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Abstract

As the features sizes of the FPGA devices are moving aggressively to the nanometer regime, the single-
event upsets (SEUs) are expected to become a major reliability concern for the SRAM-based FPGAs.
Given the limited information provided by the FPGA vendors about the susceptibility of the FPGA
designs to soft errors, the research community requires SEU analysis tools to accommodate the
development and assessment of SEU mitigation approaches. On the other hand, open-source CAD tools,
such as RapidSmith [1] and Torc [2], have been recently proposed that target industrial FPGA
architectures without escaping the boundaries of proprietary issues in contrast with the traditional open-
source FPGA CAD tools. In this thesis, an open-source framework is presented for the soft error
vulnerability analysis of Xilinx FPGA devices. The proposed framework will allow researchers to
evaluate their reliability-aware CAD algorithms and estimate the soft error susceptibility of the designs at
early stages of the implementation flow for the latest Xilinx architectures. Furthermore the well-known
simulated-annealing placement algorithm is implemented in RapidSmith - where a limited random placer
is currently supported - in order to evaluate the proposed post-placement sensitivity analysis method. To
demonstrate the vulnerability analysis framework, a rich set of experiments is carried out. The thesis
compares the soft error awareness of different packing/mapping tools (VTR and Xilinx tools) and
different place tools (simulated annealing and Xilinx placers). The proposed method is evaluated by
correlating its sensitivity analysis results with the Xilinx sensitivity report.

MepiAnyn

KaBog to péyebog tov yapakmpiotikdv tov FPGA kiveitol entBetikd otny meployn TV VOVOUETP®Y, Ta
HEUOVOUEVE, COAApOTO avapévovTal va yivouv peilov avnovyio yo v aéomotio twv SRAM FPGA.
AOY®D TOV TEPLOPICUEVOV TANPOPOPLOV OV TOPEXOVV Ol KaTaokevaotés Twv FPGA ya v eumdbela
tov FPGA kokhopdtov g Topodikd cAiiota, 1 akadnioikn Kowotnta anottel epyoieioc avaivong
tov SEU, dote vo avoartuyBodv teyvikég petpiaong tovg. Amod v GAAn, mtpdoeoto £xovv mpotabdei
gpyarein CAD avorytov Aoywopikov, 6nwg to RapidSmith [1] kot to Torc [2] mov oe avtibeon pe
Khooowd epyareio. CAD avorytov Aoyiopwkov, vmootnpifovv mpaypatikd FPGA ywpis opmg va
TopaPlalovy To TVELUATIKG SUKOLOUOTA TOV KOTOUCKEVAGTAOV. TNV £pyacia avt) Topovclalovpe Eva
TakéTo gpyoreiov avolytov KmAka yio. v oavdAivon g sundbelag tov Xilink FPGA og mopodikd
o@diuato. To mpotevopevo TokéTo epyaieiov Ba emtpéyel otovg epevvntég vo a&loAoyodv tovg SEU
aAyopiBpovg alomiotiog Kot vo EKTIHOVV TV gumdfelo ToV KUKAOUATOV 6€ TopOodIKe GPAAUATO GE
TPOYO, 6TAdW TG VAOTOINGNG TOVG Yo TIG 7o TPOoeoTeG apyltektovikég tng Xilnx. Emiong éyet
avantoydei o simulated-annealing akyopiBpog tomobétnong oto mepPdArov tov Rapidsmith, o6mov
mapeiye pdvo €va TomobenT| TVYOLOG EMAOYNG, MoTe va aglohoynBel n Tpotevopevn pébodog avdivong
g evaicOnoiog Tov KuKAGONATOG HeTd TV Tomobétnomn tov. T'a ) enidein Tov TaKETOL AvAAVONG TNG
gvaioOnociog ToV KuKAOpATOV €00V ektedeotel pia Thovola TAnBdpa tepapdtev. H gpyacio cuykpivet
10 mOGO TPOCEKTIKG etvol dudpopa epyareion packing/mapping (VIR ko epyodeio tng Xilinx) wou
dtdpopor tomoBettéc (simulated annealing kou Xilinx tomoBetntég) ota mapodkd oedipata. Ta
amoteAéopato TG evatcnaciag amd v Tpotevopevn péBodo Exovv agloroyndel, cvoyetifovtag Ta 1e To
OTOTELEGLLOTO OO TNV avaPopd TG evacOnciog amd v Xilinx.
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1 Introduction

1.1 Motivation

Over the last two decades, the research community has made significant efforts trying to find fault
tolerant techniques in order to keep Field Programmable Gate Arrays (FPGAS) operational in high
radiation environments. Such hostile environments can be found in space e.g. avionics in spacecraft,
high-energy physics experiments e.g. CERN and many others. Although FPGA vendors provide high
availability and reliability devices, using them in mission-critical applications [1] (i.e. can cause an
environmental catastrophe or affect a human life) is a big challenge, due to their susceptibility to soft-
errors [2][3]. The designers not only have to develop qualified critical systems, but also have to keep the
design cost low, forcing them to use commercial-off-the-shelf (COTS) FPGAs combined with emerging
failure systems. FPGA vendors have introduced radiation-hardened devices (e.g. antifuse-based) to solve
this problem. However, these devices are much more expensive less technologically developed than
COTS FPGAs. For example an Airbus 380 has more than 700 antifuse-based FPGAs [4] (Actel SX-A
family). The cost of 700 Actel SX-A FPGAs (if we consider that they have used the biggest FPGA in SX-
A family, i.e. A54SX72A) is about 157000 US dollars (2013). If indeed, they used Xilinx COTS FPGAs
with almost equal specifications (Virtex4 xc4vIx15) the cost would be almost the half, i.e. 84000 US
dollars (2013).

Soft-errors have been a meaningful matter of the research community, since spacecraft electronics
were affected from radiation in the early 1975s [5]. Spacecraft and airplane electronic systems have a
variety of analog and digital components sensitive to radiation, making Single Event Upsets (SEUs) a
major concern. SEUs are caused when charged particles (heavy ions and protons) hit a silicon atom
transferring enough energy to produce a failure in the system. The amount of energy and the location of
the strike in the device can cause transient or permanent errors. An SEU can produce transient soft errors
in the combinational logic components, which can possibly be captured from Flip-Flops(FFs). Moreover,
transient soft errors can directly affect the FFs of the FPGA and its hard block resources, such as RAM.
Permanent failures are divided to hard errors or recoverable errors. Hard errors occur when charged
particles bring on a lutch-up producing a short-cut between source and drain in mosfet technology that is
commonly used in FPGA architectures. In case of recoverable errors, the configuration bitstream remains
erroneous until it is downloaded again to the FPGA. These tradeoffs are a major problem in FPGA
technology due to their high reliance on SRAM memory to store the configuration data [6].

Although, many fault tolerant techniques have been developed the last years, high reliability solutions
are still a big challenge for the academic and industry research. FPGA vendors provide high capacity and
performance devices while keeping the power consumption low. In order to develop FPGAs with these
specifications, programmable logic industry uses silicon nanometer technologies and low operating
voltages. However, shrinking of circuit dimensions to nanometer regime or shrinking noise margins [7],
has revealed the susceptibility of the FPGA devices to emerging failure mechanisms raising several
reliability issues [13]. Therefore, given that the feature sizes of the future beyond nanometer technologies
will continue to shrink and the packaging cannot effectively shield the devices against SEUs [8], the
implications caused by soft errors are expected to deteriorate drawing the attention of more researchers
and practitioners from both domains of fault-tolerant computing and FPGA design automation. For the
development and assessment of SEU mitigation methodologies and SEU-aware CAD tools for FPGAsS,
the research community needs the existence of soft error analysis tools able to measure the vulnerability
of the designs and provide useful insights.

Recently, the research community provided open-source CAD tools that support commercial complex
FPGA devices [9][10]. Motivated by this work, this thesis aims to provide a collection of open-source
tools for the vulnerability analysis of Xilinx FPGA devices. The proposed framework will benefit the

upcoming research providing valuable feedback to SEU mitigation approaches about the sensitivity1 of

! Configuration bits are categorized into sensitive and non-sensitive bits depending on the impact of soft errors to the
circuit behavior [16], [47]. When a soft error in a configuration bit affects the circuit operation the bit is classified as
sensitive (or essential according to Xilinx terminology) for the particular implementation, otherwise as non-sensitive. The
actual failure rate of an FPGA design depends on the number of sensitive configuration bits or in other words the
dynamic cross section of the design.
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the FGPA configuration bits or the criticality of the design modules. For example, a TMR methodology
could take advantage of the criticality analysis to reduce the area overhead by applying selectively the
redundancy technique to the design modules [11]. Moreover, being able to estimate the soft error
susceptibility of the design at various stages of the FPGA implementation flow, the proposed framework
could be used for the development of SEU-aware PaR algorithms.

Several approaches have analyzed in the past the vulnerability of SRAM-based FPGAs into soft
errors. These approaches are based either on fault injection experiments [6], [12],[13], [14], [15] or
analytical methods [6],[16], [17], [18] to measure the sensitive configuration bits. The experimental
approaches inject soft errors in the configuration bitstream of the design under test and, hence, they
cannot apply during the FPGA design flow in order to provide an early sensitivity estimation. On the
other hand, most research groups that have proposed analytical methods have developed proprietary
vulnerability analysis tools targeting specific FPGA architectures which cannot be easily reproduced for
another FPGA family. Furthermore, recent approaches have proposed SEU-aware placement and routing
algorithms [8], [18], [19], [20], [21] in order to reduce the dynamic cross section of the FPGA designs.
However, almost all these approaches have been demonstrated on the commonly used, academic VPR
tool targeting virtual FPGA architectures. The proposed framework will enable the evaluation of such
reliability-aware algorithms for off-the-shelf FPGA devices. The soft error vulnerability analysis
framework is based on the recently proposed FPGA CAD platform, RapidSmith [9]. RapidSmith is a set
of tools and APIs written in Java that manipulates a Xilinx human readable file format (XDL) and enables
researchers to develop tools for the packing, placement, and routing of FPGA designs and parse/export
configuration bitstreams. The proposed framework:

» evaluates the vulnerability of FPGA designs to soft errors analyzing the sensitivity of the
configuration bitstreams. It classifies the sensitive bits according to their configuration type: block
configuration bits (CLBs, 10Bs, DSPs, etc.) and interconnection configuration bits.

+ estimates the wvulnerability of FPGA designs to soft errors at early phases of the FPGA
implementation flow. In particular, it supports post-mapping analysis of the sensitive block
configuration bits, post-placement analysis of the sensitive interconnection bits and final (post-
routing) analysis of the total sensitive configuration bits. For the estimation of the sensitive
configuration bits, the following methods are combined: theoretical analysis of the structure of Xilinx
Virtex-5 programmable resources, analytical methods previously proposed in the literature [6], [18]
for the estimation of sensitive interconnection bits and extraction of related information from the

Xilinx sensitivity analysis results .

« visualizes the sensitive configuration bits in the FPGA physical layout taking advantage of
RapidSmith APIs. The sensitivity bitmap of the proposed method is compared with the sensitivity
bitmap of Xilinx analysis.

1.2 Observed soft-errors failures in space missions

Before continuing with the rest of this thesis it is worth to describe some observed failures in spacecraft
electronic systems caused by cosmic radiation [22]. Back in 1989 Galileo mission was launched on a
planetary exploration mission to Jupiter. All its electronic parts were fully tested and were radiation
hardened with system-level redundancy and error detection capabilities. Despite the soft-errors mitigation
techniques, safe holds failures where observed on some analog switches which fortunately did not have
impact on the mission. These failures were believed to be due to SEUs. Another failure was experienced
at the TOPEX/Poseidon mission, launched on August 1992. Proton radiation affected some 4N49
optocouplers of vendor Texas Instruments causing failures on some status signals and the circuits of the
thruster command. On December 4, 1996, Cassini mission was lunched. Instead of a mechanical tape
recorder they used a solid state recorder (SSR) constructed with high density RAM. Despite the single-bit
correction and double-bit correction circuits it had, SSR experienced single-bit errors. On October 24,
1998, Deep Space 1 mission was lunched. A SEU caused failure in a FPGA due to a latch-up, while the
recovery time of the system required 28 minutes which was an unexpected long time. Furthermore, on

z FPGA vendors provide utilities for the sensitivity analysis of the configuration bitstream. The Xilinx tool generates a
map file (.ebd for essential bit description) for the characterization of the essential (sensitive) bits of the configuration
bitstream. However, since it is not feasible to decode the raw bitstream data due to proprietary issues these sensitivity
analysis results cannot provide an in-depth sensitivity analysis of the circuit.
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April 24, 2001, Odyssey mission went into safe mode after 2 weeks in space due to failures in RAM,
caused by a cosmic ray ion.

As FPGAs become more dencer and more powerful, they offer to the designers the integration of
high-availability systems with hard real-time performance into a FPGA, such as avionics in airplanes and
spaceships or medical systems. This raises need of new inventions from the academic and industrial
research community to provide more robust SEU mitigation solutions that meet system reliability goals
[23].

1.3 Thesis Structure

The remainder of this master thesis is organized as follows. In chapter 2 the related work and literature is
collected giving a better understanding in chapter 3, where information about the implemented soft-error
vulnerability framework is provided. In more detail, chapter 3 gives an explanation of the methods used
to evaluate the soft-error estimation tools. Furthermore, a description of the framework packages is
provided. Experimental results are presented in chapter 4, and last come the conclusions of this master
thesis.

Development of a soft error vulnerability analysis framework for FPGA devices 12
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2 Background and literature

This chapter contains the background information about the fundaments of modern FPGA architectures,
the state-of-the-art CAD technology used in nowadays FPGAs and finally the related work section that
presents the mitigating soft-errors techniques for SRAM based FPGAs, proposed from the research
community.

2.2 What is an FPGA

Field is the key word for defying a Field Programmable Gate Array (FPGA). FPGAs are Intergraded
Circuits (ICs) that can be programmed in the field after manufacture. This means that FPGAs vendors
must have some pre-fabricated digital circuity in the chip, enabling it to implement any given digital
function from the user, simply by being appropriately programmed.

As described in [24], FPGAs are semiconductor devices that are based around a matrix of
configurable logic blocks or Cluster of Logic Blocks (CLBs), connected via programmable interconnects
(illustrated in Figure 2). FPGAs can be programmed to desired application or functionality requirements
after manufacturing. This feature distinguishes from Application-specific integrated circuits (ASICs),
which are custom manufactured for specific design tasks. Although One-Time Programmable (OTP)
FPGAs are available, the dominant types are Static Random Access Memory (SRAM) based which can be
re-programmed as the design evolves.

