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Abstract

Essays on Financial Forecasting and Risk Assessment

by

Sotiria N. Plastira

Doctor of Philosophy in Financial Econometrics

University of Piraeus, Department of Statistics and Insurance Science

Associate Professor Efstathios Chatzikonstadinidis, Chair

This thesis aims at investigating the performance of empirical risk factors in �nancial fore-

casting and their assessment with respect to the associated risk. The thesis consists of

four essays. The �rst essay focuses on whether the empirical HML and SMB risk factors,

along with the long-term reversal and the momentum factors exhibit both in-sample and

out-of-sample forecasting ability for the U.S. stock returns, compared to the performance

of the most widely used �nancial variables. Our �ndings point to the superior forecasting

ability of the empirical factors. We also establish a link between �nancial variables and the

empirical factors and �nd that the default and the term spread proxy for the evolution of

the factors examined. The second essay extends the previous analysis by investigating the

out-of-sample forecasting ability of the full set of empirical factors along with their size and

value decompositions on U.S. bond and stock returns for a variety of horizons ranging from

the short run (1 month) to the long run (2 years). We also examine their performance by
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employing combination of the individual forecasts of the empirical factors. It turns out that

these combining methods lead to particularly successful results, especially from an asset allo-

cation perspective, with similar �ndings pertaining to the European and Japanese markets,

as well. The third essay employs a variety of risk indices in order to quantify the embedded

risk of di¤erent empirical factor portfolios, producing a relative ranking among them. The

analysis also contributes to the literature by establishing a connection between size, book-

to-market and stock prior-returns with risk, revealing that small size, high book-to-market

and low momentum/reversal e¤ect are related with high portfolio risk. Finally, the fourth

essay provides an extensive review on traditional and more sophisticated evaluation mea-

sures focusing on premium returns adjusted for the associated risk. The implementation of

these performance measures on the aforementioned empirical factors reveals that the value

and momentum factor portfolios achieve the best and worst performance, respectively.
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Chapter 1

Introduction and Overview

Evaluating the performance of an investment or being able to create reliable out-

of-sample forecasts for �nancial time series is of utmost importance in the �nance area. The

widely used Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) leads

to predictions concerning the systematic risk of an asset or a portfolio of assets with respect

to the market portfolio. In other words, di¤erences in the sensitivity of assets on the market

return should explain di¤erences in average asset returns. However, empirically the single-

factor CAPM has not been very successful. This led to the development of multi-factor

models aiming at explaining the cross-sectional variation of returns.

Fama and French (1992) show that size and book-to-market have explanatory

power with respect to the cross-section of average returns on NYSE, Amex and NASDAQ

stocks for the 1963-1990 period. Extending this analysis, Fama and French (1993) provide

evidence that size and book-to-market equity proxy for the sensitivity to common risk

factors in stock returns and are both related to pro�tability. By introducing the three-factor
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model, they capture the related CAPM average-return anomalies. In particular, the negative

relation between size and average returns is explained by a risk factor associated with size,

while the positive relation between book-to-market and average returns is attributed to

another risk factor. The former is referred as the size premium or �Small Minus Big�(SMB)

and is the return on a portfolio that is long in stocks with small capitalization and short

in stocks with big capitalization, while the latter is referred as the value premium or �High

Minus Low�(HML) and is the return on a portfolio that is long in stocks with high book-

to-market (value stocks) and short in stocks with low book-to-market equity ratio (growth

stocks).

Another market �anomaly�was examined by Jegadeesh and Titman (1993),who

examined a variety of momentum strategies and suggested that holding stocks with high

returns over the previous 3 to 12 months and selling those with poor performance over the

same period time leads to pro�ts of about 1% per month for the following year. According

to the authors�momentum strategies, past winners perform better than past losers by about

the same magnitude as in the earlier period. In this context, Carhart (1997) proposed the

four-factor model by incorporating the momentum (MOM) factor that is the di¤erence of

the monthly return between the high and low prior return portfolios.

While a vast literature exists on these anomalies with respect to the underlying

explanations for these return premia and their link to systematic risk, the evidence on their

forecasting ability for future returns is quite scarce. The aim of Chapters 2 and 3 is to

assess, not only statistically but also from an asset allocation perspective, the ability of the

famous empirical risk factors to provide e¢ cient forecasts on stock and bond returns. The
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embedded risk in these empirical factors and their risk-adjusted performance is evaluated

in Chapters 4 and 5. More in detail, this thesis is structured as follows.

Chapter 2 investigates whether the HML, SMB along with the long-term reversal

and the momentum factors exhibit both in-sample and out-of-sample forecasting ability for

U.S. stock returns for a variety of horizons ranging from the short-run to the long-run.

Our analysis reveals that the empirical factors contain signi�cantly more information for

future stock market returns than the typically employed �nancial variables. Going one step

further, we test whether the employed �nancial variables can proxy for the aforementioned

factors and we �nd that the default spread and, to a lesser extent, the term spread contain

important information for the evolution of the factors examined. Our analysis also sheds

light on the source of this forecasting ability by investigating whether the evinced forecasting

ability is attributed to either the big or the small factor components or to appropriate

value counterparts. Our �ndings suggest that speci�c factor decompositions improve the

forecasting ability of the model over the benchmark model.

Chapter 3 extends the analysis of Chapter 2 by investigating the predictive ability

of the empirical factors not only on stock returns, but also on government bond returns.

We also incorporate in the list of the empirical factors the short-term reversal factor along

with its size decompositions and evaluate our �ndings from an asset allocation perspective.

Consistent with the results of Chapter 2, the empirical factors outperform the typically em-

ployed �nancial variables by containing signi�cantly more information for future U.S. bond

and stock market return. This analysis also relates to the literature of combination fore-

casts by investigating whether combination of the empirical factors�forecasts can enhance



4

the model�s forecasting ability on stock and bond returns. Both the statistical and economic

evaluation �ndings suggest that the empirical factors lead to signi�cant performance fees

that an investor would be willing to pay in order to have access to the information o¤ered

by our modelling approach. More importantly, similar �ndings pertain for the European

and Japanese markets.

Chapter 4 attempts a thorough risk analysis of these empirical factor portfolios.

The risk measures employed in our analysis cover not only the traditional ones, such as

the standard deviation and the beta factor, but also more sophisticated ones, such the

Value-at-Risk (VaR), the expected shortfall, and also measures based on downside indices

or drawdown-based ones, capturing thus the kurtosis or skewness of the series distribution

and other aspects of the associated risk. Implementing these risk measures on the empirical

HML and SMB factors and also on the momentum and reversal ones; namely, the MOM,

LT-Rev and ST-Rev, respectively, we produce a risk-based ranking for these signi�cant

predictors. Our results reveal that the MOM factor portfolios is ranked high, while the

HML and LT factors are related with low risk. Both the traditional and downside indices

lead to identical rankings, while drawdown-based measures reveal a di¤erent rank order.

We also establish a connection between speci�c stock characteristics and portfolios� risk,

by assessing the risk of portfolios formed according to a speci�c characteristic, such as size,

book-to-market or momentum. The empirical �ndings suggest that portfolios of small stocks

or high book-to-market are ranked high, while high momentum and reversal portfolios are

associated with lower level of risk. This �nding is robust to the measure employed revealing

that an investor can decide on the most or least risky investment opportunity independently
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of the employed risk index.

Chapter 5 provides an extensive review on traditional and more sophisticated

performance evaluation measures focusing on premium returns adjusted for the associated

risk. By quantifying the portfolio risk via the plethora of risk measures presented in the

previous Chapter, we implement the performance measures on the empirical portfolios,

producing their rank order with respect to their risk-adjusted performance. Our results

reveal that the HML and MOM factor portfolios achieve the best and worst performance,

respectively, while portfolios based on stock prior-returns underperform. Similar to the prior

Chapter, we investigate the connection between the speci�c stock characteristics (size, book-

to-market and momentum) and the respective portfolio performance. Our �ndings indicate

that portfolios of small stocks or high book-to-market are ranked high, while low momentum

and high reversal portfolios are associated with lower performance.

Finally, Chapter 6 draws some conclusions and discusses some open issues that are

likely to attract research interest in the future.
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Chapter 2

Fama French Factors and US Stock

Return Predictability

2.1 Introduction

A series of papers by Fama and French (1993, 1995, 1996) suggest that the Capital

Asset Pricing Model (CAPM) fails to capture the cross-sectional variation of average stock

returns. In this respect, the authors propose a three-factor model, according to which the

expected return on a portfolio in excess of the risk-free rate is explained by three factors;

namely, the excess return on the market portfolio, the return on a portfolio long in small

stocks and short in big stocks (SMB), and the return on a portfolio long in high book-

to-market stocks and short in low book-to-market stocks (HML). SMB is often referred to

as the size premium, while HML as the value premium. Both the value and size premia

appear to be priced risk factors omitted from the CAPM and are rather pervasive in major
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international equity markets. Fama and French (1993) show that size and book-to-market

can proxy for the sensitivity of stock returns to common risk factors and as a result their

model performs well on portfolios formed on size and book-to-market equity. Moreover,

Fama and French (1995) provide evidence that size and book-to-market are related to

pro�tability and argue that their three-factor model is consistent with Merton�s (1973)

Intertemporal Capital Asset-Pricing Model (ICAPM), in which size and book-to-market

proxy for the sensitivity to risk factors in returns. In a subsequent paper, Fama and French

(1996) show that their model captures priced default risk, and, as a result, can explain

equity returns. Carhart (1997) proposes a four-factor model by adding a momentum factor

in the three-factor Fama-French model. This momentum factor (MOM) is the di¤erence

between returns on portfolios of the winners and losers over the past year. These empirical

factors, namely SMB, HML and MOM, are often referred as market anomalies and have

motivated the use of empirical asset pricing models that incorporate their returns.1

The vast literature on these anomalies has generated a wide debate with respect to

the underlying explanations for these return premia and their link to systematic risk. Chan

et al. (1998), in an e¤ort to identify the factors that capture systematic return covariation in

stock returns, provide evidence that with the exception of the Fama-French factors, only the

default premium and the term premium can explain return covariation. Liew and Vassalou

1The size anomaly re�ects the empirical �nding that small stocks (low market capitalization) outperform
large stocks (high market capitalization), even after adjusting for market exposure (Banz, 1981; Fama and
French, 1992). Likewise, the value anomaly relates to the outperformance of value stocks (stocks with high
ratios of fundamental or book value to market value such as book-to-market equity, cash �ow-to-price, or
earnings-to-price ratios) over growth stocks, which have low book-to-price ratios (see among others DeBondt
and Thaler, 1985; Fama and French, 1992; and Lakonishok et al, 1994). Moreover, positive momentum exists
in stock returns. Stocks that have performed well relative to other stocks over the past (typically last six
months to a year) continue to perform well over the future (next six months to a year), and vice versa
(Jegadeesh and Titman, 1993, 2001; Fama and French, 1996).
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(2000) investigate the extent to which the pro�tability of the HML and SMB factors can

be linked to future economic growth and conclude that, indeed, the hypothesis of Fama

and French (1993, 1995, 1996) is supported across various markets. Going one step further,

Vassalou (2003) provides an economic interpretation and concludes that the HML and SMB

factors include information related to news about future economic growth. Petkova (2006)

shows that the same factors proxy for the term spread and default spread, respectively, thus

establishing a link between a set of variables associated with time-series return predictability

and a set of variables associated with cross-sectional return predictability. Similarly, Hahn

and Lee (2006) �nd that changes in the default spread and the term spread capture the

cross-sectional pattern of stock returns in size and book-to-market. The degree to which

these factors are linked to the state variables over various time scales is examined by In and

Kim (2007), who conclude that both SMB and HML play a limited role in the short run,

but the opposite takes place in the long run. Recently, Vivian and Wohar (2013) employ the

output gap, a key business cycle indicator and �nd that it cannot predict the value e¤ect

(HML) either in-sample or out-of-sample, while there is some evidence of out-of-sample

predictability of the size e¤ect (SMB).

In this paper, we assess both the in-sample and out-of-sample forecasting ability

of these empirical factors for US stock returns, namely the CRSP value-weighted portfolio

return. Our set of factors contains the value premium (HML), the size premium (SMB), the

momentum (MOM) and the long-term reversal (LT) which is a factor related to long-term

(1- 5 years) past performance and can be thought of as a value indicator (DeBondt and

Thaler, 1985, 1987; Fama and French, 1996).2 Our set of predictors is enriched with four

2Asness et al (2013) �nd that stock portfolios created from past �ve year returns display an average
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�nancial variables that are typically employed in the return predictability literature; namely,

the 1-month Treasury bill rate (Fama and Schwert, 1977; Campbell, 1991; Hodrick, 1992),

the term spread (Campbell, 1987; Fama and French, 1989), the corporate bond default

spread (Keim and Stambaugh, 1986; Fama and French, 1989) and the market dividend

yield (Fama and French, 1988, 1989; Campbell and Shiller, 1988b). We also examine

whether any of the �nancial variables considered can proxy for the factors at hand. These

issues are addressed for a variety of horizons ranging from the short-run (1 month) to the

long-run (3 years) with the aim to reveal the term structure of predictability.

Our �ndings suggest that all the empirical factors exhibit considerable in-sample

and out-of-sample forecasting ability for the value-weighted CRSP portfolio returns at spe-

ci�c horizons, thus establishing the link between the time-varying investment opportunity

set and the factors. With respect to the �nancial variables, only the term spread exhibits sig-

ni�cant out-of-sample forecasting ability, while the remaining ones only improve in-sample

forecasts. Investigating whether any �nancial variable can act as a proxy for the aforemen-

tioned factors, we, indeed, �nd that there is a link between them, with the default spread

being the most important proxy. We also shed light on the source of the predictive ability

of each factor by decomposing them into size and value components.3

The remainder of the paper is organized as follows. Section 2 describes in detail

the econometric methodology employed and Section 3 presents the data and factor decom-

position. Section 4 presents our in-sample predictability �ndings and Section 5 presents our

out-of-sample results. Section 6 summarizes and concludes.

correlation of 86% with portfolios created from other value measures such as book-to-market.
3Fama and French (2012) consider the size components of international HML and MOM portfolios and

�nd that value and momentum premiums decrease with size (except for Japan).
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2.2 Econometric methodology

Following Rapach and Weber (2004), the predictive ability of factors and �nancial

variables is evaluated by means of the following predictive AutoRegressive Distributed Lag

(ARDL) model:

zt+h = a+

q1�1X
i=0

�i�yt�i +

q2�1X
i=0


ixt�i + �t+h (2.1)

where zt+h =
Ph
i=1�yt+i is the return to be predicted from period t to t+h with

h the forecast horizon, xt the candidate predictor variable, �yt = yt � yt�1 the one-period

return at time t, �t+h the disturbance term, a the intercept, q1 and q2 the data-determined

lag orders for �yt and xt.4 A heteroscedasticity and autocorrelation-consistent (HAC)

covariance matrix should be employed when multi-step forecasts are concerned, i.e. h > 1,

since the returns zt+h overlap and this induces serial correlation to the disturbance term

(Newey and West, 1987).

In order to test the in-sample forecastability of variables, we employ the whole

sample and conduct a Wald test for the null hypothesis that 
0 = ::: = 
q2�1 = 0. If

the null hypothesis cannot be rejected at the desirable signi�cance level, the variable em-

ployed does not have any forecasting ability. In order to study the out-of-sample fore-

casting ability, the total sample T is divided into the �rst R in-sample observations and

the last P out-of-sample observations. In order to create the �rst out-of-sample forecast,

we make use of the in-sample portion of the sample and estimate the OLS parameters

4The maximum lag value is set at 8 and is selected by means of the SIC criterion.
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a, �i and 
i of the ARDL equation via the method of ordinary least squares (OLS) for

the unrestricted form of the model, ba1;R, b�1;R;i, b
1;R;i. Then, the estimated equation

bz1;R+h = ba1;R+Pq1�1
i=0

b�1;R;i�yR�i+Pq2�1
i=0 b
1;R;ixR�i creates the �rst out-of-sample forecast

for the unrestricted form of the model, as well as, the forecast error bu1;R+h = zR+h�bz1;R+h.
Following the same procedure, we estimate the equation for the restricted form of the model:

bz0;R+h = ba0;R+Pq1�1
i=0

b�0;R;i�yR�i, where ba0;R and b�0;R;i are the OLS parameter estimates,
and compute the forecast error bu0;R+h = zR+h�bz0;R+h. In order to create the next forecasts,
we expand recursively the in-sample portion of the sample and repeat the whole procedure

through the end of the available sample, generating totally T �R�h+1 out-of-sample fore-

cast errors for the unrestricted and the restricted form of the predictive model, fbu1;t+hgT�ht=R

and fbu0;t+hgT�ht=R ; respectively.

The variable xt displays forecasting ability for the returns if the unrestricted model

forecasts are superior to the restricted ones. A metric that is commonly used for this

purpose is Theil�s U, which is the ratio of the Mean Squared Forecast Error (MSFE) of

the unrestricted model to the MSFE of the restricted one. When U < 1, the MSFE of

the unrestricted model is less than the MSFE of the restricted model, suggesting that the

candidate variable can improve forecasts. In order to statistically test the ability of a factor

to improve the predictability of the ARDL model, we use the Diebold and Mariano (1995)

and West (1996) t-statistic for equal MSFE, the MSE-T statistic, along with a variant of

this statistic due to McCracken (2007), the MSE-F statistic. Both statistics test the null

hypothesis that the unrestricted model MSFE is equal to the restricted model MSFE against

the one-sided (upper-tail) alternative hypothesis that the unrestricted model MSFE is less
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than the restricted model MSFE.

The MSE-T and MSE-F statistics are expressed as follows:

MSE � T = (T �R� h+ 1)0:5dbS�0:5dd (2.2)

MSE � F = (T �R� h+ 1)d= \MSFE1 (2.3)

where d = (T � R � h + 1)�1
PT�h
t=R

bdt+h = \MSFE0 � \MSFE1 is the mean loss

di¤erential, \MSFEi = (T �R�h+1)�1
PT�h
t=R bu2i;t+h (i = 0; 1); ddt+h = bu20;t+h� bu21;t+his the

sequence of loss di¤erentials, bSdd =PJ
j=�J K(j=J)

b�dd(j) is the long-run covariance matrix
of bdt+h; b�dd = (T � R � h + 1)�1

PT�h
t=R+j(

bdt+h � d)(bdt+h�j � d) is the covariance of the

loss di¤erential bdt+h at displacement j; b�dd(�j) = b�dd(j), k is the number of lags. The
estimator of the long-run covariance matrix of bdt+h, 
 = limj!1

Pj
�j E(

bdt+h bd0t+h�j), is
the kernel HAC estimator for 
 of the form bSdd =PJ

j=�J K(j=J)
b�dd(j). Following Clark

and McCracken (2005), we use the Bartlett kernel K(j=J) = 1� [j=(J+1)] with bandwidth

parameter J = [1:5h] for h > 1, where [�] is the nearest integer function.

McCracken (2007) shows that for nested models and for h = 1, both statistics

have a nonstandard asymptotic distribution, which is a function of stochastic integrals of

quadratics of Brownian motion W (�) that depends on limP;R!1 P=R. Moreover, Clark and

McCracken (2001) show that when we focus on multi-step forecasts, i.e. h > 1, the limiting

distribution of the statistics is also nonstandard when comparing forecasts from nested

models. In this case, unknown nuisance parameters exist in the limiting distribution and

both theMSE�T andMSE�F statistics are not asymptotically pivotal. To overcome this,
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Clark and McCracken (2005) recommend the use of a bootstrap procedure, introduced by

Kilian (1999), which enables us to calculate critical values that can yield accurate inferences,

especially in the case of multi-step horizons.

An alternative way to evaluate forecasts is based on the notion of forecast en-

compassing. Let bzc;t+h be a combination of the out-of-sample forecasts from the restricted

ARDL model bz0;t+h and those of the unrestricted model bz1;t+h in an optimal way so that
bzc;t+h = �bz1;t+h + (1 � �)bz0;t+h; 0 � � � 1. If the optimal weight attached to the un-

restricted model forecast is zero, � = 0, then the restricted model forecasts encompass

the competing unrestricted model forecasts. In this case we have bzc;t+h = bz0;t+h from
which it is obvious that only the restricted model is important. Transforming the equation

bzc;t+h = �bz1;t+h + (1 � �)bz0;t+h into buc;t+h = �(bu0;t+h � bu1;t+h) by subtracting bz0;t+h from
both sides and substituting bz1;t+h � bz0;t+h = bu0;t+h � bu1;t+h, we conclude that when � = 1,
then the candidate variable does have predictive power and the covariance between bu0;t+h
and bu0;t+h � bu1;t+h will be positive. If � > 0, then not only the restricted model forecast,

but also the unrestricted model forecast attributes information that is useful and important

to the formation of the optimal composite forecast, and as a result the restricted model

forecasts do not encompass the unrestricted model forecasts.

In order to test whether the restricted model forecasts encompass or not the unre-

stricted model forecasts, we employ two statistics; the ENC-T statistic proposed by Harvey

et al. (1998) and a variant of ENC-T proposed by Clark and McCracken (2001), ENC-NEW.

Both statistics test the null hypothesis of equal forecast accuracy or forecast encompassing,

� = 0, against the one-sided alternative (upper-tailed) hypothesis that � > 0. They are
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calculated as follows:

ENC � T = (T �R� h+ 1)0:5cbS�0:5cc (2.4)

ENC �NEW = (T �R� h+ 1)c= \MSFE1 (2.5)

where c = (T � R � h+ 1)�1
PT�h
t=R bct+h is the mean of the sequence bct+h;bct+h =

bu0;t+h(bu0;t+h�bu1;t+h); bScc =PJ
j=�J K(j=J)

b�cc(j); b�cc(j) = (T�R�h+1)�1PT�h
t=R+j(bct+h�

c)(bct+h�j�c); and b�cc(�j) = b�cc(j): As previously, we employ the Bartlett kernelK(j=J) =
1� [j=(J +1)] with a lag truncation parameter J = [1:5h] for h > 1, where [�] is the nearest

integer function. Clark and McCracken (2001) show that for nested models and h = 1,

both the ENC-T and ENC-NEW statistics have a nonstandard limiting distribution, since

the forecast errors for nested models are asymptotically the same and therefore perfectly

correlated. Moreover, for h > 1 Clark and McCracken (2005) show that these statistics

have a nonstandard asymptotic distribution and are not asymptotically pivotal. As in the

case of the MSE-T and MSE-F statistics, Clark and McCracken (2005) recommend the use

of a bootstrap procedure, which has been introduced by Kilian (1999). The bootstrapped

critical values estimated seem to re�ect the imprecision of the HAC variance that enters

the test statistics, and according to Kilian (1999) this bootstrap method reduces the size

distortions of conventional long-horizon regression tests on small samples.

Clark and McCracken (2001, 2005) show that the out-of-sample statistics have

good size properties, when inference is based on a bootstrap procedure. The ENC-NEW

statistic proves to be the most powerful among all with the ENC-T and MSE-F following,

while the least powerful is the MSE-T statistic.
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Next, we present the proposed by Killian (1999) bootstrap algorithm via which we

compute the p-values to conduct properly the aforementioned test statistics.

2.2.1 Bootstrap algorithm

The procedure generates a pseudo-sample for the market returns, �yt, and the

forecasting variables, xt, of the same length as the original data series. We estimate by

OLS the vector autoregressive equations for these series under the null hypothesis that the

predictor exhibits no predictive power on the series of interest:

�yt = a0 + a1 ��yt�1 + :::+ ap1 ��yt�p1 + e1;t (2.6)

xt = b0 + b1 ��yt�1 + :::+ bp2 ��yt�p2 + c1 � xt�1 + :::+ cp3 � xt�p3 + e2;t (2.7)

where the disturbance vector et = (e1;t; e2;t)
0 is independently and identically dis-

tributed with covariance matrix �.

The employed bootstrap algorithm consists of the following steps.

(1) Using the full sample of observations, we estimate the aforementioned equations

via OLS, and compute the OLS residuals
�bet = (be1;t � be2;t)0	Tt=1. Lag orders are selected

using the SIC criterion with maximum lag value set at 8.

(2) To generate a series of disturbances for the pseudo-sample, we randomly draw

(with replacement) T+50 times from the OLS residuals, giving us a pseudo-series of dis-

turbance terms fbe�t gT+50t=1 . We draw from the OLS residuals in tandem, preserving thus the

contemporaneous correlation between the disturbances in the original data.

(3) Using the pseudo-series of disturbance terms, the OLS estimates of the afore-

mentioned equations, and setting the initial lagged observations for the series employed
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equal to zero, we create a pseudo-sample of T+50+p observations, where p = maxfp1; p2; p3g:

f�y�t ; x�t g
T+50+p
t=1 (2.8)

The �rst 50 pseudo-observations are discarded as start-up transient observations, leaving

us with a pseudo-sample of T + p observations.

(4) The bootstrapped data are used to estimate the proposed forecasting models of

our analysis (restricted and unrestricted). The resulting thus forecasts are used to calculate

the test statistics employed in our analysis by incorporating the same methodology.

This procedure is repeated 500 times, giving us an empirical distribution for the

employed statistics.

(5) For each statistic, we determine the p-value as the proportion of the sorted

bootstrapped statistics that are greater than the statistic computed using the original sam-

ple.

2.3 Data, variables and factor decomposition

The data used in our analysis are monthly observations for the period from July

1963 to October 2009. The returns on the market portfolio (CRSP value-weighted portfolio

return), the SMB (Small Minus Big), the HML (High Minus Low), the Long-Term Reversal

(LT) and the Momentum (MOM) factors are taken from Kenneth French�s website.5 The

SMB and HML factors are constructed from 6 value-weighted portfolios formed on size and

book-to-market. Speci�cally, the intersections of the big/small and the value/neutral/growth

portfolios form the 6 value-weighted portfolios, namely the small value (SV), small neutral
5This dataset can be downloaded from http://mba.tuck.dartmouth.edu/pages/faculty

/ken.french/data_library.html
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(SN), small growth (SG), big value (BV), big neutral (BN) and big growth (BG) portfo-

lio. The breakpoint for year t for size is the median NYSE market equity at the end of

June of year t, while for the book-to-market are the 30th and 70th NYSE percentiles. The

book-to-market ratio for June of year t is the book equity for the last �scal year end in t-1

divided by market equity for December of t-1. The portfolios for July of year t to June of

t+1 include all NYSE, AMEX, and NASDAQ stocks for which we have market equity data

for December of t-1 and June of t, and (positive) book equity data for t-1. The average

return of the three small portfolios minus that of the three big portfolios forms the SMB

portfolio, whereas the average return of the two value portfolios minus the average return of

the two growth portfolios forms the HML portfolio. The LT and MOM factors are formed

from 6 value-weighted portfolios formed on size and prior returns (small low, small medium,

small high, big low, big medium, big high). These prior-return portfolios are constructed on

prior (13-60) and (2-12) returns, respectively. The breakpoint for the equity is the median

NYSE market equity, while for the prior returns are the 30th and 70th NYSE percentiles.

The average return of the two low prior-return portfolios (big and small) minus the average

return of the two high prior-return portfolios (big and small) forms the LT factor, while the

MOM factor is the average return of the two high (big and small) prior-return portfolios,

known as the winners, minus the average return of the two low (big and small) prior-return

portfolios, known as the losers.

Following Fama and French (2012), who, among others, examine the e¤ect of

size on the value and momentum premium in international returns, we employ a similar

decomposition of the aforementioned factors. More in detail, with the exception of SMB,
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we decompose all factors into their small and big counterparts. For example, the di¤erence

between the small (big) value portfolio and the small (big) growth one forms the HML_s

(HML_b) portfolio as follows:

HML_s = SV � SG

HML_b = BV �BG (2.9)

In a similar manner, we form the decompositions of the LT and MOM factors as

follows:

LT_s = SL� SH; LT_b = BL�BH (2.10)

MOM_s = SH � SL; MOM_b = BH �BL (2.11)

Going one step further, we test the e¤ect of value on the size premium by de-

composing the SMB factor in its three counterparts, namely value, growth and neutral.

