

University of Piraeus

Department of Digital Systems

School of Information and Communication Technologies

Programme “Technology Education & Digital Systems”

MSc Dissertation

Modeling and Measurement of Cloud Services

Performance

Athanasia-Charalampia Evangelinou

Supervisor: Dimosthenis Kyriazis

November 2014

Piraeus

Modeling and Measurement of Cloud Services Performance

3

This thesis is dedicated to my mother Panagiota and my godmother Maria

 for their endless love, support and encouragement

Modeling and Measurement of Cloud Services Performance

4

Acknowledgements

First and foremost I want to thank my supervisor Dimosthenis Kyriazis. I ap-

preciate all his contributions of time, advice, ideas and guidance to complete

this work.

I would not have studied this MSc without the wise counsel of my professor

Andriana Prentza who has been steady hands to steer me with patience

through my undergraduate and postgraduate studies. Also, special thanks to

my professor Marinos Themistocleous for his guidance and support during

my years as a postgraduate student. I would like to express my special ap-

preciation and thanks to my colleague George Kousiouris. His advice on my

research has been invaluable.

I am indebted to all my friends who have supported me over the last few

years and with whom I have enjoyed many useful and entertaining discus-

sions: Nikos Chelmis, Leonidas Katelaris, Christina Santzaridou and Panagiotis

Nikitopoulos.

Lastly, I would like to say a heartfelt thank you to my parents, my sister Anna

and my godmother Maria for always believing in me and encouraging me to

follow my dreams.

Modeling and Measurement of Cloud Services Performance

5

Abstract

Cloud services are emerging today as an innovative IT provisioning model,

offering benefits over the traditional approach of provisioning infrastructure.

However, the occurrence of multi-tenancy, virtualization and resource shar-

ing in the cloud raise certain difficulties in providing performance estimation

during application design or deployment time. In order to assess the perfor-

mance of cloud services and compare cloud offerings from different cloud

providers both the extension of an existing metamodel, namely

CloudML@artist, for describing this information in a machine understandable

format and cloud benchmarks are required. In this thesis context, both of

these requirements have been implemented. Specifically, performance in-

stances for different cloud providers are implemented based on

CloudML@artist metamodel and to complete the instance creation, the in-

corporation of a number of performance metric values in the concrete in-

stances for different cloud providers is provided. Performance measurement

is achieved through benchmarking process and performance results are

demonstrated from three large commercial cloud providers, Amazon EC2,

Microsoft Azure and Flexiant, in order to support the provisioning decisions

of the cloud users.

.

Modeling and Measurement of Cloud Services Performance

6

Contents

Introduction .. 9

1.1 Problem Definition .. 10

1.2 Thesis Focus .. 10

1.3 Thesis Structure ... 11

Background ... 12

2.1 Key Concept: Cloud Computing .. 12

2.1.1 Definitions .. 12

2.1.2 Essential Characteristics .. 14

2.1.3 Service models .. 19

2.1.4 Deployment Models ... 20

2.1.5 Taxonomies for available Cloud Services 21

2.1.6 Popular Cloud Providers and Services.. 22

2.2 Key Concept 2: Performance .. 25

2.2.1 Performance metrics needed in Cloud environments 26

2.2.2 Metrics for variation ... 28

2.2.3 Stereotypes and extraction of performance characteristics 29

2.2.4 Performance aspects of Cloud computing 30

Cloud Benchmarking ... 32

3.1 Definition and requirements of benchmarking 32

3.2 Standards bodies defining benchmarks .. 34

3.3 Existing benchmarks .. 36

3.3.1 Frameworks for comparing cloud providers 36

3.3.2 Application Benchmarks.. 39

3.3.3 MATLAB Benchmark suite ... 40

3.3.4 Berkeley Dwarfs suite ... 41

3.3.5 FileBench .. 41

3.3.6 Cloudsuite... 42

3.3.7 DaCapo ... 43

4.1 Key Concept: UML Profiles ... 48

4.1.1 Models ... 48

Modeling and Measurement of Cloud Services Performance

7

4.1.1.1 Making up a model... 50

4.1.2 Meta-Object Facility .. 51

4.1.3 UML 2.0 and Profiles package ... 51

4.2 Key Concept 2: Model-Driven Approach to Cloud 53

4.2.1 Model-Driven Engineering in a Nutshell 53

4.2.2 Model-Driven Architecture ... 54

4.2.3 Model-Driven Modernization .. 55

4.2.4 MDA and UML Profiles .. 56

4.2.5 Available Standards/Profiles/MetaModels of the chosen

technology .. 56

4.2.5.1 REMICS PIM4Cloud and CloudML ... 56

4.2.5.2 CloudML: Cloud Modeling Language 59

4.2.5.3 SysML .. 61

4.2.5.3 fUML ... 64

4.2.5.4 Cloud4SOA semantic model ... 68

4.2.5.5 Blueprint Template .. 70

4.2.5.6 CloudML@artist ... 72

CloudML@artist Implementation .. 73

5.1 Why CloudML@artist .. 73

5.2 UML Profiles Description and meta-model Structure 74

5.3 Overall Process for Instance Creation... 82

5.3.1 Installation of CLoudML@artist ... 82

5.3.2 Amazon EC2 Instance creation .. 82

5.3.3 Benchmarking process for performance results collection........... 84

Benchmarking Case Study On Three Selected Cloud Providers: Amazon

EC2,Microsoft Azure and Flexiant .. 88

6.1 Benchmarking process ... 88

6.2 Benchmarking Results.. 90

Conclusions and Future Work .. 93

Modeling and Measurement of Cloud Services Performance

8

Modeling and Measurement of Cloud Services Performance

9

CHAPTER 1

 Introduction

Cloud computing is the delivery of on-demand IT resources and services over

the Internet by paying a monetary value only for the duration of the usage of

resources that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction. Cloud computing provides

three main types of cloud service models that have emerged as an innovative

IT provisioning model in the recent years and will be extensively analyzed in

chapter 2: software-as-a-service (SaaS), platform-as-a-service (PaaS) and in-

frastructure-as-a-service (IaaS). In this sense cloud computing has the poten-

tial to change radically the mode of computing resource and application de-

ployment making room for new business models 0.

Providers like Amazon, Google and Microsoft have been established as plat-

form and infrastructure providers in the cloud computing market. Beside

them there emerge more and more providers, who build their own applica-

tions or consulting services upon infrastructure services offered by other

market players [2]. However, after their usage severe considerations have

emerged with regard to their varying performance due to multi-tenancy and

resource sharing issues.

These issues make it very difficult to provide any kind of performance esti-

mation during application design or deployment time. The issue of provider

performance should be taken very seriously especially during the migration

process of an application to the Cloud in order to save money and to guaran-

tee a stability in the migrated application.

In order to implement a successful migration of a legacy system on Cloud

environments, one should take into account the specificities and characteris-

tics of the target platforms. For doing so, a suitable metamodel framework

should be used that take under consideration the nature and features of the

latter that could be extended in order to measure them and describe them

accordingly to the application modelling layer.

Modeling and Measurement of Cloud Services Performance

10

1.1 Problem Definition

The issues of Cloud environments instability with regards to performance

issues of the allocated resources have begun to arise after Cloud Provider’s

promises for infinitive resources and on-demand scalability [3]. Different

providers have their own metrics and strategies for guaranteeing Cloud QoS

regarding the performance. In this case for identifying performance aspects

of Cloud environments the need of a more abstracted and machine under-

standable way is required. In order to achieve this goal the implementation

and the extension of an existing metamodel framework (which is an ap-

proach enabling rich abstracted description of cloud services), namely

CloudML@artist for describing Cloud Providers is needed. This way simplifies

the configuration of a well-defined SLA (Service Level Agreement) [4] and

customers are able to assess and select cloud services according to their per-

formance requirements.

 Moreover the fact that cloud providers are separate entities and no infor-

mation is available on their internal structure and operation, makes it neces-

sary to macroscopically examine a provider’s behaviour with regard to the

offered resources and on a series of metrics. This process should be per-

formed through benchmarking, by using the suitable tools and tests. The

results from the benchmarking process for each cloud provider are incorpo-

rated in the CloudML@artist framework in order to provide a way to de-

scribe, measure and select the fittest Cloud services based on their features

and characteristics and capabilities.

1.2 Thesis Focus

In existing research outcomes there is a significant gap regarding abstracted

descriptions in current meta-models that are related to cloud infrastructures

and are used in order to describe the features and capabilities of Cloud pro-

viders and services. The functional ones have been significantly covered

through many efforts [5], however one of the main interesting features re-

fers to the modelling and description of the performance of the service offer-

ings. CloudML@artist is the only framework that includes the main function-

alities that are offered by the cloud platforms so that they can be considered

during migration to the service oriented final version of the application and is

enriched with performance requirements of most prominent application

types in order to ensure a successful migration.

Modeling and Measurement of Cloud Services Performance

11

The main purpose of this thesis is to extend this current meta-model descrip-

tion by incorporating a number of metric values in the specified performance

metrics to the concrete instances of different cloud providers such as Ama-

zon EC2, Windows Azure and Google App Engine. In order to collect the per-

formance data, a set of third party benchmarking tools have been used and

specific scripts have been developed. The identified metrics are added to the

cloud provider models providing the ability to characterize a Cloud service’s

ability from performance point of view, compare and finally evaluate them.

Regarding the benchmarking process of cloud providers, one of the key as-

pects that should be taken under consideration is that due to the dynamicity

in resource management, benchmarking must be iterated over time, so that

we can ensure as much as possible that different hardware, different man-

agement decisions (like e.g. update/reconfiguration/improvement of the

infrastructure) are demonstrated in the refreshed metric values, but also

observe key characteristics such as performance variation.

 1.3 Thesis Structure

The remainder of the current thesis is as follows: Section 2 presents the key

concepts, including cloud computing general information (e.g. characteris-

tics, service and deployment models, etc.) and performance related material

(e.g. metrics, characteristics, etc.), while Section 3 introduces benchmarking

concepts that are core in this thesis. Profiles and models are discussed in

Section 4 capturing UML2.0, model-driven, MDA and CloudML amongst oth-

ers. Section 5 describes in detail the CloudML@artist metamodel and the

reasons for which it was selected in order to be extended. Moreover, this

section presents both the overall process for instance creation and the

benchmarking process for performance results collection. An example for

Amazon EC2 is provided in order to the procedure to be comprehended. Sec-

tion 5 presents a benchmarking case study on three selected cloud providers:

Amazon EC2, Microsoft Azure and Flexiant and results are demonstrated.

Finally section 7 includes the conclusions and the future work.

Modeling and Measurement of Cloud Services Performance

12

Chapter 2

 Background

2.1 Key Concept: Cloud Computing

Cloud computing [6] has emerged as a viable means for delivering IT services

and assumes that every software application or system component becomes

a service or part of a service. Over the last years IT professionals, business

managers and researchers defined cloud computing differently according to

their understanding of its offering. With cloud computing the resources such

as processing power, storage space, bandwidth, memory and software are

provided as general utilities that can be leased and released by users through

the internet in an on-demand way. By this way the resources are shared and

so are the costs. Cloud service providers offer a variety of service models and

pricing schemes to customers in order to compare the cloud computing ser-

vices and select an appropriate solution.

Cloud computing represents a convergence of two major trends in infor-

mation technology [7]. The first one is IT efficiency which is related to the

power of modern computers is utilized more efficiently through highly scala-

ble hardware and software resources. The other trend is business agility,

whereby IT can be used as a competitive tool through rapid deployment,

parallel batch processing, use of compute-intensive business analytics and

mobile interactive applications that respond in real time to user require-

ments.

2.1.1 Definitions

 Cloud computing [8] is the delivery of computing as a service rather than a

product, whereby shared resources, software, and information are provided

to computers and other devices as a utility over a network.

Cloud computing [9] is a technology that uses the internet and central re-

mote servers to maintain data and applications. Cloud computing allows con-

sumers and businesses to use applications without installation and access

Modeling and Measurement of Cloud Services Performance

13

their personal files at any computer with internet access. This technology

allows for much more inefficient computing by centralizing storage, memory,

processing and bandwidth.

In [10] the formal definition of cloud computing is as follows: “It is an infor-

mation technology service model where computing services (both hardware

and software) are delivered on-demand to customers over a network in a

self-service fashion, independent of device and location. The resources re-

quired to provide the requisite quality-of service levels are shared, dynami-

cally scalable, rapidly provisioned, virtualized and released with minimal ser-

vice provider interaction. Users pay for the service as an operating expense

without incurring any significant initial capital expenditure, with the cloud

services employing a metering system that divides the computing resource in

appropriate blocks.

According to [11] Clouds are considered as a pool of usable and accessible

virtualized resources such as hardware, platforms and services. These re-

sources are dynamically reconfigured to adjust to a variable load allowing

also an optimal resource utilization. These resources are used by a pay-as-

you-go model in which guarantees are offered by the Infrastructure Provider

by means of customized SLA’s.

The main reason of different perceptions of cloud computing is the fact that

it is not a new technology but a new operations model that brings together a

set of existing technologies to run business in a different way. Most of the

technologies that cloud computing concept draw on such as virtualization

and utility-based pricing are not new, however cloud computing leverages

these existing technologies to meet the technological and economic re-

quirements of today’s demand for information technology [12].

NIST Definition

According to the official NIST(National Institute of Standards and Technology)

definition [13], "cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications and

services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction." The NIST definition lists

five essential characteristics of cloud computing: on-demand self-service,

broad network access, resource pooling, rapid elasticity or expansion, and

measured service. It also lists three "service models" (software, platform and

infrastructure), and four "deployment models" (private, community, public

Modeling and Measurement of Cloud Services Performance

14

and hybrid) that together categorize ways to deliver cloud services. The

definition is intended to serve as a means for broad comparisons of cloud

services and deployment strategies, and to provide a baseline for discussion

from what is cloud computing to how to best use cloud computing.

Figure 1: The NIST cloud computing definitions [112]

NIST definition of cloud computing Cloud computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal manage-

ment effort or service provider interaction.

2.1.2 Essential Characteristics

 Characteristics by NIST

On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider.

Broad network access. Capabilities are available over the network and ac-

cessed through standard mechanisms that promote use by heterogeneous

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and work-

stations).

Modeling and Measurement of Cloud Services Performance

15

Resource pooling. The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. There is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of the provid-

ed resources but may be able to specify location at a higher level of abstrac-

tion (e.g., country, state, or datacenter). Examples of resources include stor-

age, processing, memory, and network bandwidth.

Rapid elasticity. Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensu-

rate with demand. To the consumer, the capabilities available for provision-

ing often appear to be unlimited and can be appropriated in any quantity at

any time.

Measured service. Cloud systems automatically control and optimize re-

source use by leveraging a metering capability at some level of abstraction

appropriate to the type of service (e.g., storage, processing, bandwidth, and

active user accounts). Resource usage can be monitored, controlled, and

reported, providing transparency for both the provider and consumer of the

utilized service.

 Additional characteristics[14]

Scalability [15]: describes the system’s ability to reach a certain scale.

There are two approaches to scalability: scaling up that is achieved by

providing more resources (more RAM, disk, virtual CPU etc.) and scaling-

out (more machines or devices to the computing platform to handle the

increased demand).

Vertical scaling (up) [16] can handle most sudden, temporary peaks in

application demand on cloud infrastructures since they are not typically

CPU intensive tasks. In scaling up the limitation is hardware related in a

very specific: how much memory, disk and processor can be supported

by a server. Horizontal scalability (scale out/in) replicates (or removes)

instances of system elements (typically VMs) to balance the load.

 Horizontal scalability [17] usually requires also the addition of another

component that has the role of the Load Balancer (LB). Scaling out

scalability is not automatic and must me architected into the system in

other words it is an attribute of the architecture of the system. Horizon-

tal scaling and load balancing are required for sustained increases in

demand in order to restore and maintain peak performance.

Modeling and Measurement of Cloud Services Performance

16

Elasticity: According to[18] elasticity is the degree to which a system is

able to adapt to workload changes by provisioning and de-provisioning

resources in an autonomic manner, such that at each point in time the

available resources match the current demand as closely as possible.

Systems have to autonomously execute predefined scalability actions to

fulfill the contracted performance requirements with the minimum of

resource demands [19]. The mechanisms and workflows that are used

by the system to fulfill elasticity as well as the evaluation criteria and the

decision-making process itself varies from one system to the other or

from one application to the other, even in the same system.

Virtualization [20] is not a new concept and is the main enabling tech-

nology for cloud component, which uses a physical resource such as a

server and divides it into virtual resources called virtual machines. There

are 6 major types of virtualization: hardware, software, memory, stor-

age, data and network virtualization. Virtualization is the key to cloud

computing, since it is the enabling technology allowing the creation of

an intelligent abstraction layer which hides the complexity of underlying

hardware or software.

Figure 2: Virtualization into layered architectures [113]

Server virtualization is the moving of existing physical servers into a virtual

environment, which is then hosted on a physical server. This type is where

most of the attention is focused right now in the world of virtualization and is where

most companies begin an implementation of this technology. Many modern serv-

ers are able to host more than one server simultaneously, which allows you

to reduce the number of servers you have in your company, thus reducing

your IT and administrative expenditures. Some servers can also be virtualized

and stored offsite by other hosting companies.

Modeling and Measurement of Cloud Services Performance

17

Software virtualization (hypervisor) abstracts the software installation pro-

cedure and creates virtual software installations [21]. It emulates computer

and allows different operating systems to run on a single physical computer

host. Each of the guest operating system seems to have the host’s processor,

memory, and the other resources all to itself. The hypervisor, however, is

actually controlling the host processor and resources and allocates what is

needed to each OS, making sure that the virtual machines cannot disrupt

each other. There are two types of hypervisors hosted hypervisors and bare

metal or native hypervisors. Hosted hypervisors are run as a software using

an operating system while bare metal hypervisor run on the host’s hardware

in order to control it and also to manage the guest operating systems.

Figure 3: Bare-metal and hosted virtualization types [113]

Hardware virtualization [22] is achieved by abstracting the physical hard-

ware layer by using a hypervisor. The hypervisor handles sharing the physical

resources of the hardware between the guest operating systems running on

the host. Physical resources become abstracted versions in standard formats,

so regardless of the hardware platforms, the hardware is presented as the

same model. The virtualized operating system is able to hook into these re-

sources as though they are physical entities.

Storage virtualization [23] is a major component in storage for servers, in

the form of controllers and functional RAID levels Error! Reference source

ot found.. Operating systems and applications with raw device access prefer

to write directly to the disks themselves. The controllers configure the local

storage in RAID groups and present the storage to the operating system as a

volume (or multiple volumes, depending on the configuration). The operat-

ing system issues storage commands to the volumes, thinking that it is writ-

ing directly to the disk. However, the storage has been abstracted and the

controller is determining how to write the data or retrieve the requested

data for the operating system.