This innovative idea of a FPGA that would reduce the manufacturing time and cost of an IC from
months to hours was introduced back in 1986 [25]. As a result, FPGAs are very popular these days, since
faster design of complex products can be achieved, in contrast with ASICs. Because FPGAs are software
configured, modifying a design is very fast, less risky and can be made in some hours, rather than months
that is required for ASIC prototypes to be manufactured. FPGAs provide lower non-recurring engineering
(NRE) costs, faster time to market and no expensive penalties at the verification phase [26] than ASICs.
FPGAs are suitable for rapid prototype design, specialized digital systems (i.e. reconfigurable designs,
System-On-Chip (SOC) designs) and low-volume IC production. Custom ASIC design is commonly used
for high volume production, while Standard-Cell ASIC design for middle-volume production. Figure 1
illustrates the total cost as a function of IC parts of a design implemented in a FPGA, a Standard-Cell
ASIC and custom ASIC device.
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— ’ —
4 /
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o ~
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Figure 1 - Cost vs. Volume.
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2.3 FPGA Architecture
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Traditionally, an FPGA can be composed of three fundamental elements depicted in Figure 2:

e The Logic Blocks (LBs), named as CLBs in Xilinx terminology. The LBs contain a group of
Block Logic Elements (BLEs) named as Slices in Xilinx terminology, which implement

combinational and sequential logic.
e  The Input-Output Blocks (I10Bs).

e The Programmable Routing, which is a matrix of wires that interconnect the LBs and the 10Bs
via Connection Blocks/Boxes (CBs) and Switch Blocks/Boxes (SBs). More detail is provided in

the programmable routing section.

Commercial FPGAs also include extra memory, multipliers, memory controllers, high speed 10Bs,
Digital signal processing (DSP), Phase Locked Loops (PLLs), clock management, even embedded
processors. These special blocks are referred in literature as hard blocks giving more logic utilization and

speed at a FPGA.

o> i - o
W W
CB LB CB LB CB LB CB
R R W
o> i - s o
W w WE
CB LB CB LB CB LB CB
CE NN NN
o> i o g o

10

10

10

10

Figure 2 — FPGA architecture.

2.3.1 Basic Logic Element (BLE)

The BLE is built from the following components depicted in Figure 4:
e A Look-Up Table (LUT) to implement combinational logic.
e A Flip-Flop (FF) providing sequential behavior.

e A multiplexer for bypassing the FF if only combinational logic is needed.

Figure 3 depicts the LUT which is the well-known truth table from digital design. A K-input LUT is
typically composed from 2¥ SRAM that holds the configuration memory (LUT-mask) and K — 1
multiplexers implemented as a tree to select the bit from SRAM and pass it to the LUT output. To
simplify, we give an example of a LUT (illustrated in Figure 4) which can implement any combinational
function of 4-inputs (A, B, C, D). It has a 4-inputs, 16bit SRAM (2* = 16bit) and 15 x 2:1 multiplexers.
Programming the LUT-MASK with the appropriate bit will assemble the desired function [27].
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Figure 4 - Structure of basic BLE and LB [28].
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2.3.2 Logic Block (LB)

Typically, commercial FPGAs have groups/clusters of BLESs that contain LUTs and FFs. Each LE has
size N, while it consists of N interconnected BLES as shown in Figure 4. Furthermore, a LB has | external
pins that are passed via multiplexers to the BLEs inputs. In addition, the multiplexers provide the
flexibility of interconnecting the BLEs in the same block/cluster. The N output pins of the LB are
connected to the routing resources via the CBs.

2.3.3 Programmable Routing

Figure 5 depicts the routing resources. As high resource utilization and need for high bandwidth is
necessary in FPGA designs, the routing resources occupy the largest area of silicon in a FPGA. The
routing resources are constructed by three fundamental components [29].

COMMECTION BLOCK (CB)

Switch Blocks/Boxes (SBs): SB is a hub that programmable connects horizontal and vertical
metal lines of the routing channels. This is done via Programmable Interconnection Points
(PIPs). Its flexibility depends on the property Fs, which defines the number of connection wiring
segments it can handle.

Connection Blocks/Boxes (CBs): CB is a switch in between the LB and the SB. It is responsible
to connect the input and output pins of the LB with the routing wires of the SB. It has a property
Fc describing the number of wires a LB pin can handle.

Routing channels: Routing channels are horizontal and vertical metal wires that span between
LBs, 10Bs and Hard Blocks. In order to route the design, the appropriate PIPs must be
programmed to interconnect the pins of the LBs, 10Bs and Hard Blocks with the available metal
wires. The amount of wires in a routing channel is referred in literature as size/width and is
represented with the letter W.
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Figure 5 - Routing Resources.
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2.4 FPGA Design Automation

Implementing a circuit in a modern FPGA is a big challenge, requiring millions of configuration bits to be
set on proper state, high or low. Although in 1960s, IC designs were hand-drawn, nowadays the
complexity of FPGA architectures clearly prohibits those design procedures. Indeed, circuits are
described in higher abstraction languages referenced as hardware description languages (e.g. Verilog and
VHDL) and then converted from CAD tools into FPGA configuration bitstreams, which specify the state
of every bit in the FPGA in order to assemble the described circuit. A way to keep the complexity of this
problem low is to break it into some sub-problems. In the following sections a description of the
sequential stages (depicted in Figure 6) that are involved in the procedure of mapping a circuit into a
FPGA is presented.

Hardware description language
(VHDL, Verilog, Schematic)

Synthesis

A 4

Bitstream (FPGA programming file)

Figure 6 - FPGA CAD flow.
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2.4.1 Synthesis

The synthesis procedure is a very complex task. In this stage the synthesis tool performs two steps. First,
it converts the hardware description language into a neltlist of gates and second converts the neltlist of
gates into a netlist of FPGA logic blocks, while trying to optimize the area and performance of the design.
In more detail, the synthesis tool executes the following two sub-stages:

e RTL elaboration. This converts the hardware description language into gates, implementing
datapath operations (such as additions and multiplications) and control logic (such as a set of
finite-state machines or Boolean networks). It must be mentioned that in this sub-stage the
synthesizer recognizes functions that can be handled by hard blocks (e.g. DSP) in the FPGA and
forwards them to the packing and mapping stage. These functions are referenced as black-boxes.

e Technology-independed logic optimization. This optimizes both datapath and control logic,
independed of the targeting FPGA architecture. There is a rich set of optimization techniques,
which are performed in this sub-stage, such as removing redundant logic or sharing resources,
don’t care based optimization and many others.

2.4.2 Packing and Mapping

In this stage the packer packs several LUTs and Flip flops into one LB, respecting the targeting
architectural limitations, such as the maximum number of LUTs and FFs the LB may contain and its
available inputs and outputs. Afterwards, the packed instances of the design are technology mapped into
the available LBs and also the black box functions into the available FPGA hard blocks. The optimization
goals in this stage are to pack each LB to its maximum capacity, therefore maximize the FPGA resource
utilization and also attempt to minimize the inputs and outputs signals of the LB, in order to route
effectively the design in the routing stage.

2.4.3 Placement

As described in [30], placement algorithms determine which logic block within an FPGA should
implement each of the logic blocks required by the circuit. The optimization goals are to place connected
logic blocks close together to minimize the required wiring (wire-length-driven-placement), and
sometimes to place blocks to balance the wiring density across the FPGA (routability-driven-placement)
or to minimize circuit speed (timing-driven placement).

In literature there are four different categories of placement methods for FPFGA CAD tools [31]:
e simulated annealing

e min-cut
e (uadratic
e parallel

This thesis will focus on the well-known simulated annealing (SA) placement algorithm with adaptive
schedule [30][32], as it is implemented it in the Rapidsmith framework, in order to replace the
uncompleted placer package provided by Rapidsmith and evaluate the proposed SEU vulnerability
framework. The main reason this algorithm has been chosen, is that its cost function can be easily
modified from researchers to implement an SEU-aware placement algorithm [8], [18], [20]. SA placers
mimic the natural process of a metal to be easily shaped in high temperatures while local improvement of
the shape can be made as its temperature decreases. A linear congestion cost function is determined to
calculate the quality of the placement. A wire-length cost function C is selected to be used, which is the
summary of all nets costs of a design. The cost of a net is the half perimeter of the bounding box (Figure
7) that encapsulates all the attached logic blocks to the net and is given from the following equation:

o bb,(i)  bb,()
Ncost - q(l) * (cav,x(i)B cav,y(i)B) (1)

where q(i) is a constant value ranging from 1 for a net with less than 3 terminals, to its maximum value
2.73 for more than 50 terminals. The ¢,y and c,y,, are the average horizontal and vertical routing tracks
respectively, trying to minimize the routing congestions of overloaded switch matrixes. The exponent 8
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has default value 1 and allows the relative cost of using narrow and wide routing channels to be adjusted.
When giving a larger value to B parameter, more wiring in narrow channels is penalized. Setting B to zero
reverts the linear congestion cost function to standard bounding box cost function, forcing to a more
shrinked placement. In general the SA algorithm tries to swap random LBs in the FPGA pre-fabricated
circuitry and accepts the swap if the design cost decreases. This would eventually produce a high quality
placement. The SA algorithm executes the following steps:

. An initial placement (without taking in account the design cost) of the netlist logic blocks
(LBs) is performed, assigning all LBs to the available and compatible resources in the
FPGA fabric.

. The initial parameters of the SA algorithm are calculated. These include temperature T that
controls the probability of accepting a random swap, m which is the number of swaps that
will be executed in every temperature and finally Rlimit which determines how close must
be the LBs for swapping. This leads to a procedure where random LBs for swap are
selected from the entire area of the FPGA and as the temperature decreases only close LBs
are selected for swapping.

. A large number of swaps are then made to gradually improve the placement quality. At
high temperatures almost all swaps are accepted and as the temperature drops the
acceptance probability decreases.

. The placement algorithm terminates when the temperature drops under a threshold.

In more details, the algorithm consists of two nested loops as depicted in Figure 8. The inner loop is
executed m times and swaps two random LBs in the Rlimit area at every step. A swap is accepted when

cost C is decreased. However, there is chance to accept the move, even if cost C is increased. This
AC
probability is computed by the equationr < e™T , where AC = Cpew — Coiqg @nd 1 is @ random number

ranging from 0 to 1. This feature gives the ability to escape local minima. The outer loop updates T, m
and the Rlimit parameters. Finally the placement terminates when T < € * € where gis a constant

Nnets,
ranging from 0.005 to 0.05 and N, iS the amount of nets contained in the design.

The proposed SA placer supports the movement of all programmable resources, (e.g. logic slices,
DSP slices, 10Bs, BRAMS) but it is not capable to handle carry chains. Thus, someone should use either
benchmarks without carry chains or the proposed SA placer will not move the tiles that contain instances
with curry chains.

Figure 7 - Bounding Box
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Figure 8 - Adaptive Simulated Annealing
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2.4.4 Routing

In the previous stage the placer tried to choose the correct LB locations to place the instances with the aim
that the router would need less effort to route the design. The router enables the required programmable
interconnection points (PIPs) in order to connect effectively all LB input and output pins described in the
design. Designed to be able to route successfully a design, a CAD flow must have an equal skillful placer
and router. If the routing algorithm has excellent performance while the placement algorithm does not, it
is obvious that the routing will fail and vice versa. Sometimes the placement and routing is performed
simultaneously, as the cost of a design in the placement procedure is inherently weak at addressing both
wirability and timing optimizations [33].

In general the routing architecture is represented as a directed graph. Each pin and wire of the design
becomes a node and each potential connection an edge. The router algorithm has to find and connect all
the nodes in the routing resource graph. There are two main router algorithms in the FPGA CAD
technology. The routability-driven that try to find the shortest path and the time-driven which use more
complex algorithms, giving priority mostly to the critical paths of the design.

2.4.5 Bitstream generation

The bitstream generation is the conversion of a routed design file into a sequence of bits, called bitstream.
The bitstream is uploaded to the FPGA in order to configure every bit state in it. This will eventually
produce the actual hardware.

2.5 The Rapidsmith framework

Rapidsmith is a set of APIs written in Java that read, manipulate and write the Xilinx human readable file
format (XDL), whereas hiding syntactic details from the user. Rapidsmith gives the ability to researchers
to try out new ideas in all fields of FPGA CAD tools on Xilinx FPGAs. A design must be converted first
in the appropriate XLD file format in order to be imported to Rapidsmith. Rapid development of packing,
placement or routing tools and parse/export configuration bitstreams can be achieved taking the
advantage of the available APIs provided by the framework. It is argued that Java is a slow and memory-
hungry programming language, in contrast with native machine languages like C, but no speed or
memory issues where observed, while developing the proposed soft error vulnerability tools. Java is a free
object-oriented programming language with useful libraries for big data structures which makes it very
powerful for developing CAD tools. The researchers can focus at their algorithms implementation, while
time-consuming memory management is taken care from the Java garbage collector, cleaning up the
unused objects without big performance tradeoffs. In order to develop a tool in Rapidsmith someone must
understand the basic syntax of XDL files. Therefore, in the following sections a description of the the
Xilinx XDL file structure will be provided, over some examples.

2.5.1 The XDL file

Xilinx vendor provides the Xilinx Design Language (XDL) to interface and access the features of a
design or a device. XDL has two main sides. One side is the description of the FPGA architecture,
providing all the primitives and routing fabric of the FPGA. The other side is the description of the
design. XDL is a human readable ASCII file, offering a representation of the proprietary Xilinx Netlist
Circuit Description (NCD) file format in every CAD stage (i.e. mapped, placed or routed design). The
user is free to insert or extract any desired information at different CAD stages of the Xilinx design flow.
XDL can describe the following designs:

e A partially or full Mapped design.
e A partially or full Placed design.
e A partially or full Routed design.

Development of a soft error vulnerability analysis framework for FPGA devices 21



Master Thesis

Xilinx Xilinx

Xilinx . .
map par -r par —-p

(place only) (route only)

RapidSmith Tools

Dimitrios Agiakatsikas

Xilinx

Figure 9 - Block diagram of where XDL fits in the CAD flow [9].