Speci�cally, the di¤erence between the small value (neutral, growth) and the big value

(neutral, growth) portfolio forms the SMB_v (SMB_n, SMB_g) portfolio as follows:

SMB_v = SV �BV

SMB_n = SN �BN

SMB_g = SG�BG (2.12)
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With respect to �nancial variables, we employ four �nancial variables which have

been typically employed in the return prediction literature and can be thought as state

variables in the context of ICAPM (Petkova, 2006; Maio and Santa-Clara, 2012). These are

the 1-month T-bill rate, the term spread, the default spread and the dividend yield. The

term spread is the di¤erence between the yields of the 10-year and the 1-year government

bond, while the default spread is the di¤erence between the yields of a long-term corporate

Baa bond and a long-term (10-year) government bond. Data on bond yields are from the

FRED database of the Federal Reserve Bank of St. Louis, while the 1-month T-bill rate is

from Ibbotson and Associates Inc., available at Kenneth French�s website. The data for the

dividend yield come from Goyal and Welch (2008).6 Speci�cally, the dividend yield ratio

is the ratio of the dividends paid on the S&P 500 index and lagged stock prices (S&P 500

index).

2.4 In-sample predictive ability

2.4.1 In-sample predictive ability of the Fama French, reversal and mo-

mentum factors

Employing the predictive ARDL model (Eq. 2.1), we test the in-sample predictive

ability of each of the factors on the CRSP value-weighted portfolio return for horizons of

1-36 months. Our results are reported in Table 2.1. Bold entries indicate signi�cance at

the 10% level based on the Wald test and bootstrapped critical values.

We begin our analysis with the HML factor, or else the value premium, which is

6This set of data can be downloaded from www.bus.emory.edu/AGoyal/Research.html
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often associated with time-varying investment opportunities (see for example Petkova and

Zhang, 2005; Guo et al., 2009).7 The in-sample predictive ability of this factor is mainly

short-run and speci�cally at horizons less than a year (3-4 and 6-9 months). Decomposing

the value premium into its size components, we note that this predictability almost van-

ishes as only the small value premium (HML_s factor) exhibits some signi�cant in-sample

predictive ability for the very short-run, namely horizons of 1 and 2 months.

Turning to the size premium, SMB factor, we �nd that its forecasting ability is

quite limited to horizons of 1 and 5 months. On the other hand, the decomposed factors

seem to explain returns at varying horizons.

More in detail, the value SMB factor (SMB_v) is useful at horizons of 3-5 and 7-9

months, the neutral one at horizons of 1, 7 and 8 months, while the growth component of

SMB is signi�cant only at the 1-month horizon.

Our �ndings with respect to factors related to past performance may be summa-

rized as follows:

� The momentum factor (MOM) appears signi�cant at horizons of 4, 5 and 22 months.

More importantly, our �ndings suggest that only the big MOM factor exhibits in

sample forecasting ability in both the short-run and the long-run. More in detail, these

horizons are 3-5, 16, 19, 22, 24 and 25 months, suggesting the relative importance of

the momentum of big �rms over small �rms for future stock market returns.

� The long-term (LT) reversal, which is constructed on the basis of 1-5 year past per-

7The authors argue that value stocks are riskier than growth stocks during economic recessions when
the price of risk is high, resulting to an extra premium on value stocks which represents compensation for
bearing systematic risk.
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Table 2.1: In-sample predictability of the factors on the CRSP portfolio

Horizon 1 2 3 4 5 6 7 8 9
HML 1.773 2.600 4.073 3.930 2.798 4.500 5.402 4.806 3.159
HML_b 0.002 0.314 0.003 0.035 0.084 0.050 0.183 0.125 0.006
HML_s 3.015 3.978 1.541 0.829 0.158 0.878 2.494 1.547 0.532
SMB 3.229 0.015 2.030 2.133 4.347 2.080 1.441 3.281 3.140
SMB_g 3.911 0.191 0.380 0.469 1.296 0.911 0.259 1.839 1.715
SMB_n 3.815 0.545 0.604 0.859 2.964 1.898 9.183 4.115 2.654
SMB_v 0.185 1.479 4.349 4.374 3.663 2.536 3.586 5.943 3.569
MOM 0.202 0.015 2.571 3.172 3.657 2.318 0.864 0.385 1.044
MOM_b 0.417 0.143 3.633 4.592 4.651 3.282 1.768 0.941 1.858
MOM_s 0.032 0.022 1.200 1.293 1.839 0.791 0.030 0.000 0.079
LT 2.820 2.605 4.051 3.587 4.239 5.520 6.256 4.095 2.195
LT_b 0.664 0.922 1.909 1.814 3.115 3.171 3.812 2.190 0.938
LT_s 6.023 5.281 6.702 5.395 4.939 7.946 8.535 6.502 4.345
Horizon 10 11 12 13 14 15 16 17 18
HML 2.244 1.918 0.916 0.621 0.433 0.188 0.042 0.190 0.100
HML_b 0.002 0.001 0.026 0.034 0.050 0.121 0.293 0.044 0.030
HML_s 0.690 0.471 0.000 0.024 0.151 0.161 0.225 0.008 0.001
SMB 1.747 1.011 1.195 2.077 1.865 0.741 0.224 0.038 0.046
SMB_g 0.537 0.342 0.968 1.661 1.785 0.800 0.296 0.056 0.037
SMB_n 2.032 1.619 1.189 2.010 2.002 0.763 0.285 0.111 0.082
SMB_v 2.798 2.018 1.511 1.652 1.200 0.629 0.300 0.126 0.121
MOM 0.819 1.201 1.573 2.226 1.421 1.896 2.984 1.490 1.153
MOM_b 1.551 1.785 1.707 2.436 1.921 2.421 3.654 2.338 1.958
MOM_s 0.005 0.095 0.500 0.759 0.251 0.575 0.986 0.123 0.049
LT 1.259 1.212 1.405 1.355 1.113 1.348 0.582 0.806 1.236
LT_b 0.528 0.435 0.653 0.357 0.378 0.629 0.143 0.394 0.581
LT_s 2.374 2.545 2.570 3.448 2.498 2.454 1.544 1.394 2.131
Horizon 19 20 21 22 23 24 25 26 27
HML 0.100 0.039 0.018 0.021 0.009 0.049 0.141 0.100 0.076
HML_b 0.036 0.001 0.028 0.003 0.026 0.130 0.455 0.353 0.242
HML_s 0.041 0.103 0.128 0.259 0.257 0.285 0.177 0.094 0.168
SMB 0.229 0.583 0.479 0.319 0.162 0.426 0.791 0.744 0.501
SMB_g 0.216 0.729 0.760 0.673 0.475 0.826 1.189 0.808 0.541
SMB_n 0.159 0.410 0.305 0.207 0.075 0.356 0.850 1.041 0.772
SMB_v 0.258 0.370 0.235 0.076 0.001 0.085 0.046 0.043 0.000
MOM 3.477 2.157 1.974 3.695 2.107 2.698 1.859 0.654 0.438
MOM_b 4.402 3.150 2.840 4.626 2.941 3.713 3.653 1.606 0.895
MOM_s 0.588 0.417 0.426 0.962 0.486 0.725 0.249 0.025 0.056
LT 1.475 0.944 0.678 0.798 0.934 0.720 0.580 0.825 0.924
LT_b 0.680 0.329 0.208 0.274 0.316 0.142 0.057 0.182 0.103
LT_s 2.593 1.970 1.418 1.519 1.733 1.948 1.970 1.988 2.658
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Table 2.1 (continued)
Horizon 28 29 30 31 32 33 34 35 36
HML 0.085 0.052 0.027 0.000 0.011 0.044 0.135 0.078 0.148
HML_b 0.269 0.435 0.214 0.027 0.021 0.001 0.049 0.000 0.025
HML_s 0.154 0.206 0.395 0.736 0.801 1.050 1.317 1.196 1.609
SMB 0.439 0.667 0.533 1.173 1.517 1.410 1.256 0.842 1.059
SMB_g 0.516 0.798 0.671 1.083 1.475 1.508 1.388 1.176 1.267
SMB_n 0.666 0.867 0.603 1.401 1.802 1.920 1.868 1.249 1.624
SMB_v 0.000 0.000 0.004 0.015 0.032 0.010 0.012 0.047 0.029
MOM 0.255 0.186 0.911 1.546 0.814 0.549 0.573 0.321 0.489
MOM_b 0.453 0.380 1.318 2.510 1.412 1.041 0.864 0.417 0.535
MOM_s 0.042 0.019 0.272 0.484 0.249 0.168 0.262 0.201 0.363
LT 1.599 1.142 1.238 1.215 1.535 1.952 1.650 1.127 1.235
LT_b 0.330 0.145 0.069 0.062 0.085 0.276 0.215 0.048 0.080
LT_s 3.637 3.235 4.336 4.332 4.863 5.090 4.387 3.981 4.186
Notes: (i) The table reports the in-sample predictive ability of various factors on the CRSP
value-weighted portfolio return for horizons of 1-36 months.
(ii) The results given are according to the Wald test statistic and bootstrapped critical values.
(iii) Bold entries indicate signi�cance at the 10% signi�cance level.

formance, appears to be a signi�cant predictor at horizons of 3-8 months. Comparing

its small and big components, we �nd that LT_s is the most powerful one containing

signi�cant information for a wider spectrum of horizons, namely 1-9, 13 and 28-36

months. The ability of LT_b is con�ned to 5-7 months.

Having assessed the ability of the factors to predict returns in sample, we turn to

the typically employed �nancial variables and compare their ability with the respective of

the factors. Our �ndings are reported in the following subsection.

2.4.2 In-sample predictive ability of �nancial variables

The most commonly employed �nancial variables in the return predictability liter-

ature are interest rate variables, such as the short-term interest rate, the term and default

spreads, and valuation ratios, such as the dividend yield. Short-term interest rates are linked
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to the current business cycle and monetary policy stance, as low interest rates prevail in

recessions and vice versa. The term spread signals the future state of the economy, while

the default spread signals credit market expectations. Fama and French (1989), among

others, �nd that changes in the term spread and the default spread correspond to short-

term and long-term business conditions. The explanation is that when business conditions

are poor, income is low and expected returns on stock must be high to induce substitution

from consumption to investment. With respect to valuation ratios, the dividend yield is the

favorable ratio employed by researchers, since it directly re�ects expectations about future

returns. According to the well-known Campbell and Shiller (1988a) present-value decom-

position, deviations in the dividend-price ratio from its long-term mean signal changes in

expected future dividend growth rates and/or expected future stock returns; changes in the

latter represent time-varying discount rates and return predictability.

Our in-sample results, with respect to the �nancial variables, are reported in Table

2.2. Overall, we �nd that all the �nancial variables with the exception of the term spread

exhibit signi�cant in-sample forecasting ability for the CRSP value-weighted portfolio re-

turn. Speci�cally, the 1-month T-bill rate emerges as a potential long-run useful predictor

at horizons of 12, 14-20, 22-24, 26 and 27 months. On the other hand, the predictive abil-

ity of the default spread is rather limited at 5, 14 and 16-18 months. Quite importantly,

the dividend yield emerges as a useful predictor both over the short run and the long run.

More in detail, the dividend yield�s predictive ability is evident at horizons of 1-15, 19, 20

and 25 months. Our results are consistent with Michou (2009) who, following a di¤erent

approach, proves that the treasury bill rate along with the dividend yield exhibit rather
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Table 2.2: In-sample predictability of �nancial variables on CRSP portfolio

Horizon 1 2 3 4 5 6 7 8 9
1m Tbill 0.305 0.167 0.227 0.312 0.470 0.609 0.696 0.829 0.967
TermSpread 1.233 0.916 0.738 0.593 0.457 0.314 0.232 0.220 0.248
Def. Spr. 2.395 0.241 0.282 0.443 7.232 1.792 1.899 1.474 4.581
Div.Yield 6.131 5.856 6.196 6.466 6.989 7.209 7.288 7.263 7.343
Horizon 10 11 12 13 14 15 16 17 18
1m Tbill 1.089 1.244 5.928 5.101 6.347 7.909 9.187 9.104 9.402
TermSpread 0.338 0.400 0.436 0.490 0.558 0.689 0.887 1.056 1.331
Def. Spread 3.065 4.716 3.184 3.422 6.061 3.664 5.844 9.117 9.233
Div.Yield 7.484 7.621 7.835 8.030 8.039 8.065 8.037 8.034 8.024
Horizon 19 20 21 22 23 24 25 26 27
1m Tbill 7.890 6.323 6.370 6.852 6.599 6.588 6.646 7.054 6.531
TermSpread 1.193 1.180 1.198 1.232 1.263 1.298 1.330 1.426 1.576
Def. Spread 2.498 4.704 4.222 5.145 5.124 5.672 5.620 4.004 0.065
Div.Yield 7.986 7.881 7.757 7.657 7.551 7.483 7.397 7.401 7.450
Horizon 28 29 30 31 32 33 34 35 36
1m Tbill 5.979 6.070 5.825 6.147 5.818 6.202 5.669 5.823 5.936
TermSpread 1.697 1.838 1.879 1.950 2.120 2.313 2.391 2.397 2.395
Def.Spread 0.055 0.049 0.044 0.033 0.027 0.018 0.012 0.006 0.001
Div.Yield 7.561 7.697 7.832 8.004 8.201 8.394 8.629 8.937 9.267

Notes: (i) The table reports the in-sample predictive ability of various factors on the CRSP
value-weighted portfolio return for horizons of 1-36 months.
(ii) The results given are according to the Wald test statistic and bootstrapped critical values.
(iii) Bold entries indicate signi�cance at the 10% signi�cance level.

good predictive abilities on various size and value investment strategies.

2.4.3 Can �nancial variables proxy in sample for the Fama French, re-

versal and momentum factors?

Our analysis so far has shown that the �nancial variables exhibit signi�cant fore-

casting ability at speci�c horizons, while the empirical factors along with their decomposi-

tions do exactly the same, but at shorter horizons. This �nding naturally leads to assessing

the linkages between them. Such an assessment is not new to the literature. Hahn and Lee
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(2006) examine whether the yield spread variables; namely, the term and the default spread,

could proxy for the SMB and HML factors. In a simple regression framework, they prove

that, indeed, the default spread proxies for the SMB factor and the term spread for the HML

factor. A di¤erent approach is adopted by Petkova (2006), who tests whether these state

variables could proxy for the Fama-French factors. In her analysis, the author investigates

whether the SMB and HML factors proxy for the term spread, the default spread and the

1-month T-bill rate using monthly data for the post-1963 period. Her results show that the

SMB factor proxies signi�cantly for the default spread and the HML factor for the term

spread, while the SMB and HML factors do not prove signi�cant for the short-term interest

rate. Employing wavelet analysis, In and Kim (2007) investigate how the SMB and HML

factors interact with the innovations of state variables over various time scales. Following

the approach adopted by Petkova (2006), they also prove that the SMB factor is a proxy

for the default spread, while the HML factor is a¤ected by the term spread. However, the

short-term interest rate does not show any signi�cant explanatory power for either the SMB

or the HML factor. More importantly, the authors �nd that the predictive ability of both

the SMB and HML factors is more prominent in the long run.

Employing the methodology outlined in Section 2, we investigate the link between

�nancial variables and the factors under consideration.8 Our results, reported in Table

2.3, indicate that there are �nancial variables that proxy in sample for the factors albeit

at varying horizons. More in detail, the default spread emerges as a valuable in sample

predictor for the value premium at any horizon exceeding 5 months. On the other hand,

8For brevity, we only report the horizons for which we �nd signi�cant in sample predictive ability. Detailed
tables are available from the authors upon request.
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the term spread proxies only weakly the HML factor at the 10-month horizon. Turning to

its size components, it is worth noting that small HML mimics the behavior of the full HML

factor, while big HML appears completely dissected from the �nancial variables employed.

This behavior can be explained by the fact that the small and high book-to-market �rms

are more vulnerable to worsening credit market conditions. Our �ndings are consistent

with Chen et al. (2008), who prove that the HML factor is weakly countercyclical peaking

in most of the recessions and correlates positively with the default premium. Similarly,

Gulen et al. (2011) argue that there is a greater propensity for value �rms to be exposed

to bankruptcy risk during recessions than growth �rms, implying that the returns of value

stocks should load more heavily on the default spread than returns of growth stocks.

Our �ndings with respect to the SMB factor con�rm those of Hahn and Lee (2006),

who show that the default spread covaries positively with the SMB factor. Speci�cally, the

default spread exhibits in-sample predictive ability for SMB at horizons of 1-22 months.

More importantly, this picture is consistent for the growth, neutral and value decompositions

of this factor as well. Speci�cally, the default spread contains signi�cant information for

the growth SMB over a variety of horizons ranging from the short run (3 months) to the

long run (36 months).

With respect to SMB_n and SMB_v, the ability of the default spread is limited

to horizons less than 26 and 21 months, respectively. Term spread does not emerge as

a valuable in sample predictor for the aggregate SMB factor at any horizon considered.

However, neutral SMB is related to the term spread at horizons of 3-4, 16-26 and 36 months

and value SMB at shorter ones of 1-7 months. In the case of the growth component, some
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Table 2.3: In-sample predictability of the �nancial variables on the factors

Variables 1m Tbill Term Spread Default Spread Div. Yield
HML - 10 5-36 -
HML_b - - - -
HML_s - 10 3-36 -
SMB - - 1-22 -
SMB_g - 10 3-36 -
SMB_n - 3-4, 16-26, 36 1-10, 12-26 1, 3-6
SMB_v 1-5 1-7 1-9, 12-21 -
MOM - - 1, 20 -
MOM_b 1-4 1-7 1-9, 12-21 -
MOM_s 1-3, 6, 8-25 - 1 -
LT - - - -
LT_b - - - -
LT_s - 27-29 - -

Notes: (i) The table presents only the horizons for which signi�cant in-sample
predictability of various �nancial variables for horizons of 1-36 months exists.
(ii) The results given are according to the Wald test statistic and bootstrapped
critical values at the 10% signi�cance level.

scanty evidence of predictability is found at the horizon of 10 months. The remaining state

variables, namely the 1-month T bill and the dividend yield are useful in predicting value

SMB at short horizons of 1-5 months and neutral SMB at horizons of 1 and 3-6 months,

respectively.

Turning to factors related to past performance, we have to note that the default

spread is the only �nancial variable that displays signi�cant in-sample predictive ability for

the momentum factor albeit at horizons of 1 and 20 months only. However, when decom-

posing MOM to its big and small counterparts, both the term spread and the short-term

interest rate achieve some signi�cant explanatory power. More in detail, short-term interest

rate movements, changes in the term spread and the default spread help explain future big

momentum returns at horizons of 1-4, 1-7, and 1-9, 12-21 months ahead, respectively. On
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the other hand, small MOM can be predicted by developments in the interest rate at a wider

spectrum of horizons ranging from 1 to 25 months, while the default spread can o¤er only

short-run predictability at 1 month. Our �ndings are consistent with Chordia and Shivaku-

mar (2002) who �nd that momentum portfolios formed on the basis of past returns vary

systematically with common macroeconomic variables related to the business cycle. With

respect to the long run reversal factor (LT), our results suggest that no �nancial variable

can proxy for this factor in sample. Even after decomposing this factor, we do not �nd any

relation of this factor with the �nancial variables at hand, with the exception of the small

LT factor that can be proxied by the term spread at long horizons of 27-29 months.

Overall, among the state/�nancial variables, the default spread emerges as the

most signi�cant proxy at a variety of horizons for the factors considered (along with their

decompositions) with the exception of the HML_b factor and the LT ones. Weaker in-

sample predictability is found with respect to the term spread which can proxy for the

HML, HML_s, the decomposed SMB factors, the MOM_b and the LT_s factors.

2.5 Out-of-sample predictive ability

While the previous Section o¤ered a detailed analysis on the linkages between

factors, state variables and future returns over a variety of horizons, their forecasting ability

in a pure out-of-sample experiment has not been checked so far. In this Section, we explore

the out-of-sample predictability of both the factors and the �nancial variables for future

returns on the CRSP value weighted portfolio. Out-of-sample forecasts (for horizon h, i.e.

the period t+ h) are generated using only information available at period t. Time-varying
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coe¢ cients are estimated in real-time from Eq.(2.1) using a recursive regression technique.

A minimum window length of two thirds of our available sample (371 observations) is used to

derive parameter estimates.9 Thus, the 1963:07�1994:05 period provides the �rst coe¢ cient

estimates, 1963:07�1994:06 the second and so on. In this way the out-of-sample evaluation

window contains 185 � h observations. The forecasting ability of the predictive ARDL

model (Eq.2.1) relative to the benchmark AR speci�cation that contains no predictors is

tested through the signi�cance of the value of the Theil�s U, which is the ratio of the Mean

Squared Forecast Error (MSFE) of the unrestricted model to the MSFE of the restricted

one through the MSE-T, MSE-F, ENC-T, and ENC-NEW tests. Whenever at least one

of the tests indicates signi�cance (at the 10% level), the value of the Theil�s U appears in

boldface.10

2.5.1 Fama French, reversal and momentum factors vs. state variables

In Table 2.4, we present the out-of-sample forecasting ability of the HML, SMB,

MOM and LT factors for subsequent market returns. Starting with the value premium

(HML factor), our �ndings suggest that its in-sample predictive ability pertains out of

sample, as well. Speci�cally, the aggregate value premium can improve market return

forecasts at horizons less than a year, ranging from 3 to 10 months. Quite interestingly,

this ability almost disappears when its size components are considered with the small value

9Given a total sample of T observations, the researcher must decide on how to divide the sample into
the estimation part (R observations) and the out-of-sample part (P := T � R observations). Obviously,
there is a trade-o¤, since a large R improves the quality of the estimated parameters of the model but, at
the same time, leaves fewer observations for the out-of-sample forecast exercise making the evaluation of
the predictive ability of the model di¢ cult. In our analysis, we keep about 1/3 of the available sample for
out-of-sample forecasting. This choice gives us a su¢ cient number of forecasts to evaluate the estimated
models, while keeping enough observations to obtain reliable estimates for the parameters of our predictive
models.
10Detailed tables are available from the authors upon request.
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premium being useful for short-run forecasts of 1 and 2 months ahead.

Turning to the size premium, our �ndings suggest that it can improve return fore-

casts at a variety of horizons, namely 3-6, 8-10, and 13-14 months. When decomposing this

factor, we �nd that its components contain signi�cant information for the future evolution

of stock returns. The growth component displays forecasting ability both in the short run

(1 and 5 months) and in the long run (25, 31, 33-36 months), while neutral and value SMB

behave similar to the aggregate one.

Speci�cally, neutral SMB exhibits signi�cant forecasting ability at horizons of 5,

7-11 and 13 months and value SMB at horizons of 3-11 months. Quite interestingly, the

decomposed SMB factors exhibit superior forecasting ability out of sample rather than

in sample. The momentum factor is associated with both short-term and medium-term

predictability and speci�cally 4-6, 9, 12-14 and 16-19 months ahead. When decomposing

the momentum factor, it becomes apparent that only the big component of the momentum

factor contributes to the predictability of returns at a wide spectrum of horizons covering

roughly 3 to 19 months.

Finally, the long-term reversal factor appears signi�cant at 2-8 months and at

the longer horizons of 32-34 months. Concerning its decomposition, the small component

of the LT reversal factor displays similar behavior with the aggregate factor in the short

run. However, it emerges as a useful predictor also in the long run and speci�cally at

horizons exceeding 27 months. The LT_b factor does not contain more information than

that included to the initial factor and the LT_s factor.

Our �ndings with respect to the forecasting ability of the �nancial variables are
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Table 2.4: Out-of-sample predictability of the factors on CRSP portfolio

Horizon 1 2 3 4 5 6 7 8 9
HML 1.000 0.998 0.996 0.995 0.996 0.993 0.990 0.991 0.994
HML_b 1.004 1.003 1.003 1.001 1.002 1.002 1.004 1.005 1.004
HML_s 0.997 0.996 1.002 1.002 1.004 1.001 0.999 1.000 1.002
SMB 1.000 1.002 0.997 0.997 0.994 0.997 1.000 0.998 0.996
SMB_g 0.995 1.001 1.000 1.000 0.999 0.999 1.001 1.001 1.000
SMB_n 1.000 1.002 1.000 0.999 0.997 0.999 0.994 0.997 0.997
SMB_v 1.008 0.999 0.992 0.992 0.994 0.996 0.994 0.988 0.992
MOM 1.004 1.004 0.999 0.998 0.995 0.997 0.999 1.000 0.998
MOM_b 1.002 1.003 0.999 0.996 0.994 0.996 0.998 0.999 0.997
MOM_s 1.005 1.006 1.001 1.000 0.999 1.000 1.001 1.001 1.000
LT 1.001 0.998 0.991 0.993 0.993 0.995 0.995 0.998 0.999
LT_b 1.001 1.000 0.996 0.996 0.994 0.996 0.995 0.997 1.000
LT_s 1.002 0.999 0.994 0.996 0.997 1.000 1.002 1.003 1.003
Horizon 10 11 12 13 14 15 16 17 18
HML 0.996 0.998 1.000 1.000 1.001 1.001 1.002 1.002 1.003
HML_b 1.004 1.004 1.004 1.003 1.003 1.003 1.002 1.003 1.002
HML_s 1.002 1.004 1.005 1.004 1.003 1.002 1.003 1.004 1.003
SMB 0.997 0.999 0.999 0.997 0.997 0.999 1.000 1.002 1.002
SMB_g 1.000 1.000 1.000 0.998 0.998 0.998 0.999 1.002 1.002
SMB_n 0.997 0.998 0.999 0.997 0.998 0.999 1.000 1.001 1.001
SMB_v 0.994 0.997 0.999 0.998 0.999 1.002 1.002 1.004 1.003
MOM 1.000 1.000 0.998 0.998 0.999 0.998 0.997 0.998 0.998
MOM_b 0.999 0.999 0.998 0.996 0.997 0.997 0.995 0.997 0.998
MOM_s 1.001 1.002 1.001 1.001 1.002 1.001 1.000 1.000 1.000
LT 1.000 1.000 1.000 1.001 1.002 1.002 1.004 1.003 1.001
LT_b 1.001 1.001 1.001 1.002 1.002 1.002 1.004 1.003 1.001
LT_s 1.003 1.003 1.001 1.000 1.003 1.003 1.004 1.004 1.002
Horizon 19 20 21 22 23 24 25 26 27
HML 1.004 1.003 1.002 1.003 1.004 1.003 1.003 1.003 1.003
HML_b 1.002 1.001 1.000 1.001 1.002 1.001 1.000 1.000 1.000
HML_s 1.003 1.003 1.002 1.002 1.003 1.002 1.003 1.003 1.003
SMB 1.002 1.000 1.000 1.000 1.001 1.000 0.999 0.999 1.000
SMB_g 1.002 1.000 0.999 0.999 0.999 0.999 0.998 0.999 1.000
SMB_n 1.001 1.000 1.000 1.000 1.001 1.000 0.999 0.999 0.999
SMB_v 1.002 1.002 1.001 1.002 1.002 1.009 1.001 1.001 1.002
MOM 0.997 0.999 1.001 1.000 1.000 1.000 1.000 1.001 1.000
MOM_b 0.996 0.999 1.002 1.001 1.001 1.000 1.001 1.002 1.001
MOM_s 1.000 1.000 1.001 1.000 1.000 1.000 1.001 1.001 1.001
LT 0.999 1.001 1.001 1.000 1.000 1.000 1.000 1.000 0.999
LT_b 1.001 1.002 1.003 1.002 1.002 1.002 1.003 1.003 1.003
LT_s 0.999 1.001 1.001 1.000 1.000 0.999 0.998 0.998 0.998
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Table 2.4 (continued)
Horizon 28 29 30 31 32 33 34 35 36
HML 1.004 1.004 1.002 1.002 1.002 1.003 1.003 1.002 1.002
HML_b 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
HML_s 1.003 1.003 1.001 1.000 1.000 1.001 1.000 1.001 1.001
SMB 1.000 0.999 0.999 0.997 0.998 0.998 0.998 0.999 0.999
SMB_g 1.000 0.999 0.998 0.997 0.997 0.997 0.997 0.999 0.999
SMB_n 0.999 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999
SMB_v 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.001 1.001
MOM 1.001 1.001 1.001 1.000 1.000 1.001 1.001 1.001 1.001
MOM_b 1.002 1.003 1.003 1.001 1.000 1.000 1.000 1.000 1.000
MOM_s 1.001 1.001 1.001 1.001 1.002 1.003 1.003 1.003 1.004
LT 0.998 0.999 0.999 0.999 0.999 0.998 0.999 1.000 0.999
LT_b 1.002 1.003 1.004 1.004 1.003 1.002 1.002 1.002 1.002
LT_s 0.997 0.997 0.995 0.994 0.993 0.993 0.995 0.996 0.995
Notes: (i) The table reports the out-of-sample predictive ability of various factors on the
CRSP value-weighted portfolio return for horizons of 1-36 months based on the
signi�cance of the value of Theil�s U.
(ii) The results given are according to the MSE-T and MSE-F statistics, which test the
null hypothesis of equal forecasting accuracy, and the ENC-T and ENC-NEW, which test
the null hypothesis of equal forecast accuracy or forecast encompassing.
(iii) Bold indicates signi�cance at the 10% level according to bootstrapped p-values.
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Table 2.5: Out-of-sample predictability of �n.variables on CRSP portfolio

Horizon 1 2 3 4 5 6 7 8 9
1m T_bill 1.001 1.003 1.004 1.005 1.005 1.004 1.003 1.002 1.000
TermSpread 1.006 1.009 1.012 1.015 1.015 1.015 1.016 1.016 1.017
Def. Spread 1.041 1.038 1.051 1.062 1.108 1.084 1.084 1.093 1.127
Div.Yield 1.007 1.012 1.017 1.021 1.026 1.032 1.040 1.047 1.052
Horizon 10 11 12 13 14 15 16 17 18
1m Tbill 0.999 0.999 1.064 1.067 1.069 1.070 1.055 1.050 1.051
TermSpread 1.016 1.014 1.011 1.007 1.004 1.000 0.997 0.994 1.005
Def. Spread 1.129 1.118 1.112 1.104 1.108 1.100 1.094 1.076 1.071
Div. Yield 1.058 1.062 1.066 1.070 1.081 1.085 1.089 1.092 1.097
Horizon 19 20 21 22 23 24 25 26 27
1m Tbill 1.045 1.038 1.039 1.046 1.043 1.039 1.036 1.050 1.051
TermSpread 0.990 0.990 0.989 0.989 0.988 0.988 0.988 0.987 0.987
Def. Spread 1.051 1.044 1.039 1.038 1.035 1.033 1.033 1.030 1.021
Div.Yield 1.100 1.101 1.101 1.101 1.102 1.102 1.102 1.101 1.100
Horizon 28 29 30 31 32 33 34 35 36
1m Tbill 1.051 1.047 1.047 1.046 1.045 1.043 1.038 1.033 1.031
TermSpread 0.986 0.985 0.985 0.985 0.984 0.983 0.983 0.983 0.983
Def. Spread 1.022 1.022 1.022 1.023 1.024 1.026 1.027 1.028 1.030
Div.Yield 1.100 1.100 1.100 1.099 1.097 1.094 1.091 1.088 1.084

Notes: (i) The table reports the out-of-sample predictive ability of �nancial variables on the
CRSP value-weighted portfolio return for horizons of 1-36 months based
on the signi�cance of the value of Theil�s U.
(ii) The results given are according to the MSE-T and MSE-F statistics, which test the
null hypothesis of equal forecasting accuracy, and the ENC-T and ENC-NEW, which test
the null hypothesis of equal forecast accuracy or forecast encompassing.
(iii) Bold indicates signi�cance at the 10% level according to bootstrapped p-values.

reported in Table 2.5. Quite interestingly, with the exception of the term spread, all the

remaining �nancial variables exhibit hardly any out of sample forecasting ability. More in

detail, the term spread exhibits signi�cant predictive ability in the long run, speci�cally at

horizons greater than 1 year (19-36 months).