Modeling and Measurement of Cloud Services Performance

18

 Memory virtualization [25] is seen as virtual memory, or swap, on servers

and workstations. Theoretically, swap is used when the amount of physical

memory is full. The host sees the local swap as additional addressable

memory locations and does not delineate between RAM and swap. In the

same way as swap, memory virtualization allows networked, and therefore

distributed, servers to share a pool of memory to overcome physical memory

limitations.

Data virtualization [26] is any approach to data management that allows an

application to retrieve and manipulate data without requiring technical de-

tails about the data, such as how it is formatted or where it is physically lo-

cated. Managing data location and availability can be difficult when trying to

pull from many sources to analyze the data. Data virtualization deals with the

ability to abstract the actual location, access method and data types, and

allow the end user to focus on the data itself.

For network virtualization [27] this remains true, although not so clearly as

server virtualization. Networking devices utilize both paravirtualization and

hypervisor techniques.

The first is loosely based on the idea of paravirtualization, where the underly-

ing software is creating a separate forwarding table for each virtual network,

such as is done by MPLS within each VRF. In MPLS, the OS creates a single

routing and forwarding database for each VRF, but marks each entry in the

database with the tag for ownership. BGP is used to update the database,

and shares the routes AND the tags to distribute the data throughout the

network.

In the second type of hypervisor, the network device OS instantiates multiple

instances of the OS. Perhaps the most common example of this might be

Cisco ASA firewalls, with the use of Virtual Contexts. Each context appears as

a totally separate ASA instance and shares access to the physical interfaces.

No communication between contexts is possible within the ASA OS, and all

traffic must pass on physical interfaces.

Reliability[28]: is related to the reassurance that a system will perform its

intended function for the required duration within a given environment, in-

cluding the ability to test and support the system through its total lifecycle.

For software, it defines reliability as “the probability of failure-free software

operation for a specified period of time in a specified environment Users will

Modeling and Measurement of Cloud Services Performance

19

expect the cloud to be a reliable resource, especially if a cloud provider takes

over the task of running “mission-critical” applications and will expect clear

delineation of liability if serious problems occur.

Multi-tenancy[29]: is an architecture in which multiple users who do not

share or see each other’s data can share the same applications while running

on the same operating system, using the same hardware and the same data

storage mechanism. In cloud computing, the meaning of multi-tenancy archi-

tecture has broadened because of new service models that take advantage

of virtualization and remote access.

2.1.3 Service models

The services of cloud computing are broadly divided into three categories.

Each category serves a different purpose and provides different offers for

business and individuals.

Software as a Service (SaaS) [30] is a software model in which applications

are hosted by cloud provider and are accessible from various client devices

through web browser or an interface. This is a “pay-as-you-go” model and its

advantage is that no need of specific hardware to run software, pay per use

instant scalability, security and reliability. Also the user is not responsible for

the the management and the controlling of the underlying cloud infrastruc-

ture including network, servers, operating systems, storage, or even individ-

ual application capabilities

Platform as a Service (PaaS) [31]. The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired appli-

cations created using programming languages, libraries, services, and tools

supported by the provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating sys-

tems, or storage, but has control over the deployed applications and possibly

configuration settings for the application-hosting environment. The ad-

vantages of PaaS [32] are no need to buy special hardware and software to

develop and deploy enterprise applications, pay per use, instant scalability,

security, reliability; the popular services are storage, database and scalability.

Some examples are Google Apps and Microsoft Windows Azure.

Modeling and Measurement of Cloud Services Performance

20

 Infrastructure as a Service (IaaS) [33]. The capability provided to the con-

sumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The user

does not manage or control the underlying cloud infrastructure but has con-

trol over operating systems, storage, and deployed applications; and a lim-

ited control of select networking components. The advantages of IaaS are

pay per use, instant scalability, security, reliability and APIs.

Apart from the aforementioned categories in [34], an approach of a novel

cloud layer called Hardware-as-a-Service (HaaS) is described. HaaS focuses

the transparent integration of remote hardware that is distributed over mul-

tiple geographical locations into an operating system. The local system will

appear as if all hardware devices are connected locally. This model is advan-

tageous to the enterprise users, since they do not need to invest in building

and managing data centers. Potentially, everything from generic word pro-

cessing software to customized computer programs designed for a specific

company could work on a cloud computing system.

Figure 4:Traditional cloud stack extended by the novel HaaS cloud layer [34]

2.1.4 Deployment Models [13]

Private cloud. The cloud infrastructure is provisioned for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It

may be owned, managed, and operated by the organization, a third party, or

some combination of them, and it may exist on or off premises.

Community cloud. The cloud infrastructure is provisioned for exclusive use

by a specific community of consumers from organizations that have shared

concerns (e.g., mission, security requirements, policy, and compliance con-

siderations). It may be owned, managed, and operated by one or more of the

Modeling and Measurement of Cloud Services Performance

21

organizations in the community, a third party, or some combination of them,

and it may exist on or off premises.

Public cloud. The cloud infrastructure is provisioned for open use by the

general public. It may be owned, managed, and operated by a business, aca-

demic, or government organization, or some combination of them. It exists

on the premises of the cloud provider.

Hybrid cloud. The cloud infrastructure is a composition of two or more dis-

tinct cloud infrastructures (private, community, or public) that remain unique

entities, but are bound together by standardized or proprietary technology

that enables data and application portability (e.g., cloud bursting for load

balancing between clouds).

2.1.5 Taxonomies for available Cloud Services

Regarding the three main categories of cloud services many research efforts

have gone into clearly defining a taxonomy of cloud computing. One of the

most important advantage of taxonomies is that they provide a common

terminology to facilitate understanding and communication. Intel has creat-

ed the Cloud Computing Services Taxonomy [35]. This classification consists

of some primary categories of cloud computing services. Each of the catego-

ries is further divided into different subcategories. The authors in both

[36][37] are suggesting an ontology describing the knowledge domain of

cloud computing services. Another taxonomy for cloud computing is created

in [38] this time from the viewpoint of the enterprise and the consumers

instead of the vendors. The taxonomy created by [39] is built up from the

different common characteristics one can find within the services. The over-

view provided in [40] also gives a good indication of the different services

available.

The taxonomy as provided by Intel Figure 5 can be used as a guidance tool

since it extensively covers the breadth as well as the depth of existing cloud

services.

Modeling and Measurement of Cloud Services Performance

22

Figure 5: Cloud Computing Taxonomy [114]

The focus in this section is on the four main categories of services. Each of

the main vendors/providers in their respective category, are discussed by

means of the subcategories in the taxonomy. For the services discussed, also

the available interfaces (i.e. (REST) API, components…) are given which pro-

vides us with an indication of how they can be used by other parts of an ap-

plication.

2.1.6 Popular Cloud Providers and Services

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) [41] provides scalable compu-

ting capacity in the Amazon Web Services (AWS) cloud. Amazon EC2, the

basic service of the Amazon's cloud computing platform, provides a virtual

computing environment for configuring, loading, monitoring and managing

virtual machine instances originating from pre‐configured, templated Ama-

zon Machine Images (AMIs), or from images created and configured by user.

Amazon EC2 works in conjunction with other Amazon services that are to be

described (auto‐scaling, load‐balancing, storage, database, queuing) offering

high scalability, failure resilience and security.

The following Amazon services enable scaling and load balancing for EC2

instances. Both are very important for increasing the performance of applica-

tions hosted on the cloud platform as well as lowering the costs.

 Auto‐Scaling is the web service that applies a scaling action for scaling up

or down on the selected EC2 instances, when the conditions have been

met. Every one of these three variables (scaling policy, instances to be

scaled and alarming conditions) are defined by the user. The conditions

Modeling and Measurement of Cloud Services Performance

23

on which the scaling takes place can be set on every metric available

from the CloudWatch Amazon service (monitoring tool) such as disk

utilization and network activity. In case there is a demand for condition

stabilization before the triggering of the scaling action there is a variable

that defines a cooldown time (waiting time) while the conditions

continue to be scale‐demanding before the alarm activation.

 Elastic Load Balancing is a service responsible for automatically

distributing incoming traffic across multiple EC2 instances. Every load

balancer has the ability to scale its request handling capacity according

to the traffic growth. Except for handling incoming requests, load

balancers contribute to the fault tolerance increment of the application

by detecting non‐healthy instances. When such an instance is found, the

service routes no more traffic to this target. Interesting features of the

Load balancing service are:

o The ability to address the instances behind the load balancer

locally using as external point only the public IP of the load

balancer.

o The combination of Load balancing and Auto‐scaling for

management purposes.

o Traffic redirection to another destination if Load balancer or

application instances seem to be unavailable (Amazon Route 53

Domain Name System web service)

o AWS elastic load balancing provides the choice of sticky load

balancing.

Microsoft Azure

Microsoft Azure [42] is a cloud computing platform and infrastructure, creat-

ed by Microsoft, for building, deploying and managing applications and ser-

vices through a global network of Microsoft-managed datacenters. It pro-

vides both PaaS and IaaS services and supports many different programming

languages, tools and frameworks, including both Microsoft-specific and third-

party software and systems.

The Compute Service of Microsoft Azure is provided in both infrastructure

and platform levels.

Concerning Infrastructure as a Service, Windows Azure provides the ability to

host application components on virtual machine instances. Some important

information about these virtual machines is:

o Creation: There are two ways of creating virtual machines.

Either perform direct creation by selecting an image

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Datacenter
http://en.wikipedia.org/wiki/Platform_as_a_service
http://en.wikipedia.org/wiki/Infrastructure_as_a_service
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language

Modeling and Measurement of Cloud Services Performance

24

provided in the Image Gallery of the Windows Azure

Management Portal or upload an image created by the user.

The Image Gallery contains images with a variety of

operating systems (several Linux distributions, Windows and

Mac).

o Scaling: Virtual machines can be automatically scaled by

increasing or decreasing the number of virtual‐machine

instances that are used by the application. The scaling can be

configured based on Average CPU usage and the number of

messages in a queue.

o Load balancing VM instances can be implemented in two

ways. The first one is by creating a load balanced endpoint

(TCP or UDP endpoint) used by all VM instances contained in

a cloud service. The endpoint can provide round‐robin load

balancing. The second one is by using Traffic Manager to

perform load balancing following one of the three available

methods per policy: performance (traffic routed to the

geographically closest hosted service), failover (traffic is

routed to the first in order working hosted service), round‐

robin. Traffic Manager works by applying an intelligent policy

engine to the Domain Name Service (DNS) queries on

domain name(s).

Concerning Platform as a Service, Windows Azure provides the Cloud Ser-

vice. A cloud service consists of the code and the configuration of an applica-

tion hosted in Azure's platform. The infrastructure, the instances and the

operating systems are maintained by Azure, while service upgrades are ena-

bled without any interruption in service. Two types of role concepts are de-

fined:

o The web role is a dedicated web‐server used for hosting front‐

end applications.

o The worker role is used for serving requests in the background,

independently of user interaction or input, and thus allows

asynchronous execution as well as long‐running or perpetual

tasks.

Cloud Services run on role instances. One or more role instances can be used

for a specific role. For scaling purposes, the number of role instances can be

increased or decreased according to the scaling demands.

Modeling and Measurement of Cloud Services Performance

25

Google App Engine

GAE [43] is a web application hosting service, allowing for development and

deployment of web-based applications within a pre-defined runtime envi-

ronment. Unlike other cloud-based hosting offerings such as Amazon Web

Services that operate on an IaaS level, the GAE already provides an applica-

tion infrastructure on the PaaS level. This means that the GAE abstracts from

the underlying hardware and operating system layers by providing the host-

ed application with a set of application-oriented services. While this ap-

proach is very convenient for developers of such applications, the rationale

behind the GAE is its focus on scalability and usage-based infrastructure.

Flexiant Cloud Provider

Flexiant[44] is a UK-based software company that provides software to cloud

services providers. Flexiant’s cloud management software suite gives cloud

service providers the ability to rapidly design and launch commercial cloud

services by enabling business agility and flexibility to scale, deploy and con-

figure cloud services, simply and cost-effectively. Flexiant Cloud Orchestra-

tor is a fully automated software suite that enabled managed service provid-

ers, hosting providers, data centre operators and enterprises to offer cloud-

computing services to their customers.

2.2 Key Concept 2: Performance
Performance is an attribute of cloud environments that has started to get

significant attention in the recent years. Performance [16] is generally tied to

an application’s capabilities within the cloud infrastructure itself. Limited

bandwidth, disk space, memory, CPU cycles, and network connections can all

cause poor performance. In some cases, poor application performance is a

combination of lack of resources, while in some others is an application ar-

chitecture that does not properly distribute its processes across available

cloud resources. Stakeholders in cloud such as infrastructure providers, soft-

ware service providers, and end users have different performance concerns.

Infrastructure providers, give emphasis to the utilization of the resources by

meaning that they are interested in releasing timely resources so that the

system can re-allocate to other applications and customers. From the service

providers’ perspective, it needs to balance between system performance and

cost of resource reservation. If resources are reserved more than needed,

http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Data_centre
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

Modeling and Measurement of Cloud Services Performance

26

they have to pay for wasteful resources. If resources are reserved less than

needed, they cannot guarantee service availability and response time.

2.2.1 Performance metrics needed in Cloud environments

Generic performance metrics

Currently, there are many companies moving their entire applications or part

of them to the Cloud; thus, performance measurements (e.g. the percentage

of CPU allocated to VM, disk IO, cache sharing, scheduling granularity,

memory access patterns, etc.) should be taken into consideration, as differ-

ent types of applications have different interference effects in distributed

and virtualized environments. Therefore, organizations should choose a

cloud service that will provide good throughput and low latency to their cus-

tomers in order to avoid load imbalance and scalability and data manage-

ment concerns. Given that performance issues are considered unpredictable

in Cloud, this is considered one of the major obstacles in implementing relia-

ble cloud services.

In [45] some vital performance metrics are identified such as:

Benchmark finishing time: this metric measures how long the instance takes

to complete the benchmark tasks that stress each of the main compute re-

sources (CPU, memory, and disk I/O).

Scaling latency: It's the time which needs a provider to allocate a new in-

stance when customer requests it. Scaling latency can affect the perfor-

mance and cost of running an application.

Persistent Storage: There are tree common types of storage services which

cloud providers offer for application state and data: table, blob and queue.

The cloud storage has two advantages: scalability and availability. We use

three metrics to compare the performance and cost of storage services: op-

eration time, time to consistency, and cost per operation.

Operation response time: This metric measures how long it takes for a stor-

age operation to finish.

Intra-cloud Network: The intra-cloud network connects a customer's in-

stances among themselves and with the shared services offered by a cloud.

Modeling and Measurement of Cloud Services Performance

27

To compare the performance of intra-cloud networks common metrics are

path capacity and latency.

Wide-area Network: includes the collection of network paths between a

cloud's data centers and external hosts on the Internet. For the hosting of

customer applications there are multiple locations so that requests from an

end user can be served by an instance close to that user to reduce latency.

According to [46] some more interesting performance metrics are included

in the table below (Table 1):

Sl. No. Performance metric Description

Scalability based metrics

1 CPU capacity CPU's speed in flops

2 Memory size In general, cache memory size

for a VM

3 Scale up Maximum number of VMs allo-

cated for an user

4 Scale down Minimum number of VMs allo-

cated for an user

5 Boot time Booting time for a VM to get

ready for usage

6 Storage capacity Storage size of data

7 Scale uptime Time taken for increasing a

specific number of VMs

8 Scale downtime Time taken for decreasing a

specific number of VMs

9 Autoscale Boolean value for autoscaling

feature

10 Response time Time required to complete and

receive a process

Architecture specific metrics

11 Pipeline stalls Processor specific pipelines

stalls e.g. IA64

Modeling and Measurement of Cloud Services Performance

28

12 Cache misses L2 or L3 cache misses

13 Frequent voltage switches Voltage variations caused

due to applications in pro-

cessors such as Nehalem

Table 1: Performance metrics [46]

Other interesting metrics that have been identified in[47] are shown below:

1. Memory speed more important for data-intensive applications such

DBMSs or MapReduce

2. Disk I/O (sequential and random) many cloud applications require

instances to store intermediate results on local disks if input data

may not be processed in main memory.

3. Network bandwidth and GPU load between instances because

application exchange through the network large amounts of data.

4. Data processed per second and data processed per Joule in order to

evaluate the entire cloud system for large data applications.

2.2.2 Metrics for variation

According to the results of a worthwhile research [48] both small (corre-

sponding to 1.76B of main memory 1 ECU) and large (corresponding to 7.4

GB of main memory, 4ECU) instances suffer from a large variance in perfor-

mance and this is a consequence of the different system types used by virtu-

al nodes. Also runtime measurements on the cloud suffer from high variance

and are repeatable to a limited extent. Given that Cloud users need stability

in the performance of their resources (e.g. scientists to reproduce the results

or enterprises to allocate the suitable amount of resources for their applica-

tions and guarantee QoS to their customers), metrics for the stability of each

observed metric that should be taken into consideration may be:

 Repeated measurement process over time to observe variations of

offerings

 Standard deviation of the measured metric on a Cloud provider of-

fering

 Probabilistic distribution information (e.g. confidence intervals, type

of distribution)

Modeling and Measurement of Cloud Services Performance

29

2.2.3 Stereotypes and extraction of performance character-

istics

The main goal of the performance stereotypes [51] is to extract a number of

performance characteristics of the provider that are necessary for meeting

QoS requirements in the migrated cloud applications. In order to achieve

this, a concrete set of these characteristics must be defined so that they can

be measured. The source of these characteristics is threefold:

a) the generic application types that exist in modern software creation

(like application servers, DB servers, mathematical computations

etc.). These types indicate different patterns of usage of the underly-

ing physical resources (mainly CPU, storage and networking) by each

application type (e.g. random read operations in contrast to sequen-

tial write operations, floating point calculations vs matrix multiplica-

tion, regular or irregular memory accesses etc.). That information

regarding these potential classes of applications could come from ex-

isting benchmark tests (targeting at specific types) or categorizations

(TPC, Berkeley Dwarfs etc.). The basic output of this process will be

the concrete categories of computational profiles that match com-

mon application types

b) The specific features of the cloud environment that could affect ap-

plication performance and operation. These may be derived from the

nature of cloud computing and scalable resources. Examples of these

features are scalability capabilities, elasticity delays (e.g. how fast a

VM can be started and included in the service), security capabilities

(e.g. resilience in different types of DoS attacks). These features also

need consideration given that the providers do not share infor-

mation on their management and configuration aspects, so the only

way of determining their abilities is through a macroscopic observa-

tion (e.g. launching a DoS attack and measuring metrics such as serv-

er response degradation etc.)

c) The specific cloud services that are investigated in Chapter 2. These

services may have specific metrics that need to be observed and can

be based on a per case examination. For example, the ability to

launch specialized services like MapReduce clusters may come with

its own performance test (e.g. Terasort). The same applies for specif-

ic purpose services like monitoring, billing etc. The performance of

these services may directly affect application performance (e.g. if the

Modeling and Measurement of Cloud Services Performance

30

application elasticity is based on billing or monitoring information

regarding the resources and the delay of such services is restricting).