2.5.2 XDL Syntax

The XDL is a self a documented file format explaining every statement with an example comment. In
order to understand the XDL syntax we will examine a design with two instances, while it is mapped,

placed and routed.
Design statement

Every XDL file has a design statement which includes the name of the design, the part number of the
FPGA and also a list with some attributes of the CAD tools. Below in Figure 10 we can see an example of
the design statement with its attributes list. We observe that the name of the design is “lut” and the

targeting FPGA is the xc5vIx110tff1136-1.

# XDL NCD CONVERSION MODE $Revision: 1.01$
# time: Sun Jul 14 22:26:07 2013

# The syntax for the design statement is:

# design <design_name> <part> <ncd version>;
#or

# design <design_name> <device> <package> <speed> <ncd_version>

#

design "lut" xc5vIx110tff1136-1 v3.2 ,
cfg"

_DESIGN_PROP:P3_PLACE_OPTIONS:EFFORT_LEVEL:high

_DESIGN_PROP::P3_PLACED:

_DESIGN_PROP::P3_PLACE_OPTIONS:

_DESIGN_PROP::PK_NGMTIMESTAMP:1373612597";

Figure 10 - XDL design statement example
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Instance statement

An instance is represented in Rapidsmith with the design.Instance class. It always begins with the
keyword “inst”. An instance can be placed or unplaced in the FPGA layout. The configurations of the
instance are provided by a string that starts with the keyword “cfg”. It must be mentioned that the name of
the instance must be unique in a design in order to avoid name conflicts in Rapidsmith. Figure 11 depicts
an example with two instances in a mapped design. The name of the first instance is out0_OBUF. The
second instance is out0. The two instances are not placed, while in the next CAD stage these instances
have to be placed in a compatible Primitive site of SLICEM and I10B type, respectively.

inst "out0_OBUF" "SLICEM",unplaced ,

cfg " ASLUT::#OFF ASRAMMODE::#OFF A6LUT:LUT_UO:#LUT:06=(A1*(~A2*(~A3*(~A4*(~A5*~AB)))))
_BEL_PROP::A6LUT:BEL:A6LUT AGRAMMODE::#OFF ACYO0::#OFF ADI1MUX::#OFF
AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0
B5LUT::#OFF BSRAMMODE::#OFF B6LUT::#OFF BERAMMODE::#OFF BCY0::#OFF
BDI1MUX::#OFF BFF::#OFF BFFINIT::#OFF BFFMUX::#OFF BFFSR::#OFF BOUTMUX::#OFF
BUSED::#OFF C5LUT::#OFF CSRAMMODE::#OFF C6LUT::#OFF C6RAMMODE::#OFF
CCYO::#OFF CDI1MUX::#OFF CEUSED::#OFF CFF::#OFF CFFINIT::#OFF CFFMUX::#OFF
CFFSR::#OFF CLKINV::#OFF COUTMUX::#OFF COUTUSED::#OFF CUSED::#OFF
D5LUT::#OFF D5SRAMMODE::#OFF D6LUT::#OFF D6RAMMODE::#OFF DCYO0::#OFF
DFF::#OFF DFFINIT::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF DUSED::#OFF
PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF SYNC_ATTR::#OFF WA7USED::#OFF
WABUSED::#OFF WEMUX::#OFF "

inst "out0" "IOB",unplaced ,

cfg " DIFFI_INUSED::#OFF DIFF_TERM::#OFF IMUX::#OFF OUSED::0 PADOUTUSED::#OFF

PULLTYPE::#OFF TUSED::#OFF OUTBUF:out0_OBUF: PAD:out0:

DRIVE::12 OSTANDARD::LVCMOS33 SLEW::SLOW "
Figure 11 - Unplaced instances in the XDL file.

We continue with the same instances being placed. We observe that the instance out0_OBUF is placed in
the primitive site SLICE_XOYO0, while the slice is located in the primitive tile CLBLM_X1YO. Furthermore,
the instance outO is placed in the primitive site LIOB_XO0Y1 which is located in the primitive tile AP21.

inst "out0_OBUF" "SLICEM",placed CLBLM_X1Y0 SLICE_XO0YO |,

cfg " ASLUT::#OFF ASRAMMODE::#OFF ABLUT:LUT_UO#LUT:06=(A1*(~A2*(~A3*(~A4*(~A5*~AB)))))
_BEL_PROP::A6LUT:BEL:A6LUT AGRAMMODE::#OFF ACY0::#OFF ADI1MUX::#OFF

AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0
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BSLUT::#OFF B5RAMMODE::#OFF B6LUT::#OFF B6RAMMODE::#OFF BCY0::#OFF

BDI1MUX::#OFF BFF::#OFF BFFINIT::#OFF BFFMUX::#OFF BFFSR::#OFF BOUTMUX::#OFF

BUSED::#OFF C5LUT::#OFF C5RAMMODE::#OFF C6LUT::#OFF C6RAMMODE::#OFF

CCYO0::#OFF CDIMMUX::#OFF CEUSED::#OFF CFF::#OFF CFFINIT::#OFF CFFMUX::#OFF

CFFSR::#OFF CLKINV::#OFF COUTMUX::#OFF COUTUSED::#OFF CUSED::#OFF

DSLUT::#OFF D5RAMMODE::#OFF D6LUT::#OFF D6RAMMODE::#OFF DCY0::#OFF

DFF::#OFF DFFINIT::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF DUSED::#OFF

PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF SYNC_ATTR::#OFF WA7USED::#OFF

WABUSED::#OFF WEMUX::#OFF "

inst "out0" "IOB",placed LIOB_X0Y1 AP21 ,

cfg " DIFFI_INUSED::#OFF DIFF_TERM::#OFF IMUX::#OFF OUSED::0 PADOUTUSED::#OFF

PULLTYPE::#OFF TUSED::#OFF OUTBUF:out0_OBUF: PAD:outO:

DRIVE::12 OSTANDARD::LVCMOS33 SLEW:SLOW"

Figure 12 -Placed instances in the XDL file.

Net statement

Moreover, in Figure 14 the above instances have been routed. The router tries to connect the outpins
(sources) and the inpins (sinks) of the design primitive sites which are described with the net statement.
The net statement is represented in Rapidsmith with the design.Net class. Nets have 3 different types:
VCC, GND and WIRE. The keyword WIRE is the default type and is not required to be present in the
XDL file. Nets are described with two components: The pins and the PIPs. The pips are only available
when the design has been routed. As an example, Figure 13 depicts an unrouted net. Pins define the
source and one or more sinks within the net. A pin is identified by the name of the instance it resides in
and also with its internal name within the instance. Pips are represented with the design.PIP class in
Rapidsmith and are used to connect the sources and sinks of the design using the prefabricated wires
located in the matrixes. A PIP is uniquely described with the name of the tile that it resides followed with
the internal coordinates that indicate the location of the PIP in the tile. Furthermore, a PIP has two wires
with a connection between them. Figure 13 describes the unrouted net, while Figure 14 describes the
same net, while it is routed. In the unrouted net example we can clearly see that the signal from output pin
of instance ‘out0_OBUF’ must be connected to the input pin of instance ‘out0’. In the routed net example,
PIPS are added to the XDL file to describe the connection of the sources and the sinks of the two
instances. Almost all PIPS are unidirectional and are described with the symbol (“->”). In some cases
someone can find some bidirectional PIPS (“-=") used with long lines, which route the global nets of the
design. However, Rapidsmith does not use this description, avoiding problems that can be caused by the
XDL conversion.

net "out0_OBUF",

outpin "out0_OBUF" A ,

inpin "out0" O,

Figure 13 - Unrouted nets in the XDL file.
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net "out0_OBUF" ,

outpin "out0_OBUF" A,

inpin "out0" O,

pip CLBLM_X1YO M_A -> SITE_LOGIC_OUTS12,

pip INT_X0YO WN2END_S0 -> NW2BEG2 ,

pip INT_X0Y1 NW2MID2 -> IMUX_B41 ,

pip INT_X1Y0 LOGIC_OUTS12 -> WN2BEGO ,

pip I01_X0Y1 IOI_IMUX_B41 -> [O_O11,

pip  IO_X0Y1 10011  ->  IO_O_PINWIRE1 # _ROUTETHROUGH:D1:0Q
"XDL_DUMMY_IOl_X0Y1_OLOGIC_X0Y2" D1 -> 0Q

pip I0I_X0Y1 IOl_O_PINWIRE1 -> [0_O1 ,

Figure 14 - Routed nets in the XDL file.

2.5.3 XDLRC Files

XDLRC report files are generated by the Xilinx XDL command line tool, i.e. xdl —report —pips —
all_conns <partName>, describing the architecture of the corresponding FPGA device. The size of the
generated files varies from some megabytes to some gigabytes for recent devices. Although there are only
few different types of tiles in a Xilinx FPGA, the Xilinx resource descriptions files are gigantic and
cannot be easily manipulated. The reason is that the same attributes for similar tiles is repeated in the
XDLRC files. However, Rapidsmith uses a custom form of serialization and compression libraries to
compress these files. For example the XDLRC report file of a Virtex 7 is compressed to 5965KB form an
initial size of 73.6GB.

In order to describe the XDLRC report files, the general architecture description of a Xilinx FPGA.
Xilinx is recalled. FPGAs consist of an array of tiles. The most frequent tile found in a Xilinx FPGA is
the Configurable Logic Block (CLB) and the interconnection blocks (connection matrix and switch
matrix). The CLB consists of two slices containing the look-up-tables and the flip-flops implementing
combinational or sequential logic. Every CLB has two interconnection tiles on its left side. The first
interconnection tile is called connection matrix and the second switch matrix. The switch matrix is a tile
with PIPS that connects the horizontal and vertical wires of the routing channels. The connection matrix
is a tile which is responsible to connect the input and output pins of the slices (contained in the CLBS)
with the routing lines of the switch matrix. Figure 15 depicts a CLB with its interconnections tiles.
Besides CLBs and interconnection tiles Xilinx provides and other tile types, such as Random Access
Memory (RAM) blocks, Phase-locked loops (PLLs), digital signal processors (DSPs), even high
performance embedded processors, providing high performance and capacitance to the FPGA. For
example Xilinx vendor provides the new Zyng-7000 family (2013), which embeds a state-of-the-art ARM
Cortex A9 micro-processor core in it, enabling designers to evaluate high performance systems-on-chip
(SoC), while keeping the power consumption low.
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Figure 15 - Xilinx general architecture

In the next section the corresponding descriptions of tiles, primitive sites, wires and PIPS within the
XDLRC report files is provided.

Tiles

Tiles are represented in Rapidsmith with the device.Tile class. A tile starts with the keyword “tile”
followed by the X, Y coordinates that indicate the location of the tile in the FPGA layout. Furthermore, it
contains the name of the tile and the number of the primitive sites that are hosted in it. The tile ends with
a “tile summary”, summarizing the name and type of the tile. The declaration finishes with some
numbered statistics. Figure 16 depicts a tile which resides on the X = 1, Y = 14 coordinates of the FPGA
fabric layout. It has a unique name CLB_X6Y63, while its type is CLB. Finally the tile carries 4 primitive
sites (CLB 4).

(tile 1 14 CLB_X6Y63 CLB 4

(tile_summary CLB_X6Y63 CLB 122 403 148)
Figure 16 - XDLRC tile declaration
Primitive sites

Primitive sites are represented in Rapidsmith in the device.PrimitiveSite class. Furthermore, a primitive
type enumeration is available in Rapidsmith. Only instances (design.Instance class) compatible to the
primitive site type can be placed in it. Also a list with pinwires describing the name and direction of the
pins contained in the site is provided in the XDLRC description file. In Figure 17 we depict an example
of a primitive site declaration. From the attribute SLICE_X9Y127 we can notice that the site type is
SLICEL. Any instance compatible to this type can reside on SLICE_X9Y127. Finally, the description ends
with a list containing the pins of the site, which are the BX, BY, CE input pins and the XMUX out pin
with their corresponding internal tile names.

(primitive_site SLICE_X9Y127 SLICEL internal 27

(pinwire BX input BX_PINWIRE3)

(pinwire BY input BY_PINWIRE3)

(pinwire CE input CE_PINWIRE3)

(pinwire XMUX output XMUX_PINWIRE3)
Figure 17 - XDLRC primitive site declaration
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Wire

A list of wires is declared in a tile that describes the routing resources which are used to connect the
specific tile with other tiles. For example in Figure 18 the wire E2BEGO is connecting the tile with 3
interconnection tiles (INT_X8Y63, INT_X9Y63, INT_X9Y62) and two CLBs (CLB_X7Y63,
CLB_X8Y63). The connections are denoted with the keyword ‘conn’ and are described with the tile name
and the wire name used for the connection. Connections which are located in the connection matrix are
not programmable (fixed), in contrast with connections in the switch matrixes that use PIPS for
programmable connection. Wire enumeration is provided by the device.WireEnumerator class. The
enumeration is represented with integers, giving significant compression to the XDLRC description file.
Another technique evaluated in the Rapidsmith, in order to reuse wire data structures is the use of relative
tile offsets.

(wire E2BEGO 5

(conn CLB_X7Y63 CLB_E2BEGO0)

(conn INT_X8Y63 E2MIDO)

(conn CLB_X8Y63 CLB_E2MIDO)

(conn INT_X9Y63 E2ENDO)

(conn INT_X9Y62 E2END_S0)

Figure 18 - XDLRC wire declaration

PIP

As mentioned above, a PIP is responsible to connect two wires in a switch matrix. Figure 19 outlines a
PIP declaration, which describes that the wire ‘BEST_LOGIC_OUTSO0’ will be connected with the wire
‘BYP_INT BS5’, if the PIP is set high (“turned on”) in the switch matrix INT X7Y63.
(pip INT_X7Y63 BEST_LOGIC_OUTSO0 -> BYP_INT_B5)

Figure 19 - XDLRC PIP declaration

Primitive Definitions

At the end of the XDLRC report file there is a collection of primitive definitions for the targeting Xilinx
FPGA part number, which are used for reference and are not very frequent used from Rapidsmith, as
some necessary information is not provided from Xilinx vendor. Father information for the XDL file
format can be found in [9][34].

2.6 Related Work

Many previous approaches have analyzed the vulnerability of the configuration memory of SRAM-based
FPGAs to soft errors and investigated their effects in the behavior of various applications. These
approaches are based either on fault injection experiments [35], [12], [13], [14], [15] or analytical
methods [6], [16], [17], [18].