The well documented disparity (see, e.g. Rapach and Wohar, 2006; Campbell

and Thompson, 2008; Goyal and Welch, 2008 among others) between in-sample and out-
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of-sample predictability is evident in our �ndings, as well. While our �nancial variables

exhibit signi�cant explanatory power in-sample at a variety of horizons, this predictability

vanishes when it comes to out-of-sample forecasting. To this end, the following subsection

is devoted to testing whether the same set of �nancial variables can be useful in predicting

the Fama French, reversal and momentum factors which are market portfolios with speci�c

characteristics, as already stated.

2.5.2 Can �nancial variables predict Fama French, reversal and momen-

tum factors?

In Table 2.6, we report the horizons for which we �nd signi�cant forecasting ability

of the �nancial variables at hand for the empirical factors. In particular, our �ndings with

respect to the HML factor suggest that only the default spread is a valuable predictor for

horizons exceeding 12 months.

When decomposing the factor, the default spread retains its ability for both com-

ponents, but at di¤erent horizons; 23-36 months for the big component and 11-36 for the

small one. Quite importantly, the term spread o¤ers some predictability for both compo-

nents at 20, 22 months ahead and 2-6, 32, 35 and 36 months ahead for HML_b and HML_s,

respectively.

Turning to the SMB factor, we have to note that with the exception of the dividend

yield, the remaining variables can prove signi�cant over the short term and speci�cally at

horizons less than 4 months. However, this picture changes when the components are

considered. The growth size premium can be forecasted by the term spread at a variety

of horizons ranging from 2 to 36 months, while the default spread emerges as a consistent
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Table 2.6: Out-of-sample predictability of the �n.variables on the factors

Variables 1m T_bill Term Spread Default Spread Div. Yield
HML - - 12-36 -
HML_b - 20, 22 23-36 -
HML_s - 2-6, 32, 35, 36 11-36 -
SMB 2 1-4 1-3 -
SMB_g - 2-6, 8, 13, 28, 30, 32-36 10-36 -
SMB_n - 1-4 1-9, 11 1-12
SMB_v 1-8 1-12 1-11 -
MOM 2, 12 11, 13-22 1-12, 17-20 -
MOM_b 1-7, 9 1-12 1-11 -
MOM_s 1-21 1-3, 7, 10, 12, 13, 16 1-11 -
LT - 31-36 3-13, 15 -
LT_b - 30-36 2-10, 12-16 -
LT_s - 27-29, 31-36 14, 15 -

Notes: (i) The table presents only the horizons for which signi�cant out-of-sample
forecasting ability of various �nancial variables for horizons of 1-36 months exists.
(ii) The results given are according to the MSE-T and MSE-F statistics, which test the
null hypothesis of equal forecasting accuracy, and the ENC-T and ENC-NEW, which test
the null hypothesis of equal forecast accuracy or forecast encompassing.
(iii) Bold indicates signi�cance at the 10% level according to bootstrapped p-values.

predictor for horizons exceeding 10 months. All variables with the exception of the short-

term interest rate can improve short-term (less than a year) forecasts for neutral SMB.

Similarly, value SMB can be predicted over the short run by all variables with the exception

of the dividend yield.

Next, we focus our attention on factors related to past performance. Among the

variables considered, the term and default spreads turn out to be more powerful predictors

for the aggregate momentum factor, with signi�cant predictive ability for 11, 13-22 months

and 1-12, 17-20 months for the term and default spread, respectively.

The short-term interest rate is associated with weak predictability for the aggre-

gate factor (2 and 12 months), which is reinforced when the small and big components are
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considered. Speci�cally, the short-term interest rate improves forecasts for the big momen-

tum portfolio at 1-7 and 9 months ahead and 1-21 months ahead for the small one. The

spread variables emerge as useful predictors for both small and big momentum at a variety

of horizons up to 16 months. With respect to the long term reversal factor, our �ndings sug-

gest that only the term and default spread can prove valuable predictors. Speci�cally, there

is evidence of forecasting ability of the default spread at horizons of 3-13 and 15 months

and the term spread at longer horizons, ranging from 31 to 36 months. Similarly, both

spreads can improve the predictive ability of both components of the long term reversal

factor. In particular, LT_b is predicted by the term spread in the long run, at horizons of

30-36 months, and by the default spread at 2-10 and 12-16 months. With respect to the

small LT, the same variables prove useful at horizons of 27-29 and 31-36 months for the

term spread and 14-15 months for the default spread.

2.6 Conclusions

This study primarily examines whether the value premium (HML), the size pre-

mium (SMB), the momentum (MOM) and long-term reversal (LT) factors exhibit forecast-

ing ability for US stock returns, namely the CRSP value weighted portfolio return. An

important contribution of the paper is that it provides answers to the following questions

i) do empirical factors exhibit stronger forecasting ability for market returns (over a wide

spectrum of forecast horizons) than typically employed �nancial variables?, ii) what is the

link between factors and these state variables? iii) can appropriate decompositions of the

factors in their size and value components enhance predictability?
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In order to assess the forecasting ability of candidate variables for the US returns,

we employ the Autoregressive Distributed Lag (ARDL) methodology of Rapach and Weber

(2004). The in-sample forecasting ability is assessed via the typical Wald test, while the

out-of-sample one is assessed via tests for equal predictive ability and forecast encompassing.

Our �ndings with respect to the in-sample predictability suggest that the HML, value SMB,

big MOM and small LT emerge as useful predictors albeit at a variety of forecast horizons.

Among the �nancial variables considered, both the short-term interest rate and the dividend

yield appear as strong predictors, while the default spread and the term spread display

weaker and no predictability, respectively. Investigating whether the factors are linked with

the �nancial variables, we �nd that, in sample, the default spread seems to be a signi�cant

proxy for all the empirical factors at hand with the exception of LT. The term spread

mainly predicts neutral and value SMB, while the short-term interest rate is associated

with developments in big and small MOM, but not with the aggregate factor. Moreover,

the dividend yield proxies only for neutral SMB in the short run.

More importantly, all the empirical factors can improve out-of-sample US mar-

ket return forecasts over the autoregressive benchmark forecast. With respect to factor

components, value and neutral SMB, big MOM and both components of LT contain more

information than the aggregate factors for the evolution of market returns. Quite interest-

ingly, while the �nancial variables display in-sample predictive ability, out-of-sample only

the term spread improves forecasts for horizons greater than 19 months. This picture

changes when we consider the forecasting ability of �nancial variables on the factor portfo-

lios. Speci�cally, the term spread and default spread improve predictions for all the factors
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and their components, while the short-term interest rate helps predicting SMB, value SMB,

MOM and its components. The ability of the dividend yield is con�ned to neutral SMB.

Overall, we provide new evidence on both the in-sample and out-of-sample pre-

dictability of factor returns for stock market returns and of typically employed �nancial

variables on both the aggregate market return and the factor portfolios. Our �ndings can

be particularly helpful to asset managers, who could potentially earn higher returns by

incorporating them in their asset allocation decisions.
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Chapter 3

Combination Forecasts of Bond

and Stock Returns: An Asset

Allocation Perspective

3.1 Introduction

The asset allocation decision, i.e. how much to allocate wealth in asset classes such

as cash, stocks and bonds, is a key determinant of investors�portfolio performance. The

importance of this decision has further been highlighted by empirical �ndings suggesting

that stock and bond returns contain a sizeable predictable component that needs to be

addressed. The degree to which bond and stock returns are predictable is a subject of

ongoing debates and intensive empirical research.

The seminal contribution of Goyal and Welch (2008), who show that their long
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list of predictors, consisting of both macroeconomic and �nancial variables, can not deliver

consistently superior out-of-sample performance for US stock returns, renewed the interest

on stock return predictability. Contributions to this �eld include Campbell and Thompson

(2008) who show that when imposing simple restrictions, suggested by economic theory, on

predictive regressions�coe¢ cients, the out-of-sample performance improves. The authors

show that market timing strategies can deliver pro�ts to investors (see also Ferreira and

Santa-Clara (2011)). Ludvigson and Ng (2007) and Neely et al. (2013) adopt a di¤usion

index approach, which can conveniently track the key movements in a large set of predictors,

and �nd evidence of improved equity premium forecasting ability.1

In a similar manner, various �nancial and macroeconomic variables are also em-

ployed to predict US government bond returns. For example, Keim and Stambaugh (1986),

Fama and French (1989) and Campbell and Shiller (1991) show that yield spreads have pre-

dictive power. Cochrane and Piazzesi (2005) employed a linear combination of �ve forward

rates and �nd a high degree of predictability, while Ludvigson and Ng (2009) show that

the impressive predictive power, found by Cochrane and Piazzesi (2005), can be improved

with �ve macroeconomic factors estimated from a set of 132 macroeconomic variables that

measure a wide range of economic activities. More recently, Goh et al. (2013) take another

route and study the predictive ability of technical indicators vis-a-vis economic variables for

bond returns and �nd that technical indicators have both in- and out-of-sample forecasting

power.

In our analysis, we also take an alternative route and investigate the forecasting

ability of value, size and momentum empirical factors vis-a-vis typically employed �nan-

1Rapach and Zhou (2012) o¤er a detailed review on the issue of equity return predictability.
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cial variables for US bond and stock market returns. Speci�cally, we employ the value

premium (High minus Low; HML), the size premium (Small minus Big; SMB), the momen-

tum (Winners minus Losers over the past year; MOM), the long term reversal (Winners

minus Losers over the past one to �ve years; LT) and the short term reversal (Winners

minus Losers over the past one to one month; ST). Following Fama and French (2012),

we decompose the aforementioned factors into their size and value counterparts. In this

way, we can disentangle the value e¤ect on the size premium and the size e¤ect on the

remaining factors. Our paper also relates to the broad literature of forecast combinations

by considering whether combinations of individual model forecasts based on the empirical

factors can further improve the predictability of bond and stock returns. Rapach, Strauss

and Zhou (2010) show that combination of individual �nancial variables forecasts improve

equity premium forecasts. The authors argue that single variable forecasts cannot generate

reliable forecasts over time due to parameter instability and complexity of the real economy.

To this end, they show that the success of combination forecasts is attributed mainly to

their link with the real economy and their ability to stabilize forecasts. In a similar manner,

we also employ a variety of combination methods applied to individual empirical factors

forecasts. The performance of the proposed models is assessed not only statistically, but

also economically from an asset allocation perspective.

To anticipate our key results, we �nd that the proposed empirical factors, aggregate

and decomposed, display superior forecasting ability for bond and stock market returns

compared to the �nancial variables, not only in the U.S. market, but also in other markets,

such as Europe and Japan. From an economic perspective, the empirical factors lead to
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signi�cant performance fees that an investor would be willing to pay in order to have access

to the information o¤ered by the proposed factors.

The remainder of the paper is organized as follows. Section 2 describes in detail

the construction of the forecasts and the corresponding statistical signi�cance of our results.

Section 3 presents the data and the empirical results concerning the forecasting ability of the

empirical factors and �nancial variables, when employed individually or through combining

methods. The asset allocation framework along with empirical results are discussed in

Section 4. Section 5 reports the results of the robustness checks and Section 6 summarizes

and concludes.

3.2 Forecast methodology

3.2.1 AutoRegressive Distributed Lag (ARDL) models

Following Rapach and Weber (2004), the predictive ability of the empirical factors

and �nancial variables is evaluated by means of the following predictive AutoRegressive

Distributed Lag (ARDL) model:

zt+h = a+

q1�1X
i=0

�irt�i +

q2�1X
i=0


ixt�i + �t+h (3.1)

where zt+h =
Ph
i=1 rt+i is the return to be predicted from period t to t + h with h the

forecast horizon, rt is the one-period return at time t; xt the candidate predictor variable,

�t+h the disturbance term, a the intercept, q1 and q2 the data-determined lag orders for

rt and xt.2 A heteroscedasticity and autocorrelation-consistent (HAC) covariance matrix

2The maximum lag value is 8 and is selected by means of the SIC criterion.
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should be employed when multi-step forecasts are concerned, i.e. h > 1, since cumulative

returns zt+h overlap and this induces serial correlation to the disturbance term (see e.g.

Newey and West, 1987).

In order to study the out-of-sample forecasting ability, the total sample T is divided

into the �rst R in-sample observations and the last P out-of-sample observations. In order

to create the �rst out-of-sample forecast, we make use of the in-sample portion of the sample

and get the estimated parameters ba1;R, b�1;R;i and b
1;R;i of the ARDL equation via ordinary
least squares (OLS) for the unrestricted form of the model. Then, the estimated equation:

bz1;R+h = ba1;R+Pq1�1
i=0

b�1;R;irR�i+Pq2�1
i=0 b
1;R;ixR�i creates the �rst out-of-sample forecast

for the unrestricted form of the model, as well as, the forecast error: bu1;R+h = zR+h�bz1;R+h.
Following the same procedure, we estimate the equation for the restricted form of

the model: bz0;R+h = ba0;R +Pq1�1
i=0

b�0;R;irR�i, where ba0;R and b�0;R;i are the OLS parameter
estimates and compute the forecast error: bu0;R+h = zR+h � bz0;R+h. This restricted model
forms the benchmark model in the forecast evaluation and we refer to it as the benchmark

AR model. In order to create the next forecasts, we expand recursively the in-sample

portion of the sample and repeat the whole procedure through the end of the available

sample, generating P = T �R�h+1 out-of-sample forecast errors for the unrestricted and

the restricted form of the predictive model, fbu1;t+hgT�ht=R and fbu0;t+hgT�ht=R , respectively.

3.2.2 Combination forecasts

Combination forecasts, denoted by bzCB;t+h=t, are linear combinations of the n
individual ARDL model forecasts, bzi;t+h, which are constructed by employing one factor at
a time at the predictive ARDL model (Equation 3.1). Speci�cally, combination forecasts
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are formed as follows:

bzCB;t+h=t = nX
i=1

wi;tbzi;t+h=t (3.2)

where
Pn
i=1wi;t = 1. The weights, wi;t, allocated to each of the individual forecasts are

estimated by both simple and more complicated methods.

We employ three simple combination methods, namely the mean, the median

and the trimmed mean one. The mean combination forecast imposes equal weights on all

individual predictive models i.e., wi;t = 1=n (i = 1; :::; n): The median combination forecast

is just the sample median of fbzi;t+h=tgnt=1, while the trimmed mean combination forecast
sets wi;t = 1=(n� 2) for all the individual forecasts, excluding the smallest and the largest

one at time t.

We also employ the discount Mean Square Forecast Error (DMSE) combining

method of Stock and Watson (2004), which assigns weights based on the historical perfor-

mance of the individual ARDL models, as follows:

wi;t = m�1
i;t =

nX
j=1

m�1
j;t ;mi;t =

t�hX
s=R

 t�h�s(zs+h � bzi;s+h=s)2 (3.3)

where  is a discount factor that makes the recent forecasting accuracy of the individual

ARDL models more important in the cases where  < 1. In particular, forecasts based on

individual factors with lower MSFEs are given greater weights, and as such more accurate

models are more important for the formation of this combination forecast. DMSE forecasts

require a holdout out-of-sample period in order to calculate the weights attributed to each

individual forecast. We employ the last P0 observations of the in-sample period as the initial

holdout window. The values of  we consider are 1:0 and 0:9.

Finally, we employ the cluster combining method, introduced by Aiol� and Tim-
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mermann (2006). In order to create the cluster combining forecasts, we form K clusters

of equal size based on the past MSFE performance with the �rst one being that with the

lowest MSFE values. Then, the �rst combination forecast is the average of the ARDL

model forecasts in the �rst cluster. This procedure begins over the initial holdout period

and goes through the end of the available out-of-sample period using a rolling window. In

our analysis, we consider K = 2; 3; leading to the CL(2) and CL(3) combination schemes.

3.2.3 Statistical forecast evaluation

The accuracy of forecasts is evaluated by the Campbell and Thompson (2008)

out-of-sample R2 (R2os) and the Clark and West (2007) CW-t statistic. The R
2
os statis-

tic measures the proportional reduction in mean squared forecast error (MSFE) for the

unrestricted model forecast relative to the benchmark AR speci�cation and is de�ned as

follows:

R2os = 1� (MSFE1=MSFE0) (3.4)

where MSFE1=MSFE0 is the ratio of the MSFE of either the individual unrestricted

models or any of the combination schemes over the MSFE of the benchmark AR model.

When R2os > 0, the forecast of the unrestricted model is more accurate than the AR model�s

forecast, suggesting that the candidate variable/combination scheme can improve forecasts.

In order to statistically test the ability of a candidate variable or combination

scheme to improve forecasts over the benchmark model, we use the Clark and West (2007)

statistic, CW-t, for equal forecasting ability. The CW-t is a modi�ed Diebold and Mariano

(1995) and West (1996) statistic and tests the null hypothesis that both the unrestricted
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model and the restricted one have equal MSFEs (H0 : R2os = 0, i.e. MSFE1 = MSFE0)

against the one-sided (upper-tail) alternative hypothesis that the MSFE of the unrestricted

model is smaller than the restricted one (HA : R2os > 0; i.e. MSFEi < MSFE0). The

statistic can be easily calculated by �rst de�ning the following quantity:

dft+h = (zt+h � bz0;t+h)2 � [(zt+h � bz1;t+h)2 � (bz0;t+h � bz1;t+h)2] (3.5)

The �rst two terms in (3.5) are the sample MSFEs of the unrestricted and restricted models

respectively, while the last term is an adjustment term that normalizes the bias produced

in the MSFE by the nonzero parameters of the unrestricted model. The CW-t statistic

is the t-statistic for a zero coe¢ cient calculated by regressing dft+h on a constant and has
an asymptotic distribution well approximated by the standard normal. In this respect, if

the t-statistic is greater than 1.282, we reject the null hypothesis that the models have

equal MSFEs at 10% level of signi�cance (for a one-sided test). For forecast horizons

greater than 1, an autocorrelation consistent standard error should be employed. (Newey

and West,1987). In extensive Monte Carlo simulations, Clark and West (2007) demonstrate

that the CW-t statistic performs reasonably well in terms of size and power when comparing

forecasts from linear nested models.

3.3 Empirical results

3.3.1 Data

The data used in our analysis are monthly observations for the period from July

1963 to December 2010 (570 observations). The series of interest are US long-term bond
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returns and stock market returns. Long-term bond returns are sourced from Ibbotson�s

Stocks, Bonds, Bills and In�ation Yearbook and stock market returns are returns on the

S&P 500 index sourced from the Center for Research in Security Press (CRSP).3

The empirical factors employed are taken from Professor Kenneth French�s web-

site.4 The SMB and HML factors are constructed from 6 value-weighted portfolios formed on

size and book/market. Speci�cally, the intersections of the big/small and the value/neutral/

growth portfolios form the 6 value-weighted portfolios, namely the small value (SV), small

neutral (SN), small growth (SG), big value (BV), big neutral (BN) and big growth (BG)

portfolio.5 The average return of the three small portfolios minus that of the three big

portfolios forms the SMB portfolio, whereas the average return of the two value portfolios

minus the average return of the two growth portfolios forms the HML portfolio. The ST,

LT and MOM factors are formed from 6 value-weighted portfolios formed on size and prior

returns (small low, small medium, small high, big low, big medium, and big high). These

prior-return portfolios are constructed on prior (1-1), (13-60), and (2-12) returns, respec-

tively.6 The average return on the two low prior-return portfolios (big and small) minus the

average return on the two high prior-return portfolios (big and small) forms the ST and LT

factors, while the MOM factor is the average of the returns on the two high prior-return

portfolios (big and small) minus the average return on the two low prior-return portfolios

3Both series are available at Prof. Goyal�s website at: http://www.hec.unil.ch/agoyal/.
4Tha data are downloadable at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
5The breakpoint for year t for size is the median NYSE market equity at the end of June of year t, while

for the book/market is the 30th and 70th NYSE percentile. The book/market ratio for June of year t is the
book equity for the last �scal year end in t-1 divided by market equity for December of t-1. The portfolios
for July of year t to June of t+1 include all NYSE, AMEX, and NASDAQ stocks for which we have market
equity data for December of t-1 and June of t, and (positive) book equity data for t-1.

6The breakpoint for the equity is the median NYSE market equity, while for the prior returns is the 30th
and 70th NYSE percentile.
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(big and small).

Following Fama and French (2012), we decompose all the factors (except for SMB)

into their small and big counterparts. For example, the di¤erence between the small (big)

value portfolio and the small (big) growth one forms the HML_s (HML_b) portfolio, as

follows:

HML_s = SV � SG

HML_b = BV �BG (3.6)

Decompositions of the LT, ST and MOM factors are formed according to the following

formulas:

LT_s = SL� SH; LT_b = BL�BH

ST_s = SL� SH; ST_b = BL�BH (3.7)

MOM_s = SH � SL; MOM_b = BH �BL

For the SMB factor, we construct a value decomposition. Speci�cally, we decompose the

size premium into its value, neutral and growth components, denoted by SMB_v, SMB_n

and SMB_g, respectively, and calculated as follows:

SMB_v = SV �BV

SMB_n = SN �BN

SMB_g = SG�BG (3.8)

In addition, we employ fourteen �nancial variables, which have been shown in the

literature to exhibit predictive ability on returns. The data for the �nancial variables, which
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are used by Rapach and Zhou (2012), are described in detail by Goyal and Welch (2008)7.

These are the dividend/price ratio (DP), dividend yield (DY), earnings/price ratio (EP),

dividend/earnings ratio (DE), stock variance (SVAR), book/market ratio (BM), net equity

expansion (NTIS), treasury bill rate (TBL), long-term yield (LTY), long-term government

bond returns (LTR),term spread (TMS), the default yield spread (DFY), default return

spread (DFR), stock market return (SP500),and the in�ation rate (INF).8

The total sample of the 570 monthly observations is divided into the estimation

period consisting of the �rst R = 380 in-sample observations (July 1963 to February 1995)

and the evaluation period with the last P = 190 (corresponding to the 1/3 of our sample)

out-of-sample observations (March 1995 to December 2010). The holdout period for the

combining methods that require one is set to 7 years (84 months) prior to the start of the

out-of-sample evaluation period.

3.3.2 Forecasting U.S. bond returns

We begin our analysis by evaluating the forecasting ability of the candidate predic-

tors for US long-term government bond returns for horizons ranging from 1 to 24 months.

In Table 3.1, we report the R2os associated with individual ARDL models for both the empir-

ical factors (Panel A) and the �nancial/macroeconomic variables (Panel B). Bold indicates

a statistically superior forecast relative to the benchmark AR(1) model on the basis of the

CW-t statistic.

As is evident, the momentum and short term reversal factors display signi�cant

7This set of data can be downloaded from htts://www.hec.unil.ch/AGoyal.
8Please refer to Goyal and Welch (2008) for details on the construction and the sources of the series.
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predictive ability for a variety of horizons, while the forecasting ability of the value premium,

the size premium and the long-term reversal is rather muted.

Speci�cally, momentum displays signi�cant predictive ability at horizons of 1-3,

6, and 12 months, while short-term reversal for horizons less than 3 months. Examining

closely the performance of the size decompositions of the momentum factor, we note that

the whole information is attributed to its small component, which appears to be a signi�cant

predictor for horizons ranging from 1 month to 1 year. On the other hand, the momentum

of big companies improves bond forecasts in 1- and 6-month horizons ahead. Similarly, the

small component of short-term reversal emerges as a signi�cant predictor for all the horizons

considered with the exception of the 6-month one. With respect to the big component of

the short term reversal, its predictability appears at horizons of 2 and 3 months ahead.

Turning to the predictive ability of the �nancial variables employed (Panel B),

we observe that only the stock market return improves bond return forecasts, performance

which is evident only in the short run, at horizons of 1-3 months. Quite interestingly, the

remaining �nancial variables exhibit hardly any signi�cant predictive ability.