2.2.4 Performance aspects of Cloud computing

The main performance aspects of Cloud computing can be summarized as

follows:

a) Heterogeneous and unknown hardware resources: the computing

resources offered by the cloud providers are unknown to the exter-

nal users. Available information may be limited to number of cores

for example, memory sizes or disk quotes. However this level of in-

formation is far from sufficient in order to characterize the provider’s

hardware capabilities that may depend also on architecture, inter-

connection, RAM speeds etc. According to a study on Amazon plat-

form conducted by Aalto University [49] the variation between the

fast instances and slow instances can reach 40%. In some applica-

tions, the variation can even approach up to 60%. Identifying

benchmarks that are not affected by hardware heterogeneity is a

challenge and needs to be considered while deciding on the bench-

marks.

b) Different configurations: even in the existence of the same hardware

however, the way this resource is configured plays a significant role

in its performance. The same applies for software configurations

(e.g. a DB instance over a virtual cluster) or variations in the software

development. For example the key-value store Cassandra when test-

ed with a specific configuration in a private cloud for a legacy appli-

cation and when ported to public cloud with a Cassandra as a SaaS

service might lead to performance variations based on the configura-

tions of SaaS service.

c) Multi-tenancy and obscure, black box management by providers: one

of the main performance issues in cloud infrastructures is the fact

that they deal with multiple different users that may start their vir-

tual resources on the same physical host at any given time. However

the effect of concurrently running VMs for example [48] significantly

degrades the actual application performance. This is even more af-

fected by the usage patterns of these resources by their virtual own-

ers or their clients. Furthermore, consolidation decisions made by

providers and that are unknown to the users may group virtual re-

sources on the same physical node at any given time, without in-

forming the owner.

Modeling and Measurement of Cloud Services Performance

31

d) VM interference effects. In [50] an interesting research investigates

the performance interference for a number of applications in exper-

imental virtual environments that were selected for classifying their

behavior using different metrics. Moreover a mechanism for the

prediction of expected performance scores of the applications run-

ning different types of workloads was developed. The mechanism is

able to predict scores with average error almost 5%.The environment

which was developed was an experimental virtual resource alloca-

tion environment(VRA) and the examined applications in the two

VMs were the compression, the compilation of source code, and

rendering frames. The result from the research shows that combined

performance varies substantially with different combinations of ap-

plications. Applications that rarely interfere with each other achieve

performance to the standalone performance. However, some com-

binations interfere with each other in an adverse way. Moreover ap-

plication scores are affected by different workloads and also by

background applications. Finally from the findings about perfor-

mance interference and workload characteristics was generated ap-

plication clustering. Researchers ran a hierarchical clustering algo-

rithm which used each application's performance score vector, which

consists of normalized performance scores of an application against

all the background applications. The application clusters are useful

for predicting performance of a new application.

e) Virtualization is a technology used in all cloud data centers to ensure

high utilization of hardware resources and better manageability of

VMs. According to study [51] despite the advantages provided by

virtualization, they do not provide effective performance isolation.

While the hypervisor (a.k.a. the virtual machine monitor) slices

resources and allocates shares to different VMs, the behaviour of

one VM can still affect the performance of another adversely due to

the shared use of resources in the system. Furthermore, the isolation

provided by virtualization limits the visibility of an application in a

VM into the cause of performance anomalies that occur in a

virtualized environment. Specifically, a user running the same virtual

machine on the same hardware at different times will see wide

disparity in performance based on the work performed by other VMs

on that physical host.

Modeling and Measurement of Cloud Services Performance

32

Chapter 3

 Cloud Benchmarking

The widely adoption of Cloud Computing technology triggered the need for

Cloud Benchmarks in order to assess the performance of Cloud infrastruc-

tures and software and facilitate Cloud users’ decisions for comparing Cloud

offerings.

3.1 Definition and requirements of benchmarking

Traditionally benchmarks [52] are tools for providing a method of comparing

the performance of various subsystems across different system architectures

and answering which one is the best in a given domain. Most of these

benchmarks require that the system under test is deployed in a managed

environment using a fixed configuration. This means that the results coming

out from benchmarking tests reflect the average performance of a static non

changing system. Moreover each benchmark applies a representative scenar-

io for the given domain taking into consideration the properties and con-

straints of the system to be benchmarked.

Figure 6: In a traditional performance benchmark a SUT is deployed in a stable benchmark
environment and subjected to a synthetic workload designed to be representative of typical
system use and it is needed to be extended in order to quantify the automatc characteristics
of the SUT [98].

Modeling and Measurement of Cloud Services Performance

33

A critical aspect regarding benchmarking of one or more components of a

multitier application is the System Under Test (SUT) [54] which is included in

the benchmark definition. The SUT includes components whose performance

is to be measured and exclude external systems that the application depends

on but are not part of the performance evaluation. However, benchmarks

measure the overall performance of the system because the isolated infor-

mation about the component of interest demands the complete knowledge

about all components involved.

According to [55] the most significant requirements result from a good sur-

vey on different benchmarking criteria are presented in table

Requirements Description

General Requirements this group contains generic

requirements

(a) Strong Target Audi-

ence

the target audience must

be of considerable

size and interested to

obtain the information

(b) Relevant the benchmark results

have to measure the

performance of the typical

operation within the

problem domain

(c) Economical the cost of run-

ning the benchmark

should be affordable

(d) Simple Understandable bench-

marks create trust

Implementation Re-

quirements

this group contains re-

quirements regarding

implementa-

tion and technical chal-

lenges
(a) Fair and Portable all compared systems can

participate equally

(b) Repeatable the benchmark results can

be reproduced by rerun-

ning the

benchmark under similar

conditions with the same

result

(c) Realistic and Compre-

hensive

the workload exercises all

SUT features

typically used in the major

classes of target applica-

tions

(d) Configurable A benchmark should

Modeling and Measurement of Cloud Services Performance

34

provide a flexible perfor-

mance analysis framework

allowing users to configure

and customize the work-

load

Workload Requirements Contains requirements

regarding the workload

definition its interactions

(a) Representativeness The benchmark should be

based on a workload

scenario that contains a

representative set of

interactions

(b) Scalable Scalability should be sup-

ported in a manner that

preserves the relation to

the real-life business

scenario modeled

(c) Metric A meaningful and under-

standable metric is re-

quired to report about the

SUT reactions to the load

Table 2: Benchmarking Requirements

 By benchmarking in Cloud Computing we mean the testing process of

services provided by different Cloud providers in which the SUT contains a

Cloud service as component of interest. The main difference between the

traditional and the Cloud Benchmarks is that for the latter we need different

ways to measure performance and cost because in scalable systems the

resources come and go. Moreover, a benchmark for the cloud should

additionally test the cloud-specific features (scalability, pay-per-use and

fault-tolerance) and provide appropriate metrics for them. The key challenge

[56] of new benchmarks is to make the testing results comparable because

different providers offer different services with different capabilities and

guarantees of these services.

One of the key aspects is that due to this dynamicity in resource manage-

ment, the benchmarking process must be iterated over time, so that we can

ensure as much as possible that different hardware, different management

decisions (like e.g. update/reconfiguration/improvement of the infrastruc-

ture) are demonstrated in the refreshed metric values, but also observe key

characteristics such as performance variation, standard deviation etc.

3.2 Standards bodies defining benchmarks

Several consortia are defining standard domain-specific benchmarks,

Modeling and Measurement of Cloud Services Performance

35

standard price metrics, and standard ways of measuring and reporting

results. The most prominent are:

Cloud Commons

The Cloud Service Measurement Index Consortium (CSMIC) [57] has

identified metrics that are combined in the form of the Service Measurement

Index (SMI), offering comparative evaluation of Cloud services. These

measurement indices can be used by customers to compare different Cloud

services.

SPEC (System Performance Evaluation Cooperative)

The Standard Performance Evaluation Corporation (SPEC)[58] is a non-profit

corporation formed to establish, maintain and endorse a standardized set of

relevant benchmarks that can be applied to the newest generation of high-

performance computers. SPEC's Open Systems Group (OSG) has formed a

new Cloud group to work in cooperation with other SPEC committees and

subcommittees to define cloud benchmark methodologies, determine and

recommend application workloads, identify cloud metrics for existing SPEC

benchmarks, and develop new cloud benchmarks. OSGCloud working group

was formed with the main goal to research and recommend workloads for

cloud computing. The main goal of research benchmarks is to provide

representative application scenarios, defined at a higher level of abstraction

that can be used as a basis to evaluate early prototypes and research results

as well as full-blown implementations of Cloud platforms.

The Working Group has identified three classes of interested parties to Cloud

benchmark results: Hardware/Software-Vendors, Cloud-Providers and End-

Consumers. These three parties form two distinct relationships which define

two types of benchmarks: Black Box and White Box.

ETSI (European Telecommunications Standards Institute)

The European Telecommunications Standards Institute (ETSI) [59] produces

globally-applicable standards for Information and Communications

Technologies (ICT), including fixed, mobile, radio, converged, broadcast and

internet technologies. ETSI is recognized by European Union as the European

Standards Organisation.

The Perfect Club

A consortium of vendors and universities defining benchmarks for the

scientific domain, with particular emphasis on parallel or exotic computer

architectures.

Modeling and Measurement of Cloud Services Performance

36

TPC (Transaction Processing Performance Council)

A consortium of vendors defining benchmarks for transaction processing and

database domains.

3.3 Existing benchmarks

 In the following sections, a number of existing benchmarks are identified

and highlighted, that may describe different applications, cloud providers in

particular or service offerings.

3.3.1 Frameworks for comparing cloud providers

Various frameworks have been proposed for measuring cloud metrics and

subsequently ranking the cloud services.

YCSB(Yahoo Cloud serving benchmark)[61] and AppScaleError! Reference

ource not found. are frameworks that are focussed on performance compar-

isons of distributed cloud serving datastores like Cassandra, MySQL etc.,

While AppScale uses DataStore API from Google AppEngine as a universal

interface with various datastores and thus allowing various applications writ-

ten for Google AppEngine to be tested with this framework without any

modification. YCSB provides a DB Interface layer that translates simple re-

quests to calls against the database (such as Thrift calls to the Cassandra or

REST requests to PNUTS). YCSB focuses on transaction level access while

AppScale on end-to-end application performance for DB accesses. YCSB

measures the scalability and elastic speedup in addition to performance met-

rics like throughput, read latency etc., AppScale measures the end-to-end

web application response time.

OpenBenchmarking.org[63], CloudHarmony[64], CloudSleuth[65] are per-

formance measurement tools that archive the test results and make them

available through the web. OpenBenchmarking.org is a comprehensive test-

ing and benchmarking platform. It has an exhaustive list of test suites and

test results on various hardware archived. Performance of hardware re-

sources on various hardware can be consulted online from the archive.

CloudHarmony provides a similar benchmarking solution but focused on

cloud, and provides various performance metrics with focus on application,

CPU, Disk I/O etc. for various cloud providers online.

Modeling and Measurement of Cloud Services Performance

37

Figure 7: Selection of benchmark and desired cloud services in CloudSleuth [65]

Figure 8: Performance results from CloudSleuth for the selected services [65]

 The results of various runs are archived and are available for access through

the web. CloudSleuth provides availability, response time of various cloud

providers online by continuously monitoring a sample application running on

top cloud computing providers.

CloudStoneError! Reference source not found. defines a benchmark to

easure the performance of Web 2.0 applications on a cloud. It consists of 3

components – Olio(calendar application), Faban(Workload generator),

Measuring and management tools. Olio is a social event calendar application,

which can be deployed on the cloud system to be benchmarked. Faban is a

workload generator that runs on the clients and simulates large number of

Modeling and Measurement of Cloud Services Performance

38

users simultaneously accessing Olio. Tools perform management tasks such

as deploying Olio and measuring the performance of the cloud system.

CloudStone could be useful to find the best system design for optimizing the

architecture of a certain application.

CloudCmp [66] provides a methodology and as a goal has to estimate the

performance and costs of a legacy application if it is deployed on a cloud

provider. A potential cloud customer can use the results to compare

different providers and decide whether it should migrate to the cloud and

which cloud provider is best suited for its applications. CloudCmp identifies

the common services for various cloud providers, and then for each service

identifies a set of performance metrics relevant to application performance

and cost, develop a benchmarking task for each metric and run the tasks on

different providers and compare.

Skymark is a framework designed to analyze the performance of IaaS

environments. The framework consists of 2 components – Grenchmark and

C-Meter. Grenchmark is responsible for workload generation and submission

while C-Meter consists of a job scheduler and submits the job to a cloud

manager that manages various IaaS clouds in a pluggable architecture.

Skymark [67] focuses on the low level performance parameters of Cloud

services like CPU, Memory etc., Skymark does not consider the performance

measurements of other cloud models like SaaS, PaaS and the metrics

evaluated for IaaS performance comparison is not explicit.

SMICloud framework [69] provides a mechanism that measures the quality

and prioritize cloud services. It defines a framework which consists of 3

elements – Service Catalogue, Monitoring, SMI cloud broker. Service

Catalogue stores the services and the features as advertised by Cloud

providers. Monitoring discovers Cloud services and monitors the

performance of Cloud services and keeps track of how SLA requirements of

previous customers are satisfied by Cloud provider. SMI Cloud Broker collects

the customer application requirements and performs ranking of suitable

services. It presents a QoS model for IaaS providers that can be extended for

SaaS and PaaS in order to provide a comprehensive framework for cloud

services measurement. SMICloud framework seems like an interesting

starting point for ARTIST providing a layered approach for evaluating various

cloud services and an initial list of metrics like cost, throughput etc., Various

applications could specify the requirements and the framework ranks the

cloud services based on the QoS attributes calculated from the current and

historical performance data of various cloud services.

Modeling and Measurement of Cloud Services Performance

39

Cloud Rank D [70], is the first benchmark suite for evaluating cloud perfor-

mance on the entire system’s level, for large data applications. There are

three ways of using the benchmark suite. The first one is that a user can

quantitatively measure metrics of different cloud system and especially

measure how much a system outperforms another one. The second one is

that Cloud Rank-D can guide the optimization of a system under test and the

third one is that we can rank different systems according to metrics derived

from Cloud Rank-D. In addition, the Cloud Rank-D suite includes a set of 13

representative data analysis tools; thus, the users, according to their busi-

ness requirements, can choose one of the four basic categories of bench-

marks in Cloud Rank D: transformation, aggregation, summary, expansion

and one derived category: hybrid. In order to create a benchmark applica-

tion, due to the fact that the best programs to use for benchmarking are real

or simply applications, the top-down method was used. The benchmark suite

includes basic operations for data analysis, classification, clustering, recom-

mendation, sequence learning, association rule mining and data warehouse

operations as well as a real application which is called ProfSearch. Moreover

the benchmark suite includes most popular data mining algorithms as naive

Bayes support vector machine and k-means.

3.3.2 Application Benchmarks

PARSEC (Princeton Application Repository for Shared-Memory Computers) is

a new benchmark suite for evaluating multi-core and multiprocessor system-

sof Chip-Multiprocessors (CMPs), that was released at the beginning of 2008.

All benchmarks are written in C/C++. The suite includes a number of RMS

(mining and synthesis) applications, as well as systems applications but also

several leading-edge applications from Princeton University, Stanford Uni-

versity, and the open-source domain. Some requirements for a benchmark

suite which PARSEC addresses are emerging workloads, multithreaded appli-

cations and diversion of applications [71].

Rodinia[72] is a multi-platform benchmark suite for heterogeneous compu-

ting and it is based on Berkeley’s dwarf taxonomy. The suite consists of four

applications and five kernels which target multi-core CPU and GPU platforms

and also issues related to parallel communication patterns and synchroniza-

tion techniques.

Benchmarking of HPC applications

Modeling and Measurement of Cloud Services Performance

40

Cloud computing with scalable virtualization technique solves issues regard-

ing the execution of HPC applications [73]. These kinds of applications often

raise load imbalance, scalability, data management and security concerns.

Some examples of existing HPC cloud applications include

 High Energy Physics Domain: eg. BaBar application, DZerol

 Geographic/Seismic Domain:eg. most of these application are data

sensitive

 Electronics Design Community: e.g. Static Timing Analysis

 Media and Gaming Domains

 Large – scale Engineering Simulation Studies

Benchmarks for HPC applications performance

 HPL (High Performance Linpack) benchmark of High Performance

Computing Challenge.

 Nas Parallel benchmarks (NPB) [74]: are used to evaluate the

performance of parallel computers and are derived from

computational fluid dynamics (CFD) applications and consist of five

kernels and three pseudo-applications. The benchmark suite has

been extended in order to provide new benchmarks for unstructured

adaptive mesh, parallel I/O, multi-zone applications, and

computational grids.

3.3.3 MATLAB Benchmark suite

MATLAB benchmarks [75] consist of six benchmarks that are used for both

determining the hardware computational capability (test score) and charac-

terizing types of workloads (test number). Tests include floating-point with

regular or irregular memory accesses, data structures, mixed integer and

floating point operations, 2-D and 3-D graphics. A research, which is based

on MATLAB benchmarks, is presented in [48]. The analysis is related with a

number of crucial parameters which effect on the performance of VMs such

as CPU allocation percentages, real-time scheduling decisions and co-

placement of VMs when they run applications in the same physical node, and

they share infrastructure. Moreover a black box method is described based

on genetically optimized ANNs to model and to predict the performance of

an application.

Modeling and Measurement of Cloud Services Performance

41

3.3.4 Berkeley Dwarfs suite

A dwarf [76] is an algorithmic method that captures a pattern of computa-

tion and communication. The first seven Dwarfs which are used for High Per-

formance Computing were inspired by Phil Colella who identified seven nu-

merical methods important for science and engineering. Instead of tradition-

al benchmarks Dwarfs are used to design and design parallel programming

models and architectures. Some examples of examined applications are

dense matrices or vectors, linear algebra, data mining and clustering, sparse

linear algebra (finite element analysis and partial differential equation), spec-

tral methods (fluid dynamics, quantum mechanics and weather prediction),

N-body methods (molecular modeling, molecular dynamics and cosmology),

structured grids with high spatial locality (image processing such as SRAD and

physics simulations such as Hotspot), irregular grids (belief propagation and

computational fluid dynamics), MapReduce (distributed searching, sequence

alignment and parallel Monte Carlo simulations) and many more. The main

advantage of Dwarfs is that they cover a very large range of application cate-

gories and capture their computational patterns.

3.3.5 FileBench

Filebench [77] is a very flexible file system and storage benchmarking tool.

Basically it is an open source C frameworks that uses loadable workload per-

sonalities to allow easy emulation of complex applications. We have tested

the last version and it's is resulted quick to set up and easy to use. Filebench

includes many features to facilitate file system benchmarking:

• Multiple workload types support via loadable personalities.

• Ships with a library of more than 40 pre-defined personalities, including the

ones that describe mail, web, file, and database servers behaviour. Workload

personalities define the workload to apply to the system; they include tuna-

bles for scaling workloads to specific systems.

• Easy to add new personalities using reach Workload Model Language

(WML) [78]

• Multi-process and multi-thread workload support.

