 Shewhart Control Charts for the Dispersion
4.3.1.1 W-Statistic Based Chart

For monitoring the dispersion of a multivariate process Alt (1985) proposes the

following statistic:

A
Wy =—pn+pnlnn —nln (\’E_tD + trace (EglAt)
0

The « probability limits of the chart are:

_ v2
UCL = Xp(p+1)/2;1—a

LCL=0
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and it is noted that A; is the sum of squares and cross products matrix. Also,
A; = (n—1)S;. If W statistic plots over UCL then the process is considered

out-of-control.

4.3.1.2 The Phase II CC1 Control Chart

Alt(1985) proposes the development of a |S|-CC by using the first two moments

of |S]. The 30 control limits are:

UCL = |20|(b1 +3\/£)

C.L. = [Sony

LOL = || (bl N 3\/172)

where
by — le (n - Z)
¢ (n—1)°
and

(n=1)"

by = L=b2=D [H<n—j+2>—H<n—j>]

j=1 j=1
If the LCL is computed as a negative number (LC'L < 0), then it must be

replaced by zero (0).

4.3.1.3 Shewhart Chart Based on Conditional Entropy

Guerrero-Cusumano (1995) states that by measuring the difference between sam-
ple and theoretical entropy for the independent case, the following statistic (F)

for monitoring the variance-covariance matrix can be obtained:

g [n—1 zpjl s
_= n —_—
' 2p = %
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The mentioned statistic £ follows a univariate standard normal distribution.

The UCL and LCL are calculated using simulation as follows:

[, (n—1 n—1Y\] [ (n—1
UCL = gp _G( 5 )—ln( 5 >—+za/2k pG ( 5 )
[, (n—1 n—1Y\] . (n—1
LCL =gp _G( 5 )—ln( 5 >——2a/2]€ pG ( 5 )

where g = (2(n—1) /p)"/?, G’ (-) and G” (-) are the first and second derivative of
the natural logarithm of the gamma function.

The result derived from the following suggestion of expressing entropy (H (z)):

1 1 1
H(z) = §pln(27re) + §2ln\230\+§1n\P0]:

1 1
= 5pn (2me) + 52521 In (03) — T (X)

where Py = E;OIEOE;OI is the correlation matrix, 34, = diag (0;9) with 0,9, being
the in-control standard deviation for the ith component of X. The function 7" (X)
is called the mutual information of the random variable X. By estimating o2 with

the sample variance of the ith component s?, H (x) is obtained.

For the dependent case another statistic can be used:

Ey = kzz [In (x2™") —In(n—1)]

with control limits that can be calculated from the following:

) () ()
) () e ()

2

n—1 n—1

UCL = gp [G'( 1tr(P0—I)2

2

n —

n—1

2

n—1 n—1

2

LCL = gp [G' ( Tt (Py—I)?
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4.3.1.4 Shewhart Chart Based on the Decomposition of S,

Tang and Barnett (1996) proposed a multivariate Shewhart chart based on the
decomposition of S; into a sum of independent x? statistics.Their chart is based

on plotting the following statistic for each sample of n observation:

2p—1

-7
j=1

When the process is in control, Z;’s are independently and identically distributed
as N (0,1) and therefore T' is distributed as x3,_;. An out-of-control signal is

detected as soon as T  exceeds UCL which is determined from Xgp_l. As mentioned,

2p—1

n=4o%
j=1

where:
n—1)s?
el [
01
n—1)s? :
Zj = (I)il {Xij |:( 2) j‘1’27...7j_1:| } fOI"j = 2,37 )
0512, j-1

Zpir =0 {0 [(n—1) 83 (dy — 02) B35y (do — 602)]}

and

Zp+j—1 =o' {Xi—jﬂ [(” - 1) 5?—1.1,2,..-,j—2 (dj - 9]’)/ E;;+1,--~,p-1,2,..- J—1 (dj - ej)} }

for j =3,4,--- ,p. Also the following statistics must be defined. Szj—l)x(p—j—l-l) =
(Sji-1,84+1j-1,-,8p,-1) and S} ; represent the row vector of sample covari-
ances between the kth variable and each of the first j variables. The same goes
for 3y by replacing the sample statistics with the corresponding population pa-
rameters. The conditional sample variance of the jth variable given the first j-1

variables is defined as follows:

Sjj-1

2 2 -1
i1z, g1 =5 = 85,1855
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The conditional sample covariance matrix of the last p — j + 1 variables given

the first 7 — 1 can be expressed as:

_ . _ 1
Sj7j+17"'7p'1721"'1j_1 - S*p_j+1 S(] I)X p— ]+1 S p j+1)
where §; and S, are the sample covariance matrix of the first j variables and of

the last k variables respectively.

d; (6;) for 5 =2,3,--- ,p denote the vector of sample (population) regression
coefficients when each of the last p — j + 1 variables is regressed on the (j-1)th
variable while the first j-2 variables are held fixed.

— / !
[S(jfl)X(pfjJrl) — 8515282 (8} 25412 z/),j—2)}
S A

Jj—1,5-2

4 = 55— 5]

Jj—1,j—2

Likewise, 0; is similarly expressed by replacing the sample with the population

statistics.

4.3.1.5 |[S|-Control Chart

In their paper, Aparisi et al. (1999) studied the distribution of the |S|-CC and
presented two |S|-Charts that are suitable for more than two quality characteris-
tics. The first procedure, consists only by an UCL and the second with both an
UCL and a LC'L. In both cases the plotted statistic is the GV.

