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Abstract 

As the features sizes of the FPGA devices are moving aggressively to the nanometer regime, the single-

event upsets (SEUs) are expected to become a major reliability concern for the SRAM-based FPGAs. 

Given the limited information provided by the FPGA vendors about the susceptibility of the FPGA 

designs to soft errors, the research community requires SEU analysis tools to accommodate the 

development and assessment of SEU mitigation approaches. On the other hand, open-source CAD tools, 

such as RapidSmith [1] and Torc [2], have been recently proposed that target industrial FPGA 

architectures without escaping the boundaries of proprietary issues in contrast with the traditional open-

source FPGA CAD tools. In this thesis, an open-source framework is presented for the soft error 

vulnerability analysis of Xilinx FPGA devices. The proposed framework will allow researchers to 

evaluate their reliability-aware CAD algorithms and estimate the soft error susceptibility of the designs at 

early stages of the implementation flow for the latest Xilinx architectures. Furthermore the well-known 

simulated-annealing placement algorithm is implemented in RapidSmith - where a limited random placer 

is currently supported - in order to evaluate the proposed post-placement sensitivity analysis method. To 

demonstrate the vulnerability analysis framework, a rich set of experiments is carried out. The thesis 

compares the soft error awareness of different packing/mapping tools (VTR and Xilinx tools) and 

different place tools (simulated annealing and Xilinx placers). The proposed method is evaluated by 

correlating its sensitivity analysis results with the Xilinx sensitivity report. 

 

 

 

 

 

 

 

 

 

 

 

Περίληψη 

Καθώς το μέγεθος των χαρακτηριστικών των FPGA κινείται επιθετικά στην περιοχή των νανομέτρων, τα 

μεμονωμένα σφάλματα αναμένονται να γίνουν μείζον ανησυχία για την αξιοπιστία των SRAM FPGA. 

Λόγω των περιορισμένων πληροφοριών που παρέχουν οι κατασκευαστές των FPGA για την ευπάθεια 

των FPGA κυκλωμάτων σε παροδικά σφάλματα, η ακαδημαϊκή κοινότητα απαιτεί εργαλεία ανάλυσης 

των SEU, ώστε να αναπτυχθούν τεχνικές μετρίασης τους. Από την άλλη, πρόσφατα έχουν προταθεί 

εργαλεία CAD ανοιχτού λογισμικού, όπως το RapidSmith [1] και το Torc [2]  που σε αντίθεση με 

κλασσικά εργαλεία CAD ανοιχτού λογισμικού, υποστηρίζουν πραγματικά FPGA χωρίς όμως να 

παραβιάζουν τα πνευματικά δικαιώματα των κατασκευαστών. Στην εργασία αυτή παρουσιάζουμε ένα 

πακέτο εργαλείων ανοιχτού κώδικα για την ανάλυση της ευπάθειας των Xilinx FPGA σε παροδικά 

σφάλματα. Το προτεινόμενο πακέτο εργαλείων θα επιτρέψει στους ερευνητές να αξιολογούν τους SEU 

αλγόριθμους αξιοπιστίας και να εκτιμούν την ευπάθεια των κυκλωμάτων σε παροδικά σφάλματα σε 

πρώιμα στάδια της υλοποίησης τους για τις πιο πρόσφατες αρχιτεκτονικές της Xilιnx. Επίσης έχει 

αναπτυχθεί ο simulated-annealing αλγόριθμος τοποθέτησης στο περιβάλλον του Rapidsmith, όπου 

παρείχε μόνο ένα τοποθετητή τυχαίας επιλογής, ώστε να αξιολογηθεί η προτεινόμενη μέθοδος ανάλυσης 

της ευαισθησίας του κυκλώματος μετά την τοποθέτηση του. Για τη επίδειξη του πακέτου ανάλυσης της 

ευαισθησίας των κυκλωμάτων έχουν εκτελεστεί μία πλούσια πληθώρα πειραμάτων. Η εργασία συγκρίνει 

το πόσο προσεκτικά είναι διάφορα εργαλεία packing/mapping (VTR και εργαλεία της Xilinx) και 

διάφοροι τοποθετητές (simulated annealing και Xilinx τοποθετητές) στα παροδικά σφάλματα. Τα 

αποτελέσματα της ευαισθησίας από την προτεινόμενη μέθοδο έχουν αξιολογηθεί, συσχετίζοντας τα με τα 

αποτελέσματα από την αναφορά της ευαισθησίας από την Xilinx. 
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1 Introduction 

1.1 Motivation 

Over the last two decades, the research community has made significant efforts trying to find fault 

tolerant techniques in order to keep Field Programmable Gate Arrays (FPGAs) operational in high 

radiation environments.  Such hostile environments can be found in space e.g. avionics in spacecraft, 

high-energy physics experiments e.g. CERN and many others. Although FPGA vendors provide high 

availability and reliability devices, using them in mission-critical  applications [1] (i.e. can cause an 

environmental catastrophe or affect a human life) is a big challenge, due to their susceptibility to soft-

errors [2][3]. The designers not only have to develop qualified critical systems, but also have to keep the 

design cost low, forcing them to use commercial-off-the-shelf (COTS) FPGAs combined with emerging 

failure systems. FPGA vendors have introduced radiation-hardened devices (e.g. antifuse-based) to solve 

this problem. However, these devices are much more expensive less technologically developed than 

COTS FPGAs. For example an Airbus 380 has more than 700 antifuse-based FPGAs [4] (Actel SX-A 

family). The cost of 700 Actel SX-A FPGAs (if we consider that they have used the biggest FPGA in SX-

A family, i.e. A54SX72A) is about 157000 US dollars (2013). If indeed, they used Xilinx COTS FPGAs 

with almost equal specifications (Virtex4 xc4vlx15) the cost would be almost the half, i.e. 84000 US 

dollars (2013).  

Soft-errors have been a meaningful matter of the research community, since spacecraft electronics 

were affected from radiation in the early 1975s [5]. Spacecraft and airplane electronic systems have a 

variety of analog and digital components sensitive to radiation, making Single Event Upsets (SEUs) a 

major concern. SEUs are caused when charged particles (heavy ions and protons) hit a silicon atom 

transferring enough energy to produce a failure in the system. The amount of energy and the location of 

the strike in the device can cause transient or permanent errors. An SEU can produce transient soft errors 

in the combinational logic components, which can possibly be captured from Flip-Flops(FFs). Moreover, 

transient soft errors can directly affect the FFs of the FPGA and its hard block resources, such as RAM. 

Permanent failures are divided to hard errors or recoverable errors. Hard errors occur when charged 

particles bring on a lutch-up producing a short-cut between source and drain in mosfet technology that is 

commonly used in FPGA architectures. In case of recoverable errors, the configuration bitstream remains 

erroneous until it is downloaded again to the FPGA. These tradeoffs are a major problem in FPGA 

technology due to their high reliance on SRAM memory to store the configuration data [6]. 

Although, many fault tolerant techniques have been developed the last years, high reliability solutions 

are still a big challenge for the academic and industry research.  FPGA vendors provide high capacity and 

performance devices while keeping the power consumption low. In order to develop FPGAs with these 

specifications, programmable logic industry uses silicon nanometer technologies and low operating 

voltages. However, shrinking of circuit dimensions to nanometer regime or shrinking noise margins [7],  

has revealed the susceptibility of the FPGA devices to emerging failure mechanisms raising several 

reliability issues [13]. Therefore, given that the feature sizes of the future beyond nanometer technologies 

will continue to shrink and the packaging cannot effectively shield the devices against SEUs [8], the 

implications caused by soft errors are expected to deteriorate drawing the attention of more researchers 

and practitioners from both domains of fault-tolerant computing and FPGA design automation. For the 

development and assessment of SEU mitigation methodologies and SEU-aware CAD tools for FPGAs, 

the research community needs the existence of soft error analysis tools able to measure the vulnerability 

of the designs and provide useful insights. 

Recently, the research community provided open-source CAD tools that support commercial complex 

FPGA devices [9][10]. Motivated by this work, this thesis aims to provide a collection of open-source 

tools for the vulnerability analysis of Xilinx FPGA devices. The proposed framework will benefit the 

upcoming research providing valuable feedback to SEU mitigation approaches about the sensitivity
1
 of 

                                                           
1
 Configuration bits are categorized into sensitive and non-sensitive bits depending on the impact of soft errors to the 

circuit behavior [16], [47]. When a soft error in a configuration bit affects the circuit operation the bit is classified as 
sensitive (or essential according to Xilinx terminology) for the particular implementation, otherwise as non-sensitive. The 
actual failure rate of an FPGA design depends on the number of sensitive configuration bits or in other words the 
dynamic cross section of the design. 
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the FGPA configuration bits or the criticality of the design modules. For example, a TMR methodology 

could take advantage of the criticality analysis to reduce the area overhead by applying selectively the 

redundancy technique to the design modules [11]. Moreover, being able to estimate the soft error 

susceptibility of the design at various stages of the FPGA implementation flow, the proposed framework 

could be used for the development of SEU-aware PaR algorithms.  

Several approaches have analyzed in the past the vulnerability of SRAM-based FPGAs into soft 

errors. These approaches are based either on fault injection experiments [6], [12],[13], [14], [15] or 

analytical methods [6],[16], [17], [18] to measure the sensitive configuration bits. The experimental 

approaches inject soft errors in the configuration bitstream of the design under test and, hence, they 

cannot apply during the FPGA design flow in order to provide an early sensitivity estimation. On the 

other hand, most research groups that have proposed analytical methods have developed proprietary 

vulnerability analysis tools targeting specific FPGA architectures which cannot be easily reproduced for 

another FPGA family. Furthermore, recent approaches have proposed SEU-aware placement and routing 

algorithms [8], [18], [19], [20], [21] in order to reduce the dynamic cross section of the FPGA designs. 

However, almost all these approaches have been demonstrated on the commonly used, academic VPR 

tool targeting virtual FPGA architectures. The proposed framework will enable the evaluation of such 

reliability-aware algorithms for off-the-shelf FPGA devices. The soft error vulnerability analysis 

framework is based on the recently proposed FPGA CAD platform, RapidSmith [9]. RapidSmith is a set 

of tools and APIs written in Java that manipulates a Xilinx human readable file format (XDL) and enables 

researchers to develop tools for the packing, placement, and routing of FPGA designs and parse/export 

configuration bitstreams. The proposed framework: 

• evaluates the vulnerability of FPGA designs to soft errors analyzing the sensitivity of the 

configuration bitstreams. It classifies the sensitive bits according to their configuration type: block 

configuration bits (CLBs, IOBs, DSPs, etc.) and interconnection configuration bits. 

• estimates the vulnerability of FPGA designs to soft errors at early phases of the FPGA 

implementation flow. In particular, it supports post-mapping analysis of the sensitive block 

configuration bits, post-placement analysis of the sensitive interconnection bits and final (post-

routing) analysis of the total sensitive configuration bits. For the estimation of the sensitive 

configuration bits, the following methods are combined: theoretical analysis of the structure of Xilinx 

Virtex-5 programmable resources, analytical methods previously proposed in the literature [6], [18] 

for the estimation of sensitive interconnection bits and extraction of related information from the 

Xilinx sensitivity analysis results 
2
. 

• visualizes the sensitive configuration bits in the FPGA physical layout taking advantage of 

RapidSmith APIs. The sensitivity bitmap of the proposed method is compared with the sensitivity 

bitmap of Xilinx analysis.  

1.2 Observed soft-errors failures in space missions 

Before continuing with the rest of this thesis it is worth to describe some observed failures in spacecraft 

electronic systems caused by cosmic radiation [22]. Back in 1989 Galileo mission was launched on a 

planetary exploration mission to Jupiter. All its electronic parts were fully tested and were radiation 

hardened with system-level redundancy and error detection capabilities. Despite the soft-errors mitigation 

techniques, safe holds failures where observed on some analog switches which fortunately did not have 

impact on the mission. These failures were believed to be due to SEUs. Another failure was experienced 

at the TOPEX/Poseidon mission, launched on August 1992. Proton radiation affected some 4N49 

optocouplers of vendor Texas Instruments causing failures on some status signals and the circuits of the 

thruster command. On December 4, 1996, Cassini mission was lunched. Instead of a mechanical tape 

recorder they used a solid state recorder (SSR) constructed with high density RAM. Despite the single-bit 

correction and double-bit correction circuits it had, SSR experienced single-bit errors. On October 24, 

1998, Deep Space 1 mission was lunched. A SEU caused failure in a FPGA due to a latch-up, while the 

recovery time of the system required 28 minutes which was an unexpected long time. Furthermore, on 

                                                           
2
 FPGA vendors provide utilities for the sensitivity analysis of the configuration bitstream. The Xilinx tool generates a 

map file (.ebd for essential bit description) for the characterization of the essential (sensitive) bits of the configuration 
bitstream. However, since it is not feasible to decode the raw bitstream data due to proprietary issues these sensitivity 
analysis results cannot provide an in-depth sensitivity analysis of the circuit. 
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April 24, 2001, Odyssey mission went into safe mode after 2 weeks in space due to failures in RAM, 

caused by a cosmic ray ion.  

As FPGAs become more dencer and more powerful, they offer to the designers the integration of 

high-availability systems with hard real-time performance into a FPGA, such as avionics in airplanes and 

spaceships or medical systems. This raises need of new inventions from the academic and industrial 

research community to provide more robust SEU mitigation solutions that meet system reliability goals 

[23].  

1.3 Thesis Structure 

The remainder of this master thesis is organized as follows. In chapter 2 the related work and literature is 

collected giving a better understanding in chapter 3, where information about the implemented soft-error 

vulnerability framework is provided. In more detail, chapter 3 gives an explanation of the methods used 

to evaluate the soft-error estimation tools. Furthermore, a description of the framework packages is 

provided. Experimental results are presented in chapter 4, and last come the conclusions of this master 

thesis.  
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2 Background and literature 

This chapter contains the background information about the fundaments of modern FPGA architectures, 

the state-of-the-art CAD technology used in nowadays FPGAs and finally the related work section that 

presents the mitigating soft-errors techniques for SRAM based FPGAs, proposed from the research 

community. 

2.2 What is an FPGA 

 Field is the key word for defying a Field Programmable Gate Array (FPGA). FPGAs are Intergraded 

Circuits (ICs) that can be programmed in the field after manufacture. This means that FPGAs vendors 

must have some pre-fabricated digital circuity in the chip, enabling it to implement any given digital 

function from the user, simply by being appropriately programmed. 