• Configurable directory hierarchies with depth, width, and file sizes set to

given statistical distributions.

• Support of asynchronous I/O and process synchronization primitives.

• Integrated statistics for throughput, latency, and CPU cycle counts per sys-

tem call.

• Tested on Linux, FreeBSD, and Solaris platforms.

Modeling and Measurement of Cloud Services Performance

42

 In Figure 9 an example of output concerning Fileserver emulator benchmark:

Figure 9: Filebench output example

3.3.6 Cloudsuite

CloudSuite [79] is a benchmark suite for emerging scale-out applications. The

second release consists of eight applications that have been selected based

on their popularity in today's datacenters. The benchmarks are based on

real-world software stacks and represent real-world setups.

The Data Analytics benchmark relies on using the Hadoop MapReduce

framework to perform machine learning analysis on large-scale datasets.

Apache provides a machine learning library, Mahout that is designed to run

with Hadoop and perform large-scale data analytics.

The Media Streaming benchmark consists of two main components: a client

and a server. The client component emulates real world clients sending re-

quests to stress a streaming server.

The Data caching benchmark uses the Memcached data caching server, sim-

ulating the behavior of a Twitter caching server using the twitter dataset. The

metric of interest is throughput expressed as the number of requests served

per second. The workload assumes strict quality of service guaranties.

The data serving benchmark relies on the Yahoo! Cloud Serving Benchmark

(YCSB). YCSB is a framework to benchmark data store systems. This frame-

work comes with the interfaces to populate and stress many popular data

Modeling and Measurement of Cloud Services Performance

43

serving systems. Here we provide the instructions and pointers to download

and install YCSB and use it with the Cassandra data store.

We use the GraphLab machine learning and data mining software for the

graph analytics benchmark. We implemented TunkRank on GraphLab, which

provides the influence of a Twitter user based on the number of that user's

followers. Although GraphLab can perform distributed graph processing, in

this document, we provide instructions for a single-machine setup. Instruc-

tions for cluster deployment can be found at the GraphLab website.

Software testing is a resource-hungry and time-consuming task that can lev-

erage cloud computing. There are many applications that can potentially

benefit from the abundance of resources in clustered systems. This

benckmark tests Cloud9, an automated software-testing platform that paral-

lelizes symbolic execution and scales on clusters of commodity hardware.

The search benchmark uses the Nutch search engine to benchmark the in-

dexing process. It consists of a client machine that simulates real world cli-

ents, a frontend server to accept the client requests and send them to the

index processing nodes.

Web serving is a fundamental application in any Internet-based service. We

use CloudStone in CloudSuite to benchmark Web 2.0 applications.

3.3.7 DaCapo

The DaCapo benchmark suite [80] is designed to facilitate performance anal-

ysis of Java Virtual Machines, compilers and memory management. This

benchmark suite is intended as a tool for Java benchmarking by the pro-

gramming language, memory management and computer architecture

communities. It consists of a set of open source, real world applications with

non-trivial memory loads. The DaCapo suite consists of the following bench-

marks:

 AVRORA: simulates a number of programs running on a grid of AVR

micro-controllers

 BATIK: produces a number of Scalable Vector Graphics (SVG) images

based on the unit tests in Apache Batik

 ECLIPSE: executes jdt performance tests for the Eclipse IDE

 FOP: parses/formats XSL-FO file and generates a PDF file

http://graphlab.org/
http://tunkrank.com/
http://graphlab.org/tutorials-2/graphlab-cluster-deployment-quick-start/

Modeling and Measurement of Cloud Services Performance

44

 H2: executes a JDBC benchmark using a number of transactions

against a banking model application

 JYTHON: interprets pybench Python benchmark

 LUINDEX: uses Lucene to index a set of documents

 LUSEARCH: uses Lucene to search of keywords over a data corpus

 PMD: analyzes a set of Java classes for a range of source code prob-

lems

 SUNFLOW: renders a set of images using ray tracing

 TOMCAT: runs a set of queries against a Tomcat server retrieving

and verifying the resulting webpages

Bench‐

marks

Application

Type

Resource

focus

Implemen‐

tation

License type Metrics

YCSB Cloud

OLTP(online

transaction

processing)

applications

cloud serving

sys‐

tems(latency,

scaling)

Java Open source,

extensible-easy

definition of new

workloads, easy

to benchmark

new systems.

Online

read/write

access to

data, la‐

tency of

requests

when the

database is

under load,

scalability-

elasticity

PARSEC Computer

vision, phys‐

ical model‐

ing, future

media, con‐

tent based

search,

deduplica‐

tion, fi‐

nance-

Multicore C/C++ Open source,

extendable- build

and run work‐

loads (applica‐

tions)for user

Cache

(miss rates)

during load

and

store,traffic

from cashe

Modeling and Measurement of Cloud Services Performance

45

multimedia

Rodinia Dwarfs-

scien‐

tific/enginee

ring-data

mining

Multicore,

GPU, memory

band-width

OpenMP,

OpenCL&C

UBA

Open Source-

expand Rodinia in

future to cover

the remaining

dwarfs

Parallel

communi‐

cati‐

on&data

access

patterns,

data-

sharing

character‐

istics,

power

consump‐

tion

HPL Basic opera‐

tion is based

on vector

primitives

Mflop/s (mil‐

lions of float‐

ing point

operations

per second)

C (in‐

stalled MPI

and BLAS o

r VSIPL)

Open Source(will

be extend‐

ed),Linux

machine's

frequency,

in cycles

per sec‐

ond, the

number of

operations

per cycle

NAS Par‐

allel

Multi-zone

applications,

computa‐

tional grids

CPU, GPU MPI,

OpenMP,

Java

Open Source

,Linux, has been

extended to

include new

benchmarks

 unstruc‐

tured

adaptive

mesh,

parallel

I/O, multi-

zone appli‐

cations,

and com‐

putational

grids

Cloud

Rank D

Large data

applications

CPU Ha‐

doop(versi

on 0.20.2),

Hive(versio

n 0.6.0)

and Ma‐

hoot(versio

NA Perfor‐

mance on

the whole

system

level by to

comple‐

mentary

Modeling and Measurement of Cloud Services Performance

46

n 0.6) metrics:

data pro‐

cessed per

second and

per Joule

(memory,

disk and

network

I/O)

Berkeley

Dwarfs

Numeri-

cal,2D

graphs, 3D

animation

applications

 CPU speed,

cache size or

RAM size

Numerical

methods

Open source Perfor‐

mance of

virtualized

hard‐

ware,or

PaaS pro‐

vider

measure

perfor‐

mance of

many IaaS

providers

MATLAB Multimedia,

scientific

applications

CPU, RAM

accesses

Matlab

scripting

Open source CPU alloca-

tion per-

centages,

real-time

scheduling

decisions

Cloud‐

Suite 2.0

Bench‐

mark

suite

Data Analyt‐

ics,Data

serv‐

ing,Media

streaming,

Software

testing,Web

search,Web

serving

Architecture multiple

languages

CloudSuite 2.0

license

multiple

metrics

depending

on applica‐

tion

Modeling and Measurement of Cloud Services Performance

47

Cloud‐

Stone

Web 2.0

applications

Web 2.0

applications

Java, php,

ruby

Apache 2.0 dollars per

user per

month

Filebench File System-

emulation of

mail, web,

file and

database

servers

File system

and storage

I/O,

CPU,CPU/OP

uses exten-

sive Work-

load Model

Language

(WML)

Open source Integrated

statistics

for

through‐

put, laten‐

cy and CPU

cycle

counts per

system call,

I/O trace,

NFS trace

and appli‐

cation

trace

DaCapo Java-based

client and

server side

applications

 performance

analysis of

Java Virtual

Machines,

compilers and

memory

management

Java Open source Response

time

Table 3: The most interesting benchmarks and their features

Modeling and Measurement of Cloud Services Performance

48

Chapter 4

UML Profiles - Model Driven Engineering and

Existing Models for Cloud Descriptions

With the emergence of cloud computing, Software-as-a-Service (SaaS) is be-

coming mainstream. Hereby, software (or parts of it) is hosted in cloud envi-

ronments [81] and consumable over the network by different clients. As

cloud computing aims at improving the quality of delivered services with

respect to rapid elasticity and high availability, as well as reducing the costs

of software operation by a “pay-as-you-go” pricing model, there is an in-

creasing need to move legacy software into the cloud of services. However,

the systematic and efficient modernization of legacy software to exploit cur-

rent cloud-based technologies remains a major challenge. Such a paradigm

shift implies fundamental changes to how software is modernized, delivered

and sold.

 Moreover, the increasing complexity of information systems is challenging

the way software architects and engineers work. The rapid advancements in

the field of ICT in recent years and the software applications running on dif-

ferent platforms entail the development of software solutions in a manner

that is independent of the technology change. After initially being concerned

more about the structure and quality of programming code, software engi-

neers are now focusing their attention on the modelling aspects of the sys-

tem development process. In order to achieve both, a succeed modernized

migration to the Cloud and the alleviation of the undesirable effects of tech-

nology change, the usage of UML Profiles [82] and the incorporation of Mod-

el Driven Architecture and Model Driven Modernization [83] in the develop-

ment of cloud services is needed.

4.1 Key Concept: UML Profiles

4.1.1 Models

Models [84] provide abstractions of systems which help deal with larger and

more complex applications in simpler ways regardless of how they are im-

plemented and distributed and whichever the final execution platform or

technology used.

Modeling and Measurement of Cloud Services Performance

49

A model is a description of (part of) a system written in a well-defined lan-

guage. A well-defined language is a language with well-defined form (syntax)

and meaning (semantics), which is suitable for automated interpretation by a

computer [85].

The Object Management Group (OMG) [86] is an international, open mem-

bership, computer industry standards consortium which is focused on model-

ing and model-based standards and provides specifications as a standard.

This consortium defines several modeling languages among which UML (Uni-

fied Modeling Language) [87] is the most-used specification and the way the

world models not only application structure, behavior and architecture, but

also business process and data structure.

UML is a language for specifying, visualizing, constructing and documenting

models of software systems, including their structure and design, in a way

that meets all of these requirements. It is a general purpose modeling lan-

guage that can be used with all major object and component methods and

can be applied to all application domains and implementation platforms

(J2EE-Java 2 Enterprise Edition-.NET).

However, in some cases a language that is so general is not proper in order

to model applications of some specific domain. For instance, when the syn-

tax or semantics of particular systems of the UML elements cannot describe

specific concepts of particular systems, or when is needed to restrict or cus-

tomize some of the UML elements which are usually general.

One possible approach that is defined from OMG is a set of extension mech-

anisms such as stereotypes, tagged values and constraints.

 Stereotypes extend the vocabulary of the UML by creating new

model elements derived from existing ones but that have specific

properties suitable for a specific domain. Each stereotype defines a

set of properties that are received by elements of that stereotype.

 Tagged values are the properties for specifying key-value pairs of

model elements, where keywords are attributes. They are a

convenient way of adding information to an element in addition to

that directly supported by UML.

 Constraints are the properties for specifying semantics or conditions

that must be maintained as true for model elements. The

aforementioned customizations are sets of UML extensions grouped

into UML Profiles. A Profile is a collection of such extensions that

together describe some particular modeling problem and facilitate

modeling constructs in that domain. However a disadvantage of this

Modeling and Measurement of Cloud Services Performance

50

approach is that it may not provide such an elegant and perfectly

fitting notations as may required for those systems.

4.1.1.1 Making up a model

According to OMG definition in order to make up a model a four-layered
architecture is provided which is consisted of the following different concep-
tual levels: the instances (M0), the model of the system (M1), the modelling
language (M2), and the metamodel of that language (M3).
Layer M0: Instances. The M0 layer corresponds to the real world models the
running system and its elements are the actual instances that exist in the
system.

Layer M1: The model of the system. The elements of the M1 layer are mod-
els. There is a strong relationship between the M0 and M1 layers. The ele-
ments of the M1 layer are classifications of elements of the M0 layer. Like-
wise, each element at the M0 layer is always an instance of an element at
the M1 layer.

Layer M2: The model of the model (the metamodel). The elements of layer
M2 are the modelling languages. Layer M2 defines the concepts that are
used to model an element of layer M1. Just as there was a close relationship
between layers M0 and M1 so there is a close relationship between M1 and
M2 layers. Every element at M1 is an instance of an M2 element, and every
element at M2 categorizes M1 elements. The model that resides at the M2
layer is called a metamodel.

Layer M3: The model of M2 (the meta-metamodel). Finally, layer M3 de-
fines the concepts that can be used to define modelling languages.

Modeling and Measurement of Cloud Services Performance

51

Figure 10: MDA four-layer MOF-based metadata architecture [115]

4.1.2 Meta-Object Facility

The modelling language defined for describing the M3 elements is called
MOF (Meta-Object Facility) [88]. MOF is a Domain Specific Language (DSL)
used to define modelling languages, such as UML, CWM, or even MOF itself.
Such languages can be considered as instances of MOF. A well-defined lan-
guage (such as UML) can be described by its metamodel. A model that repre-
sents a modeling language is called metamodel. What MOF provides is a lan-
guage to describe metamodels. If we wanted to define a new object-based
visual language other than UML we would use the MOF to describe its met-
amodel.

4.1.3 UML 2.0 and Profiles package

In order to define a new model language for the description of a system,
UML can be easily customized by using a set of extension mechanisms that
UML itself provides. UML 2.0 includes the Profile package that defines a set
of UML artefacts More precisely, the Profiles package included in UML 2.0
defines a set of UML artefacts that allows the specification of an MOF model
to deal with the specific concepts and notation required in particular applica-
tion domains (e.g., real-time, business process modelling, finance, etc.) or
implementation technologies (such as .NET, J2EE, or CORBA). It should be

Modeling and Measurement of Cloud Services Performance

52

noted that UML Profiles allow the customization of any MOF defined (not
just UML defined) metamodel. Similarly, a UML Profile can also specify an-
other UML Profile.

UML Profiles

A UML Profile is defined as a UML package stereotyped profile that can ex-
tend either a metamodel or another Profile. As it was mentioned in UML
section UML Profiles are defined in terms of three basic mechanisms: stereo-
types, constraints, and tagged values.

The process for adding a new element in a UML model is the following:

1) First a stereotype is defined by a name and by the set of metamodel
elements it can be attached to. Graphically, stereotypes are defined
within boxes, stereotyped “stereotype”. Metamodel elements are
indicated by classes stereotyped «metaclass». The notation for an
extension is an arrow pointing from a stereotype to the extended
class, where the arrowhead is shown as a solid triangle.

2) Constraints can be associated to stereotypes, imposing restrictions
on the corresponding metamodel elements. In this way a designer
can define the properties of a well-formed model. Constraints can be
expressed in any language, including natural language or the OCL
(Object Constraint Language). OCL is a language, now part of UML,
adopted by the OMG for expressing constraints and properties of
model elements.

3) Finally, a tagged value is an additional meta-attribute that is
attached to a metaclass of the metamodel extended by a Profile.
Tagged values have a name and a type, and are associated to a
specific stereotype. Graphically, tagged values are specified as
attributes of the class that defines the stereotype.

Figure 11: Example for stereotype from core profile of CloudML@artist

Modeling and Measurement of Cloud Services Performance

53

4.2 Key Concept 2: Model-Driven Approach to Cloud

4.2.1 Model-Driven Engineering in a Nutshell

Model-Driven Engineering (MDE) refers to the systematic use of models as

primary engineering artifacts throughout the engineering lifecycle in order to

raise the level of abstraction and model transformations to increase the de-

gree of automation in the development of software [89].

 Models are used to represent a certain kind of information, e.g., a model of

a system that exists or that should be realized.

 Transformations are the active parts that manipulate models in a systematic

manner for a given purpose and generate automatically a target model from

a source model according to a transformation definition which is comprised

of transformation rules that describe how one or more constructs in the

source language can be transformed into one or more constructs in the tar-

get language.

 A transformation takes a PIM and transforms it into a PSM. In order to

achieve a model transformation the appropriate tools are needed. A second

or the same transformation tool transforms the PSM to code. Development

tools should not only offer the possibility of applying predefined model

transformations on demand, but should also offer a language that allows

(advanced) users to define their own model transformations and then exe-

cute them on demand.

A transformation definition is comprised of transformation rules. Transfor-

mation rules defined for the PIM to Relational PSM transformation take care

of consistent object-relational mappings. These rules describing how the

elements in PIM can be mapped to elements in Relational PSM are discussed

in [90]. Τransformations may be also treated as models due to the model

engineering principle “everything is a model”. Although, sometimes it is help-

ful to distinguish between models and transformations, in other case the

general notion of model brings several benefits also for the development and

usage of model transformations.

Figure 12: The two key concepts of MDA are models and transformations [117]

Modeling and Measurement of Cloud Services Performance

54

4.2.2 Model-Driven Architecture

Object Management Group (OMG) introduced the Model Driven Architec-

ture (MDA) as an approach to software development which is characterized

by the use of models as primary artifacts for understanding, design, con-

struction, deployment, operation, maintenance and modification of a sys-

tem. MDA introduces higher levels of abstraction, enabling organizations to

create models that are independent of any particular technology platform.

These models are simple as they describe only the essential features of the

system and helps in better understanding the system. The models are de-

scribed at three different levels of abstraction [91]:

 CIM (Computation Independent Model) is a software independent

business domain model that bridges the gap between business

experts and system experts. It describes the basic features of the

system and produces a structured and coherent document of

requirement specification.

 PIM (Platform Independent Model) - describes the structure,

behavior and functionality of the system in a generic manner,

independent of the technology that would be used for its

implementation.

 PSM (Platform Specific Model) - specifies the system in terms of

implementation constructs that are specific to the implementation

technology. MDA allows automation of various steps in the

development process and it semi-automatically generates code

from the models.

A single PIM can be transformed into one or more PSMs, each PSM being

specific to the technology platform on which the system would finally be

implemented. A complete MDA specification consists of a definitive plat-

form-independent model (PIM), plus one or more platform specific models

(PSM), sets of interface definitions, each describing how the base model is

implemented on a different middleware platform and sets of transformation

definitions. The PIM depicting the structure, behaviour and functionality is

modelled only once. And then, the transformation definitions enable the

transformation of the PIM to one or more PSMs.

The key to the success of MDA [92] lies in automated or semi-automated

model-to-model and model-to-code transformations. The transformation

tool executes a transformation definition that is specified for the purpose of

transforming higher-level, platform-independent business models into low-

er-level platform-specific models and finally into executable code. A trans-

formation definition is a set of transformation rules that together describe

how a model in the source language can be transformed into a model in the

Modeling and Measurement of Cloud Services Performance

55

target language. Figure 13 depicts a PIM to PSM transformation.

Figure 13: PIM to PSM Transformation [91]

4.2.3 Model-Driven Modernization

In Model-Driven (Software) Modernization (MDM) [118], models represent-

ing legacy software are (i) (semi-)automatically discovered in a reverse engi-

neering step and (ii) transformed until the new software satisfies the mod-

ernization requirements in a forward engineering step. This process is also

currently subject to standardization at the OMG under the Architecture Driv-

en Modernization (ADM) umbrella [93]. MDE allows automating the various

steps involved in the software migration, notably reverse engineering of leg-

acy software and forward engineering towards cloud environments.