In the case were only an UC'L is needed, the control limit is:

Jl a|20|
UCL=-—"——
(n— 1

If both UCL and L.C.L are needed, the (« probability) control limits are the

following;:
1 a/2 >
ver = Jre 1l
(n—1)°
LCL = Ty ol

(n—17
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with center line C.L. = |S| in both cases. J,i;,a/ ? corresponds to the 1-a percentile

of the distribution of the transformed variable:

(n—1)"IS|

Inp =

In the paper, tables for the values of Jé;a/ * and Jﬁ,/pz for various number of qual-

ity characteristics p and sample sizes n, are also presented.

4.3.1.6 Shewhart Control Chart Based on H;: X = X,

Levinson et al. (2002) proposed the following statistic for i > 1 for treating the
problem as testing Hy : 3 = ¥ v.s. Hy @ 3 # X

mM; =m [(k+1) (n—1)In|S,|—k (n — 1) In|S|— (n — 1) In| S]]

When the process is in control, mM; follows Xi(p +1)/2 and thus, the UCL and
LCL can be determined. Also,

L 1 1 1 ' +3p—1
m=1- eyt 1w e e )

and
k(n—1)8+(n—-1)8;
(k+1)(n—1)

S, =

where S comes from a Phase I data set.

4.3.1.7 Shewhart Control Chart Based on Probability Integral Trans-

formation

Yeh et al. (2002) proposed using the probability integral transformation to

transform different statistics into the same random variable. The part dealing
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with the covariance matrix can be written as:

P » '
kEn—1)—k+1—1 n—1)8
v=Fp HFn—l—z‘,k(n—l)—k+1—z‘ < (H ( ) : ) > u

i=1 i=1

where S comes from a Phase I data set.
When the process is in-control, v, are a sequence of independently and identically
distributed Uniform (U (0,1)) random variables, therefore the control limits can

be set up based on U (0,1).

4.3.1.8 Double Sampling |S| Chart

The Multivariate Double Sampling (MDS) |S| chart from Grigoryan and He
(2007) consists of five steps. For these steps, three quantities must be defined. V}
and V5 which are the control limits at the first stage of the process and V3 which
is the control limit for the second stage.

For the first step of the process, a set of size n; can be taken and the following

statistic can be computed:
Y = (|81|=b1[So]) /by %0l

where S is the variance-covariance matrix of a sample of size n;. Step 2: If Y
falls in the interval [—V4, V5] then the process is in control.

Step 3: If Y falls in the interval (V3, +00) or (—oo, —V4) then the process is out
of control.

Step 4: If Y falls in the interval [—V5, —=V;] or [V4, V3], then a second sample of
size ny can be taken and the following statistic is computed based on the combined

sample of size ny + no:
1/2
Vi = (|S12]=b11|Z0]) /b25" [ Zo|

where S5 is the variance-covariance matrix of a sample of size ny +mny. Step 5: If

Y falls in the interval [—Vj3, V3] the process is in control. Otherwise is considered
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out-of-control.
The previous five steps take into account the quantities: by, by, b11 and byy which

are determined below:

by = [1/ (n1 —1)"] H (ny —1)

b= [1/ (= )] [T (n =) [H<n1—j+2>—H<m—j>]

i=1 j=1

p
bll—[l/(n1+n2—1 Hn1+n2—z
=1
p p p
bgg—[l/(nl—i-nz—l Hn—l [Hn1+n2—j+2 Hn1+n2—j]
=1 7=1

j=1

Finally, for constructing the MDS |S| chart, one has to determine the param-

eters ny, ng, V4, Vo and V3.

4.3.1.9 Monitoring Variation Using the Wilk’s Statistic

Assuming that S is the sample covariance estimator of ¥ based on a historical
data set of size n and S, is the sample covariance estimator obtained from the
HDS and the m new samples, the following statistic can be used according to

Mason et al. (2009) to compare the variation in the above two samples using
Wilk’s statistic (1962):
Wt _ n—1 P |St|
n+m-—1 |SA|

Wilk’s statistic has values between 0 and 1. Values near 1 correspond that the

estimated covariance matrix S 4 is similar to the estimated covariance matrix S,
while values near 0 indicate otherwise. For a given level of significance o, the LCL
of W is determined by:

P(W <w,) =«

where w, is the a"quantile of the distribution of W.

Regarding the quantiles of the distribution of W, various approximations have
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been developed. The most well-known approximation developed by Bartlett (1938)

and is based on the 2 distribution. The approximation is as follows:

where f = (2n+m — p —3) /2. It is stated that the approximation can be used
when (p? +m?) < f/3. There is also another approximation developed by Rao
(1951) based on the F' distribution. The approximation is given by:

1 — Wl/t
K <W) ~ Fpm,ftfg

t— 2m2 —4 \'? -2

where K = / g’ p= (27 and g = pm . Finally it is noted
pm p>+m?—5 P

that the approximation is valid for ft > g.