The fault injection process is performed using either accelerated radiation testing [6], [12], [15] or
fault injection tools [13], [14], [15]. In radiation-based approaches, the device under test is exposed to a
controlled flux of radiation, emitted either by proton accelerators [12] or radioactive sources like proton
beam [15] to slowly introduce upsets in the memory cells of the device. To reduce the high cost needed
for the experimental setup of the radiation tests, fault injection approaches [13], [14], [15] emulate the
effects of SEUs in the FPGA’s configuration memory as bit-flips in the memory cells. The fault injection
approaches can be used to analyze the susceptibility of the final configuration bitstream and thus they
cannot apply during the FPGA design flow in order to provide an early estimation. To avoid the time-
consuming fault simulations, several analytical approaches have been proposed [6], [16], [17], [18].

In [16] and [17] Asadi et al. present an analytical soft error rate estimation methodology which is
based on the error propagation probability of the SEUs from the error sites to system outputs. In [18] the
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authors propose methods for the estimation of the sensitive configuration bits after the placement process,
which are adopted by our post-placement analysis method.

In [12] Johnson et al. have performed fault injection experiments on a Xilinx Virtex 1000 FPGA in
order to compare the performance of simulation and accelerated radiation based tests. The simulator was
built on the SLAACI-V PCI FPGA board. The board had tree Virtex 1000 FPGAs (PEO, PE1 and PE2).
PE1 was used to emulate the effects of SEUs by changing the contains of the configurations memory
throw partial reconfiguration, PE1 had the golden bitstream and the last PE2 FPGA was used to capture
the output results of PE1 and PE2, which were operating identically under normal circumstances. To
validate the simulation, acceleration test was used to slowly introduce upsets in the PE1 with proton
beam. The output errors were captured with the same way in the simulation test, i.e. comparing the output
of the PE1 and PE2 with the PEO FPGA. The simulator predicted 97% of the output errors observed
during the radiation tests.

Furthermore, in [6] Bellato et al. proposed an analytical method to investigate the effects of SEUs in
the SRAM configuration memory of a Xilinx Virtex XCV300 FPGA and also introduced radiation fault
injection experiments to validate the correctness of their results. In order to analyze the effects of SEUs
on the FPGA resources, the authors first decoded the stored configuration memory in the device by
continuously observing the generated bitstream outputs of all possible configuration modes of a single
given resource. They accomplished to decode the 192 bits of the CLB resources and find out how they are
affected from SEUSs. A bit flip in a LUT could modify an implemented function, defected muxes could
cause new exit paths from the CLB and last the initialization of the CLB could change the behavior of its
internal components. The researchers categorized the possible interconnection soft-errors scenarios, by
inserting or deleting nets in an initial design and afterwards observing the differences in the generated
bitstreams. These scenarios are as follows:

e Open bit scenario: In order to emulate this scenario, they deleted a net that was connecting two
pins in the CLB. The PIP which was connecting the two pins was set to open state producing an
open-bit error.

e  Short bit or bridge scenario: In order to emulate this scenario, they replaced an existing net with
a new one, activating another PIP which connected an unknown logic value to the CLB.

e Input Antenna scenario: They inserted a new net starting from an unused input pin to a used
output. The new input pin could influence the behavior of the CLB especially if it was connected
at a high frequency output pin.

e Output Antenna scenario: They inserted a new net starting from a used input pin to an unused
output. The new input pin did not influence the behavior of the CLB because the output pin was
not used.

e Conflict scenario: A new net connected two used input and output pins, producing a conflict,
since the unknown output values of the input pin were fed from the output pin.

e None scenario: They added a net in order to enable a PIP which connected two unused pins. This
did not affect the functioning of the CLB.

Due to this analysis, they were able to understand the consequences of a soft error in the configuration
memory and the programmable resources. However, the preliminary analysis has been done for a Virtex
device and cannot be easily reproduced for other FPGA architectures. Recent approaches have proposed
SEU-aware mapping, placement and routing algorithms [8],[18], [19], [20], [21] in order to reduce the
vulnerability of the FPGA designs. In [8] and the [36] placement and routing algorithms of VPR tool are
modified in order to reduce the susceptibility of the FPGA circuits to SEUs. In [19] the authors present a
reliability-aware place and route algorithm to mitigate the effects of SEUs to TMR-based circuits. In [20]
a modified version of the VPR algorithms is proposed to reduce the bridging faults caused by SEUs in the
configuration memory. In [21] the proposed SEU-aware placement and routing algorithms incorporate
both application level and physical level factors to reduce the soft error rate. Most of the above
approaches have been demonstrated on the well-established academic VPR tool targeting only virtual
FPGA architectures. The proposed framework will enable the evaluation of such reliability-aware
algorithms for industrial FPGA devices.
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3 Methodology

The methodology chapter will provide to the reader the description of the proposed soft-error
vulnerability analysis framework, a deep analysis of the methods which are used to estimate the sensitive
bits in placed and routed designs and finally a briefly analysis of the framework code structure that is
implemented, as the proposed open-source framework (documented in Java-docs) and a technical report
will be soon available on the internet.

3.1 Soft-error vulnerability analysis framework

The research community has intensively addressed the last years the problem of bridging the academic
CAD tools with commercial CAD tools and therefore be able to apply them to real industrial FPGAs. For
example, the authors in [37] connected an academic synthesis and verification tool (ABC) with the
Xilinx’s ISE CAD flow and compared it with the Xilinx Synthesis Technology (XST) tool. In [38], the
JBits interface [39] was combined with the open-source VPR tool [32] to generate configuration
bitstreams for Xilinx Virtex architectures (placed and routed by VPR) for the needs of a fault tolerant
methodology. In more detail, the authors described the architecture of the Xilinx Virtex FPGAs and
modified the source of the VPR tool in order to make it capable to place and route a design on a Virtex
(XCV100, XCV300) FPGA. Finally, an interface was implemented to connect the Jbits interface for
Virtex with the output of the VPR tool and therefore generate the bitstream configuration file. Recently,
the authors in [40] developed an extension of the academic Verilog-To-Routing (VTR) [41] flow to
synthesize, optimize and technology map a netlist with ODIN Il [42] and ABC tools on a Virtex-6 Xilinx
FPGA, pack and place it with the VPR tool and subsequently route and generate the bitstream with the
Xilinx CAD flow. The drawback of these approaches is the extra effort needed to develop netlist models
and interfaces to support new FPGA architectures, e.g. only a specific Virtex-6 device is supported in
[40].

Motivated by the above approaches and the need of research community for FPGA reliability
analysis tools, an open-source soft error vulnerability analysis framework based on RapidSmith [9] was
developed, that is capable to target industrial FPGA architectures. RapidSmith is a set of open-source
tools and APIs written in Java language that manipulate the Xilinx human readable XDL files, allowing
researchers to try out new ideas in various fields of FPGA CAD domain. In order to be imported to
RapidSmith, any design netlist must be first converted to the compatible XDL file format. Note that an
XDL netlist can be easily exported in almost all implementation stages using Xilinx utilities. The
advantage of RapidSmith compared to the traditional academic FPGA CAD flows is its ability to target
the latest Xilinx FPGA architectures. This was the main reason that of using RapidSmith to build the
vulnerability analysis tool. Figure 20 depicts the main functions supported by the proposed soft error
vulnerability analysis framework. The sensitivity analysis of an FPGA design to soft errors can be
performed at all stages of the FPGA design flow, while all different types of configuration bits, e.g. block
configuration bits (CLBs, 10Bs, DSPs, etc.) and interconnection configuration bits are considered. The
user is free to run the entire flow and measure the dynamic cross section of the final FPGA design or run
individual tools at earlier stages of the flow to pre-estimate the soft-error vulnerability of the design.

The functions supported by the framework are the following:

e Post-mapping analysis of the block configuration bits: It extracts the FPGA resource
utilization data (e.g. number of utilized slices, DSPs, I0Bs, BRAMs, LUT inputs, slice
functional mode, 1/0 direction and attributes, etc.) from the XLD netlist produced by the
packing/mapping step and analyses the sensitivity of the block configurations bits based on
a precompiled resource usage profile (described in an xml file).

e Post-placement analysis of the interconnection configuration bits: It takes into
consideration the actual sites of the used resources obtained by the placement process
(extracted from the XDL netlist) and the goals of the routing algorithm and analyses the
possibility of a net to become open-wired or short-wired with another net due to a soft error
in a programmable interconnection point (PIP). So, it estimates the vulnerability of the
interconnection configuration bits before the final routing. This tool is mainly based on
sensitivity analysis methods previously proposed in the literature [6], [18].
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e Post-routing analysis of the interconnection configuration bits: It provides a more accurate
analysis since it relies on the final routed circuit. It considers all possible defects that can be
caused by a soft error in a programmable interconnection point, i.e. open faults, bridging
faults and antenna faults. The final analysis results are written in a text file (.rsba stands for
routing sensitive bit analysis) for further processing.

e Analysis of the Xilinx report for essential configuration bits: Xilinx supports the generation
of an essential (sensitive) bitmap along with the generation of the configuration bitstream
(using flag —g EssentialBits:Yes in the bitgen command). The tool analyses the Xilinx
report and parses the sensitive bitmap (.ebd file) and the bitstream (.bit file) using
RapidSmith packages. After that, it classifies the sensitive bits as reported by Xilinx into
block, interface and interconnection configuration bits and allocates them to configuration
frames. This sensitivity bitmap analysis could facilitate scrubbing-based SEU mitigation
approaches to prioritize the testing of most critical configuration frames of the FPGA
device in order to reduce the mean repair time [43]. The results are written in a text file
(.xsba stands for Xilinx sensitive bit analysis) for further processing.

e Visualization of soft-error vulnerable areas: A Graphic tool’ built as extension of the
Rapidsmith Device.Explorer class reads the results from the two previous analysis steps
(.rsha and .xsba files) and illustrates the vulnerable areas of the FPGA layout. This allows
the user to visualize the vulnerability analysis results of the proposed approach and
compare them with the sensitivity report of Xilinx.

FPGA CAD FPGA CAD N
] Xilinx bitgen
tools tools -g EssentialBits:yes
Mapper Router g K

e | P S e

Rapidsmith Platform

y SOFT - ERROR

PMreport PP report PR report W ircuit.xsbal |Xilinx report; VULTERABILITY
ANALYSIS FRAMEWORK

Figure 20 - Soft error vulnerability analysis framework.

Since the analysis tools require only the XDL description of the circuit under test, the framework
can interact with any FPGA CAD tool (packer, mapper, placer, router) provided that the XDL circuit
description is available. Also, given that RapidSmith can manipulate the XDL description of any FPGA
device the proposed framework can support all existing Xilinx FPGA architectures. Currently, the tools
have been tested for Virtex-5 and Virtex-6 families supporting all the available devices. The only
restriction is that the analysis of Xilinx report (.ebd file) for Virtex-6 is not feasible due to undocumented
internal frame structure from Xilinx. The .xml file provided to the post— mapping analysis tool includes
the results of the usage profiling4 of the programmable resources for a specific FPGA architecture.
According to this profile, each primitive resource has been mapped with its theoretical configuration bits
based on its possible usage mode. The well-known Simulated Annealing (SA) placement algorithm is also
implemented, described in [30] in order to replace the uncompleted placer package provided by
RapidSmith framework and to evaluate the proposed analysis methods. The main reason, this algorithm

3
The graphic tool entirely implemented by Mr. Aitzan Sari.

4

The analysis and implementation of usage profiling was entirely evaluated by Mr. Aitzan Sari. He has performed the
profiling of Virtex-5 and Virtex-6 architectures and he plans to integrate the profiles of more Xilinx architectures in the
future.
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was selected, is that its cost function can be easily modified from researchers to implement an SEU-aware
placement algorithm [8], [18], [20].

3.2 Estimation of sensitive configuration bits

In this section a description of the methods used to estimate the sensitive configuration bits is provided.
Both programmable logic resources and routing resources are considered in the analysis since both
categories contribute significantly to the total amount of sensitive configuration bits as shown by the
experimental results. The analysis distinguishes the sensitive bits to interconnection and block
configuration bits while the sensitive interconnection bits are being further classified to open, short and
antenna sensitive bits.

3.2.1 Sensitive Block Configuration Bits

The estimation of sensitive block configuration bits can be applied as early as the mapping process on the
FPGA design flow. The block configuration bits are classified into CLB, OB, BRAM and DSP resource
configuration bits estimation while two estimation methods are proposed: a black-box method and a
structural analysis method. The former method depends only on the post-mapping resource utilization
data while the latter uses a structural sensitivity analysis of the programmable resources to improve the
estimation accuracy.

The black-box estimation approach [43] assumes that all configuration bits of a used programmable
resource are sensitive. According to this pessimistic assumption, the number of sensitive bits per
programmable resource can be extracted from the documented structure of configuration bitstream. The
sensitive bits of programmable blocks R are calculated by dividing the configuration bits of a column for
block R ColumnBitsg to the number of blocks in the column ColumnBlocksy and multiplying with
the number of blocks Ny used in the design.

ColumnBlocksg NR (2)

For example, in the Virtex-5 family a CLB column needs 11 configuration frames (although it is
documented that a CLB column requires 10 configuration frames, a careful CLB utilization and bitstream
examination reveals that the actual number of frames is 11) and with 1280 bits per frame (excluding the
ECC word since it is considered as non-sensitive) there are 14080 configuration bits which are uniformly
distributed across the column. A CLB column in the Virtex-5 family consists of 20 CLBs and each CLB
contains two slices. Applying Equation 2, gives 704 configuration bits per CLB or 352 configuration bits
per slice. The sensitive configuration bits for all programmable resources are calculated similarly. Table |
summarizes the results for the primary block resources of Virtex-5 architecture. The figure in parenthesis
in the second column of Table | denotes the number of configuration frames per column, i.e. 30
configuration frames (28 block plus 2 interface frames) per IOB column, 4 configuration frames (2 block
plus 2 interface frames) per BRAM column and 2 interface configuration frames per DSP column.

Block (R) = ColumnBitsg ColumnBlocksg = Sensitive bits

ColumnBitsg

Sensitive bits (R) =

CLB 14080 (11) 20 704
10B 35840 (30) 40 896
BRAM 5120 (4) 4 1280
DSP 2560 (2) 8 320

Table | - Black-box estimation of sensitive bits per block.