In Model-Driven Software Modernization, the legacy software system is first-

ly inspected by applying Reverse Engineering techniques to provide Platform

Independent Models (PIMs) that represent different relevant views of that

legacy system. Forward engineering techniques are then applied to these

models in order to generate Platform Specific Models (PSMs), which de-

scribes the target system and desired requirements to be fulfilled. Finally,

the software artefacts composing the target system are generated from such

PSM models.

During the forward reengineering phase, the generation of PSM models usu-

ally is driven by platform dependent information (e.g., when a platform al-

lows several ways of representing a concept), which becomes Platform De-

pendent Models (PDMs). Thus, when applying forward engineering tech-

niques, it is required to specify the PDM meta-models describing the particu-

lar features of a target environment. In Cloud computing case, the target is a

Cloud environment which, according to the kind of services it offers, is classi-

fied into (i) Infrastructure as a Service (IaaS), (ii) Platform as a Service (PaaS)

and (iii) Software as a Service (SaaS). For instance, PDM metamodels for

Cloud should describe entities such as services (i.e., infrastructure, platform),

tools (i.e., hardware and software components), pricing policies, ratings and

other factors of Cloud offerings and providers. This section surveys the exist-

Modeling and Measurement of Cloud Services Performance

56

ing research and industrials approaches to describe the target environment

in the context of Model Driven Engineering (MDE).

4.2.4 MDA and UML Profiles

UML Profiles can play a particularly important role in describing the platform

model and the transformation rules between models. The usage of UML Pro-

files to specify the model of a specific platform, guarantees that the derived

models will be consistent with UML. The key to a successful application of

MDA is to use standard models and standard UML Profiles for implementa-

tion languages or platforms when is possible. UML Profiles for some well-

known component platforms are currently available.

The most important process is the mapping between each element of the

PIM, and the stereotypes, constraints and tagged values that make up the

platform Profile. In order to be achieved the stereotypes of a platform Profile

to “mark” the elements of a PIM and produce the corresponding PSM, al-

ready expressed in terms of the elements appearing in the target platform. A

mark represents a concept in the PSM, and is applied to an element of the

PIM to indicate how it must be transformed into the target PSM.

4.2.5 Available Standards/Profiles/MetaModels of the cho-

sen technology

This section studies available initiatives that provide formal and standardized

meta-modelling descriptions of Cloud environments, in particular those

which are technically compatible with the MDE baseline, although other

Cloud meta-modelling technologies that could complement the former ones

will be considered. In particular this section details existing standard Cloud

meta-models as well as other meta-models suggested by on-going research.

This section concludes with a comparison of modelling features among con-

sidered meta-models and a deep analysis of needed extensions.

4.2.5.1 REMICS PIM4Cloud and CloudML

Description

As its descriptive name says, PIM4Cloud is a Platform Independent Model

oriented to cloud infrastructures. This means it allows the specification of

cloud related issues from a platform independent model point of view, so

Modeling and Measurement of Cloud Services Performance

57

the resulting model could be implemented in different cloud providers now

and in the future when new needs or capabilities may arise.

In short, PIM4Cloud [94] is a metamodel and UML profile for describing IT

systems deployments to cloud platforms from an application designer per-

spective. PIM4Cloud proposes a domain-specific language (DSL) [95] to sup-

port application deployment to cloud platforms. Using this DSL, applications

can be modeled in terms of components, their properties and connections

(topology). Similarly, the cloud provider offerings can be described on a

component level. To fulfill the requirements of the modeled application, the

PIM4Cloud interpreter matches the description of the application to the de-

scription of the platform. It then deploys the application, returning a “living

model” of the application, which is annotated with run-time properties. The

PIM4Cloud interpreters are implemented in Scala.

The provisioning of cloud resources required to deploy and run an applica-

tion is addressed by REMICS CloudML [94]. The approach proposes a com-

mon model to represent nodes that captures both design-time properties

(e.g., memory, core, disk, and location) and runtime properties (e.g., public

and private IP address).

Research background and motivation

In the scope of REMICS Project (http://www.remics.eu/), in which are in-

volved companies closely related to the OMG was detected a lack of stand-

ards to describe cloud deployment scenarios.

To solve this shortcoming, the analysis of the state of the art prior to the

creation of PIM4Cloud specification, was focused on the study of various

existing standards in order to identify cloud related elements and evaluate if

they were subject for modeling.

After this study, a number of concepts emerged as a result of deployment

modeling study of existing approaches. These concepts served as a reference

for creating PIM4Cloud.

It was three standards from which these concepts were extracted: UML 2.3,

Amazon Cloud Formation and TOAF.

Cloud providers are fully aware of the importance of providing adequate

support for the end customers to deploy their applications on providers’ in-

frastructure. That is why there have appeared so different APIs, both propri-

etary and open to try to abstract the characteristics of different providers in

order to facilitate and automate as much as possible the deployments.

http://www.remics.eu/

Modeling and Measurement of Cloud Services Performance

58

However, there was still a huge gap in terms of abstraction and modeling of

the characteristics of different IaaS providers and so it was decided to ap-

proach the solution to this need through PIM4Cloud.

Target

PIM4Cloud was created to support the description and deployment of cloud

applications. One of the goals taken into account when developing this speci-

fication was that it should serve to support automatic deployments in the

cloud. The PSM (Platform Specific Models) generated from PIM4Cloud

should serve as a starting point for the generation of specific parameters and

structures to deploy an application in a particular infrastructure.

However, this requirement was not completely covered in the scope of

REMICs project, and thus represents a challenge to achieve in this project.

Main characteristics

PIM4Cloud standard is aimed primarily at designers and application deploy-

ment responsible working together to develop and deploy an application to

the cloud.

However, it is important to note that the use of PIM4Cloud can meet only

the needs of modeling IaaS providers, as PIM4Cloud does not provide ele-

ments to abstract PaaS, due to a decision taken in relation to the high degree

of heterogeneity and the fast evolution in the PAAS domain. PIM4Cloud was

planned to be implemented as a profile for UML.

UML can describe most of the needs of a system that will be deployed in a

cloud environment, such as which components will be deployed (compo-

nents diagrams) and how these components relate (class diagrams and in-

teraction diagrams).

Nevertheless, UML has some limitations that were tried to be addressed in

the context of PIM4Cloud.

The two shortcomings of UML for modeling cloud systems addressed were:

 Limitations on modeling service architectures. This aspect was al-

ready addressed at the time of the creation of the SoaML UML ex-

tension, standard that was reused when creating PIM4Cloud.

 Limitations on shaping the deployment of components in cloud envi-

ronments. The possibilities offered by UML in this regard are too

general and did not allow specifying aspects directly related to the

cloud.

Below are two tables: a table with the stereotypes that make up PIM4Cloud

(Error! Reference source not found.), whose combinations based on differ-

Modeling and Measurement of Cloud Services Performance

59

ent diagrams (Error! Reference source not found.) permit to model a com-

plete cloud infrastructure.

Extension capability

PIM4Cloud was created as an extension of UML, which is a standardized

mechanism through which it can extend the UML capacity to adapt to new

needs.

For this reason, in principle there should be no problems in extending

PIM4Cloud to model new environments and specific characteristics of them

as they arise.

4.2.5.2 CloudML: Cloud Modeling Language

The Cloud Modeling Language (CloudML) [96] is an XML-based approach that

addresses service, resource, and request descriptions from an infrastructure

perspective. Offerings of cloud providers are modelled in terms of services. A

service is specified with a profile-based approach. A profile refers either to

nodes or links and their characteristics in terms of offered CPU, storage,

memory and operating system, and delay and rate, respectively. Additionally,

the locations (country, state, and city), where these services are available,

can be defined. Node profiles and link profiles are aggregated in terms of

service types.

Second, CloudML supports the representation of all physical and virtual

cloud resources, including their current state. As a consequence, this part of

the language consists of two sub-parts. The first sub-part specifies XML

Schemas to describe infrastructure resources. Both physical and virtual

nodes can be defined. They can be connected by physical and virtual links,

respectively. The second sub-part defines XML Schemas to capture the state

of physical and virtual nodes. The former includes node characteristics as

supported by the service description, whereas the latter additionally cap-

tures the state of virtual machine, i.e., stopped, running, and suspended.

Finally, CloudML allows service requests to be specified and related to con-

crete services offered by a cloud provider. A request basically contains the

required nodes and links according to defined service profiles and assigns

them client-specific identifiers.

Modeling and Measurement of Cloud Services Performance

60

Table 4: PIM4CLOUD stereotypes table [96]

Modeling and Measurement of Cloud Services Performance

61

Table 5:PIM4CLOUD diagrams reference table [96]

4.2.5.3 SysML

Description

UML (Unified Modeling Language) is a general purpose modeling language,

but it has a bias for object-oriented software systems. However, in UML 2

additional modeling concepts have been added to target also other domains

such as component-based systems and business processes. When dealing

with systems involving software and hardware, these systems are a mixture

of discrete and continuous subsystems. The software systems are discrete,

while the hardware systems are continuous.

The need to model also such systems triggered the development of SysML

(Systems Modeling Language) that is designed as a UML profile and already

supported by several modeling and analysis tools. Especially, the later point

is very important for systems design. The SysML standard has been published

in its first version back in 2006 and has since then been subject to several

revisions. The latest revision has been released in June, 2012 [97].

UML vs. SysML

 Although, SysML is designed for modeling software/hardware systems, it

may be used also to model purely software systems or software infrastruc-

tures. However both modeling languages have influenced each other. This is

not surprising, because both modeling languages have been standardized by

Modeling and Measurement of Cloud Services Performance

62

the same institution, i.e., OMG, and they have been developed at the same

time. Furthermore, the goal of SysML was to keep UML as it is as much as

possible and extend it only for the needs of systems engineers that could not

be covered by the UML 2 standard without developing further extensions.

As UML, SysML is designed to model the structure and the behavior of sys-

tems. Although, also for UML the goal was changed from modeling software

systems to modeling systems in general, UML still does not provide many

capabilities to model physical nodes except when using the deployment dia-

gram.

Some aspects which are of great interest for systems engineers are not cov-

ered by UML. These are in particular structured textual requirements and

parametric equations that are heavily used by systems engineers in practice.

This need is reflected in extending the structural and behavioral modeling

capabilities of UML with some specific concepts for software/hardware sys-

tems in general.

Figure 14 gives an overview on SysML and UML diagram types. The figure

explicitly defines the diagram types which are supported by UML only, by

SysML only, and by both modeling languages. As can be seen, both SysML

and UML provide means for modeling structures and behavior of systems.

While UML provides 14 different diagram types, SysML uses only 8 different

diagram types. In general, when comparing the modeling concepts between

UML and SysML, SysML provides less model concepts than UML. Here it has

to be mentioned that SysML is described in most documents as an extension

of UML and at the same time as a restriction of UML. By this, we mean that

diagram types that are not explicitly mentioned by SysML, such as Communi-

cation Diagrams, Timing Diagrams, Interaction Overview Diagrams, Class Dia-

grams, Composite Structure Diagrams, Profile Diagram, Component Diagram,

Object Diagram, and Deployment Diagram, are not part of SysML. Instead,

only Sequence Diagrams, Activity Diagrams, State Diagrams, and Use Case

Diagrams are roughly reused by SysML and in addition to them, SysML intro-

duces four new types of diagrams, namely the Requirement Diagram, Block

Diagram, Internal Block Diagram, and Parametric Diagram.

While the Requirement Diagram is a syntactical extension of the Class Dia-

gram, it is used for defining cross cutting concerns. By using this diagram

type, first, the requirements of a system can be defined using text in a struc-

tured way. Then, the defined requirements can be related to other require-

ments as well as to other modeling elements defined in different diagrams.

SysML provides various relationship types such as ‘derived’, ‘satisfied’, ‘veri-

fied’ and ‘refined’. In this way, a hierarchy of derived or refined requirements

Modeling and Measurement of Cloud Services Performance

63

can be built. Furthermore, those systems elements that satisfy or verify re-

quirements can be related to them.

Requirements are classified in SysML as cross-cutting concern modeling con-

structs and are thus presented in the diagram type taxonomy between the

behavior diagrams and the structure diagrams.

Figure 14: SysML and UML diagrams

Main characteristics

Picking interesting features of SysML is always possible, because the stereo-

types of SysML may be used as annotations for already existing UML models

to refine them or to allow for enhanced code generation or analysis.

Requirement diagrams from SysML may fit the purpose of defining the re-

quirements for a migration of legacy software to cloud-based software. For

instance, requirements may be not only defined for software/hardware sys-

tems, but just for software systems as mentioned in [98].

Parametric diagrams may be used to explore the performance behavior of

Cloud applications by simulation. In Error! Reference source not found., we

how an example for parametric diagrams taken from [99]. As one can see in

the Figure, an equation for defining an objective measurement function for

determining the cost effectiveness of a system is defined.

To summarize, SysML may be applied to model the architecture and the

components of cloud-based infrastructures by using block diagrams and to

define specific configurations of cloud environments for given cloud-based

software. Furthermore, the requirement diagrams in combination with par-

SysML/UML
Diagram

Behavior
Diagram

Requirement
Diagram

Structure
Diagram

Activity
Diagram

State
Diagram

Sequence
Diagram

Use Case
Diagram

Internal Block
Diagram

Package
Diagram

Block
Diagram

Parametric
Diagram

Class
Diagram

Composite Structure
Diagram

Object
Diagram

Component
Diagram

Deployment
Diagram

Profile
Diagram

Timing
Diagram

Interaction Over-
view Diagram

Communication
Diagram

UML
Only

Legend:

UML &
SysML

SysML
Only

Modeling and Measurement of Cloud Services Performance

64

ametric diagrams may be employed to capture the requirements that should

be fulfilled by an application and state how they have to be satisfied and

verified. Parametric diagrams may act as a technique to calibrate the Cloud

environment settings for given applications. However, for performing such

calibration, external tools, offering analysis support, have to be employed. In

this respect, the question arise which language to employ for defining the

equations. This is left open by the SysML standard, but there are concrete

pointers given to MathML[100] or OCL[101].

Extension capability (Metamodel and model level)

SysML is designed as a UML Profile, thus additional concepts may be inte-

grated for cloud specific environments.

Furthermore, mixing SysML with other UML profiles such as PIM4Cloud

seems to be a possible way to go. However, if several profiles are used at

once, additional constraints may have to be defined or a composition of the

code generators may be necessary. One alternative would be to have differ-

ent profile applications for the same model that are used for different tasks.

For instance, the PIM4Cloud profile may be used for code generation, while

the SysML profile may be used for analysis purposes. Still, it has to be decid-

ed if a combination of the profiles, resulting in one profile application model,

is useful, or if the profile applications should be separated from each other.

4.2.5.3 fUML

Description

The standard called “Semantics of a foundational subset for executable UML

models” or foundational UML (fUML) [102] Error! Reference source not

ound. in short is a standard of the Object Management Group (OMG) which

was released in February 2011. It formally defines the semantics of a select-

ed subset of UML 2.3 which is called foundational UML. In essence, the fUML

standard defines a virtual machine capable of executing UML models which

comply with the fUML subset. This subset comprises parts of UML class dia-

grams as well as UML activity diagrams. I.e., using the virtual machine de-

fined in the fUML standard, UML activity diagrams can be executed.

Research background and motivation

UML is the most adopted modeling language in industry. However, one ma-

jor point of critique regarding UML is that it is lacking a precisely and com-

Modeling and Measurement of Cloud Services Performance

65

pletely specified semantics. The semantics of UML is informally defined in

English prose and this definition is scattered throughout the standard com-

prising 1.000 pages. This leads to ambiguities regarding the semantics of

UML models and therefore to diverging interpretations of UML models. This

also led to the development of tools for executing UML models that are not

interoperable because they implement different execution semantics.

Target

To overcome the limitation of UML regarding its imprecise and incomplete

specification of semantics, the OMG elaborated and released the fUML

standard, which contributes a formal definition of the operational semantics

of a key subset of UML 2 in terms of a well-defined virtual machine for exe-

cuting UML models. This subset consists of key parts of UML class diagrams

and UML activity diagrams.

With the introduction of the fUML standard, UML evolved from a descriptive

language that can only be used for informal design sketching to a prescrip-

tive language that can also be used as a programming language [103].

fUML enables the simulation and execution of UML activity diagrams. Simu-

lating a model can help in getting a better understanding about the modeled

system, in ensuring the quality of models and it enables the analysis and veri-

fication of models based on the formal specification of the execution seman-

tics of fUML models. Executing a UML model means that UML models are

becoming the actual implementation of a software system, instead of only

serving as the specification of the software system which is used as input for

programming.

Although the semantics specification of UML provided in the fUML standard

is a major step towards the utilization of executable UML models, the full

potential of UML model execution cannot be exploited due to several fac-

tors. First, the standardized virtual machine lacks in providing the means for

runtime observation, analysis, and execution control. Moreover, it is current-

ly unclear how the runtime information of executable UML models can be

obtained from the virtual machine and how it may be represented adequate-

ly in terms of a runtime model. As a result, important applications of models

at runtime, such as controlling, observing, and adapting the behavior of a

system at runtime, cannot be realized using fUML so far. Second, fUML ena-

bles the execution of UML activity diagrams. Other behavioral models of

UML such as state machine diagrams and sequence diagrams as well as exe-

cutable domain-specific modeling languages are not supported.

The aim of the research project moliz [104] carried out by Vienna University

of Technology is to overcome these limitations. The first limitation is tackled

Modeling and Measurement of Cloud Services Performance

66

by the elaboration of a trace model for fUML, which enables the runtime

analysis of executed UML models establishing the basis for runtime adapta-

tion. Furthermore, an event model and a command API are developed, which

enable to observe and control the model execution process during runtime

Error! Reference source not found.. The second limitation of fUML is ad-

dressed by developing an operational semantics approach using fUML for

specifying the behavioral semantics of modeling languages [105].

Main characteristics

fUML specifies the semantics of UML class diagrams as well as UML activity

diagrams and provides a virtual machine capable of executing activity dia-

grams. Activity diagrams can be used to describe the behavior of a system. It

is concerned with the description of the steps necessary to accomplish a giv-

en task. An activity diagram can be used to describe workflows at a very high

level of abstraction as well as to describe the instructions necessary in an

operation of a class at a very low level of abstraction. An activity diagram

might for instance be used for describing procedural computations, business

processes, workflows, information systems, and system level processes.

A fUML activity can consist of the following modeling concepts.

Actions. An action represents a single step within an activity. fUML supports

the following types of actions.

 Object actions for creating, destroying, modifying, and querying ob-

jects

 Link actions for creating, destroying, modifying, and querying links

between objects

 Communication actions for enabling the synchronous or asynchro-

nous communication between different activities

Control nodes. Control nodes can be used to coordinate the execution of

actions in an activity. The following types of control nodes are supported by

fUML.