For the y? approximation, the o!" quantile of W is approximated by:

Wa  exp {—%Xﬁp (1- a)}

By using the F-distribution approximation, the a'® quantile of W is approxi-

mated by:

K t
wa g { }
K+ Fymgi—g (1 — )
4.3.1.10 Monitoring Variation Using Scatter Ratios Decomposition

Mason et al. (2010) continued the idea of using Wilks’ statistic and decompos-
ing Wilks’ ratio statistic by noting that the sample generalized variance of the

covariance estimator S can be written as:

|S|= 511 [s22 (1 —731)] [s33 (1= 7512) ][50 (1 = 75 12.p-1) ]

where 7 1, ., represents the squared multiple correlation coefficient for the re-

gression of x on xy,xo, - ,xr_1. Applying the previous result, Wilks’ statistic
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can be written as:

W, = (n—_1>l) <£> s22 (1 — 7’%1) L Spp (1 - 7“2_12...17_1)

n+m—1 5/11 S99 (1 - 7"52.1) 8;p (1 - 7“;,32.12~~p—1)

where s; ; and r'2 refer to the sample variances and correlation coefficients for the
variables in the combined data set. The decomposition of the W statistic can also

be written as:

W = W1 X Wg.l X Wg.l’g X oo X Wp.1,2,---,p—1

(n—1)st (n—1) 87151
where W, = Wit i1 = 7 and s?,._._, rep-
! (n+m—1)s? Flimg=l (n+m—1) 3;?1...]‘_1 jl-j—1 T€P
resents the conditional variance of x; on xy, z2, -+, ;1. With this methodology,

q distinct factors can be monitored and thus, Bonferroni limits can be used. The
chart signals as soon as a factor plots below its corresponding LCL (for a pre
determined LCL). Mason et al. in their paper also gave a way for monitoring the

dispersion with individual observations.

4.3.1.11 Shewhart Chart Using the Eigenvalues

Mohd Noor A. and Djauhari M.A. (2011) proposed measuring the performance
of multiple eigenvalue CCs for monitoring the multivariate process variability.
The j CC, has as plotted statistic the j eigenvalue of the i'" future variance-
covariance matrix denoted as \;g.

The associated control limits for an individual eigenvalue chart are given by:

2
UCL = \js, + L ( — (Aj20)2>

5
LOL =Xz, — L ( — (Ajzo)Z)

L =®(Z,) where v = ¢/a/2 and ® (+) is the cumulative distribution function of
the standard normal distribution. The process is said to be out-of-control when

at least one CC gives an out of control signal.
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4.3.1.12 One-Sided LRT-Based Control Chart

Yen et al.(2011) in their study focus on monitoring the dispersion of a multivariate
process if the dispersion is decreasing. In a previous work, Yen and Shiau (2010)
derived the LRT statistic for monitoring increases of the dispersion. The proposed

one-sided CC of Yen and Shiau (2010) had the following statistic:

Py
Tr = nz [(d; — 1) —logd,], for p; >0
i=1

and Ty = 0 for p; = 0. It is noted that d; > --- > d, > 0 are the roots of
|S: — d¥o|= 0 and pj is the number of d; > 1.
In a similar way, Yen et al. (2010) in their paper propose following statistic for

monitoring decreases in dispersion:

Pp
Tp = nz [(d; — 1) —logd,], for p, >0
i=1

and Tp = 0 for pj, = 0. In this case it is noted that p7}, is the number of 0 < d; < 1.
The chart signal whenever T, exceeds T («) for the case of decrease and whenever
T; exceeds Tr(«) in the case of increase.

It is stated by the authors that the distribution of T} is difficult to be obtained
analytically so in their paper they used a Monte Carlo simulation to estimate the
critical value of Tp.

Finally, Yen et al. (2012) propose the usage of a combined chart which signals

an out-of-control alarm if:

Ty > Ty (Oé[) orTp >1Tp (OéD)
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4.3.1.13 Test of Covariance Changes Without Large Data

Hung and Chen (2012) in their paper have proposed two statistics for monitoring

the variance-covariance matrix (T1 and T2). Their form is:
Tl = {tZQZ for 1 S i S b, Toff—diag} and

T2 = {Tdiagv Toff—diag}

T'1 statistic signals if:

{th < x>, J(a1/2) OF th > Xi-l,lf(alﬂ)}

or

or

{tpp < Xn 1,(ap/2) - t12717 = Xifl,l—(ap/Q)}
or
2
{TOff*diag > X(P/Q)(p—l)vl_aoff—diag}
T2 signals if:
{szag < X

(p/2)(2n p— 1) (adzag/2>
or

{szag > X(p/g)(gn —p—1),1— (Oédiag/Q)

or
{Lof j—diag > X?P/Q)(Pfl)’lfaofffdmg}

Their proposal is based on the assumption that (n —1).S follows a Wishart
distribution with parameters (n —1) and Xy (S ~ W, (n —1,%)). Since X,
is positive definite, there is a matrix A satisfying A¥¢A’ = I, which leads to
(n—1)AXgA" ~ W, (n —1,1I,). Using the Cholesky’s decomposition theorem,
¥y can be decomposed into M M’ where M is the unique lower triangular ma-
trix with positive diagonal elements. A can be chosen to be M. Applying the
Cholesky’s decomposition theorem once more to the (n — 1) AS A" another lower

triangular matrix T' can be obtained. Hung and Chen (2012) proved that t;; are
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mutually independent distributed as:
ti ~ X, for 1<i<p

tiuN(0,1), for 1 <j<i<p

The following hypothesis test is considered: Hy : 3 = 3y versus H; : X # .
Any departure from the null hypothesis will make certain ¢;; behave abnormally.
Two test statistics are constructed (Tyiqy and Ty s—giag) With exact null distribu-
tions.