3.2.2 Sensitive Interconnection Configuration Bits

The fault modeling and the vulnerability analysis of the FPGA routing resources have been studied
extensively in the past [6], [13], [14], [18]. Here, the fault modeling of routing resources proposed by
several previous approaches are adopted, according to which the routing faults due to soft errors in the
programmable interconnection points can be open, short or antenna. So, an interconnection configuration
bit is termed as open-sensitive when a soft error causes an open wire, as short-sensitive when it causes the
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bridging of two distinct nets, and finally as antenna-sensitive when it results to a hanging wire connected
to a net.

The estimation method is based on the simple interconnection block model depicted in Figure 21
which describes adequately the interconnection blocks of Virtex-5 and Virtex-6 FPGA architectures. The
interconnection block consists of a switch-matrix and an interface block. The interface block is used to
connect the terminals (inputs/outputs) of a resource block (CLBs, 10Bs, etc.) to the switch matrix which
in turn provides access to the global interconnection network.

Consider the nets connected to the interconnection block of Figure 21: two nets are routed through
the switch matrix, namely NET A and NET B which use the wires N1W4 and E4S4, respectively and the
connections made for these wires are realized with a single PIP (Programmable Interconnection Point) for
each net. As shown in the example, NET B is connected to the configurable block through the interface
block. These PIPs are open-sensitive PIPs since a soft error will result in disconnecting the starting wire
from the end wire of the switch matrix. A soft error, for example, in the SRAM cell of PIP_N1W4 will
disconnect the N1 wire of NET A from the W4 wire.

Figure 21 depicts also a net-bridging scenario where two nets are shorted as a consequence of soft
error in PIP_E4W4 which connects wires E4 and W4. Since these wires are used by nets A and B,
respectively, a short connection is formed between these two nets. In the case of antenna-sensitive bit, a
soft error causes a wire used by a net to be connected to an unused wire of the switch matrix. For
example, PIP_S4W6 is considered as antenna-sensitive bit, since an SEU will cause wire S4 to be
connected to W6 producing a wire acting as antenna on NET B.

Configuration block

: switchmatrix
g N1 N2 N3 N4 NS / Open-sensitive bits
Configuration block
PIP:N,S’EZ - interface
wi N I Lo E1
_ ': NET A Input terminals
PIP_N1w4 E2 PIP_IN1E2 IN1
i L1
E3 . )
i 0 | Configuration
______ E4 OouUT1 Block
______________ LT
------- ES ; ‘
- I
PIP_OUT1E4 Output terminals
NET B E6
Antenna-
sensitive bits

s1| /s2| s3| sa V s5

— — — — Possible connection

Implemented connection

Short-sensitive bits

Figure 21 - Sensitive bits of an interconnection block.

Although in most cases an antenna will not lead to erroneous output, it will degrade the performance of a
circuit, especially when it occurs in high-frequency nets such as a clock net. Finally, Figure 5 shows a
non-sensitive PIP (PIP_N5E2) where a soft error will not affect the circuit operation since the bridging
wires are not used. The information required by the above analysis (e.g. which PIPs are in use, which
wires can be connected through PIPs, etc.) is extracted from the XDL model of the circuit.

As described in the related work section, the framework provides two roadmaps for the analysis of
the sensitive interconnection bits: the post-placement and the post-routing analysis. The post-placement
analysis provides to the designer a vulnerability estimation early in the design flow while it can also drive
a reliability aware placement algorithm [18], [20], [8]. On the other hand, the post-routing analysis
provides a more precise calculation of the sensitive configuration bits.
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3.3 Post-placement analysis

The proposed framework has adopted the method introduced in [18] to calculate the open-sensitive and
short-sensitive bits of an FPGA design. The open-sensitive bits for a single net are calculated using the
Manhattan distance applied on its Bounding Box (BB) assuming XminYmin aNd XiaxYmax P€ING the
coordinates of the BB. Equation 3 is used to calculate the number of open-sensitive bits. The post-
placement method adopts the q [44] factor used also in the simulated annealing placement algorithm to
characterize the pin-count of the particular net.

Sens. bits (open) = (lxmax—xminl + |Ymax—Ymin| + 1) *q (3)

The method for the estimation of short-sensitive bits proposed in [18] is based on the usage
probability of switch matrices within the BB of a net. To find the short-sensitive bits between two nets
NET1 and NET2 the method just uses the product of their usage probabilities over the overlap area
(Equation 4). A simple example is shown in Figure 22 where two nets have been considered to illustrate
the estimation process.

Sens. bits (ShoTt)= Yy Gjingyerap, ., P L)) *pN (i) 4)

where pN(i,j) is the probability of net N routing through switch matrix (i,j). For more details the reader
can refer to [18].

P(i.j)
(1.1) ‘ I s ‘] Overlap area
AT of N1-N2
NET1
L — NET2
® .

Figure 22 - Short sensitive bits of two nets.

3.4 Post-routing analysis

Although post-placement analysis provides a useful tool to estimate sensitive bits at an early phase of the
design flow it lacks accuracy, overestimating the susceptibility of routing resources to soft errors. A more
accurate calculation can be done analyzing the final routed circuit through its XDL netlist. The
calculation of the open-sensitive bits is almost straightforward process since it requires a simple
exploration of the nets and an aggregation of the used PIPs. The PIPs-counting process considers all PIPs
belonging to switch-matrices and interconnection interface blocks.

In order to calculate the short sensitive bits, the post-routing analysis algorithm checks the wires used
in the design and for each wire it identifys its possible connections. The possible connections for a given
wire (i.e. connections supported by the switch matrix) are extracted using the appropriate APIs of the
RapidSmith framework. Remember that a short circuit between two nets is possible when there is a
potential, but unused connection of one net that, if it is activated due to an error in the corresponding PIP,
the net will be connected to a wire used by the second net. Note that the calculation is carried out
considering the PIPs of the switch-matrix and not the PIPs of the interface blocks, since the latter use
point-to-point connections and the wires connected to each PIP does not provide an alternative routing
path. This means that a short circuit cannot be formed among the wires of the interface block.

To illustrate the post-routing analysis, assume the simple example of the switch-matrix shown in
Figure 23. There are four wires used to route the two nets, namely N1, W4, E4 and S4. By examining each

Development of a soft error vulnerability analysis framework for FPGA devices 33



Master Thesis Dimitrios Agiakatsikas

wire, it can be observed that there is a possible connection of W4 with E4, S4 with W6 and E4 with W4.
Only connections W4-E4 and E4-W4 can form a bridge between NET A and NET B. The last factor of the
post-routing analysis is the antenna sensitive bits. An antenna sensitive bit, as previously mentioned,
produces a wire that acts as a radiation medium to a used net which could reduce the performance of a
circuit or even lead to circuit malfunction when occurs in critical nets, e.g. high-frequency nets, long-wire
nets, etc. The antenna sensitive bits are calculated by finding the alternative connections of the used wires
in the switch matrix which do not produce a short circuit. The pseudo-code of Figure 23 describes the
calculation of short and antenna sensitive interconnection bits. Note that since the connections are bi-
directional and each connection is considered twice in the loop (i.e. for both end points of the
connection), the final number of short sensitive bits is divided by two.The total sensitive configuration
bits for an FPGA design can be calculated summing-up the block configuration bits and the
interconnection configuration bits using either the post-placement analysis or the post-routing analysis.

short =0

antenna = 0
V SwitchMatrix
Wysea = {wires used in the SwitchMatrix}
VN € Wused
Woaiternative = Lalternative connections of N}
short += [Waiternative N Wuseal
antenna+= |Waternative = Wuseal
end
end
short /=2

Figure 23 - Pseudo-code for the calculation of short & antenna-sensitive bits

3.5 Soft error vulnerability analysis framework packages

This section describes the structure of the proposed soft-error vulnerability analysis framework. Several
packages are provided for placing a design with the well-known simulated annealing algorithm, routing it
and finally generating the bitstream configuration files (calling tools provided by Xilinx vendor). At each
CAD stage, i.e. after mapping, placement, routing a design or generating the bitstream, the user can
analyze the vulnerability of the design to soft-errors. A hierarchy of packages within our framework can
be seen in Figure 24. The framework consists from the placer package, utilities package, userlnterface
package and finally the analysis package. In the following sections a description of all classes and
methods which are available in the framework will be provided.

Unipi
Package

Placer Utilities SRl Analysis
Package Package [SiEEs Package
9 9 Package 9

Figure 24 - Unipi packages

Overview

Soft-error vulnerability framework is organized into several packages. All packages are prefixed with
“unipi” (University of Piraeus):
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Package Name Description

userInterface

A command prompt user interface providing to the end-user an easy way
to access out proposed soft-error vulnerability tools.

Placer

Provides the well-known simulated annealing placement algorithm in order
to replace the uncompleted placer package provided by Rapidsmith
framework.

Utilities

Provides classes for performing mathematical functions needed from the
unipi.placer package and the unipi.analysis package, utilities such as to
load designs, save designs, route designs, generate bitstreams and
exporting results to excel files.

Analysis

Provides classes to estimate the vulnerability of FPGA designs to soft-
errors. In particular, it supports post-mapping analysis of the sensitive
block configuration bits, post-placement analysis of the sensitive
interconnection bits and post-routing analysis of the total sensitive
configuration bits. Furthermore it provides a class for analysis of the
Xilinx report for essential (sensitive) configuration bits. At last it provides
a class to visualize the vulnerability analysis results of our and Xilinx
sensitivity analysis approaches.

Figure 25 - Provided packages from the framework

3.5.1 Placer Package

A hierarchy of the classes within the placer package can be seen in Figure 26.

Placer

Package

Placer
Class

Complex Nets
BN Blocks ACA Bounding
Class Class
Class Boxes Class

Figure 26 - Hierarchy of the classes within the placer package

The Placer class represents the simulated annealing placement algorithm. It reads a XDL file, unplaces all
the instances of the design and continues with a simulated annealing placement. It can handle a Xilinx
User Constraints File (UCF) indicating the 10 pins that must be locked to specific locations and does not
move them during the placement phase. It supports the placement of all programmable resources, but it is
not capable to handle carry chains. Thus, you must provide designs without carry chains. If the design has
carry chains, the CLBs containing curry chains will not be moved. The Placer class encapsulates

following classes:

Block class

Represents a primitive site and the instance that resides in it. When an instance of the design is placed in
this primitive site, the primitive site (location, type) is initialized with the properties of the instance.

Block class private field | Detail

PrimitiveSite site

The primitive site of the block.

Instance instance

The Instance that is placed in this block primitive
site.

Block()

Block class constructors

| Detail
Constructor which initializes all member data
structures. Sets site and instance to null
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Block(PrimitiveSite site)

Creates a new Block and populates it with the
given PrimitiveSite.

Block(PrimitiveSite site, Instance inst)

Creates a new Block and populates it with the
given PrimitiveSite and Instance

Block class public methods
clone()

Detail
Creates a copy of the object, with the same class
and with all the fields having the same values.

addInstance(Instance instance)

Adds a new instance to the block.

Instance getInstance()

Returns the instance of the block.

removelnstance()

Sets the instance within the block to null.

setSlice_inst(Instance slice_inst)

Creates a new instance and initializes its
primitiveSite.

PrimitiveSite getSite()

Returns the PrimitiveSite of the block.

HashSet<Net> getNetL.ist()

Returns a list with nets attached on the blocks
instance.

ComplexBlock class

Represents a FPGA tile. A complex block houses primitive sites. Placement occurs by assigning an
instance to a specific primitive site. The instances have been grouped in a complex block in order to keep

the packing of the design immutable.

ComplexBlock class private field ‘ Detail

ArrayList<Block> blocks

The list of blocks in the complexBlock. A block
contains a primitive site and an instance if
available.

TileType tileType

XDL Tile Type (INT,CLB,...)

int x The horizontal coordinates of the tile in the
FPGA layout.

inty The vertical coordinates of the tile in the FPGA
layout.

boolean used

A boolean indicating if the complexBlock (tile)
is used or not.

ComplexBlock()

clone()

ComplexBlock class constructors | Detail

Constructor which initializes all member data
structures. tileType is set to null.

ComplexBlock class public methods \ Detail

Creates a copy of the object, with the same class
and with all the fields having the same values.

swap(ComplexBlock cb)

Replaces this complexBlock with the given
complexBlock cb.

place(ArrayList<Block> blocks)

Places a list of blocks within the complexBlock.

add(Block block)

'Adds a block in the complexBlock.

add(PrimitiveSite site, Instance inst)

Creates a new block, initializes it with the given
PrimitiveSite and Instance. Finally, it adds it in
the complexBlock.

HashSet<Net> getNets()

Returns a hashest<Net> list with the nets
attached to this complexBlock.

ArrayList<Block> getBlocks()

Returns the blocks contained in this
complexBlock.

TileType getTileType()

Returns the tile type of this complexBlock.
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Represents a bounding box of a net. It has xmax, xmin, ymax, ymin dimensions. Its cost is the half
perimeter of the bounding box that encapsulates all the attached logic blocks to the net.

NetBB class private field ‘ Detail

int xMax The maximum horizontal (X) coordinate of the
attached logic block to the net.

int xXMin The minimum horizontal (X) coordinate of the
attached logic block to the net.

int yMax The maximum vertical (Y) coordinate of the
attached logic block to the net.

int yMin The minimum vertical (Y) coordinate of the
attached logic block to the net.

double cost The half perimeter of the bounding box that
encapsulates all the attached logic blocks to the
net.

int terminals The number of terminals attached on the net.

NetBB class constructors
NetBB()

DI E]
Constructor which initializes all
structures.

member data

NetBB (int xMax, int xXMin, int yMax, int yMin)

Constructor which initializes all member data

structures with the given values.

NetBB (int xMax, int xMin, int yMax, int yMin,
int terminals, String netName)

Constructor which initializes all member data

structures with the given values.

NetBB(NetBB netbb)

Constructor which initializes all member data
structures with the data structures values of the
given netbb.

NetBB class public methods | Detail

getxMax()

Returns the maximum horizontal (X) coordinate
of the attached logic block to the net.

setxMax(int xMax)

Sets the maximum (X) coordinate location of the
attached logic block to the net.

getxMin()

Returns the minimum horizontal (X) coordinate
of the attached logic block to the net.

setxMin(int xMin)

Sets the minimum horizontal (X) coordinate of
the attached logic block to the net.

int getyMax()

Returns the maximum vertical (Y) coordinate of
the attached logic block to the net.

setyMax(int yMax)

Sets the maximum vertical (Y) coordinate of the
attached logic block to the net.

int getyMin()

Returns the minimum vertical (Y) coordinate of
the attached logic block to the net.

setyMin(int yMin)

Sets the minimum vertical (Y) coordinate of the
attached logic block to the net.

double getCost()

Returns the cost of the bounding box which is the
half perimeter of the bounding box that
encapsulates all the attached logic blocks to the
net.

setCost(double cost)

Sets the cost of the bounding box which is the
half perimeter of the bounding box that
encapsulates all the attached logic blocks to the
net.