We next examine whether combining individual forecasts can result in superior

predictive ability. We consider forecast combinations of (i) the �ve aggregate empirical

factors (HML, SMB, MOM, LT and ST), reported in Panel A of Table 3.2, (ii) the eleven

decomposed factors, reported in Panel B of Table 3.2 and (iii) the 14 �nancial variables,

reported in Panel C of Table 3.2. As already discussed in Section 2, we employ the mean,

median, trimmed mean, DMSE and cluster combining methods. For the DMSE, we em-

ploy two discount factors of  = 0:90 (DMSE(0.9)) and  = 1:00 (DMSE(1)), while for



51

Table 3.1: Out-of-sample performance of indiv.ARDL models -US bond

Panel A. Empirical factors
Predictor 1 2 3 6 9 12 18 24
HML 0.103 -0.710 -0.705 -1.625 -4.572 -7.880 -6.604 -2.450
SMB -0.013 -3.076 -1.663 -4.906 -5.405 -7.139 -10.113 -19.116
MOM 1.328 1.169 1.238 2.084 0.865 1.114 -2.744 -3.021
LT -0.295 -0.804 -1.460 -1.815 -0.106 -0.734 -0.430 -0.664
ST 1.446 2.374 3.255 -0.822 -0.818 -0.278 0.423 0.362
HML_b -0.340 -0.577 -0.517 -0.258 -0.248 -1.775 -0.410 -0.936
HML_s -0.377 -0.583 -0.669 -0.919 -0.613 -15.025 -10.867 -16.900
SMB_g -0.179 -5.168 -4.604 -4.303 -5.374 0.031 -2.470 -9.054
SMB_n 0.091 -3.820 -4.534 -1.452 -2.533 -1.593 0.137 -0.378
SMB_v -0.323 -0.167 -4.660 -2.279 -5.076 -2.469 -1.776 -4.679
MOM_b 0.533 0.144 0.444 1.608 -0.132 -13.215 -48.097 -8.835
MOM_ s 1.930 2.351 1.968 1.835 1.184 1.796 -0.211 0.261
LT_b -0.131 -0.157 -0.273 -0.420 -0.494 0.178 -0.181 0.189
LT_s -1.354 -3.479 -4.959 -4.416 -0.031 -2.565 -0.614 -3.516
ST_b 0.592 1.433 1.718 -1.259 -1.410 -1.302 -0.205 -0.233
ST_s 1.995 2.694 4.042 -1.516 0.858 2.044 1.527 1.577

Panel B. Financial variables
Predictor 1 2 3 6 9 12 18 24
DP -2.899 -1.851 -6.431 -19.903 <-20 <-20 <-20 <-20
DY -2.749 -5.354 -7.519 -16.785 <-20 <-20 <-20 <-20
EP -0.845 -5.853 -7.692 -3.765 -7.797 -12.603 <-20 <-20
DE -18.583 -43.518 -2.228 -2.225 -6.869 -4.849 -4.171 -7.814
SVAR -0.031 0.702 -1.837 -2.117 -3.302 -5.249 -8.999 <-20
BM -0.311 -1.780 -2.310 -1.443 -1.569 -0.246 -0.110 -16.653
NTIS -2.164 -4.310 -7.041 -10.494 -18.703 <-20 <-20 -16.078
TBL -1.025 -2.062 -3.458 -7.604 -14.095 <-20 <-20 <-20
LTY -0.953 -2.229 -5.124 -12.607 <-20 <-20 <-20 <-20
SP500 2.662 3.186 2.010 -0.413 -0.430 0.084 -1.470 -0.951
TMS -0.153 -0.003 -0.734 -0.844 -4.128 -7.831 -14.524 <-20
DFY -3.552 -4.332 -7.326 -16.942 <-20 <-20 <-20 <-20
DFR -1.881 -2.088 -4.054 -10.076 -19.944 <-20 <-20 <-20
INFL 0.444 -0.526 -0.635 -0.931 -2.984 -3.227 -0.827 -0.136

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models relative
to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the CW � t
statistic, which tests the null hypothesis: R2os =0 against the alternative: R

2
os>0.
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the cluster combining method, we employ 2 clusters (CL(2)) and 3 clusters (CL(3)). We

observe that when the �ve aggregate (HML, SMB, MOM, LT, and ST) factors are com-

bined, out-of-sample predictive ability appears only short term. Speci�cally, at horizons

of 1-3 months, the median, trimmed mean and CL(2) combining method forecasts display

signi�cant forecasting ability, while the mean, DMSE(1), DMSE(0.9) and CL(3) combining

methods exhibit predictive ability at horizons of 1 and 3 months.

Our �ndings for the combination forecasts constructed with the decomposed fac-

tors (reported in Panel B) are quite interesting since predictability reaches the 18-month

horizon. More in detail, the median and trimmed mean combining methods improve fore-

casts at horizons of 3 to 18 months and for 1-3, 6, 12, and 18 months, respectively. CL(2)

exhibits signi�cant forecasting ability on bond returns at horizons of 1, 2, and 9 months,

while CL(3) improves forecasts for 1-3 months and 9 months ahead. Moreover, the mean

and DMSE(0.9) combining schemes are associated with superior predictive ability only at

the 1-month horizon, while the DMSE(1) one for horizons of 1 and 12 months. More im-

portantly, there are no bene�ts associated with combination forecasts of �nancial variables,

as suggested by Panel C of Table 3.2.

Overall, our �ndings so far suggest that combining empirical factors can lead to

improved predictability for bond returns and that size and value decompositions of the

empirical factors can further enhance it. This latter �nding suggests that the disaggregated

factors contain signi�cant information for the evolution of future bond returns which is

rather hidden when considering aggregate factors.9

9Unreported results suggest that combinations of both the empirical factors and the �nancial variables
fail to improve the accuracy of forecasts relative to the performance of the AR model. This set of results
are available from the authors upon request.



53

Table 3.2: Out-of-sample performance of comb.methods -U.S. bond

Panel A. Five empirical factors
Method 1 2 3 6 9 12 18 24
Mean 0.824 0.543 1.188 -0.341 -0.768 -0.839 -2.030 -2.539
Median 0.934 0.667 1.102 -0.227 -0.273 -0.131 -1.650 -2.199
Tr. mean 0.844 0.540 1.184 -0.008 -0.432 -0.577 -1.911 -1.606
DMSE(1) 0.822 0.548 1.190 -0.323 -0.758 -0.840 -2.022 -2.514
DMSE(0.9) 0.827 0.567 1.179 -0.366 -0.791 -0.917 -1.973 -2.152
CL(2) 0.974 1.217 1.729 0.269 -0.320 -1.207 -1.548 -0.896
CL(3) 1.053 0.381 1.235 0.097 -1.931 -3.067 -2.296 -0.871

Panel B. Eleven decomposed factors
Method 1 2 3 6 9 12 18 24
Mean 0.554 0.357 0.529 0.338 0.414 1.464 0.203 -0.562
Median 0.006 -0.008 0.542 0.522 0.630 1.169 0.680 0.076
Tr. mean 0.353 0.568 0.759 0.656 0.462 1.338 1.025 -0.336
DMSE(1) 0.555 0.377 0.560 0.358 0.453 1.407 0.300 -0.389
DMSE(0.9) 0.560 0.268 0.458 0.255 0.451 0.868 0.124 -0.766
CL(2) 0.736 0.985 0.358 -0.087 1.140 -0.057 -1.121 -1.588
CL(3) 0.980 1.120 1.099 -0.981 1.017 -2.234 -2.262 -1.227

Panel C. Financial variables
Method 1 2 3 6 9 12 18 24
Mean -0.654 -1.358 -0.529 -2.707 -4.788 -6.910 -10.098 <-20
Median -0.419 -0.871 -1.458 -2.629 -3.572 -4.940 -9.041 -12.924
Tr. mean -0.122 -0.311 -0.903 -3.071 -5.556 -7.098 -9.534 -18.198
DMSE(1) -0.693 -1.393 -0.524 -2.524 -4.383 -6.021 -7.232 -13.543
DMSE(0.9) -1.074 -1.780 -1.327 -4.220 -8.241 -11.206 -12.412 -18.159
CL(2) -2.540 -1.316 -2.371 -3.714 -4.339 -4.286 -2.943 -8.036
CL(3) -4.711 -1.473 -3.471 -6.037 -8.342 -9.982 -6.133 -12.111

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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3.3.3 Forecasting US stock returns

We now examine whether the forecasting ability of the candidate predictors is

maintained for US stock returns (S&P500 index returns). Panel A (Table 3.3) reports the

out-of-sample performance of the empirical factors and their components, while Panel B

reports the related �ndings for the �nancial variables.

Among the 30 candidate predictors, the momentum factor emerges as the most

powerful one, as it improves forecasts over the AR benchmark at horizons of 6, 9, 12, and

18 months. This performance is consistent with the one for bond returns and is mainly

attributed to the momentum of big companies. Moreover, at a 3-month horizon, the long-

term reversal factor along with both its components displays signi�cant predictive ability.

Turning to the �nancial variables, we have to note that their ability is rather weak and

limited to horizons of 6-12 months and 18-24 months for the book to market ratio and the

term spread, respectively.

Given the rather limited individual variable predictability, we do not expect com-

bination methods to work impressively well, since they aggregate over weak predictors. Our

�ndings, reported in Table 3.4 (Panels A to C), support this conjecture.

Speci�cally, when considering combination forecasts of the �ve empirical factors,

we �nd improved forecasting ability only at the 3-month horizon and on the basis of the

mean, DMSE and CL(3) combination schemes.

Similar �ndings pertain when the decomposed factors are considered (Panel B),

since signi�cant forecasting ability is evident for the trimmed mean combining method at

the horizon of 3 months, as well. Finally, as expected, combination forecasts of �nancial
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Table 3.3: Out-of-sample performance of indiv.ARDL models -US stock

Panel A. Empirical factors
Predictor 1 2 3 6 9 12 18 24
HML -0.168 0.098 -0.302 -0.103 -0.405 -0.716 -0.550 -0.510
SMB -0.476 -0.161 0.373 -2.351 0.199 -0.118 -0.084 0.190
MOM -0.777 -0821 0.247 0.553 0.744 0.782 0.545 -0.019
LT 0.025 0.906 1.836 1.079 -0.182 0.103 0.016 -0.039
ST -0.768 -0.583 -0.438 -0.436 -0.084 -0.312 -0.277 -0.259
HML_b 0.016 0.078 -0.383 -1.174 -0.365 -0.311 -0.034 -0.392
HML_s -0.720 -0.517 -0.290 -0.444 -0.294 -0.219 -0.364 -0.559
SMB_g -1.307 -1.065 -0.762 -1.388 -0.718 -1.155 -0.301 -0.250
SMB_n -0.518 -0.207 -0.210 -0.428 -0.260 -0.517 -0.129 -0.210
SMB_v 0.093 0.033 -0.269 -0.623 -0.667 -0.848 -0.269 -0.534
MOM_b -0.532 -0.231 0.212 0.816 0.859 0.899 0.595 -0.056
MOM_ s -0.976 -1.061 -0.006 -0.086 0.209 0.143 0.072 -0.138
LT_b -0.248 0.444 0.916 1.032 -0.047 0.060 -0.057 -0.387
LT_s 0.300 0.657 1.181 0.261 -1.154 0.211 0.068 -0.080
ST_b 0.003 -0.351 -0.341 -0.479 -0.224 -0.410 -0.551 -0.602
ST_s -0.960 -0.802 -0.465 -0.370 -0.089 -0.534 -0.471 -0.610

Panel B. Financial variables
Predictor 1 2 3 6 9 12 18 24
DP -2.182 -3.740 -5.791 -12.380 -19.530 -25.158 -33.246 -38.658
DY -2.090 -3.430 -4.872 -9.531 -17.119 -21.031 -31.108 -39.367
EP -0.935 -4.014 -9.161 -9.452 -16.894 -29.060 -11.259 -4.831
DE -2.897 -12.300 -19.963 -26.787 -27.196 -47.349 -17.752 -15.982
SVAR 0.226 -2.549 -8.813 -4.349 -2.327 -2.477 -6.047 -4.312
BM -0.275 -0.200 0.139 0.603 1.114 0.837 0.432 -0.271
NTIS -3.299 -6.284 -10.276 -21.521 -28.734 -30.707 -33.192 -26.437
TBL -1.178 -0.895 -1.583 -3.296 -2.747 -5.189 -5.748 -5.234
LTY -0.973 -1.005 -0.710 -1.364 -0.835 -1.174 -0.560 1.655
SP500 -0.391 -1.374 -0.841 -2.344 -0.636 -0.948 -0.852 -0.720
TMS -1.256 -1.964 -2.971 -3.861 -3.854 -1.598 3.186 2.245
DFY -3.800 -6.382 -8.097 -8.216 -6.336 -4.923 -4.869 -12.719
DFR 0.032 -0.373 -0.444 -0.345 -0.767 -1.070 -4.318 -7.006
INFL -2.226 -3.162 -4.528 -0.590 -0.089 0.337 -1.188 -1.814

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models relative
to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the CW � t
statistic, which tests the null hypothesis: R2os =0 against the alternative: R

2
os>0.
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Table 3.4: Out-of-sample performance of comb.methods -U.S. stock

Panel A. Five empirical factors
Method 1 2 3 6 9 12 18 24
Mean -0.133 0.244 0.612 0.169 0.319 0.180 0.104 0.006
Median -0.340 -0.324 0.112 -0.228 0.159 -0.315 -0.314 0.052
Tr. mean -0.202 -0.107 0.449 -0.201 0.000 -0.173 -0.031 0.097
DMSE(1) -0.138 0.246 0.613 0.170 0.317 0.179 0.106 0.011
DMSE(0.9) -0.162 0.236 0.606 0.197 0.338 0.183 0.091 -0.008
CL(2) -0.831 -0.069 0.635 0.624 0.847 0.487 0.208 0.134
CL(3) -1.017 -0.140 1.260 0.323 0.261 0.352 -0.074 -0.048

Panel B. Eleven decomposed factors
Method 1 2 3 6 9 12 18 24
Mean -0.140 0.043 0.232 0.130 -0.018 -0.023 0.082 -0.158
Median 0.075 -0.021 0.058 0.068 0.201 -0.056 0.110 -0.130
Tr. mean -0.088 0.056 0.285 0.007 -0.043 -0.100 0.048 -0.156
DMSE(1) -0.141 0.046 0.235 0.133 -0.018 -0.019 0.088 -0.158
DMSE(0.9) -0.141 0.046 0.229 0.150 -0.002 -0.013 0.099 -0.164
CL(2) -0.176 -0.270 0.191 -0.040 -0.037 0.053 0.069 -0.269
CL(3) -0.079 -0.394 0.073 0.034 -0.121 0.098 0.170 -0.178

Panel C. Financial variables
Method 1 2 3 6 9 12 18 24
Mean -0.736 -2.057 -3.462 -4.770 -6.033 -6.778 -7.053 -8.032
Median -0.182 -0.344 -0.619 -0.487 -0.430 -0.841 -2.403 -4.436
Tr. mean -0.739 -1.475 -2.481 -2.959 -3.543 -3.637 -4.722 -6.102
DMSE(1) -0.727 -2.021 -3.317 -4.363 -4.866 -5.396 -5.053 -5.355
DMSE(0.9) -0.624 -1.880 -2.958 -3.624 -4.718 -6.017 -6.448 -6.946
CL(2) -0.316 -1.570 -2.229 -2.110 -1.340 -4.130 -3.459 -3.817
CL(3) -0.279 -2.222 -2.518 -1.737 -1.258 -2.862 -2.660 0.660

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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variables do not improve stock returns forecasts over the AR benchmark.

To sum up, the evidence in this section suggests that the proposed empirical factors

exhibit strong forecasting ability for US bond returns and are weaker when it comes to stock

returns. Their size and value decompositions further enhance their ability especially when

combination of forecasts are considered. Given that statistical signi�cance does not always

imply economic signi�cance, we next assess whether this forecasting ability can be useful

from an asset allocation perspective.

3.4 Asset allocation bene�ts of combination forecasts

A utility-based evaluation of forecasts was �rst proposed by West et al. (1993) in

assessing exchange rate volatility forecasts (see also Abhyankar et al. (2005), Della Corte

et al. (2009) and Rime et al. (2010)). Following Fleming et al. (2001) and Della Corte

et al. (2008, 2009), Thorton and Valente (2012) quantify how much a risk-averse investor

is willing to pay to switch from a dynamic portfolio strategy based on a model with no

predictable bond excess returns to a model that uses either forward spreads or the term

structure of forward rates. Campbell and Thomson (2008), Rapach et al. (2010), Ferreira

and Santa-Clara (2011), Dangl and Halling (2012) and Neely et al. (2013) provide evidence

that investors who rely on equity premium forecasts based on economic variables can gain

pro�t relative to those who just rely on the historical average forecast.

In our analysis, we investigate whether the forecasting ability of the proposed

empirical factors/combination schemes can lead to signi�cant economic gains for a mean-

variance investor, who incorporates them to asset allocation decisions.
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3.4.1 The framework

We consider a mean-variance investor with relative risk aversion (RRA), 
; who

rebalances her portfolio every month. Her portfolio maximization problem, described in

detail in Campbell and Viceira (2002), is the following:

max
wt

w0t(EtRt+h �Rf;t!t+h�)�



2
w0t�

�1
t+hwt (3.9)

where EtRt+h � Rf;t!t+h is the vector of expected excess returns on the risky assets over

the risk-free interest rate (Rf;t!t+h) prevailing from time t to t+h, � is a vector of ones, wt

is the vector of portfolio weights on risky assets, and w0t�
�1
t+hwt is the expected variance of

the portfolio return. The solution to this maximization problem is:

wi;t =
1



��1t+h(EtRt+1 �Rf;t�); i = b; s (3.10)

where b; s stand for bond and stock returns, respectively.

The conditional expectation EtRt+h is given by the bond and stock return combi-

nation forecasts for each horizon and combining scheme we employed in the previous section.

The expected variance/covariance matrix for bond and stock market returns, �t+h; is com-

puted using a rolling window of 40 past observations.10 The optimal weights allocated to

government bonds and the stock market are winsorized to 0 < wi;t < 1:5, thus preventing

short selling and extreme allocation to any of the risky assets. The investor�s taste of risk,

controlled by the RRA coe¢ cient, is set equal to 3 and 5. Having estimated the optimal

weights, the resulting portfolio return is equal to:

Rp;t = (1� w1;t � w2;t) �Rf;t + w1;t �Rb;t + w2;t �Rs;t (3.11)

10Campbell and Thomson (2008) and Goh et al. (2013) consider a 5-year rolling window of past returns.
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where Rb;t and Rs;t are the realized bond and stock returns at each point of time, t; over

the out-of-sample evaluation period (P observations). Over the forecast evaluation period

the investor with initial wealth of Wo = 1 realizes an average utility of

U =
1

P

PX
t=1

h
(1 +Rp;t)�




2
�
�
Rp;t �Rp

�2i
(3.12)

where Rp denotes the average portfolio return over the evaluation period. In a similar

way, we calculate the utility associated with the benchmark AR speci�cation, given by the

following equation:

U
AR
=
1

P

PX
t=1

��
1 +RARp;t

�
� 


2
�
�
RARp;t �R

AR
p

�2�
(3.13)

where RARp;t refers to the portfolio returns constructed based on the benchmark model fore-

casts and R
AR
p is the respective average portfolio return over the evaluation period. The

di¤erence (�U) between the average utility realized from the proposed speci�cation and

the one of the benchmark speci�cation is calculated as follows:

�U = U � UAR (3.14)

It can be interpreted as the annual percentage portfolio management fee that an investor

would be willing to pay to have access to our proposed forecasting methodology relative to

the AR benchmark.

We also employ an alternative economic evaluation measure, which is the manipulation-

proof performance measure (MPPM), proposed by Goetzmann et al. (2007). This measure

takes into account the e¤ect of non-normality, the underestimation of the performance of

dynamic strategies and the choice of the utility function. It can be interpreted as the
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portfolio�s premium return after adjusting for risk and is de�ned as follows:

MPPM =
1

1� 
 ln
"
1

P

PX
t=1

�
1 +Rp;t
1 +Rf;t

�1�
#
(3.15)

The proposed speci�cation performs better than the benchmark one when the di¤erence

between the MPPM of the proposed model and that of the benchmark one, �; de�ned as

follows:

� =
1

1� 
 ln
"
1

P

PX
t=1

�
1 +Rp;t
1 +Rf;t

�1�
#
� 1

1� 
 ln

24 1
P

PX
t=1

 
1 +RARp;t
1 +Rf;t

!1�
35 (3.16)

is positive.

3.4.2 Asset allocation: empirical results

We consider a mean-variance investor who allocates her wealth among bonds,

stocks and the risk-free interest rate, and rebalances her portfolio monthly over the 1995:03

- 2010:12 out-of-sample evaluation period.11 As already mentioned, we assume two values for

the investor�s RRA, 
 = 3 and 
 = 5, and calculate the variance covariance matrix between

stocks and bond returns by employing a rolling 40-month window of past observations.

Consistent with the statistical evaluation, we assess the economic value for horizons of 1, 3,

6 and 12 months.

In Table 3.5 (Panels A to D) we report the performance fees (�U) that a mean-

variance investor would be willing to pay to have access to our models along with the

11The risk free interest rate considered is the 1-month US Treasury Bill.
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Table 3.5: Asset allocation bene�ts for a US investor

Panel A. Horizon 1
Five Factors Eleven Factors Fin.Variables

Method �U � �U � �U �

Mean 1.348 1.630 1.417 1.652 -1.591 -1.673
Median 0.351 0.570 0.567 0.604 -0.650 -0.748
Tr.Mean 0.845 1.051 0.765 0.888 -2.291 -2.576
DMSE(1) 1.340 1.622 1.425 1.662 -1.502 -1.580
DMSE(0.9) 1.235 1.514 1.395 1.625 -0.994 -1.005
CL(2) 1.524 1.867 2.178 2.507 0.111 0.295
CL(3) 2.299 2.728 3.029 3.396 -0.211 -0.049
Panel B. Horizon 3

Five Factors Eleven Factors Fin.Variables
Method �U � �U � �U �

Mean 2.326 3.309 2.155 2.432 -4.883 -4.860
Median 1.998 2.737 -0028 0.038 1.427 1.803
Tr.Mean 1.908 2.684 1.871 2.071 -4.011 -3.733
DMSE(1) 2.323 3.310 2.110 2.401 -4.297 -4.267
DMSE(0.9) 2.200 3.136 2.248 2.513 -3.231 -3.047
CL(2) 4.807 6.281 1.009 1.596 -1.859 -0.767
CL(3) 6.414 8.113 1.535 2.498 -2.032 -1.041
Panel C. Horizon 6

Five Factors Eleven Factors Fin.Variables
Method �U � �U � �U �

Mean -1.440 -1.197 -0.489 -0.343 -14.087 -13.411
Median -2.347 -2.064 0.643 0.636 -0.043 2.418
Tr. Mean -1.877 -1.681 0.292 0.402 -11.103 -9.465
DMSE(1) -1.375 -1.117 -0.504 -0.360 -11.525 -10.997
DMSE(0.9) -1.303 -1.084 -0.496 -0.351 -8.546 -8.254
CL(2) 1.099 1.509 -0.638 -0.474 -0.853 3.258
CL(3) 3.055 4.277 -0.567 -0.386 -1.787 3.265
Panel D. Horizon 12

Five Factors Eleven Factors Fin.Variables
Method �U � �U � �U �

Mean -2.529 -2.393 -1.313 -0.948 -16.267 -14.031
Median -1.209 -1.112 -0.877 -0.754 -1.632 -1.360
Tr. Mean -2.108 -1.998 -0.984 -0.726 -13.491 -11.423
DMSE(1) -2.510 -2.373 -1.310 -0.997 -12.796 -10.784
DMSE(0.9) -2.306 -2.171 -1.480 -1.051 -12.909 -11.003
CL(2) -2.569 -2.482 0.979 0.809 -5.939 -5.114
CL(3) -3.491 -3.654 -0.261 0.045 -1.680 -1.614

Notes: (i) The table reports the average utility gain (�U) and the di¤erence
between the manipulation-proof performance measure (�) of the proposed
speci�cation relative to the benchmark AR model.
(ii) Figures are reported in annualized percentage points.
(iii) Portfolio weights are constrained to lie between 0 and 1.5.
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risk-adjusted measure � for an investor with a risk aversion coe¢ cient of 3. Our �ndings

for an investment horizon of 1 month are given in Panel A. Overall, combination forecasts

of both the aggregate factors and the disaggregated ones always generate positive utility

gains. Utility gains range from 0.765% per year (Trimmed mean combination forecast of the

disaggregate factors) to 3.029% per year (CL(3) combination method of the disaggregate

factors). The best performance is achieved by the CL(3) combination method, closely

followed by CL(2). However, the simplest combining method, i.e. the mean one, attains a

satisfactory performance of 1.348% and 1.417% for the aggregate and disaggregated factors,

respectively. Similar �ndings pertain when forecasts are evaluated on the basis of the risk-

adjusted measure �: More importantly, combination forecasts of �nancial variables fail to

generate pro�ts to the investor in excess of the ones already contained in the benchmark

AR model, with the exception of the CL(2) method.

Turning to the forecast horizon of 3 months (Panel B), our �ndings suggest that

combination forecasts of either the �ve or the eleven factors can generate positive utility

gains that reach 6.414% for the CL(3) method, with the exception of the median combining

scheme of the disaggregate factors. When combining the aggregate factors, the cluster

combining methods rank �rst followed by the mean and the DMSE ones. However, on the

basis of the disaggregated factors, the mean and DMSE methods rank �rst followed by the

trimmed mean and the cluster ones. Our �ndings with respect to �, are quite similar.

Moreover, similar to the 1-month forecast horizon, all the combining methods

(with the exception of the median one) point to negative gains and thus greater average

utility for the AR benchmark compared to the combination methods, when only �nancial
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variables are incorporated. Longer investment horizons of 6 months (Panel C) and 12

months (Panel D) do not consistently generate pro�ts to the investor. Speci�cally, for the

6-month horizon an investor would be willing to have access to the forecasts generated by

the cluster combinations of the �ve factors or the median and trimmed mean combinations

of the eleven factors. The di¤erence in MPPMs, �; points to bene�ts when a pool of the

�nancial variables is employed. Speci�cally, � is positive at the horizon of 6 months for the

median and the CL combination methods generating premium returns of up to 3.265% per

year. Turning to the 12-month horizon, we note that the ability of the proposed models to

generate utility gains to an investor is rather limited to the case of the CL(2) combination

of the disaggregated factors.

When we allow for a more conservative investor, our �ndings are qualitatively

similar. More in detail, Table 3.6 reports the respective �ndings for an investor with RRA

of 5. For a short-term horizon of 1 and 3 months (Panels A and B), the investor would be

willing to pay a performance fee to utilize forecasts from our combining methods on the

basis of the empirical factors (both aggregate and disaggregate ones). As expected, these

fees are lower compared to the ones for the less risk averse investor (Table 3.5).

On the other hand, when turning to the medium investment horizon of 6 months

(Panel C), the investor can still bene�t from our combination forecasts of the empirical

factors and in some cases of the �nancial variables, as well.

The combination methods of aggregate factors are all successful and generate fees

up to 1.217% (CL(2) method), whereas when disaggregate factors are considered, all but

the cluster combining methods accrue bene�ts of up to 1.144% to the investor. More
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Table 3.6: Asset allocation bene�ts for a US investor

Panel A. Horizon 1
Five Factors Eleven Factors Fin.Variables

Method �U � �U � �U �

Mean 1.160 1.374 0.803 0.979 -2.017 -2.335
Median 0.274 0.448 0.139 0.164 -1.150 -1.534
Tr.Mean 0.613 0.779 0.307 0.406 -2.418 -2.951
DMSE(1) 1.156 1.370 0.806 0.983 -1.973 -2.286
DMSE(0.9) 1.104 1.315 0.795 0.967 -1.703 -1.949
CL(2) 1.367 1.626 1.252 1.510 -1.028 -1.062
CL(3) 1.964 2.269 1.757 2.053 -1.209 -1.312
Panel B. Horizon 3

Five Factors Eleven Factors Fin. Variables
Method �U � �U � �U �

Mean 1.927 2.086 1.299 1.118 -4.669 -5.906
Median 1.152 1.141 0.141 0.132 1.378 1.123
Tr.Mean 1.615 1.745 1.128 0.989 -3.509 -4.361
DMSE(1) 1.921 2.077 1.260 1.086 -4.264 -5.553
DMSE(0.9) 1.836 1.976 1.361 1.177 -2.785 -3.942
CL(2) 3.274 2.876 0.316 0.097 -0.688 -0.939
CL(3) 3.893 3.284 0.134 -0.202 -1.209 -2.241
Panel C. Horizon 6

Five Factors Eleven Factors Fin. Variables
Method �U � �U � �U �

Mean 0.206 -0.646 0.127 -0.408 -9.437 -10.347
Median 0.334 2.267 1.144 1.319 2.842 5.186
Tr. Mean 0.179 1.324 0.347 -0.125 -4.439 -2.333
DMSE(1) 0.190 -0.719 0.121 -0.425 -7.744 -8.478
DMSE(0.9) 0.415 -0.148 0.237 -0.163 -3.407 -1.870
CL(2) 1.217 -1.182 -0.298 -2.008 2.141 6.996
CL(3) 1.134 -5.571 -0.398 -4.087 1.359 5.934
Panel D. Horizon 12

Five Factors Eleven Factors Fin. Variables
Method �U � �U � �U �

Mean -2.657 <-20.0 -3.041 <-20.0 -11.074 6.670
Median -2.848 <-20.0 -3.152 <-20.0 5.063 >20.0
Tr. Mean -2.771 <-20.0 -2.900 <-20.0 -2.722 >20.0
DMSE(1) -2.662 <-20.0 -3.061 <-20.0 -8.161 12.412
DMSE(0.9) -2.501 <-20.0 -2.878 <-20.0 -10.095 7.504
CL(2) -1.839 -11.166 -2.007 <-20.0 -0.626 >20.0
CL(3) -2.238 <-20.0 -2.670 -15.469 4.206 >20.0
Notes: (i) The table reports the average utility gain (�U) and the di¤erence
between the manipulation-proof performance measure (�) of the proposed
speci�cation relative to the benchmark AR model.
(ii) Figures are reported in annualized percentage points.
(iii) Portfolio weights are constrained to lie between 0 and 1.5.
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importantly, median and cluster combinations of the �nancial variables can generate positive

utility gains of 2.842%. Employing � leads to similar �ndings for the �nancial variables

pool but not for the factor ones. In some cases positive utility gains are associated with

negative �s: The opposite is true for the longer horizon of 12 months and the case of the

pool of �nancial variables. Speci�cally, while positive utility gains and �s are associated

with the median and CL(3) methods, positive �s prevail for all the combination methods

at hand.