As described in [24], FPGAs are semiconductor devices that are based around a matrix of 

configurable logic blocks or Cluster of Logic Blocks (CLBs), connected via programmable interconnects 

(illustrated in Figure 2). FPGAs can be programmed to desired application or functionality requirements 

after manufacturing. This feature distinguishes from Application-specific integrated circuits (ASICs), 

which are custom manufactured for specific design tasks. Although One-Time Programmable (OTP) 

FPGAs are available, the dominant types are Static Random Access Memory (SRAM) based which can be 

re-programmed as the design evolves. 

This innovative idea of a FPGA that would reduce the manufacturing time and cost of an IC from 

months to hours was introduced back in 1986 [25]. As a result, FPGAs are very popular these days, since 

faster design of complex products can be achieved, in contrast with ASICs. Because FPGAs are software 

configured, modifying a design is very fast, less risky and can be made in some hours, rather than months 

that is required for ASIC prototypes to be manufactured. FPGAs provide lower non-recurring engineering 

(NRE) costs, faster time to market and no expensive penalties at the verification phase [26] than ASICs.  

FPGAs are suitable for rapid prototype design, specialized digital systems (i.e. reconfigurable designs, 

System-On-Chip (SOC) designs) and low-volume IC production. Custom ASIC design is commonly used 

for high volume production, while Standard-Cell ASIC design for middle-volume production. Figure 1 

illustrates the total cost as a function of IC parts of a design implemented in a FPGA, a Standard-Cell 

ASIC and custom ASIC device. 

 

Figure 1 - Cost vs. Volume. 

FPGA

Number of parts

Total Cost
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2.3 FPGA Architecture 

Traditionally, an FPGA can be composed of three fundamental elements depicted in Figure 2: 

 The Logic Blocks (LBs), named as CLBs in Xilinx terminology. The LBs contain a group of 

Block Logic Elements (BLEs) named as Slices in Xilinx terminology, which implement 

combinational and sequential logic. 

 The Input-Output Blocks (IOBs). 

 The Programmable Routing, which is a matrix of wires that interconnect the LBs and the IOBs 

via Connection Blocks/Boxes (CBs) and Switch Blocks/Boxes (SBs). More detail is provided in 

the programmable routing section. 

Commercial FPGAs also include extra memory, multipliers, memory controllers, high speed IOBs, 

Digital signal processing (DSP), Phase Locked Loops (PLLs), clock management, even embedded 

processors. These special blocks are referred in literature as hard blocks giving more logic utilization and 

speed at a FPGA.  

 

Figure 2 – FPGA architecture. 

2.3.1 Basic Logic Element (BLE) 

The BLE is built from the following components depicted in Figure 4: 

 A Look-Up Table (LUT) to implement combinational logic. 

 A Flip-Flop (FF) providing sequential behavior. 

 A multiplexer for bypassing the FF if only combinational logic is needed.  

Figure 3 depicts the LUT which is the well-known truth table from digital design. A K-input LUT is 

typically composed from    SRAM that holds the configuration memory (LUT-mask) and      

multiplexers implemented as a tree to select the bit from SRAM and pass it to the LUT output. To 

simplify, we give an example of a LUT (illustrated in Figure 4) which can implement any combinational 

function of 4-inputs (A, B, C, D). It has a 4-inputs, 16bit SRAM (        ) and 15 x 2:1 multiplexers. 

Programming the LUT-MASK with the appropriate bit will assemble the desired function [27]. 
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Figure 3 - Look Up Table (LUT). 

 

 

Figure 4 - Structure of basic BLE and LB [28]. 
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2.3.2 Logic Block (LB) 

Typically, commercial FPGAs have groups/clusters of BLEs that contain LUTs and FFs. Each LE has 

size N, while it consists of N interconnected BLEs as shown in Figure 4. Furthermore, a LB has I external 

pins that are passed via multiplexers to the BLEs inputs. In addition, the multiplexers provide the 

flexibility of interconnecting the BLEs in the same block/cluster. The N output pins of the LB are 

connected to the routing resources via the CBs. 

2.3.3 Programmable Routing 

Figure 5 depicts the routing resources. As high resource utilization and need for high bandwidth is 

necessary in FPGA designs, the routing resources occupy the largest area of silicon in a FPGA. The 

routing resources are constructed by three fundamental components [29]. 

 Switch Blocks/Boxes (SBs): SB is a hub that programmable connects horizontal and vertical 

metal lines of the routing channels. This is done via Programmable Interconnection Points 

(PIPs). Its flexibility depends on the property Fs, which defines the number of connection wiring 

segments it can handle. 

 Connection Blocks/Boxes (CBs): CB is a switch in between the LB and the SB. It is responsible 

to connect the input and output pins of the LB with the routing wires of the SB. It has a property 

Fc describing the number of wires a LB pin can handle. 

 Routing channels: Routing channels are horizontal and vertical metal wires that span between 

LBs, IOBs and Hard Blocks. In order to route the design, the appropriate PIPs must be 

programmed to interconnect the pins of the LBs, IOBs and Hard Blocks with the available metal 

wires. The amount of wires in a routing channel is referred in literature as size/width and is 

represented with the letter W. 

 

Figure 5 - Routing Resources. 



Master Thesis                                                                                                               Dimitrios Agiakatsikas 

Development of a soft error vulnerability analysis framework for FPGA devices 17 

2.4 FPGA Design Automation 

Implementing a circuit in a modern FPGA is a big challenge, requiring millions of configuration bits to be 

set on proper state, high or low. Although in 1960s, IC designs were hand-drawn, nowadays the 

complexity of FPGA architectures clearly prohibits those design procedures. Indeed, circuits are 

described in higher abstraction languages referenced as hardware description languages (e.g. Verilog and 

VHDL) and then converted from CAD tools into FPGA configuration bitstreams, which specify the state 

of every bit in the FPGA in order to assemble the described circuit. A way to keep the complexity of this 

problem low is to break it into some sub-problems. In the following sections a description of the 

sequential stages (depicted in Figure 6) that are involved in the procedure of mapping a circuit into a 

FPGA is presented. 

 

Figure 6 - FPGA CAD flow. 
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2.4.1 Synthesis 

The synthesis procedure is a very complex task. In this stage the synthesis tool performs two steps. First, 

it converts the hardware description language into a neltlist of gates and second converts the neltlist of 

gates into a netlist of FPGA logic blocks, while trying to optimize the area and performance of the design. 

In more detail, the synthesis tool executes the following two sub-stages: 

 RTL elaboration. This converts the hardware description language into gates, implementing 

datapath operations (such as additions and multiplications) and control logic (such as a set of 

finite-state machines or Boolean networks). It must be mentioned that in this sub-stage the 

synthesizer recognizes functions that can be handled by hard blocks (e.g. DSP) in the FPGA and 

forwards them to the packing and mapping stage. These functions are referenced as black-boxes. 

 Technology-independed logic optimization. This optimizes both datapath and control logic, 

independed of the targeting FPGA architecture. There is a rich set of optimization techniques,  

which are performed in this sub-stage, such as removing redundant logic or sharing resources, 

don’t care based optimization and many others. 

2.4.2 Packing and Mapping 

In this stage the packer packs several LUTs and Flip flops into one LB, respecting the targeting 

architectural limitations, such as the maximum number of LUTs and FFs the LB may contain and its 

available inputs and outputs. Afterwards, the packed instances of the design are technology mapped into 

the available LBs and also the black box functions into the available FPGA hard blocks. The optimization 

goals in this stage are to pack each LB to its maximum capacity, therefore maximize the FPGA resource 

utilization and also attempt to minimize the inputs and outputs signals of the LB, in order to route  

effectively the design in the routing stage. 

2.4.3 Placement 

As described in [30], placement algorithms determine which logic block within an FPGA should 

implement  each of the logic blocks required by the circuit. The optimization goals are to place connected 

logic blocks close together to minimize the required wiring (wire-length-driven-placement), and 

sometimes to place blocks to balance the wiring density across the FPGA (routability-driven-placement) 

or to minimize circuit speed (timing-driven placement). 

In literature there are four different categories of placement methods for FPGA CAD tools [31]: 

 simulated annealing 

 min-cut 

 quadratic 

 parallel 

This thesis will focus on the well-known simulated annealing (SA) placement algorithm with adaptive 

schedule [30][32], as it is implemented it in the Rapidsmith framework, in order to replace the 

uncompleted placer package provided by Rapidsmith and evaluate the proposed SEU vulnerability 

framework. The main reason this algorithm has been chosen, is that its cost function can be easily 

modified from researchers to implement an SEU-aware placement algorithm [8], [18], [20]. SA placers 

mimic the natural process of a metal to be easily shaped in high temperatures while local improvement of 

the shape can be made as its temperature decreases. A linear congestion cost function is determined to 

calculate the quality of the placement. A wire-length cost function   is selected to be used, which is the 

summary of all nets costs of a design. The cost of a net is the half perimeter of the bounding box (Figure 

7) that encapsulates all the attached logic blocks to the net and is given from the following equation: 

        ( )  (
   ( )

     ( )
 
 

   ( )

     ( )
 
)  ( ) 

where  ( ) is a constant value ranging from 1 for a net with less than 3 terminals, to its maximum value 

2.73 for more than 50 terminals. The       and       are the average horizontal and vertical routing tracks 

respectively, trying to minimize the routing congestions of overloaded switch matrixes. The exponent    
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has default value 1 and allows the relative cost of using narrow and wide routing channels to be adjusted. 

When giving a larger value to   parameter, more wiring in narrow channels is penalized. Setting   to zero 

reverts the linear congestion cost function to standard bounding box cost function, forcing to a more 

shrinked placement. In general the SA algorithm tries to swap random LBs in the FPGA pre-fabricated 

circuitry and accepts the swap if the design cost decreases. This would eventually produce a high quality 

placement. The SA algorithm executes the following steps: 

 An initial placement (without taking in account the design cost) of the netlist logic blocks 

(LBs) is performed, assigning all LBs to the available and compatible resources in the 

FPGA fabric.  

 The initial parameters of the SA algorithm are calculated. These include temperature   that 

controls the probability of accepting a random swap,   which is the number of swaps that 

will be executed in every temperature and finally        which determines how close must 

be the LBs for swapping. This leads to a procedure where random LBs for swap are 

selected from the entire area of the FPGA and as the temperature decreases only close LBs 

are selected for swapping. 

 A large number of swaps are then made to gradually improve the placement quality. At 

high temperatures almost all swaps are accepted and as the temperature drops the 

acceptance probability decreases.  

 The placement algorithm terminates when the temperature drops under a threshold. 

In more details, the algorithm consists of two nested loops as depicted in Figure 8. The inner loop is 

executed   times and swaps two random LBs in the        area at every step. A swap is accepted when 

cost   is decreased. However, there is chance to accept the move, even if cost   is increased. This 

probability is computed by the equation     
  
  , where              and   is a random number 

ranging from 0 to 1. This feature gives the ability to escape local minima. The outer loop updates   ,   

and the        parameters. Finally the placement terminates when     
 

     
, where   is a constant 

ranging from 0.005 to 0.05 and       is the amount of nets contained in the design.  

The proposed SA placer supports the movement of all programmable resources, (e.g. logic slices, 

DSP slices, IOBs, BRAMs) but it is not capable to handle carry chains. Thus, someone should use either 

benchmarks without carry chains or the proposed SA placer will not move the tiles that contain instances 

with curry chains. 

 

Figure 7 - Bounding Box 
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Figure 8 - Adaptive Simulated Annealing 
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2.4.4 Routing 

In the previous stage the placer tried to choose the correct LB locations to place the instances with the aim 

that the router would need less effort to route the design. The router enables the required programmable 

interconnection points (PIPs) in order to connect effectively all LB input and output pins described in the 

design. Designed to be able to route successfully a design, a CAD flow must have an equal skillful placer 

and router. If the routing algorithm has excellent performance while the placement algorithm does not, it 

is obvious that the routing will fail and vice versa. Sometimes the placement and routing is performed 

simultaneously, as the cost of a design in the placement procedure is inherently weak at addressing both 

wirability and timing optimizations [33]. 

In general the routing architecture is represented as a directed graph. Each pin and wire of the design 

becomes a node and each potential connection an edge. The router algorithm has to find and connect all 

the nodes in the routing resource graph. There are two main router algorithms in the FPGA CAD 

technology. The routability-driven that try to find the shortest path and the time-driven which use more 

complex algorithms, giving priority mostly to the critical paths of the design.  

2.4.5 Bitstream generation 

The bitstream generation is the conversion of a routed design file into a sequence of bits, called bitstream. 

The bitstream is uploaded to the FPGA in order to configure every bit state in it. This will eventually 

produce the actual hardware. 

2.5 The Rapidsmith framework 

Rapidsmith is a set of APIs written in Java that read, manipulate and write the Xilinx human readable file 

format (XDL), whereas hiding syntactic details from the user. Rapidsmith gives the ability to researchers 

to try out new ideas in all fields of FPGA CAD tools on Xilinx FPGAs. A design must be converted first 

in the appropriate XLD file format in order to be imported to Rapidsmith. Rapid development of packing, 

placement or routing tools and parse/export configuration bitstreams can be achieved taking the 

advantage of the available APIs provided by the framework. It is argued that Java is a slow and memory-

hungry programming language, in contrast with native machine languages like C, but no speed or 

memory issues where observed, while developing the proposed soft error vulnerability tools. Java is a free 

object-oriented programming language with useful libraries for big data structures which makes it very 

powerful for developing CAD tools. The researchers can focus at their algorithms implementation, while 

time-consuming memory management is taken care from the Java garbage collector, cleaning up the 

unused objects without big performance tradeoffs. In order to develop a tool in Rapidsmith someone must 

understand the basic syntax of XDL files. Therefore, in the following sections a description of the the 

Xilinx XDL file structure will be provided, over some examples. 

2.5.1 The XDL file 

Xilinx vendor provides the Xilinx Design Language (XDL) to interface and access the features of a 

design or a device. XDL has two main sides. One side is the description of the FPGA architecture, 

providing all the primitives and routing fabric of the FPGA. The other side is the description of the 

design.  XDL is a human readable ASCII file, offering a representation of the proprietary Xilinx Netlist 

Circuit Description (NCD) file format in every CAD stage (i.e. mapped, placed or routed design). The 

user is free to insert or extract any desired information at different CAD stages of the Xilinx design flow. 