String getNetName()

Gets the name of the net.
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int getTerminals()

Gets the number of terminals attached on the net.

setTerminals(int terminals)

Sets the number of terminals attached on the net.

Fpga Class

Holds information about the targeting FPGA layout and the instances of the design. It also contains a list
with the bounding boxes of each net in the design and the design cost. Every tile of the targeting FPGA is
loaded with the placed instances that rely in them. This class contains methods to swap the instances of
two random tiles and automatically updates the design cost. Furthermore, this class provides methods to
restore the design to its last state, i.e. before swapping two tiles. Finally, rich statistics about the numbers
of slices, tiles, 10s, tiles with carry chains and resource utilization are provided by the class.

Fpga class public field | Detail

ArrayList<ComplexBlock> blocks

An ArrayList with the complex blocks of the
design. In other words the tiles of the design and
their relying instances.

HashMap<String,NetBB> netsBB

A map containing the name of each net in the
design with its bounding box.

boolean ucf

A boolean indicating if a UCF file is provided in
order to be taken into account in the placement
phase.

ArrayList< String> ucfList

Fpga class constructors

Fpga()

An ArrayList containing the tiles that must not
be moved in the placement phase.
Detail

This constructor gets the design that must be

placed. Afterwards it loads the complex blocks
of the design and calculates the bounding boxes
of every net.

Fpga class public methods \
swap TwoRandomComplexBlocks(boolean
debug)

Detail
Swaps the instances of two random tiles and
automatically updates the current cost of the
design. If debug flag is set true, the locations of
the instances before and after swapping are
printed.

fallBack()

Restores the design to its last state, i.e. before
swapping the last two random tiles.

int getUsedlOs()

A list with the used 1/0 blocks of the design.

int getUsedCLBs() The number of used CLBs in the design.
HashMap<PrimitiveType, Integer> | A list with the used Primitive Types.
getTypeFreq()

hasCarry(Instance inst)

A flag designating if the given instance has a
carry chain.

int getCarryClbs()

Returns the number of CLBs that have instances
with carry chains.

int getUsedSlices()

Returns the number of used slices.

loadCompexBlocks(boolean debug)

Loads the complex blocks of the design in the
block ArralList, except the tiles that contain
instances with curry chains. If debug flag is true,
the tiles of the targeting FPGA and their relying
instances are printed.

set_cost(double designCost)

Sets the cost of the design.

double get_cost()

Returns the cost of the design.

double calculateCost()

Calculates and returns the cost of the design from
scratch. More specific, it updates the cost of each
net and returns the summary cost of all nets cost,
i.e. the design cost.
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calculate_nets_cost()

Updates the cost of each net.

static Design getDes()

Returns the design.

static void setDes(Design des)

Sets the design.

3.5.2 Utilities package

A hierarchy of the classes within the utilities package can be seen in Figure 27 below. This class contains
useful methods to manipulate XDL files, can call external tools like Xilinx PAR and bitgen, provides
mathematical functions and finally can produce excel worksheets.

Utilities
Package
Maths Utilities WriteExcel
Class Class Class

Figure 27 - Hierarchy of the classes within the utilities package.

Maths class

Maths class contains static methods for performing mathematical functions used in the placer package

and the analysis package.

Maths class field | Detail

static FactCache factCache

A static cache for saving calculated factorial
numbers.

protected static Vector<Double> table

A vector table used from the factCache.

static final double[] cross_count

An lookup table providing the q(i) factors used to
compensate the wire length model in the linear
congestion cost function of the simulated
annealing based placement .

Math class public static methods
static synchronized double factorial(int x)

Detail

Returns the factorial of int x, using Biglntegers
cached in a Vector. This method uses arbitrary
precision integers, so it does not have an upper-
bound on the values it can compute. It uses a
Vector object to cache computed values instead
of a fixed-size array. A Vector is like an array,
but can grow to any size. The factorial() method
is declared "synchronized" so that it can be safely
used in multi-threaded programs. Look up
java.math.Biginteger and java.util.Vector while
studying this method.

static Double calcPnm(int n, int m)

This method is used for finding combinations in
probability theory. It uses Double numbers in the
factorial calculation procedure p(n,m).

static double calcPnmBiglnt(int n, int m)

This method is used for finding combinations in
probability theory. It uses double numbers in the
factorial calculation procedure p(n,m).

static double calcPijmn(int i, int j, int m, int n,
int bboxTerminal)

Calculates the usage probability of the switch
matrices that will be used is the routing phase of

Development of a soft error vulnerability analysis framework for FPGA devices 39



Master Thesis Dimitrios Agiakatsikas

a design. This method is called from the
unipi.analysis package for accurately estimation
of the short bits. It tries to calculate first the
factorials with double numbers and if the results
are out of range, it re-calculates the factorial with
Biglntegers. This technique in combination with
cashing speedups the calculations.

static int gcd(int a, int b) Calculates the Greatest Common Divisor
between two integers.
static double getCrossCount(int terminals) Returns the q(i) factor. Values are ranging from

1.0 to 2.7933 depending on nets terminals.

static double get std dev(int n, double | This method calculates the standard deviation of
sum_x_squared, double av_x) the given values. It is called from the placer
package in order to calculate the initial
temperature of the simulated annealing schedule.

Utilities class

The Utilities class provides static methods to load XDL designs, convert Xilinx XDL files to Xilinx NCD
files and vice versa, to route and generate the configuration bitstream of the targeting FPGA device and to
execute external command line programs within the framework. It also provides extra methods to
generate reports of the targeting FPGA, time conversions and finally provides logging capabilities to the
framework.

Utilities class public methods Detail

String milliseconds2hms(long millis) Gets milliseconds and returns a string with the
time in hh:mm:ss:ms format. This method throws
java.text.ParseException.

Design loadDesign(String xdlIFile) Creates a new design and loads the XDL design.
printDesignReport(Design design) Reports family PartName and the available
columns and rows of the targeting device.
routeDesign(String ncdPlaced, String | Gets the path of a NCD placed design, calls the
ncdOutRouted) Xilinx PAR tool to route it and afterwards saves

it to the specified path. It also calls Xilinx
reportgen, trce and xpwr Xilinx tools in order to
perform timing and power analysis of the routed
design.

generateBitstream(String routedNCD) Calls the Xilinx bitgen tool to create the bistream
and the essential (sensitive) bitmap of a routed
NCD design.

String convertXdI2Ncd(String myXdIFileName) | Converts a file XDL file to NCD file by the same
name but with an .ncd extension.

String convertNcd2Xdl(String myNcdFileName) | Converts a NCD file to XDL file by the same
name but with an .xdl extension.
redirectConsole(String fileName, PrintStream | If redirect flag is enabled, the output screen
logFile, boolean redirect) console is redirected to the given filename path.

WriteExcel class

This class is used for the creation of an excel file in order to export the performance of the simulated
annealing placement and the results of the soft-errors vulnerability analysis tools in it.

WriteExcel class private fields | Detail

WritableCellFormat timesBold10 Bold times new roman fonts.
WritableCellFormat times10 Times new roman fonts.

File file The file to create the excel file.
WorkbookSettings whSettings Settings of the excel workbook.
WritableWorkbook workbook Writable excel workbook.
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String pathname We save the excel file to this path.

CellView cv This is a bean which client applications may use
to get/set various properties for a row or column
on a spreadsheet.

WriteExcell class constructors | Detail

WriteExcell() Constructor which initializes all member data
structures. Creates a new CellView object and a
new WorkbookSettings object.

WriteExcell class public methods | Detail

setPathName(String pathName) Sets the path of the excel file.

createExcel() Creates a new excel. You must first set the global
variable pathname.

initialize() Initializes the excel object with the workbook
settings.

addCaption(int column, int row, String s) Adds a string to the given column and row of the
worksheet.

addInt(int column, int row, int integer) Adds an integer number to the given column and
row of the worksheet.

addDouble(int column, int row, double d) Adds a double number to the given column and
row of the worksheet.

addLong(int column, int row, long I) Adds a long number to the given column and row
of the worksheet.

addLabel(int column, int row, String s) Adds a bold string to the given column and row
of the worksheet.

setBold(boolean timesBold) Sets the strings or the numbers fonts to bold.

saveExcel() Saves the excel workbook.

3.5.3 Analysis package
A hierarchy of the classes within the analysis package can be seen in Figure 28 below. In this package
the following classes are provided to:

e Estimate the sensitive block configuration bits of mapped designs.

e Estimate the sensitive interconnection configuration bits of placed or routed designs.

e Analyze the report of Xilinx essential configuration bits.

Analysis
Package
SEU Net EBD
Analysis Bounding Box Analysis
Class Class Class

Figure 28 - Hierarchy of the classes within the analysis package

SEUAnalysis class

This class estimates the vulnerability of FPGA designs to soft errors at all phases of the FPGA
implementation flow. In particular, it supports post-mapping analysis of the sensitive block configuration
bits, post-placement analysis of the sensitive interconnection bits and post-routing analysis of the total
sensitive configuration bits. Finally, it analyzes the report of Xilinx essential configuration bits and
classifies the sensitive bits according to their configuration type: block configuration bits (CLBs, 10Bs,
DSPs, etc.) and interconnection configuration bits.
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SEUAnalysis class field Detail

Design design

The design to be analyzed.

HashMap<String, Bbox> netBboxes

A map containing the name of each net in the design
with its bounding box.

ArrayList<Bbox> netBbL.ist

A list with the Bonding box of each net in the design.

Maths maths = new Maths();

An instance of Math class in order to use it in the
post-placement analysis phase.

Integer[][] fpga;

A two-dimensional array representing the switch
matrices of the targeting FPGA device. This field is
used when we find the overlap between two
Bounding Boxes.

long resourceBits

A variable to store the total resource configuration
sensitive bits.

long clbSensitiveBits

A variable to store the total CLB configuration
sensitive bits.

long ramSensitiveBits

A variable to store the total RAM configuration
sensitive bits.

long ioSensitiveBits;

A variable to store the total 10B configuration
sensitive bits.

long dspSensitiveBits;

A variable to store the total DSP configuration
sensitive bits.

int sliceBlocks;

A variable indicating the number of used SLICES in
the design.

int ioBlocks

A variable indicating the number of used 10 tiles in
the design.

int bramBlocks

A variable indicating the number of used BRAM tiles
in the design.

int dspBlocks

A variable indicating the number of used DSP tiles in
the design.

String path

The path of the design.

String sbaFilePath

The path for writing the .rsha file (stands for routing
sensitive bits analysis).

String xmlPath

The path of the XML file (precompiled resource
usage profile).

ArrayList<ComplexBlock> blocks

An ArrayList of the complex blocks of the design. In
other words the tiles of the design and their relying
instances.

int sliceControlBitsTotal

The number of sensitive bits (total) for control bits of
the slices.

long sensitiveBits_open

The number of open sensitive bits (total) of the
design analysis.

long sensitiveBits_short

The number of short sensitive bits (total) of the
design analysis.

int iobSensitivelnterface_open

The number of open interface sensitive bits for the 10
blocks.

int clbSensitivelnterface_open

The number of open interface sensitive bits for the
CLB blocks.

int bramSensitivelnterface_open

The number of open interface sensitive bits for the
BRAM blocks.

int dspSensitivelnterface_open

The number of open interface sensitive bits for the
DSP blocks.

int clkSensitivelnterface_open

The number of open interface sensitive bits for the
CLK blocks.

int sliceControlBitsTotal

The number of sensitive bits (total) for control bits of
the slices.

Development of a soft error vulnerability analysis framework for FPGA devices 42




Master Thesis

Dimitrios Agiakatsikas

long sensitiveBits_short

The number of short sensitive bits (total) of the
design analysis.

int iobSensitivelnterconnectionBits_short

The number of short interconnection sensitive bits for
the 10 blocks.

int clbSensitivelnterconnectionBits_short

The number of short interconnection sensitive bits for
the CLB blocks.

int bramSensitivelnterconnectionBits_short

The number of short interconnection sensitive bits for
the BRAM blocks.

int dspSensitivelnterconnectionBits_short

The number of short interconnection sensitive bits for
the DSP blocks.

int clkSensitivelnterconnectionBits_short

The number of short interconnection sensitive bits for
the CLK blocks.

enum ColumnType {CLB, 10, BRAM, DSP,
CLK, UNKNOWN}

Enumeration for the types of the column that we
currently can handle

SEUAnalysis class constructors | Detail

SEUAnNalysis()

Constructor which initializes all member data
structures.

xmlPath)

SEUAnalysis(String ncdIn, String path, String | Constructor which initializes all member data

structures and performs the  soft-error
vulnerability analysis of the resource block
configuration bits.

void printResources()

SEUAnalysis class public methods Detail

It prints the results of the resource block

configuration bits analysis. More specifically it
prints the sensitive bits of the:

a)Clbs,
b)Ram,
c)DSP,

d)Total resource block configuration sensitive
bits

Furthermore, the number of used:
a) SLICE blocks,

b) 10 blocks,

¢) BRAM blocks,

d) DSP blocks.

void routeAnalysis()

Post-routing analysis. It provides a more accurate
analysis since it relies on the final routed circuit.
It considers all possible defects that can be
caused by a soft error in a programmable
interconnection point, i.e. open faults, bridging
faults and antenna faults. The analysis results are
written in a text file (.rsba stands for routing
sensitive bit analysis) for further processing.
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Final, this method outputs the routing Analysis
results:

a)Open sensitive bits,

b)Short sensitive bits,

c)Sum of Short and Open sensitive bits,
d)Antennas sensitive bits,

e)Sum of Short, Open and Antenna sensitive bits,
f)Total sensitive bits (without antennas),

g)Total sensitive bits (with antennas)

Furthermore it outputs the discrimination of the
interconnection sensitive bits to:

a)CLB interconnection sensitive bits,
b)10 interconnection sensitive bits,
¢)DSP interconnection sensitive bits,
d)BRAM interconnection sensitive bits,

e)CLK interconnection sensitive bits,

ColumnType
getColumTileType(HashMap<String,
PrimitiveSite> primitiveSites, int x)

This mehtod returns a column type.

param primitiveSites: The sites of the FPGA
device

param  X: The x-position of the block.

return  ColumnType: The column type of the
block located in the x position of the FPGA
layout. Returns UNKNOWN in case the column
type cannot be found.

long getAllShort()

Returns the short sensitive bits of a routed
design. (included the antennas sensitive bits)

long getShortBits_route()

Returns the short sensitive bits of a routed design
(does not include the antenna sensitive bits).

void placementAnalysis()

Post-placement method analyzes the
interconnection configuration bits of a placed
design: It takes into consideration the actual sites
of the used resources obtained by the placement
process (extracted from the XDL netlist) and the
goals of the routing algorithm and analyses the
possibility of a net to become open-wired or
short-wired with another net due to a soft error in
a programmable interconnection point (PIP). So,
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it estimates the wvulnerability of the
interconnection configuration bits before the
final routing. This tool is mainly based on
sensitivity analysis methods previously proposed
in the literature in the paper [Abdul-Aziz, M.A;
Tahoori, M.B., "Soft error reliability aware
placement and routing for FPGAs," IEEE
International Test Conference (ITC), Nov. 2010].
We output the following:

a)Open sensitive bits ( manhattan dist * 3 ),
b)Open sensitive bits ( manhattan dist * q(i)),
¢)Open sensitive bits (manh dist * q(i) * 1.5),
d)Short sensitive bits,

e)Total sensitive bits. Sum of the [resource +
Short + Open (manhattan distance * 3) ] sensitive
bits,

f)Total sensitive bits. Sum of the [resource +
Short + Open * q(i) ] sensitive bits,

g) Total sensitive bits. Sum of the [resource +
Short + (Open q(i) * 1.5) ] sensitive bits.

void getTypeFreq()

Initializes the global variables that hold the
statistics of the used primitive sites.