3.5 International evidence

So far we have provided evidence for signi�cant forecasting ability of combination

forecasts of empirical factors for US bond and stock returns both in statistical and economic

evaluation terms. In this section, we test whether these factors exhibit similar forecasting

ability on European and Japanese stock and bond returns.

We use monthly observations of the empirical factors for the period November 1990

to April 2012.12 European and Japanese market returns along with the aggregate factor

returns and their decompositions are taken from Professor Kenneth French�s website.13

Long-term bond returns are downloaded from DataStream.14 The total sample consists of

258 observations, 86 are reserved for the out-of-sample evaluation period.15 The horizons

examined are 1-24 months, but, for brevity, we present the results for horizons of 1-3, 6, 9,

12All returns are given in U.S. dollars.
13The European factors and portfolios include Austria, Belgium, Denmark, Finland, France, Germany,

Greece, Ireland, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.
14The series concerning the long-term government bond returns for Europe is the series: BOFA ML PAN

EUROPE GVT 10+Y ($) - TOT RETURN IND, while for Japan is the series:BOFA ML JAPAN GVT
10+Y ($) - TOT RETURN IND.
15The holdout period is 3 years (36 months).
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12, 18 and 24 months. As previously, we assess the out-of-sample forecasting ability of the

proposed models from an asset allocation perspective, as well. In particular, we consider

a mean-variance investor who allocates her wealth among bonds, stocks and the risk-free

interest rate and rebalances her portfolio monthly based on information through period

t over the 2005:03 - 2012:04 out-of-sample evaluation period. The investor�s relative risk

aversion (RRA) is set equal to 
 = 3.

3.5.1 Forecasting European bond and stock returns

In Table 3.7 (Panels A to C) we report the forecasting ability of empirical aggregate

and decomposed factors for European bond returns along with combinations of them. The

only factor that appears valuable in forecasting bond returns is the HML factor who is

signi�cant both in the short run and in the long run. Speci�cally, the aggregate value

premium is a signi�cant predictor at horizons of 1-3, 18 and 24 months, while its big

component is successful at horizons of 2, 3, 6 and 24 months. On the other hand, the

predictive ability of the small component (HML_s) is restricted only at the horizon of 1

month. The remaining factors exhibit hardly any signi�cant forecasting ability on bond

returns.

Turning to combination forecasts of the aggregate factors (Panel B), we have to

note that our �ndings vary with the combination method employed.

Speci�cally, the median and trimmed mean combining methods display signi�cant

forecasting ability at horizons of 3 and 9 months, while the DMSE combining methods
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Table 3.7: Out-of-sample performance - European bond returns

Panel A. Individual ARDL models
Predictor 1 2 3 6 9 12 18 24
HML 3.170 1.745 3.150 1.359 -0.287 -0.744 3.227 2.793
SMB -0.658 -0.463 0.322 -0.293 0.140 -0.302 -1.309 -1.400
MOM -1.756 -2.424 -5.312 -5.983 -0.371 -1.469 -3.036 -1.391
HML_b 1.001 0.840 2.809 1.713 -0.193 -1.354 3.568 1.344
HML_s 1.998 0.914 1.263 -0.456 -0.327 0.307 -0.688 2.104
SMB_g -0.868 -1.321 -2.736 -1.144 -0.245 -1.494 -7.749 0.096
SMB_n -1.791 -1.816 0.347 -0.216 -0.217 -0.366 -1.077 -4.230
SMB_v -1.591 -0.799 0.678 -0.588 -0.040 -0.358 -1.336 -4.667
MOM_b -0.283 -1.380 -3.196 -5.550 -1.194 -2.407 -4.693 -2.364
MOM_s -2.764 -3.373 -7.089 -4.978 0.410 -0.333 -0.894 -0.195
Panel B. Combination forecasts - Empirical factors
Method 1 2 3 6 9 12 18 24
Mean 0.414 -0.072 0.484 -1.106 0.202 0.167 1.975 2.424
Median -0.095 -0.050 1.460 -0.370 0.427 0.413 0.170 0.189
Tr.mean -0.095 -0.050 1.460 -0.370 0.427 0.413 0.170 0.189
DMSE(1) 0.423 -0.054 0.538 -1.087 0.204 0.163 2.167 2.562
DMSE(0.9) 0.441 -0.068 0.542 -1.063 0.165 0.034 1.960 2.518
CL(2) 1.439 -0.185 0.542 -0.016 -1.484 -2.208 0.088 2.197
CL(3) 1.987 0.753 -1.469 0.615 -2.795 -4.077 -5.596 -2.365
Panel C. Combination forecasts - Decomposed factors
Method 1 2 3 6 9 12 18 24
Mean -0.409 -0.576 -0.330 -1.248 0.044 -0.186 -0.279 0.491
Median -0.261 -0.502 0.426 -1.001 0.056 -0.028 -0.431 0.141
Tr. mean -0.402 -0.697 -0.297 -1.270 -0.122 -0.158 -0.280 0.037
DMSE(1) -0.407 -0.726 -0.311 -1.242 0.043 -0.192 -0.227 0.582
DMSE(0.9) -0.410 -0.877 -0.304 -1.224 0.023 -0.274 -0.430 0.554
CL(2) -0.393 -2.088 -1.255 -0.012 -0.483 -0.861 -1.889 1.101
CL(3) 0.040 -0.810 -2.104 -0.227 -0.077 -2.951 -4.800 2.074

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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outperform the AR model at horizons of 18 and 24 months (DMSE(1)) and at the horizon

of 2 years (DMSE (0.9)). Both cluster combining methods are associated with short run

predictability of 1 month. Quite interestingly and in sharp contrast with the US market,

combinations of the decomposed factors completely fail to outperform the autoregressive

benchmark.

We continue by examining the level of predictability for the European stock mar-

ket, which is reported in Table 3.8 (Panels A to C). Our �ndings suggest that the SMB

factor is the dominant predictor with signi�cant forecasting ability at horizons of 2, 6, 9 and

18 months. This performance is attributed partly to the neutral and growth component

of the factor. The growth component of the size premium appears to contain useful infor-

mation for 3-, 6-, 9- and 18-month future returns, while the neutral component for 1, 2, 6

and 18 months ahead. In addition, momentum along with its small and big decompositions

contain useful information for the European market at the horizon of 3 months.

Similar to European bond returns, combination forecasts do not appear very suc-

cessful. When we combine the individual forecasts of the aggregate factors, both the median

and trimmed mean combing methods exhibit signi�cant forecasting ability at the horizon of

3 months, while CL(3) improves forecasts at horizons of 3 and 18 months. Considering the

forecasts of combinations of decomposed factors, both cluster combining methods appear

signi�cant at horizons of 3 and 18 months, while the median combining method exhibits

forecasting ability at the horizon of 2 months.

Our asset allocation exercise paints a starkly di¤erent picture. Despite the anaemic
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Table 3.8: Out-of-sample performance - European stock returns

Panel A. Individual ARDL models
Predictor 1 2 3 6 9 12 18 24
HML -3.547 -1.420 -2.117 -3.340 -1.007 -1.321 -1.630 -0.811
SMB 0.320 1.141 1.060 1.706 0.714 0.822 1.316 -0.088
MOM 1.727 -0.120 2.813 -0.382 1.042 0.128 0.188 -0.397
HML_b -3.926 -2.609 -2.294 -1.348 -1.652 -2.493 -2.094 -1.639
HML_s -3.189 0.227 1.552 -1.396 0.741 0.641 -0.118 -0.110
SMB_g -0.448 1.114 4.132 1.291 1.123 1.217 1.541 -0.381
SMB_n 1.436 0.861 0.394 1.483 0.529 0.781 1.579 -0.648
SMB_v -2.719 -0.895 -0.125 -0.793 0.242 -0.198 -0.146 0.080
MOM_b 1.641 -0.265 2.547 -0.720 1.010 0.027 0.164 -1.014
MOM_s 0.836 0.070 2.812 -0.384 0.796 0.052 0.063 0.265
Panel B. Combination forecasts - Empirical factors
Method 1 2 3 6 9 12 18 24
Mean 0.212 0.025 0.893 -0.371 0.461 -0.017 0.045 -0.398
Median 0.553 0.392 1.792 0.031 -0.034 0.031 0.112 -0.694
Tr. mean 0.553 0.392 1.792 0.031 -0.034 0.031 0.112 -0.694
DMSE(1) 0.194 0.019 0.888 -0.363 0.451 -0.009 0.094 -0.404
DMSE(0.9) 0.192 0.028 0.909 -0.322 0.463 -0.023 0.060 -0.400
CL(2) 1.256 0.027 1.925 0.281 0.892 -0.684 0.591 -0.455
CL(3) 0.983 0.292 1.861 -0.004 1.658 -0.062 1.126 -0.340
Panel C. Combination forecasts - Decomposed factors
Method 1 2 3 6 9 12 18 24
Mean -0.302 -0.056 1.605 -0.078 0.533 0.110 0.250 -0.409
Median -0.195 0.460 2.375 -0.051 0.468 0.003 0.156 -0.100
Tr. mean -0.352 0.329 2.044 -0.010 0.534 0.106 0.268 -0.314
DMSE(1) -0.309 -0.061 1.611 -0.073 0.535 0.123 0.273 -0.413
DMSE(0.9) -0.310 -0.054 1.614 -0.059 0.541 0.124 0.269 -0.409
CL(2) 0.292 0.298 2.463 0.325 0.893 0.406 0.648 -0.221
CL(3) 0.150 -0.391 2.800 0.277 0.790 0.351 1.456 -0.446

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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Table 3.9: Asset allocation bene�ts - European investor

Panel A. Horizon 1 Panel B. Horizon 3
Three Factors Seven Factors Three Factors Seven Factors

Method �U � �U � �U � �U �

Mean 4.622 4.094 0.730 0.008 -2.355 -1.849 2.601 0.266
Median 1.897 0.594 0.743 -0.969 5.070 1.465 9.144 2.898
Tr.Mean 1.897 0.594 0.011 -1.757 5.070 1.465 6.855 1.887
DMSE(1) 4.541 4.022 0.701 -0.017 -2.477 -1.907 2.618 0.263
DMSE(0.9) 4.501 3.954 0.710 -0.057 -2.219 -1.776 2.698 0.298
CL(2) 0.601 -3.386 -2.975 -8.019 7.313 2.238 9.810 2.582
CL(3) -3.644 -14.210 -2.370 -7.804 8.865 3.285 10.707 2.231

Panel C. Horizon 6 Panel D. Horizon 12
Three Factors Seven Factors Three Factors Seven Factors

Method �U � �U � �U � �U �

Mean -8.515 -1.228 -8.368 0.092 -7.847 0.530 2.386 0.554
Median -11.396 -0.962 -2.395 -0.456 7.431 0.756 -10.422 0.847
Tr. Mean -11.396 -0.962 -6.103 0.076 7.431 0.756 <-20.0 0.965
DMSE(1) -8.485 -1.214 -8.613 0.110 -8.617 0.552 <-20.0 0.973
DMSE(0.9) -8.054 -0.978 -8.386 0.196 -8.566 0.520 0.293 0.027
CL(2) 2.997 1.321 -2.902 2.358 -9.017 -0.980 -14.996 1.766
CL(3) -0.416 -2.354 1.718 2.607 -11.891 0.451 <-20.0 1.895
Notes: (i) The table reports the average utility gain (�U) and the di¤erence between the
manipulation proof performance measure (�) of the proposed speci�cation relative to the
benchmark AR model.
(ii) Figures are reported in annualized percentage points.
(iii) Portfolio weights are constrained to lie between 0 and 1.5 and RRA is set equal to 3.
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statistical signi�cance of combination forecasts of both stock and bond returns, the gains

for a European investor can be sizable. In Table 3.9 we report the average utility gains

of a mean-variance investor who allocates her wealth between stock, bonds and the risk

free interest rate along with the manipulation-proof measure of the competing models for

horizons up to 1 year.

For a short term horizon of 1-month, mean and DMSE combinations of aggregate

factors can lead to utility gains of up to 4.622%. Increasing the horizon to 3 months can lead

to gains of 8.865% for the CL(3) method. This horizon is also associated with signi�cant

pro�tability of up to 10.707% on the basis of the CL(3) combinations of disaggregated

factors. However, longer horizons of 6 and 12 months do not consistently generate pro�ts

to the investor.

3.5.2 Forecasting the Japanese bond and stock market

In this section, we investigate the robustness of our results employing data for the

Japanese bond and stock market. In Table 3.10 and Table 3.11 we report the forecasting

performance of empirical factors for bond and stock returns, respectively. With respect

to bond returns our �ndings suggest that single factor models prove successful at short

horizons. Speci�cally, at the 1-month horizon both the size and the value premium improve

bond return forecasts, mainly stemming from the small value component and the growth

and neutral size component, respectively.
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Table 3.10: Out-of-sample performance - Japanese bond returns

Panel A. Individual ARDL models
Predictor 1 2 3 6 9 12 18 24
HML 2.031 1.384 0.821 -0.231 0.326 -0.486 0.538 -0.720
SMB 1.629 -1.518 0.326 0.159 0.609 0.310 -0.492 -0.862
MOM 0.080 1.548 1.653 -0.397 0.487 -0.140 -1.112 -0.367
HML_b 0.801 -0.676 -0.021 -0.069 0.656 -0.293 0.700 -0.293
HML_s 1.989 1.661 1.088 -0.394 -0.593 -0.535 0.104 -0.271
SMB_g 0.599 -3.395 -0.677 -0.148 -0.110 -0.469 -0.079 -0.282
SMB_n 1.526 0.101 1.769 0.824 1.461 1.032 -0.391 -0.730
SMB_v 1.560 0.331 0.131 -0.325 0.559 0.584 -1.150 -1.187
MOM_b -0.372 1.118 1.686 -0.242 0.625 -0.169 0.053 -0.180
MOM_s 0.194 0.638 0.498 -0.912 -0.374 -0.070 -2.936 -0.612
Panel B. Combination forecasts - Empirical factors
Method 1 2 3 6 9 12 18 24
Mean 1.357 0.846 1.294 0.000 0.651 0.002 -0.268 -0.578
Median 1.590 -0.118 0.762 0.264 0.875 0.470 -0.106 -0.274
Tr. mean 1.590 -0.118 0.762 0.264 0.875 0.470 -0.106 -0.274
DMSE(1) 1.356 0.823 1.282 -0.006 0.651 -0.004 -0.254 -0.584
DMSE(0.9) 1.387 0.855 1.309 -0.034 0.660 -0.014 -0.259 -0.581
CL(2) 1.388 0.818 0.052 -0.446 0.348 -0.483 -0.325 -1.689
CL(3) 1.343 -2.148 -1.716 -1.379 0.749 -0.051 1.053 -1.163

Panel C. Combination forecasts - Decomposed factors
Method 1 2 3 6 9 12 18 24
Mean 1.040 0.316 0.981 0.005 0.564 0.196 -0.387 -0.430
Median 1.096 0.352 0.890 0.051 0.118 0.245 0.257 -0.258
Tr. mean 1.032 0.259 0.908 0.052 0.302 0.261 -0.087 -0.427
DMSE(1) 1.040 0.294 0.969 -0.002 0.559 0.188 -0.382 -0.425
DMSE(0.9) 1.056 0.323 0.989 -0.017 0.571 0.174 -0.389 -0.415
CL(2) 1.087 -0.378 0.051 -0.596 0.570 -0.427 -0.851 -0.344
CL(3) 0.489 -2.042 -1.095 -1.873 0.170 -0.566 -1.302 -0.408

Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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Additionally, the small value component improves forecasts for the 2-month hori-

zon as well, while the neutral value component for the 3-month and 6-month horizons. Our

�ndings with respect to combination forecasts are more reassuring. Speci�cally, with the

exception of the 24-month horizon, the remaining horizons are characterized with a high

degree of predictability.

The 1-month and 3-month bond returns can be predicted with almost all the

methods at hand and on the basis of both the aggregate and decomposed factors. Overall,

combinations of the aggregate factors perform better than the decomposed ones.

Similar �ndings pertain with respect to stock returns where the level of predictabil-

ity is higher. The value premium is successful in improving forecasts for all the horizons

up to the 9-month one. This forecasting ability is equally split between its big and small

component which contains useful information for the long-run as well. Quite interestingly,

the value and growth decompositions of the size premium emerge as powerful predictors for

horizons greater than 18 and 24 months.

As expected, this individual forecasting ability is recorded in the success of forecast

combinations. On the basis of forecast combinations of aggregate factors, the mean, DMSE

and cluster combining methods improve forecasts for the majority of horizons considered.

Quite interestingly, the 24-month horizon is associated with a high degree of predictability

of combination methods of both aggregate and decomposed factors.
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Table 3.11: Out-of-sample performance - Japanese stock returns

Panel A. Individual ARDL models
Predictor 1 2 3 6 9 12 18 24
HML 6.153 2.683 5.965 2.332 1.408 -0.306 0.073 0.668
SMB 0.321 -0.195 -0.409 0.275 0.814 0.453 2.747 2.441
MOM -0.239 -1.635 0.356 -0.726 -0.345 -0.156 1.197 -0.013
HML_b 5.937 1.914 1.856 0.206 0.167 -0.161 -0.894 -0.447
HML_s 3.925 0.929 4.210 3.117 2.488 -0.424 1.367 1.204
SMB_g 2.192 -0.456 -0.893 0.348 0.835 0.115 1.846 0.976
SMB_n -0.373 0.003 -0.089 0.352 1.552 1.329 3.504 3.195
SMB_v 0.108 -0.376 0.150 -0.592 -0.057 -0.158 0.718 1.092
MOM_b -2.637 -1.291 1.444 -0.493 -0.453 -0.379 0.458 0.591
MOM_s -0.431 -1.288 1.884 -1.077 -1.332 -1.119 -0.030 -2.298
Panel B. Combination forecasts - Empirical factors
Method 1 2 3 6 9 12 18 24
Mean 3.335 0.267 2.343 0.858 1.035 0.245 1.690 1.164
Median 1.499 0.290 0.752 0.358 0.012 -0.579 0.465 0.783
Tr. mean 1.499 0.597 0.752 0.358 0.012 -0.579 0.465 0.783
DMSE(1) 3.352 0.599 2.371 0.863 1.028 0.258 1.724 1.168
DMSE(0.9) 3.362 0.259 2.387 0.871 1.038 0.260 1.712 1.173
CL(2) 2.981 -0.175 1.018 1.024 1.526 0.745 2.356 1.473
CL(3) 4.628 2.719 0.827 0.474 1.306 0.327 2.187 1.352
Panel C. Combination forecasts - Decomposed factors
Method 1 2 3 6 9 12 18 24
Mean 2.181 0.204 1.618 0.768 1.056 0.755 1.422 0.859
Median 1.199 0.303 1.000 0.167 0.499 0.836 1.558 0.892
Tr. mean 1.745 0.080 1.139 0.468 0.835 0.359 1.387 0.810
DMSE(1) 2.171 0.214 1.607 0.756 1.032 0.664 1.437 0.870
DMSE(0.9) 2.195 0.178 1.602 0.747 1.099 0.613 1.434 0.879
CL(2) 3.398 -0.142 0.870 0.080 1.173 1.052 2.285 1.341
CL(3) 4.132 -0.265 1.075 0.100 2.733 1.027 0.878 1.792
Notes: (i) The table reports the out-of-sample R2os of the individual ARDL models
relative to the AR benchmark.
(ii) Bold entries indicate signi�cance at the 10% signi�cance level according to the
CW � t statistic, which tests the null hypothesis: R2os =0 against the alternative:
R2os>0.
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Table 3.12: Asset allocation bene�ts - Japanese investor

Panel A. Horizon 1 Panel B. Horizon 3
Three Factors Seven Factors Three Factors Seven Factors

Method �U � �U � �U � �U �

Mean 2.106 1.567 1.822 1.235 5.822 2.732 4.303 1.794
Median 0.796 0.623 0.207 0.185 0.915 0.171 2.492 1.100
Tr.Mean 0.796 0.623 1.532 1.121 0.915 0.171 3.034 1.280
DMSE(1) 2.106 1.571 1.821 1.237 5.925 2.773 4.286 1.788
DMSE(0.9) 2.100 1.572 1.810 1.230 5.990 2.800 4.321 1.792
CL(2) 3.067 1.946 2.292 1.477 3.495 1.045 2.641 0.550
CL(3) 2.621 1.504 3.982 2.719 5.304 0.816 2.946 0.737

Panel C. Horizon 6 Panel D. Horizon 12
Three Factors Seven Factors Three Factors Seven Factors

Method �U � �U � �U � �U �

Mean 9.012 2.068 3.083 0.546 9.748 0.805 >20.0 4.258
Median 6.860 1.626 2.247 0.517 -2.525 -0.833 18.505 2.106
Tr. Mean 6.860 1.626 2.252 0.550 -2.525 -0.833 13.006 1.482
DMSE(1) 9.085 2.084 3.146 0.567 10.479 0.887 >20.0 4.190
DMSE(0.9) 9.193 2.103 3.232 0.575 9.902 0.819 >20.0 4.067
CL(2) 16.943 3.799 10.651 2.452 9.554 0.834 >20.0 6.004
CL(3) >20.0 3.631 16.188 3.667 6.156 -0.377 >20.0 9.978
Notes: (i) The table reports the average utility gain (�U) and the di¤erence between the
manipulation-proof performance measure (�) of the proposed speci�cation relative to the
benchmark AR model.
(ii) Figures are reported in annualized percentage points.
(iii) Portfolio weights are constrained to lie between 0 and 1.5 and RRA is set equal to 3.
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Finally, the most striking result appears in Table 3.12 that reports the forecast

combination bene�ts from an asset allocation perspective. Speci�cally, a mean-variance

investor who employs our forecast combination methodology can always enjoy signi�cant

gains for all the horizons up to 6 months. The bene�ts accrued by including the information

of the aggregate factors reach 3.067% at the 1-month horizon and increase to 5.990% at

the horizon of 3 months, while they can even exceed 20% for the 6-month horizon. The 1-

year horizon is associated with bene�ts reaching 10.479% for combinations of the aggregate

factors and exceed 20% for combination forecasts of the decomposed ones. Our �ndings

with respect to the MPPMs of the respective portfolios are fully consistent with the ones

of utility gains.

3.6 Conclusions

In this paper, we study the forecasting ability of empirical factors; namely, the

value premium (HML), the size premium (SMB) and the momentum factors (MOM, LT

and ST) along with widely employed �nancial variables on U.S. bond and stock returns.

One of our contributions to the literature consists of the decomposition of these empirical

factors to their size and value components, investigating thus the size e¤ect on the value

and momentum premium and the value e¤ect on the size premium. Our �ndings suggest

that these empirical factors contain signi�cantly more information for future bond and stock

market returns than the typically employed �nancial variables, but the extent to which this

forecasting ability appears di¤ers.

To address the instability and time-variability of individual forecasts, we go one
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step further and combine them by employing a variety of combination methods. Speci�cally,

we construct forecasts on the basis of three simple combining methods; namely, the mean,

median and trimmed mean and two more advanced ones; the Discount Mean Square forecast

Error (DMSE) combining method, which is based on the historical performance of the

individual models, and the Cluster Combining method (CL), which is based on equal-sized

clusters related to past forecasting performance. The forecasting ability of combination

forecasts is assessed not only statistically, by means of the R2os statistic, which measures

the improvement of the MSFE of the proposed model over the MSFE of the benchmark

AR model forecast, but also economically by computing the performance fee that investors

would be willing to pay to have access to our methodology. In addition, we calculate

the risk-adjusted portfolio�s premium return (manipulation-proof performance measure) in

order to assess the most valuable model among the competing ones.

Our results provide evidence that combination forecasts based on decomposed

factors display superior forecasting ability relative to the forecasts based on typically em-

ployed �nancial variables at horizons ranging from the short run to the long run. This

performance is also evident from an asset allocation perspective. In particular, investors

can accrue positive utility gains by employing trading strategies based on forecasts produced

by the empirical factors, irrespective of the degree of relative risk aversion and borrowing

constraints. Finally, the robustness of our results is assessed by conducting the same tests

for markets outside the US. By employing data for the European and Japanese bond and

stock market, we �nd that the forecasting ability of combination forecasts formed on the

basis of the empirical factors is rather pervasive in these markets, as well.
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Chapter 4

Measuring portfolio risk: How size,

book-to-market and prior portfolio

performance are related to risk?

4.1 Introduction

Measuring portfolio risk is central in the area of portfolio management. The extant

literature focuses on identifying the adequate risk measure especially in the aftermath of

the recent �nancial crisis. During the recent years, a plethora of indices able to quantify

the embedded risk has been developed and, among the academics, there has been a debate

on the best way to quantify the risk of a portfolio of returns.

Since the analysis of Markowitz (1959), the standard deviation along with the

beta coe¢ cient are among the most popular risk measures, with the �rst one quantifying
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the total risk and the second one measuring systematic risk, re�ecting thus the sensitivity

of an asset to changes in market returns. However, both standard deviation and beta give

equal weight to upside and downside �uctuations, contrary to investors�appetite.

Facing this particular weakness of the traditional risk indices, alternative measures

that capture only the undesirable downside volatility, have been proposed. Speci�cally, the

introduction of the notion of downside risk, through which only the left part of a return

distribution is considered, has led to a variety of di¤erent risk measures, accommodating

di¤erent aspects of risk (Neil, 2001; Cheng et al., 2004). Downside risk measures have gained

the preference of practitioners due to the fact that the left part of a return distribution

involves risk, while the right part describes superior investment opportunities. To this

direction, Estrada (2006) studied from a calculation point of view two downside risk indices,

the semideviation and downside beta, which assess risk better than standard deviation,

especially for skewed return distributions. Similarly, Ang, Chen and Xing (2006) proved that

stocks characterized by high downside risk exhibit a premium in average returns, meaning

that risk-averse investors should require a premium to hold portfolios with high sensitivities

to market downturns. Alternative diversi�cations on downside risk measures have also

been suggested, with Barndor¤-Nielsen et al. (2009) proposing the realized semivariance,

a measure that is based on drawdown moves using high frequency data, with important

predictive qualities for future market volatility.

Another downside risk measure, used extensively by commercial banks for regu-

latory purposes under the Basel II Accord for years and insurance companies, as well, is

the Value-at-Risk (VaR), which was �rst introduced in 1994 by JP Morgan Bank. VaR ex-
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presses the expected maximum loss that may incur over a de�ned time horizon and within

a speci�ed con�dence interval. However, despite its popularity and its extensive use, this

risk index ignores losses exceeding the value of the estimated VaR and also violates the

diversi�cation e¤ect.

Shedding light to the limitations of VaR, Artzner et al. (1997, 1999), through

theoretical work, showed that VaR cannot be characterized as a coherent measure of risk,

since it does not satisfy the crucial in risk measurement subadditivity property, meaning

that diversi�cation has no e¤ect and even well diversi�ed portfolios require more regulatory

capital. Apart from that, VaR leads to inadequate capital requirements and large losses

due to its inability to capture large losses, especially in cases of extreme events of ruin.

To alleviate the problems inherent in VaR, Artzner et al. (1999) proposed an alternative

risk measure, the expected shortfall (ES) or tail conditional expectation, characterized by

a series of axioms, ensuring that riskier portfolios have higher values of risk if the employed

measure satis�es the proposed axioms. The ES risk index measures how much one can lose

on average beyond the VaR level, specifying what happens in those bad states. Consistent

with the analysis of Artzner et al. (1997, 1999), Yamai and Yoshiba (2002a) and Acerbi et

al. (2001) also proved that the expected shortfall is a superior alternative to the standard

Value-at-Risk, respecting the associated risk.