XDL can describe the following designs: 

 A partially or full Mapped design. 

 A partially or full Placed design. 

 A partially or full Routed design. 



Master Thesis                                                                                                               Dimitrios Agiakatsikas 

Development of a soft error vulnerability analysis framework for FPGA devices 22      

 

Figure 9 - Block diagram of where XDL fits in the CAD flow [9]. 

2.5.2 XDL Syntax 

The XDL is a self a documented file format explaining every statement with an example comment. In 

order to understand the XDL syntax we will examine a design with two instances, while it is mapped, 

placed and routed.  

Design statement 

Every XDL file has a design statement which includes the name of the design, the part number of the 

FPGA and also a list with some attributes of the CAD tools. Below in Figure 10 we can see an example of 

the design statement with its attributes list. We observe that the name of the design is “lut” and the 

targeting FPGA is the xc5vlx110tff1136-1. 

# XDL NCD CONVERSION MODE $Revision: 1.01$ 

# time: Sun Jul 14 22:26:07 2013 

# The syntax for the design statement is:                 

# design <design_name> <part> <ncd version>;              

# or                                                      

# design <design_name> <device> <package> <speed> <ncd_version> 

# ======================================================= 

design "lut" xc5vlx110tff1136-1 v3.2 , 

  cfg " 

       _DESIGN_PROP:P3_PLACE_OPTIONS:EFFORT_LEVEL:high 

       _DESIGN_PROP::P3_PLACED: 

       _DESIGN_PROP::P3_PLACE_OPTIONS: 

       _DESIGN_PROP::PK_NGMTIMESTAMP:1373612597"; 

Figure 10 - XDL design statement example 
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Instance statement 

An instance is represented in Rapidsmith with the design.Instance class. It always begins with the 

keyword “inst”. An instance can be placed or unplaced in the FPGA layout. The configurations of the 

instance are provided by a string that starts with the keyword “cfg”. It must be mentioned that the name of 

the instance must be unique in a design in order to avoid name conflicts in Rapidsmith. Figure 11 depicts 

an example with two instances in a mapped design. The name of the first instance is out0_OBUF. The 

second instance is out0. The two instances are not placed, while in the next CAD stage these instances 

have to be placed in a compatible Primitive site of SLICEM and IOB type, respectively.  

inst "out0_OBUF" "SLICEM",unplaced  , 

  cfg " A5LUT::#OFF A5RAMMODE::#OFF A6LUT:LUT_U0:#LUT:O6=(A1*(~A2*(~A3*(~A4*(~A5*~A6))))) 

       _BEL_PROP::A6LUT:BEL:A6LUT A6RAMMODE::#OFF ACY0::#OFF ADI1MUX::#OFF 

       AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0 

       B5LUT::#OFF B5RAMMODE::#OFF B6LUT::#OFF B6RAMMODE::#OFF BCY0::#OFF 

       BDI1MUX::#OFF BFF::#OFF BFFINIT::#OFF BFFMUX::#OFF BFFSR::#OFF BOUTMUX::#OFF 

       BUSED::#OFF C5LUT::#OFF C5RAMMODE::#OFF C6LUT::#OFF C6RAMMODE::#OFF 

       CCY0::#OFF CDI1MUX::#OFF CEUSED::#OFF CFF::#OFF CFFINIT::#OFF CFFMUX::#OFF 

       CFFSR::#OFF CLKINV::#OFF COUTMUX::#OFF COUTUSED::#OFF CUSED::#OFF 

       D5LUT::#OFF D5RAMMODE::#OFF D6LUT::#OFF D6RAMMODE::#OFF DCY0::#OFF 

       DFF::#OFF DFFINIT::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF DUSED::#OFF 

       PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF SYNC_ATTR::#OFF WA7USED::#OFF 

       WA8USED::#OFF WEMUX::#OFF " 

inst "out0" "IOB",unplaced  , 

  cfg " DIFFI_INUSED::#OFF DIFF_TERM::#OFF IMUX::#OFF OUSED::0 PADOUTUSED::#OFF 

       PULLTYPE::#OFF TUSED::#OFF OUTBUF:out0_OBUF: PAD:out0: 

         DRIVE::12  OSTANDARD::LVCMOS33  SLEW::SLOW "  

Figure 11 - Unplaced instances in the XDL file.  

We continue with the same instances being placed. We observe that the instance out0_OBUF is placed in 

the primitive site SLICE_X0Y0, while the slice is located in the primitive tile CLBLM_X1Y0. Furthermore, 

the instance out0 is placed in the primitive site LIOB_X0Y1 which is located in the primitive tile AP21. 

inst "out0_OBUF" "SLICEM",placed CLBLM_X1Y0 SLICE_X0Y0  , 

  cfg " A5LUT::#OFF A5RAMMODE::#OFF A6LUT:LUT_U0:#LUT:O6=(A1*(~A2*(~A3*(~A4*(~A5*~A6))))) 

       _BEL_PROP::A6LUT:BEL:A6LUT A6RAMMODE::#OFF ACY0::#OFF ADI1MUX::#OFF 

       AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0 
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       B5LUT::#OFF B5RAMMODE::#OFF B6LUT::#OFF B6RAMMODE::#OFF BCY0::#OFF 

       BDI1MUX::#OFF BFF::#OFF BFFINIT::#OFF BFFMUX::#OFF BFFSR::#OFF BOUTMUX::#OFF 

       BUSED::#OFF C5LUT::#OFF C5RAMMODE::#OFF C6LUT::#OFF C6RAMMODE::#OFF 

       CCY0::#OFF CDI1MUX::#OFF CEUSED::#OFF CFF::#OFF CFFINIT::#OFF CFFMUX::#OFF 

       CFFSR::#OFF CLKINV::#OFF COUTMUX::#OFF COUTUSED::#OFF CUSED::#OFF 

       D5LUT::#OFF D5RAMMODE::#OFF D6LUT::#OFF D6RAMMODE::#OFF DCY0::#OFF 

       DFF::#OFF DFFINIT::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF DUSED::#OFF 

       PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF SYNC_ATTR::#OFF WA7USED::#OFF 

       WA8USED::#OFF WEMUX::#OFF " 

inst "out0" "IOB",placed LIOB_X0Y1 AP21  , 

  cfg " DIFFI_INUSED::#OFF DIFF_TERM::#OFF IMUX::#OFF OUSED::0 PADOUTUSED::#OFF 

       PULLTYPE::#OFF TUSED::#OFF OUTBUF:out0_OBUF: PAD:out0: 

         DRIVE::12  OSTANDARD::LVCMOS33  SLEW::SLOW "   

Figure 12 -Placed instances in the XDL file. 

Net statement 

Moreover, in Figure 14 the above instances have been routed. The router tries to connect the outpins 

(sources) and the inpins (sinks) of the design primitive sites which are described with the net statement. 

The net statement is represented in Rapidsmith with the design.Net class. Nets have 3 different types: 

VCC, GND and WIRE. The keyword WIRE is the default type and is not required to be present in the 

XDL file. Nets are described with two components: The pins and the PIPs. The pips are only available 

when the design has been routed.  As an example, Figure 13 depicts an unrouted net. Pins define the 

source and one or more sinks within the net. A pin is identified by the name of the instance it resides in 

and also with its internal name within the instance. Pips are represented with the design.PIP class in 

Rapidsmith and are used to connect the sources and sinks of the design using the prefabricated wires 

located in the matrixes. A PIP is uniquely described with the name of the tile that it resides followed with 

the internal coordinates that indicate the location of the PIP in the tile. Furthermore, a PIP has two wires 

with a connection between them. Figure 13 describes the unrouted net, while Figure 14 describes the 

same net, while it is routed. In the unrouted net example we can clearly see that the signal from output pin 

of instance ‘out0_OBUF’ must be connected to the input pin of instance ‘out0’. In the routed net example, 

PIPS are added to the XDL file to describe the connection of the sources and the sinks of the two 

instances. Almost all PIPS are unidirectional and are described with the symbol (“->”). In some cases 

someone can find some bidirectional PIPS (“-=”) used with long lines, which route the global nets of the 

design. However, Rapidsmith does not use this description, avoiding problems that can be caused by the 

XDL conversion. 

net "out0_OBUF" ,  

 outpin "out0_OBUF" A , 

  inpin "out0" O ,   

Figure 13 - Unrouted nets in the XDL file. 
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net "out0_OBUF" ,  

  outpin "out0_OBUF" A , 

  inpin "out0" O , 

  pip CLBLM_X1Y0 M_A -> SITE_LOGIC_OUTS12 ,  

  pip INT_X0Y0 WN2END_S0 -> NW2BEG2 ,  

  pip INT_X0Y1 NW2MID2 -> IMUX_B41 ,  

  pip INT_X1Y0 LOGIC_OUTS12 -> WN2BEG0 ,  

  pip IOI_X0Y1 IOI_IMUX_B41 -> IOI_O11 ,  

  pip IOI_X0Y1 IOI_O11 -> IOI_O_PINWIRE1 ,  #  _ROUTETHROUGH:D1:OQ 
"XDL_DUMMY_IOI_X0Y1_OLOGIC_X0Y2" D1 -> OQ 

  pip IOI_X0Y1 IOI_O_PINWIRE1 -> IOI_O1 ,  

  ; 

Figure 14 - Routed nets in the XDL file. 

2.5.3 XDLRC Files 

XDLRC report files are generated by the Xilinx XDL command line tool, i.e. xdl –report –pips –

all_conns <partName>, describing the architecture of the corresponding FPGA device. The size of the 

generated files varies from some megabytes to some gigabytes for recent devices. Although there are only 

few different types of tiles in a Xilinx FPGA, the Xilinx resource descriptions files are gigantic and 

cannot be easily manipulated. The reason is that the same attributes for similar tiles is repeated in the 

XDLRC files. However, Rapidsmith uses a custom form of serialization and compression libraries to 

compress these files. For example the XDLRC report file of a Virtex 7 is compressed to 5965KB form an 

initial size of 73.6GB.  

In order to describe the XDLRC report files, the general architecture description of a Xilinx FPGA. 

Xilinx is recalled. FPGAs consist of an array of tiles. The most frequent tile found in a Xilinx FPGA is 

the Configurable Logic Block (CLB) and the interconnection blocks (connection matrix and switch 

matrix). The CLB consists of two slices containing the look-up-tables and the flip-flops implementing 

combinational or sequential logic. Every CLB has two interconnection tiles on its left side. The first 

interconnection tile is called connection matrix and the second switch matrix.  The switch matrix is a tile 

with PIPS that connects the horizontal and vertical wires of the routing channels. The connection matrix 

is a tile which is responsible to connect the input and output pins of the slices (contained in the CLBs) 

with the routing lines of the switch matrix.  Figure 15 depicts a CLB with its interconnections tiles. 

Besides CLBs and interconnection tiles Xilinx provides and other tile types, such as Random Access 

Memory (RAM) blocks, Phase-locked loops (PLLs), digital signal processors (DSPs), even high 

performance embedded processors, providing high performance and capacitance to the FPGA. For 

example Xilinx vendor provides the new Zynq-7000 family (2013), which embeds a state-of-the-art ARM 

Cortex A9 micro-processor core in it, enabling designers to evaluate high performance systems-on-chip 

(SoC), while keeping the power consumption low. 
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Figure 15 - Xilinx general architecture 

In the next section the corresponding descriptions of tiles, primitive sites, wires and PIPS within the 

XDLRC report files is provided.  

Tiles 

Tiles are represented in Rapidsmith with the device.Tile class. A tile starts with the keyword “tile” 

followed by the X, Y coordinates that indicate the location of the tile in the FPGA layout. Furthermore, it 

contains the name of the tile and the number of the primitive sites that are hosted in it. The tile ends with 

a “tile summary”, summarizing the name and type of the tile. The declaration finishes with some 

numbered statistics. Figure 16 depicts a tile which resides on the X = 1, Y = 14 coordinates of the FPGA 

fabric layout. It has a unique name CLB_X6Y63, while its type is CLB. Finally the tile carries 4 primitive 

sites (CLB 4). 

(tile 1 14 CLB_X6Y63 CLB 4 

(tile_summary CLB_X6Y63 CLB 122 403 148) 

Figure 16 - XDLRC tile declaration 

Primitive sites 

Primitive sites are represented in Rapidsmith in the device.PrimitiveSite class. Furthermore, a primitive 

type enumeration is available in Rapidsmith. Only instances (design.Instance class) compatible to the 

primitive site type can be placed in it. Also a list with pinwires describing the name and direction of the 

pins contained in the site is provided in the XDLRC description file. In Figure 17 we depict an example 

of a primitive site declaration. From the attribute SLICE_X9Y127 we can notice that the site type is 

SLICEL. Any instance compatible to this type can reside on SLICE_X9Y127. Finally, the description ends 

with a list containing the pins of the site, which are the BX, BY, CE input pins and the XMUX out pin 

with their corresponding internal tile names.  

(primitive_site SLICE_X9Y127 SLICEL internal 27  

(pinwire BX input BX_PINWIRE3)  

(pinwire BY input BY_PINWIRE3)  

(pinwire CE input CE_PINWIRE3)  

(pinwire XMUX output XMUX_PINWIRE3)  

Figure 17 - XDLRC primitive site declaration 

HORIZONTAL ROUTING CHANNELS
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Wire 

A list of wires is declared in a tile that describes the routing resources which are used to connect the 

specific tile with other tiles. For example in Figure 18 the wire E2BEG0 is connecting the tile with 3 

interconnection tiles (INT_X8Y63, INT_X9Y63, INT_X9Y62) and two CLBs (CLB_X7Y63, 

CLB_X8Y63). The connections are denoted with the keyword ‘conn’ and are described with the tile name 

and the wire name used for the connection. Connections which are located in the connection matrix are 

not programmable (fixed), in contrast with connections in the switch matrixes that use PIPS for 

programmable connection. Wire enumeration is provided by the device.WireEnumerator class. The 

enumeration is represented with integers, giving significant compression to the XDLRC description file. 

Another technique evaluated in the Rapidsmith, in order to reuse wire data structures is the use of relative 

tile offsets.  