SEUAnalysis class private methods ‘ Detail

long getOpenBits_route()

Returns the open sensitive bits of a routed
design.

long getCLBSensitiveBits()

Returns the sensitive bits for the CLB resources
of the targeting device.

long getlOSensitiveBits()

Returns the sensitive bits for the 10B resources
of the targeting device.

long getlOSensitiveBits(PrimitiveSite
Instance ioblInstance)

iobSite,

Overloading  getlOSensitiveBits()  method.
Returns the sensitive bits for a specific 10B
(PrimitiveSite and instance) resource of the
targeting device.

int getUsedSlices()

Returns the number of used slices.

int getSLICE_controlSensitiveBits(Instance
inst)

Gets an instance (only instances that reside on
SLICES) and returns the control sensitive bits.

Attribute find_attribute( Collection<Attribute>
attributes, String attributeName)

Finds a specific attribute (by name) from an
attribute list and returns it.

long getLUT _used()

Calculates the number of the used LUT resources
in the design. Furthermore it prints to the console
the:

a)Number of used LUTS,
b)Sensitive bits of the design LUTSs,
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c)Number of LUTs with 1 input,

d)Number of LUTs with 2 inputs,
e)Number of LUTs with 3 inputs,
f)Number of LUTSs with 4 inputs,
g)Number of LUTs with 5 inputs,
h)Number of LUTSs with 6 inputs.

long calculateClock _antennas()

Returns the sensitive antenna bits of a routed
design.

int calculateUserNet_antennas(String
userfilePath)

Calculates only the sensitive antenna bits
specified from user (nets from the given text file
path).

double getTerminals()

Returns the summary of all terminals of the tiles
in the design.

double[] getOpenBitsEstl_place()

Returns a double[] array with the open sensitive
bits of the placed design. We have implemented
the first method of the paper "Soft error
reliability aware placement and routing for
FPGA" to calculate the open sensitive bits:

double[0]=Open sensitive bits (manh * 3),
double[1]=Open sensitive bits (manh * q(i)),

double[2]=Open sensitive bits (manh * (q(i) *
1.5)),

Bbox calcOverLap(Bbox bboxA, Bbox bboxB)

Returns a Bounding Box indicating the overLap
of two Bounding Boxes in the device. If overlap
does not exist, the method returns the bounding
box with its initial values, i.e. xMax, xMin,
yMax, yMax, terminals.

Double getShortBitsEst2_place()

Returns the short sensitive bits of a placed
design. We have implemented the second method
of the paper "Soft error reliability aware
placement and routing for FPGA" to calculate
the short sensitive bits.

MultiKeyMap<Integer,Double> calcProp(Bbox
bbox)

Gets a bounding box of a net and returns a Map
(key = XY cords, Value = probability) with the
probability of a pip to be used in xy coordinates.
Terminal cross count is taken into account.

Offset correction:
xMin = 0 and xMax = xMax - xMin.
yMin =0 and yMax = yMax — yMin.

void fillDesBboxes()

Calculates the Bounding Box for each Net and
adds them in the Global HashMap<String,
Bbox> netBboxes map and ArrayList<Bbox>
netBbList list.

void loadFile(String ncdName)

Loads the XDL design into the class.

void loadCompexBlocks(boolean debug)

Loads the complex blocks of the design in the
block ArralList. This method is same with
unipi.placer.FPGA loadCompexBlock method,
with the one difference. It loads the instances
containing curry chains.
Param: debug while true, we output the tiles of
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the FPGA and their relying instances.

PrimitiveSite findlOB(int xTile, int yTile, int X,
inty)

Returns the correlated IODELAY or ILOGIC or
OLOGIC PrimitiveSites of an IOB PrimitiveSite
in order to be packed in one complex block.

long getRamSensitiveBits()

Returns the RAM sensitive bits. This method is
implemented for Virtexs and  Virtex6
architectures.

long getDspSensitiveBits()

Returns the DSP sensitive bits. This method is

Inner class wireSite public fields

String siteName

implemented for  Virtex5 and  Virtex6
architectures.

Nested class wireSite Detail

wireSite Nested class used to represent a wire

The name of the site at which the wire resides.

Detail

int wire

The wire.

String netName

The name of the net at which the wire belongs.

String wireName

Inner class wireSite constructors

wireSite()

Constructor which initializes all member data

The name of the wire.
Detail

structures.

wireSite(String name, int wire)

Initializes the wireSite class by name and wire.

wireSite(String name, int wire, String netName)

Initializes the wireSite class by name, wire and
netName.

wireSite(String name, int wire, String netName,

String wireName)

Initializes the wireSite class by name, wire,
netName and wireName.

EBD_Analysis class

This class analyzes the essential bits generated from the Xilinx bitgen tool.

EBD_Analysis class public field | Detail

Bitstream bitstream

The bitstream representation,
Rapidsmith framework.

provided by

String ebd_fileName

The essentials configuration bits path.

XilinxConfigurationSpecification spec

Specifications of the targeting FPGA

architecture.

HashMap<Integer, Frame> ebdFrames

A map of the FPGA frames.

long sensitiveConfigurationBits_total

The total sensitive configuration bits.

long sensitiveConfigurationBits

The sensitive configuration bits.

long sensitivelnterconnectionBits

The sensitive interconnection bits.

long sensitivelnterfaceBits

The sensitive interface bits.

ArrayList<column> columnFrames

A list with the column frames.

FPGA fpga

The targeting FPGA layout.

EBD_Analysis class constructors

Detail

EBD_analysis(String bitStream_fileName)

Constructor which initializes all member data
structures.

param[in] String: The full path of the design
bitstream file.

EBD_Analysis class public methods
loadBitStream()

Parses the bitstream file. The bitstream file
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should be in debug format.

loadEBD()

Parses the EBD file. The bitstream file should be
in debug format.

int get_IOB_columns()

Returns the 10 block sensitive bits of all frames.

long get_sensitiveBits()

Gets the total number of sensitive bits.

get_sensitiveConfigurationBits()

Gets the block configuration sensitive bits.

long get_sensitivelnterconnectionBits()

Gets the interconnection sensitive bits.

int get_1OB_sensitivelnterconnectionBits()

Gets the sensitive interconnection bits for the
I0Bs.

int get 10B_sensitivelnterfaceBits()

Gets the sensitive interface bits for the 10Bs.

int get 10B_sensitiveBlockConfigurationBits()

Gets the sensitive block configuration bits for the
I0Bs.

int get CLB_sensitivelnterconnectionBits()

Gets the sensitive interconnection bits for the
CLB:s.

int get CLB_sensitivelnterfaceBits()

Gets the sensitive interface bits for the CLBs

int get_ CLB_sensitiveBlockConfigurationBits()

Gets the sensitive block configuration bits for the
CLBs.

int get. BRAM _sensitivelnterconnectionBits()

Gets the sensitive interconnection bits for the
BRAMs.

int get BRAM _sensitivelnterfaceBits()

Gets the sensitive interface bits for the BRAMS.

int
get BRAM_sensitiveBlockConfigurationBits()

Gets the sensitive block configuration bits for the
BRAMs.

int get_DSP_sensitivelnterconnectionBits()

Gets the sensitive interconnection bits for the
DSPs.

int get_ DSP_sensitivelnterfaceBits()

Gets the sensitive interface bits for the DSPs.

int get_DSP_sensitiveBlockConfigurationBits()

Gets the sensitive block configuration bits for the
DSPs.

int get_CLK_sensitivelnterconnectionBits()

Gets the sensitive interconnection bits for the
CLKs.

int get_ CLK_sensitivelnterfaceBits()

Gets the sensitive interface bits for the CLKs

int get_CLK_sensitiveBlockConfigurationBits()

Gets the sensitive block configuration bits for the
CLKs.

long get_sensitivelnterfaceBits()

Gets the interface sensitive bits.

getResults()

Prints the results.

EBD_Analysis class private methods
findFramesPerColumn()

Detail

This function finds and maps the sensitive frames
for each FPGA device column. The mapping
is done by finding the start and end frame
address for each column. This information is
saved in the ArrayList "columnFrames"

Byte[] bytesTrim(byte[] bytes)

This function removes any padding bytes (0x0D)
from the input byte array.

param[in] bytes : The byte array which contains
the data read in ascii format.

returns Byte[]: The byte array without the
padding bytes (0x0D).

ArrayList<Integer>
frameBytes)

bytesToWords(Byte[]

This function converts the data of the frame
which is in ascii format to its binary equivalent
(words).

param[in] frameBytes: The bytes of the frame in
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ascii format.

returns List<Integer>: The words of the frame in
binary format.

List<Byte>
frameBits)

asciiBytes_toBinary(Byte[]

This function converts the data of the frame
which is in ascii format to its binary equivalent.

param[in] frameBytes: The bytes of the frame in
ascii format.

Returns List<Byte>: The bytes of the frame in
binary format.

Nested class columnFramesRange
columnFramesRange

Detail
Nested class representing the column frames
range.

Inner class columnFramesRange public fields \ Detail

columnFramesRange()

int startAddress The start position address of the frame.
int end Address The end position address of the frame.
int frames The number of frames in this start — end frame

address range.

Inner class columnFramesRange constructors | Detail

Constructor which initializes all member data
structures with zero.

Inner class column Detail

Column Nested class representing a frame column.

Inner class Bagapublic fields Detail

int columnindex

The start index of the frame.

int sensitiveConfigurationBits

The sensitive configuration bits of this column.

int sensitivelnterconnectionBits

The sensitive interconnection bits of this column.

int sensitivelnterfaceBits

The sensitive interface bits of this column.

columnFramesRange

Address details of the frame.

PrimitiveType columnType

Inner class columnFramesRange constructors
column(int  columnindex, columnFramesRange
frame Addressinfo)

The type of sites that reside in this frame.

Detail

Constructor which initializes all member data
structures with the given values.

3.5.4 Userinterface Package

The userInterface package contains only one class which provides to the user an easy way to place, route,
generate a bitstream configuration file or perform a soft-error sensitivity analysis at all CAD stages. The
user is free to run only one desired stage or run the entire flow at once.

The usage of the console interface has the following arguments:

Console arguments | Detail

-b Generate the Bitstream.

-C Redirect Console to the log file.

-e Export placer performance to excel.

-ebd Perform the ebd analysis.

-ep <arg> Epsilon value. Default value = 0.005

-m <arg> Moves per temperature multiplier. Default 10
-0a Perform the analysis only (not placement).

-p <arg> Path of the design (xdl or ncd file).
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-pa Place Analysis.

-pl Place the design with Sa placer.

-r Route the design.

-ra Route Analysis.

-resa Resource Analysis.

-Seu SEU awareness placement (beta).
-ucf <arg> Path of UCF file

-xdI2ncd Convert the placed xdl file to ncd file.
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4 Experimental results

A rich set of experiments are carried out to demonstrate all functions of our vulnerability analysis
framework. The first experimental set has been performed to evaluate the post-mapping analysis method.
The experiments compare the packing and mapping steps of the VTR and Xilinx tools in order to explore
their effects to the block sensitive configuration bits. In order to compare the two packers some
benchmark circuits are used from the VTR flow which have been synthesized for a Virtex-6 device
(XCBVLX240T-1FFG1156) using the method described in [40]. The same circuits have been also
implemented using the Xilinx flow. The results of the post-mapping analysis are shown in Table 1V and
Table V. The first rows present the FPGA resource utilization while the last four rows present the
sensitive configuration bits per programmable resource type and the total. It is interesting to see that both
packers result to almost the same sensitive bits for all the resources except slices. Xilinx ISE packer
produces 3.15% more sensitive bits on average for the IOBs and 4.76% less sensitive bits on average for
the DSP slices compared to VTR packer. Regarding the logic slices, ISE flow generates significantly less
sensitive configuration bits by a factor of 34.31% on average which is due to the fact that ISE synthesis
and packing tool produces less slices compared to the VTR synthesis and packing toolsets. An interesting
point also is the LUT utilizations. From the experimental results it is clearly depicted that Xilinx ISE
results in more low-utilized LUTs (LUTs with less than 4 inputs) but it generates less high-utilized LUTs
(LUTs with more than 3 inputs) than the VTR flow. It is obvious that the LUT utilization affects
substantially the slice block sensitive bits.