 Initial nodes for defining the starting point of an activity

 Activity final nodes for determining the end of an activity

 Decision nodes for definig alternative execution branches

 Merge nodes for merging alternative branches again

 Fork node for modeling concurrent execution branches

 Join nodes for synchronizing concurrent execution branches

Modeling and Measurement of Cloud Services Performance

67

Structured activity nodes. Structured nodes can be used to group parts of an

activity. The following special types of structured nodes are included in

fUML.

 Conditional nodes for grouping parts of an activity that shall be exe-

cuted if a specific condition is fulfilled

 Loop nodes for looping over a part of an activity multiple times

 Expansion regions for looping over a collection of values

Control flow. The control flow defines the flow of control through the nodes

of an activity.

Object flow. The object flow specifies the flow of data through the nodes of

an activity.

In the context of describing IaaS and PaaS providers required in the ARTIST

project, fUML models can be used wherever a procedure has to be de-

scribed, for instance for describing deployment procedures or the communi-

cation between different elements of an application. By executing these

models using the fUML virtual machine, those behavior descriptions can be

further analyzed.

Extension capability

fUML supports the execution of UML activity diagrams complied to the UML

subset which is contained in fUML. This subset comprises a selected set of

modeling concepts as described above. However, fUML could be extended in

order to support additional modeling concepts. The following two possibili-

ties exist for doing so.

(1) In fUML, the visitor design pattern is used to define the execution seman-

tics of each supported modeling concept. I.e., the semantics of each model-

ing concept is specified by the implementation of a visitor class. Therefore,

additional modeling concepts could be added to fUML by first adding the

modeling concept in the metamodel of fUML and second implementing a

visitor class specifying how an instance of the modeling concept is executed.

(2) The fUML standard defines a so-called foundational model library which is

intended to serve as a library for user-level model elements which can be

used in fUML models.

Modeling and Measurement of Cloud Services Performance

68

4.2.5.4 Cloud4SOA semantic model

Description

The Cloud4SOA semantic model [106] is an ontology designed to enable PaaS

semantic compatibility and interoperability among the different and usually

incompatible PaaS offerings, through the Cloud4SOA platform. Cloud4SOA

semantic model defines a vocabulary, in the context of a Cloud Platform as a

Service (PaaS), for expressing concepts or entities and their relationships,

concerning both developer applications and PaaS offerings from different

providers.

Research background and motivation

Cloud4SOA (http://www.cloud4soa.eu/) provides an open semantic interop-

erable framework for PaaS developers and providers, aiming at addressing

the current problem of lack of interoperability among existing OSS or com-

mercial PaaS offerings. This lack of interoperability comes to scene in terms

of both conceptual and technical (API-level) incompatibility.

The Cloud4SOA system supports developers of Cloud-based applications with

multiplatform matchmaking, deployment, service governance, monitoring or

migration, by semantically interconnecting heterogeneous PaaS offerings

across different providers that offer compatible technology.

Semantics play a catalytic role in the whole process of Cloud4SOA, where

they are used for annotating Cloud resources or services and developer ap-

plications, expecting to significantly address their semantic interoperability.

Moreover, semantics facilitates the matching between applications and

those platform resources they require. Semantically annotating Cloud re-

sources also allow to easily identify clusters of collaborating and/or comple-

mentary resources.

Target

Cloud4SOA semantic model targets application developers and PaaS provid-

ers to express, using a common vocabulary, similar concepts (i.e. application

requirements or platform offering resources), while maintaining and enforc-

ing different platform-specific or domain-specific entities and descriptions, in

order to enhance the ability of Cloud4SOA system to find matchmakings be-

tween platform offerings and developers’ requests.

Cloud4SOA semantic model supports developers to describe their applica-

tions in terms of required technological constraints (i.e. compatible devel-

Modeling and Measurement of Cloud Services Performance

69

opment language or framework, QoS attributes, service dependencies, stor-

age needs, computational resources, etc).

Cloud4SOA semantic model supports PaaS providers to define their offerings

in terms of their offered hardware and software resources, such as their

computation, bandwith, memory or storage capabilities, or their offered ser-

vices, i.e. SQL or Non-SQL storage services, etc.

Main characteristics

Cloud4SOA semantic model has been engineering using the

METHONTOLOGY [107] methodology and the “meet-in-the-middle” ap-

proach, where the model is the jointly result of two complementary ap-

proaches:

 A top-down that exploits existing ontologies, whose most general

concepts are reused and new more specialized ones are derived

from them. This methodology has been applied for applications,

deriving concepts from The Open Group SOA Ontology [108],

Essential Meta-Model [109] and TOGAF 9 Meta-Model [110].

 A bottom-up that defines generic ontology concepts from domain

specific concepts and their relationships obtained from the survey

analysis of state of the art for many PaaS platforms. This approach

was adopted for PaaS providers since no standard Cloud ontology is

available.

Cloud4SOA semantic model is structured into 5 ontology layers:

 The Infrastructure layer contains definitions for concepts used to

capture knowledge related to the infrastructure (hardware and soft-

ware) utilized by the Platform and Application layers, as well as met-

rics to measure the values of hardware/software attributes. Hard-

ware and software resources are classified by categories. Examples

of hardware categories are: network, storage or processing. In case

of processing, Cloud4SOA semantic model defines equivalencies be-

tween different processing types and their measurement units.

 The Platform layer contains definitions for concepts used to capture

knowledge related to a Cloud-based platform (e.g. supported pro-

gramming language, offered software/hardware functionalities, of-

fered APIs for programmatic access and supported communication

channels, pricing policies, ratings, SLA, etc.). The platform relies on

the Infrastructure layer in order to operate.

Modeling and Measurement of Cloud Services Performance

70

 The Application layer contains definitions for concepts used to cap-

ture knowledge related to a Cloud-based Application during the

whole application Cloud engineering cycle, such the application de-

scription, its deployment description, its status after deployment,

etc. A Cloud-based Application is developed/deployed/managed in a

Cloud Platform.

 The Enterprise layer contains definitions for concepts used to cap-

ture knowledge related to the enterprises involved as Cloud suppli-

ers (e.g. PaaS providers, IaaS providers, service providers, software

providers, etc.) and their role in the Cloud.

 The User layer contains definitions for concepts used to capture

knowledge related to the users of a Cloud platform, such as the

Cloud-based application developers and the Cloud PaaS providers.

 In support of the five main layers of Cloud4SOA ontology model,

some classes have been developed to represent all the metrics con-

cepts that could be involved in modeling applications and offerings,

to measure the values of hardware/software attributes

Cloud4SOA ontology model can used to specify Cloud requirements on lega-

cy applications, since was specifically designed to enable the matchmaking of

application requirements to Cloud offerings. Even if Cloud4SOA ontology

model only addresses Cloud platforms (PaaS) as targets, it also supports the

specification of their underlying Cloud infrastructures (IaaS) features.

Extension capability

Ontology engineering methodologies and technologies encourage on the

reuse and extension of existing ontologies when defining new ones. As

commented before, Cloud4SOA ontology model was built (using the top-

down approach) as an extension upon a set of existing generic and domain

specific ontologies. In this sense, Cloud4SOA ontology model can be easily

extended to incorporate new concerns or reuse, for instance by applying

Cloud4SOA ontology model concepts in the extension of other metamodels,

as those described above in this section.

4.2.5.5 Blueprint Template

According to [111] Blueprint Template provides a uniform description format

for cloud service offerings which cross different computing layers. Applica-

tion developers through this template have the ability to choose offerings

Modeling and Measurement of Cloud Services Performance

71

from multiple software, platform, infrastructure service providers and finally

to customize and to compose desirable Service-Based Applications (SBAs).

Two main issues which are related to the migration of SBAs to cloud are the

following: The first problem is the issue of multi-tenancy of the cloud ser-

vices. Secondly the difficulties which arise from the creation of SBAs and the

integration with other cloud service offerings, because of the inconsistency

of cloud resource descriptions and interfaces. However Blueprint template

allows the flexible design and deployment of cloud services because it pro-

vides a common structure, syntax and semantics. Blueprint is divided into

template sections and each of them has a set of proposed properties. More-

over the template is extensible which means that if more properties are

needed they can be added. The template sections of the Blueprint that are of

interest to the modelling of target platforms are the following:

 Offering section which includes: capability(should be described in

such a way that consumer can understand and query it from a blue-

print repository),service signature which describes information for

functionality of the offering, functionality and API location for down-

loading APIs, endpoint location for programmatic interactions with

the cloud service, Range Nr Of Instances which includes the mini-

mum and maximum number of instances of the cloud service pro-

vided to consumers, QoS Profile which includes QoS properties of

the cloud service in a number of separate profiles using add-on tem-

plates or external languages and finally the policy profile which in-

cludes the policy rules that constrain the cloud service offering.

 Resource Requirements Section: Each resource requirement is

specified with a resource ID, the required functionality, the required

Range Number of Instances, and a set of references pointing to QoS

Profiles and Policy Profiles that contain the QoS properties and the

policy constraints of this resource requirement.

 Virtual Architecture Topology (VAT) Section: The VAT section speci-

fies Requirement relationships: This relationship indicates a deploy-

ment dependency between two elements, e.g. an implementation

artefact needs a required resource for its deployment.

 Invariants Section: The blueprint provider can specify the resource

constraints that prescribe the conditions for all the cloud resources

needed for the blueprint, as well as the QoS and policy constraints in

separate QoS Inv Profiles and Policy Inv Profiles respectively.

Modeling and Measurement of Cloud Services Performance

72

4.2.5.6 CloudML@artist

CloudML@artist is a meta-model [119] that specifies all the concepts and

relationships of interest when modelling a cloud provider. The meta-model

defines the concepts and relationships that describe the main capabilities of

resources offered by cloud platforms and it is realized as an extension to the

UML meta-model. Therefore, it has been realized in terms of a profile / col-

lection of profiles regarding specific aspects such as Availability and Perfor-

mance Concepts. Profiles created starting from this meta-model can used

during the migration of an application in order to select the target platform

that matches best the requirements and functionalities needed by the re-

engineered application.

The CloudML@artist meta-model contains some concepts not covered by

the original CloudML; in particular:

• PaaS and SaaS offering: the original CloudML only focuses on resources at

IaaS level.

• performance and monitoring aspects: they are not taken in consideration

in the CloudML meta-model, but needed in case of making decisions about

the best target environment for the migration and the evaluation of the ef-

fectiveness of the migration.

• other aspects like pricing, scalability, availability, regarding the non-

technical evaluation of the migration process (e.g., the business feasibility).

Modeling and Measurement of Cloud Services Performance

73

Chapter 5

CloudML@artist Implementation

In the previous chapter a set of meta-models solutions was presented. The

most appropriate meta-model from the aforementioned ones that could

extensively describe Cloud Providers from a performance point of view and

could be extended in order to create the respective instances for specific

cloud providers, is the CloudML@artist meta-model.

The main purpose of this thesis, as was mentioned in Thesis Statement sec-

tion, is the extension of CloudML@artist meta-model in order to directly

insert performance information of Cloud offerings in a variety of application

types, through the use of relevant benchmarks. To accomplish this, apart

from the creation of specific instances for each Cloud Provider by using

CloudML@artist meta-model, a set of tools that are presented in this chapter

is needed.

5.1 Why CloudML@artist

In this section the most important reasons that lead to CloudML@artist se-

lection are included. The main reason is that CloudML@artist meta-model

extends the CloudML definition in order to cover aspects regarding perfor-

mance and availability and also provides a better description of service offer-

ings on different levels (PaaS and SaaS).

 Moreover, it covers the lack of adequate description frameworks for captur-

ing performance characteristics of cloud services and resources. For exam-

ple, for CPU resources typical descriptions (like in CloudML) include only

number and frequency of CPU cores. However this is far from sufficient for

accurately describing the actual performance of a computing resource. Fur-

thermore, fluctuation in the actual output of these services due to cloud en-

vironment issues (e.g. noisy neighbour effect, multi-tenancy, migration) is a

severe aspect that has begun to take notice in the cloud users.

Finally, includes UML profiles for the most popular cloud providers such as

Amazon EC2, Windows Azure and Google App Engine and provides the ability

Modeling and Measurement of Cloud Services Performance

74

to be extended by creating the respective instances that include concrete

values for each of them.

5.2 UML Profiles Description and meta-model Structure

As described in previous section, CloudMl@artist is organized as a set of

UML profiles with hierarchical relationships between them. Next a brief de-

scription of each profile:

Core profile

UML Profile containing generic stereotypes and data types that can be ap-

plied to characterize entities belonging to different cloud providers. As can

be seen in figure 4, the Core profile is divided into 3 sub-profiles for a better

understandability and usage:

 IaaS: contains specific IaaS stereotypes and data types. As it is a

sub-profile contained in the Core Profile, the stereotypes contained

in it can extend directly those stereotypes (common stereotypes)

defined at a higher level and can also make use of the common data

types at that level. This is applicable also to PaaS and SaaS

subprofiles.

 PaaS: contains specific PaaS stereotypes and data types.

 SaaS: contains specific SaaS stereotypes and data types.

Figure 15: Core Profile

Amazon EC2 profile

Such profile describes Amazon EC2 provider and allows creating models to

specify values for concrete deployments on this provider.

Modeling and Measurement of Cloud Services Performance

75

As Amazon EC2 is an IaaS provider, this profile imports IaaS profile and

makes use of generic stereotypes defined at that level in the same way any

other IaaS provider could do. The use of this inheritance mechanism is very

convenient in order to not repeat the creation of stereotypes that have been

defined at a higher level.

Google App Engine profile

This profile has the same objective than Amazon EC2 and Windows Azure's,

but it is focused on Google App Engine specification needs. The main differ-

ence is that, taking into account that GAE is a PaaS profile, it imports and

makes use of PaaS stereotypes instead of IaaS ones.

Figure 16: Specific providers' profiles

Next is described a set of “supporting profiles”. These profiles have been

created in order to respond to the representation needs of the project at this

stage. For now the set of “supporting profiles” is composed of Pricing, Avail-

ability, Security and Benchmark profile, but it will be possible to extend it by

adding other profiles in a quite simple way in case new requirements arise.

Furthermore, they are independent of the CloudML@artist main profile, thus

can be individually used (e.g. by other approaches).

Pricing profile

Included in "supporting profiles" category, this profile can be applied to any

cloud provider to model pricing related aspects.

Availability profile

Profile that permits to model cloud provider availability related aspects, as

these are expressed in the SLAs. The stereotypes of this profile can be ap-

plied on different service elements (e.g. ServiceOfferings), in order to inde-

Modeling and Measurement of Cloud Services Performance

76

pendently describe different SLAs that may apply to different types of ser-

vices (e.g. Compute SLA, Storage SLA etc.).

Security profile

This profile is used to specify security related characteristics at provider level.

At the moment the amount of modelled characteristics can be significantly

enriched.

Benchmark profile

This profile can be included when modelling a cloud provider to specify re-

sults of benchmark tests, when attached to specific service instance types.

Next figure describes how Cloudml@artist is structured as a series of inter-

connected UML profiles, making possible to create models with great flexibil-

ity.

Figure 17: Supporting profiles

Detailed Description of benchmark profile

Benchmark profile, included in supporting profiles, is related to performance
and is the one that can be applied to Amazon and Azure and Google App
Engine profiles in order to extend CloudML@artist and add respective per-
formance values that represent different cloud services. This subprofile in-
cludes a number of different benchmarks covering the most prominent ap-
plication types and providing the ability for acquiring performance score re-
sults.
Regarding performance profile analysis, the basic stereotype is Benchmark-
edElement which includes BenchmarkResult (Figure 34) stereotype, as an
attribute. The latter includes only one property and is related to the poten-
tial benchmark workloads. Moreover in the definition of our performance
model an OCL constraint has been generated. According to this constraint, a

Modeling and Measurement of Cloud Services Performance

77

BenchmarkElement can be only applied to an InstanceType element. In the
same way, different constraints may be defined throughout the profiles, to
link them with the core profiles.

Figure 18: Illustration of the basic part of performance model and the OCL constraint

Next is described the property contained in BenchmarkResult stereotype.

Name Type Card. Description

workload WorkloadType 1..* specific
workload
patterns that
can be
mapped to
concrete
applications

DacapoResult properties are described in the following table. The DaCapo
benchmarks reflect performance time and are used in order to evaluate Java-
based applications. Cardinality in all results can be also 0, in case no tests
have been performed for this specific benchmark.

Name Type Card. Description

PerformanceTime Real 0..1 Response
time for test
completion

Modeling and Measurement of Cloud Services Performance

78

With regard to YCSBResult stereotype, YCSB reports back a number of met-

rics such as runtime, throughput, number of operations, average, minimum

and maximum latency. These are included in the performance profile in or-

der to describe overall results of an offering.

Name Type Card. Description

runtime Real 0..1 Execution time
needed for
workload
completion

throughput Real 0..1 Operations/sec

operations Real 0..1 Update
operations
completed

averageLatency Real 0..1 Average time per
operations(the
Client measures
the end to end
latency of
executing a
particular
operation against
the database)

minLatency Real 0..1 Minimum latency

MaxLatency Real 0..1 Maximum
latency

DwarfsResult stereotype includes the problem size which is set as a real pa-

rameter and the execution time for test completion. In the following table

the aforementioned parameters are summarized.

Name Type Card. Description

score Real 0..1 Runtime
benchmark
result

size Real 0..1 Problem size

FilebenchResult stereotype has been defined in order to capture the typolo-

gy of results, including the various statistics that are returned. In the follow-

ing table the aforementioned parameters are summarized.

Modeling and Measurement of Cloud Services Performance

79

Name Type Card. Description

ops Real 0..1 The number of
operations

throughputOpsSec Real 0..1 Operations per
second

rw Real 0..1 Reads/writes to
get a feeling for
maximum
performance

bandwidthMbSec Real 0..1 Megabytes/second

cpuOp Real 1 Number of cpu
operations

Latency Real 0..1 Latency

Regarding the Cloudsuite case, which offers a benchmark suite for emerging

scale-out applications(eight application types) only the generic average

score has been kept in order to be included in the model instances in order

to simplify the descriptions (each of the applications reports a large number

of statistics, that are case specific). Next the CloudSuiteResult stereotype is

described.

Name Type Card. Description

Average_score Real 0..1 Average score

related to

specific
benchmark

application

type

All of the above benchmark results, included in the performance model, are
represented in Figure 19 .

Figure 19: Benchmark results included in performance profile

Modeling and Measurement of Cloud Services Performance

80

In order to simplify the benchmark profile a universal enumeration has been

defined (Figure 20) that includes the default workloads from the aforemen-

tioned benchmark categories. These workloads are static in order to be able

to compare the performance of different services on the same examined

workload.

Figure 20: Illustration of the universal enumeration with the default workloads

Next a detailed description of the workloads included in the WorkloadType

enumeration is given.