Finally Tyiqq and Ttff—giag are defined as:

Laiag = Z t p/2 )(2n—p—1) and

1<i<p

Toff—diag = Z £ ~ XGo/2-1)

1<5<i<p
4.3.1.14 Penalized Likelihood Ratio (PLR) Chart

In their paper, Li et al. (2012) assume that X follows a p-dimensional normal
distribution with known (or estimated from Phase I data) p, and ¥X,. Without
loss of generality, they state, that they assume that X follows N, (0, I,) when
the process is in control. The chart that has been constructed supposes that
the out of control matrix 3; remains sparse, meaning that only a few diagonal
elements are not equal to one and only a few off-diagonal elements are not equal
to zero. The first step for the construction of the chart was to estimate Q = 3;*
using a penalized likelihood function. In the second step, the charting statistic
was calculated based on the negative log-likelihood ratio of testing Hy : 3¢ = I,
versus Hy @ ¥ # I,. For the estimation of © Li et al. (2012) found that by
penalizing all elements of €2 produces a more effective CC. The penalized negative

likelihood function can be written as:

(X1, X+, X 0;Q) = tr (2S) — In|Q+A||2]]1
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where [|Q[;= >27_, > 7_|w| and A is a parameter that can be tuned to achieve
different levels of sparsity of the €2 estimate. €2 is the solution to the previous

function for a given A:
Q) = argmin {(X, X, -, X5 )}
After obtaining €2, the CC calculates for each given sample:
A)\ =1r (S) —1ir (Q)\S) + ln|Q,\|

The PLR chart, signals when A, > UCL, where UC'L) is chosen for a given A to

achieve a predetermined ARL.

4.3.1.15 Covariance Matrix Monitor with Fewer Observations than

Variables

Mahaboudou-Tchao E. and Agboto V. (2013) propose a Shewhart-type CC based
on the statistic:

Ct = tr (St> — hl‘St|—p

The plot signals if ¢; > h where h is chosen to achieve a specified in-control ARL.

The CC is based on a sample of size n less than p. For cases with fewer obser-
vations than dimensions the data are unable to compute a non-singular sample
covariance matrix. They use a matrix A with the property of A¥yA’" = I, and
transform « to u = A (x — ) where u follows N, (0, I,,) when the process is in
control. In their research they propose a two step mechanism. In the first step,
for each sample i, V; = U,U, is computed. Using V, an estimate of the inverse

covariance matrix can be found using:
Q(Q) = ~|Q+tr (2F) + pl[Qls,

where [|Q[);= Y7, Y7 |wi| , @ = 25" and p is a data dependent tuning pa-

rameter.
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Next, they obtain an estimate of the covariance matrix S; by inverting Q,. Fi-

nally, the matrix S; is compared with the identity matrix using c;.

4.3.2 CUSUM Control Charts
4.3.2.1 MCUSUM for the Dispersion

Healy (1987), by considering a shift on the variance-covariance matrix from ¥ to
31 = C'3g proposed a multivariate CUSUM CC for the dispersion of the process
given that the vector p is constant throughout the whole process. The CUSUM

CC is based on the following function:

MCyk =max[MCy_1+ Y, — K,0] ,k=1,2,...,m
where,

Vi = (x5 — p) 71 (xp — )

and

C

The procedure is considered to be out of control if MC}y > H.

4.3.2.2 CUSUM Chart Based on Projection Pursuit

Chan and Zhang (2001) use the following statistics for monitoring the dispersion

of a multivariate process:

Q:— = maX{O,Q:i,Q;;, e 7@1;;}
and
Q; =min {0,Q;;,Qp, -+, Q)

where Qf = Q, = 0. The projection method signals as soon as either Q; > h,

or ); < h_ where hy and h_ are decision values.
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It must be denoted that Q) = \™*—(t — j + 1) ryand Q;; = A" —(t —j + 1) 7
where r, and r_ are two reference values. Also when observation are collected,

.

under the null hypothesis, \;3** and )\f;in denote respectively the largest and small-

est eigenvalue of the subgroup sample matrix.

4.3.2.3 Multiple CUSUM Charts Based on Regression Adjusted Vari-

ables

Yeh et al. (2004), Yeh et al. (2005) and Huwang et al. (2005) following Hawkin’s
(1991,1992) proposal expanded the idea of a multivariate CC for monitoring the
process mean based on regression adjusted variables.

For a given process, one calculates:
St = max (0, S(J;fl)i + Wy — 7‘)

and

7

St_ = min <O, S(_tfl)i -+ Wti — 7’)

where S,; = S}t = 0 and r is a reference value. An out-of-control signal is detected
on the multiple CUSUM chart as soon as
A
{giaé {maX (Sm-, Sm)} > h

where h is the decision value.

For a data set, the following statistic can be computed:

—-1/2

Z, = [diag (35")] 720" (X0 — o)

where Z, = (Zn, Zs, - - , Zyy, )'. When the process is in-control, Z, is distributed
as N, (0,1,).

For detecting changes in the variance of the i component the following statistic
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is defined:
| Zu|?—0.822

Wi
! 0.349

When the process is in control, Wy; follows the standardized normal distribution.
If the distribution of Z;; changes to N (0, 0?) then the distribution of W;; changes
approximately to N (2.355 (¢!/2 — 1) , o). Therefore, the usual univariate CUSUM

chart is constructed to monitor mean shifts in W;; (thus the variance of Z;;).