The second experimental set has been used to demonstrate the performance of the implemented
simulated annealing placement algorithm and to evaluate the post-placement and post-routing analysis.
The QUIP benchmarks [45] shown in Table 11 which have been adapted to the design flow of Xilinx ISE
and synthesized on a Virtex-5 device FPGA (XC5VLX30FF67) are used in these experiments. For the
above benchmarks, both post-placement and post-routing analysis methods have been executed. Table VI
and Table VII present the results of the two steps in terms of sensitive interconnection bits (open-
sensitive, short-sensitive and total) considering the SA placer and Xilinx ISE placer respectively. The two
placers present the same behavior in terms of SEU awareness. Precisely, Xilinx ISE placer produces
slightly less open-sensitive bits than the SA placer by a percentage of 0.79% and 3.24% less short-
sensitive bits than SA placer for the post-routing analysis. Table VI and Table VII can be also used to
evaluate the accuracy of the post-placement estimation of interconnection sensitive bits compared to the
post-routing analysis. The post-placement estimation provides sufficient results: it introduces a small
overestimation of 10% in case of the open-sensitive which is almost doubled for the short-sensitive bits
estimation (18.54%). Table Il presents the efficiency of the SA placer in comparison with Xilinx ISE
placer. The SA placer has better performance by a percentage of 5.7% (wire-length-cost) in average,
while it produced faster designs by a percentage of 5.8%. Finally the power consumption of the SA placer
designs is 0.7% more than the ISE placer designs in average. Figure 29 depicts the placement of b4
benchmark (mux_128bit) with SA placer and Xilinx ISE placer respectively.

The last experimental set has been performed to evaluate the vulnerability analysis method compared
to the sensitivity report of Xilinx (.ebd file). All benchmarks have been implemented using the SA placer
and the Xilinx router. Table VIII and Table IX compare the sensitive block configuration bits and
interconnection configuration bits, respectively, for the two methods. The results are similar for the block
configuration bits of slices and 10Bs. Specifically, the method presents a slight augmentation to the
number of sensitive block configuration bits for the slices (2.21%) and for the 10Bs (7.98%). However, in
the case of DSP and RAM blocks, there is considerable difference to the number of sensitive bits. This is
due to the black-box estimation approach used for these blocks which results in an overestimation of the
sensitive bits. Regarding the sensitive interconnection bits, the results of the post-routing analysis are
used, which are compared with the sensitivity data from Xilinx report. There are significant differences in
the results of the two methods. The Xilinx sensitivity analysis results to a significantly larger number of
sensitive interconnection bits for all categories. In future, fault injection experiments will be performed to
identify whether the analysis framework underestimates or the Xilinx tool overestimates the vulnerability
of the designs to soft errors. Figure 30 illustrates the sensitive bits of the mux_128bit circuit in the FPGA
layout. The circuit has been placed using the SA placer. Figure 30 shows the circuit’s sensitive sites using
the proposed framework as well as the Xilinx report. Although the developed visualization tool supports
sensitivity-level coloring of the sensitive sites, for visibility reasons only one color-level has been used. It
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is clearly observed that both tools produce the same results with slight differences in the switch-matrix
locations.

o

SR

x |

Benchmark p X 3 3

w D) m s}

58 ¢ : 3

n o o 04
1 oc_correlator 91 0 73 2 85| 1 0 0 0
2 oc_des_des3perf 2157 | 122 | 120 64| 298 | 1 0 0 0
3 barrel64 103 0 71| 64| 136 | 1 0 0 0
4 mux_128bit 327 0 11| 128 | 140 | 1 0 0 0
5 oc_ata_ocidec3 182 6 40 28 | 130 | 1 0 0 0
6 oc_des area_opt 88 0 0 0| 189 | 1 0 0 0
7 fip_risc8 86 4 20| 53| 113 | 1 0 0 0
8 oc_fpu 430 3 69| 40| 110| 2 0 0 2
9 oc_mem_ctrl 696 3| 101 | 107 | 267 | 2 0 0 0
10 0C_pavr 584 3 1 0 521 1 0 1 0
11 0C_aquarius 888 5 1 18 3B 1 10 0 2
12 | oc_video_comp_sys_jpeg_log | 1659 | 13 17| 26| 47| 1 0 0| 32

Table Il - QUIP benchmarks

maximum
maximum
Power

Bounding
Placement

ilinx Bounding- Box
time (hh:mm:ss:ms)

a placer total Power

~N ~N

< - - — —

E 2 < 5 = S % 32
: gy | 2 g £¢ & B8z &3
< 20 D ol o g < %: < %:
8 < Q o o o £ o
& XS 8 Q i 3 8 E g 83 X3
1| 3007.29 3600.43 83.5 00:00:01:879 80.965 85.889 | 379.80 | 380.04
2| 81764.3 76109.63 107.4 01:53:24:730 248.077 263.09 | 404.02 | 400.19
3| 6755.77 6085.93 111.0 00:00:02:933 124.502 122.37 | 377.64 | 377.64
4 | 7858.46 6747.08 116.5 00:00:12:397 267.953 235.74 | 384.60 | 387.95
5| 7817.56 7992.60 97.8 00:00:04:896 250.250 264.48 | 383.40 | 383.40
6 | 7040.79 6092.68 115.6 00:00:03:833 225.836 166.03 | 380.76 | 381.24
7 | 4655.01 4050.53 114.9 00:00:02:525 89.952 79.246 | 380.52 | 380.52
8| 17310.6 17830.0 97.1 00:00:16:606 24.992 30.511 | 384.36 | 384.12
9| 33770.5 29345.42 115.1 00:03:03:227 168.748 136.17 | 393.24 | 395.64
10 27644 28236.39 97.9 00:00:58:335 73.508 68.894 | 384.11 | 384.11
11 | 49194.3 44550.49 110.4 00:03:25:514 49.145 46.369 | 391.79 | 392.75
12 | 72257.6 71149 101.6 00:20:06:297 87.237 84.767 | 400.91 | 400.67

Table Il - Placement performance: SA placer vs Xilinx ISE placer
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Benchmark BGM BFLY DSCG
Used SLICEs 6479 12009 378 2552 2454
Used 10s 289 289 74 257 193
Used DSPs 22 42 0 8 8
Used LUTs 15344 31031 1294 6271 6107
1-input LUTs 141 287 1 23 32
2-input LUTs 172 392 161 79 74
3-input LUTs 552 1149 4 183 202
4-input LUTS 731 1688 98 318 304
5-input LUTs 3130 5958 576 1241 1220
6-input LUTs 10618 21557 454 4411 4259
LUT sensitive bits 796794 1608646 49734 328930 318456
SLICE sensitive bits 1256103 2448864 77356 510800 489168
10B sensitive bits 21230 22126 5508 19408 14944
DSP sensitive bits 7040 13440 0 2560 2560
Total sensitive bits 1284373 2484430 82864 532768 506672
Table 1V - Post-mapping analysis(block configuration bits) using the Xilinx ISE flow [46].
Benchmark .~ BGM SYN7 SHA BFLY DSCG |
Used SLICEs 7948 18409 555 3151 3059
Used 10s 289 289 74 257 193
Used DSPs 22 50 0 8 8
Used LUTs 28844 66801 2071 11115 10769
1-input LUTs 6 14 0 4 2
2-input LUTs 250 655 22 83 95
3-input LUTs 376 982 33 136 136
4-input LUTs 5460 13981 521 2368 2326
5-input LUTs 5849 13377 624 2070 1975
6-input LUTs 16903 37792 871 6414 6195
LUT sensitive bits 1360340 3080952 84400 516052 498368
SLICE sensitive bits 1915016 4363005 118315 724849 690161
10B sensitive bits 20642 23040 4932 19276 14054
DSP sensitive bits 7040 16000 0 2560 2560
Total sensitive bits 1942698 4402045 123247 746685 706775
Table V - Post-mapping analysis(block configuration bits) using the VTR [41], [40].
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Sa placer sensitive bits
Sa placer Xilinx ISE placer VS.

Post-placement estimation Post-placement estimation  Xilinx ISE placer sensitive bits
(%)

Open | Short | Total Open | Short | Total | Open Short Total
1 8505 8185 16690 6468 4187 10655 131.49 195.49 156.64
2 166308 | 526535 | 692843 | 174462 | 570346 | 744808 95.33 92.32 93.02
3 14652 34534 49186 14286 23499 | 37785 102.56 146.96 130.17
4 14844 6336 21180 14421 4963 19384 102.93 127.66 109.27
5 18339 31261 49600 16905 21277 | 38182 108.48 146.92 129.90
6 16533 18615 35148 17778 16472 34250 93.00 113.01 102.62
7 7941 8266 16207 8529 8957 17486 93.11 92.29 92.69
8 38220 | 129462 | 167682 36204 | 110521 | 146725 105.57 117.14 114.28
9 57768 | 155132 | 212900 63387 | 151809 | 215196 91.14 102.19 98.93
10 62586 | 370032 | 432618 60699 | 376718 | 437417 103.11 98.23 98.90
11 92451 | 702652 | 795103 96978 | 786408 | 883386 95.33 89.35 90.01
12 94662 | 641509 | 736171 96612 | 655580 | 752192 97.98 97.85 97.87

Table VI - Post-placement analysis (interconnection configuration bits): SA placer vs. ISE placer

Sa placer sensitive bits
Sa placer Xilinx ISE placer VS.

Post-routing estimation Post-routing estimation Xilinx ISE placer sensitive
bits (%0)

B Open Short Total Open Short Total Open Short Total

1 8272 20426 28698 7853 19417 27270 | 105.34% | 105.20% | 105.24%
2 151192 | 420107 | 571299 | 150059 | 417081 | 567140 | 100.76% | 100.73% | 100.73%
3 10069 24174 34243 9562 21733 31295 | 105.30% | 111.23% | 109.42%
4 16521 23802 40323 15874 22918 38792 | 104.08% | 103.86% | 103.95%
5 13485 27260 40745 13343 22989 36332 | 101.06% | 118.58% | 112.15%
6 8351 14834 23185 8323 13791 22114 | 100.34% | 107.56% | 104.84%
7 7858 13275 21133 7932 13264 21196 99.07 | 100.08% 99.70
8 36189 | 120672 | 156859 35778 | 120814 | 156592 | 101.15% 99.88 | 100.17%
9 49869 | 118468 | 168335 49990 96615 | 146605 99.76 | 122.62% | 114.82%
10 53805 | 219767 | 273572 53116 | 219952 | 273068 | 101.30% 99.92 | 100.18%
11 86625 | 349154 | 435779 85858 | 333627 | 419485 | 100.89% | 104.65% | 103.88%
12 103959 | 221027 | 324986 | 104194 | 219849 | 324043 99.77 | 100.54% | 100.29%

Table VII - Post-routing analysis (interconnection configuration bits): SA placer vs. ISE placer
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Proposed framework Xilinx report
SLICEs | IOBs | BRA | DSPs Total | SLICEs | 10Bs BRA | DSP | Total
1 19099 | 1019 0 0 29293 18136 9356 0 0 27492
2 402329 | 3069 0 0 433027 | 404062 | 28233 0 0 432295
3 27703 | 1637 0 0 44073 23540 | 14551 0 0 38091
4 38053 | 1589 0 0 53947 24536 | 13919 0 0 38455
5 29933 | 1339 0 0 43323 33297 | 12284 0 0 45581
6 21190 | 1499 0 0 36186 20756 | 14440 0 0 35196
7 17302 | 1162 0 0 28928 14995 | 10834 0 0 25829
8 99201 | 1316 640 0 113009 | 105877 | 11910 302 0 118089
9 118518 | 2994 0 0 148462 | 112997 | 27062 0 0 140059
10 | 132489 | 4584 0 1280 | 138353 | 145362 | 4383 0 251 | 149996
11 | 199847 | 2910 640 12800 | 216197 | 206708 | 3037 302 2450 | 212497
12 | 215635 | 5286 | 10240 0 231161 | 391503 | 4822 4832 0 401157
Table VIII - Sensitive block configuration bits: Proposed framework vs. Xilinx report
Proposed framework Xilinx report ‘
B | SLICEs | IOBs | BRA DSPs Total | SLICEs | 10Bs BRA | DSPs | Total
1 | 27184 | 1490 24 0 28698 41660 3911 738 16 46325
2 | 565295 | 3965 1138 901 571299 | 829088 | 15445 | 11952 | 9084 | 865569
3 | 33022 | 1203 12 6 34243 52157 4410 344 176 57087
4 | 38630 | 1648 7 38 40323 85198 5253 340 874 91665
5 | 39155 | 1502 36 52 40745 69252 4629 776 1150 | 75807
6 | 22212 882 84 7 23185 44130 3611 1295 152 49188
7 | 19133 | 1740 82 178 21133 38066 5166 1123 1975 | 46330
8 | 149518 | 1706 848 4787 | 156859 | 199696 | 5744 6768 8757 | 220965
9 | 162787 | 5200 129 219 168335 | 265612 | 16436 | 2082 3212 | 287342
10 | 268977 | 1247 1600 1748 | 273572 | 306162 | 6654 6789 1076 | 330371
11 | 412378 | 3227 | 14782 | 5392 | 435779 | 477918 | 11858 | 24679 | 9628 | 524083
12 | 263751 | 2417 618 58200 | 324986 | 511717 | 9635 9521 6389 | 594764

Table IX - Sensitive interconnection configuration bits: Proposed framework vs. Xilinx report
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Figure 30 - Visualization of the sensitive bits: Left: Proposed framework, Right: Xilinx report.
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5 Conclusions and Future Work
The problem statement of this thesis was to create a soft error vulnerability analysis framework for Xilinx
FPGASs which is able to estimate soft-errors in the following enumerated CAD stages:

1. Post-mapping analysis of the sensitive block configuration bits.

2. Post-placement analysis of the sensitive interconnection bits.
3. Post-routing analysis of the sensitive interconnection bits.
4

Bitstream analysis: Classification of the configuration sensitive bits is provided, according to
their configuration type: block configuration bits (CLBs, 10Bs, DSPs, etc.) and interconnection
configuration bits.

Furthermore, visualizition of the circuit’s sensitive sites exported from Xilinx report and the proposed
framework is available.

The results of this research seem to have raised several interesting directions for future work:

1. The implemented simulated annealing placer algorithm does not support the movement of CLBs
that contain instances with carry chains. Therefore, carry chain handling could be evaluated on a
newer version of the SA placer.

2. The proposed framework could be tested for all Xilinx FPGA families. Currently, it is has only
been tested on Virtex5 and Virtex6 FPGAs.

3. The analysis of usage profiling is performed for Virtex-5 and Virtex-6 architectures. More
Xilinx architectures profiles could be integrated in future.

4. Fault injection tools could be integrated in the soft-error vulnerability analysis framework.

5. The SEU aware placer described in [18] was implemented, but due to lack of time it was not
fully tested. The SEU aware placer algorithm could be optimized and verified in future.
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