Similar analysis has been conducted by Acerbi (2004), who proposed the spectral

risk measures by specifying the user�s risk-aversion function. The ES could be thought

of as a special case of spectral risk measures, assigning the same weight on all losses in

the tail region, re�ecting a risk-neutral investor between tail-region outcomes. However,
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under the assumption of a risk-averse user, neither the ES nor the VaR can be thought

of as good risk measure, with the latter being an even worse risk measure as it can be

regarded as a risk-loving measure by giving zero weights to losses greater than VaR. ES

has also some disadvantages, such as the larger estimation errors1, which are proved to be

larger than those of VaR for fat-tailed distributions, as suggested by Yamai and Yoshiba

(2005). The same authors (2002b) also showed that the expected shortfall requires a larger

size of sample for its backtesting than VaR for the same level of accuracy. Comparing the

properties of di¤erent risk measures based on quantiles, with the VaR and ES being among

them, Dowd and Blake (2006) presented estimation methods along with various applications

of the employed measures attempting to determine the best risk measure. Adding to the

existing literature, Danielsson et al. (2013), standing up for VaR, suggested that VaR can

also be characterized as subadditive, with the exception for the fattest tails, which are highly

unlikely to be observed for the majority of assets, meaning that there is no decision-making

advantages to ES over VaR in most cases.

Apart from portfolio ranking, risk measures are also used for regulatory purposes.

In particular, under the accords of the Basel Committee on Banking Regulation, the banks�

exposure to risk has been assessed through the 10-day, 99th percentile VaR, which was

incorporated in the Basel II Capital Accord in 1999. However, a number of weaknesses

identi�ed with VaR, including its inability to capture �tail risk�, encouraged recently the

Committee to abandon this index. In an attempt to face the weaknesses of VaR, and under

the propositions of the academics, an alternative risk index has been considered, appropriate
1Estimation error is the natural variability due to limited sampling size. This phenomenon becomes more

intense for fat-tailed distribution, since large losses appear with high probabilities. Due to the fact that ES
is a¤ected by these realised losses, while VaR disregards loss beyond VaR level, the ES estimation varies
more due to the infrequent and large losses, for more fat-tailed distributions.
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to overcome the VaR�s inadequacy to measure risk e¢ ciently, especially during the unstable

economic circumstances. In recognition of the inability of the 10-day VaR to capture the

risk ex ante, the Committee, under the Basel III Accord2, decided to introduce the so-called

expected shortfall as a tool for assessing banks�exposure to risk. Additionally, the Com-

mittee proposed the decrease of con�dence level for the new employed risk measure, from

99% to 97.5%. As mentioned previously, ES accounts for tail risk in a more comprehensive

manner, as it measures the risk of a portfolio by considering both the size and likelihood of

losses above a certain threshold (e.g. the 99th percentile), expressing the portfolio loss one

expects to su¤er, given that the portfolio loss is equal or larger than its VaR.

Attempting to cover non-normal e¤ects, such as (negative) skewness and excess

kurtosis, which are evident in �nancial returns, new risk measures have been proposed. In

particular, Aumann and Serrano (2008) achieved to quantify the riskiness of a gamble by

assigning a real number as a measure of its riskiness, independently of the speci�c decision-

maker. The authors introduced the A/S economic index, de�ned as the reciprocal of the

absolute risk aversion (ARA) of an investor, which looks for the critical utility regardless

of wealth and, according to the de�nition of the authors, when riskiness increases, then

less risk-averse investors are expected to take riskier gambles. Hart (2009) also provided an

alternative approach that leads to the same index of riskiness, without the assumptions of

Aumann and Serrano analysis, based on a di¤erent set of behavioral axioms. Following the

aforementioned studies, Bali et al. (2011) proposed a generalized measure of riskiness ob-

tained by traded options, nesting both Aumann and Serrano (2008) index and that proposed

2Basel Committee on Banking Supervision (2012), �Fundamental review of the trading book�.
Basel Committee on Banking Supervision (2013), �Fundamental review of the trading book: A revised

market risk framework�.
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of Foster and Hart (2009). The proposed measure incorporates the market�s expectation

of future return distribution, providing asset allocation implications attributed to the em-

ployed traded options, as option prices. Compared with the ES risk measure, Shalit (2013)

evaluated Israeli mutual funds by employing coherent risk measures and concluded that

the A/S index of riskiness adds dimensions of risk related to skewness and leptokurtosis,

producing thus an unequivocal ranking of risky assets for all risk-averters, while the ES

index is adequate for risk evaluation in the lower tail of distributions.

Beyond the traditional and downside risk measures, another approach, based on

drawdowns occurring in stock prices, has also been proposed for risk measurement. In

particular, Chekhlov et al. (2005) introduced the conditional drawdown-at-risk measure and

also examined the properties of several drawdown measures. Adding to the this, Auer and

Schuhmacher (2013) conducted an empirical analysis by employing well de�ned drawdown

risk indices, introduced by Schuhmacher and Eling (2011), and constructed performance

measures for portfolio evaluation.

In our analysis, we employ the most widely used risk indices and quantify the

associated risk of the empirical Fama/French, reversal and momentum portfolios, revealing

thus a rank order respecting the underlying risk. The empirical analysis is implemented

for a 14-year period from January 2000 to December 2013 over the aforementioned factor

portfolios. Additionally, we contribute to the literature by revealing the connection between

speci�c stock characteristics, such as size, value and prior performance, and the incorporated

risk of these portfolios. Despite the popularity of these portfolios among both practitioners

and academics, due to their forecasting ability on stock and bond returns along with their
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positive mean portfolio returns, little research has been done with respect to the associated

risk and the implied ranking. To this aspect, Bakshi et al. (2011) proved that equity

premium, value spread, size spread, momentum spread, distress spread and excess returns

of some industries are negatively related to changes in risk, suggesting that investors should

reduce holdings in certain risky assets when risk increase. The same authors showed that

stock portfolios with high book-to-market, small capitalization and low momentum exhibit

a worse performance than portfolios with the opposite characteristics.

Our results indicate that the MOM factor portfolio appears to be the most risky

portfolio, while the long-term reversal factor can be characterized as low risk, according to

the majority of the risk measures employed. With respect to speci�c stock characteristics,

small-size and value stocks are related with portfolios of high risk, while prior high perfor-

mance, either momentum or reversal (long-term or short-term), is connected with low risk.

The robustness of our results are also checked by implementing the same analysis for an

extended sample period, from July 1963 to December 2013.

Beyond the portfolio ranking through di¤erent risk measures, this study also con-

tributes to the existing literature by examining whether the variety of the indices employed

leads to identical ranking results. From the empirical results, we conclude that portfolio

rankings produced by the traditional or the downside risk measures are very similar. How-

ever, when we measure risk by employing the A/S index of risk or any of the class of the

drawdown risk measures, we �nd a di¤erent rank order, which is attributed mainly to the

exhibited relatively low (high) kurtosis and/or excess kurtosis of the series of returns.

The remainder of the paper is structured as follows. Section 2 presents the risk
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indices employed. The data along with the empirical ranking results are discussed in Section

3. Section 4 reports the results of the robustness checks and Section 5 concludes.

4.2 Quantifying the embedded risk for portfolios of returns

4.2.1 Traditional measures of risk

Standard deviation, denoted as St:Devi, of portfolio of returns along with the

beta coe¢ cient, �i, are among the traditional risk indices in �nance since the analysis

of Markowitz, mainly due to the simple way of calculation along with their distribution

invariance. Standard deviation measures the dispersion of a distribution and has the main

advantage of being in the same units of measure as the random variable. Despite the

popularity of the standard deviation, this risk index exhibits weaknesses, such as: (i) it

ignores the direction of the movement of returns, as it measures the dispersion of returns

around its mean by taking into account both upside and downside movements, leading thus

to a false estimation of risk, especially for negatively skewed return distributions, (ii) it

fails to detect only losses, (iii) it does not take into account skewness, resulting thus to

misleading results and (iv) its risk estimation may be misleading in cases that the portfolio

risk level has changed, due to the fact that the portfolio�s risk is calculated by using past

returns.

With respect to the beta coe¢ cient, it depicts the correlation between portfolio

returns and the market and remains an appropriate measure of risk for diversi�ed investors

although it has weaknesses similar to those of standard deviation. Computationally, the

beta coe¢ cient is calculated by taking the expectation of the market model:
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Rit = ai + �iRMt + eit (4.1)

where Rit and RMt is the portfolio i and market returns, respectively, and eit is a random

error at time t, and then substituting for ai in the market model. Using the basic Capital

Asset Pricing Model (CAPM), developed by Sharpe (1964):

E(Ri) = Rf + �i(E(RM )�Rf ) (4.2)

where E(Ri) and E(RM ) is the average portfolio and market return, respectively, and Rf

is the risk-free interest rate of return, we have the econometric model of CAPM:

Rit �Rf = �i(RMt �Rf ) + eit (4.3)

which assumes that the market model along with the CAPM hold every period and the beta

coe¢ cient is stable over time. The beta coe¢ cient for a portfolio of returns is calculated

by the aforementioned regression using the OLS method and shows how intensively the

portfolio follows the market, with high values of beta indicating riskier portfolios of returns.

A portfolio with a high beta tends to go up substantially more than the market

when the market grows up, even if it does not tend to fall by more than the market, when

the market falls.

4.2.2 Downside risk indices

Downside risk indices, such as semi-standard deviation, Semi � sdi, considered

by Ogryczak and Ruszcizynski (1999), or the class of lower partial moments (LPMni) of
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order 1 and 3, de�ned by Harlow (1991), Value-at-Risk along with its Cornish-Fisher (1937)

expansion, Modified � V aRi
3; and expected shortfall, ESi, have been rapidly gained the

acceptance among both academics and practitioners due to the fact that they include only

negative deviations, incorporating thus movements associated exclusively with losses. The

aforementioned measures are computed for each of the portfolios i assumed as follows:

Semi� sdi =
p
E(max(E(Ri)�Ri; 0)2) (4.4)

LPMni = (1=N)

NX
i=1

max(E(Ri)�Ri; 0)n with order i = 1 and 3 (4.5)

where N represents the total number of observations. Note that the di¤erent

orders considered determine the extent to which the negative deviations from the mean

return of the portfolio are weighted.

With respect to the popular V aRi and ESi risk measures, we estimate them

considering 3 di¤erent con�dence levels (95%, 97.5% and 99%) consistent with the practical

regulatory implications and, under the assumption of normal distributed series of returns,

these risk indices are computed incorporating the estimated standard deviation of each

investment, as:

V aRi = za � �i (4.6)

ESi = (�i=(1� �)
p
2�)e�z

2
a=2 (4.7)

3This index of risk was introduced by Zangari (1996) to estimate parametric VaR.
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while theModified�V aRi risk index for non-normal series of returns is calculated

for the con�dence levels of 95%, 97.5% and 99%, as follows:

M � V aRi = �i(za + (z
2
a � 1)=6 + (z3a � 3za)Ei=24� (2z3a � 5za)S2i =36) (4.8)

where za is the a-quantile of the standard normal distribution, �i is the standard

deviation of the series assumed, Si is the skewness and Ei = ki � 3 the excess kurtosis of

the series of returns.

Semi-standard deviation

With respect to the semi-standard deviation, this risk measure takes into account

only negative deviations for its calculation, capturing thus the downside volatility for which

investors are averse and assessing risk better than standard deviation, especially when the

series distribution is skewed. Contrary to the standard deviation and the beta coe¢ cient

that both consider equal weights to upside and downside �uctuations, semi-deviation incor-

porates in its formula only movements associated with losses, accommodating thus di¤erent

views of risk, as denoted in the following formula:

Semi� sdi =

vuut 1

N � 1

NX
Rit<E(Ri)

(Rit � E(Ri))2 (4.9)

where N is the total number of observations of the portfolio series, Rit is the observed value

of portfolio i returns a time t, and E(Ri) is the average portfolio return. The use of the

speci�c risk index had also been mentioned at the analysis of Markowitz as an appropriate

measure one could use to e¢ ciently quantify the risk of an investment.
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Value-at-Risk

The famous Value at Risk, proposed by JP Morgan in 1994, is the most frequently

used downside risk index due to the fact that it can be applied to any �nancial series, leading

thus to a rank order for various portfolios regarding the risk of extreme events. More in

detail, VaR characterizes risk associated with the losses that a portfolio may su¤er and can

be alternatively de�ned as:

V aRa(x) = min(x j F (x) � a) (4.10)

which is translated as a threshold value such that the probability of the loss on a speci�c

portfolio over a given time horizon would exceed the probability a. Alternatively, the VaR

can be thought of as the value of the worst loss not to be exceeded with a probability

of at least 1 � a or as the maximum potential loss that a portfolio can su¤er in the (e.g.

95%) a% best cases in t days. In other words, VaR is the best of the worst cases scenario

underestimating thus losses associated with the speci�ed level of probability.

From a computational aspect, VaR can be estimated either parametrically (e.g.

variance-covariance approach), semi-parametrically (e.g. weighted historical simulated) or

nonparametrically (e.g. historical simulation or resampled approach). The method used

in our analysis for the estimation of VaR is the variance-covariance method, according to

which the VaR is estimated for di¤erent levels of con�dence (99%, 97.5% and 95%) by using

the standard deviation of the historical data under the assumption of normal distributed

series of returns, as follows:
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V aR99% = 2:33 � �i for 99% confidence leve (4.11)

V aR97:5% = 1:96 � �i for 97:5% confidence level (4.12)

V aR95% = 1:64 � �i for 95% confidence level (4.13)

By increasing the con�dence level, we expect to �nd higher VaR. We note that for

the 95% con�dence level, the standard deviation is multiplied with 1.64, corresponding to

the area under the standard normal curve between -1.64 and 1.64. As noted previously, for

the computation of VaR, one needs to specify the level of con�dence and the time horizon,

parameters, though chosen usually arbitrarily, that have an impact on the accuracy of the

computed risk. In particular, longer time horizons may include observations too old to be

meaningful. With respect to the con�dence level, it is chosen according to the purpose

of the risk estimate. For example, for capital-requirement purposes, the con�dence level

should be chosen at low level.

Concerning the alternative methods that could be used, the historical approach

simulates the distribution of a series by generating a set of scenarios for the possible values,

with no assumptions about the distribution of the series, requiring though a large database

and careful selection of the sampling period, while Monte Carlo simulation estimates VaR by

simulating scenarios generating them from a lognormal distribution, instead of generating

the scenarios from the historical distribution. The Monte Carlo approach estimates VaR by

simulating random scenarios and revaluing portfolio positions, and despite its accuracy, it
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is time consuming and requires a large number of simulations to get a good approximation

statistically signi�cant. On the other hand, the semi-parametric approach combines para-

metric and non-parametric methods by weighting di¤erently the observations according to

the changes in volatility or their age, making the newer ones more important to others.

However, despite the popularity of VaR, this risk index exhibits various limitations:

(i) it tells nothing about what one loses in excess of the VaR, underestimating thus risk-

return analysis, (ii) under the parametric approach, the VaR assumes that returns follow

a normal distribution and the tail is well predicted, whereas, assets may have fat tails and

may not follow a normal distribution, (iii) it is not subadditive, a property that plays a

fundamental role in measuring risk by causing a decrease in risk for diversi�ed portfolios,

meaning that the VaR of a combined portfolio could be larger than the sum of the VaRs of

its components and (iv) the underestimation of risk due to the fact that an extreme event

would be included to the computation of the value-at-risk after the damage has already

done.

Expected Shortfall

Taking into account that VaR fails to incorporate the severity of an incurred

damage event and does not consider diversi�cation e¤ect, meaning that the risk of a portfolio

can be larger than the sum of the stand-alone risks of its components when measured by

VaR, Artzner et al. (1997, 1999) proposed the use of a risk measure which satis�es all

the properties of coherence; namely, the expected shortfall (ES), which guarantees that the

portfolio diversi�cation is always positive. Speci�cally, the axioms of coherence are de�ned

below.
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We set as r(�) the employed risk measures, with x; y the portfolio positions and G

the set of all risks incorporated in the portfolios of interest. Any increase in the amounts

either in portfolio returns or in the estimated risk is indicated as a, while increases/decreases

in risk or in returns by a factor would be indicated by �. The proposed axioms are described

as follows:

Axioms of coherence

1. Translation invariance: if a 2 R, then r(x + a) = r(x) � a, which means that an

increase in total portfolio produces a decrease in the risk total measure by the same

amount.

2. Subadditivity: 8x; y 2 G, then r(x + y) � r(x) + r(y), which covers the meaning of

diversi�cation, meaning that by adding two portfolios does not generate any additional

risk4. The subadditivity condition suggests that a combined portfolio cannot be riskier

in the aggregate than the two portfolios standing apart. The aggregation of the two

portfolios should provide some diversi�cation bene�t and thereby lower overall risk.

3. Positive homogeneity : 8x 2 G and � 2 R, then r(�x) = �r(x), which implies that

smaller positions are less risky as being more liquid. Increasing a portfolio by a factor

implies corresponding increase for that risk. Increasing the size of any portfolio by a

positive factor requires increase in regulatory capital by the same factor.

4. Monotonicity : 8x; y 2 G with x � y, then r(x) � r(y) , meaning that if a portfolio

o¤ers higher returns than another portfolio in every conceivable economic state, then

4Diversi�cation means that the risk associated with two combined portfolios cannot exceed the risk of
the total portfolio.
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the risk associated with the �rst portfolio cannot be higher than the second portfolio,

and the regulatory capital required for the �rst portfolio must be less than or equal

to the regulatory capital required for the second one.

The expected shortfall is the loss one expects to su¤er given that the portfolio loss

is equal or larger than its VaR and, for con�dence level 1� a, is de�ned as:

ESa(x) = E(x j x � V aRa(x)) (4.14)

accounting for the losses beyond the con�dence interval. Alternatively, the ES could be

characterized as the average loss in the worst 100 � a% cases and under the assumption of

normal distributed returns could be computed by Eq. 4.7.

Estimating ES under the assumption of a Normal Distribution

Let fSN denote the standard normal distribution: fSN (x) = 1p
2�
e�

x2

2 : The scale-

family of the standard normal distribution, fN , which has a mean zero and a variance �t

that is allowed to change over time is:

fN (xt) =
1
�t
fSN (

xt
�t
) = 1

�t
p
2�
e
� x2t
2�2t

The derivation of ES is as follows:

ESa;t = E[Xt j xt � V aRa;t] =
E[xt�I(xt�V aRa;t)]

1�a = 1
1�a

R1
V aRa;t

xtfN (xt)dxt

= 1
1�a [

1
�t
p
2�

R1
V aRa;t

xte
� x2t
2�2t dxt] =

1
1�a

1
�t
p
2�

"
��2t e

� x2t
2�2t

#1
V aRa;t

= �t
(1�a)

p
2�
e
�
V aR2a;t

2�2t = �t
(1�a)

p
2�
e
� z2a�

2
t

2�2t = �t
(1�a)

p
2�
e�

z2a
2

Consistent with the analysis of Artzner et al. (1997, 1999), Acerbi et al. (2001) also

suggested that the mean of the worst cases beyond the level of VaR should better distinguish
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di¤erent levels of risk between various portfolios and they proposed the replacement of VaR

with ES for �nancial risk management purposes.

Taking all these into account, the Committee on Banking Regulation proposed the

replacement of the VaR by the expected shortfall as a risk measurement, as it accounts for

the losses beyond the con�dence interval (Basel III Accord).

Despite the fact that the ES is a coherent risk measure, this measure also has

limitations. In particular, it cannot be reliably backtested (crucial at Basel 2.5) in the sense

that forecasts of ES cannot be veri�ed through comparison with historical observations,

while VaR can easily be backtested. So it turns out that there is not one risk measure that

should be adequate in each case.

4.2.3 New approaches of risk evaluation

Another subbaditive risk index, rather popular, is the recently proposed Aumann

and Serrano (2008) index of riskiness, A=S ( or Modified � A=S), with respect to the

non-normal distributions, which quantify the risk of the Ri (or the excess Ri � Rf ) series

of returns, respectively, without referring to a speci�c utility function or preference order.

The economic interpretation of the index is straightforward; an increase in the index of

riskiness leads investors from being willing to hold an asset, no longer being willing to hold

it, and implies that less averse investors accept riskier gambles or less risk averse investors

are expected to invest in riskier assets. The A/S risk index is the positive number that

satis�es the following equation:
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E[exp(� Ri
A=S index

)] = 1 (4.15)

In our analysis, we also estimate the risk of the employed portfolios through the

Modified�A=S index, which is calculated as:

E[exp(� Ri �Rf
M �A=S index

)] = 1 (4.16)

From the above equations it appears that it is di¢ cult to come up with an accurate

estimate of the A/S index because a distribution estimate is necessary. The equation gives

a unique solution when there are negative outcomes and the expected value of the series is

greater than zero.

For normal distributions, the A/S index converges to �2i =(2E(Ri)), where the �
2
i

is the variance of the portfolio, inducing thus asymptotically the same ranking with that

of the standard deviation, while for series with low (high) skewness and/or relatively high

(low) excess kurtosis, the portfolio is ranked lower (higher) by the A/S than by the standard

deviation.

Under the suggestions of Aumann and Serrano (2008), a reasonable risk index

should satisfy the following axioms:

1. Duality : This property states that if an agent accepts a gamble at a �xed wealth, then

a uniformly less risk averse agent would accept any gamble with smaller risk index at

that wealth.

2. Positive homogeneity5

5Described in (3) of Axioms of coherence
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The A/S index of riskiness is de�ned as the reciprocal of the absolute risk aversion

(ARA) of an individual with constant ARA who is indi¤erent between taking and not taking

a gamble. The same authors proved that this index satis�es important properties, such as

monotonicity and subadditivity. In their analysis, the same authors also discussed the

relations between their risk measure and other risk measures proposed in literature, such

as the Sharpe ratio, the Value-at-Risk and the coherent risk measure proposed by Artzner

et al. (1999).

Compared with the traditional risk measures, which consider only the series dis-

persion and ignore the series�actual values, the A/S index of riskiness provides a better

characterization of the underlying true risk. Additionally, contrary to downside risk mea-

sures, such as the VaR and ES, which depend on a speci�ed con�dence level, the A/S index

does not require such assumptions. However, computationally, it is not easy to calculate

the A/S index, unless one knows the probability distribution to calculate the expectation.

4.2.4 Drawdown-based risk indices

Finally, portfolio risk can also be quanti�ed by employing indices based on draw-

down quantities, which are rather popular, especially among commodity traders, due to the

incorporated information about continually accumulated losses. Following Auer and Schuh-

macher (2013) and Schuhmacher and Eling (2011), the employed risk indices are calculated

on the basis of monthly excess returns:

zt = Rit �Rf;t for t = 1; :::; T (4.17)
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where Rit is the portfolio return from holding it during the period from the end of the

month t� 1 to the end of the month t and Rf;t is the corresponding risk-free interest rate

of return. In our analysis, we de�ne drawdown as the cumulated uncompounded excess

returns (CUERs), with the CUER from holding a portfolio from t = i to t = j with j > i

is given by:

zij = zi+1 + :::+ zj (4.18)

The drawdown-based measures used to quantify risk are the maximum drawdown,

de�ned as the largest negative cumulated uncompounded excess returns:

Max drawdowni = max
ij>i

(�zij) (4.19)

along with the mean of the K continuous drawdowns, cddi;k (k = 1; :::;K); which are the

CUERs that are not interrupted by a positive excess return for each portfolio i:

Cum:Drawdowni = (1=K)

KX
k=1

cddi;k (4.20)

Speci�cally, cdd1 is the largest, cdd2 is the second largest and cddK is the smallest

continuous drawdown taken into consideration. The maximum drawdown risk index can

also be seen as an upper bound for losses by investing on a speci�c portfolio during a certain

period and therefore can be characterized as a rather useful tool in determining risk.

Additionally, portfolio risk is also estimated by computing the index:

cdd2i =

vuut KX
k=1

cdd2i;k (4.21)
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Note that for the calculation of the aforementioned indices K is set equal to 5,

following the existing literature (Eling, 2008; Eling and Schuhmacher, 2007; Auer and

Schuhmacher, 2013).

For a speci�c portfolio i, the risk is assessed by employing two more indices,

which assign weights to drawdowns (only if there exist) from the previous peak, ddpit =

max1�i�t(�zit), and are computed using the following formulas:

ddpi = (1=T )

TX
t=1

ddpit (4.22)

ddp2i =

vuut(1=T ) TX
t=1

ddp2it (4.23)

with T being the total number of monthly observations. These risk measures can be calcu-

lated only if negative excess returns exist.

4.3 Empirical results on portfolio ranking

4.3.1 Data

The data used in the following analysis are monthly returns for the period from

January 2000 to December 2013 (168 observations) on the market portfolio (CRSP value-

weighted portfolio return), the risk-free interest rate of return (1-month T-bill returns from

Ibbotson and Associates, Inc.), the HML and SMB factors, the momentum (MOM), Long-

Term Reversal (LT) and Short-Term Reversal (ST) portfolios. Additionally, the dataset is

enriched with the smallest (size1) and the biggest (size10) portfolios among 10 portfolios
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formed by size, the lowest (BM1) and highest (BM10) one among the 10 decile portfo-

lios formed based on their book-to-market ratio, along with the lowest and highest ones

among the 10 prior-return-based portfolios, which are constructed using NYSE prior (2-

12), (13-60) and (1-1) returns, referred as mom1, mom10, LT1, LT10, ST1 and ST10,

respectively. The full dataset along with details about the construction of each portfolio

of returns is available at Kenneth French�s website (http://mba.tuck.dartmouth.edu/pages

/faculty/ken.french /data_library. html).

4.3.2 Risk assessment of the Fama/French portfolios

The present analysis contributes to the literature by assessing the popular HML,

SMB, MOM, LT and ST factors with respect to the underlying risk employing the most

widely used risk indices. The particular factor portfolios have gained acceptance during the

last years due to their performance, as they exhibit high forecasting ability on bond and

stock market returns. As depicted in Table 4.1, which reports the descriptive statistics of the

particular portfolios, they all evince positive mean return and are characterized as skewed

distributed with high kurtosis, with the SMB factor portfolio demonstrating the highest

kurtosis, followed by the MOM factor portfolio. With respect to the evinced skewness,

MOM is connected with negative, while the remaining series are positive skewed.

Turning to the ranking results produced by the di¤erent indices, Table 4.2 reports

that the MOM factor portfolio, constructed based on stocks�prior performance, exhibits the

highest risk, consistent with the standard deviation�s estimate of risk results. Speci�cally,

the ranking produced by the Value-at-Risk reveals the MOM factor as the most risky (sug-

gesting that the �winners�are relatively riskier than the �losers�). The LT factor portfolio
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Table 4.1: Descriptive statistics of the FF, reversal and momentum portfolios

Descriptive statistics Market HML SMB MOM LT ST
Mean 0.0045 0.0050 0.0042 0.0018 0.0026 0.0030
Median 0.0125 0.0030 0.0019 0.0037 0.0031 0.0008
Maximum 0.1134 0.1387 0.2202 0.1839 0.1096 0.1623
Minimum -0.1715 -0.1268 -0.1639 -0.3472 -0.0706 -0.1451
St. Dev. 0.0466 0.0340 0.0355 0.0593 0.0275 0.0434
Skewness -0.5890 0.0901 1.0000 -1.5389 0.4086 0.3624
Kurtosis 3.6511 6.4933 13.4155 11.5090 4.0422 6.0504

Notes: Bold and Italics indicate the highest and lowest value, respectively.

appears to be the least risky among the competing ones. As for the market portfolio of

returns, the empirical results evince that market could be characterized as a high-risk port-

folio, lying between the MOM and the ST factor portfolios. This rank order is maintained

irrespective of the con�dence level assumed.

Turning to the other risk measures, one can observe from Table 4.2 that this rank

order is preserved for the majority of them. In particular, with the exception of the Mod-

i�ed Value-at-Risk, M � V aR, the remaining risk indices provide identical ranking for the

portfolios assumed. As observed, even after penalizing excess kurtosis (or negative skew-

ness) by applying the Aumann-Serrano index along with its modi�cation, both measures

(A/S index and M-A/S index) produce identical results for the high-risk portfolios.