(wire E2BEG0 5 

(conn CLB_X7Y63 CLB_E2BEG0) 

(conn INT_X8Y63 E2MID0) 

(conn CLB_X8Y63 CLB_E2MID0) 

(conn INT_X9Y63 E2END0) 

(conn INT_X9Y62 E2END_S0) 

Figure 18 - XDLRC wire declaration 

PIP 

As mentioned above, a PIP is responsible to connect two wires in a switch matrix. Figure 19 outlines a 

PIP declaration, which describes that the wire ‘BEST_LOGIC_OUTS0’ will be connected with the wire 

‘BYP_INT_B5’, if the PIP is set high (“turned on”) in the switch matrix INT_X7Y63.  

 (pip INT_X7Y63 BEST_LOGIC_OUTS0 -> BYP_INT_B5) 

Figure 19 - XDLRC PIP declaration 

Primitive Definitions 

At the end of the XDLRC report file there is a collection of primitive definitions for the targeting Xilinx 

FPGA part number, which are used for reference and are not very frequent used from Rapidsmith, as 

some necessary information is not provided from Xilinx vendor. Father information for the XDL file 

format can be found in [9][34]. 

2.6 Related Work 

Many previous approaches have analyzed the vulnerability of the configuration memory of SRAM-based 

FPGAs to soft errors and investigated their effects in the behavior of various applications. These 

approaches are based either on fault injection experiments [35], [12], [13], [14], [15] or analytical 

methods [6], [16], [17], [18]. 

The fault injection process is performed using either accelerated radiation testing [6], [12], [15] or 

fault injection tools [13], [14], [15]. In radiation-based approaches, the device under test is exposed to a 

controlled flux of radiation, emitted either by proton accelerators [12] or radioactive sources like proton 

beam [15] to slowly introduce upsets in the memory cells of the device. To reduce the high cost needed 

for the experimental setup of the radiation tests, fault injection approaches [13], [14], [15] emulate the 

effects of SEUs in the FPGA’s configuration memory as bit-flips in the memory cells. The fault injection 

approaches can be used to analyze the susceptibility of the final configuration bitstream and thus they 

cannot apply during the FPGA design flow in order to provide an early estimation. To avoid the time-

consuming fault simulations, several analytical approaches have been proposed [6], [16], [17], [18].  

In [16] and [17] Asadi et al. present an analytical soft error rate estimation methodology which is 

based on the error propagation probability of the SEUs from the error sites to system outputs. In [18] the 
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authors propose methods for the estimation of the sensitive configuration bits after the placement process, 

which are adopted by our post-placement analysis method.  

In [12] Johnson et al. have performed fault injection experiments on a Xilinx Virtex 1000 FPGA in 

order to  compare the performance of simulation and accelerated radiation based tests. The simulator was 

built on the SLAACI-V PCI FPGA board. The board had tree Virtex 1000 FPGAs (PE0, PE1 and PE2). 

PE1 was used to emulate the effects of SEUs by changing the contains of the configurations memory 

throw partial reconfiguration, PE1 had the golden bitstream and the last PE2 FPGA was used to capture 

the output results of PE1 and PE2, which were operating identically under normal circumstances. To 

validate the simulation, acceleration test was used to slowly introduce upsets in the PE1 with proton 

beam. The output errors were captured with the same way in the simulation test, i.e. comparing the output 

of the PE1 and PE2 with the PE0 FPGA. The simulator predicted 97% of the output errors observed 

during the radiation tests. 

Furthermore, in [6] Bellato et al. proposed an analytical method to investigate the effects of  SEUs in 

the SRAM  configuration memory of a Xilinx Virtex XCV300 FPGA and also introduced radiation fault 

injection experiments to validate the correctness of their results. In order to analyze the effects of SEUs 

on the FPGA resources, the authors first decoded the stored configuration memory in the device by 

continuously observing the generated bitstream outputs of all possible configuration modes of a single 

given resource. They accomplished to decode the 192 bits of the CLB resources and find out how they are 

affected from SEUs. A bit flip in a LUT could modify an implemented function, defected muxes could 

cause new exit paths from the CLB and last the initialization of the CLB could change the behavior of its 

internal components.  The researchers categorized the possible interconnection soft-errors scenarios, by 

inserting or deleting nets in an initial design and afterwards observing the differences in the generated 

bitstreams. These scenarios are as follows: 

 Open bit scenario: In order to emulate this scenario, they deleted a net that was connecting two 

pins in the CLB. The PIP which was connecting the two pins was set to open state producing an 

open-bit error. 

 Short bit or bridge scenario: In order to emulate this scenario, they replaced an existing net with 

a new one, activating another PIP which connected an unknown logic value to the CLB. 

 Input Antenna scenario: They inserted a new net starting from an unused input pin to a used 

output. The new input pin could influence the behavior of the CLB especially if it was connected 

at a high frequency output pin. 

 Output Antenna scenario: They inserted a new net starting from a used input pin to an unused 

output. The new input pin did not influence the behavior of the CLB because the output pin was 

not used. 

 Conflict scenario: A new net connected two used input and output pins, producing a conflict, 

since the unknown output values of the input pin were fed from the output pin. 

 None scenario: They added a net in order to enable a PIP which connected two unused pins. This 

did not affect the functioning of the CLB. 

Due to this analysis, they were able to understand the consequences of a soft error in the configuration 

memory and the programmable resources. However, the preliminary analysis has been done for a Virtex 

device and cannot be easily reproduced for other FPGA architectures. Recent approaches have proposed 

SEU-aware mapping, placement and routing algorithms [8],[18], [19], [20], [21] in order to reduce the 

vulnerability of the FPGA designs. In [8] and the [36] placement and routing algorithms of VPR tool are 

modified in order to reduce the susceptibility of the FPGA circuits to SEUs. In [19] the authors present a 

reliability-aware place and route algorithm to mitigate the effects of SEUs to TMR-based circuits. In [20] 

a modified version of the VPR algorithms is proposed to reduce the bridging faults caused by SEUs in the 

configuration memory. In [21] the proposed SEU-aware placement and routing algorithms incorporate 

both application level and physical level factors to reduce the soft error rate. Most of the above 

approaches have been demonstrated on the well-established academic VPR tool targeting only virtual 

FPGA architectures. The proposed framework will enable the evaluation of such reliability-aware 

algorithms for industrial FPGA devices. 
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3 Methodology 

The methodology chapter will provide to the reader the description of the proposed soft-error 

vulnerability analysis framework, a deep analysis of the methods which are used to estimate the sensitive 

bits in placed and routed designs and finally a briefly analysis of the framework code structure that is 

implemented, as the proposed open-source framework (documented in Java-docs) and a technical report 

will be soon available on the internet.  

3.1 Soft-error vulnerability analysis framework 

The research community has intensively addressed the last years the problem of bridging the academic 

CAD tools with commercial CAD tools and therefore be able to apply them to real industrial FPGAs. For 

example, the authors in [37] connected an academic synthesis and verification tool (ABC) with the 

Xilinx’s ISE CAD flow and compared it with the Xilinx Synthesis Technology (XST) tool. In [38], the 

JBits interface [39] was combined with the open-source VPR tool [32] to generate configuration 

bitstreams for Xilinx Virtex architectures (placed and routed by VPR) for the needs of a fault tolerant 

methodology. In more detail, the authors described the architecture of the Xilinx Virtex FPGAs and 

modified the source of the VPR tool in order to make it capable to place and route a design on a Virtex 

(XCV100, XCV300) FPGA. Finally, an interface was implemented to connect the Jbits interface for 

Virtex with the output of the VPR tool and therefore generate the bitstream configuration file. Recently, 

the authors in [40] developed an extension of the academic Verilog-To-Routing (VTR) [41] flow to 

synthesize, optimize and technology map a netlist with ODIN II [42] and ABC tools on a Virtex-6 Xilinx 

FPGA, pack and place it with the VPR tool and subsequently route and generate the bitstream with the 

Xilinx CAD flow. The drawback of these approaches is the extra effort needed to develop netlist models 

and interfaces to support new FPGA architectures, e.g. only a specific Virtex-6 device is supported in 

[40]. 

Motivated by the above approaches and the need of research community for FPGA reliability 

analysis tools, an open–source soft error vulnerability analysis framework based on RapidSmith [9] was 

developed, that is capable to target industrial FPGA architectures. RapidSmith is a set of open-source 

tools and APIs written in Java language that manipulate the Xilinx human readable XDL files, allowing 

researchers to try out new ideas in various fields of FPGA CAD domain. In order to be imported to 

RapidSmith, any design netlist must be first converted to the compatible XDL file format. Note that an 

XDL netlist can be easily exported in almost all implementation stages using Xilinx utilities. The 

advantage of RapidSmith compared to the traditional academic FPGA CAD flows is its ability to target 

the latest Xilinx FPGA architectures. This was the main reason that of using RapidSmith to build the 

vulnerability analysis tool. Figure 20 depicts the main functions supported by the proposed soft error 

vulnerability analysis framework. The sensitivity analysis of an FPGA design to soft errors can be 

performed at all stages of the FPGA design flow, while all different types of configuration bits, e.g. block 

configuration bits (CLBs, IOBs, DSPs, etc.) and interconnection configuration bits are considered. The 

user is free to run the entire flow and measure the dynamic cross section of the final FPGA design or run 

individual tools at earlier stages of the flow to pre-estimate the soft-error vulnerability of the design. 

The functions supported by the framework are the following: 

 Post–mapping analysis of the block configuration bits: It extracts the FPGA resource 

utilization data (e.g. number of utilized slices, DSPs, IOBs, BRAMs, LUT inputs, slice 

functional mode, I/O direction and attributes, etc.) from the XLD netlist produced by the 

packing/mapping step and analyses the sensitivity of the block configurations bits based on 

a precompiled resource usage profile (described in an xml file). 

 Post–placement analysis of the interconnection configuration bits: It takes into 

consideration the actual sites of the used resources obtained by the placement process 

(extracted from the XDL netlist) and the goals of the routing algorithm and analyses the 

possibility of a net to become open-wired or short-wired with another net due to a soft error 

in a programmable interconnection point (PIP). So, it estimates the vulnerability of the 

interconnection configuration bits before the final routing. This tool is mainly based on 

sensitivity analysis methods previously proposed in the literature [6], [18]. 
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 Post–routing analysis of the interconnection configuration bits: It provides a more accurate 

analysis since it relies on the final routed circuit. It considers all possible defects that can be 

caused by a soft error in a programmable interconnection point, i.e. open faults, bridging 

faults and antenna faults. The final analysis results are written in a text file (.rsba stands for 

routing sensitive bit analysis) for further processing. 

 Analysis of the Xilinx report for essential configuration bits: Xilinx supports the generation 

of an essential (sensitive) bitmap along with the generation of the configuration bitstream 

(using flag –g EssentialBits:Yes in the bitgen command). The tool analyses the Xilinx 

report and parses the sensitive bitmap (.ebd file) and the bitstream (.bit file) using 

RapidSmith packages. After that, it classifies the sensitive bits as reported by Xilinx into 

block, interface and interconnection configuration bits and allocates them to configuration 

frames. This sensitivity bitmap analysis could facilitate scrubbing-based SEU mitigation 

approaches to prioritize the testing of most critical configuration frames of the FPGA 

device in order to reduce the mean repair time [43]. The results are written in a text file 

(.xsba stands for Xilinx sensitive bit analysis) for further processing. 

 Visualization of soft-error vulnerable areas: A Graphic tool
3
 built as extension of the 

Rapidsmith Device.Explorer class reads the results from the two previous analysis steps 

(.rsba and .xsba files) and illustrates the vulnerable areas of the FPGA layout. This allows 

the user to visualize the vulnerability analysis results of the proposed approach and 

compare them with the sensitivity report of Xilinx. 

 

Figure 20 - Soft error vulnerability analysis framework. 

Since the analysis tools require only the XDL description of the circuit under test, the framework 

can interact with any FPGA CAD tool (packer, mapper, placer, router) provided that the XDL circuit 

description is available. Also, given that RapidSmith can manipulate the XDL description of any FPGA 

device the proposed framework can support all existing Xilinx FPGA architectures. Currently, the tools 

have been tested for Virtex-5 and Virtex-6 families supporting all the available devices. The only 

restriction is that the analysis of Xilinx report (.ebd file) for Virtex-6 is not feasible due to undocumented 

internal frame structure from Xilinx. The .xml file provided to the post– mapping analysis tool includes 

the results of the usage profiling
4
 of the programmable resources for a specific FPGA architecture. 

According to this profile, each primitive resource has been mapped with its theoretical configuration bits 

based on its possible usage mode. The well-known Simulated Annealing (SA) placement algorithm is also 

implemented, described in [30] in order to replace the uncompleted placer package provided by 

RapidSmith framework and to evaluate the proposed analysis methods. The main reason, this algorithm 

                                                           
3
 The graphic tool entirely implemented by Mr. Aitzan Sari.   

4
 The analysis and implementation of usage profiling was entirely evaluated by Mr. Aitzan Sari.  He has performed the 

profiling of Virtex-5 and Virtex-6 architectures and he plans to integrate the profiles of more Xilinx architectures in the 
future. 
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was selected, is that its cost function can be easily modified from researchers to implement an SEU-aware 

placement algorithm [8], [18], [20].  

3.2 Estimation of sensitive configuration bits 

In this section a description of the methods used to estimate the sensitive configuration bits is provided. 

Both programmable logic resources and routing resources are considered in the analysis since both 

categories contribute significantly to the total amount of sensitive configuration bits as shown by the 

experimental results. The analysis distinguishes the sensitive bits to interconnection and block 

configuration bits while the sensitive interconnection bits are being further classified to open, short and 

antenna sensitive bits. 

3.2.1 Sensitive Block Configuration Bits 

The estimation of sensitive block configuration bits can be applied as early as the mapping process on the 

FPGA design flow. The block configuration bits are classified into CLB, IOB, BRAM and DSP resource 

configuration bits estimation while two estimation methods are proposed: a black-box method and a 

structural analysis method. The former method depends only on the post-mapping resource utilization 

data while the latter uses a structural sensitivity analysis of the programmable resources to improve the 

estimation accuracy. 

The black-box estimation approach [43] assumes that all configuration bits of a used programmable 

resource are sensitive. According to this pessimistic assumption, the number of sensitive bits per 

programmable resource can be extracted from the documented structure of configuration bitstream. The 

sensitive bits of programmable blocks R are calculated by dividing the configuration bits of a column for 

block R             to the number of blocks in the column               and multiplying with 

the number of blocks    used in the design. 