4.3.3 EWMA Control Charts for the Dispersion

4.3.3.1 Multivariate EWMA Chart Based on Regression Adjusted Vari-

ables

From Hawkins’ (1991,1992) proposal, the multiple CUSUM chart based on re-
gression adjusted variables can be transformed to multiple EWMA charts. For

t>1land?=1,2,---,p one calculates:
Eti = )\Wm i (1 - )\) E(t—l)i

where Ey; = 0 and an out-of-control signal is given when:

A
max {IBul} > L y[5=3

where L is a predefined value selected for a predetermined ARLg. It must be noted

| Z45| /%2 —0.822
that Wy, = —— =
ar e 0.349

4.3.3.2 The EWMLR control chart

Yeh et al. (2004) in their paper state that when the monitoring begins, inde-
pendent samples of size n are taken from the process. The EWMLR CC for t > 1
is:

Rt = )\Tt + (1 — )\) Rt—l
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where Ry = r1. The process is considered to be out-of-control if R; is greater than
the UCL (UCL = UCL (m,n,w)) and is chosen to achieve a predetermined ARL
and is given from tables in Yeh et al. (2004) paper. It must be noted that r; is

defined as follows:

re = (mn+n —2)In|]A + By|— (mn — 1) In|A|— (n — 1) In|By|

where .
By =Y (X —Xe) (Xe5 — Xa)'
j=1
and .
i=1 j=1

4.3.3.3 The Maximum Multivariate Exponentially Weighted Moving
Variability (MaxMEWMYV) Control Chart

Yeh et al. (2004) propose plotting the following statistic:

Dy — E(Dy) Dip— E(Dp)

MazxzD; = max ,
VVar (Dn)  \/Var (D)

The chart signals as soon as the value of MaxzD plots a predetermined UCL.
For constructing the chart they define the following statistic after they assume
that 3¢ = I,xp:
S =2X X, +(1-X\)S;

where Sy = X X. The proposed CC for monitoring the variance-covariance ma-
trix has been derived from S;. In their approach, Yeh et al. (2004) have examined
the variance and covariance components of S; separately. So the following two

quantities have been defined:

S, = (i), Se22)s - aSt(pp))l
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and

Stc - (St(12)a St(13)7 R St(2])7 Ty St((p—l)p)),

where S, is a p x 1 vector with the p diagonal elements of S; and S, is a
p(p—1)/2 x 1 vector of the upper triangular off-diagonal elements of S;. With

this approach the deviation of S;, and S;, is measured from:

I;,1 and Op(-1)/2x1

Yeh et al. (2004) have defined the following approach for measuring the distance

between the two vectors:

p

. 2
Dy = |5, — Ip><1H2: Z (Z%Xij B 1)
k=1

j=1 =

and

P t 2
Dy = [|S, = Opp-1)j2x1|[*= Z (Z akaiij)

i<j \k=1
where a, = A(l—A)t_k, ag = (1—=N""and k = 2,3,---,t. Also, i,j =
1,2, ,p.
Finally it should be noted that:

48\ 8\ }

and op,, = +
b p{l—(l—)\)“ 2\

A
=2
KDy p2_>\

and also

_prlp—1) A _ At A\
KDy = 2 2_)\andO'DtQ—p(p—l)(2p—1){m}ﬁ—p(p—l)(ﬂ)

4.3.3.4 The MEWMA V Control Chart

For monitoring the dispersion of the process, the following statistic proposed by

Yeh et al. (2010) and is defined as follows:

p P .
N—-—m+1—i InS|
=P ani — —1 S : X Q
t (mH o (H n—i ) NS

i=1
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where m is the number of samples taken for estimating the ¥, in Phase 1. Also,
InS;| and |N'S| denote the determinant of the matrix nS; and NS (N =n x m).
When the process is in-control, v; is distributed as U (0,1). The EWMA chart is
given below:

Sy (t) = Ax (v, — 0.5)+ (1= \) x S, (t — 1)

where S, (0) = 0. The authors state that S, (¢) is symmetric at 0 so the two

control limits can be the following:

UC’L:LX\/% (ﬁ) (1—(1_)\)%)

LCL =—-L x \/% (%) (1 —(1 _)\)Qt)

with Center Line 0 (CL=0)

and

4.3.3.5 The ELR Control Chart

The following CC has been constructed for simultaneously monitoring the mean
and also the dispersion of the process. Zhang et al. (2010) consider the following
hypothesis test:

Hy:p=0and ¥ =1, versus H; :p#0or ¥ #1I,

The generalized likelihood ratio statistic for this test can be obtained and it is
the following:
LR, = np(a—logg — 1) +n||X,[|”

1
where a = —tr (8,), g = (|S;)"/? and |||| represents the Euclidean distance of a
p —
vector. In the paper, it is mentioned that the terms || X;||> and a—log g contribute
to the changes of the process mean and variance respectively. Finally, the charting

statistic has the following form:

ELR, =np(a'logg — 1) 4 n||u||?
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1
where o/ = —tr (v,) and ¢ = (Jv,|)"/?. Also,
p
Uy = )\Yt + (1 — )\) U1

Uy = )\§: + (1 - /\) Vi1

with S} = 2?21 (X — uy) (Xij —uy) /n and up = 0, vg = I,. The control
limits for this particular CC are mostly available from the authors upon request.

In general, the ELR statistic follows an asymptotic x? distribution.