With respect to the ranking deviations, the M � V aR indices, irrespective of the

con�dence level assumed (95%, 97.5% and 95%), lead to a di¤erent rank order for the high-

risk portfolios, attributed to the rather high skewness and excess kurtosis of the SMB and

MOM factor, as depicted in Table 4.1.

Additionally, the risk computed by both the A/S indices reveals di¤erences in

ranking for low-risk portfolios, which is attributed to the penalty imposed for skewness and



101

Table 4.2: Risk indices on the FF, reversal and momentum portfolios

Risk indices Market HML SMB MOM LT ST
Beta 1.0000 -0.0762 0.2289 -0.4696 0.0833 0.3323
Semi-sd 0.0357 0.0236 0.0231 0.0471 0.0186 0.0292
VaR 99% 0.1085 0.0791 0.0827 0.1383 0.0642 0.1011
VaR 97.5% 0.0913 0.0665 0.0696 0.1163 0.0540 0.0850
VaR 95% 0.0764 0.0557 0.0582 0.0973 0.0452 0.0711
M-VaR 99% 0.0893 0.1092 0.1827 0.1367 0.0775 0.1417
M-VaR 97.5% 0.0780 0.0761 0.1067 0.0872 0.0606 0.1007
M-VaR 95% 0.0678 0.0540 0.0598 0.0585 0.0477 0.0727
ES 99% 0.1231 0.0897 0.0939 0.1569 0.0728 0.1147
ES 97.5% 0.1089 0.0794 0.0830 0.1388 0.0644 0.1014
ES 95% 0.0969 0.0706 0.0739 0.1234 0.0573 0.0902
A/S index 0.2473 0.1159 0.1427 1.0182 0.1394 0.3078
M-A/S index 0.3888 0.1701 0.2380 10.2900 0.3799 0.6920
LPM1 0.0181 0.0116 0.0119 0.0189 0.0107 0.0142
LPM3 0.0001 0.0000 0.0000 0.0005 0.0000 0.0001
Max drawdown 0.6357 0.1329 0.0637 0.2369 0.0629 0.2122
Cum.drawdown 0.5930 0.0606 0.0412 0.2160 0.0531 0.1323
cdd2 1.7625 0.0235 0.0101 0.2345 0.0144 0.1003
ddp 0.2018 0.1072 0.1020 0.3270 0.2074 0.1436
ddp2 0.0714 0.0207 0.0175 0.1535 0.0632 0.0374

Notes: Bold and Italics indicate the most and least risky portfolio, respectively.

excess kurtosis. Turning to the drawdown measures, Table 4.2 also depicts that they lead

to a di¤erent rank order due to the incorporated information of continually accumulated

losses.

Although most of the employed indices, apart from a few exceptions, imply iden-

tical rankings for the employed portfolios, some of them are proved inadequate to assess

risk portfolio under certain conditions. In particular, in cases of extraordinary high returns,

the popular standard deviation would be higher than the drawdown indices, overestimating

thus the associated risk of the investment.
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Table 4.3: Descriptive statistics of the size and B/M portfolios

Descriptive statistics size1 size10 BM1 BM10
Mean 0.0037 0.0030 0.0030 0.0097
Median 0.0098 0.0080 0.0085 0.0127
Maximum 0.1044 0.1066 0.1121 0.3669
Minimum -0.1598 -0.1487 -0.1620 -0.2813
St. Dev. 0.0446 0.0444 0.0496 0.0716
Skewness -0.5134 -0.4530 -0.5223 0.0295
Kurtosis 3.6495 3.5055 3.6672 7.1920
Notes: Bold and Italics indicate the highest and lowest value,

respectively.

4.3.3 How size, book-to-market and prior stock performance are related

to risk?

Attempting to investigate whether speci�c stock characteristics, such as size, book-

to-market or previous stock performance, can have a systematic impact on the estimated

risk of speci�c portfolios of returns, we employ ten (10) di¤erent empirical portfolios of

returns; each one characterized by either small or big size, low or high book-to-market

and low or high prior stock performance. Table 4.3 presents the descriptive statistics of

these portfolios, revealing positive mean return for all of them. With respect to the size-

based portfolios, Table 4.3 depicts that both of them are negatively skewed with excess

kurtosis, with the small-size (size1) portfolio exhibiting these characteristics intensively.

With respect to the book-to-market e¤ect, the portfolio of value stocks (BM10) evinces

positive skewness and the highest kurtosis among the size and book-to-market portfolios.

The implied ranking produced by the standard deviation (ST:Dev) indicates that stocks of

high book-to-market or small size could be characterized as more risky relative to stocks of

the opposite characteristics.
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Table 4.4: Risk indices on size and B/M portfolios

Risk indices size1 size10 BM1 BM10
Beta 0.9460 0.9316 1.0041 1.2636
Semi-sd 0.0338 0.0334 0.0375 0.0520
VaR 99% 0.1039 0.1035 0.1155 0.1668
VaR 97.5% 0.0874 0.0870 0.0972 0.1403
VaR 95% 0.0731 0.0728 0.0813 0.1174
M-VaR 99% 0.0894 0.0904 0.0991 0.2391
M-VaR 97.5% 0.0768 0.0777 0.0852 0.1620
M-VaR 95% 0.0659 0.0665 0.0731 0.1117
ES 99% 0.1179 0.1174 0.1310 0.1893
ES 97.5% 0.1043 0.1038 0.1159 0.1674
ES 95% 0.0928 0.0923 0.1031 0.1489
A/S index 0.2744 0.3306 0.4111 0.2671
M-A/S index 0.0500 0.0500 0.0500 0.0500
LPM1 0.0170 0.0169 0.0189 0.0257
LPM3 0.0001 0.0001 0.0001 0.0004
Max drawdown 0.7117 0.7982 0.9309 0.3434
Cum.drawdown 0.6410 0.7127 0.8689 0.3105
cdd2 2.0615 2.5501 3.7808 0.4854
ddp 0.2536 0.3193 0.4362 0.1418
ddp2 0.0962 0.1357 0.2480 0.0569

Notes: Bold and Italics indicate the most and least risky
portfolio, respectively.

Turning to the risk assessment through the remaining measures, as shown in Table

4.4, our analysis leads to results consistent with those of standard deviation, revealing that

low market capitalization (size1) along with value stocks (BM10) create high-risk portfolios.

Similar to the results of Table 4.2, the 3 variations of M � V aR, both A/S indices and the

drawdown-based risk measures produce alterations in rank order, attributed to either the

excess kurtosis and skewness or to the considered continuous losses.

In particular, the A/S index depicts an inverse rank order among the size and

value portfolios, with the growth-stock (BM1) portfolio appearing as the most risky and
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Table 4.5: Descriptive statistics of the prior-performance portfolios

Descriptive statistics mom1 mom10 LT1 LT10 ST1 ST10
Mean 0.0032 0.0066 0.0115 0.0049 0.0041 0.0016
Median 0.0046 0.0180 0.0118 0.0102 0.0116 0.0066
Maximum 0.4577 0.2310 0.2261 0.1288 0.2741 0.2148
Minimum -0.2609 -0.2463 -0.1881 -0.2226 -0.2971 -0.1758
St. Dev. 0.1096 0.0648 0.0748 0.0608 0.0902 0.0610
Skewness 0.7667 -0.4284 -0.0603 -0.6642 -0.4371 -0.0891
Kurtosis 6.0902 4.5298 3.2087 4.0252 4.8294 3.8551

Notes: Bold and Italics indicate the highest and lowest value, respectively.

the portfolio with high book-to-market (BM10) stocks being the least risky one among the

competing ones. The same index produces a di¤erent rank order for the size portfolios, as

well. TheModified�V aR risk measures give a di¤erent rank order only for size portfolios,

revealing the big-size portfolio (size10) as the riskier compared to the small-size (size1) one.

Di¤erences are also induced by applying the drawdown risk measures, through which we

conclude that high risk is connected to stocks of low book-to-market and big size.

Turning to portfolios constructed based on their, low or high, prior momentum

or reversal performance, Table 4.5 presents their descriptive statistics, revealing once again

the main characteristic of the employed portfolios, their positive mean return. The same

table evinces that portfolios constructed based on prior-stock performance exhibit skewness

and excess kurtosis. Regarding the associated risk, the portfolio of low momentum (mom1)

appears to be the most risky among the 6 prior-performance employed portfolios, according

to the standard deviation, while the portfolio with the high long-term reversal performance

(LT10) is proved to be the least risky.

This ranking order is preserved by computing the associated risk through the

remaining risk indices, as presented in Table 4.6. Speci�cally, the results indicate that the
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Table 4.6: Risk indices on the prior-performance portfolios

Risk indices mom1 mom10 LT1 LT10 ST1 ST10
Beta 1.9247 1.0842 1.3476 1.1957 1.6943 1.0953
Semi-sd 0.0722 0.0487 0.0533 0.0464 0.0675 0.0444
VaR 99% 0.2553 0.1510 0.1742 0.1417 0.2102 0.1422
VaR 97.5% 0.2147 0.1270 0.1466 0.1192 0.1768 0.1196
VaR 95% 0.1797 0.1063 0.1226 0.0997 0.1479 0.1001
M-VaR 99% 0.3727 0.1493 0.1745 0.1164 0.2135 0.1503
M-VaR 97.5% 0.2684 0.1189 0.1455 0.1004 0.1670 0.1205
M-VaR 95% 0.1950 0.0961 0.1210 0.0866 0.1330 0.0974
ES 99% 0.2896 0.1713 0.1976 0.1608 0.2385 0.1613
ES 97.5% 0.2562 0.1515 0.1748 0.1422 0.2109 0.1427
ES 95% 0.2279 0.1348 0.1555 0.1265 0.1876 0.1269
A/S index 1.8381 0.3265 0.2432 0.3895 1.0026 1.1486
M-A/S index 0.0500 0.4354 0.2846 0.5865 1.6878 41.0100
LPM1 0.0375 0.0245 0.0287 0.0233 0.0314 0.0235
LPM3 0.0009 0.0003 0.0004 0.0003 0.0009 0.0002
Max drawdown 1.6878 0.4917 0.1188 0.7972 1.1802 1.0998
Cum.drawdown 1.4399 0.4648 0.0648 0.7684 0.9419 1.0512
cdd2 10.4481 1.0814 0.0170 2.9543 4.5125 5.5285
ddp 0.3882 0.2484 0.1216 0.2986 0.3370 0.5474
ddp2 0.2834 0.1101 0.0374 0.1553 0.2030 0.3562
Notes: Bold and Italics indicate the most and least risky portfolio, respectively.

implied ranking is preserved for high-risk portfolios, with the exception of the M � A=S

index and the ddp2 risk measure, with the portfolio of low momentum (mom1) appearing

as the most risky among the competing ones.

Concerning the high and low LT reversal portfolios, apart from the drawdown-

based risk measures and both A/S indices, the remaining indices reveal that low long-term

reversal (LT1) e¤ect is related to high risk, compared to the opposite e¤ect. Similar relative

risk-based ranking is obtained for the portfolios constructed according to prior short-term

reversal performance, as well. With respect to the rank order produced by the A/S risk

indices and the drawdown-based ones, the exhibited di¤erences in risk measurement induced
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by the associated skewness and kurtosis of the portfolios assumed and the incorporated

information of the continuous losses, respectively.

To sum up, the evidence in this section suggests that high risk is attributed to

speci�c return characteristics and this portfolio attitude is revealed by the majority of the

applied risk indices.

4.4 Robustness evidence

In this section, we investigate whether our ranking results, produced by the various

risk measures6 are robust.

From Table 4.7, one can notice that the speci�c portfolios evince positive mean

returns even after extending the sample, reinforcing thus the necessity for further analysis

on these factors. Consistent with the results of Table 4.1, the MOM factor portfolio appears

to be the most risky among the competing Fama/French and reversal portfolios according

to the St:Dev risk measure, while the LT reversal portfolio seems to incorporate low risk.

In Table 4.8, we report the estimated risk of these portfolios computed by using

the full set of risk measures. Apart from the market portfolio, which appears to be the

most risky portfolio now, the momentum factor is ranked high in the risk order, while

the LT portfolio of returns exhibits low risk compared to the other portfolios. The results

indicate that the implied rank order produced by employing the di¤erent risk indices remains

almost una¤ected, meaning that di¤erent measures produce identical ranking, with a few

exceptions, irrespective of the sample size assumed.

6The data used are monthly returns for the series used in the previous sections extend from July 1963 to
December 2013, consisting now of 606 observations.
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Table 4.7: Descriptive statistics of the FF, reversal and momentum portfolios (1963-2013)

Descriptive statistics Market HML SMB MOM LT ST
Mean 0.0091 0.0037 0.0026 0.0070 0.0031 0.0051
Median 0.0126 0.0036 0.0009 0.0078 0.0017 0.0035
Maximum 0.1661 0.1387 0.2202 0.1839 0.1447 0.1623
Minimum -0.2264 -0.1268 -0.1639 -0.3472 -0.0778 -0.1451
St. Dev. 0.0447 0.0288 0.0311 0.0426 0.0253 0.0316
skewness -0.5175 -0.0024 0.5386 -1.4217 0.6340 0.3688
kurtosis 4.9233 5.5695 8.5955 14.0732 5.6320 8.5980

Notes: Bold and Italics indicate the highest and lowest value, respectively.

Table 4.8: Risk indices on the FF, reversal and momentum portfolios (1963-2013)

Risk indices Market HML SMB MOM LT ST
Beta 1.0000 -0.1900 0.2168 -0.1173 -0.0090 0.2054
Semi-sd 0.0334 0.0203 0.0210 0.0331 0.0167 0.0213
VaR 99% 0.1042 0.0670 0.0724 0.0992 0.0589 0.0736
VaR 97.5% 0.0877 0.0564 0.0609 0.0835 0.0496 0.0619
VaR 95% 0.0734 0.0472 0.0509 0.0699 0.0415 0.0518
M-VaR 99% 0.1029 0.0844 0.1223 0.1331 0.0826 0.1223
M-VaR 97.5% 0.0809 0.0614 0.0794 0.0746 0.0602 0.0790
M-VaR 95% 0.0648 0.0456 0.0518 0.0413 0.0444 0.0513
ES 99% 0.1182 0.0761 0.0821 0.1126 0.0668 0.0835
ES 97.5% 0.1046 0.0673 0.0726 0.0996 0.0591 0.0739
ES 95% 0.0930 0.0598 0.0646 0.0886 0.0526 0.0657
A/S index. 0.1210 0.1122 0.1820 0.1546 0.0740 0.1018
M-A/S index 0.2100 5.1700 20.5300 0.3543 10.2900 0.5088
LPM1 0.0170 0.0104 0.0113 0.0141 0.0094 0.0105
LPM3 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000
Max drawdown 0.2258 0.9526 1.5893 0.0000 0.9902 0.0044
Cum.drawdown 0.1324 0.8681 1.5536 0.0000 0.9703 0.0035
cdd2 0.1015 3.7801 12.0708 0.0000 4.7079 0.0000
ddp 0.1342 0.4108 1.0489 0.1790 0.6234 0.2840
ddp2 0.0400 0.2380 1.4712 0.0618 0.5804 0.1309

Notes: Bold and Italics indicate the most and least risky portfolio, respectively.
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Table 4.9: Descriptive statistics of the size and B/M portfolios (1963-2013)

Descriptive statistics size1 size10 BM1 BM10
Mean 0.0087 0.0085 0.0083 0.0134
Median 0.0112 0.0106 0.0091 0.0152
Maximum 0.1812 0.1812 0.2303 0.3669
Minimum -0.2031 -0.1972 -0.2274 -0.2813
St. Dev. 0.0428 0.0426 0.0513 0.0589
skewness -0.3736 -0.3455 -0.2091 0.0343
kurtosis 4.7685 4.7085 4.4411 7.6915
Notes: Bold and Italics indicate the highest and lowest value,
respectively.

Table 4.10: Descriptive statistics of the prior-performance portfolios (1963-2013)

Descriptive statistics mom1 mom10 LT1 LT10 ST1 ST10
Mean 0.0021 0.0154 0.0134 0.0088 0.0102 0.0065
Median 0.0018 0.0180 0.0115 0.0118 0.0116 0.0077
Maximum 0.4577 0.2310 0.3917 0.2551 0.3493 0.2444
Minimum -0.2609 -0.2674 -0.2994 -0.2441 -0.2971 -0.2711
St. Dev. 0.0806 0.0624 0.0666 0.0596 0.0733 0.0552
skewness 0.6449 -0.4108 0.2676 -0.3527 -0.2665 -0.2521
kurtosis 7.3741 4.8135 5.9421 4.3788 5.9593 5.0682

Notes: Bold and Italics indicate the highest and lowest value, respectively.

With respect to the big and small-size portfolios along with the portfolios formed

by value or growth stocks, Table 4.9 shows that they also exhibit positive mean returns,

excess kurtosis and skewness, consistent with the results of Table 4.3. By computing the

descriptive statistics for the portfolios based on stock prior-performance, presented in Table

4.10, we conclude to similar results concerning the skewness and kurtosis of the aforemen-

tioned portfolios compared with the descriptive statistics of Table 4.5.

The robustness of the ranking results for these portfolios is investigated by comput-

ing the underlying risk of the size-based, value-based and prior-perforrmance-based portfo-
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Table 4.11: Risk indices on the size and B/M portfolios (1963-2013)

Risk indices size1 size10 BM1 BM10
Beta 0.9434 0.9268 1.0654 1.0711
Semi-sd 0.0315 0.0313 0.0371 0.0423
VaR 99% 0.0997 0.0992 0.1195 0.1373
VaR 97.5% 0.0839 0.0834 0.1005 0.1155
VaR 95% 0.0702 0.0698 0.0841 0.0966
M-VaR 99% 0.1035 0.1035 0.1281 0.2040
M-VaR 97.5% 0.0806 0.0807 0.1002 0.1355
M-VaR 95% 0.0640 0.0640 0.0795 0.0914
ES 99% 0.1131 0.1125 0.1355 0.1558
ES 97.5% 0.1001 0.0995 0.1199 0.1378
ES 95% 0.0890 0.0885 0.1066 0.1226
A/S index. 0.1120 0.1140 0.1620 0.1381
M-A/S index 0.2090 0.2142 0.3269 0.1928
LPM1 0.0161 0.0160 0.0195 0.0212
LPM3 0.0001 0.0001 0.0001 0.0002
Max drawdown 0.2535 0.2519 0.1069 0.0357
Cum.drawdown 0.1489 0.1477 0.0395 0.0357
cdd2 0.1273 0.1258 0.0128 0.0013
ddp 0.1487 0.1713 0.2813 0.1057
ddp2 0.0463 0.0588 0.1371 0.0317

Notes: Bold and Italics indicate the most and least risky
portfolio, respectively.

lios using the full set of the employed risk measures. The implied thus rank order of these

portfolios is depicted in Tables 4.11 and 4.12, which show that the value-stock (BM10)

portfolio still remains high in the rank order respecting the associated risk, while the least

risky portfolio appears to be the portfolio of big-size (size10) stocks, consistent with the

results of Table 4.4. Turning to Table 4.12, the results imply that the low momentum

(mom1) portfolio is connected with high risk, similar to the realizations of Table 4.6, while

di¤erences in rank order are evident for the low risk portfolio, which now is appeared to be

the portfolio based on stocks with high short-term (ST10) prior reversal performance.
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Table 4.12: Risk indices on the prior-performance portfolios (1963-2013)

Risk indices mom1 mom10 LT1 LT10 ST1 ST10
Beta 1.4409 1.1827 1.2064 1.2350 1.4388 1.0638
Semi-sd 0.0542 0.0462 0.0458 0.0439 0.0534 0.0403
VaR 99% 0.1878 0.1454 0.1551 0.1389 0.1708 0.1286
VaR 97.5% 0.1580 0.1223 0.1304 0.1168 0.1437 0.1082
VaR 95% 0.1322 0.1023 0.1091 0.0977 0.1202 0.0905
M-VaR 99% 0.2966 0.1491 0.2126 0.1399 0.2055 0.1439
M-VaR 97.5% 0.2019 0.1164 0.1516 0.1114 0.1485 0.1089
M-VaR 95% 0.1388 0.0925 0.1099 0.0899 0.1100 0.0841
ES 99% 0.2131 0.1649 0.1759 0.1575 0.1937 0.1459
ES 97.5% 0.1885 0.1459 0.1556 0.1393 0.1714 0.1291
ES 95% 0.1676 0.1298 0.1384 0.1239 0.1524 0.1148
A/S index. 1.6100 0.1397 0.1660 0.2060 0.2807 0.2320
M-A/S index 18.5220 0.1859 0.2379 0.3950 0.4655 0.6900
LPM1 0.0283 0.0236 0.0246 0.0227 0.0263 0.0209
LPM3 0.0004 0.0003 0.0003 0.0002 0.0005 0.0002
Max drawdown 3.1836 0.0001 0.0023 0.6247 0.0000 0.5068
Cum.drawdown 2.9357 0.0001 0.0023 0.4984 0.0000 0.4463
cdd2 43.1726 0.0000 0.0000 1.2627 0.0000 1.0017
ddp 1.6864 0.1451 0.1216 0.2796 0.1918 0.3950
ddp2 3.4804 0.0502 0.0360 0.1488 0.0876 0.2310

Notes: Bold and Italics indicate the most and least risky portfolio, respectively.

With respect to the ranking deviations, M � V aR along with the A=S and the

drawdown-based indices produce di¤erent ranking for the employed portfolios compared to

the ranking results produced by the remaining risk measures, an attitude that is consistent

to their performance depicted in our main analysis.

To sum up, we prove that the majority of the employed risk measures produce

identical ranking results. The choice thus of the risk measure does not a¤ect the implied

rank order among the di¤erent portfolios, proving once again that the characterization of

an investment as risky or not is not a¤ected by the measure employed, apart from a few

exceptions.
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4.5 Conclusions

In this study we employ a plethora of di¤erent risk indices used extensively in

literature to measure risk. The contribution of this analysis to the literature consists to

ranking the empirical Fama/French, reversal and momentum factor portfolios with respect

to the incorporated risk, by applying not only traditional risk measures, such as the standard

deviation or the beta factor, but also more sophisticated ones, covering di¤erent aspects

of risk (e.g. downside risk measures or drawdown-based ones). Although these portfolios

are broadly used in forecasting stocks and bond returns due to their signi�cant predictive

ability, there has not been su¢ cient literature on their risk-based ranking.

Our results suggest that, among the employed factors, the MOM factor appears

as a high-risk portfolio, while the HML and LT factors are related with low risk. This

performance is evident not only by the traditional risk measures, but also by downside risk

indices. On the other hand, risk indices based on drawdowns along with theModified�V aR

lead to di¤erent rank order for high-risk portfolios. Di¤erences in the implied rank order are

induced by applying the A/S indices, as well, for the cases of low-risk portfolios, attributed

to the considered skewness and kurtosis.

This study also contributes to the literature by establishing a connection between

size, book-to-market ratio and stock prior performance with the underlying risk of portfolios

with these speci�c characteristics. Our �ndings suggest that portfolios constructed by small-

size or high book-to-market stocks are related with high risk, evidence which is provided

by almost all the indices employed, signalling thus that the choice of the measure does not

change the ranking result. Concerning the portfolios based on stocks�prior performance,
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ranking results reveal that portfolios of low momentum or reversal (either long-term or

short-term) are related with high risk. Providing evidence for an almost identical rank

order, independently of the index applied, through our empirical analysis, we suggest that

an investor could use any of the traditional or downside risk measures to estimate his

portfolio risk or rank di¤erent investments, respecting their associated risk.

Finally, the same risk measures are applied for an extended data sample, checking

thus the robustness of our results. The analysis reveals that the rank order among the

di¤erent portfolios is maintained regardless of the sample assumed and evinces that the

choice of the employed measure does not produces di¤erences in rank order among the

portfolios, as well.

However, identical ranking with respect to the associated risk may lead to di¤erent

portfolio performance ranking respecting their risk-adjusted returns, which is an issue that

needs to be investigated.
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Chapter 5

Performance Evaluation of Size,

Book-to-Market and Momentum

Portfolios

5.1 Introduction

In recent years, risk measurement is one of the topics of concern not only for

�nancial institutions, due to the regulatory restrictions under the Basel II Capital Accord,

but also for fund managers and the academic community. The ability of a performance

measure to consistently compare di¤erent portfolios concerning their level of risk along

with the fact that a performance measure should be easily understood and applied makes

the choice of an appropriate measure rather important.

The construction of a performance measure demands an appropriate index that
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should quantify the associated risk. Apart from the traditional ones, such as the beta

coe¢ cient and the standard deviation, various speci�cations have been proposed to cover

the evinced skewness and kurtosis of returns. Speci�cally, the introduction of downside risk

indices, such as the Value-at-Risk, the Expected shortfall and the semi-standard deviation,

through which only the left hand side of a return distribution is used to measure risk, has led

to a plethora of risk-adjusted performance measures, adequate to rank investment portfolios.

Moreover, a variety of new performance measures has also been developed accounting for

di¤erent aspects of the incorporated risk, such as the economic performance measure of

Goetzmann et al. (2007) and that of Homm and Pigorsch (2012) along with a variety of

recently developed measures based on drawdown of portfolio returns.

Over the last decade, there has been a debate on the choice of the appropriate

performance measure. Consistent with Phingsten et al. (2004), Eling and Schuhmacher

(2005) and Eling (2008) suggested that di¤erent risk measures provide similar ranking re-

sults. Complementary to the analysis of Eling and Schuhmacher (2007), who investigated

whether the choice of the risk measure a¤ects the ranking performance of hedge funds by

comparing 13 di¤erent risk measures, Auer and Schuhmacher (2013) also report similar

�ndings about the rank order of di¤erent assets. Contrary to these analyses, Ornelas et

al. (2012) and Zakamouline (2011) argued that the evaluation of investment funds is in�u-

enced by the measure employed. In particular, Zamakouline (2011) proved that the rank

correlation between the Sharpe Ratio and other measures decreases for higher values of

skewness.

In the present analysis, we compute an extensive set of performance measures,
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ranging from traditional ones to more complicated ones. Contrary to earlier studies, this

analysis focuses on the performance evaluation of empirical portfolios, the Fama/French,

reversal and momentum factors, used by fund traders and other practitioners to forecast and

evaluate stock, bond, mutual funds and hedge funds returns. Despite the forecasting ability

of these portfolios, limited literature is available concerning their performance relative to

the associated risk, with the exception of Bakshi et al. (2011), who showed that changes in

risk are negatively related to the equity premium, value spread, size spread and momentum

spread and proved that an increase in risk is connected with an underperformance of stock

portfolios with high book-to-market, small capitalization and low momentum. The ranking

results of the present analysis show that the MOM factor underperforms, while the HML

and SMB factors evince as high-performance portfolios. This classi�cation is maintained

when employing either the traditional or the downside measures. However, when drawdown-

based performance measures are applied, the performance results reveal some di¤erences in

the rank order of the competing portfolios.

Apart from ranking the aforementioned portfolios, this study contributes to the

literature by establishing a link between (small and big) size, (low and high) book-to-market

ratio (B/M) and prior-return of stocks and the exhibited performance of speci�c portfolios.

Our ranking results suggest that small and high B/M portfolios appear as high-performance

investments, while high momentum and low long-term and short-term reversal portfolios are

connected with lower performance. This performance is evinced not only by the traditional

performance measures, but also by the downside and the more sophisticated ones providing

identical ranking, with minor exceptions.
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The remainder of the paper is organized as follows. Section 2 illustrates the per-

formance measures used to evaluate portfolios. Section 3 focuses on the data used and

provides the ranking results. Finally, Section 4 reports the robustness analysis and Section

5 summarizes the main results and concludes.

5.2 Performance measures for portfolio evaluation

5.2.1 Traditional performance measures

For decades, the performance of a portfolio was under evaluation through measures

that quanti�ed the embedded risk via the estimated standard deviation or the beta factor.

Representative performance measures of this category are the Jensen (JR), the Treynor

ratio (TR) and the Sharpe ratio (SR) (see Jensen, 1968, Treynor, 1965 and Sharpe, 1966),

with the �rst two being calculated on the basis of the correlation between the portfolio

returns and market returns; namely, the beta factor �i, and the last one employing the

standard deviation �i of portfolio returns, as follows:

JRi = E(Ri)� E(Rf )� �i[E(RM )� E(Rf )] (5.1)

TRi = [E(Ri)� E(Rf )]=�i (5.2)

SRi = [E(Ri)� E(Rf )]=�i (5.3)

where E(Ri), E(RM ) and E(Rf ) is the average portfolio, market and risk-free
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interest rate return, respectively.