               ( )    
           

             
           (2) 

For example, in the Virtex-5 family a CLB column needs 11 configuration frames (although it is 

documented that a CLB column requires 10 configuration frames, a careful CLB utilization and bitstream 

examination reveals that the actual number of frames is 11) and with 1280 bits per frame (excluding the 

ECC word since it is considered as non-sensitive) there are 14080 configuration bits which are uniformly 

distributed across the column. A CLB column in the Virtex-5 family consists of 20 CLBs and each CLB 

contains two slices. Applying Equation 2, gives 704 configuration bits per CLB or 352 configuration bits 

per slice. The sensitive configuration bits for all programmable resources are calculated similarly. Table I 

summarizes the results for the primary block resources of Virtex-5 architecture. The figure in parenthesis 

in the second column of Table I denotes the number of configuration frames per column, i.e. 30 

configuration frames (28 block plus 2 interface frames) per IOB column, 4 configuration frames (2 block 

plus 2 interface frames) per BRAM column and 2 interface configuration frames per DSP column.   

Block (R) ColumnBitsR ColumnBlocksR Sensitive bits 

CLB 14080 (11) 20 704 

IOB 35840 (30) 40 896 

BRAM 5120 (4) 4 1280 

DSP 2560 (2) 8 320 

Table I - Black-box estimation of sensitive bits per block. 

3.2.2 Sensitive Interconnection Configuration Bits 

The fault modeling and the vulnerability analysis of the FPGA routing resources have been studied 

extensively in the past [6], [13], [14], [18]. Here, the fault modeling of routing resources proposed by 

several previous approaches are adopted, according to which the routing faults due to soft errors in the 

programmable interconnection points can be open, short or antenna. So, an interconnection configuration 

bit is termed as open-sensitive when a soft error causes an open wire, as short-sensitive when it causes the 
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bridging of two distinct nets, and finally as antenna-sensitive when it results to a hanging wire connected 

to a net. 

The estimation method is based on the simple interconnection block model depicted in Figure 21 

which describes adequately the interconnection blocks of Virtex-5 and Virtex-6 FPGA architectures. The 

interconnection block consists of a switch-matrix and an interface block. The interface block is used to 

connect the terminals (inputs/outputs) of a resource block (CLBs, IOBs, etc.) to the switch matrix which 

in turn provides access to the global interconnection network. 

Consider the nets connected to the interconnection block of Figure 21: two nets are routed through 

the switch matrix, namely NET A and NET B which use the wires N1W4 and E4S4, respectively and the 

connections made for these wires are realized with a single PIP (Programmable Interconnection Point) for 

each net. As shown in the example, NET B is connected to the configurable block through the interface 

block. These PIPs are open-sensitive PIPs since a soft error will result in disconnecting the starting wire 

from the end wire of the switch matrix. A soft error, for example, in the SRAM cell of PIP_N1W4 will 

disconnect the N1 wire of NET A from the W4 wire. 

Figure 21 depicts also a net-bridging scenario where two nets are shorted as a consequence of soft 

error in PIP_E4W4 which connects wires E4 and W4. Since these wires are used by nets A and B, 

respectively, a short connection is formed between these two nets. In the case of antenna-sensitive bit, a 

soft error causes a wire used by a net to be connected to an unused wire of the switch matrix. For 

example, PIP_S4W6 is considered as antenna-sensitive bit, since an SEU will cause wire S4 to be 

connected to W6 producing a wire acting as antenna on NET B.  

 

Figure 21 - Sensitive bits of an interconnection block. 

Although in most cases an antenna will not lead to erroneous output, it will degrade the performance of a 

circuit, especially when it occurs in high-frequency nets such as a clock net. Finally, Figure 5 shows a 

non-sensitive PIP (PIP_N5E2) where a soft error will not affect the circuit operation since the bridging 

wires are not used. The information required by the above analysis (e.g. which PIPs are in use, which 

wires can be connected through PIPs, etc.) is extracted from the XDL model of the circuit. 

As described in the related work section, the framework provides two roadmaps for the analysis of 

the sensitive interconnection bits: the post-placement and the post-routing analysis. The post-placement 

analysis provides to the designer a vulnerability estimation early in the design flow while it can also drive 

a reliability aware placement algorithm [18], [20], [8]. On the other hand, the post-routing analysis 

provides a more precise calculation of the sensitive configuration bits. 
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3.3 Post-placement analysis 

The proposed framework has adopted the method introduced in [18] to calculate the open-sensitive and 

short-sensitive bits of an FPGA design. The open-sensitive bits for a single net are calculated using the 

Manhattan distance applied on its Bounding Box (BB) assuming          and          being the 

coordinates of the BB. Equation 3 is used to calculate the number of open-sensitive bits. The post-

placement method adopts the q [44] factor used also in the simulated annealing placement algorithm to 

characterize the pin-count of the particular net.  

          (    )  (|         |  |         |   )       (3) 

The method for the estimation of short-sensitive bits proposed in [18] is based on the usage 

probability of switch matrices within the BB of a net. To find the short-sensitive bits between two nets 

NET1 and NET2 the method just uses the product of their usage probabilities over the overlap area 

(Equation 4). A simple example is shown in Figure 22 where two nets have been considered to illustrate 

the estimation process. 

          (     ) ∑     (   )             
(   )                          (4) 

where   (   ) is the probability of net N routing through switch matrix (i,j). For more details the reader 

can refer to [18]. 

 

Figure 22 - Short sensitive bits of two nets. 

3.4 Post-routing analysis 

Although post-placement analysis provides a useful tool to estimate sensitive bits at an early phase of the 

design flow it lacks accuracy, overestimating the susceptibility of routing resources to soft errors. A more 

accurate calculation can be done analyzing the final routed circuit through its XDL netlist. The 

calculation of the open-sensitive bits is almost straightforward process since it requires a simple 

exploration of the nets and an aggregation of the used PIPs. The PIPs-counting process considers all PIPs 

belonging to switch-matrices and interconnection interface blocks. 

In order to calculate the short sensitive bits, the post-routing analysis algorithm checks the wires used 

in the design and for each wire it identifys its possible connections. The possible connections for a given 

wire (i.e. connections supported by the switch matrix) are extracted using the appropriate APIs of the 

RapidSmith framework. Remember that a short circuit between two nets is possible when there is a 

potential, but unused connection of one net that, if it is activated due to an error in the corresponding PIP, 

the net will be connected to a wire used by the second net. Note that the calculation is carried out 

considering the PIPs of the switch-matrix and not the PIPs of the interface blocks, since the latter use 

point-to-point connections and the wires connected to each PIP does not provide an alternative routing 

path. This means that a short circuit cannot be formed among the wires of the interface block.  

To illustrate the post-routing analysis, assume the simple example of the switch-matrix shown in 

Figure 23. There are four wires used to route the two nets, namely N1, W4, E4 and S4. By examining each 
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wire, it can be observed that there is a possible connection of W4 with E4, S4 with W6 and E4 with W4. 

Only connections W4-E4 and E4-W4 can form a bridge between NET A and NET B. The last factor of the 

post-routing analysis is the antenna sensitive bits. An antenna sensitive bit, as previously mentioned, 

produces a wire that acts as a radiation medium to a used net which could reduce the performance of a 

circuit or even lead to circuit malfunction when occurs in critical nets, e.g. high-frequency nets, long-wire 

nets, etc. The antenna sensitive bits are calculated by finding the alternative connections of the used wires 

in the switch matrix which do not produce a short circuit. The pseudo-code of Figure 23 describes the 

calculation of short and antenna sensitive interconnection bits. Note that since the connections are bi-

directional and each connection is considered twice in the loop (i.e. for both end points of the 

connection), the final number of short sensitive bits is divided by two.The total sensitive configuration 

bits for an FPGA design can be calculated summing-up the block configuration bits and the 

interconnection configuration bits using either the post-placement analysis or the post-routing analysis. 

 

Figure 23 - Pseudo-code for the calculation of short & antenna-sensitive bits 

3.5 Soft error vulnerability analysis framework packages 

This section describes the structure of the proposed soft-error vulnerability analysis framework.  Several 

packages are provided for placing a design with the well-known simulated annealing algorithm, routing it 

and finally generating the bitstream configuration files (calling tools provided by Xilinx vendor). At each 

CAD stage, i.e. after mapping, placement, routing a design or generating the bitstream, the user can 

analyze the vulnerability of the design to soft-errors. A hierarchy of packages within our framework can 

be seen in Figure 24. The framework consists from the placer package, utilities package, userInterface 

package and finally the analysis package. In the following sections a description of all classes and 

methods which are available in the framework will be provided.  

 

Figure 24 - Unipi packages 
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Package Name Description 

userInterface A command prompt user interface providing to the end-user an easy way 

to access out proposed soft-error vulnerability tools. 

Placer Provides the well-known simulated annealing placement algorithm in order 

to replace the uncompleted placer package provided by Rapidsmith 

framework.  

Utilities Provides classes for performing mathematical functions needed from the 

unipi.placer package and the unipi.analysis package, utilities such as to 

load designs, save designs, route designs, generate bitstreams and 

exporting results to excel files. 

Analysis Provides classes to estimate the vulnerability of FPGA designs to soft-

errors. In particular, it supports post-mapping analysis of the sensitive 

block configuration bits, post-placement analysis of the sensitive 

interconnection bits and post-routing analysis of the total sensitive 

configuration bits. Furthermore it provides a class for analysis of the 

Xilinx report for essential (sensitive) configuration bits. At last it provides 

a class to visualize the vulnerability analysis results of our and Xilinx 

sensitivity analysis approaches.  

Figure 25 - Provided packages from the framework 

3.5.1 Placer Package 

A hierarchy of the classes within the placer package can be seen in Figure 26. 

 

Figure 26 - Hierarchy of the classes within the placer package 
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Block class constructors Detail 

Block() Constructor which initializes all member data 

structures. Sets site and instance to null 

Placer

Package

Blocks

Class

Complex 

Blocks

Class

FPGA

Class

Nets 

Bounding 

Boxes Class

Placer

Class



Master Thesis                                                                                                               Dimitrios Agiakatsikas 

Development of a soft error vulnerability analysis framework for FPGA devices 36      

Block(PrimitiveSite site) Creates a new Block and populates it with the 

given PrimitiveSite. 

Block(PrimitiveSite site, Instance inst) Creates a new Block and populates it with the 

given PrimitiveSite and Instance 

 

Block class public methods Detail 

clone() Creates a copy of the object, with the same class 

and with all the fields having the same values. 

addInstance(Instance instance) Adds a new instance to the block. 

Instance getInstance() Returns the instance of the block. 

removeInstance() Sets the instance within the block to null. 

setSlice_inst(Instance slice_inst) Creates a new instance and initializes its 

primitiveSite. 

PrimitiveSite getSite() Returns the PrimitiveSite of the block. 

HashSet<Net> getNetList() Returns a list with nets attached on the blocks 

instance. 

 

ComplexBlock class 

Represents a FPGA tile. A complex block houses primitive sites. Placement occurs by assigning an 

instance to a specific primitive site. The instances have been grouped in a complex block in order to keep 

the packing of the design immutable. 

ComplexBlock class private field  Detail 

ArrayList<Block> blocks The list of blocks in the complexBlock. A block 

contains a primitive site and an instance if 

available. 

TileType tileType XDL Tile Type (INT,CLB,...) 

int x The horizontal coordinates of the tile in the 

FPGA layout. 

int y The vertical coordinates of the tile in the FPGA 

layout. 

boolean used A boolean indicating if the complexBlock (tile) 

is used or not. 

 

ComplexBlock class constructors Detail 

ComplexBlock() Constructor which initializes all member data 

structures. tileType is set to null. 

ComplexBlock class public methods Detail 

clone() Creates a copy of the object, with the same class 

and with all the fields having the same values. 

swap(ComplexBlock cb) Replaces this complexBlock with the given 

complexBlock cb. 

place(ArrayList<Block> blocks) Places a list of blocks within the complexBlock. 

add(Block block) 'Adds a block in the complexBlock. 

add(PrimitiveSite site,  Instance inst) Creates a new block, initializes it with the given 

PrimitiveSite and Instance. Finally, it adds it in 

the complexBlock. 

HashSet<Net> getNets() Returns a hashest<Net> list with the nets 

attached to this complexBlock. 

ArrayList<Block> getBlocks() Returns the blocks contained in this 

complexBlock. 

TileType getTileType() Returns the tile type of this complexBlock. 
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NetBB class 

Represents a bounding box of a net. It has xmax, xmin, ymax, ymin dimensions. Its cost is the half 

perimeter of the bounding box that encapsulates all the attached logic blocks to the net. 

NetBB class private field  Detail 

int xMax The maximum horizontal (X) coordinate of the 

attached logic block to the net. 

int xMin The minimum horizontal (X) coordinate of the 

attached logic block to the net. 

int yMax The maximum vertical (Y) coordinate of the 

attached logic block to the net. 

int yMin The minimum vertical (Y) coordinate of the 

attached logic block to the net. 

double cost The half perimeter of the bounding box that 

encapsulates all the attached logic blocks to the 

net. 

int terminals The number of terminals attached on the net. 

 

NetBB class constructors Detail 

NetBB() Constructor which initializes all member data 

structures. 

NetBB (int xMax, int xMin, int yMax, int yMin) Constructor which initializes all member data 

structures with the given values. 

NetBB (int xMax, int xMin, int yMax, int yMin, 

int terminals, String netName) 

Constructor which initializes all member data 

structures with the given values. 

NetBB(NetBB netbb) Constructor which initializes all member data 

structures with the data structures values of the 

given netbb. 

 

NetBB class public methods Detail 

getxMax() Returns the maximum horizontal (X) coordinate 

of the attached logic block to the net. 

setxMax(int xMax) Sets the maximum (X) coordinate location of the 

attached logic block to the net. 

getxMin() Returns the minimum horizontal (X) coordinate 

of the attached logic block to the net. 

setxMin(int xMin) Sets the minimum horizontal (X) coordinate of 

the attached logic block to the net. 

int getyMax() Returns the maximum vertical (Y) coordinate of 

the attached logic block to the net. 

setyMax(int yMax) Sets the maximum vertical (Y) coordinate of the 

attached logic block to the net. 

int getyMin() Returns the minimum vertical (Y) coordinate of 

the attached logic block to the net. 

setyMin(int yMin) Sets the minimum vertical (Y) coordinate of the 

attached logic block to the net. 

double getCost() Returns the cost of the bounding box which is the 

half perimeter of the bounding box that 

encapsulates all the attached logic blocks to the 

net. 

setCost(double cost) Sets the cost of the bounding box which is the 

half perimeter of the bounding box that 

encapsulates all the attached logic blocks to the 

net. 