4.3.3.6 The Max Norm Control Chart

Shen et al.(2013) proposed an EWMA CC for monitoring the variance covariance
matrix denoted as Max Norm. The proposed statistic to plot has the following

form:
[ -EMm) T,-E®@)
= max

1 ;
oo JVar (1) /Var (Ty)

and it signals as soon as 73,,, ... exceeds a pre-determined UCL. The CC derived

from trying to determine if the covariance matrix of:
,=(1-N)X 1+ \S,
is significantly different from the identity matrix. If
Ci=% -1,y

then, the deviation of variance-covariance matrix can be examined by the deviation
of C; from 0. In their study, the authors adopt a certain way for measuring the

distance between the two vectors. The two measures used are defined as:

p P
Ty, = [|de||o= chf(ij)

i=1 j=i
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and

Ti, = ||d||oc= max (|Ct(11)|7 o |Ct(pp)|)

where ¢,(;;) is an element (in the it" row and ;™ column) in the covariance matrix
C, for © < j. When X deviates from I,,,, then T}, and T3, tend to have larger
values. Shen et al. (2013) in their study estimate through Monte Carlo simulation

the asymptotic limits of E (T1), E (Ty), Var (11) and Var (15).






Chapter 5

Comparisons

5.1 Introduction

Every case that can be considered in real life is special and it differs with any
other. A practitioner may deal with various problems that can occur in his line of
production and of course he wants to be ahead of them. So, for every scenario that
can be dealt, it must be known to him the best way to catch up to it for less time
and money to be consumed by the process. In other words, the practitioner should
know which is the fastest CC to signal if the process is out-of-control depending
on the possible shift that may occur. This Chapter, deals with this problem
and various scenarios based on the available sample, the possible shift have been
considered. In subsection 5.2 the competing CCs and Scenarios are presented. In
subsection 5.2.1 the charts for the bivariate case will be presented and in subsection
5.2.2 the comparison will take place to determine the best available choice for every

scenario. Finally in subsection 5.2.3 is the summary of the chapter.

5.2 Competing Control Charts and Scenarios

In this section, it will presented comparisons between some of the multivariate
CCs presented in chapter 3 and 4. The first multivariate CC that will be used
69
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for comparisons is the CC1 introduced by Frank Alt (1985)which was presented
in subsection 4.3.1.2

The second multivariate CC is the W-Chart which was described in section
4.3.1.1 and was also introduced by Frank Alt (1985).

The third chart is a bivariate CC and it is the CC2 Control Chart which was
presented in section 3.2.1.1 and was proposed by Alt (1985).

Another bivariate CC (CC3) was proposed by Alt and Smith (1988) and will be
presented in this chapter. The chart corresponds to section 3.3.1.2.

Two more CCs have been proposed in the same paper from Hung and Chen
(2012) and are based on the Cholesky decomposition theorem. Namely, T1 and
T2 and were presented in section 4.3.1.13.

On an approach for a bivariate case, Quinino et al. (2012) in their paper propose
a new statistic for controlling the covariance matrix a normal process with known
means and variances. The VMIX statistic was presented in section 3.2.2.1.

It is known that in most cases the performance of CCs is measured by the Average
Run Length (ARL) which is the expected waiting time until the first occurrence
of an event creating an out-of-control signal. In literature there are two distinct
cases for the ARL. The in-control ARL and the out-of-control ARL. The in-control
ARL is the average number of plotted samples until an out-of-control signal even
though the process is in-control. The out-of-control ARL is the average number
of plotted samples until an out-of-control signal when the process is considered to
be out-of-control.

Regarding the comparison of the various CCs, the control limits of the charts
were computed for achieving an in-control ARL equal to 200. Also one scenario
has been taken into account for the number of variables (p = 2) because for
more scenarios computational difficulties were encountered. Furthermore, sce-
narios for different sample sizes have been considered with n = 5,10,20. In

addition, the scenarios were made for simulating a process with mean vector

: : : L oupoxn .
© = (0,0) and variance-covariance matrix ¥ = with p =
011022 1

—0.75,—0.3,0,0.5 and 0.75. Finally, the out-of-control ARL are compared for a
shift in one or two variances and the shifts had the form ko? with k = 1,1.1,1.2,..., 2.
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In the diagrams it is plotted the volume of the shift and the In(ARL) for a better

presentation. The number of simulations were set to 10000.

5.2.1 The Bivariate Case (p = 2)

In this section the various figures for the different scenarios will be presented. As
a reminder, the graphs were made with the X-axis representing the volume of the
shift in the variance for a CC with fixed control limits for achieving ARLy = 200
and the Y-axis representing the In(ARL).
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5.2.1.1 Scenario with p = —0.75

The first scenario assumes that the correlation between the variables is -0.75 mean-

ing that the variables have a strong negative correlation.

FIGURE 5.1: For n=5 and Shift in One Variance
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FIGURE 5.2: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

FIGURE 5.3: For n=10 and Shift in One Variance
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FIGURE 5.4: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

FIGURE 5.5: For n=20 and Shift in One Variance
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FIGURE 5.6: For n=20 and Shift in Two Variances
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5.2.1.2 Scenario with p = —0.30

The second scenario assumes that the correlation between the variables is -0.30

meaning that the variables have a moderate negative correlation.