Name Description

YCSB_Update_Heavy a mix of 50/50 reads
and writes

YCSB_Read_Heavy a 95/5 reads/write mix

YCSB_Read_Only 100% read

YCSB_Read_Latest new records are in-
serted

YCSB_Short_Ranges short ranges of records
are queried, instead of
individual records

Modeling and Measurement of Cloud Services Performance

81

Filebench_Webserver Emulates simple web-
server I/O activity

Filebench_Fileserver Emulates simple file-
server I/O activity

Filebench_Varmail Emulates I/O activity of
a simple mail server
that stores each e-mail
in a separate file
(/var/mail/ server)

Filebench_Videoserver emulates a video
server

Filebench_Webproxy Emulates I/O
activity of a simple
web proxy server

Filebench_OLTP A database emulator

DaCapo_Avrora simulates a number of
programs running on a
grid of AVR micro-
controllers

DaCapo_Batik produces a number of
Scalable Vector
Graphics (SVG) images
based on the unit tests
in Apache Batik

DaCapo_Jython interprets pybench
Python benchmark

DaCapo_Luindex Uses lucene to indexes
a set of documents;
the works of Shake-
speare and the King
James Bible

DaCapo_Xalan transforms XML docu-
ments into HTML ones

CloudSuite_Datacaching_Twitter a simulation of Twitter-
type workload for in
cache memory data

CloudSuite_MediaStreaming_GetShortHigh It consists of two main
components a client
and a server: the client
component emulates
real world clients;
sending requests to
stress a streaming
server.

Dwarf_StructuredGrid_3DCurl Regular grids, can be
automatically refined

Dwarf_GraphTraversal_Quicksort Decision Tree, search-
ing, quicksort

Modeling and Measurement of Cloud Services Performance

82

5.3 Overall Process for Instance Creation

As was mentioned in the previous chapters CloudML@artist does not pro-

vide specific performance measuring metrics for the different cloud provid-

ers. For this purpose, one of the main targets of this thesis is the creation of

instances for each cloud provider. Towards this direction, each of the created

instances is populated with concrete performance values providing the abil-

ity to compare and rank the different cloud services. To accomplish this, the

following steps should be followed.

5.3.1 Installation of CLoudML@artist

The CloudML@artist meta-model is available as a set of UML profiles com-

patibles with the Eclipse IDE and can be imported and used to create new

models. CloudML@artist has been created by making use of Eclipse ecosys-

tem, more in concrete by using Papyrus 0.10.1

(http://www.eclipse.org/papyrus/) design tool plugin installed inside Eclipse

Modelling Kepler SR1, that can be downloaded freely from

http://www.eclipse.org/downloads/. Once the design environment has been

installed it is necessary to download Cloudml@artist project from the GitHub

repository in order to be able to start creating models by using the UML pro-

files defined in the meta-model.

5.3.2 Amazon EC2 Instance creation

In this section we will go through the steps to apply performance profile to

Amazon EC2. This cloud provider was selected because is one of the most

popular ones and many application owners chose Amazon EC2 to deploy

their components.

For this, it is needed to:

 Import Import Cloudml@artist (previously downloaded from GitHub
repository) project into Eclipse. As can be seen in next screen, the
meta-model is structured as a set of UML profiles stored under two
folders: main_profiles and supporting_profiles.

http://www.eclipse.org/downloads/

Modeling and Measurement of Cloud Services Performance

83

Figure 21: CloudML@artist is stored under two main folders main_profiles and

supporting_profiles

 Make sure to work from the Papyrus perspective within Eclipse
environment

 Figure 22 :Papyrus perspective selected

 Apply the benchmark profile to the Amazon EC2 profile by pressing
[+] button on Properties Profile tab. To be more precise
BenchmarkedElement Stereotype from benchmark profile should be
applied to one of the IaasInstanceType Stereotypes. For instance, we
can follow this process for M1MediumInstance Stereotype.

Figure 23:BenchmarkElement is applied to the Amazon EC2 profile

Modeling and Measurement of Cloud Services Performance

84

Figure 24:BenckmarkElement is incorporated in M1Medieum instance

After doing this, in most of the cases there can be assigned values to the
properties defined in the selected stereotype. However, for BenchedMark-
edElement property we notice that corresponds to one of the stereotypes
that have to be defined in the profile. In this case, before applying a value to
the property, first it will be necessary to include a stereotype implementing
the needed stereotype(here YCSBResult, FilebenchResult or DaCapoResult).
In order to create one, as can be seen in next screenshots we can drag a ste-
reotype from the palette to the diagram. Now it is possible to assign the re-
spective average values from benchmarking process to the
M1MediumInstance stereotype.

Figure 25: Implementation of a new stereotype for YCSB test results

5.3.3 Benchmarking process for performance results collec-

tion

In order to complete the Amazon EC2 instance and populate it with perfor-

mance results a set of benchmarking tools is needed to be used. Moreover,

in this section, the description of a mySQL raw database schema creation is

included in order to store locally the results obtained by the execution of

benchmark tests. Also, simple queries were created that simplifies the pro-

cess of retrieving the average values for each of the different benchmarking

Modeling and Measurement of Cloud Services Performance

85

tests. Finally bash scripts were implemented and incorporated in the execu-

tion of benchmarking tools in order to contribute to the fully automation of

the benchmarking process.

Benchmarking Controller

This tool automates the execution of benchmarking tests and eases the col-

lection of performance data. Automation aspect is very important in our ap-

proach because by making possible to manage automatically benchmark

execution saves a lot of time to users and produces better quality results.

The main objective of this component is to relieve the user from the usual

work-flow of benchmarking execution that needs to be done manually: 1)

creation of target environment, 2) installation of benchmarking tools, 3)

execution of benchmarks and 4) retrieval of results.

The user through may set the conditions of the test, selecting the relevant

benchmark, workload conditions, target provider and service offering. The

Benchmarking Controller is responsible for raising the virtual resources on

the target provider and executing the tests. The former is based on the in-

corporation of Apache LibCloud project, in order to support multiple provid-

er frameworks. The latter needs to install first the tests, through the utiliza-

tion of an external Linux-like repository that contains test executables. Once

the tests are installed (through a standard repo-based installation), the work-

load setup scripts are transferred to the target machines and the execution

begins. Results are transferred back, stored locally and processed in order to

be included in the model instances.

Benchmarking tools

For the actual benchmark the set of third-party benchmarking tools that

have been described extensively in chapter 3 have been selected. These are:

DaCapo benchmarking suite, YCSB and Filebench. The selection of the

aforementioned tools based on the following reasons a) they have been

proved to work fine, b) they are supported by a large community of experts,

c) there is a lot of documentation and tests already carried out and perfor-

mance data already available and d) users are already familiar with them.

In this context benchmarking tools are meant to be executed several times

to capture variation in the performance values. Given that Cloud users need

stability in the performance of their resources benchmarking should be a

repeated measurement process over time to observe variations of offering.

In order to achieve the above benchmarking repetition an extensive study of

the benchmarking workloads was demanded as a precondition.

Modeling and Measurement of Cloud Services Performance

86

 Also, the configuration definition for each workload and the incorporation of

a number of parameters in some cases were specified. Finally, bash scripts

were implemented and used with benchmarking controller for setting the

proper order for the test execution and in some cases for deleting data in the

database. For instance, for YCSB the recommended sequence in order to

keep the database size consistent is the following: workload A, workload B,

workload C, workload F, workload D, delete data in the database, workload

E.

Benchmark Database

A mysql raw database schema has been created for the locally storage of
benchmarking execution. The database structure is depicted in Figure 26.
Simple queries have been implemented regarding average values that may
be addressed towards the backend raw data.

Figure 26: Mysql raw database schema

Modeling and Measurement of Cloud Services Performance

87

Figure 27: Local Database for storing benchmark results

Modeling and Measurement of Cloud Services Performance

88

 CHAPTER 6

Benchmarking Case Study On Three Selected Cloud

Providers: Amazon EC2,Microsoft Azure and Flexiant

In this chapter a detailed analysis for benchmarking process on three large
commercial cloud providers, Amazon EC2, Microsoft Azure and Flexiant is
presented. The measurement results will be included in the CloudML@artist
profile in order to assist with provisioning decisions for cloud users.

6.1 Benchmarking process

 In order to experiment initially with the defined metrics and investigate dif-
ferences in VM performance, we utilized workloads from DaCapo bench-
marking suite, YCSB benchmark framework and Filebench. However the
Benchmarking Controller apart from DaCapo and YCSB supports the manag-
ing execution of two more benchmarks included in Table 1, such as Dwarfs,
CloudSuite. Nevertheless, in this work, only the aforementioned ones have
been tested.

During the execution process the user runs locally the benchmark controller
tool specifying the target Environment to test for instance Amazon and the
instance type to create and later to destroy (e.g OS, size). Also the user se-
lects the benchmark tool to run on the remote host (e.g., DaCapo, YCSB). The
scripts remote is transparent to user and the results of the execution are
transferred back locally, parsed and eventually stored to the local database.

DaCapo is designed to facilitate performance analysis of Java Virtual Ma-

chines, YCSB measures databases performance, while Filebench measures

file system and storage. The selected workloads from each test were running

on instances in three different cloud environments: Amazon EC2, Microsoft

Azure and Flexiant. Regarding Amazon EC2, different types of VM instances

were selected while for Microsoft Azure and Flexiant the tests were running

on the same VM instances during the entire benchmarking process. Infor-

mation regarding the selected benchmarking workloads and the VM instance

characteristics are presented in Table 6 and Table 7 respectively.

Modeling and Measurement of Cloud Services Performance

89

DaCapo Filebench YCSB

xalan: transforms XML documents into
HTML ones

Fileserver: Emulates
simple file-server I/O
activity. This work-
load performs a se-
quence of creates,
deletes, appends,
reads, writes and
attribute operations
on a directory tree.
50 threads are used
by default. The work-
load generated is
somewhat similar to
SPECsfs.

A: Update heavy
workload

tomcat: runs a set of queries against a
tomcat server retrieving and verifying the
resulting webpages

Varmail: Emulates
I/O activity of a sim-
ple mail server that
stores each e-mail in
a separate file
(/var/mail/ server).
The workload con-
sists of a multi-
threaded set of cre-
ate-append-sync,
read-append-sync,
read and delete op-
erations in a single
directory. 16 threads
are used by default.
The workload gener-
ated is somewhat
similar to Postmark
but multi-threaded.

B: Read mostly work-
load

pmd: analyzes a set of Java classes for a
range of source code problems

Videoserver: This
workloads emulates a
video server. It has
two filesets: one
contains videos that
are actively served,
and the second one
has videos that are
available but current-
ly inactive. One
thread is writing new
videos to replace no
longer viewed videos
in the passive set.
Meanwhile $nthreads
threads are serving
up videos from the
active video fileset.

C: Read only

jython: interprets pybench Python bench-
mark

Webproxy: D: Read latest work-
load

h2: executes a JDBC benchmark using a
number of transactions against a banking
model application

Webserver: Emulates
simple web-server
I/O activity. Produces

E: Short ranges

Modeling and Measurement of Cloud Services Performance

90

a sequence of open-
read-close on multi-
ple files in a directory
tree plus a log file
append. 100 threads
are used by default.

fop: parses/formats XSL-FO file and gener-
ates a PDF file

 F: Read-modify-write

eclipse: executes jdt performance tests for
the Eclipse IDE

avrora: simulates a number of programs
running on a grid of AVR micro-controllers

Table 6: Selected benchmarking workloads

Cloud Provider VM instance Region

 t1.micro N.Virginia

Amazon EC2 m1.medium N.Virginia

 m1.large N.Virginia

Microsoft Azure small Standard Ireland

Flexiant 4GB RAM- 3CPU Ireland
Table 7: VM instance characteristics

The execution of the tests took place at specific hours (daily and at different

time intervals) during a period of two weeks and the average values were

extracted for each case. Moreover, the different time zones of the three re-

spective regions were taken into consideration so that the peak hours were

the same in each zone.

6.2 Benchmarking Results

In order to draw conclusions from the execution of the benchmarks, one

should compare between same color bars, indicating similar workloads. From

the graphs it is evident that the performance for a specific workload varies

and depends on both the type of workload and the VM instance size. For

instance for DaCapo benchmark the workloads performance across Azure

(A1 Standard) and Amazon(m1.medium) is almost similar apart from some

cases such as tomcat and eclipse workloads where Amazon provides better

results. However, for avrora workload although Amazon m1.medium VM

provides more resources the performance result in Azure is significant bet-

ter.

Modeling and Measurement of Cloud Services Performance

91

Figure 28: Performance time in ms for DaCapo workloads

Regarding YCSB, the performance for the given workloads is similar across

the Amazon and Azure instances. This is probably due to the fact that the

maximum computational threshold of the VM was not reached. For Flexiant

the performance is significantly lower and this behaviour seems to be related

to a configuration of the VM in the Flexiant environment which was outside

of our control.

In addition, for all the tested VM instances the performance for the "Short

Ranges" workload, ‘workload_e’, is approximately three times lower than the

other workloads. Thus, independently from the VM size (small, medium or

large) the ‘workload_e’ seems to be three times slower than other workloads

which were tested.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000
DaCapo performance time(ms) xalan

tomcat

pmd

jython

h2

fop

eclipse

avrora

Modeling and Measurement of Cloud Services Performance

92

Figure 29: Performance time in ms for YCSB workloads

For Filebench the performance results are presented in figure. From the

graph it is obvious that latency for fileserver and varmail workloads is signifi-

cantly higher during the test execution in Azure(A1 Standard) VM. Finally, in

some cases some types of VMs did not support all workloads executions as in

videoserver case which could not run in Amazon t1.micro.

Figure 30:Latency for Filebench workloads

0

2000

4000

6000

8000

10000

12000

14000

16000
YCSB performance time(ms) workload_a

workload_b

workload_c

workload_f

workload_d

workload_e

0
10
20
30
40
50
60
70
80
90

100

Latency

fileserver

varmail

webproxy

webserver

videoserver

Modeling and Measurement of Cloud Services Performance

93

Chapter 7

Conclusions and Future Work

In this research work, the main objective was the extension of the

CloudML@artist profile regarding performance and the implementation of

Cloud Providers’ instances such as Amazon, Azure and Flexiant. Performance

values were included in the aforementioned instances in order to evaluate

and rank the various cloud services. Benchmarking process was used as to

execute tests and collect performance results, stored locally in a database.

The present work could be seen as a step towards the automated classifica-

tion of an application component to a known application category. According

to the previous mechanism the user after the identification of application’s

computational footprint will map the latter to a list of well- known computa-

tional patterns. Knowing the behavior of the application, simplifies the selec-

tion of the best cloud offering for applying the software component. For this

purpose the modeling and measurement of cloud services performance is

the initial and most significant contribution in order to implement the classi-

fication process. From application owner perspective, they must know in

advance provider performance stability characteristics in order to achieve

the best and most successful cloud migration to the Cloud (saving money and

guaranteeing stability). From cloud provider perspective, the latter are able

to identify the application type running in their infrastructures and enhance

the management of resources. Also, as future work the measurement of ser-

vice performance could be combined with the usage of specialized metrics

for ranking the services according to a weighted combination of cost, per-

formance and workload. Moreover, some other non-functional attributes

could be investigated such as availability of services and could be calculated

using an abstracted approach, regardless of the supported provider on which

they are deployed.

Finally the classification approach could provide a solution regarding the best

application combination running in cloud provider’s infrastructure. Virtual-

ization techniques are used in order to run applications with different char-

acteristics and requirements inside Virtual Machines (VMs) on the same

physical multi-core host, with increased levels of security and isolation. How-

ever, during the recent years a number of issues such as degradation of the

Modeling and Measurement of Cloud Services Performance

94

performance of the applications have been raised, due to the interference of

different combinations of application types when running concurrently on

the same node. As a future work, the research of different deployment pat-

terns could lead to the discovery of different application combinations that

show less interference and therefore overhead when running concurrently.

This approach will enhance the different placement decisions and the re-

source management in an optimal way.

Modeling and Measurement of Cloud Services Performance

95

References

[1] Böhm, Markus, et al. "Cloud Computing–Outsourcing 2.0 or a new Busi-

ness Model for IT Provisioning?." Application management. Gabler, 2011.

31-56.

[2] Leimeister, Stefanie, et al. "The business perspective of cloud computing:

actors, roles and value networks." (2010).

[3] Kousiouris, George, et al. "Legacy Applications on the Cloud: Challenges

and enablers focusing on application performance analysis and providers

characteristics." Cloud Computing and Intelligent Systems (CCIS), 2012

IEEE 2nd International Conference on. Vol. 2. IEEE, 2012.

[4] Wang, Lizhe, et al. "Scientific Cloud Computing: Early Definition and Ex-

perience." HPCC. Vol. 8. 2008.

[5] Chung, Lawrence, and Sam Supakkul. "Capturing and reusing functional

and non-functional requirements knowledge: a goal-object pattern ap-

proach."Information Reuse and Integration, 2006 IEEE International Con-

ference on. IEEE, 2006.

[6] Z. Zhang, X. Zhang, Realization of open cloud computing federation

based on mobile agent, in: IEEE International Conference on Intelligent

Computing and Intelligent Systems, ICIS 2009, vol. 3, pp. 642–646

[7]] M.G. Avram. ―Advantages and Challenges of Adopting Cloud

Computing from an Enterprise Perspective‖,Procedia Technology, 12,

2014, pp. 529-534.

[8] Wang, Lizhe, et al. "Cloud computing: a perspective study." New

Generation Computing 28.2 (2010): 137-146.

[9] Zhang Mian, Zhang Nong; “The Study of Multimedia Data Model

Technology Based on Cloud Computing”; 2010 2nd International

Conference on Signal Processing Systems (ICSPS).

[10]Marston, Sean, et al. "Cloud computing—The business

perspective." Decision Support Systems 51.1 (2011): 176-189.

[11] Vaquero, Luis M., et al. "A break in the clouds: towards a cloud

definition."ACM SIGCOMM Computer Communication Review 39.1

(2008): 50-55.

[12] Zhang, Qi, Lu Cheng, and Raouf Boutaba. "Cloud computing: state-of-

the-art and research challenges." Journal of internet services and

applications 1.1 (2010): 7-18.

[13] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing."

(2011).

[14] Gong, Chunye, et al. "The characteristics of cloud computing." Parallel

Processing Workshops (ICPPW), 2010 39th International Conference on.

IEEE, 2010.

Modeling and Measurement of Cloud Services Performance

96

[15] Bai, Xiaoying, Jerry Zeyu Gao, and Wei-Tek Tsai. "Cloud Scalability

Measurement and Testing." Software Testing in the Cloud: Perspectives

on an Emerging Discipline (2013): 356.

[16] Armbrust, Michael, et al. "A view of cloud computing." Communications

of the ACM 53.4 (2010): 50-58.

[17] Kranas, P.; Anagnostopoulos, V.; Menychtas, A.; Varvarigou, T., "ElaaS:

An Innovative Elasticity as a Service Framework for Dynamic

Management across the Cloud Stack Layers," Complex, Intelligent and

Software Intensive Systems (CISIS), 2012 Sixth International Conference

on , vol., no., pp.1042,1049, 4-6 July 2012.