String  getNetName() Gets the name of the net. 



Master Thesis                                                                                                               Dimitrios Agiakatsikas 

Development of a soft error vulnerability analysis framework for FPGA devices 38      

int getTerminals() Gets the number of terminals attached on the net. 

setTerminals(int terminals) Sets the number of terminals attached on the net. 

 

Fpga Class 

Holds information about the targeting FPGA layout and the instances of the design. It also contains a list 

with the bounding boxes of each net in the design and the design cost. Every tile of the targeting FPGA is 

loaded with the placed instances that rely in them. This class contains methods to swap the instances of 

two random tiles and automatically updates the design cost. Furthermore, this class provides methods to 

restore the design to its last state, i.e. before swapping two tiles. Finally, rich statistics about the numbers 

of slices, tiles, IOs, tiles with carry chains and resource utilization are provided by the class. 

Fpga class public field  Detail 

ArrayList<ComplexBlock> blocks An ArrayList with the complex blocks of the 

design. In other words the tiles of the design and 

their relying instances. 

HashMap<String,NetBB> netsBB A map containing the name of each net in the 

design with its bounding box. 

boolean ucf A boolean indicating if a UCF file is provided in 

order to be taken into account in the placement 

phase. 

ArrayList< String> ucfList An ArrayList containing the tiles that must not 

be moved in the placement phase. 

Fpga class constructors Detail 

Fpga() This constructor gets the design that must be 

placed. Afterwards it loads the complex blocks 

of the design and calculates the bounding boxes 

of every net. 

 

Fpga class public methods Detail 

swapTwoRandomComplexBlocks(boolean 

debug) 

Swaps the instances of two random tiles and 

automatically updates the current cost of the 

design. If debug flag is set true, the locations of 

the instances before and after swapping are 

printed. 

fallBack() Restores the design to its last state, i.e. before 

swapping the last two random tiles. 

int getUsedIOs() A list with the used I/O blocks of the design. 

int getUsedCLBs() The number of used CLBs in the design. 

HashMap<PrimitiveType, Integer> 

getTypeFreq() 

A list with the used Primitive Types. 

hasCarry(Instance inst) A flag designating if the given instance has a 

carry chain. 

int getCarryClbs() Returns the number of CLBs that have instances 

with carry chains. 

int getUsedSlices() Returns the number of used slices. 

loadCompexBlocks(boolean debug) Loads the complex blocks of the design in the 

block ArralList, except the tiles that contain 

instances with curry chains. If debug flag is true, 

the tiles of the targeting FPGA and their relying 

instances are printed. 

set_cost(double designCost) Sets the cost of the design. 

double get_cost() Returns the cost of the design. 

double calculateCost() Calculates and returns the cost of the design from 

scratch. More specific, it updates the cost of each 

net and returns the summary cost of all nets cost, 

i.e. the design cost. 
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calculate_nets_cost() Updates the cost of each net. 

static  Design getDes() Returns the design. 

static void setDes(Design des) Sets the design. 

3.5.2 Utilities package 

A hierarchy of the classes within the utilities package can be seen in Figure 27 below. This class contains 

useful methods to manipulate XDL files, can call external tools like Xilinx PAR and bitgen, provides 

mathematical functions and finally can produce excel worksheets. 

 

Figure 27 - Hierarchy of the classes within the utilities package. 

Maths class 

Maths class contains static methods for performing mathematical functions used in the placer package 

and the analysis package. 

Maths class field  Detail 

static FactCache factCache A static cache for saving calculated factorial 

numbers. 

protected static Vector<Double> table A vector table used from the factCache. 

static final double[] cross_count An lookup table providing the q(i) factors used to 

compensate the wire length model in the linear 

congestion cost function  of the simulated 

annealing based placement . 

 

Math class public static methods Detail 

static synchronized double factorial(int x) Returns the factorial of int x, using BigIntegers 

cached in a Vector. This method uses arbitrary 

precision integers, so it does not have an upper-

bound on the values it can compute.  It uses a 

Vector object to cache computed values instead 

of a fixed-size array.  A Vector is like an array, 

but can grow to any size.  The factorial() method 

is declared "synchronized" so that it can be safely 

used in multi-threaded programs. Look up 

java.math.BigInteger and java.util.Vector while 

studying this method. 

static Double calcPnm(int n, int m) This method is used for finding combinations in 

probability theory. It uses Double numbers in the 

factorial calculation procedure p(n,m). 

static double calcPnmBigInt(int n, int m) This method is used for finding combinations in 

probability theory. It uses double numbers in the 

factorial calculation procedure p(n,m). 

static double calcPijmn(int i, int j, int m, int n, 

int bboxTerminal) 

Calculates the usage probability of the switch 

matrices that will be used is the routing phase of 
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a design. This method is called from the 

unipi.analysis package for accurately estimation 

of the short bits. It tries to calculate first the 

factorials with double numbers and if the results 

are out of range, it re-calculates the factorial with 

BigIntegers. This technique in combination with 

cashing speedups the calculations. 

static int gcd(int a, int b) Calculates the Greatest Common Divisor 

between two integers. 

static double getCrossCount(int terminals) Returns the q(i) factor. Values are ranging from 

1.0 to 2.7933 depending on nets terminals. 

static double get_std_dev(int n, double 

sum_x_squared, double av_x) 

This method calculates the standard deviation of 

the given values. It is called from the placer 

package in order to calculate the initial 

temperature of the simulated annealing schedule. 

 

Utilities class 

The Utilities class provides static methods to load XDL designs, convert Xilinx XDL files to Xilinx NCD 

files and vice versa, to route and generate the configuration bitstream of the targeting FPGA device and to 

execute external command line programs within the framework. It also provides extra methods to 

generate reports of the targeting FPGA, time conversions and finally provides logging capabilities to the 

framework. 

Utilities class public methods Detail 

String milliseconds2hms(long millis) Gets milliseconds and returns a string with the 

time in hh:mm:ss:ms format. This method throws 

java.text.ParseException. 

Design loadDesign(String xdlFile) Creates a new design and loads the XDL design. 

printDesignReport(Design design) Reports family PartName and the available 

columns and rows of the targeting device. 

routeDesign(String ncdPlaced, String 

ncdOutRouted) 

Gets the path of a NCD placed design, calls the 

Xilinx PAR tool to route it and afterwards saves 

it to the specified path. It also calls Xilinx 

reportgen, trce and xpwr Xilinx tools in order to 

perform timing and power analysis of the routed 

design. 

generateBitstream(String routedNCD) Calls the Xilinx bitgen tool to create the bistream 

and the essential (sensitive) bitmap of a routed 

NCD design. 

String convertXdl2Ncd(String myXdlFileName) Converts a file XDL file to NCD file by the same 

name but with an .ncd extension. 

String convertNcd2Xdl(String myNcdFileName) Converts a NCD file to XDL file by the same 

name but with an .xdl extension. 

redirectConsole(String fileName, PrintStream 

logFile, boolean redirect) 

If redirect flag is enabled, the output screen 

console is redirected to the given filename path. 

  

WriteExcel class 

This class is used for the creation of an excel file in order to export the performance of the simulated 

annealing placement and the results of the soft-errors vulnerability analysis tools in it. 

WriteExcel class private fields Detail 

WritableCellFormat timesBold10 Bold times new roman fonts. 

WritableCellFormat times10 Times new roman fonts. 

File file The file to create the excel file. 

WorkbookSettings wbSettings Settings of the excel workbook. 

WritableWorkbook workbook Writable excel workbook. 
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String pathname We save the excel file to this path. 

CellView cv This is a bean which client applications may use 

to get/set various properties for a row or column 

on a spreadsheet. 

WriteExcell class constructors Detail 

WriteExcell() Constructor which initializes all member data 

structures. Creates a new CellView object and a 

new WorkbookSettings object. 

 

WriteExcell class public methods Detail 

setPathName(String pathName) Sets the path of the excel file. 

createExcel() Creates a new excel. You must first set the global 

variable pathname. 

initialize() Initializes the excel object with the workbook 

settings. 

addCaption(int column, int row, String s) Adds a string to the given column and row of the 

worksheet. 

addInt(int column, int row, int integer) Adds an integer number to the given column and 

row of the worksheet. 

addDouble(int column, int row, double d) Adds a double number to the given column and 

row of the worksheet. 

addLong(int column, int row, long l) Adds a long number to the given column and row 

of the worksheet. 

addLabel(int column, int row, String s) Adds a bold string to the given column and row 

of the worksheet. 

setBold(boolean timesBold) Sets the strings or the numbers fonts to bold. 

saveExcel() Saves the excel workbook. 

3.5.3 Analysis package 

A hierarchy of the classes within the analysis package can be seen in Figure 28 below. In this package  

the following classes are provided to: 

 Estimate the sensitive block configuration bits of mapped designs. 

 Estimate the sensitive interconnection configuration bits of placed or routed designs. 

 Analyze the report of Xilinx essential configuration bits. 

 
Figure 28 - Hierarchy of the classes within the analysis package 

 

SEUAnalysis class 

This class estimates the vulnerability of FPGA designs to soft errors at all phases of the FPGA 

implementation flow. In particular, it supports post-mapping analysis of the sensitive block configuration 
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sensitive configuration bits. Finally, it analyzes the report of Xilinx essential configuration bits and 

classifies the sensitive bits according to their configuration type: block configuration bits (CLBs, IOBs, 

DSPs, etc.) and interconnection configuration bits. 
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SEUAnalysis class field  Detail 

Design design The design to be analyzed. 

HashMap<String, Bbox> netBboxes A map containing the name of each net in the design 

with its bounding box. 

ArrayList<Bbox> netBbList A list with the Bonding box of each net in the design. 

Maths maths = new Maths(); An instance of Math class in order to use it in the 

post-placement analysis  phase. 

Integer[][] fpga; A two-dimensional array representing the switch 

matrices of the targeting FPGA device. This field is 

used when we find the overlap between two 

Bounding Boxes. 

long resourceBits A variable to store the total resource configuration 

sensitive bits. 

long clbSensitiveBits A variable to store the total CLB configuration 

sensitive bits. 

long ramSensitiveBits A variable to store the total RAM configuration 

sensitive bits. 

long ioSensitiveBits; A variable to store the total IOB configuration 

sensitive bits. 

long dspSensitiveBits; A variable to store the total DSP configuration 

sensitive bits. 

int sliceBlocks; A variable indicating the number of used SLICES in 

the design. 

int ioBlocks A variable indicating the number of used IO tiles in 

the design. 

int bramBlocks A variable indicating the number of used BRAM tiles 

in the design. 

int dspBlocks A variable indicating the number of used DSP tiles in 

the design. 

String path The path of the design. 

String sbaFilePath The path for writing the .rsba file (stands for routing 

sensitive bits analysis). 

String xmlPath The path of the XML file (precompiled resource 

usage profile). 

ArrayList<ComplexBlock> blocks An ArrayList of the complex blocks of the design. In 

other words the tiles of the design and their relying 

instances. 

int sliceControlBitsTotal The number of sensitive bits (total) for control bits of 

the slices. 

long sensitiveBits_open The number of open sensitive bits (total) of the 

design analysis. 

long sensitiveBits_short The number of short sensitive bits (total) of the 

design analysis. 

int iobSensitiveInterface_open The number of open interface sensitive bits for the IO 

blocks. 

int clbSensitiveInterface_open The number of open interface sensitive bits for the 

CLB blocks. 

int bramSensitiveInterface_open The number of open interface sensitive bits for the 

BRAM blocks. 

int dspSensitiveInterface_open The number of open interface sensitive bits for the 

DSP blocks. 

int clkSensitiveInterface_open The number of open interface sensitive bits for the 

CLK blocks. 

int sliceControlBitsTotal The number of sensitive bits (total) for control bits of 

the slices. 
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long sensitiveBits_short The number of short sensitive bits (total) of the 

design analysis. 

int iobSensitiveInterconnectionBits_short The number of short interconnection sensitive bits for 

the IO blocks. 

int clbSensitiveInterconnectionBits_short The number of short interconnection sensitive bits for 

the CLB blocks. 

int bramSensitiveInterconnectionBits_short  The number of short interconnection sensitive bits for 

the BRAM blocks. 

int dspSensitiveInterconnectionBits_short The number of short interconnection sensitive bits for 

the DSP blocks. 

int clkSensitiveInterconnectionBits_short The number of short interconnection sensitive bits for 

the CLK blocks. 

enum ColumnType {CLB, IO, BRAM, DSP, 

CLK, UNKNOWN} 

Enumeration for the types of the column that we 

currently can handle 

 

SEUAnalysis class constructors Detail 

SEUAnalysis() Constructor which initializes all member data 

structures. 

SEUAnalysis(String ncdIn, String path, String 

xmlPath) 

Constructor which initializes all member data 

structures and performs the soft-error 

vulnerability analysis of the resource block 

configuration bits. 

 

SEUAnalysis class public methods Detail 

void printResources() It prints the results of the resource block 

configuration bits analysis.  More specifically it 

prints the sensitive bits of the:  

a)Clbs,  

b)Ram,  

c)DSP,  

d)Total resource block configuration sensitive 

bits   

Furthermore, the number of used:  

a) SLICE blocks, 

b) IO blocks, 

c) BRAM blocks,  

d) DSP blocks. 

void routeAnalysis() Post-routing analysis. It provides a more accurate 

analysis since it relies on the final routed circuit. 