FIGURE 5.7: For n=>5 and Shift in One Variance
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FIGURE 5.8: For n=>5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

FIGURE 5.9: For n=10 and Shift in One Variance
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FIGURE 5.10: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

FIGURE 5.11: For n=20 and Shift in One Variance
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FIGURE 5.12: For n=20 and Shift in Two Variances
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5.2.1.3 Scenario with p =10

The third scenario assumes that the correlation between the variables is 0 meaning

that the variables are uncorrelated.

FIGURE 5.13: For n=>5 and Shift in One Variance
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FIGURE 5.14: For n=>5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

FIGURE 5.15: For n=10 and Shift in One Variance
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FIGURE 5.16: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

FIGURE 5.17: For n=20 and Shift in One Variance
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FIGURE 5.18: For n=20 and Shift in Two Variances
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5.2.1.4 Scenario with p=0.5

The forth scenario assumes that the correlation between the variables is 0.5 mean-

ing that the variables have a moderate positive correlation.

FIGURE 5.19: For n=>5 and Shift in One Variance
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FIGURE 5.20: For n=>5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

FIGURE 5.21: For n=10 and Shift in One Variance
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FIGURE 5.22: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

FIGURE 5.23: For n=20 and Shift in One Variance
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FIGURE 5.24: For n=20 and Shift in Two Variances
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5.2.1.5 Scenario with p =0.75

The final scenario assumes that the correlation between the variables is 0.75 mean-

ing that the variables have a highly positive correlation.

FIGURE 5.25: For n=>5 and Shift in One Variance
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FIGURE 5.26: For n=>5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

FIGURE 5.27: For n=10 and Shift in One Variance
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FIGURE 5.28: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

FIGURE 5.29: For n=20 and Shift in One Variance
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FIGURE 5.30: For n=20 and Shift in Two Variances
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5.2.2 Comparing Bivariate Control Charts

In this section the comparison of the charts in the different scenarios will be
presented.

For the first scenario with correlation between the variables equal to -0.75 it
seems that the VMIX chart performs better regardless the sample size and the
shift. If the researcher has estimated from the data that there is a high negative
correlation between the two variables of interest, then the VMIX chart should be
applied for monitoring the process’ dispersion. It can also be seen that the VMAX
chart performs best for a shift in one variable regardless the volume of the shift.
More specifically as the sample size increases the VMAX chart approximates the
performance of the VMIX chart. VMAX chart can also be selected for monitoring
the process if the sample size is small (n=5) if the shift occurs in both variables. In
contrary to these charts, the W chart is the worst chart for monitoring the process
especially if a shift in both variables takes place. When there is a shift only in the
dispersion of one variable, then the W chart is not able to detect the shift if it is of
low volume. For big shifts the performance of the chart rapidly improves. Also, as
the sample size increases, W chart becomes better and its performance is similar
to the VMIX and VMAX chart. So the W chart should be selected for detecting
a shift in one variable, for shifts bigger than 1.7¢? if the sample size is 10 or for
shifts bigger than 1.302 if the sample size is 20. T2 chart should be considered
for shifts in both variables regardless the sample size but preferably for shifts over
1.40%. The T2 chart can also be selected for shift in one variable with a small
sample size because it has the third best performance recorded. CC3 and CC1
charts have identical performance and should only be considered for shift in both
variables regardless the sample size. They have the second best performance for
large sample sizes (n = 10 or 20) and the third best performance for small sample
sizes (n = 5). T1 chart is able to detect a shift in one variable when the sample
size is more than 10. Finally the CC2 chart has the most moderate performance

since it does not performs best in any specific sample size.
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For the second scenario with correlation between the variables equal to -0.30
it seems that the VMAX chart is the best for detecting a shift in only one vari-
able regardless the sample size and the volume of the shift while VMIX chart
outperforms for shift in both variables regardless the sample size and the volume
of the shift. It is easy to say that these charts should be preferred in the appro-
priate situation. As a proposal it should be said that if the researcher knows that
there is a moderate negative shift between the two variables, then both VMIX
and VMAX charts should be used for detecting shifts (either in one or in both
variables) and a signal to the process would be given when the first chart signals.
In this scenario, the W chart performs best only in big sample sizes (n = 20) and
big shift (> 1.80?) in only one variable. T1 chart in this case seems to have one
of the best performances when it comes to a shift in one variable regardless the
sample size. For sample size equal to 5 it should be preferred for shifts over 1.402,
for sample size equal to 10 it should be preferred for shifts over 1.30 and for big
sample sizes (n = 20) for shifts over 1.20% T2 chart should be considered for a
shift in one variable regardless the shift but for shifts over 1.202. For a shift in
both variables it should be preferred if the sample size is 5 for shifts over 1.602,

2 or for sample sizes 20 if the shift

for sample size 10 when the shift is over 1.50
is over 1.20%. CC1 and CC3 should be considered only for shift in both variables
when sample size is 5 and the volume of the shift is less than 1.60% or for sample
sizes 10 and 20 regardless the shift. Also CC1 and CC3 can be considered for a

small shift (< 1.20?) in one variable regardless the sample size. Again, CC2 is not

exceptional in any case so it should not be considered.