Additionally, a modi�cation of the SR that employs the standard deviation of

excess returns, proposed by Treynor and Black (1973) is included in the present analysis:

IRi = [E(Ri)� E(Rf )]=��i (5.4)

5.2.2 Downside performance measures

Downside risk indices, such as semi-standard deviation or lower partial moments

(LPM) of order 1 and 3, Value-at-Risk along with its Cornish-Fisher expansion and expected

shortfall, have rapidly gained acceptance among both academics and practitioners due to the

fact that they include only negative deviations, incorporating thus movements associated

exclusively with losses.

Based on these risk indices, a variety of performance ratios have been introduced,

among of which are the Sortino Ratio, introduced by Sortino and Price (1994), which

incorporates the semi-standard deviation of portfolio i of returns:

sdi =
p
E(max(E(Ri)�Ri; 0)2); (5.5)

the Shadwick and Keating (2002) Omega Ratio and the Kaplan and Knowles (2004) Kappa3

Ratio, which incorporate LPM of order 1 and 3 for the full sample of returns (N represents

the total number of observations), respectively, given by:

LPMni = (1=N)

NX
i=1

max(E(Ri)�Ri; 0)n (5.6)



118

The downside performance measures are given by the following formulas:

Sortinoi = [E(Ri)� E(Rf )]=sdi (5.7)

Omegai = 1 + [E(Ri)� E(Rf )]=LPM1i (5.8)

Kappa3i = [E(Ri)� E(Rf )]= 3
p
LPM3i (5.9)

Additionally, this analysis employs the generalized Sharpe Ratio, G_SR, proposed

by Dowd (2000), the Gregoriou and Gueyie (2003) modi�ed Sharpe ratio, M_SR, and the

Conditional Sharpe ratio, C_SR, proposed by Agarwal and Naik (2004):

G� SRi = [E(Ri)� E(Rf )]=V aRi (5.10)

M � SRi = [E(Ri)� E(Rf )]=MV aRi (5.11)

C � SRi = [E(Ri)� E(Rf )]=ESi (5.12)

With respect to the employed V aRi and ESi, these are estimated under the as-

sumption of normal distributed series of returns, as:

V aRi = za�i (5.13)



119

ESi = (�i=(1� �)
p
2�)e�z

2
a=2 (5.14)

while the MV aRi risk index for non-normal series of returns as:

MV aRi = �i(za + (z
2
a � 1)=6 + (z3a � 3za)Ei=24� (2z3a � 5za)S2i =36) (5.15)

where za = 2:33 is the a = 99%-quantile of the standard normal distribution, Si the skewness

and Ei = ki � 3 the excess kurtosis of the series of returns.

5.2.3 New approaches of performance measures

Two more performance measures are employed, the one proposed by Goetzmann

et al. (2007), which is the portfolio�s premium return after adjusting for risk for an investor

with a relative risk aversion of 2 (
 = 2), known as manipulation-proof performance measure

(MPPM) and the economic performance measure (EPM) proposed by Homme and Pigorsch

(2012), which is a generalized form of the Sharpe Ratio, with respect to the non-normal

distributions, that incorporates the Aumann and Serrano (2008) index, ASRi (ASRi�Rf ),

to quantify the risk of the Ri (or the excess Ri �Rf ) series of returns, respectively:

MPPMi =

�
1

1� 


�
ln

"
1

N

NX
t=1

�
1 +Ri
1 +Rf

�1�
#
(5.16)

EPMi = E(Ri)=ASRi = [E(Ri)� E(Rf )]=ASRi�Rf (5.17)

where the risk index is the positive number that satis�es the following equation:
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E[exp(�Ri=ASRi)] = 1 (5.18)

For normal distributions, the EPM converges to two times the squared Sharpe Ratio, induc-

ing thus the same ranking asymptotically, while for series with low (high) skewness and/or

relatively high (low) excess kurtosis, the portfolio is ranked lower (higher) by the EPM than

by the Sharpe Ratio.

5.2.4 Drawdown-based performance measures

Finally, performance measures based on drawdown quantities are rather popular,

especially among commodity traders, due to the incorporated information about contin-

ually accumulated losses. Following the methodology of Auer and Schuhmacher (2013),

the employed performance measures are calculated on the basis of monthly excess returns.

That is, the Calmar Ratio, which quanti�es risk through the largest negative cumulated

uncompounded excess returns, mddi = maxij>i(�zij), two ratios that use the K largest

losses, cddi;k; namely, the Sterling and Burke Ratio, and two more ratios that measure each

portfolio� risk by assigning weights to drawdowns (only if there exist) from the previous

peak, ddpi;t = max1�i�t(�zi;t); namely, the Pain Ratio along with the Martin Ratio. The

aforementioned measures are given as:

Calmar_Ratioi = [E(Ri)� E(Rf )]=mddi (5.19)

Sterling_Ratioi = [E(Ri)� E(Rf )]=
"
1

K

KX
k=1

cddi;k

#
(5.20)
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Burke_Ratioi = [E(Ri)� E(Rf )]=

vuut KX
k=1

(cddi;k)
2 (5.21)

Pain_Ratioi = [E(Ri)� E(Rf )]=
"
1

N

NX
t=1

ddpi;t

#
(5.22)

Martin_Ratioi = [E(Ri)� E(Rf )]=

vuut 1

N

NX
t=1

(ddpi;t)
2 (5.23)

Note that for the calculation of the Sterling and Burke ratios K is set equal to

5 following the existing literature (Eling, 2008; Eling and Schuhmacher, 2007; Auer and

Schuhmacher, 2013).

5.3 Empirical results on portfolio ranking

5.3.1 Data

The data used in the following analysis are monthly returns for the period from

January 2000 to December 2013 (168 observations) on the market portfolio (CRSP value-

weighted portfolio return), the risk-free interest rate return (1-month T-bill returns from

Ibbotson and Associates, Inc.), the HML and SMB factors, the momentum (MOM), Long-

Term Reversal (LT) and Short-Term Reversal (ST) portfolios. Additionally, the dataset is

enriched with the smallest (size1) and the biggest (size10) portfolios among 10 portfolios

formed by size, the lowest (BM1) and highest (BM10) one among the 10 decile portfo-

lios formed based on their book-to-market ratio, along with the lowest and highest ones

among the 10 prior-return-based portfolios, which are constructed using NYSE prior (2-
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12), (13-60) and (1-1) returns, referred as mom1, mom10, LT1, LT10, ST1 and ST10,

respectively. The full dataset along with details about the construction of each portfolio

of returns is available at Kenneth French�s website (http://mba.tuck.dartmouth.edu/pages

/faculty/ken.french /data_library. html).

5.3.2 Ranking the Fama/French portfolios

The present empirical analysis aims to evaluate the performance of the popular

HML, SMB, MOM, LT and ST portfolios with respect to their risk-adjusted return using

the most widely used performance measures. According to the performance realizations pro-

duced by the di¤erent measures, reported in Table 5.1, portfolios constructed with respect

to their previous performance are ranked low. Speci�cally, the ranking results produced

by the Sharpe Ratio show that the MOM factor underperforms (suggesting the relative

low adjusted-for-risk performance of the �winners�over the �losers�) followed by the ST, LT,

SMB and �nally the HML, which achieves the best performance. As for the market portfolio

of returns, the empirical results show it should be characterized as a medium-performance

portfolio, lying between the LT-Rev and the SMB factor.

Similar ranking pertains when the employed portfolios are evaluated on the basis

of the alternative measures. In particular, with the exception of the Treynor ratio, the

Jensen and the Omega, the remaining traditional and downside performance measures along

with the MPPM measure all provide identical rank order for the portfolios assumed. As

observed, even after penalizing excess kurtosis (or negative skewness) by applying the EPM

performance measure, the rank order is maintained and both measures lead to identical

ranking.
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Concerning the ranking deviations, the Treynor Ratio leads to a completely dif-

ferent rank order, while the Jensen measure a¤ects only low-performance portfolios. With

respect to the Omega measure, it provokes di¤erences in rank order for low-performance

portfolios; namely, the LT and ST reversal ones, mainly caused by the smaller extent to

which the negative deviations from the mean return are weighed, compared to the higher-

order ratios, Kappa3 and Sortino.

Turning to the drawdown-based measures, our �ndings point to di¤erent rankings.

In particular, for the high-performance HML and SMB portfolios, the Calmar, Sterling and

Burke ratios produce di¤erent rank order, while the results of the Pain and Martin ratios

indicate di¤erences in ranking only when attention is restricted to the low-performance

LT-Rev and ST-Rev portfolios.

Despite the fact that the majority of the employed measures produces identical

rankings, some of them face disadvantages that make them inappropriate for portfolio eval-

uation under certain conditions. Speci�cally, during periods of extraordinary high returns,

the popular Sharpe ratio would appear lower than drawdown measures by incorporating

both-side deviations of returns. From a practical point of view, though, the choice of per-

formance measure does not have a crucial in�uence on the relative evaluation of portfolio

of returns, with a few exceptions.



124

Table 5.1: Performance measures on the FF, reversal and mom portfolios

Perform.Measures Market HML SMB MOM LT ST
Treynor ratio 0.0029 -0.0441 0.0113 -0.0003 0.0118 0.0041
Jensen 0.0000 0.0036 0.0019 0.0015 0.0007 0.0004
Sharpe ratio 0.0617 0.0991 0.0727 0.0021 0.0357 0.0310
Inform. ratio 0.0613 0.0998 0.0725 0.0021 0.0357 0.0310
Sortino ratio 0.0806 0.1426 0.1117 0.0027 0.0528 0.0460
G-SR 99% 0.0265 0.0425 0.0312 0.0009 0.0153 0.0133
M-SR 99% 0.0322 0.0308 0.0141 0.0009 0.0127 0.0095
C-SR 99% 0.0233 0.0375 0.0275 0.0008 0.0135 0.0117
Omega 1.1587 1.2911 1.2175 1.0067 1.0922 1.0945
Kappa3 0.0590 0.0966 0.0731 0.0016 0.0406 0.0317
MPPM (
=2) 0.0006 0.0022 0.0014 -0.0039 0.0002 -0.0005
EPM 0.0116 0.0290 0.0181 0.0001 0.0071 0.0044
exc_EPM 0.0074 0.0198 0.0109 0.0000 0.0026 0.0019
Calmar ratio 0.0045 0.0253 0.0405 0.0005 0.0156 0.0063
Sterling ratio 0.0048 0.0555 0.0627 0.0006 0.0185 0.0102
Burke ratio 0.0022 0.0219 0.0257 0.0003 0.0082 0.0043
Pain ratio 0.0142 0.0314 0.0253 0.0004 0.0047 0.0094
Martin ratio 0.0108 0.0234 0.0195 0.0003 0.0039 0.0070

Notes: Bold and Italics indicate the best and worst performance, respectively.
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Table 5.2: Performance measures on size and B/M portfolios

Perform. Measures size1 size10 BM1 BM10
Treynor ratio 0.0022 0.0015 0.0014 0.0064
Jensen -0.0007 -0.0013 -0.0015 0.0044
Sharpe ratio 0.0460 0.0308 0.0278 0.1128
Inform.ratio 0.0457 0.0306 0.0276 0.1126
Sortino ratio 0.0608 0.0410 0.0368 0.1552
G-SR 99% 0.0197 0.0132 0.0119 0.0484
M-SR 99% 0.0229 0.0151 0.0139 0.0338
C-SR 99% 0.0174 0.0117 0.0105 0.0427
Omega 1.1204 1.0810 1.0731 1.3136
Kappa3 0.0443 0.0301 0.0267 0.1095
MPPM (
=2) 0.0000 -0.0006 -0.0012 0.0029
EPM 0.0075 0.0041 0.0034 0.0302
exc_EPM 0.0410 0.0274 0.0276 0.1615
Calmar ratio 0.0029 0.0017 0.0015 0.0235
Sterling ratio 0.0032 0.0019 0.0016 0.0260
Burke ratio 0.0014 0.0009 0.0007 0.0116
Pain ratio 0.0081 0.0043 0.0032 0.0569
Martin ratio 0.0066 0.0037 0.0028 0.0339
Notes: Bold and Italics indicate the best and worst performance,
respectively.

5.3.3 Ranking portfolios based on size, book-to-market and previous per-

formance

In order to examine how speci�c stock characteristics, such as the size, book-

to-market ratio or prior returns, are related to portfolio performance, ten (10) di¤erent

empirical portfolios of returns are employed; each one characterized by either small or big

size, low or high book-to-market and low or high momentum/reversal.

Our �ndings in Table 5.2 suggest that value-stock portfolios (high B/M) perform

better closely followed by low-market-capitalization portfolios. On the other hand, growth-

stock portfolios (low B/M) and big-size ones achieve low performance.
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Table 5.3: Performance measures on high and low mom/reversal portfolios

Perform. Measures mom1 mom10 LT1 LT10 ST1 ST10
Treynor ratio 0.0008 0.0046 0.0073 0.0027 0.0014 0.0000
Jensen -0.0040 0.0018 0.0060 -0.0002 -0.0024 -0.0032
Sharpe ratio 0.0142 0.0764 0.1318 0.0532 0.0271 -0.0007
Inform. ratio 0.0142 0.0761 0.1315 0.0530 0.0270 -0.0007
Sortino ratio 0.0215 0.1016 0.1848 0.0698 0.0362 -0.0009
G-SR 99% 0.0061 0.0328 0.0566 0.0228 0.0116 -0.0003
M-SR 99% 0.0042 0.0331 0.0565 0.0278 0.0114 -0.0003
C-SR 99% 0.0054 0.0289 0.0499 0.0201 0.0102 -0.0003
Omega 1.0415 1.2016 1.3437 1.1389 1.0777 0.9982
Kappa3 0.0160 0.0730 0.1388 0.0499 0.0253 -0.0007
MPPM (
=2) -0.0100 0.0006 0.0042 -0.0006 -0.0062 -0.0038
EPM 0.0008 0.0152 0.0405 0.0083 0.0024 0.0000
exc_EPM 0.0311 0.0114 0.0346 0.0055 0.0014 0.0000
Calmar ratio 0.0009 0.0101 0.0829 0.0041 0.0021 0.0000
Sterling ratio 0.0011 0.0106 0.1521 0.0042 0.0026 0.0000
Burke ratio 0.0005 0.0048 0.0756 0.0019 0.0011 0.0000
Pain ratio 0.0040 0.0199 0.0810 0.0108 0.0072 -0.0001
Martin ratio 0.0029 0.0149 0.0509 0.0082 0.0054 -0.0001

Notes: Bold and Italics indicate the best and worst performance, respectively.

More importantly, identical ranking are induced by all the employed performance

measures.

Turning to the performance of portfolios characterized by low/high momentum,

long-term and short-term reversal, Table 5.3 provides the ranking results based on the

performance measures. The results indicate almost identical ranking, with the portfolio of

low momentum underperforming compared to that of high momentum, while the opposite

takes place for the portfolios characterized by low long-term reversal and low short-term

reversal. Deviation in the rank order is created only by the exc_EPM measure and for the

ranking of the competing momentum portfolios. Overall, low long-term reversal and high

short-term reversal are the best and worst performing portfolios, respectively.
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5.4 Robustness evidence

So far we have produced a rank order among the empirical FF portfolios, the

momentum and reversal factors along with portfolios of speci�c stock characteristics for the

period from January 2000 to December 2013.

In this section, we investigate the robustness of our results employing data series

that extend from July 1963 to December 2013. The data used are monthly returns for

the series used in the previous sections, consisting now of 606 observations. The measures

applied for the portfolio evaluation have been described analytically above.

The implied rank order for the Fama/French, momentum and reversal factors are

reported in Table 5.4 after using the full set of performance measures. Apart from the

market portfolio, which exhibits the best performance now, the momentum factor is ranked

high, while the SMB portfolio of returns underperforms compared to the competing ones.

Performance results indicate that, even for the extended period of time, the rank order

produced by employing the same performance measures remains una¤ected, meaning that

di¤erent measures produce identical ranking, with a few exceptions.

Turning to portfolios consisting of either big or small stocks and those constructed

by stocks of high or low book-to-market ratio, their performance ranking is reported in

Table 5.5. Consistent with the ranking results of Table 5.2, one can see that portfolios

of small-size stocks and those characterized by high book-to-market ratio exhibit better

performance than portfolios of the same, but opposed, characteristics, meaning that their

rank order remains una¤ected.

We continue by examining whether the ranking results for di¤erent momentum
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Table 5.4: Performance measures on FF, reversal and mom portfolios (1963-2013)

Perform. Measures Market HML SMB MOM LT ST
Treynor ratio 0.0050 0.0022 -0.0074 -0.0242 0.1164 0.0046
Jensen 0.0000 0.0005 -0.0027 0.0034 -0.0010 -0.0001
Sharpe ratio 0.1114 -0.0146 -0.0513 0.0666 -0.0414 0.0296
Inform. ratio 0.1113 -0.0146 -0.0510 0.0667 -0.0412 0.0296
Sortino ratio 0.1492 -0.0207 -0.0758 0.0858 -0.0629 0.0440
G-SR 99% 0.0478 -0.0063 -0.0220 0.0286 -0.0178 0.0127
M-SR 99% 0.0485 -0.0050 -0.0130 0.0213 -0.0127 0.0077
C-SR 99% 0.0422 -0.0055 -0.0194 0.0252 -0.0157 0.0112
Omega 1.2933 0.9595 0.8586 1.2013 0.8880 1.0890
Kappa3 0.1046 -0.0145 -0.0535 0.0515 -0.0468 0.0288
MPPM (
=2) 0.0029 -0.0012 -0.0025 0.0009 -0.0017 0.0000
EPM 0.0412 -0.0037 -0.0088 0.0184 -0.0142 0.0092
exc_EPM 0.0237 -0.0001 -0.0001 0.0080 -0.0001 0.0018
Calmar ratio 0.0221 -0.0004 -0.0010 NA -0.0011 0.2127
Sterling ratio 0.0377 -0.0005 -0.0010 NA -0.0011 0.2674
Burke ratio 0.0156 -0.0002 -0.0005 NA -0.0005 0.1831
Pain ratio 0.0372 -0.0010 -0.0015 0.0159 -0.0017 0.0033
Martin ratio 0.0249 -0.0009 -0.0013 0.0114 -0.0014 0.0026

Notes: (i) Bold and Italics indicate the best and worst performance, respectively.

(ii) NA indicates no negative returns.
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Table 5.5: Performance measures on size and B/M portfolios (1963-2013)

Perform. Measures size1 size10 BM1 BM10
Treynor ratio 0.0048 0.0047 0.0039 0.0087
Jensen -0.0001 -0.0003 -0.0012 0.0040
Sharpe ratio 0.1065 0.1018 0.0808 0.1576
Inform. ratio 0.1064 0.1017 0.0806 0.1575
Sortino ratio 0.1445 0.1384 0.1115 0.2196
G-SR 99% 0.0457 0.0437 0.0347 0.0677
M-SR 99% 0.0440 0.0418 0.0323 0.0455
C-SR 99% 0.0403 0.0385 0.0306 0.0596
Omega 1.2830 1.2711 1.2123 1.4390
Kappa3 0.1021 0.0980 0.0801 0.1516
MPPM (
=2) 0.0027 0.0025 0.0015 0.0058
EPM 0.0407 0.0380 0.0256 0.0673
exc_EPM 0.0218 0.0202 0.0127 0.0482
Calmar ratio 0.0180 0.0172 0.0388 0.2602
Sterling ratio 0.0306 0.0293 0.1048 0.2602
Burke ratio 0.0128 0.0122 0.0366 0.2602
Pain ratio 0.0307 0.0253 0.0147 0.0879
Martin ratio 0.0212 0.0179 0.0112 0.0521
Notes: Bold and Italics indicate the best and worst

performance, respectively.

and reversal portfolios, as depicted in Table 5.6, are maintained even after extending the

dataset. In particular, Table 5.6 shows that the high-mom portfolio performs better than

the low-mom one, while the opposite takes place for the long-term and short-term portfolios,

consistent with the ranking results of Table 5.3.

However, with respect to the total rank order of the 6 prior-return portfolios, which

are reported in Table 5.6, performance results reveal mom10 as the highest-rank portfolio,

followed by the ST1 and LT1 ones. This �nding is in contrast to the rank order of Table

5.3, which evinces that the best-performance portfolio is the LT1, followed by the mom10
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Table 5.6: Performance measures on high and low mom/reversal portfolios (1963-2013)

Perform. Measures mom1 mom10 LT1 LT10 ST1 ST10
Treynor ratio -0.0014 0.0095 0.0077 0.0038 0.0042 0.0022
Jensen -0.0092 0.0053 0.0033 -0.0015 -0.0012 -0.0029
Sharpe ratio -0.0253 0.1798 0.1396 0.0781 0.0818 0.0430
Inform. ratio -0.0252 0.1796 0.1393 0.0780 0.0818 0.0430
Sortino ratio -0.0376 0.2426 0.2028 0.1061 0.1124 0.0590
G-SR 99% -0.0108 0.0772 0.0599 0.0335 0.0351 0.0185
M-SR 99% -0.0069 0.0752 0.0437 0.0333 0.0292 0.0165
C-SR 99% -0.0096 0.0680 0.0528 0.0295 0.0310 0.0163
Omega 0.9281 1.4756 1.3772 1.2050 1.2280 1.1138
Kappa3 -0.0270 0.1712 0.1450 0.0757 0.0771 0.0418
MPPM (
=2) -0.0084 0.0072 0.0049 0.0010 0.0004 -0.0007
EPM -0.0013 0.0803 0.0560 0.0226 0.0214 0.0102
exc_EPM -0.0001 0.0604 0.0390 0.0118 0.0129 0.0034
Calmar ratio -0.0006 112.2030 4.0381 0.0075 NA 0.0047
Sterling ratio -0.0007 112.2030 4.0381 0.0093 NA 0.0053
Burke ratio -0.0003 112.2030 4.0381 0.0041 NA 0.0024
Pain ratio -0.0012 0.0773 0.0764 0.0166 0.0313 0.0060
Martin ratio -0.0011 0.0501 0.0489 0.0121 0.0203 0.0049

Notes: (i) Bold and Italics indicate the best and worst performance, respectively.
(ii) NA indicates no negative returns.

and LT10.

As shown, the choice of the performance measure does not alter the implied rank

order among the di¤erent portfolios, proving once again that an investor could choose the

best/worst investment by employing one of the traditional or any of the more sophisticated

performance measures.

5.5 Conclusions

This study provides an extensive review of the most widely used performance mea-

sures for the evaluation of portfolio of returns. An important contribution of this paper is
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that it reveals the rank order of the popular Fama/French, reversal and momentum port-

folios, which are factors mainly used by fund traders as they exhibit signi�cant forecasting

and evaluation ability. The results suggest that, among the employed factors, the MOM

factor appears as a low-performance portfolio, while the SMB and HML factors perform the

best. This performance is evident not only by the traditional performance measures, such

as the Sharpe Ratio or the Information ratio, but also by measures based on downside risk

indices. On the other hand, measures based on drawdowns lead to di¤erent rank order for

middle- and high-performance portfolios, meaning that for purposes of avoiding the worst

investment opportunity, the choice of the measure does not a¤ect ranking.

In order to identify how size and book-to-market ratio are related to performance,

di¤erent portfolios with these speci�c characteristics are evaluated. Our �ndings suggest

that portfolios constructed by small-size stocks and portfolios of high book-to-market stocks

perform better than portfolios of the opposite characteristics. This evidence is provided by

almost all the measures employed, signalling that the choice of the performance measure

does not change the ranking result. Additionally, this study contributes to the literature

by presenting how performance is related with portfolios constructed based on prior perfor-

mance, momentum or reversal. Our ranking results reveal that portfolios of high momentum

or low long-term and short-term reversal exhibit high performance. This attitude is evident

independently of the measure applied, revealing once again that the impact of using di¤er-

ent measures is insigni�cant, and thus, from an empirical perspective, any of the employed

performance measures could be used.

Finally, the robustness of our results is assessed by employing the same perfor-
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mance measures on speci�c portfolios for an extended period of time. From the analysis,

we prove that the rank order is maintained regardless of the horizon examined. Addition-

ally, we provide evidence that the choice of the employed measure does not a¤ect the rank

order among the portfolios. However, identical rankings may lead to important economic

signi�cance for investors and managers, which is an issue that reserves further research.
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Chapter 6

Concluding Remarks

My main aim in this thesis was to evaluate the famous Fama and French risk fac-

tors; namely, the HML and SMB, along with the momentum and reversal factors, known in

the literature as MOM, LT and ST-Rev factors, with respect to their forecasting ability and

their risk-adjusted performance by assessing the associated risk. In particular, Chapter 2

focused on the in-sample and out-of-sample predictability of the aforementioned empirical

factors on U.S. stock returns compared to the performance of the most widely used �nan-

cial variables. By employing the Autoregressive Distributed Lag methodology of Rapach

and Weber (2004), we found that the majority of the employed factors exhibit signi�cant

forecasting ability, with the in-sample one assessed statistically via the Wald test, while the

out-of-sample ability of these factors to forecast the U.S. stock market is tested via statistics

for equal predictive ability and forecast encompassing. This analysis also revealed that the

empirical factors are related to the �nancial variables, as the latter proxy for the former

ones.
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In Chapter 3, we extended the set of our predictors by adding the short-term

reversal factor with its decompositions and we focused only on their out-of-sample fore-

casting ability on both the U.S. bond and stock market also compared to the performance

of an extended set of �nancial variables. In line with the existing literature, we investi-

gated whether the combination of forecasts produced by the individual factors could lead

to improved forecasting results, addressing thus the instability and time-variability of the

individual forecasts. The combining methods applied include both simple methods, but

also more advanced ones based on the historical performance of the individual forecasts

or computed by assuming forecasts of the same past-performance cluster. As expected,

combination forecasts reveal superior performance relative to that produced by employing

only �nancial variables or individual forecasts. The exhibited improvement of the MSFE of

the proposed model over the MSFE of the benchmark one is evaluated statistically via the

out-of-sample R2 statistic and also from an asset allocation by computing the performance

fee that an investor would be willing to pay to accrue positive utility gains induced by the

information included in the empirical factors. Checking the robustness of our results, we

conducted the same analysis in markets outside U.S..

The issue of quantifying the associated risk of these empirical factors was the focus

of Chapter 4. We particularly studied how these factor portfolios are ranked with respect

to their embedded risk and we also established a link between speci�c stock characteristics

and risk. We employed a plethora of di¤erent risk measures ranging from traditional to

more sophisticated ones, which are based on downside deviations or drawdowns in series of

returns. The analysis also employed more recent approaches, incorporating thus skewness
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and kurtosis of the returns distribution in the risk assessment. Our results indicate that

MOM is a high-risk portfolio, while the HML and LT portfolios are ranked low. Regarding

the level of risk related to size, book-to-market and prior, momentum or reversal, perfor-

mance, this analysis provide evidence for �rst time that small-size, high book-to-market

and low momentum/reversal e¤ect exhibit high risk, which is evinced by the majority of

the employed risk indices. Our results remain robust even for an extended data sample.

The last chapter incorporated a plethora of performance measures and evaluated

the performance of the Fama and French factors along with the momentum and reversal

factor portfolios. The embedded risk of these empirical factors has been quanti�ed via the

various risk indices of the previous Chapter, revealing thus a risk-adjusted performance

ranking for these portfolios. Our analysis indicates that the portfolios based on stock prior

returns exhibit low performance, while the SMB and HML factors outperform relative to

the competing ones. This rank order is evinced not only by the traditional performance

measures, but also by the downside ones, while the drawdown-based measures produce sig-

ni�cant ranking deviations. Furthermore, we contributed to the literature by establishing a

relation between size, book-to-market and prior stock returns and the risk-adjusted perfor-

mance of portfolios with these speci�c characteristics. We thus provide evidence that small

size, high book-to-market, high momentum and low reversal e¤ect exhibit higher relative

performance compared to portfolios with opposite characteristics.

Future research should investigate whether empirical factors, in a combination

framework, can succeed in forecasting implied and/ or realised volatility. Furthermore, the

issue of forecasting stock and bond market returns should also be studied using daily data,
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investigating whether the proposed predictable patterns suggested in the present thesis can

be retained in a more high-frequency setup.
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