It considers all possible defects that can be 

caused by a soft error in a programmable 

interconnection point, i.e. open faults, bridging 

faults and antenna faults. The analysis results are 

written in a text file (.rsba stands for routing 

sensitive bit analysis) for further processing. 
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Final, this method outputs the routing Analysis 

results: 

a)Open sensitive bits, 

b)Short sensitive bits, 

c)Sum of Short and Open sensitive bits, 

d)Antennas sensitive bits,  

e)Sum of Short, Open and Antenna sensitive bits,  

f)Total sensitive bits (without antennas), 

g)Total sensitive bits (with antennas) 

Furthermore it outputs the discrimination of the 

interconnection sensitive bits to: 

a)CLB interconnection sensitive bits, 

b)IO interconnection sensitive bits, 

c)DSP interconnection sensitive bits, 

d)BRAM interconnection sensitive bits, 

e)CLK interconnection sensitive bits, 

ColumnType 

getColumTileType(HashMap<String, 

PrimitiveSite> primitiveSites, int x) 

This mehtod returns a column type. 

param primitiveSites: The sites of the FPGA 

device 

param x: The x-position of the block. 

return ColumnType: The column type of the 

block located in the x position of the FPGA 

layout. Returns UNKNOWN in case the column 

type cannot be found. 

long getAllShort() Returns the short sensitive bits of a routed 

design. (included the antennas sensitive bits) 

long getShortBits_route() Returns the short sensitive bits of a routed design 

(does not include the antenna sensitive bits). 

void placementAnalysis() Post-placement method analyzes the 

interconnection configuration bits of a placed 

design: It takes into consideration the actual sites 

of the used resources obtained by the placement 

process (extracted from the XDL netlist) and the 

goals of the routing algorithm and analyses the 

possibility of a net to become open-wired or 

short-wired with another net due to a soft error in 

a programmable interconnection point (PIP). So, 
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it estimates the vulnerability of the 

interconnection configuration bits before the 

final routing. This tool is mainly based on 

sensitivity analysis methods previously proposed 

in the literature in the paper [Abdul-Aziz, M.A.; 

Tahoori, M.B., "Soft error reliability aware 

placement and routing for FPGAs," IEEE 

International Test Conference (ITC), Nov. 2010]. 

We output the following:  

a)Open sensitive bits ( manhattan dist * 3 ),  

b)Open sensitive bits ( manhattan dist * q(i)),                     

c)Open sensitive bits (manh dist * q(i) * 1.5),    

d)Short sensitive bits, 

e)Total sensitive bits. Sum of the [resource + 

Short + Open (manhattan distance * 3) ] sensitive 

bits, 

f)Total sensitive bits. Sum of the [resource +   

Short + Open * q(i) ] sensitive bits,  

g) Total sensitive bits. Sum of the [resource +   

Short + (Open q(i) * 1.5) ] sensitive bits. 

void getTypeFreq() Initializes the global variables that hold the 

statistics of the used primitive sites. 

 

SEUAnalysis class private methods Detail 

long getOpenBits_route() Returns the open sensitive bits of a routed 

design. 

long getCLBSensitiveBits() Returns the sensitive bits for the CLB resources 

of the targeting device. 

long getIOSensitiveBits() Returns the sensitive bits for the IOB resources 

of the targeting device. 

long getIOSensitiveBits(PrimitiveSite iobSite, 

Instance iobInstance) 

Overloading getIOSensitiveBits() method. 

Returns the sensitive bits for a specific IOB 

(PrimitiveSite and instance) resource of the 

targeting device. 

int getUsedSlices() Returns the number of used slices. 

int getSLICE_controlSensitiveBits(Instance 

inst) 

Gets an instance (only instances that reside on 

SLICES) and returns the control sensitive bits. 

Attribute find_attribute( Collection<Attribute> 

attributes, String attributeName) 

Finds a specific attribute (by name) from an 

attribute list and returns it. 

long getLUT_used() Calculates the number of the used LUT resources 

in the design. Furthermore it prints to the console 

the: 

a)Number of used LUTs, 

b)Sensitive bits of the design LUTs, 
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c)Number of LUTs with 1 input, 

d)Number of LUTs with 2 inputs, 

e)Number of LUTs with 3 inputs, 

f)Number of LUTs with 4 inputs, 

g)Number of LUTs with 5 inputs, 

h)Number of LUTs with 6 inputs. 

long calculateClock_antennas() Returns the sensitive antenna bits of a routed 

design. 

int calculateUserNet_antennas(String 

userfilePath) 

Calculates only the sensitive antenna bits 

specified from user (nets from the given text file 

path). 

double getTerminals() Returns the summary of all terminals of the tiles 

in the design. 

double[] getOpenBitsEst1_place() Returns a double[] array with the open sensitive 

bits of the placed design. We have implemented 

the first method of the paper "Soft error 

reliability aware placement and routing for 

FPGA" to calculate the open sensitive bits: 

double[0]=Open sensitive bits (manh * 3),  

double[1]=Open sensitive bits (manh * q(i)),  

double[2]=Open sensitive bits (manh * (q(i) * 

1.5)), 

Bbox calcOverLap(Bbox bboxA, Bbox bboxB)  Returns a Bounding Box indicating the overLap 

of two Bounding Boxes in the device. If overlap 

does not exist, the method returns the bounding 

box with its initial values, i.e. xMax, xMin, 

yMax, yMax, terminals. 

Double getShortBitsEst2_place() Returns the short sensitive bits of a placed 

design. We have implemented the second method 

of the paper "Soft error reliability aware 

placement and routing for FPGA" to calculate 

the short sensitive bits. 

MultiKeyMap<Integer,Double> calcProp(Bbox 

bbox) 

Gets a bounding box of a net and returns a Map 

(key = XY cords, Value = probability) with the 

probability of a pip to be used in xy coordinates. 

Terminal cross count is taken into account. 

Offset correction:  

xMin = 0 and xMax = xMax - xMin. 

yMin = 0 and yMax = yMax – yMin.  

void fillDesBboxes() Calculates the Bounding Box for each Net and 

adds them in the Global HashMap<String, 

Bbox> netBboxes map and ArrayList<Bbox> 

netBbList list. 

void loadFile(String ncdName) Loads the XDL design into the class. 

void loadCompexBlocks(boolean debug) Loads the complex blocks of the design in the 

block ArralList. This method is same with 

unipi.placer.FPGA loadCompexBlock method, 

with the one difference. It loads the instances 

containing curry chains.  

Param: debug while true, we output the tiles of 
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the FPGA and their relying instances. 

PrimitiveSite findIOB(int xTile, int yTile, int x, 

int y) 

Returns the correlated IODELAY or ILOGIC or 

OLOGIC PrimitiveSites of an IOB PrimitiveSite 

in order to be packed in one complex block. 

long getRamSensitiveBits() Returns the RAM sensitive bits. This method is 

implemented for Virtex5 and Virtex6 

architectures. 

long getDspSensitiveBits() Returns the DSP sensitive bits. This method is 

implemented for Virtex5 and Virtex6 

architectures. 

 

Nested class wireSite Detail 

wireSite Nested class used to represent a wire 

Inner class wireSite public fields Detail 

String siteName The name of the site at which the wire resides. 

int wire The wire. 

String netName The name of the net at which the wire belongs. 

String wireName The name of the wire. 

Inner class wireSite constructors Detail 

wireSite() Constructor which initializes all member data 

structures. 

wireSite(String name, int wire) Initializes the wireSite class by name and wire. 

wireSite(String name, int wire, String netName) Initializes the wireSite class by name, wire and 

netName. 

wireSite(String name, int wire, String netName, 

String wireName) 

Initializes the wireSite class by name, wire, 

netName and wireName. 

 

EBD_Analysis class 

This class analyzes the essential bits generated from the Xilinx bitgen tool. 

EBD_Analysis class public field  Detail 

Bitstream bitstream The bitstream representation, provided by 

Rapidsmith framework. 

String ebd_fileName The essentials configuration bits path. 

XilinxConfigurationSpecification spec Specifications of the targeting FPGA 

architecture. 

HashMap<Integer, Frame> ebdFrames A map of the FPGA frames. 

long sensitiveConfigurationBits_total The total sensitive configuration bits. 

long sensitiveConfigurationBits The sensitive configuration bits. 

long sensitiveInterconnectionBits The sensitive interconnection bits. 

long sensitiveInterfaceBits The sensitive interface bits. 

ArrayList<column> columnFrames A list with the column frames. 

FPGA fpga The targeting FPGA layout. 

 

EBD_Analysis class constructors Detail 

EBD_analysis(String bitStream_fileName) Constructor which initializes all member data 

structures. 

param[in] String: The full path of the design 

bitstream file. 

 

EBD_Analysis class public methods Detail 

loadBitStream() Parses the bitstream file. The bitstream file 
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should be in debug format.   

loadEBD() Parses the EBD file. The bitstream file should be 

in debug format.   

int get_IOB_columns() Returns the IO block sensitive bits of all frames. 

long get_sensitiveBits()  Gets the total number of sensitive bits. 

get_sensitiveConfigurationBits() Gets the block configuration sensitive bits. 

long get_sensitiveInterconnectionBits() Gets the interconnection sensitive bits. 

int get_IOB_sensitiveInterconnectionBits() Gets the sensitive interconnection bits for the 

IOBs. 

int get_IOB_sensitiveInterfaceBits() Gets the sensitive interface bits for the IOBs. 

int get_IOB_sensitiveBlockConfigurationBits() Gets the sensitive block configuration bits for the 

IOBs. 

int get_CLB_sensitiveInterconnectionBits() Gets the sensitive interconnection bits for the 

CLBs. 

int get_CLB_sensitiveInterfaceBits() Gets the sensitive interface bits for the CLBs 

int get_CLB_sensitiveBlockConfigurationBits() Gets the sensitive block configuration bits for the 

CLBs. 

int get_BRAM_sensitiveInterconnectionBits() Gets the sensitive interconnection bits for the 

BRAMs. 

int get_BRAM_sensitiveInterfaceBits() Gets the sensitive interface bits for the BRAMs. 

int 

get_BRAM_sensitiveBlockConfigurationBits() 

Gets the sensitive block configuration bits for the 

BRAMs. 

int get_DSP_sensitiveInterconnectionBits() Gets the sensitive interconnection bits for the 

DSPs. 

int get_DSP_sensitiveInterfaceBits() Gets the sensitive interface bits for the DSPs. 

int get_DSP_sensitiveBlockConfigurationBits() Gets the sensitive block configuration bits for the 

DSPs. 

int get_CLK_sensitiveInterconnectionBits() Gets the sensitive interconnection bits for the 

CLKs. 

int get_CLK_sensitiveInterfaceBits() Gets the sensitive interface bits for the CLKs 

int get_CLK_sensitiveBlockConfigurationBits() Gets the sensitive block configuration bits for the 

CLKs. 

long get_sensitiveInterfaceBits() Gets the interface sensitive bits. 

getResults() Prints the results. 

 

EBD_Analysis class private methods Detail 

findFramesPerColumn() This function finds and maps the sensitive frames 

for each FPGA device column. The mapping 

is done by finding the start and end frame 

address for each column. This information is 

saved in the ArrayList "columnFrames" 

Byte[] bytesTrim(byte[] bytes) This function removes any padding bytes (0x0D) 

from the input byte array. 

param[in] bytes : The byte array which contains 

the data read in ascii format.  

returns Byte[]: The byte array without the 

padding bytes (0x0D). 

ArrayList<Integer> bytesToWords(Byte[] 

frameBytes) 

This function converts the data of the frame 

which is in ascii format to its binary equivalent 

(words). 

param[in] frameBytes: The bytes of the frame in 
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ascii format. 

returns List<Integer>: The words of the frame in 

binary format. 

List<Byte> asciiBytes_toBinary(Byte[] 

frameBits) 

This function converts the data of the frame 

which is in ascii format to its binary equivalent. 

param[in] frameBytes: The bytes of the frame in 

ascii format. 

Returns List<Byte>: The bytes of the frame in 

binary format. 

 

Nested class columnFramesRange Detail 

columnFramesRange Nested class representing the column frames 

range. 

Inner class columnFramesRange public fields Detail 

int startAddress The start position address of the frame. 

int endAddress The end position address of the frame. 

int frames The number of frames in this start – end frame 

address range. 

Inner class columnFramesRange constructors Detail 

columnFramesRange() Constructor which initializes all member data 

structures with zero. 

 

Inner class column Detail 

Column Nested class representing a frame column. 

Inner class columnpublic fields Detail 

int columnIndex The start index of the frame. 

int sensitiveConfigurationBits The sensitive configuration bits of this column. 

int sensitiveInterconnectionBits The sensitive interconnection bits of this column. 

int sensitiveInterfaceBits The sensitive interface bits of this column. 

columnFramesRange Address details of the frame. 

PrimitiveType columnType The type of sites that reside in  this frame. 

Inner class columnFramesRange constructors Detail 

column(int columnIndex, columnFramesRange 

frameAddressInfo) 

Constructor which initializes all member data 

structures with the given values. 

3.5.4 UserInterface Package 

The userInterface package contains only one class which provides to the user an easy way to place, route, 

generate a bitstream configuration file or perform a soft-error sensitivity analysis at all CAD stages. The 

user is free to run only one desired stage or run the entire flow at once. 

The usage of the console interface has the following arguments: 

Console arguments  Detail 

-b           Generate the Bitstream. 

 -c          Redirect Console to the log file. 

 -e          Export placer performance to excel. 

 -ebd        Perform the ebd analysis. 

 -ep <arg>   Epsilon value. Default value = 0.005 

 -m <arg>    Moves per temperature multiplier. Default 10 

 -oa         Perform the analysis only (not placement). 

 -p <arg>    Path of the design (xdl or ncd file). 
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 -pa         Place Analysis. 

 -pl         Place the design with Sa placer. 

 -r          Route the design. 

 -ra         Route Analysis. 

 -resa       Resource Analysis. 

 -seu        SEU awareness placement (beta). 

 -ucf <arg>  Path of UCF file 

 -xdl2ncd    Convert the placed xdl file to ncd file. 
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4 Experimental results 

A rich set of experiments are carried out to demonstrate all functions of our vulnerability analysis 

framework. The first experimental set has been performed to evaluate the post-mapping analysis method. 

The experiments compare the packing and mapping steps of the VTR and Xilinx tools in order to explore 

their effects to the block sensitive configuration bits. In order to compare the two packers some 

benchmark circuits are used from the VTR flow which have been synthesized for a Virtex-6 device 

(XC6VLX240T-1FFG1156) using the method described in [40]. The same circuits have been also 

implemented using the Xilinx flow. The results of the post-mapping analysis are shown in Table IV and 

Table V. The first rows present the FPGA resource utilization while the last four rows present the 

sensitive configuration bits per programmable resource type and the total. It is interesting to see that both 

packers result to almost the same sensitive bits for all the resources except slices. Xilinx ISE packer 

produces 3.15% more sensitive bits on average for the IOBs and 4.76% less sensitive bits on average for 

the DSP slices compared to VTR packer. Regarding the logic slices, ISE flow generates significantly less 

sensitive configuration bits by a factor of 34.31% on average which is due to the fact that ISE synthesis 

and packing tool produces less slices compared to the VTR synthesis and packing toolsets. An interesting 

point also is the LUT utilizations. From the experimental results it is clearly depicted that Xilinx ISE 

results in more low-utilized LUTs (LUTs with less than 4 inputs) but it generates less high-utilized LUTs 

(LUTs with more than 3 inputs) than the VTR flow. It is obvious that the LUT utilization affects 

substantially the slice block sensitive bits.  