[18] N. R. Herbst, S. Kounev, and R. Reussner. “Elasticity in Cloud Computing:

What It Is, and What It Is Not”. In: ICAC. 2013.

[19]Agrawal, Divyakant, et al. "Database scalability, elasticity, and autonomy

in the cloud." Database Systems for Advanced Applications. Springer

Berlin Heidelberg, 2011.

[20] Chaitanya “Virtualization Technology in Cloud Computing Environment”

International Journal of Emerging Technology and Advanced Engineering

(ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 3,

March 2013) pp.771-773

[21] Gurav, U., and R. Shaikh. "Virtualization: a key feature of cloud

computing."Proceedings of the International Conference and Workshop

on Emerging Trends in Technology. ACM, 2010.

[22] Macias, Guillermo. "Virtualization and Cloud Computing." (2013).

[23] Singh, Aameek, Madhukar Korupolu, and Dushmanta Mohapatra.

"Server-storage virtualization: integration and load balancing in data

centers."Proceedings of the 2008 ACM/IEEE conference on

Supercomputing. IEEE Press, 2008.

[24] Buyya, R., T. Cortes, and H. Jin. "A Case for Redundant Arrays of

Inexpensive Disks (RAID)." (2009): 2-14.

[25] Chung, JaeWoong, et al. "Tradeoffs in transactional memory

virtualization."ACM SIGARCH Computer Architecture News. Vol. 34. No.

5. ACM, 2006.

[26] Data Virtualization online available at:

http://www.compositesw.com/data-virtualization/

[27]Vmware: The Software-Defined Data Center online available at:

http://www.vmware.com/software-defined-datacenter/networking-

security

[28]Vishwanath, Kashi Venkatesh, and Nachiappan Nagappan.

"Characterizing cloud computing hardware reliability." Proceedings of the

1st ACM symposium on Cloud computing. ACM, 2010.

http://www.compositesw.com/data-virtualization/
http://www.vmware.com/software-defined-datacenter/networking-security
http://www.vmware.com/software-defined-datacenter/networking-security

Modeling and Measurement of Cloud Services Performance

97

[29] Shen, Zhiming, et al. "Cloudscale: elastic resource scaling for multi-

tenant cloud systems." Proceedings of the 2nd ACM Symposium on Cloud

Computing. ACM, 2011.

[30]Armbrust, Michael, et al. "A view of cloud computing." Communications

of the ACM 53.4 (2010): 50-58.

[31]Youseff, Lamia, Maria Butrico, and Dilma Da Silva. "Toward a unified

ontology of cloud computing." Grid Computing Environments Workshop,

2008. GCE'08. IEEE, 2008.

[32]Parmar, Vinti, Meenakshi Chawla, and Rajender Singh. "AXIOMS OF

CLOUD COMPUTING."

[33]Hay, Brian, Kara Nance, and Matt Bishop. "Storm clouds rising: security

challenges for IaaS cloud computing." System Sciences (HICSS), 2011 44th

Hawaii International Conference on. IEEE, 2011.

[34]A. Stanik, M. Hovestadt, and Odej Kao. Hardware as a service (haas): The

completion of the cloud stack.In Computing Technology and Information

Management (ICCM), 2012 8th International Conference on,volume 2,

pages 830–835, 2012.

[35]OpenCrowd, http://cloudtaxonomy.opencrowd.com/, accessed

December 7, 2012.

[36]Han, T., Sim, K.W. (2010) An Ontology-enhanced Cloud Service Discovery

System, in Proceedings of the International MultiConference of Engi-

neers and Computer Scientists 2010 (IMECS 2010).

[37]Rimal, B.P., Eunmi, C., Lumb, I. (2010) A Taxonomy, Survey, and Issues of

Cloud Computing EcoSystems, in Journal of Computer Commications and

Networks, 0(0) pp. 21-46. Springer-Verlag

[38]Höfer, C.N. and Karagiannis, G. (2011) Cloud computing services:

taxonomy and comparison. Journal of Internet Services and Applications,

2 (2). pp. 81-94

[39]Li H, Spence C, Armstrong R, Godfrey R, Schneider R, Smith J, White R

(2010) Intel cloud computing taxonomy and ecosystem analysis. IT-Intel

Brief (Cloud Computing

[40] Voorsluys, William; Broberg, James; Buyya, Rajkumar (February 2011).

"Introduction to Cloud Computing". In R. Buyya, J. Broberg, A.Goscinski.

Cloud Computing: Principles and Paradigms. New York, USA: Wiley Press.

pp. 1–44.

[41]Amazon EC2online available at: http://aws.amazon.com/ec2/

[42]Microsoft Azure online available at: http://azure.microsoft.com/el-gr/

[43]Google App Engine Cloud Platform online available at:

https://cloud.google.com/appengine/

[44]Flexiant Cloud Provider online available at: http://www.flexiant.com/

http://aws.amazon.com/ec2/
http://azure.microsoft.com/el-gr/
https://cloud.google.com/appengine/
http://www.flexiant.com/

Modeling and Measurement of Cloud Services Performance

98

[45]Li, Ang, et al. "CloudCmp: comparing public cloud

providers." Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement. ACM, 2010.

[46]BENEDICT, S., 2012. Performance issues and performance analysis tools

for HPC cloud applications: a survey. Vienna: Springer.

[47]Memory speed more important for data-intensive applications such

DBMSs or MapReduce

[48]G. Kousiouris, T. Cucinotta, T. Varvarigou, The effects of scheduling, wor-

kload type and consolidation scenarios on virtual machine performance

and their prediction through optimized artificial neural networks, The

Journal of Systems and Software, vol. 84, 2011, pp. 1270-1291.

[49] https://www.usenix.org/sites/default/files/conference/protected-

files/ou_hotcloud12_slides.pdf

[50]Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An analysis

of performance interference effects in virtual environments. In IEEE In-

ternational Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), pages 200–209, April 2007.

[51]PaaS/IaaS Metamodeling Requirements and SOTA online available at:

www.neotextus.net/papers/ispass07/

[52]Dixit, Kaivalya M. "Overview of the SPEC Benchmarks." (1993): 489-521.

[53]E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be. In R.

Nambiar and M. Poess, editors, Selected Topics in Performance

[54]Brown, Aaron B., et al. "Benchmarking autonomic capabilities: Promises

and pitfalls." Autonomic Computing, 2004. Proceedings. International

Conference on. IEEE, 2004.

[55]Evaluation and Benchmarking, volume 7755 of Lecture Notes in

Computer Science, pages 173–188. Springer Berlin Heidelberg, 2012

[56]Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is

the Weather tomorrow? Towards a Benchmark for the Cloud. In

Proceedings oft he 2nd International Workshop on Testing Database

Systems(DBtEST ‚09),Providence, Rhode Island, June 2009.

[57]Cloud Service Measurement Index Consortium (CSMIC), SMI Framework,

http://www.cloudcommons.com/web/cc/SMIintro

[58]Standard Performance Evaluation Corporation online available at:

http://www.spec.org/

[59]European Telecommunications Standards online available at:

http://www.etsi.org/

[60]J. Gray, Database and Transaction Processing Performance Handbook.

www.benchmarkresources.com/handbook, 1993.

https://www.usenix.org/sites/default/files/conference/protected-files/ou_hotcloud12_slides.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/ou_hotcloud12_slides.pdf
http://www.neotextus.net/papers/ispass07/
http://www.cloudcommons.com/web/cc/SMIintro
http://www.etsi.org/

Modeling and Measurement of Cloud Services Performance

99

[61]YCSB benchmark suite online available at:

http://research.yahoo.com/Web_Information_Management/YCSB

[62]Chohan, Navraj, et al. "Appscale: Scalable and open appengine applica-

tion development and deployment." Cloud Computing. Springer Berlin

Heidelberg, 2010. 57-70.

[63]Open benchmarikng online available at: openbenchmarking.org

[64]Cloudharmony benchmarking tool online available at: cloudhar-

mony.com

[65]https://cloudsleuth.net/

[66]Iosup, Alexandru, et al. "Performance analysis of cloud computing ser-

vices for many-tasks scientific computing." Parallel and Distributed Sys-

tems, IEEE Transactions on 22.6 (2011): 931-

945.conferences.sigcomm.org/imc/2010/papers/p1.pdf

[67]Iosup, Alexandru, Radu Prodan, and Dick Epema. "IaaS cloud benchmark-

ing: approaches, challenges, and experience." HotTopiCS. 2013.

[68]S.K. Garg, S. Versteeg, R. Buyya, "a Framework for

[69]Ranking of Cloud Computing Services," Future Generation Computer

Systems, Vol. 29, No. 4, pp. 1012-1023, 2013.

[70]Chunjie Luo, Jianfeng Zhan, Zhen Jia, Lei Wang, Gang Lu, Lixin Zhang,

Cheng-Zhong Xu, Ninghui Sun: CloudRank-D: benchmarking and ranking

cloud computing systems for data processing application.

[71]Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. In Proceedings of the

17th International Conference on Parallel Architectures and Compilation

Techniques, Oct 2008.

[72]S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,S.-H. Lee, and K. Skad-

ron. Rodinia: A benchmarksuite for heterogeneous computing. In Pro-

ceedings of the 2009 IEEE International Symposium on Workload Charac-

terization (IISWC ’09), pages 44–54, Austin, TX, USA, 2009. IEEE.

[73]BENEDICT, S., 2012. Performance issues and performance analysis tools

for HPC cloud applications: a survey. Vienna: Springer.

[74]Nasa Advanced Supercomputing Division available online at:

http://www.nas.nasa.gov/publications/npb.html

[75]MathWorks available online at:

http://www.mathworks.com/help/matlab/ref/bench.html

[76]The Landscape of Parallel Computing Research: A View from Berkeley

available at: http://eugen.leitl.org/comp/EECS-2006-183.pdf

[77]Filebench Home Page -

http://sourceforge.net/apps/mediawiki/filebench/index.php? ti-

tle=Filebench

http://research.yahoo.com/Web_Information_Management/YCSB
http://eugen.leitl.org/comp/EECS-2006-183.pdf
http://sourceforge.net/apps/mediawiki/filebench/index.php

Modeling and Measurement of Cloud Services Performance

100

[78]Filebench WML -

http://sourceforge.net/apps/mediawiki/filebench/index.php? ti-

tle=Workload_Model_Language

[79] CloudSuite benchmark suite online available at:

http://parsa.epfl.ch/cloudsuite/cloudsuite.html

[80]DaCappo Benchmarking Suite, Available at:

http://www.dacapobench.org/

[81]Mark Lee Badger, Timothy Grance, Robert Patt-Corner, and Jeffery M.

Voas. Cloud Computing Synopsis and Recommendations. Technical

report, NIST Computer Security Division, 2012

[82]Fuentes, L.; Vallecillo, A. 2004. An introduction to UML profiles.

UPGRADE, The European Journal for the Informatics Professional, v.5,

n.2, pp. 6-13.

[83]Poole, John D. "Model-driven architecture: Vision, standards and

emerging technologies." Workshop on Metamodeling and Adaptive

Object Models, ECOOP. Vol. 2001. 2001.

[84]UML and Model Engineering online available at:

http://www.cepis.org/files/cepisupgrade/full-2004-II.pdf

[85]Kleppe, Anneke G., Jos B. Warmer, and Wim Bast. MDA explained: the

model driven architecture: practice and promise. Addison-Wesley

Professional, 2003.

[86]Object Management Group (OMG) online available at:

http://www.omg.org/

[87]Unified Modeling Language (UML)http://www.uml.org/#UMLProfiles

[88]Object Management Group. Meta Object Facility (MOF) Specification.

OMG document: formal/2002-04-03. 2003.

[89]Bran Selic. MDA Manifestations. UPGRADE: The European Journal for the

Informatics Professional, 9(2):12–16, 2008.

[90]Manuel Wimmer, Gertti Kappel, Angelika Kusel, Werner Retschitzegger,

Johannes Schönböck, and Wieland Schwinger. Fact or Fiction – Reuse in

Rule-Based Modelto- Model Transformation Languages. In Proc. Intl.

Conf. on Theory and Practice of Model Transformations (ICMT), pages

280–295, 2012.

[91] R. Sharma and M. Sood, “Enhancing Cloud SaaS Development With

Model Driven Architecture”, International Journal on Cloud Computing:

Services and Architecture, 2011.

[92]Sharma, Ritu, and Manu Sood. "Cloud SaaS and model driven

architecture."International Conference on Advanced Computing and

Communication Technologies (ACCT11). 2011.

[93]Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, and Mario

Piattini. Knowledge Discovery Metamodel-ISO/IEC 19506: A Standard to

http://sourceforge.net/apps/mediawiki/filebench/index.php
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://www.cepis.org/files/cepisupgrade/full-2004-II.pdf
http://www.omg.org/
http://www.uml.org/#UMLProfiles

Modeling and Measurement of Cloud Services Performance

101

Modernize Legacy Systems. Computer Standards & Interfaces,

33(6):519–532, 2011.

[94]REMICS project-available online at:

http://www.remics.eu/system/files/REMICS_D6.6.lowres.pdf

[95]Eirik Brandzæg, Parastoo Mohagheghi, and Sébastien Mosser. Towards a

Domain-Specific Language to Deploy Applications in the Cloud. In Proc.

Intl. Conf. on Cloud Computing, GRIDs, and Virtualization (CLOUD

COMPUTING), pages 213–218, 2012.

[96]Glauco Gonçalves, Patricia Endo, Marcelos Santos, Djamel Sadok, Judith

Kelner, Bob Merlander, and Jan-Erik Mångs. CloudML: An Integrated

Language for Resource, Service and Request Description for D-Clouds. In

Proc. Intl. Conf. on Cloud Computing Technologies and Science

(CloudCom), pages 399–406, 2011.

[97]http://www.omg.org/spec/SysML/1.3/

[98]Sanford Friedenthal, Alan Moore, Rick Steiner: OMG Systems Modeling

Language (OMG SysML) Tutorial, 2008.

[99]Sanford Friedenthal, Alan Moore, Rick Steiner: OMG Systems Modeling

Language (OMG SysML) Tutorial, 2008.

[100] http://www.w3.org/Math/

[101] Object Constraint Language available at:

http://www.omg.org/spec/OCL/2.0/

[102] FUML language description available at:

http://www.omg.org/spec/FUML/1.0/, 2011

[103] B. Selic. The less well known UML. In Formal Methods for MDE,

volume 7320 of LNCS, pages 1-20. Springer Berlin / Heidelberg, 2012.

[104] http://www.modelexecution.org

[105] Mayerhofer, T., Langer, P., and Wimmer, M. Towards xMOF:

Executable DSMLs based on fUML. In Proceedings of the 12th Workshop

on Domain-Specific Modeling (DSM’12) at SPLASH 2012.

[106] Filippo Bosi et al, Cloud4SOA Semantic Layer, Cloud4SOA deliverable,

2011.

[107] O. Corcho, M. Fernández-lópez, A. Gómez-pérez, and A. López,

"Building legal ontologies with METHONTOLOGY and WebODE," in Law

and the Semantic Web, number 3369 in LNAI: Springer-Verlag, 2005, pp.

142--157.

[108] The Open Group - SOA WG Open SOA Ontology TC – “Service-

Oriented Architecture Ontology” – TS C104, October 2010

[109] Essential Meta-Model – an ontology for the domain of enterprise

architecture – http://www.enterprise-architecture.org/about/35-

essential-meta-model

http://www.omg.org/spec/SysML/1.3/
http://www.w3.org/Math/
http://www.omg.org/spec/OCL/2.0/
http://www.modelexecution.org/

Modeling and Measurement of Cloud Services Performance

102

[110] Togaf 9 Core Content Metamodel – An OWL Ontology for the TOGAF

9 Core ContentMetamodel -

http://sites.google.com/site/ontologyprojects/home/togaf-core-

content-metamodel

[111] Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van

den Heuvel, W.-J.: Blueprint Template Support for Engineering Cloud-

Based Services. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman,

A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 26–37.

Springer, Heidelberg (2011).

[112] Hashemi, Seyyed Mohsen, and Amid Khatibi Bardsiri. "Cloud

computing Vs. grid computing." ARPN J. Syst. Softw 2.5 (2012): 188-194

[113] Virtualization definition available at:

http://yoyoclouds.wordpress.com/2012/04/24/what-is-virtualization/

[114] Intel Cloud Computing Taxonomy and Ecosystem Analysis available

at: http://www.intel.com/content/dam/doc/case-study/intel-it-cloud-

computing-taxonomy-ecosystem-analysis-study.pdf

[115] Djurić, Dragan, Dragan Gašević, and Vladan Devedžić. "The Tao of

Modeling Spaces." JOURNAL OF OBJECT TECHNOLOGY 5.8.

[116]] Ritu Sharma and Manu Sood: Cloud SaaS: Models and

Transformation. In: Advances in Digital Image Processing and

Information Technology. Communications in Computer and Information

Science, 2011, Volume 205, Part 2, 305-314, DOI: 10.1007/978-3-642-

24055-3_31

[117] The Fast Guide to Model Driven Architecture(OMG) online available

at: http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

[118] SOTA in Modeling languages and Model Transformation Techniques

online available at: http://www.artist-

project.eu/sites/default/files/D9.1%20SOTA%20in%20modeling%20l

anguages%20and%20model%20transformationtechniques_M6_3103

2013.pdf

[119] Cloud Services and Performance Analysis Framewokr online available

at: http://www.artist-

project.eu/sites/default/files/D7.2.1%20Cloud%20services%20model

ing%20and%20performance%20analysis%20framework_M12_30092

013.pdf

http://sites.google.com/site/ontologyprojects/home/togaf-core-content-metamodel
http://sites.google.com/site/ontologyprojects/home/togaf-core-content-metamodel
http://yoyoclouds.wordpress.com/2012/04/24/what-is-virtualization/
http://www.intel.com/content/dam/doc/case-study/intel-it-cloud-computing-taxonomy-ecosystem-analysis-study.pdf
http://www.intel.com/content/dam/doc/case-study/intel-it-cloud-computing-taxonomy-ecosystem-analysis-study.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.artist-project.eu/sites/default/files/D9.1%20SOTA%20in%20modeling%20languages%20and%20model%20transformationtechniques_M6_31032013.pdf
http://www.artist-project.eu/sites/default/files/D9.1%20SOTA%20in%20modeling%20languages%20and%20model%20transformationtechniques_M6_31032013.pdf
http://www.artist-project.eu/sites/default/files/D9.1%20SOTA%20in%20modeling%20languages%20and%20model%20transformationtechniques_M6_31032013.pdf
http://www.artist-project.eu/sites/default/files/D9.1%20SOTA%20in%20modeling%20languages%20and%20model%20transformationtechniques_M6_31032013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%20Cloud%20services%20modeling%20and%20performance%20analysis%20framework_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%20Cloud%20services%20modeling%20and%20performance%20analysis%20framework_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%20Cloud%20services%20modeling%20and%20performance%20analysis%20framework_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%20Cloud%20services%20modeling%20and%20performance%20analysis%20framework_M12_30092013.pdf