For the third scenario with correlation between the variables equal to 0 it
seems that VMAX chart is the best chart for detecting shifts in one variable
regardless the sample size. For shift in both variables it should be considered only
for sample size of 5 because it has the second best performance. VMIX chart is
again the best performing chart for shifts in both variables regardless sample size
and shift. VMIX can be considered for shifts in one variable for sample size less

than 10 because it has the second best performance or for shifts less than 1.402 if
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the sample size is 20. From the multivariate charts, T1 can be chosen for detecting
shifts over 1.202 in one variable for sample size over 10 and should not be preferred
at all if the shift occurs in both variances simultaneously. In this case T2 can be
considered but only if the shifts are over 1.60% for sample sizes less than 10 and
regardless the volume of the shifts if the sample size is 20. CC1 and CC3 can
be chosen for shift in both variances regardless the sample size or in one variable
when the volume of the shift is less than 1.20%. W and CC2 chart in this scenario

are not appropriate because their performance is among the worst.

The correlation in the fourth scenario is moderately positive (p = 0.5). It
seems that the VMAX chart should be chosen for a shift in one variable regardless
the sample size or for shift in both variables when the sample size is small (n = 5)
because the performance is the second best. VMIX chart performs best when the
shift occurs in both variables regardless the sample size and has the second best
performance for a shift in one variable. W chart though improves its performance
as the volume of the shift gets bigger for one variable, can only be chosen for a
big sample size (n = 20) and volume of the shift > 1.602. T1 chart has a really
good performance when it comes to a shift in one variable regardless the sample
size. It best performs for a shift over 1.402 when the sample size is 5, for a shift
over 1.302 when the sample size is 10 and for a shift over 1.202 for sample size
equal to 20. T2 performs really good for shifts in both variables when the sample
size is 5 and the shift is over 1.602, hen the sample size is 10 and the shift is over
1.50% and when the sample size is 20 and the shift is over 1.202. Also it performs
well for sample size of 5 and shift over 1.202 in one variable. Again CC1 and CC3
perform really good in shifts in both variables regardless the sample size and for a
small shift (< 1.20%) in one variable regardless the sample size. Finally CC2 has
not a special case in which it should be preferred.

In the final scenario the correlation was set to be 0.75 meaning a strong positive

correlation. In this scenario the same results apply as in the case of p = —0.75.
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5.2.3 Summary

In this chapter, the comparisons of some presented charts took place. First
of all, the scenarios of the comparisons were determined which involved different
sample sizes, different correlations between the variables and of course different
shifts in one or both variances. For achieving this, the CCs were simulated and
their control limits were computed for achieving an in-control ARL equal to 200.
The comparison of the charts, showed that in general VMIX and VMAX perform
beter than the other CCs. Also the CC1 and CC3 CCs perform really good for
detecting a shift in both variables. T1 and T2 seem to have a good performance
depending on the scenario and W chart, was really good for detecting big shifts
in one variable when there is a big negative correlation involved. It should be
mentioned that the simulation program used was Wolfram Mathematica 9 and

the graphs were created with Systat SigmaPlot 12.5.



Chapter 6

Discussion and Scope for Further

Research

6.1 Discussion

In this master thesis the theory behind statistical process control was initially
presented. After that, a variety of univariate, bivariate and multivariate control
charts was presented which was the result of an extensive review of a great number
of articles based on control charts both univariate and multivariate. Finally some
specific control charts were compared for determining the most efficient control
chart for any given scenario which involves a bivariate process.

Although much progress has been made in the field of statistical process control,
more research must be considered for improving this area of interest. In the

following section further research and proposals will be discussed.
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6.2 Further Research and Proposals

As already mentioned, multivariate process control according to Jackson (1991),

should provide four simple information to the researcher:

e an answer to the question: ”Is the process in control?”,
e an overall "Type I error”,
e the relation between the variables should be taken into account and

e an answer to the question ”What variable causes the problem?” if the process

is out-of-control.

Regarding the first information that should be obtained from multivariate sta-
tistical process control, it should be mentioned that more research should be done
for constructing additional CCs based on different statistical quantities. That will
result in a bigger variety of options to the researcher with some of them more effi-
cient than other. As a proposal to the researchers occupied in constructing CCs is
to consider using the multivariate coefficient of variation as a quantity measuring
the dispersion in a multivariate level. From the literature it seems that four (4)
different quantities have been proposed as multivariate coefficients of variation and
should be considered as a potential statistical quantity for proposing a new chart.

For the fourth information that always should be gained from monitoring a pro-
cess must be said that it is relatively new in literature and only small steps have
been made regarding the dispersion in a multivariate level. It is crucial to say that
this area must be expanded because while the main objective of the practitioner
is to monitor the process, more important is to know exactly what is wrong with
the process and especially with which variable when the whole system does not
perform as it should be. More weight should be given on interpreting and control-
ling the variability because if the practitioner manages to control the dispersion
then the target of the process will not fluctuate.

While Jacksons’ list is right on what information should be obtained from multi-

variate process control, it is probably incomplete and should be expanded by one
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information that should be provided to the researcher. The researcher should be
in position to answer to the question ” Am I using the optimal way to monitor the
process?”. The reason is really simple. If the best CC is not used for the scenario
encountered then it is not sure for the researcher to know in any given time the
process is in control (first information from Jackson) leading to ignorance on what
is wrong and in which variable (fourth information from Jackson).

A large-scale research should be done with main objective to determine the best
option for every scenario that can be encountered. This painful study should in-
clude scenarios for different number of variables, different sample sizes, different
correlations, different shifts in variances, meaning not only shift in one variance
or in two simultaneously but also in more with not the same volume of shift. Also
scenarios with different in control ARL should be included. The work done in this
thesis will continue and will revolve on this job for CCs that monitor the dispersion

of a multivariate process.
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