The second experimental set has been used to demonstrate the performance of the implemented 

simulated annealing placement algorithm and to evaluate the post-placement and post-routing analysis. 

The QUIP benchmarks [45] shown in Table II which have been adapted to the design flow of Xilinx ISE 

and synthesized on a Virtex-5 device FPGA (XC5VLX30FF67) are used in these experiments. For the 

above benchmarks, both post-placement and post-routing analysis methods have been executed. Table VI 

and Table VII present the results of the two steps in terms of sensitive interconnection bits (open-

sensitive, short-sensitive and total) considering the SA placer and Xilinx ISE placer respectively. The two 

placers present the same behavior in terms of SEU awareness. Precisely, Xilinx ISE placer produces 

slightly less open-sensitive bits than the SA placer by a percentage of 0.79% and 3.24% less short-

sensitive bits than SA placer for the post-routing analysis. Table VI and Table VII can be also used to 

evaluate the accuracy of the post-placement estimation of interconnection sensitive bits compared to the 

post-routing analysis. The post-placement estimation provides sufficient results: it introduces a small 

overestimation of 10% in case of the open-sensitive which is almost doubled for the short-sensitive bits 

estimation (18.54%). Table III presents the efficiency of the SA placer in comparison with Xilinx ISE 

placer. The SA placer has better performance by a percentage of 5.7% (wire-length-cost) in average, 

while it produced faster designs by a percentage of 5.8%. Finally the power consumption of the SA placer 

designs is 0.7% more than the ISE placer designs in average. Figure 29 depicts the placement of b4 

benchmark (mux_128bit) with SA placer and Xilinx ISE placer respectively. 

The last experimental set has been performed to evaluate the vulnerability analysis method compared 

to the sensitivity report of Xilinx (.ebd file). All benchmarks have been implemented using the SA placer 

and the Xilinx router. Table VIII and Table IX compare the sensitive block configuration bits and 

interconnection configuration bits, respectively, for the two methods. The results are similar for the block 

configuration bits of slices and IOBs. Specifically, the method presents a slight augmentation to the 

number of sensitive block configuration bits for the slices (2.21%) and for the IOBs (7.98%). However, in 

the case of DSP and RAM blocks, there is considerable difference to the number of sensitive bits. This is 

due to the black-box estimation approach used for these blocks which results in an overestimation of the 

sensitive bits. Regarding the sensitive interconnection bits, the results of the post-routing analysis are 

used, which are compared with the sensitivity data from Xilinx report. There are significant differences in 

the results of the two methods. The Xilinx sensitivity analysis results to a significantly larger number of 

sensitive interconnection bits for all categories. In future, fault injection experiments will be performed to 

identify whether the analysis framework underestimates or the Xilinx tool overestimates the vulnerability 

of the designs to soft errors. Figure 30 illustrates the sensitive bits of the mux_128bit circuit in the FPGA 

layout. The circuit has been placed using the SA placer. Figure 30 shows the circuit’s sensitive sites using 

the proposed framework as well as the Xilinx report. Although the developed visualization tool supports 

sensitivity-level coloring of the sensitive sites, for visibility reasons only one color-level has been used. It 
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is clearly observed that both tools produce the same results with slight differences in the switch-matrix 

locations. 

Benchmark 
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1 oc_correlator 91 0 73 2 85 1 0 0 0 

2 oc_des_des3perf 2157 122 120 64 298 1 0 0 0 

3 barrel64 103 0 71 64 136 1 0 0 0 

4 mux_128bit 327 0 11 128 140 1 0 0 0 

5 oc_ata_ocidec3 182 6 40 28 130 1 0 0 0 

6 oc_des_area_opt 88 0 0 0 189 1 0 0 0 

7 fip_risc8 86 4 20 53 113 1 0 0 0 

8 oc_fpu 430 3 69 40 110 2 0 0 2 

9 oc_mem_ctrl 696 3 101 107 267 2 0 0 0 

10 oc_pavr 584 3 1 0 52 1 0 1 0 

11 oc_aquarius 888 5 1 18 35 1 10 0 2 

12 oc_video_comp_sys_jpeg_log 1659 13 17 26 47 1 0 0 32 

Table II - QUIP benchmarks 
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1 3007.29 3600.43 83.5 00:00:01:879 80.965 85.889 379.80 380.04 

2 81764.3 76109.63 107.4 01:53:24:730 248.077 263.09 404.02 400.19 

3 6755.77 6085.93 111.0 00:00:02:933 124.502 122.37 377.64 377.64 

4 7858.46 6747.08 116.5 00:00:12:397 267.953 235.74 384.60 387.95 

5 7817.56 7992.60 97.8 00:00:04:896 250.250 264.48 383.40 383.40 

6 7040.79 6092.68 115.6 00:00:03:833 225.836 166.03 380.76 381.24 

7 4655.01 4050.53 114.9 00:00:02:525 89.952 79.246 380.52 380.52 

8 17310.6 17830.0 97.1 00:00:16:606 24.992 30.511 384.36 384.12 

9 33770.5 29345.42 115.1 00:03:03:227 168.748 136.17 393.24 395.64 

10 27644 28236.39 97.9 00:00:58:335 73.508 68.894 384.11 384.11 

11 49194.3 44550.49 110.4 00:03:25:514 49.145 46.369 391.79 392.75 

12 72257.6 71149 101.6 00:20:06:297 87.237 84.767 400.91 400.67 

Table III - Placement performance: SA placer vs Xilinx ISE placer 
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Benchmark BGM SYN7 SHA BFLY DSCG 

Used SLICEs 6479 12009 378 2552 2454 

Used IOs 289 289 74 257 193 

Used DSPs 22 42 0 8 8 

Used LUTs 15344 31031 1294 6271 6107 

1-input LUTs 141 287 1 23 32 

2-input LUTs 172 392 161 79 74 

3-input LUTs 552 1149 4 183 202 

4-input LUTs 731 1688 98 318 304 

5-input LUTs 3130 5958 576 1241 1220 

6-input LUTs 10618 21557 454 4411 4259 

LUT sensitive bits 796794 1608646 49734 328930 318456 

SLICE sensitive bits 1256103 2448864 77356 510800 489168 

IOB sensitive bits 21230 22126 5508 19408 14944 

DSP sensitive bits 7040 13440 0 2560 2560 

Total sensitive bits 1284373 2484430 82864 532768 506672 

Table IV - Post-mapping analysis(block configuration bits) using the Xilinx ISE flow [46]. 

Benchmark BGM SYN7 SHA BFLY DSCG 

Used SLICEs 7948 18409 555 3151 3059 

Used IOs 289 289 74 257 193 

Used DSPs 22 50 0 8 8 

Used LUTs 28844 66801 2071 11115 10769 

1-input LUTs 6 14 0 4 2 

2-input LUTs 250 655 22 83 95 

3-input LUTs 376 982 33 136 136 

4-input LUTs 5460 13981 521 2368 2326 

5-input LUTs 5849 13377 624 2070 1975 

6-input LUTs 16903 37792 871 6414 6195 

LUT sensitive bits 1360340 3080952 84400 516052 498368 

SLICE sensitive bits 1915016 4363005 118315 724849 690161 

IOB sensitive bits 20642 23040 4932 19276 14054 

DSP sensitive bits 7040 16000 0 2560 2560 

Total sensitive bits 1942698 4402045 123247 746685 706775 

Table V - Post-mapping analysis(block configuration bits) using the VTR [41], [40]. 
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Sa placer 

Post-placement estimation 

Xilinx ISE placer 

Post-placement estimation 

Sa placer sensitive bits  

vs. 

 Xilinx ISE placer sensitive bits 

(%) 

B Open Short Total Open Short Total Open Short Total 

1 8505 8185 16690 6468 4187 10655 131.49 195.49 156.64 

2 166308 526535 692843 174462 570346 744808 95.33 92.32 93.02 

3 14652 34534 49186 14286 23499 37785 102.56 146.96 130.17 

4 14844 6336 21180 14421 4963 19384 102.93 127.66 109.27 

5 18339 31261 49600 16905 21277 38182 108.48 146.92 129.90 

6 16533 18615 35148 17778 16472 34250 93.00 113.01 102.62 

7 7941 8266 16207 8529 8957 17486 93.11 92.29 92.69 

8 38220 129462 167682 36204 110521 146725 105.57 117.14 114.28 

9 57768 155132 212900 63387 151809 215196 91.14 102.19 98.93 

10 62586 370032 432618 60699 376718 437417 103.11 98.23 98.90 

11 92451 702652 795103 96978 786408 883386 95.33 89.35 90.01 

12 94662 641509 736171 96612 655580 752192 97.98 97.85 97.87 

Table VI - Post-placement analysis (interconnection configuration bits): SA placer vs. ISE placer 

 
Sa placer 

Post-routing estimation 

Xilinx ISE placer 

Post-routing estimation 

Sa placer sensitive bits  

vs. 

 Xilinx ISE placer sensitive 

bits (%) 

B Open Short Total Open Short Total Open Short Total 

1 8272 20426 28698 7853 19417 27270 105.34% 105.20% 105.24% 

2 151192 420107 571299 150059 417081 567140 100.76% 100.73% 100.73% 

3 10069 24174 34243 9562 21733 31295 105.30% 111.23% 109.42% 

4 16521 23802 40323 15874 22918 38792 104.08% 103.86% 103.95% 

5 13485 27260 40745 13343 22989 36332 101.06% 118.58% 112.15% 

6 8351 14834 23185 8323 13791 22114 100.34% 107.56% 104.84% 

7 7858 13275 21133 7932 13264 21196 99.07 100.08% 99.70 

8 36189 120672 156859 35778 120814 156592 101.15% 99.88 100.17% 

9 49869 118468 168335 49990 96615 146605 99.76 122.62% 114.82% 

10 53805 219767 273572 53116 219952 273068 101.30% 99.92 100.18% 

11 86625 349154 435779 85858 333627 419485 100.89% 104.65% 103.88% 

12 103959 221027 324986 104194 219849 324043 99.77 100.54% 100.29% 

Table VII - Post-routing analysis (interconnection configuration bits): SA placer vs. ISE placer 
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 Proposed framework Xilinx report 

B SLICEs IOBs BRA

M 

DSPs Total SLICEs IOBs BRA

M 

DSP

s 

Total 

1 19099 1019

4 

0 0 29293 18136 9356 0 0 27492 

2 402329 3069

8 

0 0 433027 404062 28233 0 0 432295 

3 27703 1637

0 

0 0 44073 23540 14551 0 0 38091 

4 38053 1589

4 

0 0 53947 24536 13919 0 0 38455 

5 29933 1339

0 

0 0 43323 33297 12284 0 0 45581 

6 21190 1499

6 

0 0 36186 20756 14440 0 0 35196 

7 17302 1162

6 

0 0 28928 14995 10834 0 0 25829 

8 99201 1316

8 

640 0 113009 105877 11910 302 0 118089 

9 118518 2994

4 

0 0 148462 112997 27062 0 0 140059 

10 132489 4584 0 1280 138353 145362 4383 0 251 149996 

11 199847 2910 640 12800 216197 206708 3037 302 2450 212497 

12 215635 5286 10240 0 231161 391503 4822 4832 0 401157 

Table VIII - Sensitive block configuration bits: Proposed framework vs. Xilinx report 

 Proposed framework Xilinx report 

B SLICEs IOBs BRA

M 

DSPs Total SLICEs IOBs BRA

M 

DSPs Total 

1 27184 1490 24 0 28698 41660 3911 738 16 46325 

2 565295 3965 1138 901 571299 829088 15445 11952 9084 865569 

3 33022 1203 12 6 34243 52157 4410 344 176 57087 

4 38630 1648 7 38 40323 85198 5253 340 874 91665 

5 39155 1502 36 52 40745 69252 4629 776 1150 75807 

6 22212 882 84 7 23185 44130 3611 1295 152 49188 

7 19133 1740 82 178 21133 38066 5166 1123 1975 46330 

8 149518 1706 848 4787 156859 199696 5744 6768 8757 220965 

9 162787 5200 129 219 168335 265612 16436 2082 3212 287342 

10 268977 1247 1600 1748 273572 306162 6654 6789 1076

6 

330371 

11 412378 3227 14782 5392 435779 477918 11858 24679 9628 524083 

12 263751 2417 618 58200 324986 511717 9635 9521 6389

1 

594764 

Table IX - Sensitive interconnection configuration bits: Proposed framework vs. Xilinx report 
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Figure 29 - Placement with SA and Xilinx: Left: SA placer, Right: ISE placer. 

  
Figure 30 - Visualization of the sensitive bits: Left: Proposed framework, Right: Xilinx report. 
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5 Conclusions and Future Work 

The problem statement of this thesis was to create a soft error vulnerability analysis framework for Xilinx 

FPGAs which is able to estimate soft-errors in the following enumerated CAD stages: 

1. Post-mapping analysis of the sensitive block configuration bits. 

2. Post-placement analysis of the sensitive interconnection bits. 

3. Post-routing analysis of the sensitive interconnection bits. 

4. Bitstream analysis: Classification of the configuration sensitive bits is provided, according to 

their configuration type: block configuration bits (CLBs, IOBs, DSPs, etc.) and interconnection 

configuration bits. 

Furthermore, visualizition of the circuit’s sensitive sites exported from Xilinx report and the proposed 

framework is available. 

The results of this research seem to have raised several interesting directions for future work: 

1. The implemented simulated annealing placer algorithm does not support the movement of CLBs 

that contain instances with carry chains. Therefore, carry chain handling could be evaluated on a 

newer version of the SA placer.  

2. The proposed framework could be tested for all Xilinx FPGA families. Currently, it is has only 

been tested on Virtex5 and Virtex6 FPGAs.  

3. The analysis of usage profiling is performed for Virtex-5 and Virtex-6 architectures. More 

Xilinx architectures profiles could be integrated in future. 

4. Fault injection tools could be integrated in the soft-error vulnerability analysis framework. 

5. The SEU aware placer described in [18] was implemented, but due to lack of time it was not 

fully tested. The SEU aware placer algorithm could be optimized and verified in future. 
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